xref: /linux/drivers/net/ethernet/renesas/ravb_main.c (revision 0bef512012b1cd8820f0c9ec80e5f8ceb43fdd59)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/reset.h>
31 #include <linux/math64.h>
32 #include <net/ip.h>
33 
34 #include "ravb.h"
35 
36 #define RAVB_DEF_MSG_ENABLE \
37 		(NETIF_MSG_LINK	  | \
38 		 NETIF_MSG_TIMER  | \
39 		 NETIF_MSG_RX_ERR | \
40 		 NETIF_MSG_TX_ERR)
41 
42 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
43 		 u32 set)
44 {
45 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
46 }
47 
48 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
49 {
50 	int i;
51 
52 	for (i = 0; i < 10000; i++) {
53 		if ((ravb_read(ndev, reg) & mask) == value)
54 			return 0;
55 		udelay(10);
56 	}
57 	return -ETIMEDOUT;
58 }
59 
60 static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
61 {
62 	u32 csr_ops = 1U << (opmode & CCC_OPC);
63 	u32 ccc_mask = CCC_OPC;
64 	int error;
65 
66 	/* If gPTP active in config mode is supported it needs to be configured
67 	 * along with CSEL and operating mode in the same access. This is a
68 	 * hardware limitation.
69 	 */
70 	if (opmode & CCC_GAC)
71 		ccc_mask |= CCC_GAC | CCC_CSEL;
72 
73 	/* Set operating mode */
74 	ravb_modify(ndev, CCC, ccc_mask, opmode);
75 	/* Check if the operating mode is changed to the requested one */
76 	error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
77 	if (error) {
78 		netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
79 			   opmode & CCC_OPC);
80 	}
81 
82 	return error;
83 }
84 
85 static void ravb_set_rate_gbeth(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 10:		/* 10BASE */
91 		ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
92 		break;
93 	case 100:		/* 100BASE */
94 		ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
95 		break;
96 	case 1000:		/* 1000BASE */
97 		ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
98 		break;
99 	}
100 }
101 
102 static void ravb_set_rate_rcar(struct net_device *ndev)
103 {
104 	struct ravb_private *priv = netdev_priv(ndev);
105 
106 	switch (priv->speed) {
107 	case 100:		/* 100BASE */
108 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
109 		break;
110 	case 1000:		/* 1000BASE */
111 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
112 		break;
113 	}
114 }
115 
116 static void ravb_set_buffer_align(struct sk_buff *skb)
117 {
118 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
119 
120 	if (reserve)
121 		skb_reserve(skb, RAVB_ALIGN - reserve);
122 }
123 
124 /* Get MAC address from the MAC address registers
125  *
126  * Ethernet AVB device doesn't have ROM for MAC address.
127  * This function gets the MAC address that was used by a bootloader.
128  */
129 static void ravb_read_mac_address(struct device_node *np,
130 				  struct net_device *ndev)
131 {
132 	int ret;
133 
134 	ret = of_get_ethdev_address(np, ndev);
135 	if (ret) {
136 		u32 mahr = ravb_read(ndev, MAHR);
137 		u32 malr = ravb_read(ndev, MALR);
138 		u8 addr[ETH_ALEN];
139 
140 		addr[0] = (mahr >> 24) & 0xFF;
141 		addr[1] = (mahr >> 16) & 0xFF;
142 		addr[2] = (mahr >>  8) & 0xFF;
143 		addr[3] = (mahr >>  0) & 0xFF;
144 		addr[4] = (malr >>  8) & 0xFF;
145 		addr[5] = (malr >>  0) & 0xFF;
146 		eth_hw_addr_set(ndev, addr);
147 	}
148 }
149 
150 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
151 {
152 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
153 						 mdiobb);
154 
155 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
156 }
157 
158 /* MDC pin control */
159 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
160 {
161 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
162 }
163 
164 /* Data I/O pin control */
165 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
166 {
167 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
168 }
169 
170 /* Set data bit */
171 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
172 {
173 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
174 }
175 
176 /* Get data bit */
177 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
178 {
179 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
180 						 mdiobb);
181 
182 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
183 }
184 
185 /* MDIO bus control struct */
186 static const struct mdiobb_ops bb_ops = {
187 	.owner = THIS_MODULE,
188 	.set_mdc = ravb_set_mdc,
189 	.set_mdio_dir = ravb_set_mdio_dir,
190 	.set_mdio_data = ravb_set_mdio_data,
191 	.get_mdio_data = ravb_get_mdio_data,
192 };
193 
194 /* Free TX skb function for AVB-IP */
195 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
196 {
197 	struct ravb_private *priv = netdev_priv(ndev);
198 	struct net_device_stats *stats = &priv->stats[q];
199 	unsigned int num_tx_desc = priv->num_tx_desc;
200 	struct ravb_tx_desc *desc;
201 	unsigned int entry;
202 	int free_num = 0;
203 	u32 size;
204 
205 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
206 		bool txed;
207 
208 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
209 					     num_tx_desc);
210 		desc = &priv->tx_ring[q][entry];
211 		txed = desc->die_dt == DT_FEMPTY;
212 		if (free_txed_only && !txed)
213 			break;
214 		/* Descriptor type must be checked before all other reads */
215 		dma_rmb();
216 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
217 		/* Free the original skb. */
218 		if (priv->tx_skb[q][entry / num_tx_desc]) {
219 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
220 					 size, DMA_TO_DEVICE);
221 			/* Last packet descriptor? */
222 			if (entry % num_tx_desc == num_tx_desc - 1) {
223 				entry /= num_tx_desc;
224 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
225 				priv->tx_skb[q][entry] = NULL;
226 				if (txed)
227 					stats->tx_packets++;
228 			}
229 			free_num++;
230 		}
231 		if (txed)
232 			stats->tx_bytes += size;
233 		desc->die_dt = DT_EEMPTY;
234 	}
235 	return free_num;
236 }
237 
238 static void ravb_rx_ring_free_gbeth(struct net_device *ndev, int q)
239 {
240 	struct ravb_private *priv = netdev_priv(ndev);
241 	unsigned int ring_size;
242 	unsigned int i;
243 
244 	if (!priv->gbeth_rx_ring)
245 		return;
246 
247 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
248 		struct ravb_rx_desc *desc = &priv->gbeth_rx_ring[i];
249 
250 		if (!dma_mapping_error(ndev->dev.parent,
251 				       le32_to_cpu(desc->dptr)))
252 			dma_unmap_single(ndev->dev.parent,
253 					 le32_to_cpu(desc->dptr),
254 					 GBETH_RX_BUFF_MAX,
255 					 DMA_FROM_DEVICE);
256 	}
257 	ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
258 	dma_free_coherent(ndev->dev.parent, ring_size, priv->gbeth_rx_ring,
259 			  priv->rx_desc_dma[q]);
260 	priv->gbeth_rx_ring = NULL;
261 }
262 
263 static void ravb_rx_ring_free_rcar(struct net_device *ndev, int q)
264 {
265 	struct ravb_private *priv = netdev_priv(ndev);
266 	unsigned int ring_size;
267 	unsigned int i;
268 
269 	if (!priv->rx_ring[q])
270 		return;
271 
272 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
273 		struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
274 
275 		if (!dma_mapping_error(ndev->dev.parent,
276 				       le32_to_cpu(desc->dptr)))
277 			dma_unmap_single(ndev->dev.parent,
278 					 le32_to_cpu(desc->dptr),
279 					 RX_BUF_SZ,
280 					 DMA_FROM_DEVICE);
281 	}
282 	ring_size = sizeof(struct ravb_ex_rx_desc) *
283 		    (priv->num_rx_ring[q] + 1);
284 	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
285 			  priv->rx_desc_dma[q]);
286 	priv->rx_ring[q] = NULL;
287 }
288 
289 /* Free skb's and DMA buffers for Ethernet AVB */
290 static void ravb_ring_free(struct net_device *ndev, int q)
291 {
292 	struct ravb_private *priv = netdev_priv(ndev);
293 	const struct ravb_hw_info *info = priv->info;
294 	unsigned int num_tx_desc = priv->num_tx_desc;
295 	unsigned int ring_size;
296 	unsigned int i;
297 
298 	info->rx_ring_free(ndev, q);
299 
300 	if (priv->tx_ring[q]) {
301 		ravb_tx_free(ndev, q, false);
302 
303 		ring_size = sizeof(struct ravb_tx_desc) *
304 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
305 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
306 				  priv->tx_desc_dma[q]);
307 		priv->tx_ring[q] = NULL;
308 	}
309 
310 	/* Free RX skb ringbuffer */
311 	if (priv->rx_skb[q]) {
312 		for (i = 0; i < priv->num_rx_ring[q]; i++)
313 			dev_kfree_skb(priv->rx_skb[q][i]);
314 	}
315 	kfree(priv->rx_skb[q]);
316 	priv->rx_skb[q] = NULL;
317 
318 	/* Free aligned TX buffers */
319 	kfree(priv->tx_align[q]);
320 	priv->tx_align[q] = NULL;
321 
322 	/* Free TX skb ringbuffer.
323 	 * SKBs are freed by ravb_tx_free() call above.
324 	 */
325 	kfree(priv->tx_skb[q]);
326 	priv->tx_skb[q] = NULL;
327 }
328 
329 static void ravb_rx_ring_format_gbeth(struct net_device *ndev, int q)
330 {
331 	struct ravb_private *priv = netdev_priv(ndev);
332 	struct ravb_rx_desc *rx_desc;
333 	unsigned int rx_ring_size;
334 	dma_addr_t dma_addr;
335 	unsigned int i;
336 
337 	rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
338 	memset(priv->gbeth_rx_ring, 0, rx_ring_size);
339 	/* Build RX ring buffer */
340 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
341 		/* RX descriptor */
342 		rx_desc = &priv->gbeth_rx_ring[i];
343 		rx_desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
344 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
345 					  GBETH_RX_BUFF_MAX,
346 					  DMA_FROM_DEVICE);
347 		/* We just set the data size to 0 for a failed mapping which
348 		 * should prevent DMA from happening...
349 		 */
350 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
351 			rx_desc->ds_cc = cpu_to_le16(0);
352 		rx_desc->dptr = cpu_to_le32(dma_addr);
353 		rx_desc->die_dt = DT_FEMPTY;
354 	}
355 	rx_desc = &priv->gbeth_rx_ring[i];
356 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
357 	rx_desc->die_dt = DT_LINKFIX; /* type */
358 }
359 
360 static void ravb_rx_ring_format_rcar(struct net_device *ndev, int q)
361 {
362 	struct ravb_private *priv = netdev_priv(ndev);
363 	struct ravb_ex_rx_desc *rx_desc;
364 	unsigned int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
365 	dma_addr_t dma_addr;
366 	unsigned int i;
367 
368 	memset(priv->rx_ring[q], 0, rx_ring_size);
369 	/* Build RX ring buffer */
370 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
371 		/* RX descriptor */
372 		rx_desc = &priv->rx_ring[q][i];
373 		rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
374 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
375 					  RX_BUF_SZ,
376 					  DMA_FROM_DEVICE);
377 		/* We just set the data size to 0 for a failed mapping which
378 		 * should prevent DMA from happening...
