xref: /linux/drivers/net/ethernet/renesas/ravb_main.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/reset.h>
31 #include <linux/math64.h>
32 #include <net/ip.h>
33 #include <net/page_pool/helpers.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
44 		 u32 set)
45 {
46 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
47 }
48 
49 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
50 {
51 	int i;
52 
53 	for (i = 0; i < 10000; i++) {
54 		if ((ravb_read(ndev, reg) & mask) == value)
55 			return 0;
56 		udelay(10);
57 	}
58 	return -ETIMEDOUT;
59 }
60 
61 static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
62 {
63 	u32 csr_ops = 1U << (opmode & CCC_OPC);
64 	u32 ccc_mask = CCC_OPC;
65 	int error;
66 
67 	/* If gPTP active in config mode is supported it needs to be configured
68 	 * along with CSEL and operating mode in the same access. This is a
69 	 * hardware limitation.
70 	 */
71 	if (opmode & CCC_GAC)
72 		ccc_mask |= CCC_GAC | CCC_CSEL;
73 
74 	/* Set operating mode */
75 	ravb_modify(ndev, CCC, ccc_mask, opmode);
76 	/* Check if the operating mode is changed to the requested one */
77 	error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
78 	if (error) {
79 		netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
80 			   opmode & CCC_OPC);
81 	}
82 
83 	return error;
84 }
85 
86 static void ravb_set_rate_gbeth(struct net_device *ndev)
87 {
88 	struct ravb_private *priv = netdev_priv(ndev);
89 
90 	switch (priv->speed) {
91 	case 10:		/* 10BASE */
92 		ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
93 		break;
94 	case 100:		/* 100BASE */
95 		ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
96 		break;
97 	case 1000:		/* 1000BASE */
98 		ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
99 		break;
100 	}
101 }
102 
103 static void ravb_set_rate_rcar(struct net_device *ndev)
104 {
105 	struct ravb_private *priv = netdev_priv(ndev);
106 
107 	switch (priv->speed) {
108 	case 100:		/* 100BASE */
109 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
110 		break;
111 	case 1000:		/* 1000BASE */
112 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
113 		break;
114 	}
115 }
116 
117 /* Get MAC address from the MAC address registers
118  *
119  * Ethernet AVB device doesn't have ROM for MAC address.
120  * This function gets the MAC address that was used by a bootloader.
121  */
122 static void ravb_read_mac_address(struct device_node *np,
123 				  struct net_device *ndev)
124 {
125 	int ret;
126 
127 	ret = of_get_ethdev_address(np, ndev);
128 	if (ret) {
129 		u32 mahr = ravb_read(ndev, MAHR);
130 		u32 malr = ravb_read(ndev, MALR);
131 		u8 addr[ETH_ALEN];
132 
133 		addr[0] = (mahr >> 24) & 0xFF;
134 		addr[1] = (mahr >> 16) & 0xFF;
135 		addr[2] = (mahr >>  8) & 0xFF;
136 		addr[3] = (mahr >>  0) & 0xFF;
137 		addr[4] = (malr >>  8) & 0xFF;
138 		addr[5] = (malr >>  0) & 0xFF;
139 		eth_hw_addr_set(ndev, addr);
140 	}
141 }
142 
143 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
144 {
145 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
146 						 mdiobb);
147 
148 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
149 }
150 
151 /* MDC pin control */
152 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
153 {
154 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
155 }
156 
157 /* Data I/O pin control */
158 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
159 {
160 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
161 }
162 
163 /* Set data bit */
164 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
165 {
166 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
167 }
168 
169 /* Get data bit */
170 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
171 {
172 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
173 						 mdiobb);
174 
175 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
176 }
177 
178 /* MDIO bus control struct */
179 static const struct mdiobb_ops bb_ops = {
180 	.owner = THIS_MODULE,
181 	.set_mdc = ravb_set_mdc,
182 	.set_mdio_dir = ravb_set_mdio_dir,
183 	.set_mdio_data = ravb_set_mdio_data,
184 	.get_mdio_data = ravb_get_mdio_data,
185 };
186 
187 static struct ravb_rx_desc *
188 ravb_rx_get_desc(struct ravb_private *priv, unsigned int q,
189 		 unsigned int i)
190 {
191 	return priv->rx_ring[q].raw + priv->info->rx_desc_size * i;
192 }
193 
194 /* Free TX skb function for AVB-IP */
195 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
196 {
197 	struct ravb_private *priv = netdev_priv(ndev);
198 	struct net_device_stats *stats = &priv->stats[q];
199 	unsigned int num_tx_desc = priv->num_tx_desc;
200 	struct ravb_tx_desc *desc;
201 	unsigned int entry;
202 	int free_num = 0;
203 	u32 size;
204 
205 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
206 		bool txed;
207 
208 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
209 					     num_tx_desc);
210 		desc = &priv->tx_ring[q][entry];
211 		txed = desc->die_dt == DT_FEMPTY;
212 		if (free_txed_only && !txed)
213 			break;
214 		/* Descriptor type must be checked before all other reads */
215 		dma_rmb();
216 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
217 		/* Free the original skb. */
218 		if (priv->tx_skb[q][entry / num_tx_desc]) {
219 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
220 					 size, DMA_TO_DEVICE);
221 			/* Last packet descriptor? */
222 			if (entry % num_tx_desc == num_tx_desc - 1) {
223 				entry /= num_tx_desc;
224 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
225 				priv->tx_skb[q][entry] = NULL;
226 				if (txed)
227 					stats->tx_packets++;
228 			}
229 			free_num++;
230 		}
231 		if (txed)
232 			stats->tx_bytes += size;
233 		desc->die_dt = DT_EEMPTY;
234 	}
235 	return free_num;
236 }
237 
238 static void ravb_rx_ring_free(struct net_device *ndev, int q)
239 {
240 	struct ravb_private *priv = netdev_priv(ndev);
241 	unsigned int ring_size;
242 
243 	if (!priv->rx_ring[q].raw)
244 		return;
245 
246 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
247 	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q].raw,
248 			  priv->rx_desc_dma[q]);
249 	priv->rx_ring[q].raw = NULL;
250 }
251 
252 /* Free skb's and DMA buffers for Ethernet AVB */
253 static void ravb_ring_free(struct net_device *ndev, int q)
254 {
255 	struct ravb_private *priv = netdev_priv(ndev);
256 	unsigned int num_tx_desc = priv->num_tx_desc;
257 	unsigned int ring_size;
258 	unsigned int i;
259 
260 	ravb_rx_ring_free(ndev, q);
261 
262 	if (priv->tx_ring[q]) {
263 		ravb_tx_free(ndev, q, false);
264 
265 		ring_size = sizeof(struct ravb_tx_desc) *
266 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
267 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
268 				  priv->tx_desc_dma[q]);
269 		priv->tx_ring[q] = NULL;
270 	}
271 
272 	/* Free RX buffers */
273 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
274 		if (priv->rx_buffers[q][i].page)
275 			page_pool_put_page(priv->rx_pool[q],
276 					   priv->rx_buffers[q][i].page,
277 					   0, true);
278 	}
279 	kfree(priv->rx_buffers[q]);
280 	priv->rx_buffers[q] = NULL;
281 	page_pool_destroy(priv->rx_pool[q]);
282 
283 	/* Free aligned TX buffers */
284 	kfree(priv->tx_align[q]);
285 	priv->tx_align[q] = NULL;
286 
287 	/* Free TX skb ringbuffer.
288 	 * SKBs are freed by ravb_tx_free() call above.
289 	 */
290 	kfree(priv->tx_skb[q]);
291 	priv->tx_skb[q] = NULL;
292 }
293 
294 static int
295 ravb_alloc_rx_buffer(struct net_device *ndev, int q, u32 entry, gfp_t gfp_mask,
296 		     struct ravb_rx_desc *rx_desc)
297 {
298 	struct ravb_private *priv = netdev_priv(ndev);
299 	const struct ravb_hw_info *info = priv->info;
300 	struct ravb_rx_buffer *rx_buff;
301 	dma_addr_t dma_addr;
302 	unsigned int size;
303 
304 	rx_buff = &priv->rx_buffers[q][entry];
305 	size = info->rx_buffer_size;
306 	rx_buff->page = page_pool_alloc(priv->rx_pool[q], &rx_buff->offset,
307 					&size, gfp_mask);
308 	if (unlikely(!rx_buff->page)) {
309 		/* We just set the data size to 0 for a failed mapping which
310 		 * should prevent DMA from happening...
311 		 */
312 		rx_desc->ds_cc = cpu_to_le16(0);
313 		return -ENOMEM;
314 	}
315 
316 	dma_addr = page_pool_get_dma_addr(rx_buff->page) + rx_buff->offset;
317 	dma_sync_single_for_device(ndev->dev.parent, dma_addr,
318 				   info->rx_buffer_size, DMA_FROM_DEVICE);
319 	rx_desc->dptr = cpu_to_le32(dma_addr);
320 
321 	/* The end of the RX buffer is used to store skb shared data, so we need
322 	 * to ensure that the hardware leaves enough space for this.
323 	 */
324 	rx_desc->ds_cc = cpu_to_le16(info->rx_buffer_size -
325 				     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) -
326 				     ETH_FCS_LEN + sizeof(__sum16));
327 	return 0;
328 }
329 
330 static u32
331 ravb_rx_ring_refill(struct net_device *ndev, int q, u32 count, gfp_t gfp_mask)
332 {
333 	struct ravb_private *priv = netdev_priv(ndev);
334 	struct ravb_rx_desc *rx_desc;
335 	u32 i, entry;
336 
337 	for (i = 0; i < count; i++) {
338 		entry = (priv->dirty_rx[q] + i) % priv->num_rx_ring[q];
339 		rx_desc = ravb_rx_get_desc(priv, q, entry);
340 
341 		if (!priv->rx_buffers[q][entry].page) {
342 			if (unlikely(ravb_alloc_rx_buffer(ndev, q, entry,
343 							  gfp_mask, rx_desc)))
344 				break;
345 		}
346 		/* Descriptor type must be set after all the above writes */
347 		dma_wmb();
348 		rx_desc->die_dt = DT_FEMPTY;
349 	}
350 
351 	return i;
352 }
353 
354 /* Format skb and descriptor buffer for Ethernet AVB */
355 static void ravb_ring_format(struct net_device *ndev, int q)
356 {
357 	struct ravb_private *priv = netdev_priv(ndev);
358 	unsigned int num_tx_desc = priv->num_tx_desc;
359 	struct ravb_rx_desc *rx_desc;
360 	struct ravb_tx_desc *tx_desc;
361 	struct ravb_desc *desc;
362 	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
363 				    num_tx_desc;
364 	unsigned int i;
365 
366 	priv->cur_rx[q] = 0;
367 	priv->cur_tx[q] = 0;
368 	priv->dirty_rx[q] = 0;
369 	priv->dirty_tx[q] = 0;
370 
371 	/* Regular RX descriptors have already been initialized by
372 	 * ravb_rx_ring_refill(), we just need to initialize the final link
373 	 * descriptor.