379 		 */
380 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
381 			rx_desc->ds_cc = cpu_to_le16(0);
382 		rx_desc->dptr = cpu_to_le32(dma_addr);
383 		rx_desc->die_dt = DT_FEMPTY;
384 	}
385 	rx_desc = &priv->rx_ring[q][i];
386 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
387 	rx_desc->die_dt = DT_LINKFIX; /* type */
388 }
389 
390 /* Format skb and descriptor buffer for Ethernet AVB */
391 static void ravb_ring_format(struct net_device *ndev, int q)
392 {
393 	struct ravb_private *priv = netdev_priv(ndev);
394 	const struct ravb_hw_info *info = priv->info;
395 	unsigned int num_tx_desc = priv->num_tx_desc;
396 	struct ravb_tx_desc *tx_desc;
397 	struct ravb_desc *desc;
398 	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
399 				    num_tx_desc;
400 	unsigned int i;
401 
402 	priv->cur_rx[q] = 0;
403 	priv->cur_tx[q] = 0;
404 	priv->dirty_rx[q] = 0;
405 	priv->dirty_tx[q] = 0;
406 
407 	info->rx_ring_format(ndev, q);
408 
409 	memset(priv->tx_ring[q], 0, tx_ring_size);
410 	/* Build TX ring buffer */
411 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
412 	     i++, tx_desc++) {
413 		tx_desc->die_dt = DT_EEMPTY;
414 		if (num_tx_desc > 1) {
415 			tx_desc++;
416 			tx_desc->die_dt = DT_EEMPTY;
417 		}
418 	}
419 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
420 	tx_desc->die_dt = DT_LINKFIX; /* type */
421 
422 	/* RX descriptor base address for best effort */
423 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
424 	desc->die_dt = DT_LINKFIX; /* type */
425 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
426 
427 	/* TX descriptor base address for best effort */
428 	desc = &priv->desc_bat[q];
429 	desc->die_dt = DT_LINKFIX; /* type */
430 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
431 }
432 
433 static void *ravb_alloc_rx_desc_gbeth(struct net_device *ndev, int q)
434 {
435 	struct ravb_private *priv = netdev_priv(ndev);
436 	unsigned int ring_size;
437 
438 	ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
439 
440 	priv->gbeth_rx_ring = dma_alloc_coherent(ndev->dev.parent, ring_size,
441 						 &priv->rx_desc_dma[q],
442 						 GFP_KERNEL);
443 	return priv->gbeth_rx_ring;
444 }
445 
446 static void *ravb_alloc_rx_desc_rcar(struct net_device *ndev, int q)
447 {
448 	struct ravb_private *priv = netdev_priv(ndev);
449 	unsigned int ring_size;
450 
451 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
452 
453 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
454 					      &priv->rx_desc_dma[q],
455 					      GFP_KERNEL);
456 	return priv->rx_ring[q];
457 }
458 
459 /* Init skb and descriptor buffer for Ethernet AVB */
460 static int ravb_ring_init(struct net_device *ndev, int q)
461 {
462 	struct ravb_private *priv = netdev_priv(ndev);
463 	const struct ravb_hw_info *info = priv->info;
464 	unsigned int num_tx_desc = priv->num_tx_desc;
465 	unsigned int ring_size;
466 	struct sk_buff *skb;
467 	unsigned int i;
468 
469 	/* Allocate RX and TX skb rings */
470 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
471 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
472 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
473 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
474 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
475 		goto error;
476 
477 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
478 		skb = __netdev_alloc_skb(ndev, info->max_rx_len, GFP_KERNEL);
479 		if (!skb)
480 			goto error;
481 		ravb_set_buffer_align(skb);
482 		priv->rx_skb[q][i] = skb;
483 	}
484 
485 	if (num_tx_desc > 1) {
486 		/* Allocate rings for the aligned buffers */
487 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
488 					    DPTR_ALIGN - 1, GFP_KERNEL);
489 		if (!priv->tx_align[q])
490 			goto error;
491 	}
492 
493 	/* Allocate all RX descriptors. */
494 	if (!info->alloc_rx_desc(ndev, q))
495 		goto error;
496 
497 	priv->dirty_rx[q] = 0;
498 
499 	/* Allocate all TX descriptors. */
500 	ring_size = sizeof(struct ravb_tx_desc) *
501 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
502 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
503 					      &priv->tx_desc_dma[q],
504 					      GFP_KERNEL);
505 	if (!priv->tx_ring[q])
506 		goto error;
507 
508 	return 0;
509 
510 error:
511 	ravb_ring_free(ndev, q);
512 
513 	return -ENOMEM;
514 }
515 
516 static void ravb_csum_init_gbeth(struct net_device *ndev)
517 {
518 	bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
519 	bool rx_enable = ndev->features & NETIF_F_RXCSUM;
520 
521 	if (!(tx_enable || rx_enable))
522 		goto done;
523 
524 	ravb_write(ndev, 0, CSR0);
525 	if (ravb_wait(ndev, CSR0, CSR0_TPE | CSR0_RPE, 0)) {
526 		netdev_err(ndev, "Timeout enabling hardware checksum\n");
527 
528 		if (tx_enable)
529 			ndev->features &= ~NETIF_F_HW_CSUM;
530 
531 		if (rx_enable)
532 			ndev->features &= ~NETIF_F_RXCSUM;
533 	} else {
534 		if (tx_enable)
535 			ravb_write(ndev, CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4, CSR1);
536 
537 		if (rx_enable)
538 			ravb_write(ndev, CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4,
539 				   CSR2);
540 	}
541 
542 done:
543 	ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
544 }
545 
546 static void ravb_emac_init_gbeth(struct net_device *ndev)
547 {
548 	struct ravb_private *priv = netdev_priv(ndev);
549 
550 	if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
551 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
552 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
553 	} else {
554 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
555 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
556 			    CXR31_SEL_LINK0);
557 	}
558 
559 	/* Receive frame limit set register */
560 	ravb_write(ndev, GBETH_RX_BUFF_MAX + ETH_FCS_LEN, RFLR);
561 
562 	/* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
563 	ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
564 			 ECMR_TE | ECMR_RE | ECMR_RCPT |
565 			 ECMR_TXF | ECMR_RXF, ECMR);
566 
567 	ravb_set_rate_gbeth(ndev);
568 
569 	/* Set MAC address */
570 	ravb_write(ndev,
571 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
572 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
573 	ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
574 
575 	/* E-MAC status register clear */
576 	ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
577 
578 	ravb_csum_init_gbeth(ndev);
579 
580 	/* E-MAC interrupt enable register */
581 	ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
582 }
583 
584 static void ravb_emac_init_rcar(struct net_device *ndev)
585 {
586 	/* Receive frame limit set register */
587 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
588 
589 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
590 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
591 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
592 		   ECMR_TE | ECMR_RE, ECMR);
593 
594 	ravb_set_rate_rcar(ndev);
595 
596 	/* Set MAC address */
597 	ravb_write(ndev,
598 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
599 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
600 	ravb_write(ndev,
601 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
602 
603 	/* E-MAC status register clear */
604 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
605 
606 	/* E-MAC interrupt enable register */
607 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
608 }
609 
610 /* E-MAC init function */
611 static void ravb_emac_init(struct net_device *ndev)
612 {
613 	struct ravb_private *priv = netdev_priv(ndev);
614 	const struct ravb_hw_info *info = priv->info;
615 
616 	info->emac_init(ndev);
617 }
618 
619 static int ravb_dmac_init_gbeth(struct net_device *ndev)
620 {
621 	int error;
622 
623 	error = ravb_ring_init(ndev, RAVB_BE);
624 	if (error)
625 		return error;
626 
627 	/* Descriptor format */
628 	ravb_ring_format(ndev, RAVB_BE);
629 
630 	/* Set DMAC RX */
631 	ravb_write(ndev, 0x60000000, RCR);
632 
633 	/* Set Max Frame Length (RTC) */
634 	ravb_write(ndev, 0x7ffc0000 | GBETH_RX_BUFF_MAX, RTC);
635 
636 	/* Set FIFO size */
637 	ravb_write(ndev, 0x00222200, TGC);
638 
639 	ravb_write(ndev, 0, TCCR);
640 
641 	/* Frame receive */
642 	ravb_write(ndev, RIC0_FRE0, RIC0);
643 	/* Disable FIFO full warning */
644 	ravb_write(ndev, 0x0, RIC1);
645 	/* Receive FIFO full error, descriptor empty */
646 	ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
647 
648 	ravb_write(ndev, TIC_FTE0, TIC);
649 
650 	return 0;
651 }
652 
653 static int ravb_dmac_init_rcar(struct net_device *ndev)
654 {
655 	struct ravb_private *priv = netdev_priv(ndev);
656 	const struct ravb_hw_info *info = priv->info;
657 	int error;
658 
659 	error = ravb_ring_init(ndev, RAVB_BE);
660 	if (error)
661 		return error;
662 	error = ravb_ring_init(ndev, RAVB_NC);
663 	if (error) {
664 		ravb_ring_free(ndev, RAVB_BE);
665 		return error;
666 	}
667 
668 	/* Descriptor format */
669 	ravb_ring_format(ndev, RAVB_BE);
670 	ravb_ring_format(ndev, RAVB_NC);
671 
672 	/* Set AVB RX */
673 	ravb_write(ndev,
674 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
675 
676 	/* Set FIFO size */
677 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
678 
679 	/* Timestamp enable */
680 	ravb_write(ndev, TCCR_TFEN, TCCR);
681 
682 	/* Interrupt init: */
683 	if (info->multi_irqs) {
684 		/* Clear DIL.DPLx */
685 		ravb_write(ndev, 0, DIL);
686 		/* Set queue specific interrupt */
687 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
688 	}
689 	/* Frame receive */
690 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
691 	/* Disable FIFO full warning */
692 	ravb_write(ndev, 0, RIC1);
693 	/* Receive FIFO full error, descriptor empty */
694 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
695 	/* Frame transmitted, timestamp FIFO updated */
696 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
697 
698 	return 0;
699 }
700 
701 /* Device init function for Ethernet AVB */
702 static int ravb_dmac_init(struct net_device *ndev)
703 {
704 	struct ravb_private *priv = netdev_priv(ndev);
705 	const struct ravb_hw_info *info = priv->info;
706 	int error;
707 
708 	/* Set CONFIG mode */
709 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
710 	if (error)
711 		return error;
712 
713 	error = info->dmac_init(ndev);
714 	if (error)
715 		return error;
716 
717 	/* Setting the control will start the AVB-DMAC process. */
718 	return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
719 }
720 
721 static void ravb_get_tx_tstamp(struct net_device *ndev)
722 {
723 	struct ravb_private *priv = netdev_priv(ndev);
724 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
725 	struct skb_shared_hwtstamps shhwtstamps;
726 	struct sk_buff *skb;
727 	struct timespec64 ts;
728 	u16 tag, tfa_tag;
729 	int count;
730 	u32 tfa2;
731 
732 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
733 	while (count--) {
734 		tfa2 = ravb_read(ndev, TFA2);
735 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
736 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
737 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
738 			    ravb_read(ndev, TFA1);
739 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
740 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
741 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
742 					 list) {
743 			skb = ts_skb->skb;
744 			tag = ts_skb->tag;
745 			list_del(&ts_skb->list);
746 			kfree(ts_skb);
747 			if (tag == tfa_tag) {
748 				skb_tstamp_tx(skb, &shhwtstamps);
749 				dev_consume_skb_any(skb);
750 				break;
751 			} else {
752 				dev_kfree_skb_any(skb);
753 			}
754 		}
755 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
756 	}
757 }
758 
759 static void ravb_rx_csum_gbeth(struct sk_buff *skb)
760 {
761 	__wsum csum_ip_hdr, csum_proto;
762 	u8 *hw_csum;
763 
764 	/* The hardware checksum status is contained in sizeof(__sum16) * 2 = 4
765 	 * bytes appended to packet data. First 2 bytes is ip header checksum
766 	 * and last 2 bytes is protocol checksum.
767 	 */
768 	if (unlikely(skb->len < sizeof(__sum16) * 2))
769 		return;
770 
771 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
772 	csum_proto = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
773 
774 	hw_csum -= sizeof(__sum16);
775 	csum_ip_hdr = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
776 	skb_trim(skb, skb->len - 2 * sizeof(__sum16));
777 
778 	/* TODO: IPV6 Rx checksum */
779 	if (skb->protocol == htons(ETH_P_IP) && !csum_ip_hdr && !csum_proto)
780 		skb->ip_summed = CHECKSUM_UNNECESSARY;
781 }
782 
783 static void ravb_rx_csum(struct sk_buff *skb)
784 {
785 	u8 *hw_csum;
786 
787 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
788 	 * appended to packet data
789 	 */
790 	if (unlikely(skb->len < sizeof(__sum16)))
791 		return;
792 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
793 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
794 	skb->ip_summed = CHECKSUM_COMPLETE;
795 	skb_trim(skb, skb->len - sizeof(__sum16));
796 }
797 
798 static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry,
799 					  struct ravb_rx_desc *desc)
800 {
801 	struct ravb_private *priv = netdev_priv(ndev);
802 	struct sk_buff *skb;
803 
804 	skb = priv->rx_skb[RAVB_BE][entry];
805 	priv->rx_skb[RAVB_BE][entry] = NULL;
806 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
807 			 ALIGN(GBETH_RX_BUFF_MAX, 16), DMA_FROM_DEVICE);
808 
809 	return skb;
810 }
811 
812 /* Packet receive function for Gigabit Ethernet */
813 static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q)
814 {
815 	struct ravb_private *priv = netdev_priv(ndev);
816 	const struct ravb_hw_info *info = priv->info;
817 	struct net_device_stats *stats;
818 	struct ravb_rx_desc *desc;
819 	struct sk_buff *skb;
820 	dma_addr_t dma_addr;
821 	u8  desc_status;
822 	int boguscnt;
823 	u16 pkt_len;
824 	u8  die_dt;
825 	int entry;
826 	int limit;
827 
828 	entry = priv->cur_rx[q] % priv->num_rx_ring[q];
829 	boguscnt = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
830 	stats = &priv->stats[q];
831 
832 	boguscnt = min(boguscnt, *quota);
833 	limit = boguscnt;
834 	desc = &priv->gbeth_rx_ring[entry];
835 	while (desc->die_dt != DT_FEMPTY) {
836 		/* Descriptor type must be checked before all other reads */
837 		dma_rmb();
838 		desc_status = desc->msc;
839 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
840 
841 		if (--boguscnt < 0)
842 			break;
843 
844 		/* We use 0-byte descriptors to mark the DMA mapping errors */
845 		if (!pkt_len)
846 			continue;
847 
848 		if (desc_status & MSC_MC)
849 			stats->multicast++;
850 
851 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
852 			stats->rx_errors++;
853 			if (desc_status & MSC_CRC)
854 				stats->rx_crc_errors++;
855 			if (desc_status & MSC_RFE)
856 				stats->rx_frame_errors++;
857 			if (desc_status & (MSC_RTLF | MSC_RTSF))
858 				stats->rx_length_errors++;
859 			if (desc_status & MSC_CEEF)
860 				stats->rx_missed_errors++;
861 		} else {
862 			die_dt = desc->die_dt & 0xF0;
863 			switch (die_dt) {
864 			case DT_FSINGLE:
865 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
866 				skb_put(skb, pkt_len);
867 				skb->protocol = eth_type_trans(skb, ndev);
868 				if (ndev->features & NETIF_F_RXCSUM)
869 					ravb_rx_csum_gbeth(skb);
870 				napi_gro_receive(&priv->napi[q], skb);
871 				stats->rx_packets++;
872 				stats->rx_bytes += pkt_len;
873 				break;
874 			case DT_FSTART:
875 				priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc);
876 				skb_put(priv->rx_1st_skb, pkt_len);
877 				break;
878 			case DT_FMID:
879 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
880 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
881 							       priv->rx_1st_skb->len,
882 							       skb->data,
883 							       pkt_len);
884 				skb_put(priv->rx_1st_skb, pkt_len);
885 				dev_kfree_skb(skb);
886 				break;
887 			case DT_FEND:
888 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
889 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
890 							       priv->rx_1st_skb->len,
891 							       skb->data,
892 							       pkt_len);
893 				skb_put(priv->rx_1st_skb, pkt_len);
894 				dev_kfree_skb(skb);
895 				priv->rx_1st_skb->protocol =
896 					eth_type_trans(priv->rx_1st_skb, ndev);
897 				if (ndev->features & NETIF_F_RXCSUM)
898 					ravb_rx_csum_gbeth(skb);
899 				napi_gro_receive(&priv->napi[q],
900 						 priv->rx_1st_skb);
901 				stats->rx_packets++;
902 				stats->rx_bytes += pkt_len;
903 				break;
904 			}
905 		}
906 
907 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
908 		desc = &priv->gbeth_rx_ring[entry];
909 	}
910 
911 	/* Refill the RX ring buffers. */
912 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
913 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
914 		desc = &priv->gbeth_rx_ring[entry];
915 		desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
916 
917 		if (!priv->rx_skb[q][entry]) {
918 			skb = netdev_alloc_skb(ndev, info->max_rx_len);
919 			if (!skb)
920 				break;
921 			ravb_set_buffer_align(skb);
922 			dma_addr = dma_map_single(ndev->dev.parent,
923 						  skb->data,
924 						  GBETH_RX_BUFF_MAX,
925 						  DMA_FROM_DEVICE);
926 			skb_checksum_none_assert(skb);
927 			/* We just set the data size to 0 for a failed mapping
928 			 * which should prevent DMA  from happening...
929 			 */
930 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
931 				desc->ds_cc = cpu_to_le16(0);
932 			desc->dptr = cpu_to_le32(dma_addr);
933 			priv->rx_skb[q][entry] = skb;
934 		}
935 		/* Descriptor type must be set after all the above writes */
936 		dma_wmb();
937 		desc->die_dt = DT_FEMPTY;
938 	}
939 
940 	*quota -= limit - (++boguscnt);
941 
942 	return boguscnt <= 0;
943 }
944 
945 /* Packet receive function for Ethernet AVB */
946 static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q)
947 {
948 	struct ravb_private *priv = netdev_priv(ndev);
949 	const struct ravb_hw_info *info = priv->info;
950 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
951 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
952 			priv->cur_rx[q];
953 	struct net_device_stats *stats = &priv->stats[q];
954 	struct ravb_ex_rx_desc *desc;
955 	struct sk_buff *skb;
956 	dma_addr_t dma_addr;
957 	struct timespec64 ts;
958 	u8  desc_status;
959 	u16 pkt_len;
960 	int limit;
961 
962 	boguscnt = min(boguscnt, *quota);
963 	limit = boguscnt;
964 	desc = &priv->rx_ring[q][entry];
965 	while (desc->die_dt != DT_FEMPTY) {
966 		/* Descriptor type must be checked before all other reads */
967 		dma_rmb();
968 		desc_status = desc->msc;
969 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
970 
971 		if (--boguscnt < 0)
972 			break;
973 
974 		/* We use 0-byte descriptors to mark the DMA mapping errors */
975 		if (!pkt_len)
976 			continue;
977 
978 		if (desc_status & MSC_MC)
979 			stats->multicast++;
980 
981 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
982 				   MSC_CEEF)) {
983 			stats->rx_errors++;
984 			if (desc_status & MSC_CRC)
985 				stats->rx_crc_errors++;
986 			if (desc_status & MSC_RFE)
987 				stats->rx_frame_errors++;
988 			if (desc_status & (MSC_RTLF | MSC_RTSF))
989 				stats->rx_length_errors++;
990 			if (desc_status & MSC_CEEF)
991 				stats->rx_missed_errors++;
992 		} else {
993 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
994 
995 			skb = priv->rx_skb[q][entry];
996 			priv->rx_skb[q][entry] = NULL;
997 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
998 					 RX_BUF_SZ,
999 					 DMA_FROM_DEVICE);
1000 			get_ts &= (q == RAVB_NC) ?
1001 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
1002 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1003 			if (get_ts) {
1004 				struct skb_shared_hwtstamps *shhwtstamps;
1005 
1006 				shhwtstamps = skb_hwtstamps(skb);
1007 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1008 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
1009 					     32) | le32_to_cpu(desc->ts_sl);
1010 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
1011 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
1012 			}
1013 
1014 			skb_put(skb, pkt_len);
1015 			skb->protocol = eth_type_trans(skb, ndev);
1016 			if (ndev->features & NETIF_F_RXCSUM)
1017 				ravb_rx_csum(skb);
1018 			napi_gro_receive(&priv->napi[q], skb);
1019 			stats->rx_packets++;
1020 			stats->rx_bytes += pkt_len;
1021 		}
1022 
1023 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
1024 		desc = &priv->rx_ring[q][entry];
1025 	}
1026 
1027 	/* Refill the RX ring buffers. */
1028 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
1029 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
1030 		desc = &priv->rx_ring[q][entry];
1031 		desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
1032 
1033 		if (!priv->rx_skb[q][entry]) {
1034 			skb = netdev_alloc_skb(ndev, info->max_rx_len);
1035 			if (!skb)
1036 				break;	/* Better luck next round. */
1037 			ravb_set_buffer_align(skb);
1038 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
1039 						  le16_to_cpu(desc->ds_cc),
1040 						  DMA_FROM_DEVICE);
1041 			skb_checksum_none_assert(skb);
1042 			/* We just set the data size to 0 for a failed mapping
1043 			 * which should prevent DMA  from happening...
1044 			 */
1045 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
1046 				desc->ds_cc = cpu_to_le16(0);
1047 			desc->dptr = cpu_to_le32(dma_addr);
1048 			priv->rx_skb[q][entry] = skb;
1049 		}
1050 		/* Descriptor type must be set after all the above writes */
1051 		dma_wmb();
1052 		desc->die_dt = DT_FEMPTY;
1053 	}
1054 
1055 	*quota -= limit - (++boguscnt);
1056 
1057 	return boguscnt <= 0;
1058 }
1059 
1060 /* Packet receive function for Ethernet AVB */
1061 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
1062 {
1063 	struct ravb_private *priv = netdev_priv(ndev);
1064 	const struct ravb_hw_info *info = priv->info;
1065 
1066 	return info->receive(ndev, quota, q);
1067 }
1068 
1069 static void ravb_rcv_snd_disable(struct net_device *ndev)
1070 {
1071 	/* Disable TX and RX */
1072 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1073 }
1074 
1075 static void ravb_rcv_snd_enable(struct net_device *ndev)
1076 {
1077 	/* Enable TX and RX */
1078 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1079 }
1080 
1081 /* function for waiting dma process finished */
1082 static int ravb_stop_dma(struct net_device *ndev)
1083 {
1084 	struct ravb_private *priv = netdev_priv(ndev);
1085 	const struct ravb_hw_info *info = priv->info;
1086 	int error;
1087 
1088 	/* Wait for stopping the hardware TX process */
1089 	error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1090 
1091 	if (error)
1092 		return error;
1093 
1094 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1095 			  0);
1096 	if (error)
1097 		return error;
1098 
1099 	/* Stop the E-MAC's RX/TX processes. */
1100 	ravb_rcv_snd_disable(ndev);
1101 
1102 	/* Wait for stopping the RX DMA process */
1103 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1104 	if (error)
1105 		return error;
1106 
1107 	/* Stop AVB-DMAC process */
1108 	return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1109 }
1110 
1111 /* E-MAC interrupt handler */
1112 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1113 {
1114 	struct ravb_private *priv = netdev_priv(ndev);
1115 	u32 ecsr, psr;
1116 
1117 	ecsr = ravb_read(ndev, ECSR);
1118 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
1119 
1120 	if (ecsr & ECSR_MPD)
1121 		pm_wakeup_event(&priv->pdev->dev, 0);
1122 	if (ecsr & ECSR_ICD)
1123 		ndev->stats.tx_carrier_errors++;
1124 	if (ecsr & ECSR_LCHNG) {
1125 		/* Link changed */
1126 		if (priv->no_avb_link)
1127 			return;
1128 		psr = ravb_read(ndev, PSR);
1129 		if (priv->avb_link_active_low)
1130 			psr ^= PSR_LMON;
1131 		if (!(psr & PSR_LMON)) {
1132 			/* DIsable RX and TX */
1133 			ravb_rcv_snd_disable(ndev);
1134 		} else {
1135 			/* Enable RX and TX */
1136 			ravb_rcv_snd_enable(ndev);
1137 		}
1138 	}
1139 }
1140 
1141 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1142 {
1143 	struct net_device *ndev = dev_id;
1144 	struct ravb_private *priv = netdev_priv(ndev);
1145 	struct device *dev = &priv->pdev->dev;
1146 	irqreturn_t result = IRQ_HANDLED;
1147 
1148 	pm_runtime_get_noresume(dev);
1149 
1150 	if (unlikely(!pm_runtime_active(dev))) {
1151 		result = IRQ_NONE;
1152 		goto out_rpm_put;
1153 	}
1154 
1155 	spin_lock(&priv->lock);
1156 	ravb_emac_interrupt_unlocked(ndev);
1157 	spin_unlock(&priv->lock);
1158 
1159 out_rpm_put:
1160 	pm_runtime_put_noidle(dev);
1161 	return result;
1162 }
1163 
1164 /* Error interrupt handler */
1165 static void ravb_error_interrupt(struct net_device *ndev)
1166 {
1167 	struct ravb_private *priv = netdev_priv(ndev);
1168 	u32 eis, ris2;
1169 
1170 	eis = ravb_read(ndev, EIS);
1171 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1172 	if (eis & EIS_QFS) {
1173 		ris2 = ravb_read(ndev, RIS2);
1174 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1175 			   RIS2);
1176 
1177 		/* Receive Descriptor Empty int */
1178 		if (ris2 & RIS2_QFF0)
1179 			priv->stats[RAVB_BE].rx_over_errors++;
1180 
1181 		/* Receive Descriptor Empty int */
1182 		if (ris2 & RIS2_QFF1)
1183 			priv->stats[RAVB_NC].rx_over_errors++;
1184 
1185 		/* Receive FIFO Overflow int */
1186 		if (ris2 & RIS2_RFFF)
1187 			priv->rx_fifo_errors++;
1188 	}
1189 }
1190 
1191 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1192 {
1193 	struct ravb_private *priv = netdev_priv(ndev);
1194 	const struct ravb_hw_info *info = priv->info;
1195 	u32 ris0 = ravb_read(ndev, RIS0);
1196 	u32 ric0 = ravb_read(ndev, RIC0);
1197 	u32 tis  = ravb_read(ndev, TIS);
1198 	u32 tic  = ravb_read(ndev, TIC);
1199 
1200 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1201 		if (napi_schedule_prep(&priv->napi[q])) {
1202 			/* Mask RX and TX interrupts */
1203 			if (!info->irq_en_dis) {
1204 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1205 				ravb_write(ndev, tic & ~BIT(q), TIC);
1206 			} else {
1207 				ravb_write(ndev, BIT(q), RID0);
1208 				ravb_write(ndev, BIT(q), TID);
1209 			}
1210 			__napi_schedule(&priv->napi[q]);
1211 		} else {
1212 			netdev_warn(ndev,
1213 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1214 				    ris0, ric0);
1215 			netdev_warn(ndev,
1216 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
1217 				    tis, tic);
1218 		}
1219 		return true;
1220 	}
1221 	return false;
1222 }
1223 
1224 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1225 {
1226 	u32 tis = ravb_read(ndev, TIS);
1227 
1228 	if (tis & TIS_TFUF) {
1229 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1230 		ravb_get_tx_tstamp(ndev);
1231 		return true;
1232 	}
1233 	return false;
1234 }
1235 
1236 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1237 {
1238 	struct net_device *ndev = dev_id;
1239 	struct ravb_private *priv = netdev_priv(ndev);
1240 	const struct ravb_hw_info *info = priv->info;
1241 	struct device *dev = &priv->pdev->dev;
1242 	irqreturn_t result = IRQ_NONE;
1243 	u32 iss;
1244 
1245 	pm_runtime_get_noresume(dev);
1246 
1247 	if (unlikely(!pm_runtime_active(dev)))
1248 		goto out_rpm_put;
1249 
1250 	spin_lock(&priv->lock);
1251 	/* Get interrupt status */
1252 	iss = ravb_read(ndev, ISS);
1253 
1254 	/* Received and transmitted interrupts */
1255 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1256 		int q;
1257 
1258 		/* Timestamp updated */
1259 		if (ravb_timestamp_interrupt(ndev))
1260 			result = IRQ_HANDLED;
1261 
1262 		/* Network control and best effort queue RX/TX */
1263 		if (info->nc_queues) {
1264 			for (q = RAVB_NC; q >= RAVB_BE; q--) {
1265 				if (ravb_queue_interrupt(ndev, q))
1266 					result = IRQ_HANDLED;
1267 			}
1268 		} else {
1269 			if (ravb_queue_interrupt(ndev, RAVB_BE))
1270 				result = IRQ_HANDLED;
1271 		}
1272 	}
1273 
1274 	/* E-MAC status summary */
1275 	if (iss & ISS_MS) {
1276 		ravb_emac_interrupt_unlocked(ndev);
1277 		result = IRQ_HANDLED;
1278 	}
1279 
1280 	/* Error status summary */
1281 	if (iss & ISS_ES) {
1282 		ravb_error_interrupt(ndev);
1283 		result = IRQ_HANDLED;
1284 	}
1285 
1286 	/* gPTP interrupt status summary */
1287 	if (iss & ISS_CGIS) {
1288 		ravb_ptp_interrupt(ndev);
1289 		result = IRQ_HANDLED;
1290 	}
1291 
1292 	spin_unlock(&priv->lock);
1293 
1294 out_rpm_put:
1295 	pm_runtime_put_noidle(dev);
1296 	return result;
1297 }
1298 
1299 /* Timestamp/Error/gPTP interrupt handler */