374 	 */
375 	rx_desc = ravb_rx_get_desc(priv, q, priv->num_rx_ring[q]);
376 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
377 	rx_desc->die_dt = DT_LINKFIX; /* type */
378 
379 	memset(priv->tx_ring[q], 0, tx_ring_size);
380 	/* Build TX ring buffer */
381 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
382 	     i++, tx_desc++) {
383 		tx_desc->die_dt = DT_EEMPTY;
384 		if (num_tx_desc > 1) {
385 			tx_desc++;
386 			tx_desc->die_dt = DT_EEMPTY;
387 		}
388 	}
389 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
390 	tx_desc->die_dt = DT_LINKFIX; /* type */
391 
392 	/* RX descriptor base address for best effort */
393 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
394 	desc->die_dt = DT_LINKFIX; /* type */
395 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
396 
397 	/* TX descriptor base address for best effort */
398 	desc = &priv->desc_bat[q];
399 	desc->die_dt = DT_LINKFIX; /* type */
400 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
401 }
402 
403 static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
404 {
405 	struct ravb_private *priv = netdev_priv(ndev);
406 	unsigned int ring_size;
407 
408 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
409 
410 	priv->rx_ring[q].raw = dma_alloc_coherent(ndev->dev.parent, ring_size,
411 						  &priv->rx_desc_dma[q],
412 						  GFP_KERNEL);
413 
414 	return priv->rx_ring[q].raw;
415 }
416 
417 /* Init skb and descriptor buffer for Ethernet AVB */
418 static int ravb_ring_init(struct net_device *ndev, int q)
419 {
420 	struct ravb_private *priv = netdev_priv(ndev);
421 	unsigned int num_tx_desc = priv->num_tx_desc;
422 	struct page_pool_params params = {
423 		.order = 0,
424 		.flags = PP_FLAG_DMA_MAP,
425 		.pool_size = priv->num_rx_ring[q],
426 		.nid = NUMA_NO_NODE,
427 		.dev = ndev->dev.parent,
428 		.dma_dir = DMA_FROM_DEVICE,
429 	};
430 	unsigned int ring_size;
431 	u32 num_filled;
432 
433 	/* Allocate RX page pool and buffers */
434 	priv->rx_pool[q] = page_pool_create(&params);
435 	if (IS_ERR(priv->rx_pool[q]))
436 		goto error;
437 
438 	/* Allocate RX buffers */
439 	priv->rx_buffers[q] = kcalloc(priv->num_rx_ring[q],
440 				      sizeof(*priv->rx_buffers[q]), GFP_KERNEL);
441 	if (!priv->rx_buffers[q])
442 		goto error;
443 
444 	/* Allocate TX skb rings */
445 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
446 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
447 	if (!priv->tx_skb[q])
448 		goto error;
449 
450 	/* Allocate all RX descriptors. */
451 	if (!ravb_alloc_rx_desc(ndev, q))
452 		goto error;
453 
454 	/* Populate RX ring buffer. */
455 	priv->dirty_rx[q] = 0;
456 	ring_size = priv->info->rx_desc_size * priv->num_rx_ring[q];
457 	memset(priv->rx_ring[q].raw, 0, ring_size);
458 	num_filled = ravb_rx_ring_refill(ndev, q, priv->num_rx_ring[q],
459 					 GFP_KERNEL);
460 	if (num_filled != priv->num_rx_ring[q])
461 		goto error;
462 
463 	if (num_tx_desc > 1) {
464 		/* Allocate rings for the aligned buffers */
465 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
466 					    DPTR_ALIGN - 1, GFP_KERNEL);
467 		if (!priv->tx_align[q])
468 			goto error;
469 	}
470 
471 	/* Allocate all TX descriptors. */
472 	ring_size = sizeof(struct ravb_tx_desc) *
473 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
474 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
475 					      &priv->tx_desc_dma[q],
476 					      GFP_KERNEL);
477 	if (!priv->tx_ring[q])
478 		goto error;
479 
480 	return 0;
481 
482 error:
483 	ravb_ring_free(ndev, q);
484 
485 	return -ENOMEM;
486 }
487 
488 static void ravb_csum_init_gbeth(struct net_device *ndev)
489 {
490 	bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
491 	bool rx_enable = ndev->features & NETIF_F_RXCSUM;
492 
493 	if (!(tx_enable || rx_enable))
494 		goto done;
495 
496 	ravb_write(ndev, 0, CSR0);
497 	if (ravb_wait(ndev, CSR0, CSR0_TPE | CSR0_RPE, 0)) {
498 		netdev_err(ndev, "Timeout enabling hardware checksum\n");
499 
500 		if (tx_enable)
501 			ndev->features &= ~NETIF_F_HW_CSUM;
502 
503 		if (rx_enable)
504 			ndev->features &= ~NETIF_F_RXCSUM;
505 	} else {
506 		if (tx_enable)
507 			ravb_write(ndev, CSR1_CSUM_ENABLE, CSR1);
508 
509 		if (rx_enable)
510 			ravb_write(ndev, CSR2_CSUM_ENABLE, CSR2);
511 	}
512 
513 done:
514 	ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
515 }
516 
517 static void ravb_emac_init_gbeth(struct net_device *ndev)
518 {
519 	struct ravb_private *priv = netdev_priv(ndev);
520 
521 	if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
522 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
523 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
524 	} else {
525 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
526 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
527 			    CXR31_SEL_LINK0);
528 	}
529 
530 	/* Receive frame limit set register */
531 	ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
532 
533 	/* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
534 	ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
535 			 ECMR_TE | ECMR_RE | ECMR_RCPT |
536 			 ECMR_TXF | ECMR_RXF, ECMR);
537 
538 	ravb_set_rate_gbeth(ndev);
539 
540 	/* Set MAC address */
541 	ravb_write(ndev,
542 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
543 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
544 	ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
545 
546 	/* E-MAC status register clear */
547 	ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
548 
549 	ravb_csum_init_gbeth(ndev);
550 
551 	/* E-MAC interrupt enable register */
552 	ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
553 }
554 
555 static void ravb_emac_init_rcar(struct net_device *ndev)
556 {
557 	struct ravb_private *priv = netdev_priv(ndev);
558 
559 	/* Set receive frame length
560 	 *
561 	 * The length set here describes the frame from the destination address
562 	 * up to and including the CRC data. However only the frame data,
563 	 * excluding the CRC, are transferred to memory. To allow for the
564 	 * largest frames add the CRC length to the maximum Rx descriptor size.
565 	 */
566 	ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
567 
568 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
569 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
570 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
571 		   ECMR_TE | ECMR_RE, ECMR);
572 
573 	ravb_set_rate_rcar(ndev);
574 
575 	/* Set MAC address */
576 	ravb_write(ndev,
577 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
578 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
579 	ravb_write(ndev,
580 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
581 
582 	/* E-MAC status register clear */
583 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
584 
585 	/* E-MAC interrupt enable register */
586 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
587 }
588 
589 static void ravb_emac_init_rcar_gen4(struct net_device *ndev)
590 {
591 	struct ravb_private *priv = netdev_priv(ndev);
592 	bool mii = priv->phy_interface == PHY_INTERFACE_MODE_MII;
593 
594 	ravb_modify(ndev, APSR, APSR_MIISELECT, mii ? APSR_MIISELECT : 0);
595 
596 	ravb_emac_init_rcar(ndev);
597 }
598 
599 /* E-MAC init function */
600 static void ravb_emac_init(struct net_device *ndev)
601 {
602 	struct ravb_private *priv = netdev_priv(ndev);
603 	const struct ravb_hw_info *info = priv->info;
604 
605 	info->emac_init(ndev);
606 }
607 
608 static int ravb_dmac_init_gbeth(struct net_device *ndev)
609 {
610 	struct ravb_private *priv = netdev_priv(ndev);
611 	int error;
612 
613 	error = ravb_ring_init(ndev, RAVB_BE);
614 	if (error)
615 		return error;
616 
617 	/* Descriptor format */
618 	ravb_ring_format(ndev, RAVB_BE);
619 
620 	/* Set DMAC RX */
621 	ravb_write(ndev, 0x60000000, RCR);
622 
623 	/* Set Max Frame Length (RTC) */
624 	ravb_write(ndev, 0x7ffc0000 | priv->info->rx_max_frame_size, RTC);
625 
626 	/* Set FIFO size */
627 	ravb_write(ndev, 0x00222200, TGC);
628 
629 	ravb_write(ndev, 0, TCCR);
630 
631 	/* Frame receive */
632 	ravb_write(ndev, RIC0_FRE0, RIC0);
633 	/* Disable FIFO full warning */
634 	ravb_write(ndev, 0x0, RIC1);
635 	/* Receive FIFO full error, descriptor empty */
636 	ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
637 
638 	ravb_write(ndev, TIC_FTE0, TIC);
639 
640 	return 0;
641 }
642 
643 static int ravb_dmac_init_rcar(struct net_device *ndev)
644 {
645 	struct ravb_private *priv = netdev_priv(ndev);
646 	const struct ravb_hw_info *info = priv->info;
647 	int error;
648 
649 	error = ravb_ring_init(ndev, RAVB_BE);
650 	if (error)
651 		return error;
652 	error = ravb_ring_init(ndev, RAVB_NC);
653 	if (error) {
654 		ravb_ring_free(ndev, RAVB_BE);
655 		return error;
656 	}
657 
658 	/* Descriptor format */
659 	ravb_ring_format(ndev, RAVB_BE);
660 	ravb_ring_format(ndev, RAVB_NC);
661 
662 	/* Set AVB RX */
663 	ravb_write(ndev,
664 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
665 
666 	/* Set FIFO size */
667 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
668 
669 	/* Timestamp enable */
670 	ravb_write(ndev, TCCR_TFEN, TCCR);
671 
672 	/* Interrupt init: */
673 	if (info->multi_irqs) {
674 		/* Clear DIL.DPLx */
675 		ravb_write(ndev, 0, DIL);
676 		/* Set queue specific interrupt */
677 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
678 	}
679 	/* Frame receive */
680 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
681 	/* Disable FIFO full warning */
682 	ravb_write(ndev, 0, RIC1);
683 	/* Receive FIFO full error, descriptor empty */
684 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
685 	/* Frame transmitted, timestamp FIFO updated */
686 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
687 
688 	return 0;
689 }
690 
691 /* Device init function for Ethernet AVB */
692 static int ravb_dmac_init(struct net_device *ndev)
693 {
694 	struct ravb_private *priv = netdev_priv(ndev);
695 	const struct ravb_hw_info *info = priv->info;
696 	int error;
697 
698 	/* Set CONFIG mode */
699 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
700 	if (error)
701 		return error;
702 
703 	error = info->dmac_init(ndev);
704 	if (error)
705 		return error;
706 
707 	/* Setting the control will start the AVB-DMAC process. */
708 	return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
709 }
710 
711 static void ravb_get_tx_tstamp(struct net_device *ndev)
712 {
713 	struct ravb_private *priv = netdev_priv(ndev);
714 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
715 	struct skb_shared_hwtstamps shhwtstamps;
716 	struct sk_buff *skb;
717 	struct timespec64 ts;
718 	u16 tag, tfa_tag;
719 	int count;
720 	u32 tfa2;
721 
722 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
723 	while (count--) {
724 		tfa2 = ravb_read(ndev, TFA2);
725 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
726 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
727 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
728 			    ravb_read(ndev, TFA1);
729 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
730 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
731 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
732 					 list) {
733 			skb = ts_skb->skb;
734 			tag = ts_skb->tag;
735 			list_del(&ts_skb->list);
736 			kfree(ts_skb);
737 			if (tag == tfa_tag) {
738 				skb_tstamp_tx(skb, &shhwtstamps);
739 				dev_consume_skb_any(skb);
740 				break;
741 			} else {
742 				dev_kfree_skb_any(skb);
743 			}
744 		}
745 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
746 	}
747 }
748 
749 static void ravb_rx_csum_gbeth(struct sk_buff *skb)
750 {
751 	struct skb_shared_info *shinfo = skb_shinfo(skb);
752 	size_t csum_len;
753 	u16 *hw_csum;
754 
755 	/* The hardware checksum status is contained in 4 bytes appended to
756 	 * packet data.
757 	 *
758 	 * For ipv4, the first 2 bytes are the ip header checksum status. We can
759 	 * ignore this as it will always be re-checked in inet_gro_receive().
760 	 *
761 	 * The last 2 bytes are the protocol checksum status which will be zero
762 	 * if the checksum has been validated.
763 	 */
764 	csum_len = sizeof(*hw_csum) * 2;
765 	if (unlikely(skb->len < csum_len))
766 		return;
767 
768 	if (skb_is_nonlinear(skb)) {
769 		skb_frag_t *last_frag = &shinfo->frags[shinfo->nr_frags - 1];
770 
771 		hw_csum = (u16 *)(skb_frag_address(last_frag) +
772 				  skb_frag_size(last_frag));
773 		skb_frag_size_sub(last_frag, csum_len);
774 	} else {
775 		hw_csum = (u16 *)skb_tail_pointer(skb);
776 		skb_trim(skb, skb->len - csum_len);
777 	}
778 
779 	if (!get_unaligned(--hw_csum))
780 		skb->ip_summed = CHECKSUM_UNNECESSARY;
781 }
782 
783 static void ravb_rx_csum(struct sk_buff *skb)
784 {
785 	u8 *hw_csum;
786 
787 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
788 	 * appended to packet data
789 	 */
790 	if (unlikely(skb->len < sizeof(__sum16)))
791 		return;
792 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
793 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
794 	skb->ip_summed = CHECKSUM_COMPLETE;
795 	skb_trim(skb, skb->len - sizeof(__sum16));
796 }
797 
798 /* Packet receive function for Gigabit Ethernet */
799 static int ravb_rx_gbeth(struct net_device *ndev, int budget, int q)
800 {
801 	struct ravb_private *priv = netdev_priv(ndev);
802 	const struct ravb_hw_info *info = priv->info;
803 	struct net_device_stats *stats;
804 	struct ravb_rx_desc *desc;
805 	int rx_packets = 0;
806 	u8  desc_status;
807 	u16 desc_len;
808 	u8  die_dt;
809 	int entry;
810 	int limit;
811 	int i;
812 
813 	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
814 	stats = &priv->stats[q];
815 
816 	for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
817 		struct sk_buff *skb = NULL;
818 
819 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
820 		desc = &priv->rx_ring[q].desc[entry];
821 		if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
822 			break;
823 
824 		/* Descriptor type must be checked before all other reads */
825 		dma_rmb();
826 		desc_status = desc->msc;
827 		desc_len = le16_to_cpu(desc->ds_cc) & RX_DS;
828 
829 		/* We use 0-byte descriptors to mark the DMA mapping errors */
830 		if (!desc_len)
831 			continue;
832 
833 		if (desc_status & MSC_MC)
834 			stats->multicast++;
835 
836 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
837 			stats->rx_errors++;
838 			if (desc_status & MSC_CRC)
839 				stats->rx_crc_errors++;
840 			if (desc_status & MSC_RFE)
841 				stats->rx_frame_errors++;
842 			if (desc_status & (MSC_RTLF | MSC_RTSF))
843 				stats->rx_length_errors++;
844 			if (desc_status & MSC_CEEF)
845 				stats->rx_missed_errors++;
846 		} else {
847 			struct ravb_rx_buffer *rx_buff;
848 			void *rx_addr;
849 
850 			rx_buff = &priv->rx_buffers[q][entry];
851 			rx_addr = page_address(rx_buff->page) + rx_buff->offset;
852 			die_dt = desc->die_dt & 0xF0;
853 			dma_sync_single_for_cpu(ndev->dev.parent,
854 						le32_to_cpu(desc->dptr),
855 						desc_len, DMA_FROM_DEVICE);
856 
857 			switch (die_dt) {
858 			case DT_FSINGLE:
859 			case DT_FSTART:
860 				/* Start of packet: Set initial data length. */
861 				skb = napi_build_skb(rx_addr,
862 						     info->rx_buffer_size);
863 				if (unlikely(!skb)) {
864 					stats->rx_errors++;
865 					page_pool_put_page(priv->rx_pool[q],
866 							   rx_buff->page, 0,
867 							   true);
868 					goto refill;
869 				}
870 				skb_mark_for_recycle(skb);
871 				skb_put(skb, desc_len);
872 
873 				/* Save this skb if the packet spans multiple
874 				 * descriptors.