1300 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1301 {
1302 	struct net_device *ndev = dev_id;
1303 	struct ravb_private *priv = netdev_priv(ndev);
1304 	struct device *dev = &priv->pdev->dev;
1305 	irqreturn_t result = IRQ_NONE;
1306 	u32 iss;
1307 
1308 	pm_runtime_get_noresume(dev);
1309 
1310 	if (unlikely(!pm_runtime_active(dev)))
1311 		goto out_rpm_put;
1312 
1313 	spin_lock(&priv->lock);
1314 	/* Get interrupt status */
1315 	iss = ravb_read(ndev, ISS);
1316 
1317 	/* Timestamp updated */
1318 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1319 		result = IRQ_HANDLED;
1320 
1321 	/* Error status summary */
1322 	if (iss & ISS_ES) {
1323 		ravb_error_interrupt(ndev);
1324 		result = IRQ_HANDLED;
1325 	}
1326 
1327 	/* gPTP interrupt status summary */
1328 	if (iss & ISS_CGIS) {
1329 		ravb_ptp_interrupt(ndev);
1330 		result = IRQ_HANDLED;
1331 	}
1332 
1333 	spin_unlock(&priv->lock);
1334 
1335 out_rpm_put:
1336 	pm_runtime_put_noidle(dev);
1337 	return result;
1338 }
1339 
1340 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1341 {
1342 	struct net_device *ndev = dev_id;
1343 	struct ravb_private *priv = netdev_priv(ndev);
1344 	struct device *dev = &priv->pdev->dev;
1345 	irqreturn_t result = IRQ_NONE;
1346 
1347 	pm_runtime_get_noresume(dev);
1348 
1349 	if (unlikely(!pm_runtime_active(dev)))
1350 		goto out_rpm_put;
1351 
1352 	spin_lock(&priv->lock);
1353 
1354 	/* Network control/Best effort queue RX/TX */
1355 	if (ravb_queue_interrupt(ndev, q))
1356 		result = IRQ_HANDLED;
1357 
1358 	spin_unlock(&priv->lock);
1359 
1360 out_rpm_put:
1361 	pm_runtime_put_noidle(dev);
1362 	return result;
1363 }
1364 
1365 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1366 {
1367 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1368 }
1369 
1370 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1371 {
1372 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1373 }
1374 
1375 static int ravb_poll(struct napi_struct *napi, int budget)
1376 {
1377 	struct net_device *ndev = napi->dev;
1378 	struct ravb_private *priv = netdev_priv(ndev);
1379 	const struct ravb_hw_info *info = priv->info;
1380 	unsigned long flags;
1381 	int q = napi - priv->napi;
1382 	int mask = BIT(q);
1383 	int quota = budget;
1384 
1385 	/* Processing RX Descriptor Ring */
1386 	/* Clear RX interrupt */
1387 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1388 	if (ravb_rx(ndev, &quota, q))
1389 		goto out;
1390 
1391 	/* Processing TX Descriptor Ring */
1392 	spin_lock_irqsave(&priv->lock, flags);
1393 	/* Clear TX interrupt */
1394 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1395 	ravb_tx_free(ndev, q, true);
1396 	netif_wake_subqueue(ndev, q);
1397 	spin_unlock_irqrestore(&priv->lock, flags);
1398 
1399 	napi_complete(napi);
1400 
1401 	/* Re-enable RX/TX interrupts */
1402 	spin_lock_irqsave(&priv->lock, flags);
1403 	if (!info->irq_en_dis) {
1404 		ravb_modify(ndev, RIC0, mask, mask);
1405 		ravb_modify(ndev, TIC,  mask, mask);
1406 	} else {
1407 		ravb_write(ndev, mask, RIE0);
1408 		ravb_write(ndev, mask, TIE);
1409 	}
1410 	spin_unlock_irqrestore(&priv->lock, flags);
1411 
1412 	/* Receive error message handling */
1413 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
1414 	if (info->nc_queues)
1415 		priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1416 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1417 		ndev->stats.rx_over_errors = priv->rx_over_errors;
1418 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1419 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1420 out:
1421 	return budget - quota;
1422 }
1423 
1424 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1425 {
1426 	struct ravb_private *priv = netdev_priv(ndev);
1427 
1428 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1429 }
1430 
1431 /* PHY state control function */
1432 static void ravb_adjust_link(struct net_device *ndev)
1433 {
1434 	struct ravb_private *priv = netdev_priv(ndev);
1435 	const struct ravb_hw_info *info = priv->info;
1436 	struct phy_device *phydev = ndev->phydev;
1437 	bool new_state = false;
1438 	unsigned long flags;
1439 
1440 	spin_lock_irqsave(&priv->lock, flags);
1441 
1442 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1443 	if (priv->no_avb_link)
1444 		ravb_rcv_snd_disable(ndev);
1445 
1446 	if (phydev->link) {
1447 		if (info->half_duplex && phydev->duplex != priv->duplex) {
1448 			new_state = true;
1449 			priv->duplex = phydev->duplex;
1450 			ravb_set_duplex_gbeth(ndev);
1451 		}
1452 
1453 		if (phydev->speed != priv->speed) {
1454 			new_state = true;
1455 			priv->speed = phydev->speed;
1456 			info->set_rate(ndev);
1457 		}
1458 		if (!priv->link) {
1459 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1460 			new_state = true;
1461 			priv->link = phydev->link;
1462 		}
1463 	} else if (priv->link) {
1464 		new_state = true;
1465 		priv->link = 0;
1466 		priv->speed = 0;
1467 		if (info->half_duplex)
1468 			priv->duplex = -1;
1469 	}
1470 
1471 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1472 	if (priv->no_avb_link && phydev->link)
1473 		ravb_rcv_snd_enable(ndev);
1474 
1475 	spin_unlock_irqrestore(&priv->lock, flags);
1476 
1477 	if (new_state && netif_msg_link(priv))
1478 		phy_print_status(phydev);
1479 }
1480 
1481 /* PHY init function */
1482 static int ravb_phy_init(struct net_device *ndev)
1483 {
1484 	struct device_node *np = ndev->dev.parent->of_node;
1485 	struct ravb_private *priv = netdev_priv(ndev);
1486 	const struct ravb_hw_info *info = priv->info;
1487 	struct phy_device *phydev;
1488 	struct device_node *pn;
1489 	phy_interface_t iface;
1490 	int err;
1491 
1492 	priv->link = 0;
1493 	priv->speed = 0;
1494 	priv->duplex = -1;
1495 
1496 	/* Try connecting to PHY */
1497 	pn = of_parse_phandle(np, "phy-handle", 0);
1498 	if (!pn) {
1499 		/* In the case of a fixed PHY, the DT node associated
1500 		 * to the PHY is the Ethernet MAC DT node.
1501 		 */
1502 		if (of_phy_is_fixed_link(np)) {
1503 			err = of_phy_register_fixed_link(np);
1504 			if (err)
1505 				return err;
1506 		}
1507 		pn = of_node_get(np);
1508 	}
1509 
1510 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1511 				     : priv->phy_interface;
1512 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1513 	of_node_put(pn);
1514 	if (!phydev) {
1515 		netdev_err(ndev, "failed to connect PHY\n");
1516 		err = -ENOENT;
1517 		goto err_deregister_fixed_link;
1518 	}
1519 
1520 	if (!info->half_duplex) {
1521 		/* 10BASE, Pause and Asym Pause is not supported */
1522 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1523 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1524 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1525 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1526 
1527 		/* Half Duplex is not supported */
1528 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1529 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1530 	}
1531 
1532 	phy_attached_info(phydev);
1533 
1534 	return 0;
1535 
1536 err_deregister_fixed_link:
1537 	if (of_phy_is_fixed_link(np))
1538 		of_phy_deregister_fixed_link(np);
1539 
1540 	return err;
1541 }
1542 
1543 /* PHY control start function */
1544 static int ravb_phy_start(struct net_device *ndev)
1545 {
1546 	int error;
1547 
1548 	error = ravb_phy_init(ndev);
1549 	if (error)
1550 		return error;
1551 
1552 	phy_start(ndev->phydev);
1553 
1554 	return 0;
1555 }
1556 
1557 static u32 ravb_get_msglevel(struct net_device *ndev)
1558 {
1559 	struct ravb_private *priv = netdev_priv(ndev);
1560 
1561 	return priv->msg_enable;
1562 }
1563 
1564 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1565 {
1566 	struct ravb_private *priv = netdev_priv(ndev);
1567 
1568 	priv->msg_enable = value;
1569 }
1570 
1571 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1572 	"rx_queue_0_current",
1573 	"tx_queue_0_current",
1574 	"rx_queue_0_dirty",
1575 	"tx_queue_0_dirty",
1576 	"rx_queue_0_packets",
1577 	"tx_queue_0_packets",
1578 	"rx_queue_0_bytes",
1579 	"tx_queue_0_bytes",
1580 	"rx_queue_0_mcast_packets",
1581 	"rx_queue_0_errors",
1582 	"rx_queue_0_crc_errors",
1583 	"rx_queue_0_frame_errors",
1584 	"rx_queue_0_length_errors",
1585 	"rx_queue_0_csum_offload_errors",
1586 	"rx_queue_0_over_errors",
1587 };
1588 
1589 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1590 	"rx_queue_0_current",
1591 	"tx_queue_0_current",
1592 	"rx_queue_0_dirty",
1593 	"tx_queue_0_dirty",
1594 	"rx_queue_0_packets",
1595 	"tx_queue_0_packets",
1596 	"rx_queue_0_bytes",
1597 	"tx_queue_0_bytes",
1598 	"rx_queue_0_mcast_packets",
1599 	"rx_queue_0_errors",
1600 	"rx_queue_0_crc_errors",
1601 	"rx_queue_0_frame_errors",
1602 	"rx_queue_0_length_errors",
1603 	"rx_queue_0_missed_errors",
1604 	"rx_queue_0_over_errors",
1605 
1606 	"rx_queue_1_current",
1607 	"tx_queue_1_current",
1608 	"rx_queue_1_dirty",
1609 	"tx_queue_1_dirty",
1610 	"rx_queue_1_packets",
1611 	"tx_queue_1_packets",
1612 	"rx_queue_1_bytes",
1613 	"tx_queue_1_bytes",
1614 	"rx_queue_1_mcast_packets",
1615 	"rx_queue_1_errors",
1616 	"rx_queue_1_crc_errors",
1617 	"rx_queue_1_frame_errors",
1618 	"rx_queue_1_length_errors",
1619 	"rx_queue_1_missed_errors",
1620 	"rx_queue_1_over_errors",
1621 };
1622 
1623 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1624 {
1625 	struct ravb_private *priv = netdev_priv(netdev);
1626 	const struct ravb_hw_info *info = priv->info;
1627 
1628 	switch (sset) {
1629 	case ETH_SS_STATS:
1630 		return info->stats_len;
1631 	default:
1632 		return -EOPNOTSUPP;
1633 	}
1634 }
1635 
1636 static void ravb_get_ethtool_stats(struct net_device *ndev,
1637 				   struct ethtool_stats *estats, u64 *data)
1638 {
1639 	struct ravb_private *priv = netdev_priv(ndev);
1640 	const struct ravb_hw_info *info = priv->info;
1641 	int num_rx_q;
1642 	int i = 0;
1643 	int q;
1644 
1645 	num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1646 	/* Device-specific stats */
1647 	for (q = RAVB_BE; q < num_rx_q; q++) {
1648 		struct net_device_stats *stats = &priv->stats[q];
1649 
1650 		data[i++] = priv->cur_rx[q];
1651 		data[i++] = priv->cur_tx[q];
1652 		data[i++] = priv->dirty_rx[q];
1653 		data[i++] = priv->dirty_tx[q];
1654 		data[i++] = stats->rx_packets;
1655 		data[i++] = stats->tx_packets;
1656 		data[i++] = stats->rx_bytes;
1657 		data[i++] = stats->tx_bytes;
1658 		data[i++] = stats->multicast;
1659 		data[i++] = stats->rx_errors;
1660 		data[i++] = stats->rx_crc_errors;
1661 		data[i++] = stats->rx_frame_errors;
1662 		data[i++] = stats->rx_length_errors;
1663 		data[i++] = stats->rx_missed_errors;
1664 		data[i++] = stats->rx_over_errors;
1665 	}
1666 }
1667 
1668 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1669 {
1670 	struct ravb_private *priv = netdev_priv(ndev);
1671 	const struct ravb_hw_info *info = priv->info;
1672 
1673 	switch (stringset) {
1674 	case ETH_SS_STATS:
1675 		memcpy(data, info->gstrings_stats, info->gstrings_size);
1676 		break;
1677 	}
1678 }
1679 
1680 static void ravb_get_ringparam(struct net_device *ndev,
1681 			       struct ethtool_ringparam *ring,