875 				 */
876 				if (die_dt == DT_FSTART)
877 					priv->rx_1st_skb = skb;
878 				break;
879 
880 			case DT_FMID:
881 			case DT_FEND:
882 				/* Continuing a packet: Add this buffer as an RX
883 				 * frag.
884 				 */
885 
886 				/* rx_1st_skb will be NULL if napi_build_skb()
887 				 * failed for the first descriptor of a
888 				 * multi-descriptor packet.
889 				 */
890 				if (unlikely(!priv->rx_1st_skb)) {
891 					stats->rx_errors++;
892 					page_pool_put_page(priv->rx_pool[q],
893 							   rx_buff->page, 0,
894 							   true);
895 
896 					/* We may find a DT_FSINGLE or DT_FSTART
897 					 * descriptor in the queue which we can
898 					 * process, so don't give up yet.
899 					 */
900 					continue;
901 				}
902 				skb_add_rx_frag(priv->rx_1st_skb,
903 						skb_shinfo(priv->rx_1st_skb)->nr_frags,
904 						rx_buff->page, rx_buff->offset,
905 						desc_len, info->rx_buffer_size);
906 
907 				/* Set skb to point at the whole packet so that
908 				 * we only need one code path for finishing a
909 				 * packet.
910 				 */
911 				skb = priv->rx_1st_skb;
912 			}
913 
914 			switch (die_dt) {
915 			case DT_FSINGLE:
916 			case DT_FEND:
917 				/* Finishing a packet: Determine protocol &
918 				 * checksum, hand off to NAPI and update our
919 				 * stats.
920 				 */
921 				skb->protocol = eth_type_trans(skb, ndev);
922 				if (ndev->features & NETIF_F_RXCSUM)
923 					ravb_rx_csum_gbeth(skb);
924 				stats->rx_bytes += skb->len;
925 				napi_gro_receive(&priv->napi[q], skb);
926 				rx_packets++;
927 
928 				/* Clear rx_1st_skb so that it will only be
929 				 * non-NULL when valid.
930 				 */
931 				priv->rx_1st_skb = NULL;
932 			}
933 
934 			/* Mark this RX buffer as consumed. */
935 			rx_buff->page = NULL;
936 		}
937 	}
938 
939 refill:
940 	/* Refill the RX ring buffers. */
941 	priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
942 						 priv->cur_rx[q] - priv->dirty_rx[q],
943 						 GFP_ATOMIC);
944 
945 	stats->rx_packets += rx_packets;
946 	return rx_packets;
947 }
948 
949 /* Packet receive function for Ethernet AVB */
950 static int ravb_rx_rcar(struct net_device *ndev, int budget, int q)
951 {
952 	struct ravb_private *priv = netdev_priv(ndev);
953 	const struct ravb_hw_info *info = priv->info;
954 	struct net_device_stats *stats = &priv->stats[q];
955 	struct ravb_ex_rx_desc *desc;
956 	unsigned int limit, i;
957 	struct sk_buff *skb;
958 	struct timespec64 ts;
959 	int rx_packets = 0;
960 	u8  desc_status;
961 	u16 pkt_len;
962 	int entry;
963 
964 	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
965 	for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
966 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
967 		desc = &priv->rx_ring[q].ex_desc[entry];
968 		if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
969 			break;
970 
971 		/* Descriptor type must be checked before all other reads */
972 		dma_rmb();
973 		desc_status = desc->msc;
974 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
975 
976 		/* We use 0-byte descriptors to mark the DMA mapping errors */
977 		if (!pkt_len)
978 			continue;
979 
980 		if (desc_status & MSC_MC)
981 			stats->multicast++;
982 
983 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
984 				   MSC_CEEF)) {
985 			stats->rx_errors++;
986 			if (desc_status & MSC_CRC)
987 				stats->rx_crc_errors++;
988 			if (desc_status & MSC_RFE)
989 				stats->rx_frame_errors++;
990 			if (desc_status & (MSC_RTLF | MSC_RTSF))
991 				stats->rx_length_errors++;
992 			if (desc_status & MSC_CEEF)
993 				stats->rx_missed_errors++;
994 		} else {
995 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
996 			struct ravb_rx_buffer *rx_buff;
997 			void *rx_addr;
998 
999 			rx_buff = &priv->rx_buffers[q][entry];
1000 			rx_addr = page_address(rx_buff->page) + rx_buff->offset;
1001 			dma_sync_single_for_cpu(ndev->dev.parent,
1002 						le32_to_cpu(desc->dptr),
1003 						pkt_len, DMA_FROM_DEVICE);
1004 
1005 			skb = napi_build_skb(rx_addr, info->rx_buffer_size);
1006 			if (unlikely(!skb)) {
1007 				stats->rx_errors++;
1008 				page_pool_put_page(priv->rx_pool[q],
1009 						   rx_buff->page, 0, true);
1010 				break;
1011 			}
1012 			skb_mark_for_recycle(skb);
1013 			get_ts &= (q == RAVB_NC) ?
1014 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
1015 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1016 			if (get_ts) {
1017 				struct skb_shared_hwtstamps *shhwtstamps;
1018 
1019 				shhwtstamps = skb_hwtstamps(skb);
1020 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1021 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
1022 					     32) | le32_to_cpu(desc->ts_sl);
1023 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
1024 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
1025 			}
1026 
1027 			skb_put(skb, pkt_len);
1028 			skb->protocol = eth_type_trans(skb, ndev);
1029 			if (ndev->features & NETIF_F_RXCSUM)
1030 				ravb_rx_csum(skb);
1031 			napi_gro_receive(&priv->napi[q], skb);
1032 			rx_packets++;
1033 			stats->rx_bytes += pkt_len;
1034 
1035 			/* Mark this RX buffer as consumed. */
1036 			rx_buff->page = NULL;
1037 		}
1038 	}
1039 
1040 	/* Refill the RX ring buffers. */
1041 	priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
1042 						 priv->cur_rx[q] - priv->dirty_rx[q],
1043 						 GFP_ATOMIC);
1044 
1045 	stats->rx_packets += rx_packets;
1046 	return rx_packets;
1047 }
1048 
1049 /* Packet receive function for Ethernet AVB */
1050 static int ravb_rx(struct net_device *ndev, int budget, int q)
1051 {
1052 	struct ravb_private *priv = netdev_priv(ndev);
1053 	const struct ravb_hw_info *info = priv->info;
1054 
1055 	return info->receive(ndev, budget, q);
1056 }
1057 
1058 static void ravb_rcv_snd_disable(struct net_device *ndev)
1059 {
1060 	/* Disable TX and RX */
1061 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1062 }
1063 
1064 static void ravb_rcv_snd_enable(struct net_device *ndev)
1065 {
1066 	/* Enable TX and RX */
1067 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1068 }
1069 
1070 /* function for waiting dma process finished */
1071 static int ravb_stop_dma(struct net_device *ndev)
1072 {
1073 	struct ravb_private *priv = netdev_priv(ndev);
1074 	const struct ravb_hw_info *info = priv->info;
1075 	int error;
1076 
1077 	/* Wait for stopping the hardware TX process */
1078 	error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1079 
1080 	if (error)
1081 		return error;
1082 
1083 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1084 			  0);
1085 	if (error)
1086 		return error;
1087 
1088 	/* Stop the E-MAC's RX/TX processes. */
1089 	ravb_rcv_snd_disable(ndev);
1090 
1091 	/* Wait for stopping the RX DMA process */
1092 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1093 	if (error)
1094 		return error;
1095 
1096 	/* Stop AVB-DMAC process */
1097 	return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1098 }
1099 
1100 /* E-MAC interrupt handler */
1101 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1102 {
1103 	struct ravb_private *priv = netdev_priv(ndev);
1104 	u32 ecsr, psr;
1105 
1106 	ecsr = ravb_read(ndev, ECSR);
1107 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
1108 
1109 	if (ecsr & ECSR_MPD)
1110 		pm_wakeup_event(&priv->pdev->dev, 0);
1111 	if (ecsr & ECSR_ICD)
1112 		ndev->stats.tx_carrier_errors++;
1113 	if (ecsr & ECSR_LCHNG) {
1114 		/* Link changed */
1115 		if (priv->no_avb_link)
1116 			return;
1117 		psr = ravb_read(ndev, PSR);
1118 		if (priv->avb_link_active_low)
1119 			psr ^= PSR_LMON;
1120 		if (!(psr & PSR_LMON)) {
1121 			/* DIsable RX and TX */
1122 			ravb_rcv_snd_disable(ndev);
1123 		} else {
1124 			/* Enable RX and TX */
1125 			ravb_rcv_snd_enable(ndev);
1126 		}
1127 	}
1128 }
1129 
1130 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1131 {
1132 	struct net_device *ndev = dev_id;
1133 	struct ravb_private *priv = netdev_priv(ndev);
1134 	struct device *dev = &priv->pdev->dev;
1135 	irqreturn_t result = IRQ_HANDLED;
1136 
1137 	pm_runtime_get_noresume(dev);
1138 
1139 	if (unlikely(!pm_runtime_active(dev))) {
1140 		result = IRQ_NONE;
1141 		goto out_rpm_put;
1142 	}
1143 
1144 	spin_lock(&priv->lock);
1145 	ravb_emac_interrupt_unlocked(ndev);
1146 	spin_unlock(&priv->lock);
1147 
1148 out_rpm_put:
1149 	pm_runtime_put_noidle(dev);
1150 	return result;
1151 }
1152 
1153 /* Error interrupt handler */
1154 static void ravb_error_interrupt(struct net_device *ndev)
1155 {
1156 	struct ravb_private *priv = netdev_priv(ndev);
1157 	u32 eis, ris2;
1158 
1159 	eis = ravb_read(ndev, EIS);
1160 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1161 	if (eis & EIS_QFS) {
1162 		ris2 = ravb_read(ndev, RIS2);
1163 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1164 			   RIS2);
1165 
1166 		/* Receive Descriptor Empty int */
1167 		if (ris2 & RIS2_QFF0)
1168 			priv->stats[RAVB_BE].rx_over_errors++;
1169 
1170 		/* Receive Descriptor Empty int */
1171 		if (ris2 & RIS2_QFF1)
1172 			priv->stats[RAVB_NC].rx_over_errors++;
1173 
1174 		/* Receive FIFO Overflow int */
1175 		if (ris2 & RIS2_RFFF)
1176 			priv->rx_fifo_errors++;
1177 	}
1178 }
1179 
1180 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1181 {
1182 	struct ravb_private *priv = netdev_priv(ndev);
1183 	const struct ravb_hw_info *info = priv->info;
1184 	u32 ris0 = ravb_read(ndev, RIS0);
1185 	u32 ric0 = ravb_read(ndev, RIC0);
1186 	u32 tis  = ravb_read(ndev, TIS);
1187 	u32 tic  = ravb_read(ndev, TIC);
1188 
1189 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1190 		if (napi_schedule_prep(&priv->napi[q])) {
1191 			/* Mask RX and TX interrupts */
1192 			if (!info->irq_en_dis) {
1193 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1194 				ravb_write(ndev, tic & ~BIT(q), TIC);
1195 			} else {
1196 				ravb_write(ndev, BIT(q), RID0);
1197 				ravb_write(ndev, BIT(q), TID);
1198 			}
1199 			__napi_schedule(&priv->napi[q]);
1200 		} else {
1201 			netdev_warn(ndev,
1202 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1203 				    ris0, ric0);
1204 			netdev_warn(ndev,
1205 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
1206 				    tis, tic);
1207 		}
1208 		return true;
1209 	}
1210 	return false;
1211 }
1212 
1213 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1214 {
1215 	u32 tis = ravb_read(ndev, TIS);
1216 
1217 	if (tis & TIS_TFUF) {
1218 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1219 		ravb_get_tx_tstamp(ndev);
1220 		return true;
1221 	}
1222 	return false;
1223 }
1224 
1225 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1226 {
1227 	struct net_device *ndev = dev_id;
1228 	struct ravb_private *priv = netdev_priv(ndev);
1229 	const struct ravb_hw_info *info = priv->info;
1230 	struct device *dev = &priv->pdev->dev;
1231 	irqreturn_t result = IRQ_NONE;
1232 	u32 iss;
1233 
1234 	pm_runtime_get_noresume(dev);
1235 
1236 	if (unlikely(!pm_runtime_active(dev)))
1237 		goto out_rpm_put;
1238 
1239 	spin_lock(&priv->lock);
1240 	/* Get interrupt status */
1241 	iss = ravb_read(ndev, ISS);
1242 
1243 	/* Received and transmitted interrupts */
1244 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1245 		int q;
1246 
1247 		/* Timestamp updated */
1248 		if (ravb_timestamp_interrupt(ndev))
1249 			result = IRQ_HANDLED;
1250 
1251 		/* Network control and best effort queue RX/TX */