1682 			       struct kernel_ethtool_ringparam *kernel_ring,
1683 			       struct netlink_ext_ack *extack)
1684 {
1685 	struct ravb_private *priv = netdev_priv(ndev);
1686 
1687 	ring->rx_max_pending = BE_RX_RING_MAX;
1688 	ring->tx_max_pending = BE_TX_RING_MAX;
1689 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1690 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1691 }
1692 
1693 static int ravb_set_ringparam(struct net_device *ndev,
1694 			      struct ethtool_ringparam *ring,
1695 			      struct kernel_ethtool_ringparam *kernel_ring,
1696 			      struct netlink_ext_ack *extack)
1697 {
1698 	struct ravb_private *priv = netdev_priv(ndev);
1699 	const struct ravb_hw_info *info = priv->info;
1700 	int error;
1701 
1702 	if (ring->tx_pending > BE_TX_RING_MAX ||
1703 	    ring->rx_pending > BE_RX_RING_MAX ||
1704 	    ring->tx_pending < BE_TX_RING_MIN ||
1705 	    ring->rx_pending < BE_RX_RING_MIN)
1706 		return -EINVAL;
1707 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1708 		return -EINVAL;
1709 
1710 	if (netif_running(ndev)) {
1711 		netif_device_detach(ndev);
1712 		/* Stop PTP Clock driver */
1713 		if (info->gptp)
1714 			ravb_ptp_stop(ndev);
1715 		/* Wait for DMA stopping */
1716 		error = ravb_stop_dma(ndev);
1717 		if (error) {
1718 			netdev_err(ndev,
1719 				   "cannot set ringparam! Any AVB processes are still running?\n");
1720 			return error;
1721 		}
1722 		synchronize_irq(ndev->irq);
1723 
1724 		/* Free all the skb's in the RX queue and the DMA buffers. */
1725 		ravb_ring_free(ndev, RAVB_BE);
1726 		if (info->nc_queues)
1727 			ravb_ring_free(ndev, RAVB_NC);
1728 	}
1729 
1730 	/* Set new parameters */
1731 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1732 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1733 
1734 	if (netif_running(ndev)) {
1735 		error = ravb_dmac_init(ndev);
1736 		if (error) {
1737 			netdev_err(ndev,
1738 				   "%s: ravb_dmac_init() failed, error %d\n",
1739 				   __func__, error);
1740 			return error;
1741 		}
1742 
1743 		ravb_emac_init(ndev);
1744 
1745 		/* Initialise PTP Clock driver */
1746 		if (info->gptp)
1747 			ravb_ptp_init(ndev, priv->pdev);
1748 
1749 		netif_device_attach(ndev);
1750 	}
1751 
1752 	return 0;
1753 }
1754 
1755 static int ravb_get_ts_info(struct net_device *ndev,
1756 			    struct ethtool_ts_info *info)
1757 {
1758 	struct ravb_private *priv = netdev_priv(ndev);
1759 	const struct ravb_hw_info *hw_info = priv->info;
1760 
1761 	info->so_timestamping =
1762 		SOF_TIMESTAMPING_TX_SOFTWARE |
1763 		SOF_TIMESTAMPING_RX_SOFTWARE |
1764 		SOF_TIMESTAMPING_SOFTWARE |
1765 		SOF_TIMESTAMPING_TX_HARDWARE |
1766 		SOF_TIMESTAMPING_RX_HARDWARE |
1767 		SOF_TIMESTAMPING_RAW_HARDWARE;
1768 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1769 	info->rx_filters =
1770 		(1 << HWTSTAMP_FILTER_NONE) |
1771 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1772 		(1 << HWTSTAMP_FILTER_ALL);
1773 	if (hw_info->gptp || hw_info->ccc_gac)
1774 		info->phc_index = ptp_clock_index(priv->ptp.clock);
1775 
1776 	return 0;
1777 }
1778 
1779 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1780 {
1781 	struct ravb_private *priv = netdev_priv(ndev);
1782 
1783 	wol->supported = WAKE_MAGIC;
1784 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1785 }
1786 
1787 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1788 {
1789 	struct ravb_private *priv = netdev_priv(ndev);
1790 	const struct ravb_hw_info *info = priv->info;
1791 
1792 	if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1793 		return -EOPNOTSUPP;
1794 
1795 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1796 
1797 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1798 
1799 	return 0;
1800 }
1801 
1802 static const struct ethtool_ops ravb_ethtool_ops = {
1803 	.nway_reset		= phy_ethtool_nway_reset,
1804 	.get_msglevel		= ravb_get_msglevel,
1805 	.set_msglevel		= ravb_set_msglevel,
1806 	.get_link		= ethtool_op_get_link,
1807 	.get_strings		= ravb_get_strings,
1808 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1809 	.get_sset_count		= ravb_get_sset_count,
1810 	.get_ringparam		= ravb_get_ringparam,
1811 	.set_ringparam		= ravb_set_ringparam,
1812 	.get_ts_info		= ravb_get_ts_info,
1813 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1814 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1815 	.get_wol		= ravb_get_wol,
1816 	.set_wol		= ravb_set_wol,
1817 };
1818 
1819 static int ravb_set_config_mode(struct net_device *ndev)
1820 {
1821 	struct ravb_private *priv = netdev_priv(ndev);
1822 	const struct ravb_hw_info *info = priv->info;
1823 	int error;
1824 
1825 	if (info->gptp) {
1826 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1827 		if (error)
1828 			return error;
1829 		/* Set CSEL value */
1830 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1831 	} else if (info->ccc_gac) {
1832 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1833 	} else {
1834 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1835 	}
1836 
1837 	return error;
1838 }
1839 
1840 static void ravb_set_gti(struct net_device *ndev)
1841 {
1842 	struct ravb_private *priv = netdev_priv(ndev);
1843 	const struct ravb_hw_info *info = priv->info;
1844 
1845 	if (!(info->gptp || info->ccc_gac))
1846 		return;
1847 
1848 	ravb_write(ndev, priv->gti_tiv, GTI);
1849 
1850 	/* Request GTI loading */
1851 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1852 }
1853 
1854 static int ravb_compute_gti(struct net_device *ndev)
1855 {
1856 	struct ravb_private *priv = netdev_priv(ndev);
1857 	const struct ravb_hw_info *info = priv->info;
1858 	struct device *dev = ndev->dev.parent;
1859 	unsigned long rate;
1860 	u64 inc;
1861 
1862 	if (!(info->gptp || info->ccc_gac))
1863 		return 0;
1864 
1865 	if (info->gptp_ref_clk)
1866 		rate = clk_get_rate(priv->gptp_clk);
1867 	else
1868 		rate = clk_get_rate(priv->clk);
1869 	if (!rate)
1870 		return -EINVAL;
1871 
1872 	inc = div64_ul(1000000000ULL << 20, rate);
1873 
1874 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1875 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1876 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1877 		return -EINVAL;
1878 	}
1879 	priv->gti_tiv = inc;
1880 
1881 	return 0;
1882 }
1883 
1884 /* Set tx and rx clock internal delay modes */
1885 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1886 {
1887 	struct ravb_private *priv = netdev_priv(ndev);
1888 	bool explicit_delay = false;
1889 	u32 delay;
1890 
1891 	if (!priv->info->internal_delay)
1892 		return;
1893 
1894 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1895 		/* Valid values are 0 and 1800, according to DT bindings */
1896 		priv->rxcidm = !!delay;
1897 		explicit_delay = true;
1898 	}
1899 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1900 		/* Valid values are 0 and 2000, according to DT bindings */
1901 		priv->txcidm = !!delay;
1902 		explicit_delay = true;
1903 	}
1904 
1905 	if (explicit_delay)
1906 		return;
1907 
1908 	/* Fall back to legacy rgmii-*id behavior */
1909 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1910 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1911 		priv->rxcidm = 1;
1912 		priv->rgmii_override = 1;
1913 	}
1914 
1915 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1916 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1917 		priv->txcidm = 1;
1918 		priv->rgmii_override = 1;
1919 	}
1920 }
1921 
1922 static void ravb_set_delay_mode(struct net_device *ndev)
1923 {
1924 	struct ravb_private *priv = netdev_priv(ndev);
1925 	u32 set = 0;
1926 
1927 	if (!priv->info->internal_delay)
1928 		return;
1929 
1930 	if (priv->rxcidm)
1931 		set |= APSR_RDM;
1932 	if (priv->txcidm)
1933 		set |= APSR_TDM;
1934 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
1935 }
1936 
1937 /* Network device open function for Ethernet AVB */
1938 static int ravb_open(struct net_device *ndev)
1939 {
1940 	struct ravb_private *priv = netdev_priv(ndev);
1941 	const struct ravb_hw_info *info = priv->info;
1942 	int error;
1943 
1944 	napi_enable(&priv->napi[RAVB_BE]);
1945 	if (info->nc_queues)
1946 		napi_enable(&priv->napi[RAVB_NC]);
1947 
1948 	/* Set AVB config mode */
1949 	error = ravb_set_config_mode(ndev);
1950 	if (error)
1951 		goto out_napi_off;
1952 
1953 	ravb_set_delay_mode(ndev);
1954 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
1955 
1956 	/* Device init */
1957 	error = ravb_dmac_init(ndev);
1958 	if (error)
1959 		goto out_set_reset;
1960 
1961 	ravb_emac_init(ndev);
1962 
1963 	ravb_set_gti(ndev);
1964 
1965 	/* Initialise PTP Clock driver */
1966 	if (info->gptp || info->ccc_gac)
1967 		ravb_ptp_init(ndev, priv->pdev);
1968 
1969 	/* PHY control start */
1970 	error = ravb_phy_start(ndev);
1971 	if (error)
1972 		goto out_ptp_stop;
1973 
1974 	netif_tx_start_all_queues(ndev);
1975 
1976 	return 0;
1977 
1978 out_ptp_stop:
1979 	/* Stop PTP Clock driver */
1980 	if (info->gptp || info->ccc_gac)
1981 		ravb_ptp_stop(ndev);
1982 	ravb_stop_dma(ndev);
1983 out_set_reset:
1984 	ravb_set_opmode(ndev, CCC_OPC_RESET);
1985 out_napi_off:
1986 	if (info->nc_queues)
1987 		napi_disable(&priv->napi[RAVB_NC]);
1988 	napi_disable(&priv->napi[RAVB_BE]);
1989 	return error;
1990 }
1991 
1992 /* Timeout function for Ethernet AVB */
1993 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1994 {
1995 	struct ravb_private *priv = netdev_priv(ndev);
1996 
1997 	netif_err(priv, tx_err, ndev,
1998 		  "transmit timed out, status %08x, resetting...\n",
1999 		  ravb_read(ndev, ISS));
2000 
2001 	/* tx_errors count up */
2002 	ndev->stats.tx_errors++;
2003 
2004 	schedule_work(&priv->work);
2005 }
2006 
2007 static void ravb_tx_timeout_work(struct work_struct *work)
2008 {
2009 	struct ravb_private *priv = container_of(work, struct ravb_private,
2010 						 work);
2011 	const struct ravb_hw_info *info = priv->info;
2012 	struct net_device *ndev = priv->ndev;
2013 	int error;
2014 
2015 	if (!rtnl_trylock()) {
2016 		usleep_range(1000, 2000);
2017 		schedule_work(&priv->work);
2018 		return;
2019 	}
2020 
2021 	netif_tx_stop_all_queues(ndev);
2022 
2023 	/* Stop PTP Clock driver */
2024 	if (info->gptp)
2025 		ravb_ptp_stop(ndev);
2026 
2027 	/* Wait for DMA stopping */
2028 	if (ravb_stop_dma(ndev)) {
2029 		/* If ravb_stop_dma() fails, the hardware is still operating
2030 		 * for TX and/or RX. So, this should not call the following
2031 		 * functions because ravb_dmac_init() is possible to fail too.
2032 		 * Also, this should not retry ravb_stop_dma() again and again
2033 		 * here because it's possible to wait forever. So, this just
2034 		 * re-enables the TX and RX and skip the following
2035 		 * re-initialization procedure.
2036 		 */
2037 		ravb_rcv_snd_enable(ndev);
2038 		goto out;
2039 	}
2040 
2041 	ravb_ring_free(ndev, RAVB_BE);
2042 	if (info->nc_queues)
2043 		ravb_ring_free(ndev, RAVB_NC);
2044 
2045 	/* Device init */
2046 	error = ravb_dmac_init(ndev);
2047 	if (error) {
2048 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
2049 		 * should return here to avoid re-enabling the TX and RX in
2050 		 * ravb_emac_init().