1252 		if (info->nc_queues) {
1253 			for (q = RAVB_NC; q >= RAVB_BE; q--) {
1254 				if (ravb_queue_interrupt(ndev, q))
1255 					result = IRQ_HANDLED;
1256 			}
1257 		} else {
1258 			if (ravb_queue_interrupt(ndev, RAVB_BE))
1259 				result = IRQ_HANDLED;
1260 		}
1261 	}
1262 
1263 	/* E-MAC status summary */
1264 	if (iss & ISS_MS) {
1265 		ravb_emac_interrupt_unlocked(ndev);
1266 		result = IRQ_HANDLED;
1267 	}
1268 
1269 	/* Error status summary */
1270 	if (iss & ISS_ES) {
1271 		ravb_error_interrupt(ndev);
1272 		result = IRQ_HANDLED;
1273 	}
1274 
1275 	/* gPTP interrupt status summary */
1276 	if (iss & ISS_CGIS) {
1277 		ravb_ptp_interrupt(ndev);
1278 		result = IRQ_HANDLED;
1279 	}
1280 
1281 	spin_unlock(&priv->lock);
1282 
1283 out_rpm_put:
1284 	pm_runtime_put_noidle(dev);
1285 	return result;
1286 }
1287 
1288 /* Timestamp/Error/gPTP interrupt handler */
1289 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1290 {
1291 	struct net_device *ndev = dev_id;
1292 	struct ravb_private *priv = netdev_priv(ndev);
1293 	struct device *dev = &priv->pdev->dev;
1294 	irqreturn_t result = IRQ_NONE;
1295 	u32 iss;
1296 
1297 	pm_runtime_get_noresume(dev);
1298 
1299 	if (unlikely(!pm_runtime_active(dev)))
1300 		goto out_rpm_put;
1301 
1302 	spin_lock(&priv->lock);
1303 	/* Get interrupt status */
1304 	iss = ravb_read(ndev, ISS);
1305 
1306 	/* Timestamp updated */
1307 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1308 		result = IRQ_HANDLED;
1309 
1310 	/* Error status summary */
1311 	if (iss & ISS_ES) {
1312 		ravb_error_interrupt(ndev);
1313 		result = IRQ_HANDLED;
1314 	}
1315 
1316 	/* gPTP interrupt status summary */
1317 	if (iss & ISS_CGIS) {
1318 		ravb_ptp_interrupt(ndev);
1319 		result = IRQ_HANDLED;
1320 	}
1321 
1322 	spin_unlock(&priv->lock);
1323 
1324 out_rpm_put:
1325 	pm_runtime_put_noidle(dev);
1326 	return result;
1327 }
1328 
1329 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1330 {
1331 	struct net_device *ndev = dev_id;
1332 	struct ravb_private *priv = netdev_priv(ndev);
1333 	struct device *dev = &priv->pdev->dev;
1334 	irqreturn_t result = IRQ_NONE;
1335 
1336 	pm_runtime_get_noresume(dev);
1337 
1338 	if (unlikely(!pm_runtime_active(dev)))
1339 		goto out_rpm_put;
1340 
1341 	spin_lock(&priv->lock);
1342 
1343 	/* Network control/Best effort queue RX/TX */
1344 	if (ravb_queue_interrupt(ndev, q))
1345 		result = IRQ_HANDLED;
1346 
1347 	spin_unlock(&priv->lock);
1348 
1349 out_rpm_put:
1350 	pm_runtime_put_noidle(dev);
1351 	return result;
1352 }
1353 
1354 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1355 {
1356 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1357 }
1358 
1359 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1360 {
1361 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1362 }
1363 
1364 static int ravb_poll(struct napi_struct *napi, int budget)
1365 {
1366 	struct net_device *ndev = napi->dev;
1367 	struct ravb_private *priv = netdev_priv(ndev);
1368 	const struct ravb_hw_info *info = priv->info;
1369 	unsigned long flags;
1370 	int q = napi - priv->napi;
1371 	int mask = BIT(q);
1372 	int work_done;
1373 
1374 	/* Processing RX Descriptor Ring */
1375 	/* Clear RX interrupt */
1376 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1377 	work_done = ravb_rx(ndev, budget, q);
1378 
1379 	/* Processing TX Descriptor Ring */
1380 	spin_lock_irqsave(&priv->lock, flags);
1381 	/* Clear TX interrupt */
1382 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1383 	ravb_tx_free(ndev, q, true);
1384 	netif_wake_subqueue(ndev, q);
1385 	spin_unlock_irqrestore(&priv->lock, flags);
1386 
1387 	/* Receive error message handling */
1388 	priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
1389 	if (info->nc_queues)
1390 		priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1391 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1392 		ndev->stats.rx_over_errors = priv->rx_over_errors;
1393 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1394 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1395 
1396 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1397 		/* Re-enable RX/TX interrupts */
1398 		spin_lock_irqsave(&priv->lock, flags);
1399 		if (!info->irq_en_dis) {
1400 			ravb_modify(ndev, RIC0, mask, mask);
1401 			ravb_modify(ndev, TIC,  mask, mask);
1402 		} else {
1403 			ravb_write(ndev, mask, RIE0);
1404 			ravb_write(ndev, mask, TIE);
1405 		}
1406 		spin_unlock_irqrestore(&priv->lock, flags);
1407 	}
1408 
1409 	return work_done;
1410 }
1411 
1412 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1413 {
1414 	struct ravb_private *priv = netdev_priv(ndev);
1415 
1416 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1417 }
1418 
1419 /* PHY state control function */
1420 static void ravb_adjust_link(struct net_device *ndev)
1421 {
1422 	struct ravb_private *priv = netdev_priv(ndev);
1423 	const struct ravb_hw_info *info = priv->info;
1424 	struct phy_device *phydev = ndev->phydev;
1425 	bool new_state = false;
1426 	unsigned long flags;
1427 
1428 	spin_lock_irqsave(&priv->lock, flags);
1429 
1430 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1431 	if (priv->no_avb_link)
1432 		ravb_rcv_snd_disable(ndev);
1433 
1434 	if (phydev->link) {
1435 		if (info->half_duplex && phydev->duplex != priv->duplex) {
1436 			new_state = true;
1437 			priv->duplex = phydev->duplex;
1438 			ravb_set_duplex_gbeth(ndev);
1439 		}
1440 
1441 		if (phydev->speed != priv->speed) {
1442 			new_state = true;
1443 			priv->speed = phydev->speed;
1444 			info->set_rate(ndev);
1445 		}
1446 		if (!priv->link) {
1447 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1448 			new_state = true;
1449 			priv->link = phydev->link;
1450 		}
1451 	} else if (priv->link) {
1452 		new_state = true;
1453 		priv->link = 0;
1454 		priv->speed = 0;
1455 		if (info->half_duplex)
1456 			priv->duplex = -1;
1457 	}
1458 
1459 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1460 	if (priv->no_avb_link && phydev->link)
1461 		ravb_rcv_snd_enable(ndev);
1462 
1463 	spin_unlock_irqrestore(&priv->lock, flags);
1464 
1465 	if (new_state && netif_msg_link(priv))
1466 		phy_print_status(phydev);
1467 }
1468 
1469 /* PHY init function */
1470 static int ravb_phy_init(struct net_device *ndev)
1471 {
1472 	struct device_node *np = ndev->dev.parent->of_node;
1473 	struct ravb_private *priv = netdev_priv(ndev);
1474 	const struct ravb_hw_info *info = priv->info;
1475 	struct phy_device *phydev;
1476 	struct device_node *pn;
1477 	phy_interface_t iface;
1478 	int err;
1479 
1480 	priv->link = 0;
1481 	priv->speed = 0;
1482 	priv->duplex = -1;
1483 
1484 	/* Try connecting to PHY */
1485 	pn = of_parse_phandle(np, "phy-handle", 0);
1486 	if (!pn) {
1487 		/* In the case of a fixed PHY, the DT node associated
1488 		 * to the PHY is the Ethernet MAC DT node.
1489 		 */
1490 		if (of_phy_is_fixed_link(np)) {
1491 			err = of_phy_register_fixed_link(np);
1492 			if (err)
1493 				return err;
1494 		}
1495 		pn = of_node_get(np);
1496 	}
1497 
1498 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1499 				     : priv->phy_interface;
1500 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1501 	of_node_put(pn);
1502 	if (!phydev) {
1503 		netdev_err(ndev, "failed to connect PHY\n");
1504 		err = -ENOENT;
1505 		goto err_deregister_fixed_link;
1506 	}
1507 
1508 	if (!info->half_duplex) {
1509 		/* 10BASE, Pause and Asym Pause is not supported */
1510 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1511 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1512 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1513 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1514 
1515 		/* Half Duplex is not supported */
1516 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1517 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1518 	}
1519 
1520 	phy_attached_info(phydev);
1521 
1522 	return 0;
1523 
1524 err_deregister_fixed_link:
1525 	if (of_phy_is_fixed_link(np))
1526 		of_phy_deregister_fixed_link(np);
1527 
1528 	return err;
1529 }
1530 
1531 /* PHY control start function */
1532 static int ravb_phy_start(struct net_device *ndev)
1533 {
1534 	int error;
1535 
1536 	error = ravb_phy_init(ndev);
1537 	if (error)
1538 		return error;
1539 
1540 	phy_start(ndev->phydev);
1541 
1542 	return 0;
1543 }
1544 
1545 static u32 ravb_get_msglevel(struct net_device *ndev)
1546 {
1547 	struct ravb_private *priv = netdev_priv(ndev);
1548 
1549 	return priv->msg_enable;
1550 }
1551 
1552 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1553 {
1554 	struct ravb_private *priv = netdev_priv(ndev);
1555 
1556 	priv->msg_enable = value;
1557 }
1558 
1559 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1560 	"rx_queue_0_current",
1561 	"tx_queue_0_current",
1562 	"rx_queue_0_dirty",
1563 	"tx_queue_0_dirty",
1564 	"rx_queue_0_packets",
1565 	"tx_queue_0_packets",
1566 	"rx_queue_0_bytes",
1567 	"tx_queue_0_bytes",
1568 	"rx_queue_0_mcast_packets",
1569 	"rx_queue_0_errors",
1570 	"rx_queue_0_crc_errors",
1571 	"rx_queue_0_frame_errors",
1572 	"rx_queue_0_length_errors",
1573 	"rx_queue_0_csum_offload_errors",
1574 	"rx_queue_0_over_errors",
1575 };
1576 
1577 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1578 	"rx_queue_0_current",
1579 	"tx_queue_0_current",
1580 	"rx_queue_0_dirty",
1581 	"tx_queue_0_dirty",
1582 	"rx_queue_0_packets",
1583 	"tx_queue_0_packets",
1584 	"rx_queue_0_bytes",
1585 	"tx_queue_0_bytes",
1586 	"rx_queue_0_mcast_packets",
1587 	"rx_queue_0_errors",
1588 	"rx_queue_0_crc_errors",
1589 	"rx_queue_0_frame_errors",
1590 	"rx_queue_0_length_errors",
1591 	"rx_queue_0_missed_errors",
1592 	"rx_queue_0_over_errors",
1593 
1594 	"rx_queue_1_current",
1595 	"tx_queue_1_current",
1596 	"rx_queue_1_dirty",
1597 	"tx_queue_1_dirty",
1598 	"rx_queue_1_packets",
1599 	"tx_queue_1_packets",
1600 	"rx_queue_1_bytes",
1601 	"tx_queue_1_bytes",
1602 	"rx_queue_1_mcast_packets",
1603 	"rx_queue_1_errors",
1604 	"rx_queue_1_crc_errors",
1605 	"rx_queue_1_frame_errors",
1606 	"rx_queue_1_length_errors",
1607 	"rx_queue_1_missed_errors",
1608 	"rx_queue_1_over_errors",
1609 };
1610 
1611 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1612 {
1613 	struct ravb_private *priv = netdev_priv(netdev);
1614 	const struct ravb_hw_info *info = priv->info;
1615 
1616 	switch (sset) {
1617 	case ETH_SS_STATS:
1618 		return info->stats_len;
1619 	default:
1620 		return -EOPNOTSUPP;
1621 	}
1622 }
1623 
1624 static void ravb_get_ethtool_stats(struct net_device *ndev,
1625 				   struct ethtool_stats *estats, u64 *data)
1626 {
1627 	struct ravb_private *priv = netdev_priv(ndev);
1628 	const struct ravb_hw_info *info = priv->info;
1629 	int num_rx_q;
1630 	int i = 0;
1631 	int q;
1632 
1633 	num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1634 	/* Device-specific stats */
1635 	for (q = RAVB_BE; q < num_rx_q; q++) {
1636 		struct net_device_stats *stats = &priv->stats[q];
1637 
1638 		data[i++] = priv->cur_rx[q];
1639 		data[i++] = priv->cur_tx[q];
1640 		data[i++] = priv->dirty_rx[q];
1641 		data[i++] = priv->dirty_tx[q];
1642 		data[i++] = stats->rx_packets;
1643 		data[i++] = stats->tx_packets;
1644 		data[i++] = stats->rx_bytes;
1645 		data[i++] = stats->tx_bytes;
1646 		data[i++] = stats->multicast;
1647 		data[i++] = stats->rx_errors;
1648 		data[i++] = stats->rx_crc_errors;
1649 		data[i++] = stats->rx_frame_errors;
1650 		data[i++] = stats->rx_length_errors;
1651 		data[i++] = stats->rx_missed_errors;
1652 		data[i++] = stats->rx_over_errors;
1653 	}
1654 }
1655 
1656 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1657 {
1658 	struct ravb_private *priv = netdev_priv(ndev);
1659 	const struct ravb_hw_info *info = priv->info;
1660 
1661 	switch (stringset) {
1662 	case ETH_SS_STATS:
1663 		memcpy(data, info->gstrings_stats, info->gstrings_size);
1664 		break;
1665 	}
1666 }
1667 
1668 static void ravb_get_ringparam(struct net_device *ndev,
1669 			       struct ethtool_ringparam *ring,
1670 			       struct kernel_ethtool_ringparam *kernel_ring,
1671 			       struct netlink_ext_ack *extack)
1672 {
1673 	struct ravb_private *priv = netdev_priv(ndev);
1674 
1675 	ring->rx_max_pending = BE_RX_RING_MAX;
1676 	ring->tx_max_pending = BE_TX_RING_MAX;
1677 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1678 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1679 }
1680 
1681 static int ravb_set_ringparam(struct net_device *ndev,
1682 			      struct ethtool_ringparam *ring,
1683 			      struct kernel_ethtool_ringparam *kernel_ring,
1684 			      struct netlink_ext_ack *extack)
1685 {
1686 	struct ravb_private *priv = netdev_priv(ndev);
1687 	const struct ravb_hw_info *info = priv->info;
1688 	int error;
1689 
1690 	if (ring->tx_pending > BE_TX_RING_MAX ||
1691 	    ring->rx_pending > BE_RX_RING_MAX ||
1692 	    ring->tx_pending < BE_TX_RING_MIN ||
1693 	    ring->rx_pending < BE_RX_RING_MIN)
1694 		return -EINVAL;
1695 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1696 		return -EINVAL;
1697 
1698 	if (netif_running(ndev)) {
1699 		netif_device_detach(ndev);
1700 		/* Stop PTP Clock driver */
1701 		if (info->gptp)
1702 			ravb_ptp_stop(ndev);
1703 		/* Wait for DMA stopping */
1704 		error = ravb_stop_dma(ndev);
1705 		if (error) {
1706 			netdev_err(ndev,
1707 				   "cannot set ringparam! Any AVB processes are still running?\n");
1708 			return error;
1709 		}
1710 		synchronize_irq(ndev->irq);
1711 
1712 		/* Free all the skb's in the RX queue and the DMA buffers. */
1713 		ravb_ring_free(ndev, RAVB_BE);
1714 		if (info->nc_queues)
1715 			ravb_ring_free(ndev, RAVB_NC);
1716 	}
1717 
1718 	/* Set new parameters */
1719 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1720 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1721 
1722 	if (netif_running(ndev)) {
1723 		error = ravb_dmac_init(ndev);
1724 		if (error) {
1725 			netdev_err(ndev,
1726 				   "%s: ravb_dmac_init() failed, error %d\n",
1727 				   __func__, error);
1728 			return error;
1729 		}
1730 
1731 		ravb_emac_init(ndev);
1732 
1733 		/* Initialise PTP Clock driver */
1734 		if (info->gptp)
1735 			ravb_ptp_init(ndev, priv->pdev);
1736 
1737 		netif_device_attach(ndev);
1738 	}
1739 
1740 	return 0;
1741 }
1742 
1743 static int ravb_get_ts_info(struct net_device *ndev,
1744 			    struct kernel_ethtool_ts_info *info)
1745 {
1746 	struct ravb_private *priv = netdev_priv(ndev);
1747 	const struct ravb_hw_info *hw_info = priv->info;
1748 
1749 	if (hw_info->gptp || hw_info->ccc_gac) {
1750 		info->so_timestamping =
1751 			SOF_TIMESTAMPING_TX_SOFTWARE |
1752 			SOF_TIMESTAMPING_TX_HARDWARE |
1753 			SOF_TIMESTAMPING_RX_HARDWARE |
1754 			SOF_TIMESTAMPING_RAW_HARDWARE;
1755 		info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1756 		info->rx_filters =
1757 			(1 << HWTSTAMP_FILTER_NONE) |
1758 			(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1759 			(1 << HWTSTAMP_FILTER_ALL);
1760 		info->phc_index = ptp_clock_index(priv->ptp.clock);
1761 	}
1762 
1763 	return 0;
1764 }
1765 
1766 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1767 {
1768 	struct ravb_private *priv = netdev_priv(ndev);
1769 
1770 	wol->supported = WAKE_MAGIC;
1771 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1772 }
1773 
1774 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1775 {
1776 	struct ravb_private *priv = netdev_priv(ndev);
1777 	const struct ravb_hw_info *info = priv->info;
1778 
1779 	if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1780 		return -EOPNOTSUPP;
1781 
1782 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1783 
1784 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1785 
1786 	return 0;
1787 }
1788 
1789 static const struct ethtool_ops ravb_ethtool_ops = {
1790 	.nway_reset		= phy_ethtool_nway_reset,
1791 	.get_msglevel		= ravb_get_msglevel,
1792 	.set_msglevel		= ravb_set_msglevel,
1793 	.get_link		= ethtool_op_get_link,
1794 	.get_strings		= ravb_get_strings,
1795 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1796 	.get_sset_count		= ravb_get_sset_count,
1797 	.get_ringparam		= ravb_get_ringparam,
1798 	.set_ringparam		= ravb_set_ringparam,
1799 	.get_ts_info		= ravb_get_ts_info,
1800 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1801 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1802 	.get_wol		= ravb_get_wol,
1803 	.set_wol		= ravb_set_wol,
1804 };
1805 
1806 static int ravb_set_config_mode(struct net_device *ndev)
1807 {
1808 	struct ravb_private *priv = netdev_priv(ndev);
1809 	const struct ravb_hw_info *info = priv->info;
1810 	int error;
1811 
1812 	if (info->gptp) {
1813 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1814 		if (error)
1815 			return error;
1816 		/* Set CSEL value */
1817 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1818 	} else if (info->ccc_gac) {
1819 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1820 	} else {
1821 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1822 	}
1823 
1824 	return error;
1825 }
1826 
1827 static void ravb_set_gti(struct net_device *ndev)
1828 {
1829 	struct ravb_private *priv = netdev_priv(ndev);
1830 	const struct ravb_hw_info *info = priv->info;
1831 
1832 	if (!(info->gptp || info->ccc_gac))
1833 		return;
1834 
1835 	ravb_write(ndev, priv->gti_tiv, GTI);
1836 
1837 	/* Request GTI loading */
1838 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1839 }
1840 
1841 static int ravb_compute_gti(struct net_device *ndev)
1842 {
1843 	struct ravb_private *priv = netdev_priv(ndev);
1844 	const struct ravb_hw_info *info = priv->info;
1845 	struct device *dev = ndev->dev.parent;
1846 	unsigned long rate;
1847 	u64 inc;
1848 
1849 	if (!(info->gptp || info->ccc_gac))
1850 		return 0;
1851 
1852 	if (info->gptp_ref_clk)
1853 		rate = clk_get_rate(priv->gptp_clk);
1854 	else
1855 		rate = clk_get_rate(priv->clk);
1856 	if (!rate)
1857 		return -EINVAL;
1858 
1859 	inc = div64_ul(1000000000ULL << 20, rate);
1860 
1861 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1862 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1863 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1864 		return -EINVAL;
1865 	}
1866 	priv->gti_tiv = inc;
1867 
1868 	return 0;
1869 }
1870 
1871 /* Set tx and rx clock internal delay modes */
1872 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1873 {
1874 	struct ravb_private *priv = netdev_priv(ndev);
1875 	bool explicit_delay = false;
1876 	u32 delay;
1877 
1878 	if (!priv->info->internal_delay)
1879 		return;
1880 
1881 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1882 		/* Valid values are 0 and 1800, according to DT bindings */
1883 		priv->rxcidm = !!delay;
1884 		explicit_delay = true;
1885 	}
1886 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1887 		/* Valid values are 0 and 2000, according to DT bindings */
1888 		priv->txcidm = !!delay;
1889 		explicit_delay = true;
1890 	}
1891 
1892 	if (explicit_delay)
1893 		return;
1894 
1895 	/* Fall back to legacy rgmii-*id behavior */
1896 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1897 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1898 		priv->rxcidm = 1;
1899 		priv->rgmii_override = 1;
1900 	}
1901 
1902 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1903 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1904 		priv->txcidm = 1;
1905 		priv->rgmii_override = 1;
1906 	}
1907 }
1908 
1909 static void ravb_set_delay_mode(struct net_device *ndev)
1910 {
1911 	struct ravb_private *priv = netdev_priv(ndev);
1912 	u32 set = 0;
1913 
1914 	if (!priv->info->internal_delay)
1915 		return;
1916 
1917 	if (priv->rxcidm)
1918 		set |= APSR_RDM;
1919 	if (priv->txcidm)
1920 		set |= APSR_TDM;
1921 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
1922 }
1923 
1924 /* Network device open function for Ethernet AVB */
1925 static int ravb_open(struct net_device *ndev)
1926 {
1927 	struct ravb_private *priv = netdev_priv(ndev);
1928 	const struct ravb_hw_info *info = priv->info;
1929 	struct device *dev = &priv->pdev->dev;
1930 	int error;
1931 
1932 	napi_enable(&priv->napi[RAVB_BE]);
1933 	if (info->nc_queues)
1934 		napi_enable(&priv->napi[RAVB_NC]);
1935 
1936 	error = pm_runtime_resume_and_get(dev);
1937 	if (error < 0)
1938 		goto out_napi_off;
1939 
1940 	/* Set AVB config mode */
1941 	error = ravb_set_config_mode(ndev);
1942 	if (error)
1943 		goto out_rpm_put;
1944 
1945 	ravb_set_delay_mode(ndev);
1946 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
1947 
1948 	/* Device init */
1949 	error = ravb_dmac_init(ndev);
1950 	if (error)
1951 		goto out_set_reset;
1952 
1953 	ravb_emac_init(ndev);
1954 
1955 	ravb_set_gti(ndev);
1956 
1957 	/* Initialise PTP Clock driver */
1958 	if (info->gptp || info->ccc_gac)
1959 		ravb_ptp_init(ndev, priv->pdev);
1960 
1961 	/* PHY control start */
1962 	error = ravb_phy_start(ndev);
1963 	if (error)
1964 		goto out_ptp_stop;
1965 
1966 	netif_tx_start_all_queues(ndev);
1967 
1968 	return 0;
1969 
1970 out_ptp_stop:
1971 	/* Stop PTP Clock driver */
1972 	if (info->gptp || info->ccc_gac)
1973 		ravb_ptp_stop(ndev);
1974 	ravb_stop_dma(ndev);
1975 out_set_reset:
1976 	ravb_set_opmode(ndev, CCC_OPC_RESET);
1977 out_rpm_put:
1978 	pm_runtime_mark_last_busy(dev);
1979 	pm_runtime_put_autosuspend(dev);
1980 out_napi_off:
1981 	if (info->nc_queues)
1982 		napi_disable(&priv->napi[RAVB_NC]);
1983 	napi_disable(&priv->napi[RAVB_BE]);
1984 	return error;
1985 }
1986 
1987 /* Timeout function for Ethernet AVB */
1988 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1989 {
1990 	struct ravb_private *priv = netdev_priv(ndev);
1991 
1992 	netif_err(priv, tx_err, ndev,
1993 		  "transmit timed out, status %08x, resetting...\n",
1994 		  ravb_read(ndev, ISS));
1995 
1996 	/* tx_errors count up */
1997 	ndev->stats.tx_errors++;
1998 
1999 	schedule_work(&priv->work);
2000 }
2001 
2002 static void ravb_tx_timeout_work(struct work_struct *work)
2003 {
2004 	struct ravb_private *priv = container_of(work, struct ravb_private,
2005 						 work);
2006 	const struct ravb_hw_info *info = priv->info;
2007 	struct net_device *ndev = priv->ndev;
2008 	int error;
2009 
2010 	if (!rtnl_trylock()) {
2011 		usleep_range(1000, 2000);
2012 		schedule_work(&priv->work);
2013 		return;
2014 	}
2015 
2016 	netif_tx_stop_all_queues(ndev);
2017 
2018 	/* Stop PTP Clock driver */
2019 	if (info->gptp)
2020 		ravb_ptp_stop(ndev);
2021 
2022 	/* Wait for DMA stopping */
2023 	if (ravb_stop_dma(ndev)) {
2024 		/* If ravb_stop_dma() fails, the hardware is still operating
2025 		 * for TX and/or RX. So, this should not call the following
2026 		 * functions because ravb_dmac_init() is possible to fail too.