2051 		 */
2052 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
2053 			   __func__, error);
2054 		goto out_unlock;
2055 	}
2056 	ravb_emac_init(ndev);
2057 
2058 out:
2059 	/* Initialise PTP Clock driver */
2060 	if (info->gptp)
2061 		ravb_ptp_init(ndev, priv->pdev);
2062 
2063 	netif_tx_start_all_queues(ndev);
2064 
2065 out_unlock:
2066 	rtnl_unlock();
2067 }
2068 
2069 static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2070 {
2071 	struct iphdr *ip = ip_hdr(skb);
2072 
2073 	/* TODO: Need to add support for VLAN tag 802.1Q */
2074 	if (skb_vlan_tag_present(skb))
2075 		return false;
2076 
2077 	/* TODO: Need to add hardware checksum for IPv6 */
2078 	if (skb->protocol != htons(ETH_P_IP))
2079 		return false;
2080 
2081 	switch (ip->protocol) {
2082 	case IPPROTO_TCP:
2083 		break;
2084 	case IPPROTO_UDP:
2085 		/* If the checksum value in the UDP header field is 0, TOE does
2086 		 * not calculate checksum for UDP part of this frame as it is
2087 		 * optional function as per standards.
2088 		 */
2089 		if (udp_hdr(skb)->check == 0)
2090 			return false;
2091 		break;
2092 	default:
2093 		return false;
2094 	}
2095 
2096 	return true;
2097 }
2098 
2099 /* Packet transmit function for Ethernet AVB */
2100 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2101 {
2102 	struct ravb_private *priv = netdev_priv(ndev);
2103 	const struct ravb_hw_info *info = priv->info;
2104 	unsigned int num_tx_desc = priv->num_tx_desc;
2105 	u16 q = skb_get_queue_mapping(skb);
2106 	struct ravb_tstamp_skb *ts_skb;
2107 	struct ravb_tx_desc *desc;
2108 	unsigned long flags;
2109 	dma_addr_t dma_addr;
2110 	void *buffer;
2111 	u32 entry;
2112 	u32 len;
2113 
2114 	if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2115 		skb_checksum_help(skb);
2116 
2117 	spin_lock_irqsave(&priv->lock, flags);
2118 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2119 	    num_tx_desc) {
2120 		netif_err(priv, tx_queued, ndev,
2121 			  "still transmitting with the full ring!\n");
2122 		netif_stop_subqueue(ndev, q);
2123 		spin_unlock_irqrestore(&priv->lock, flags);
2124 		return NETDEV_TX_BUSY;
2125 	}
2126 
2127 	if (skb_put_padto(skb, ETH_ZLEN))
2128 		goto exit;
2129 
2130 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2131 	priv->tx_skb[q][entry / num_tx_desc] = skb;
2132 
2133 	if (num_tx_desc > 1) {
2134 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2135 			 entry / num_tx_desc * DPTR_ALIGN;
2136 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2137 
2138 		/* Zero length DMA descriptors are problematic as they seem
2139 		 * to terminate DMA transfers. Avoid them by simply using a
2140 		 * length of DPTR_ALIGN (4) when skb data is aligned to
2141 		 * DPTR_ALIGN.
2142 		 *
2143 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
2144 		 * bytes of data by the call to skb_put_padto() above this
2145 		 * is safe with respect to both the length of the first DMA
2146 		 * descriptor (len) overflowing the available data and the
2147 		 * length of the second DMA descriptor (skb->len - len)
2148 		 * being negative.
2149 		 */
2150 		if (len == 0)
2151 			len = DPTR_ALIGN;
2152 
2153 		memcpy(buffer, skb->data, len);
2154 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2155 					  DMA_TO_DEVICE);
2156 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2157 			goto drop;
2158 
2159 		desc = &priv->tx_ring[q][entry];
2160 		desc->ds_tagl = cpu_to_le16(len);
2161 		desc->dptr = cpu_to_le32(dma_addr);
2162 
2163 		buffer = skb->data + len;
2164 		len = skb->len - len;
2165 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2166 					  DMA_TO_DEVICE);
2167 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2168 			goto unmap;
2169 
2170 		desc++;
2171 	} else {
2172 		desc = &priv->tx_ring[q][entry];
2173 		len = skb->len;
2174 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2175 					  DMA_TO_DEVICE);
2176 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2177 			goto drop;
2178 	}
2179 	desc->ds_tagl = cpu_to_le16(len);
2180 	desc->dptr = cpu_to_le32(dma_addr);
2181 
2182 	/* TX timestamp required */
2183 	if (info->gptp || info->ccc_gac) {
2184 		if (q == RAVB_NC) {
2185 			ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2186 			if (!ts_skb) {
2187 				if (num_tx_desc > 1) {
2188 					desc--;
2189 					dma_unmap_single(ndev->dev.parent, dma_addr,
2190 							 len, DMA_TO_DEVICE);
2191 				}
2192 				goto unmap;
2193 			}
2194 			ts_skb->skb = skb_get(skb);
2195 			ts_skb->tag = priv->ts_skb_tag++;
2196 			priv->ts_skb_tag &= 0x3ff;
2197 			list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2198 
2199 			/* TAG and timestamp required flag */
2200 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2201 			desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2202 			desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2203 		}
2204 
2205 		skb_tx_timestamp(skb);
2206 	}
2207 	/* Descriptor type must be set after all the above writes */
2208 	dma_wmb();
2209 	if (num_tx_desc > 1) {
2210 		desc->die_dt = DT_FEND;
2211 		desc--;
2212 		desc->die_dt = DT_FSTART;
2213 	} else {
2214 		desc->die_dt = DT_FSINGLE;
2215 	}
2216 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2217 
2218 	priv->cur_tx[q] += num_tx_desc;
2219 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
2220 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2221 	    !ravb_tx_free(ndev, q, true))
2222 		netif_stop_subqueue(ndev, q);
2223 
2224 exit:
2225 	spin_unlock_irqrestore(&priv->lock, flags);
2226 	return NETDEV_TX_OK;
2227 
2228 unmap:
2229 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2230 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2231 drop:
2232 	dev_kfree_skb_any(skb);
2233 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
2234 	goto exit;
2235 }
2236 
2237 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2238 			     struct net_device *sb_dev)
2239 {
2240 	/* If skb needs TX timestamp, it is handled in network control queue */
2241 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2242 							       RAVB_BE;
2243 
2244 }
2245 
2246 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2247 {
2248 	struct ravb_private *priv = netdev_priv(ndev);
2249 	const struct ravb_hw_info *info = priv->info;
2250 	struct net_device_stats *nstats, *stats0, *stats1;
2251 
2252 	nstats = &ndev->stats;
2253 	stats0 = &priv->stats[RAVB_BE];
2254 
2255 	if (info->tx_counters) {
2256 		nstats->tx_dropped += ravb_read(ndev, TROCR);
2257 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
2258 	}
2259 
2260 	if (info->carrier_counters) {
2261 		nstats->collisions += ravb_read(ndev, CXR41);
2262 		ravb_write(ndev, 0, CXR41);	/* (write clear) */
2263 		nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2264 		ravb_write(ndev, 0, CXR42);	/* (write clear) */
2265 	}
2266 
2267 	nstats->rx_packets = stats0->rx_packets;
2268 	nstats->tx_packets = stats0->tx_packets;
2269 	nstats->rx_bytes = stats0->rx_bytes;
2270 	nstats->tx_bytes = stats0->tx_bytes;
2271 	nstats->multicast = stats0->multicast;
2272 	nstats->rx_errors = stats0->rx_errors;
2273 	nstats->rx_crc_errors = stats0->rx_crc_errors;
2274 	nstats->rx_frame_errors = stats0->rx_frame_errors;
2275 	nstats->rx_length_errors = stats0->rx_length_errors;
2276 	nstats->rx_missed_errors = stats0->rx_missed_errors;
2277 	nstats->rx_over_errors = stats0->rx_over_errors;
2278 	if (info->nc_queues) {
2279 		stats1 = &priv->stats[RAVB_NC];
2280 
2281 		nstats->rx_packets += stats1->rx_packets;
2282 		nstats->tx_packets += stats1->tx_packets;
2283 		nstats->rx_bytes += stats1->rx_bytes;
2284 		nstats->tx_bytes += stats1->tx_bytes;
2285 		nstats->multicast += stats1->multicast;
2286 		nstats->rx_errors += stats1->rx_errors;
2287 		nstats->rx_crc_errors += stats1->rx_crc_errors;
2288 		nstats->rx_frame_errors += stats1->rx_frame_errors;
2289 		nstats->rx_length_errors += stats1->rx_length_errors;
2290 		nstats->rx_missed_errors += stats1->rx_missed_errors;
2291 		nstats->rx_over_errors += stats1->rx_over_errors;
2292 	}
2293 
2294 	return nstats;
2295 }
2296 
2297 /* Update promiscuous bit */
2298 static void ravb_set_rx_mode(struct net_device *ndev)
2299 {
2300 	struct ravb_private *priv = netdev_priv(ndev);
2301 	unsigned long flags;
2302 
2303 	spin_lock_irqsave(&priv->lock, flags);
2304 	ravb_modify(ndev, ECMR, ECMR_PRM,
2305 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2306 	spin_unlock_irqrestore(&priv->lock, flags);
2307 }
2308 
2309 /* Device close function for Ethernet AVB */
2310 static int ravb_close(struct net_device *ndev)
2311 {
2312 	struct device_node *np = ndev->dev.parent->of_node;
2313 	struct ravb_private *priv = netdev_priv(ndev);
2314 	const struct ravb_hw_info *info = priv->info;
2315 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2316 
2317 	netif_tx_stop_all_queues(ndev);
2318 
2319 	/* Disable interrupts by clearing the interrupt masks. */
2320 	ravb_write(ndev, 0, RIC0);
2321 	ravb_write(ndev, 0, RIC2);
2322 	ravb_write(ndev, 0, TIC);
2323 
2324 	/* Stop PTP Clock driver */
2325 	if (info->gptp || info->ccc_gac)
2326 		ravb_ptp_stop(ndev);
2327 
2328 	/* Set the config mode to stop the AVB-DMAC's processes */
2329 	if (ravb_stop_dma(ndev) < 0)
2330 		netdev_err(ndev,
2331 			   "device will be stopped after h/w processes are done.\n");
2332 
2333 	/* Clear the timestamp list */
2334 	if (info->gptp || info->ccc_gac) {
2335 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2336 			list_del(&ts_skb->list);
2337 			kfree_skb(ts_skb->skb);
2338 			kfree(ts_skb);
2339 		}
2340 	}
2341 
2342 	/* PHY disconnect */
2343 	if (ndev->phydev) {
2344 		phy_stop(ndev->phydev);
2345 		phy_disconnect(ndev->phydev);
2346 		if (of_phy_is_fixed_link(np))
2347 			of_phy_deregister_fixed_link(np);
2348 	}
2349 
2350 	cancel_work_sync(&priv->work);
2351 
2352 	if (info->nc_queues)
2353 		napi_disable(&priv->napi[RAVB_NC]);
2354 	napi_disable(&priv->napi[RAVB_BE]);
2355 
2356 	/* Free all the skb's in the RX queue and the DMA buffers. */
2357 	ravb_ring_free(ndev, RAVB_BE);
2358 	if (info->nc_queues)
2359 		ravb_ring_free(ndev, RAVB_NC);
2360 
2361 	/* Set reset mode. */
2362 	return ravb_set_opmode(ndev, CCC_OPC_RESET);
2363 }
2364 
2365 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2366 {
2367 	struct ravb_private *priv = netdev_priv(ndev);
2368 	struct hwtstamp_config config;
2369 
2370 	config.flags = 0;
2371 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2372 						HWTSTAMP_TX_OFF;
2373 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2374 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2375 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2376 		break;
2377 	case RAVB_RXTSTAMP_TYPE_ALL:
2378 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2379 		break;
2380 	default:
2381 		config.rx_filter = HWTSTAMP_FILTER_NONE;
2382 	}
2383 
2384 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2385 		-EFAULT : 0;
2386 }
2387 
2388 /* Control hardware time stamping */
2389 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2390 {
2391 	struct ravb_private *priv = netdev_priv(ndev);
2392 	struct hwtstamp_config config;
2393 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2394 	u32 tstamp_tx_ctrl;
2395 
2396 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2397 		return -EFAULT;
2398 
2399 	switch (config.tx_type) {
2400 	case HWTSTAMP_TX_OFF:
2401 		tstamp_tx_ctrl = 0;
2402 		break;
2403 	case HWTSTAMP_TX_ON:
2404 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2405 		break;
2406 	default:
2407 		return -ERANGE;
2408 	}
2409 
2410 	switch (config.rx_filter) {
2411 	case HWTSTAMP_FILTER_NONE:
2412 		tstamp_rx_ctrl = 0;
2413 		break;
2414 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2415 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2416 		break;
2417 	default:
2418 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2419 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2420 	}