2027 		 * Also, this should not retry ravb_stop_dma() again and again
2028 		 * here because it's possible to wait forever. So, this just
2029 		 * re-enables the TX and RX and skip the following
2030 		 * re-initialization procedure.
2031 		 */
2032 		ravb_rcv_snd_enable(ndev);
2033 		goto out;
2034 	}
2035 
2036 	ravb_ring_free(ndev, RAVB_BE);
2037 	if (info->nc_queues)
2038 		ravb_ring_free(ndev, RAVB_NC);
2039 
2040 	/* Device init */
2041 	error = ravb_dmac_init(ndev);
2042 	if (error) {
2043 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
2044 		 * should return here to avoid re-enabling the TX and RX in
2045 		 * ravb_emac_init().
2046 		 */
2047 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
2048 			   __func__, error);
2049 		goto out_unlock;
2050 	}
2051 	ravb_emac_init(ndev);
2052 
2053 out:
2054 	/* Initialise PTP Clock driver */
2055 	if (info->gptp)
2056 		ravb_ptp_init(ndev, priv->pdev);
2057 
2058 	netif_tx_start_all_queues(ndev);
2059 
2060 out_unlock:
2061 	rtnl_unlock();
2062 }
2063 
2064 static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2065 {
2066 	u16 net_protocol = ntohs(skb->protocol);
2067 	u8 inner_protocol;
2068 
2069 	/* GbEth IP can calculate the checksum if:
2070 	 * - there are zero or one VLAN headers with TPID=0x8100
2071 	 * - the network protocol is IPv4 or IPv6
2072 	 * - the transport protocol is TCP, UDP or ICMP
2073 	 * - the packet is not fragmented
2074 	 */
2075 
2076 	if (net_protocol == ETH_P_8021Q) {
2077 		struct vlan_hdr vhdr, *vh;
2078 
2079 		vh = skb_header_pointer(skb, ETH_HLEN, sizeof(vhdr), &vhdr);
2080 		if (!vh)
2081 			return false;
2082 
2083 		net_protocol = ntohs(vh->h_vlan_encapsulated_proto);
2084 	}
2085 
2086 	switch (net_protocol) {
2087 	case ETH_P_IP:
2088 		inner_protocol = ip_hdr(skb)->protocol;
2089 		break;
2090 	case ETH_P_IPV6:
2091 		inner_protocol = ipv6_hdr(skb)->nexthdr;
2092 		break;
2093 	default:
2094 		return false;
2095 	}
2096 
2097 	switch (inner_protocol) {
2098 	case IPPROTO_TCP:
2099 	case IPPROTO_UDP:
2100 		return true;
2101 	default:
2102 		return false;
2103 	}
2104 }
2105 
2106 /* Packet transmit function for Ethernet AVB */
2107 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2108 {
2109 	struct ravb_private *priv = netdev_priv(ndev);
2110 	const struct ravb_hw_info *info = priv->info;
2111 	unsigned int num_tx_desc = priv->num_tx_desc;
2112 	u16 q = skb_get_queue_mapping(skb);
2113 	struct ravb_tstamp_skb *ts_skb;
2114 	struct ravb_tx_desc *desc;
2115 	unsigned long flags;
2116 	dma_addr_t dma_addr;
2117 	void *buffer;
2118 	u32 entry;
2119 	u32 len;
2120 
2121 	if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2122 		skb_checksum_help(skb);
2123 
2124 	spin_lock_irqsave(&priv->lock, flags);
2125 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2126 	    num_tx_desc) {
2127 		netif_err(priv, tx_queued, ndev,
2128 			  "still transmitting with the full ring!\n");
2129 		netif_stop_subqueue(ndev, q);
2130 		spin_unlock_irqrestore(&priv->lock, flags);
2131 		return NETDEV_TX_BUSY;
2132 	}
2133 
2134 	if (skb_put_padto(skb, ETH_ZLEN))
2135 		goto exit;
2136 
2137 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2138 	priv->tx_skb[q][entry / num_tx_desc] = skb;
2139 
2140 	if (num_tx_desc > 1) {
2141 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2142 			 entry / num_tx_desc * DPTR_ALIGN;
2143 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2144 
2145 		/* Zero length DMA descriptors are problematic as they seem
2146 		 * to terminate DMA transfers. Avoid them by simply using a
2147 		 * length of DPTR_ALIGN (4) when skb data is aligned to
2148 		 * DPTR_ALIGN.
2149 		 *
2150 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
2151 		 * bytes of data by the call to skb_put_padto() above this
2152 		 * is safe with respect to both the length of the first DMA
2153 		 * descriptor (len) overflowing the available data and the
2154 		 * length of the second DMA descriptor (skb->len - len)
2155 		 * being negative.
2156 		 */
2157 		if (len == 0)
2158 			len = DPTR_ALIGN;
2159 
2160 		memcpy(buffer, skb->data, len);
2161 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2162 					  DMA_TO_DEVICE);
2163 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2164 			goto drop;
2165 
2166 		desc = &priv->tx_ring[q][entry];
2167 		desc->ds_tagl = cpu_to_le16(len);
2168 		desc->dptr = cpu_to_le32(dma_addr);
2169 
2170 		buffer = skb->data + len;
2171 		len = skb->len - len;
2172 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2173 					  DMA_TO_DEVICE);
2174 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2175 			goto unmap;
2176 
2177 		desc++;
2178 	} else {
2179 		desc = &priv->tx_ring[q][entry];
2180 		len = skb->len;
2181 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2182 					  DMA_TO_DEVICE);
2183 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2184 			goto drop;
2185 	}
2186 	desc->ds_tagl = cpu_to_le16(len);
2187 	desc->dptr = cpu_to_le32(dma_addr);
2188 
2189 	/* TX timestamp required */
2190 	if (info->gptp || info->ccc_gac) {
2191 		if (q == RAVB_NC) {
2192 			ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2193 			if (!ts_skb) {
2194 				if (num_tx_desc > 1) {
2195 					desc--;
2196 					dma_unmap_single(ndev->dev.parent, dma_addr,
2197 							 len, DMA_TO_DEVICE);
2198 				}
2199 				goto unmap;
2200 			}
2201 			ts_skb->skb = skb_get(skb);
2202 			ts_skb->tag = priv->ts_skb_tag++;
2203 			priv->ts_skb_tag &= 0x3ff;
2204 			list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2205 
2206 			/* TAG and timestamp required flag */
2207 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2208 			desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2209 			desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2210 		}
2211 
2212 		skb_tx_timestamp(skb);
2213 	}
2214 	/* Descriptor type must be set after all the above writes */
2215 	dma_wmb();
2216 	if (num_tx_desc > 1) {
2217 		desc->die_dt = DT_FEND;
2218 		desc--;
2219 		desc->die_dt = DT_FSTART;
2220 	} else {
2221 		desc->die_dt = DT_FSINGLE;
2222 	}
2223 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2224 
2225 	priv->cur_tx[q] += num_tx_desc;
2226 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
2227 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2228 	    !ravb_tx_free(ndev, q, true))
2229 		netif_stop_subqueue(ndev, q);
2230 
2231 exit:
2232 	spin_unlock_irqrestore(&priv->lock, flags);
2233 	return NETDEV_TX_OK;
2234 
2235 unmap:
2236 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2237 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2238 drop:
2239 	dev_kfree_skb_any(skb);
2240 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
2241 	goto exit;
2242 }
2243 
2244 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2245 			     struct net_device *sb_dev)
2246 {
2247 	/* If skb needs TX timestamp, it is handled in network control queue */
2248 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2249 							       RAVB_BE;
2250 
2251 }
2252 
2253 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2254 {
2255 	struct ravb_private *priv = netdev_priv(ndev);
2256 	const struct ravb_hw_info *info = priv->info;
2257 	struct net_device_stats *nstats, *stats0, *stats1;
2258 	struct device *dev = &priv->pdev->dev;
2259 
2260 	nstats = &ndev->stats;
2261 
2262 	pm_runtime_get_noresume(dev);
2263 
2264 	if (!pm_runtime_active(dev))
2265 		goto out_rpm_put;
2266 
2267 	stats0 = &priv->stats[RAVB_BE];
2268 
2269 	if (info->tx_counters) {
2270 		nstats->tx_dropped += ravb_read(ndev, TROCR);
2271 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
2272 	}
2273 
2274 	if (info->carrier_counters) {
2275 		nstats->collisions += ravb_read(ndev, CXR41);
2276 		ravb_write(ndev, 0, CXR41);	/* (write clear) */
2277 		nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2278 		ravb_write(ndev, 0, CXR42);	/* (write clear) */
2279 	}
2280 
2281 	nstats->rx_packets = stats0->rx_packets;
2282 	nstats->tx_packets = stats0->tx_packets;
2283 	nstats->rx_bytes = stats0->rx_bytes;
2284 	nstats->tx_bytes = stats0->tx_bytes;
2285 	nstats->multicast = stats0->multicast;
2286 	nstats->rx_errors = stats0->rx_errors;
2287 	nstats->rx_crc_errors = stats0->rx_crc_errors;
2288 	nstats->rx_frame_errors = stats0->rx_frame_errors;
2289 	nstats->rx_length_errors = stats0->rx_length_errors;
2290 	nstats->rx_missed_errors = stats0->rx_missed_errors;
2291 	nstats->rx_over_errors = stats0->rx_over_errors;
2292 	if (info->nc_queues) {
2293 		stats1 = &priv->stats[RAVB_NC];
2294 
2295 		nstats->rx_packets += stats1->rx_packets;
2296 		nstats->tx_packets += stats1->tx_packets;
2297 		nstats->rx_bytes += stats1->rx_bytes;
2298 		nstats->tx_bytes += stats1->tx_bytes;
2299 		nstats->multicast += stats1->multicast;
2300 		nstats->rx_errors += stats1->rx_errors;
2301 		nstats->rx_crc_errors += stats1->rx_crc_errors;
2302 		nstats->rx_frame_errors += stats1->rx_frame_errors;
2303 		nstats->rx_length_errors += stats1->rx_length_errors;
2304 		nstats->rx_missed_errors += stats1->rx_missed_errors;
2305 		nstats->rx_over_errors += stats1->rx_over_errors;
2306 	}
2307 
2308 out_rpm_put:
2309 	pm_runtime_put_noidle(dev);
2310 	return nstats;
2311 }
2312 
2313 /* Update promiscuous bit */
2314 static void ravb_set_rx_mode(struct net_device *ndev)
2315 {
2316 	struct ravb_private *priv = netdev_priv(ndev);
2317 	unsigned long flags;
2318 
2319 	spin_lock_irqsave(&priv->lock, flags);
2320 	ravb_modify(ndev, ECMR, ECMR_PRM,
2321 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2322 	spin_unlock_irqrestore(&priv->lock, flags);
2323 }
2324 
2325 /* Device close function for Ethernet AVB */
2326 static int ravb_close(struct net_device *ndev)
2327 {
2328 	struct device_node *np = ndev->dev.parent->of_node;
2329 	struct ravb_private *priv = netdev_priv(ndev);
2330 	const struct ravb_hw_info *info = priv->info;
2331 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2332 	struct device *dev = &priv->pdev->dev;
2333 	int error;
2334 
2335 	netif_tx_stop_all_queues(ndev);
2336 
2337 	/* Disable interrupts by clearing the interrupt masks. */
2338 	ravb_write(ndev, 0, RIC0);
2339 	ravb_write(ndev, 0, RIC2);
2340 	ravb_write(ndev, 0, TIC);
2341 
2342 	/* PHY disconnect */
2343 	if (ndev->phydev) {
2344 		phy_stop(ndev->phydev);
2345 		phy_disconnect(ndev->phydev);
2346 		if (of_phy_is_fixed_link(np))
2347 			of_phy_deregister_fixed_link(np);
2348 	}
2349 
2350 	/* Stop PTP Clock driver */
2351 	if (info->gptp || info->ccc_gac)
2352 		ravb_ptp_stop(ndev);
2353 
2354 	/* Set the config mode to stop the AVB-DMAC's processes */
2355 	if (ravb_stop_dma(ndev) < 0)
2356 		netdev_err(ndev,
2357 			   "device will be stopped after h/w processes are done.\n");
2358 
2359 	/* Clear the timestamp list */
2360 	if (info->gptp || info->ccc_gac) {
2361 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2362 			list_del(&ts_skb->list);
2363 			kfree_skb(ts_skb->skb);
2364 			kfree(ts_skb);
2365 		}
2366 	}
2367 
2368 	cancel_work_sync(&priv->work);
2369 
2370 	if (info->nc_queues)
2371 		napi_disable(&priv->napi[RAVB_NC]);
2372 	napi_disable(&priv->napi[RAVB_BE]);
2373 
2374 	/* Free all the skb's in the RX queue and the DMA buffers. */
2375 	ravb_ring_free(ndev, RAVB_BE);
2376 	if (info->nc_queues)
2377 		ravb_ring_free(ndev, RAVB_NC);
2378 
2379 	/* Update statistics. */
2380 	ravb_get_stats(ndev);
2381 
2382 	/* Set reset mode. */
2383 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2384 	if (error)
2385 		return error;
2386 
2387 	pm_runtime_mark_last_busy(dev);
2388 	pm_runtime_put_autosuspend(dev);
2389 
2390 	return 0;
2391 }
2392 
2393 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2394 {
2395 	struct ravb_private *priv = netdev_priv(ndev);
2396 	struct hwtstamp_config config;
2397 
2398 	config.flags = 0;
2399 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2400 						HWTSTAMP_TX_OFF;
2401 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2402 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2403 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2404 		break;
2405 	case RAVB_RXTSTAMP_TYPE_ALL:
2406 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2407 		break;
2408 	default:
2409 		config.rx_filter = HWTSTAMP_FILTER_NONE;
2410 	}
2411 
2412 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2413 		-EFAULT : 0;
2414 }
2415 
2416 /* Control hardware time stamping */
2417 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2418 {
2419 	struct ravb_private *priv = netdev_priv(ndev);
2420 	struct hwtstamp_config config;
2421 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2422 	u32 tstamp_tx_ctrl;
2423 
2424 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2425 		return -EFAULT;
2426 
2427 	switch (config.tx_type) {
2428 	case HWTSTAMP_TX_OFF:
2429 		tstamp_tx_ctrl = 0;
2430 		break;
2431 	case HWTSTAMP_TX_ON:
2432 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2433 		break;
2434 	default:
2435 		return -ERANGE;
2436 	}
2437 
2438 	switch (config.rx_filter) {
2439 	case HWTSTAMP_FILTER_NONE:
2440 		tstamp_rx_ctrl = 0;
2441 		break;
2442 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2443 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2444 		break;
2445 	default:
2446 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2447 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2448 	}
2449 
2450 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2451 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2452 
2453 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2454 		-EFAULT : 0;
2455 }
2456 
2457 /* ioctl to device function */
2458 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2459 {
2460 	struct phy_device *phydev = ndev->phydev;
2461 
2462 	if (!netif_running(ndev))
2463 		return -EINVAL;
2464 
2465 	if (!phydev)
2466 		return -ENODEV;
2467 
2468 	switch (cmd) {
2469 	case SIOCGHWTSTAMP:
2470 		return ravb_hwtstamp_get(ndev, req);
2471 	case SIOCSHWTSTAMP:
2472 		return ravb_hwtstamp_set(ndev, req);
2473 	}
2474 
2475 	return phy_mii_ioctl(phydev, req, cmd);
2476 }
2477 
2478 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2479 {
2480 	struct ravb_private *priv = netdev_priv(ndev);
2481 
2482 	WRITE_ONCE(ndev->mtu, new_mtu);
2483 
2484 	if (netif_running(ndev)) {
2485 		synchronize_irq(priv->emac_irq);
2486 		ravb_emac_init(ndev);
2487 	}
2488 
2489 	netdev_update_features(ndev);
2490 
2491 	return 0;
2492 }
2493 
2494 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2495 {
2496 	struct ravb_private *priv = netdev_priv(ndev);
2497 	unsigned long flags;
2498 
2499 	spin_lock_irqsave(&priv->lock, flags);
2500 
2501 	/* Disable TX and RX */
2502 	ravb_rcv_snd_disable(ndev);
2503 
2504 	/* Modify RX Checksum setting */
2505 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2506 
2507 	/* Enable TX and RX */
2508 	ravb_rcv_snd_enable(ndev);
2509 
2510 	spin_unlock_irqrestore(&priv->lock, flags);
2511 }
2512 
2513 static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2514 				     u32 val, u32 mask)
2515 {
2516 	u32 csr0 = CSR0_TPE | CSR0_RPE;
2517 	int ret;
2518 
2519 	ravb_write(ndev, csr0 & ~mask, CSR0);
2520 	ret = ravb_wait(ndev, CSR0, mask, 0);
2521 	if (!ret)
2522 		ravb_write(ndev, val, reg);
2523 
2524 	ravb_write(ndev, csr0, CSR0);
2525 
2526 	return ret;
2527 }
2528 
2529 static int ravb_set_features_gbeth(struct net_device *ndev,
2530 				   netdev_features_t features)
2531 {
2532 	netdev_features_t changed = ndev->features ^ features;
2533 	struct ravb_private *priv = netdev_priv(ndev);
2534 	unsigned long flags;
2535 	int ret = 0;
2536 	u32 val;
2537 
2538 	spin_lock_irqsave(&priv->lock, flags);
2539 	if (changed & NETIF_F_RXCSUM) {
2540 		if (features & NETIF_F_RXCSUM)
2541 			val = CSR2_CSUM_ENABLE;
2542 		else
2543 			val = 0;
2544 
2545 		ret = ravb_endisable_csum_gbeth(ndev, CSR2, val, CSR0_RPE);
2546 		if (ret)
2547 			goto done;
2548 	}
2549 
2550 	if (changed & NETIF_F_HW_CSUM) {
2551 		if (features & NETIF_F_HW_CSUM)
2552 			val = CSR1_CSUM_ENABLE;
2553 		else
2554 			val = 0;
2555 
2556 		ret = ravb_endisable_csum_gbeth(ndev, CSR1, val, CSR0_TPE);
2557 		if (ret)
2558 			goto done;
2559 	}
2560 
2561 done:
2562 	spin_unlock_irqrestore(&priv->lock, flags);
2563 
2564 	return ret;
2565 }
2566 
2567 static int ravb_set_features_rcar(struct net_device *ndev,
2568 				  netdev_features_t features)
2569 {
2570 	netdev_features_t changed = ndev->features ^ features;
2571 
2572 	if (changed & NETIF_F_RXCSUM)
2573 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2574 
2575 	return 0;
2576 }
2577 
2578 static int ravb_set_features(struct net_device *ndev,
2579 			     netdev_features_t features)
2580 {
2581 	struct ravb_private *priv = netdev_priv(ndev);
2582 	const struct ravb_hw_info *info = priv->info;
2583 	struct device *dev = &priv->pdev->dev;
2584 	int ret;
2585 
2586 	pm_runtime_get_noresume(dev);
2587 
2588 	if (pm_runtime_active(dev))
2589 		ret = info->set_feature(ndev, features);
2590 	else
2591 		ret = 0;
2592 
2593 	pm_runtime_put_noidle(dev);
2594 
2595 	if (ret)
2596 		return ret;
2597 
2598 	ndev->features = features;
2599 
2600 	return 0;
2601 }
2602 
2603 static const struct net_device_ops ravb_netdev_ops = {
2604 	.ndo_open		= ravb_open,
2605 	.ndo_stop		= ravb_close,
2606 	.ndo_start_xmit		= ravb_start_xmit,
2607 	.ndo_select_queue	= ravb_select_queue,
2608 	.ndo_get_stats		= ravb_get_stats,
2609 	.ndo_set_rx_mode	= ravb_set_rx_mode,
2610 	.ndo_tx_timeout		= ravb_tx_timeout,
2611 	.ndo_eth_ioctl		= ravb_do_ioctl,
2612 	.ndo_change_mtu		= ravb_change_mtu,
2613 	.ndo_validate_addr	= eth_validate_addr,
2614 	.ndo_set_mac_address	= eth_mac_addr,
2615 	.ndo_set_features	= ravb_set_features,
2616 };
2617 
2618 /* MDIO bus init function */
2619 static int ravb_mdio_init(struct ravb_private *priv)
2620 {
2621 	struct platform_device *pdev = priv->pdev;
2622 	struct device *dev = &pdev->dev;
2623 	struct device_node *mdio_node;
2624 	struct phy_device *phydev;
2625 	struct device_node *pn;
2626 	int error;
2627 
2628 	/* Bitbang init */
2629 	priv->mdiobb.ops = &bb_ops;
2630 
2631 	/* MII controller setting */
2632 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2633 	if (!priv->mii_bus)
2634 		return -ENOMEM;
2635 
2636 	/* Hook up MII support for ethtool */
2637 	priv->mii_bus->name = "ravb_mii";
2638 	priv->mii_bus->parent = dev;
2639 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2640 		 pdev->name, pdev->id);
2641 
2642 	/* Register MDIO bus */
2643 	mdio_node = of_get_child_by_name(dev->of_node, "mdio");
2644 	if (!mdio_node) {
2645 		/* backwards compatibility for DT lacking mdio subnode */
2646 		mdio_node = of_node_get(dev->of_node);
2647 	}
2648 	error = of_mdiobus_register(priv->mii_bus, mdio_node);
2649 	of_node_put(mdio_node);
2650 	if (error)
2651 		goto out_free_bus;
2652 
2653 	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2654 	phydev = of_phy_find_device(pn);
2655 	if (phydev) {
2656 		phydev->mac_managed_pm = true;
2657 		put_device(&phydev->mdio.dev);
2658 	}
2659 	of_node_put(pn);
2660 
2661 	return 0;
2662 
2663 out_free_bus:
2664 	free_mdio_bitbang(priv->mii_bus);
2665 	return error;
2666 }
2667 
2668 /* MDIO bus release function */
2669 static int ravb_mdio_release(struct ravb_private *priv)
2670 {
2671 	/* Unregister mdio bus */
2672 	mdiobus_unregister(priv->mii_bus);
2673 
2674 	/* Free bitbang info */
2675 	free_mdio_bitbang(priv->mii_bus);
2676 
2677 	return 0;
2678 }
2679 
2680 static const struct ravb_hw_info ravb_gen2_hw_info = {
2681 	.receive = ravb_rx_rcar,
2682 	.set_rate = ravb_set_rate_rcar,
2683 	.set_feature = ravb_set_features_rcar,
2684 	.dmac_init = ravb_dmac_init_rcar,
2685 	.emac_init = ravb_emac_init_rcar,
2686 	.gstrings_stats = ravb_gstrings_stats,
2687 	.gstrings_size = sizeof(ravb_gstrings_stats),
2688 	.net_hw_features = NETIF_F_RXCSUM,
2689 	.net_features = NETIF_F_RXCSUM,
2690 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2691 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2692 	.tx_max_frame_size = SZ_2K,
2693 	.rx_max_frame_size = SZ_2K,
2694 	.rx_buffer_size = SZ_2K +
2695 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2696 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2697 	.aligned_tx = 1,
2698 	.gptp = 1,
2699 	.nc_queues = 1,
2700 	.magic_pkt = 1,
2701 };
2702 
2703 static const struct ravb_hw_info ravb_gen3_hw_info = {
2704 	.receive = ravb_rx_rcar,
2705 	.set_rate = ravb_set_rate_rcar,
2706 	.set_feature = ravb_set_features_rcar,
2707 	.dmac_init = ravb_dmac_init_rcar,
2708 	.emac_init = ravb_emac_init_rcar,
2709 	.gstrings_stats = ravb_gstrings_stats,
2710 	.gstrings_size = sizeof(ravb_gstrings_stats),
2711 	.net_hw_features = NETIF_F_RXCSUM,
2712 	.net_features = NETIF_F_RXCSUM,
2713 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2714 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2715 	.tx_max_frame_size = SZ_2K,
2716 	.rx_max_frame_size = SZ_2K,
2717 	.rx_buffer_size = SZ_2K +
2718 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2719 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2720 	.internal_delay = 1,
2721 	.tx_counters = 1,
2722 	.multi_irqs = 1,
2723 	.irq_en_dis = 1,
2724 	.ccc_gac = 1,
2725 	.nc_queues = 1,
2726 	.magic_pkt = 1,
2727 };
2728 
2729 static const struct ravb_hw_info ravb_gen4_hw_info = {
2730 	.receive = ravb_rx_rcar,
2731 	.set_rate = ravb_set_rate_rcar,
2732 	.set_feature = ravb_set_features_rcar,
2733 	.dmac_init = ravb_dmac_init_rcar,
2734 	.emac_init = ravb_emac_init_rcar_gen4,
2735 	.gstrings_stats = ravb_gstrings_stats,
2736 	.gstrings_size = sizeof(ravb_gstrings_stats),
2737 	.net_hw_features = NETIF_F_RXCSUM,
2738 	.net_features = NETIF_F_RXCSUM,
2739 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2740 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2741 	.tx_max_frame_size = SZ_2K,
2742 	.rx_max_frame_size = SZ_2K,
2743 	.rx_buffer_size = SZ_2K +
2744 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2745 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2746 	.internal_delay = 1,
2747 	.tx_counters = 1,
2748 	.multi_irqs = 1,
2749 	.irq_en_dis = 1,
2750 	.ccc_gac = 1,
2751 	.nc_queues = 1,
2752 	.magic_pkt = 1,
2753 };
2754 
2755 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2756 	.receive = ravb_rx_rcar,
2757 	.set_rate = ravb_set_rate_rcar,
2758 	.set_feature = ravb_set_features_rcar,
2759 	.dmac_init = ravb_dmac_init_rcar,
2760 	.emac_init = ravb_emac_init_rcar,
2761 	.gstrings_stats = ravb_gstrings_stats,
2762 	.gstrings_size = sizeof(ravb_gstrings_stats),
2763 	.net_hw_features = NETIF_F_RXCSUM,
2764 	.net_features = NETIF_F_RXCSUM,
2765 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2766 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2767 	.tx_max_frame_size = SZ_2K,
2768 	.rx_max_frame_size = SZ_2K,
2769 	.rx_buffer_size = SZ_2K +
2770 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2771 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2772 	.multi_irqs = 1,
2773 	.err_mgmt_irqs = 1,
2774 	.gptp = 1,
2775 	.gptp_ref_clk = 1,
2776 	.nc_queues = 1,
2777 	.magic_pkt = 1,
2778 };
2779 