2421 
2422 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2423 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2424 
2425 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2426 		-EFAULT : 0;
2427 }
2428 
2429 /* ioctl to device function */
2430 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2431 {
2432 	struct phy_device *phydev = ndev->phydev;
2433 
2434 	if (!netif_running(ndev))
2435 		return -EINVAL;
2436 
2437 	if (!phydev)
2438 		return -ENODEV;
2439 
2440 	switch (cmd) {
2441 	case SIOCGHWTSTAMP:
2442 		return ravb_hwtstamp_get(ndev, req);
2443 	case SIOCSHWTSTAMP:
2444 		return ravb_hwtstamp_set(ndev, req);
2445 	}
2446 
2447 	return phy_mii_ioctl(phydev, req, cmd);
2448 }
2449 
2450 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2451 {
2452 	struct ravb_private *priv = netdev_priv(ndev);
2453 
2454 	ndev->mtu = new_mtu;
2455 
2456 	if (netif_running(ndev)) {
2457 		synchronize_irq(priv->emac_irq);
2458 		ravb_emac_init(ndev);
2459 	}
2460 
2461 	netdev_update_features(ndev);
2462 
2463 	return 0;
2464 }
2465 
2466 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2467 {
2468 	struct ravb_private *priv = netdev_priv(ndev);
2469 	unsigned long flags;
2470 
2471 	spin_lock_irqsave(&priv->lock, flags);
2472 
2473 	/* Disable TX and RX */
2474 	ravb_rcv_snd_disable(ndev);
2475 
2476 	/* Modify RX Checksum setting */
2477 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2478 
2479 	/* Enable TX and RX */
2480 	ravb_rcv_snd_enable(ndev);
2481 
2482 	spin_unlock_irqrestore(&priv->lock, flags);
2483 }
2484 
2485 static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2486 				     u32 val, u32 mask)
2487 {
2488 	u32 csr0 = CSR0_TPE | CSR0_RPE;
2489 	int ret;
2490 
2491 	ravb_write(ndev, csr0 & ~mask, CSR0);
2492 	ret = ravb_wait(ndev, CSR0, mask, 0);
2493 	if (!ret)
2494 		ravb_write(ndev, val, reg);
2495 
2496 	ravb_write(ndev, csr0, CSR0);
2497 
2498 	return ret;
2499 }
2500 
2501 static int ravb_set_features_gbeth(struct net_device *ndev,
2502 				   netdev_features_t features)
2503 {
2504 	netdev_features_t changed = ndev->features ^ features;
2505 	struct ravb_private *priv = netdev_priv(ndev);
2506 	unsigned long flags;
2507 	int ret = 0;
2508 	u32 val;
2509 
2510 	spin_lock_irqsave(&priv->lock, flags);
2511 	if (changed & NETIF_F_RXCSUM) {
2512 		if (features & NETIF_F_RXCSUM)
2513 			val = CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4;
2514 		else
2515 			val = 0;
2516 
2517 		ret = ravb_endisable_csum_gbeth(ndev, CSR2, val, CSR0_RPE);
2518 		if (ret)
2519 			goto done;
2520 	}
2521 
2522 	if (changed & NETIF_F_HW_CSUM) {
2523 		if (features & NETIF_F_HW_CSUM)
2524 			val = CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4;
2525 		else
2526 			val = 0;
2527 
2528 		ret = ravb_endisable_csum_gbeth(ndev, CSR1, val, CSR0_TPE);
2529 		if (ret)
2530 			goto done;
2531 	}
2532 
2533 	ndev->features = features;
2534 done:
2535 	spin_unlock_irqrestore(&priv->lock, flags);
2536 
2537 	return ret;
2538 }
2539 
2540 static int ravb_set_features_rcar(struct net_device *ndev,
2541 				  netdev_features_t features)
2542 {
2543 	netdev_features_t changed = ndev->features ^ features;
2544 
2545 	if (changed & NETIF_F_RXCSUM)
2546 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2547 
2548 	ndev->features = features;
2549 
2550 	return 0;
2551 }
2552 
2553 static int ravb_set_features(struct net_device *ndev,
2554 			     netdev_features_t features)
2555 {
2556 	struct ravb_private *priv = netdev_priv(ndev);
2557 	const struct ravb_hw_info *info = priv->info;
2558 
2559 	return info->set_feature(ndev, features);
2560 }
2561 
2562 static const struct net_device_ops ravb_netdev_ops = {
2563 	.ndo_open		= ravb_open,
2564 	.ndo_stop		= ravb_close,
2565 	.ndo_start_xmit		= ravb_start_xmit,
2566 	.ndo_select_queue	= ravb_select_queue,
2567 	.ndo_get_stats		= ravb_get_stats,
2568 	.ndo_set_rx_mode	= ravb_set_rx_mode,
2569 	.ndo_tx_timeout		= ravb_tx_timeout,
2570 	.ndo_eth_ioctl		= ravb_do_ioctl,
2571 	.ndo_change_mtu		= ravb_change_mtu,
2572 	.ndo_validate_addr	= eth_validate_addr,
2573 	.ndo_set_mac_address	= eth_mac_addr,
2574 	.ndo_set_features	= ravb_set_features,
2575 };
2576 
2577 /* MDIO bus init function */
2578 static int ravb_mdio_init(struct ravb_private *priv)
2579 {
2580 	struct platform_device *pdev = priv->pdev;
2581 	struct device *dev = &pdev->dev;
2582 	struct phy_device *phydev;
2583 	struct device_node *pn;
2584 	int error;
2585 
2586 	/* Bitbang init */
2587 	priv->mdiobb.ops = &bb_ops;
2588 
2589 	/* MII controller setting */
2590 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2591 	if (!priv->mii_bus)
2592 		return -ENOMEM;
2593 
2594 	/* Hook up MII support for ethtool */
2595 	priv->mii_bus->name = "ravb_mii";
2596 	priv->mii_bus->parent = dev;
2597 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2598 		 pdev->name, pdev->id);
2599 
2600 	/* Register MDIO bus */
2601 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
2602 	if (error)
2603 		goto out_free_bus;
2604 
2605 	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2606 	phydev = of_phy_find_device(pn);
2607 	if (phydev) {
2608 		phydev->mac_managed_pm = true;
2609 		put_device(&phydev->mdio.dev);
2610 	}
2611 	of_node_put(pn);
2612 
2613 	return 0;
2614 
2615 out_free_bus:
2616 	free_mdio_bitbang(priv->mii_bus);
2617 	return error;
2618 }
2619 
2620 /* MDIO bus release function */
2621 static int ravb_mdio_release(struct ravb_private *priv)
2622 {
2623 	/* Unregister mdio bus */
2624 	mdiobus_unregister(priv->mii_bus);
2625 
2626 	/* Free bitbang info */
2627 	free_mdio_bitbang(priv->mii_bus);
2628 
2629 	return 0;
2630 }
2631 
2632 static const struct ravb_hw_info ravb_gen3_hw_info = {
2633 	.rx_ring_free = ravb_rx_ring_free_rcar,
2634 	.rx_ring_format = ravb_rx_ring_format_rcar,
2635 	.alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2636 	.receive = ravb_rx_rcar,
2637 	.set_rate = ravb_set_rate_rcar,
2638 	.set_feature = ravb_set_features_rcar,
2639 	.dmac_init = ravb_dmac_init_rcar,
2640 	.emac_init = ravb_emac_init_rcar,
2641 	.gstrings_stats = ravb_gstrings_stats,
2642 	.gstrings_size = sizeof(ravb_gstrings_stats),
2643 	.net_hw_features = NETIF_F_RXCSUM,
2644 	.net_features = NETIF_F_RXCSUM,
2645 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2646 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2647 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2648 	.rx_max_buf_size = SZ_2K,
2649 	.internal_delay = 1,
2650 	.tx_counters = 1,
2651 	.multi_irqs = 1,
2652 	.irq_en_dis = 1,
2653 	.ccc_gac = 1,
2654 	.nc_queues = 1,
2655 	.magic_pkt = 1,
2656 };
2657 
2658 static const struct ravb_hw_info ravb_gen2_hw_info = {
2659 	.rx_ring_free = ravb_rx_ring_free_rcar,
2660 	.rx_ring_format = ravb_rx_ring_format_rcar,
2661 	.alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2662 	.receive = ravb_rx_rcar,
2663 	.set_rate = ravb_set_rate_rcar,
2664 	.set_feature = ravb_set_features_rcar,
2665 	.dmac_init = ravb_dmac_init_rcar,
2666 	.emac_init = ravb_emac_init_rcar,
2667 	.gstrings_stats = ravb_gstrings_stats,
2668 	.gstrings_size = sizeof(ravb_gstrings_stats),
2669 	.net_hw_features = NETIF_F_RXCSUM,
2670 	.net_features = NETIF_F_RXCSUM,
2671 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2672 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2673 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2674 	.rx_max_buf_size = SZ_2K,
2675 	.aligned_tx = 1,
2676 	.gptp = 1,
2677 	.nc_queues = 1,
2678 	.magic_pkt = 1,
2679 };
2680 
2681 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2682 	.rx_ring_free = ravb_rx_ring_free_rcar,
2683 	.rx_ring_format = ravb_rx_ring_format_rcar,
2684 	.alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2685 	.receive = ravb_rx_rcar,
2686 	.set_rate = ravb_set_rate_rcar,
2687 	.set_feature = ravb_set_features_rcar,
2688 	.dmac_init = ravb_dmac_init_rcar,
2689 	.emac_init = ravb_emac_init_rcar,
2690 	.gstrings_stats = ravb_gstrings_stats,
2691 	.gstrings_size = sizeof(ravb_gstrings_stats),
2692 	.net_hw_features = NETIF_F_RXCSUM,
2693 	.net_features = NETIF_F_RXCSUM,
2694 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2695 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2696 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2697 	.rx_max_buf_size = SZ_2K,
2698 	.multi_irqs = 1,
2699 	.err_mgmt_irqs = 1,
2700 	.gptp = 1,
2701 	.gptp_ref_clk = 1,
2702 	.nc_queues = 1,
2703 	.magic_pkt = 1,
2704 };
2705 
2706 static const struct ravb_hw_info gbeth_hw_info = {
2707 	.rx_ring_free = ravb_rx_ring_free_gbeth,
2708 	.rx_ring_format = ravb_rx_ring_format_gbeth,
2709 	.alloc_rx_desc = ravb_alloc_rx_desc_gbeth,
2710 	.receive = ravb_rx_gbeth,
2711 	.set_rate = ravb_set_rate_gbeth,
2712 	.set_feature = ravb_set_features_gbeth,
2713 	.dmac_init = ravb_dmac_init_gbeth,
2714 	.emac_init = ravb_emac_init_gbeth,
2715 	.gstrings_stats = ravb_gstrings_stats_gbeth,
2716 	.gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2717 	.net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2718 	.net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2719 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2720 	.max_rx_len = ALIGN(GBETH_RX_BUFF_MAX, RAVB_ALIGN),
2721 	.tccr_mask = TCCR_TSRQ0,
2722 	.rx_max_buf_size = SZ_8K,
2723 	.aligned_tx = 1,
2724 	.tx_counters = 1,
2725 	.carrier_counters = 1,
2726 	.half_duplex = 1,
2727 };
2728 
2729 static const struct of_device_id ravb_match_table[] = {
2730 	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2731 	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2732 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2733 	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2734 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2735 	{ .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen3_hw_info },
2736 	{ .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2737 	{ .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2738 	{ }
2739 };
2740 MODULE_DEVICE_TABLE(of, ravb_match_table);
2741 
2742 static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2743 			  const char *ch, int *irq, irq_handler_t handler)
2744 {
2745 	struct platform_device *pdev = priv->pdev;
2746 	struct net_device *ndev = priv->ndev;
2747 	struct device *dev = &pdev->dev;
2748 	const char *dev_name;
2749 	unsigned long flags;
2750 	int error;
2751 
2752 	if (irq_name) {
2753 		dev_name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
2754 		if (!dev_name)
2755 			return -ENOMEM;
2756 
2757 		*irq = platform_get_irq_byname(pdev, irq_name);
2758 		flags = 0;
2759 	} else {
2760 		dev_name = ndev->name;
2761 		*irq = platform_get_irq(pdev, 0);
2762 		flags = IRQF_SHARED;
2763 	}
2764 	if (*irq < 0)
2765 		return *irq;
2766 
2767 	error = devm_request_irq(dev, *irq, handler, flags, dev_name, ndev);
2768 	if (error)
2769 		netdev_err(ndev, "cannot request IRQ %s\n", dev_name);
2770 
2771 	return error;
2772 }
2773 
2774 static int ravb_setup_irqs(struct ravb_private *priv)
2775 {
2776 	const struct ravb_hw_info *info = priv->info;
2777 	struct net_device *ndev = priv->ndev;
2778 	const char *irq_name, *emac_irq_name;
2779 	int error, irq;
2780 
2781 	if (!info->multi_irqs)
2782 		return ravb_setup_irq(priv, NULL, NULL, &ndev->irq, ravb_interrupt);
2783 
2784 	if (info->err_mgmt_irqs) {
2785 		irq_name = "dia";
2786 		emac_irq_name = "line3";
2787 	} else {
2788 		irq_name = "ch22";
2789 		emac_irq_name = "ch24";
2790 	}
2791 
2792 	error = ravb_setup_irq(priv, irq_name, "ch22:multi", &ndev->irq, ravb_multi_interrupt);
2793 	if (error)
2794 		return error;
2795 
2796 	error = ravb_setup_irq(priv, emac_irq_name, "ch24:emac", &priv->emac_irq,
2797 			       ravb_emac_interrupt);
2798 	if (error)
2799 		return error;
2800 
2801 	if (info->err_mgmt_irqs) {
2802 		error = ravb_setup_irq(priv, "err_a", "err_a", &irq, ravb_multi_interrupt);
2803 		if (error)
2804 			return error;
2805 
2806 		error = ravb_setup_irq(priv, "mgmt_a", "mgmt_a", &irq, ravb_multi_interrupt);
2807 		if (error)
2808 			return error;
2809 	}
2810 
2811 	error = ravb_setup_irq(priv, "ch0", "ch0:rx_be", &irq, ravb_be_interrupt);
2812 	if (error)
2813 		return error;
2814 
2815 	error = ravb_setup_irq(priv, "ch1", "ch1:rx_nc", &irq, ravb_nc_interrupt);
2816 	if (error)
2817 		return error;
2818 
2819 	error = ravb_setup_irq(priv, "ch18", "ch18:tx_be", &irq, ravb_be_interrupt);
2820 	if (error)
2821 		return error;
2822 
2823 	return ravb_setup_irq(priv, "ch19", "ch19:tx_nc", &irq, ravb_nc_interrupt);
2824 }
2825 
2826 static int ravb_probe(struct platform_device *pdev)
2827 {
2828 	struct device_node *np = pdev->dev.of_node;
2829 	const struct ravb_hw_info *info;
2830 	struct reset_control *rstc;
2831 	struct ravb_private *priv;
2832 	struct net_device *ndev;
2833 	struct resource *res;
2834 	int error, q;
2835 
2836 	if (!np) {
2837 		dev_err(&pdev->dev,
2838 			"this driver is required to be instantiated from device tree\n");
2839 		return -EINVAL;
2840 	}
2841 
2842 	rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
2843 	if (IS_ERR(rstc))
2844 		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2845 				     "failed to get cpg reset\n");
2846 
2847 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2848 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2849 	if (!ndev)
2850 		return -ENOMEM;
2851 
2852 	info = of_device_get_match_data(&pdev->dev);
2853 
2854 	ndev->features = info->net_features;
2855 	ndev->hw_features = info->net_hw_features;
2856 
2857 	error = reset_control_deassert(rstc);
2858 	if (error)
2859 		goto out_free_netdev;
2860 
2861 	SET_NETDEV_DEV(ndev, &pdev->dev);
2862 
2863 	priv = netdev_priv(ndev);
2864 	priv->info = info;
2865 	priv->rstc = rstc;
2866 	priv->ndev = ndev;
2867 	priv->pdev = pdev;
2868 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2869 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2870 	if (info->nc_queues) {
2871 		priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2872 		priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2873 	}
2874 
2875 	error = ravb_setup_irqs(priv);
2876 	if (error)
2877 		goto out_reset_assert;
2878 
2879 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2880 	if (IS_ERR(priv->clk)) {
2881 		error = PTR_ERR(priv->clk);
2882 		goto out_reset_assert;
2883 	}
2884 
2885 	if (info->gptp_ref_clk) {
2886 		priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2887 		if (IS_ERR(priv->gptp_clk)) {
2888 			error = PTR_ERR(priv->gptp_clk);
2889 			goto out_reset_assert;
2890 		}
2891 	}
2892 
2893 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2894 	if (IS_ERR(priv->refclk)) {
2895 		error = PTR_ERR(priv->refclk);
2896 		goto out_reset_assert;
2897 	}
2898 	clk_prepare(priv->refclk);
2899 
2900 	platform_set_drvdata(pdev, ndev);
2901 	pm_runtime_enable(&pdev->dev);
2902 	error = pm_runtime_resume_and_get(&pdev->dev);
2903 	if (error < 0)
2904 		goto out_rpm_disable;
2905 
2906 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2907 	if (IS_ERR(priv->addr)) {
2908 		error = PTR_ERR(priv->addr);
2909 		goto out_rpm_put;
2910 	}
2911 
2912 	/* The Ether-specific entries in the device structure. */
2913 	ndev->base_addr = res->start;
2914 
2915 	spin_lock_init(&priv->lock);
2916 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2917 
2918 	error = of_get_phy_mode(np, &priv->phy_interface);
2919 	if (error && error != -ENODEV)
2920 		goto out_rpm_put;
2921 
2922 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2923 	priv->avb_link_active_low =
2924 		of_property_read_bool(np, "renesas,ether-link-active-low");
2925 
2926 	ndev->max_mtu = info->rx_max_buf_size - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2927 	ndev->min_mtu = ETH_MIN_MTU;
2928 
2929 	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
2930 	 * Use two descriptor to handle such situation. First descriptor to
2931 	 * handle aligned data buffer and second descriptor to handle the
2932 	 * overflow data because of alignment.
2933 	 */
2934 	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
2935 
2936 	/* Set function */
2937 	ndev->netdev_ops = &ravb_netdev_ops;
2938 	ndev->ethtool_ops = &ravb_ethtool_ops;
2939 
2940 	error = ravb_compute_gti(ndev);
2941 	if (error)
2942 		goto out_rpm_put;
2943 
2944 	ravb_parse_delay_mode(np, ndev);
2945 
2946 	/* Allocate descriptor base address table */
2947 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2948 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2949 					    &priv->desc_bat_dma, GFP_KERNEL);
2950 	if (!priv->desc_bat) {
2951 		dev_err(&pdev->dev,
2952 			"Cannot allocate desc base address table (size %d bytes)\n",
2953 			priv->desc_bat_size);
2954 		error = -ENOMEM;
2955 		goto out_rpm_put;
2956 	}
2957 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2958 		priv->desc_bat[q].die_dt = DT_EOS;
2959 
2960 	/* Initialise HW timestamp list */
2961 	INIT_LIST_HEAD(&priv->ts_skb_list);
2962 
2963 	/* Debug message level */
2964 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2965 
2966 	/* Set config mode as this is needed for PHY initialization. */
2967 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
2968 	if (error)
2969 		goto out_rpm_put;
2970 
2971 	/* Read and set MAC address */
2972 	ravb_read_mac_address(np, ndev);
2973 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2974 		dev_warn(&pdev->dev,
2975 			 "no valid MAC address supplied, using a random one\n");
2976 		eth_hw_addr_random(ndev);
2977 	}
2978 
2979 	/* MDIO bus init */
2980 	error = ravb_mdio_init(priv);
2981 	if (error) {
2982 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2983 		goto out_reset_mode;
2984 	}
2985 
2986 	/* Undo previous switch to config opmode. */
2987 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2988 	if (error)
2989 		goto out_mdio_release;
2990 
2991 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
2992 	if (info->nc_queues)
2993 		netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
2994 
2995 	/* Network device register */
2996 	error = register_netdev(ndev);
2997 	if (error)
2998 		goto out_napi_del;
2999 
3000 	device_set_wakeup_capable(&pdev->dev, 1);
3001 
3002 	/* Print device information */
3003 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
3004 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3005 
3006 	return 0;
3007 
3008 out_napi_del:
3009 	if (info->nc_queues)
3010 		netif_napi_del(&priv->napi[RAVB_NC]);
3011 
3012 	netif_napi_del(&priv->napi[RAVB_BE]);
3013 out_mdio_release:
3014 	ravb_mdio_release(priv);
3015 out_reset_mode:
3016 	ravb_set_opmode(ndev, CCC_OPC_RESET);
3017 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3018 			  priv->desc_bat_dma);
3019 out_rpm_put:
3020 	pm_runtime_put(&pdev->dev);
3021 out_rpm_disable:
3022 	pm_runtime_disable(&pdev->dev);
3023 	clk_unprepare(priv->refclk);
3024 out_reset_assert:
3025 	reset_control_assert(rstc);
3026 out_free_netdev:
3027 	free_netdev(ndev);
3028 	return error;
3029 }
3030 
3031 static void ravb_remove(struct platform_device *pdev)
3032 {
3033 	struct net_device *ndev = platform_get_drvdata(pdev);
3034 	struct ravb_private *priv = netdev_priv(ndev);
3035 	const struct ravb_hw_info *info = priv->info;
3036 
3037 	unregister_netdev(ndev);
3038 	if (info->nc_queues)
3039 		netif_napi_del(&priv->napi[RAVB_NC]);
3040 	netif_napi_del(&priv->napi[RAVB_BE]);
3041 
3042 	ravb_mdio_release(priv);
3043 
3044 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3045 			  priv->desc_bat_dma);
3046 
3047 	pm_runtime_put_sync(&pdev->dev);
3048 	pm_runtime_disable(&pdev->dev);
3049 	clk_unprepare(priv->refclk);
3050 	reset_control_assert(priv->rstc);
3051 	free_netdev(ndev);
3052 	platform_set_drvdata(pdev, NULL);
3053 }
3054 
3055 static int ravb_wol_setup(struct net_device *ndev)
3056 {
3057 	struct ravb_private *priv = netdev_priv(ndev);
3058 	const struct ravb_hw_info *info = priv->info;
3059 
3060 	/* Disable interrupts by clearing the interrupt masks. */
3061 	ravb_write(ndev, 0, RIC0);
3062 	ravb_write(ndev, 0, RIC2);
3063 	ravb_write(ndev, 0, TIC);
3064 
3065 	/* Only allow ECI interrupts */
3066 	synchronize_irq(priv->emac_irq);
3067 	if (info->nc_queues)
3068 		napi_disable(&priv->napi[RAVB_NC]);
3069 	napi_disable(&priv->napi[RAVB_BE]);
3070 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
3071 
3072 	/* Enable MagicPacket */
3073 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3074 
3075 	if (priv->info->ccc_gac)
3076 		ravb_ptp_stop(ndev);
3077 
3078 	return enable_irq_wake(priv->emac_irq);
3079 }
3080 
3081 static int ravb_wol_restore(struct net_device *ndev)
3082 {
3083 	struct ravb_private *priv = netdev_priv(ndev);
3084 	const struct ravb_hw_info *info = priv->info;
3085 	int error;
3086 
3087 	/* Set reset mode to rearm the WoL logic. */
3088 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3089 	if (error)
3090 		return error;
3091 
3092 	/* Set AVB config mode. */
3093 	error = ravb_set_config_mode(ndev);
3094 	if (error)
3095 		return error;
3096 
3097 	if (priv->info->ccc_gac)
3098 		ravb_ptp_init(ndev, priv->pdev);
3099 
3100 	if (info->nc_queues)
3101 		napi_enable(&priv->napi[RAVB_NC]);
3102 	napi_enable(&priv->napi[RAVB_BE]);
3103 
3104 	/* Disable MagicPacket */
3105 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
3106 
3107 	ravb_close(ndev);
3108 
3109 	return disable_irq_wake(priv->emac_irq);
3110 }
3111 
3112 static int ravb_suspend(struct device *dev)
3113 {
3114 	struct net_device *ndev = dev_get_drvdata(dev);
3115 	struct ravb_private *priv = netdev_priv(ndev);
3116 	int ret;
3117 
3118 	if (!netif_running(ndev))
3119 		goto reset_assert;
3120 
3121 	netif_device_detach(ndev);
3122 
3123 	if (priv->wol_enabled)
3124 		return ravb_wol_setup(ndev);
3125 
3126 	ret = ravb_close(ndev);
3127 	if (ret)
3128 		return ret;
3129 
3130 reset_assert:
3131 	return reset_control_assert(priv->rstc);
3132 }
3133 
3134 static int ravb_resume(struct device *dev)
3135 {
3136 	struct net_device *ndev = dev_get_drvdata(dev);
3137 	struct ravb_private *priv = netdev_priv(ndev);
3138 	int ret;
3139 
3140 	ret = reset_control_deassert(priv->rstc);
3141 	if (ret)
3142 		return ret;
3143 
3144 	if (!netif_running(ndev))
3145 		return 0;
3146 
3147 	/* If WoL is enabled restore the interface. */
3148 	if (priv->wol_enabled) {
3149 		ret = ravb_wol_restore(ndev);
3150 		if (ret)
3151 			return ret;
3152 	}
3153 
3154 	/* Reopening the interface will restore the device to the working state. */
3155 	ret = ravb_open(ndev);
3156 	if (ret < 0)
3157 		return ret;
3158 
3159 	ravb_set_rx_mode(ndev);
3160 	netif_device_attach(ndev);
3161 
3162 	return ret;
3163 }
3164 
3165 static int ravb_runtime_suspend(struct device *dev)
3166 {
3167 	struct net_device *ndev = dev_get_drvdata(dev);
3168 	struct ravb_private *priv = netdev_priv(ndev);
3169 
3170 	clk_disable(priv->refclk);
3171 
3172 	return 0;
3173 }
3174 
3175 static int ravb_runtime_resume(struct device *dev)
3176 {
3177 	struct net_device *ndev = dev_get_drvdata(dev);
3178 	struct ravb_private *priv = netdev_priv(ndev);
3179 
3180 	return clk_enable(priv->refclk);
3181 }
3182 
3183 static const struct dev_pm_ops ravb_dev_pm_ops = {
3184 	SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3185 	RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3186 };
3187 
3188 static struct platform_driver ravb_driver = {
3189 	.probe		= ravb_probe,
3190 	.remove_new	= ravb_remove,
3191 	.driver = {
3192 		.name	= "ravb",
3193 		.pm	= pm_ptr(&ravb_dev_pm_ops),
3194 		.of_match_table = ravb_match_table,
3195 	},
3196 };
3197 
3198 module_platform_driver(ravb_driver);
3199 
3200 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3201 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3202 MODULE_LICENSE("GPL v2");
3203