2780 static const struct ravb_hw_info gbeth_hw_info = {
2781 	.receive = ravb_rx_gbeth,
2782 	.set_rate = ravb_set_rate_gbeth,
2783 	.set_feature = ravb_set_features_gbeth,
2784 	.dmac_init = ravb_dmac_init_gbeth,
2785 	.emac_init = ravb_emac_init_gbeth,
2786 	.gstrings_stats = ravb_gstrings_stats_gbeth,
2787 	.gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2788 	.net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2789 	.net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2790 	.vlan_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2791 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2792 	.tccr_mask = TCCR_TSRQ0,
2793 	.tx_max_frame_size = 1522,
2794 	.rx_max_frame_size = SZ_8K,
2795 	.rx_buffer_size = SZ_2K,
2796 	.rx_desc_size = sizeof(struct ravb_rx_desc),
2797 	.aligned_tx = 1,
2798 	.coalesce_irqs = 1,
2799 	.tx_counters = 1,
2800 	.carrier_counters = 1,
2801 	.half_duplex = 1,
2802 };
2803 
2804 static const struct of_device_id ravb_match_table[] = {
2805 	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2806 	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2807 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2808 	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2809 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2810 	{ .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen4_hw_info },
2811 	{ .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2812 	{ .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2813 	{ }
2814 };
2815 MODULE_DEVICE_TABLE(of, ravb_match_table);
2816 
2817 static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2818 			  const char *ch, int *irq, irq_handler_t handler)
2819 {
2820 	struct platform_device *pdev = priv->pdev;
2821 	struct net_device *ndev = priv->ndev;
2822 	struct device *dev = &pdev->dev;
2823 	const char *devname = dev_name(dev);
2824 	unsigned long flags;
2825 	int error, irq_num;
2826 
2827 	if (irq_name) {
2828 		devname = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", devname, ch);
2829 		if (!devname)
2830 			return -ENOMEM;
2831 
2832 		irq_num = platform_get_irq_byname(pdev, irq_name);
2833 		flags = 0;
2834 	} else {
2835 		irq_num = platform_get_irq(pdev, 0);
2836 		flags = IRQF_SHARED;
2837 	}
2838 	if (irq_num < 0)
2839 		return irq_num;
2840 
2841 	if (irq)
2842 		*irq = irq_num;
2843 
2844 	error = devm_request_irq(dev, irq_num, handler, flags, devname, ndev);
2845 	if (error)
2846 		netdev_err(ndev, "cannot request IRQ %s\n", devname);
2847 
2848 	return error;
2849 }
2850 
2851 static int ravb_setup_irqs(struct ravb_private *priv)
2852 {
2853 	const struct ravb_hw_info *info = priv->info;
2854 	struct net_device *ndev = priv->ndev;
2855 	const char *irq_name, *emac_irq_name;
2856 	int error;
2857 
2858 	if (!info->multi_irqs)
2859 		return ravb_setup_irq(priv, NULL, NULL, &ndev->irq, ravb_interrupt);
2860 
2861 	if (info->err_mgmt_irqs) {
2862 		irq_name = "dia";
2863 		emac_irq_name = "line3";
2864 	} else {
2865 		irq_name = "ch22";
2866 		emac_irq_name = "ch24";
2867 	}
2868 
2869 	error = ravb_setup_irq(priv, irq_name, "ch22:multi", &ndev->irq, ravb_multi_interrupt);
2870 	if (error)
2871 		return error;
2872 
2873 	error = ravb_setup_irq(priv, emac_irq_name, "ch24:emac", &priv->emac_irq,
2874 			       ravb_emac_interrupt);
2875 	if (error)
2876 		return error;
2877 
2878 	if (info->err_mgmt_irqs) {
2879 		error = ravb_setup_irq(priv, "err_a", "err_a", NULL, ravb_multi_interrupt);
2880 		if (error)
2881 			return error;
2882 
2883 		error = ravb_setup_irq(priv, "mgmt_a", "mgmt_a", NULL, ravb_multi_interrupt);
2884 		if (error)
2885 			return error;
2886 	}
2887 
2888 	error = ravb_setup_irq(priv, "ch0", "ch0:rx_be", NULL, ravb_be_interrupt);
2889 	if (error)
2890 		return error;
2891 
2892 	error = ravb_setup_irq(priv, "ch1", "ch1:rx_nc", NULL, ravb_nc_interrupt);
2893 	if (error)
2894 		return error;
2895 
2896 	error = ravb_setup_irq(priv, "ch18", "ch18:tx_be", NULL, ravb_be_interrupt);
2897 	if (error)
2898 		return error;
2899 
2900 	return ravb_setup_irq(priv, "ch19", "ch19:tx_nc", NULL, ravb_nc_interrupt);
2901 }
2902 
2903 static int ravb_probe(struct platform_device *pdev)
2904 {
2905 	struct device_node *np = pdev->dev.of_node;
2906 	const struct ravb_hw_info *info;
2907 	struct reset_control *rstc;
2908 	struct ravb_private *priv;
2909 	struct net_device *ndev;
2910 	struct resource *res;
2911 	int error, q;
2912 
2913 	if (!np) {
2914 		dev_err(&pdev->dev,
2915 			"this driver is required to be instantiated from device tree\n");
2916 		return -EINVAL;
2917 	}
2918 
2919 	rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
2920 	if (IS_ERR(rstc))
2921 		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2922 				     "failed to get cpg reset\n");
2923 
2924 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2925 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2926 	if (!ndev)
2927 		return -ENOMEM;
2928 
2929 	info = of_device_get_match_data(&pdev->dev);
2930 
2931 	ndev->features = info->net_features;
2932 	ndev->hw_features = info->net_hw_features;
2933 	ndev->vlan_features = info->vlan_features;
2934 
2935 	error = reset_control_deassert(rstc);
2936 	if (error)
2937 		goto out_free_netdev;
2938 
2939 	SET_NETDEV_DEV(ndev, &pdev->dev);
2940 
2941 	priv = netdev_priv(ndev);
2942 	priv->info = info;
2943 	priv->rstc = rstc;
2944 	priv->ndev = ndev;
2945 	priv->pdev = pdev;
2946 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2947 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2948 	if (info->nc_queues) {
2949 		priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2950 		priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2951 	}
2952 
2953 	error = ravb_setup_irqs(priv);
2954 	if (error)
2955 		goto out_reset_assert;
2956 
2957 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2958 	if (IS_ERR(priv->clk)) {
2959 		error = PTR_ERR(priv->clk);
2960 		goto out_reset_assert;
2961 	}
2962 
2963 	if (info->gptp_ref_clk) {
2964 		priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2965 		if (IS_ERR(priv->gptp_clk)) {
2966 			error = PTR_ERR(priv->gptp_clk);
2967 			goto out_reset_assert;
2968 		}
2969 	}
2970 
2971 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2972 	if (IS_ERR(priv->refclk)) {
2973 		error = PTR_ERR(priv->refclk);
2974 		goto out_reset_assert;
2975 	}
2976 	clk_prepare(priv->refclk);
2977 
2978 	platform_set_drvdata(pdev, ndev);
2979 	pm_runtime_set_autosuspend_delay(&pdev->dev, 100);
2980 	pm_runtime_use_autosuspend(&pdev->dev);
2981 	pm_runtime_enable(&pdev->dev);
2982 	error = pm_runtime_resume_and_get(&pdev->dev);
2983 	if (error < 0)
2984 		goto out_rpm_disable;
2985 
2986 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2987 	if (IS_ERR(priv->addr)) {
2988 		error = PTR_ERR(priv->addr);
2989 		goto out_rpm_put;
2990 	}
2991 
2992 	/* The Ether-specific entries in the device structure. */
2993 	ndev->base_addr = res->start;
2994 
2995 	spin_lock_init(&priv->lock);
2996 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2997 
2998 	error = of_get_phy_mode(np, &priv->phy_interface);
2999 	if (error && error != -ENODEV)
3000 		goto out_rpm_put;
3001 
3002 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
3003 	priv->avb_link_active_low =
3004 		of_property_read_bool(np, "renesas,ether-link-active-low");
3005 
3006 	ndev->max_mtu = info->tx_max_frame_size -
3007 		(ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3008 	ndev->min_mtu = ETH_MIN_MTU;
3009 
3010 	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
3011 	 * Use two descriptor to handle such situation. First descriptor to
3012 	 * handle aligned data buffer and second descriptor to handle the
3013 	 * overflow data because of alignment.
3014 	 */
3015 	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
3016 
3017 	/* Set function */
3018 	ndev->netdev_ops = &ravb_netdev_ops;
3019 	ndev->ethtool_ops = &ravb_ethtool_ops;
3020 
3021 	error = ravb_compute_gti(ndev);
3022 	if (error)
3023 		goto out_rpm_put;
3024 
3025 	ravb_parse_delay_mode(np, ndev);
3026 
3027 	/* Allocate descriptor base address table */
3028 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
3029 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
3030 					    &priv->desc_bat_dma, GFP_KERNEL);
3031 	if (!priv->desc_bat) {
3032 		dev_err(&pdev->dev,
3033 			"Cannot allocate desc base address table (size %d bytes)\n",
3034 			priv->desc_bat_size);
3035 		error = -ENOMEM;
3036 		goto out_rpm_put;
3037 	}
3038 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
3039 		priv->desc_bat[q].die_dt = DT_EOS;
3040 
3041 	/* Initialise HW timestamp list */
3042 	INIT_LIST_HEAD(&priv->ts_skb_list);
3043 
3044 	/* Debug message level */
3045 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
3046 
3047 	/* Set config mode as this is needed for PHY initialization. */
3048 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
3049 	if (error)
3050 		goto out_rpm_put;
3051 
3052 	/* Read and set MAC address */
3053 	ravb_read_mac_address(np, ndev);
3054 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3055 		dev_warn(&pdev->dev,
3056 			 "no valid MAC address supplied, using a random one\n");
3057 		eth_hw_addr_random(ndev);
3058 	}
3059 
3060 	/* MDIO bus init */
3061 	error = ravb_mdio_init(priv);
3062 	if (error) {
3063 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
3064 		goto out_reset_mode;
3065 	}
3066 
3067 	/* Undo previous switch to config opmode. */
3068 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3069 	if (error)
3070 		goto out_mdio_release;
3071 
3072 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
3073 	if (info->nc_queues)
3074 		netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
3075 
3076 	if (info->coalesce_irqs) {
3077 		netdev_sw_irq_coalesce_default_on(ndev);
3078 		if (num_present_cpus() == 1)
3079 			netif_threaded_enable(ndev);
3080 	}
3081 
3082 	/* Network device register */
3083 	error = register_netdev(ndev);
3084 	if (error)
3085 		goto out_napi_del;
3086 
3087 	device_set_wakeup_capable(&pdev->dev, 1);
3088 
3089 	/* Print device information */
3090 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
3091 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3092 
3093 	pm_runtime_mark_last_busy(&pdev->dev);
3094 	pm_runtime_put_autosuspend(&pdev->dev);
3095 
3096 	return 0;
3097 
3098 out_napi_del:
3099 	if (info->nc_queues)
3100 		netif_napi_del(&priv->napi[RAVB_NC]);
3101 
3102 	netif_napi_del(&priv->napi[RAVB_BE]);
3103 out_mdio_release:
3104 	ravb_mdio_release(priv);
3105 out_reset_mode:
3106 	ravb_set_opmode(ndev, CCC_OPC_RESET);
3107 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3108 			  priv->desc_bat_dma);
3109 out_rpm_put:
3110 	pm_runtime_put(&pdev->dev);
3111 out_rpm_disable:
3112 	pm_runtime_disable(&pdev->dev);
3113 	pm_runtime_dont_use_autosuspend(&pdev->dev);
3114 	clk_unprepare(priv->refclk);
3115 out_reset_assert:
3116 	reset_control_assert(rstc);
3117 out_free_netdev:
3118 	free_netdev(ndev);
3119 	return error;
3120 }
3121 
3122 static void ravb_remove(struct platform_device *pdev)
3123 {
3124 	struct net_device *ndev = platform_get_drvdata(pdev);
3125 	struct ravb_private *priv = netdev_priv(ndev);
3126 	const struct ravb_hw_info *info = priv->info;
3127 	struct device *dev = &priv->pdev->dev;
3128 	int error;
3129 
3130 	error = pm_runtime_resume_and_get(dev);
3131 	if (error < 0)
3132 		return;
3133 
3134 	unregister_netdev(ndev);
3135 	if (info->nc_queues)
3136 		netif_napi_del(&priv->napi[RAVB_NC]);
3137 	netif_napi_del(&priv->napi[RAVB_BE]);
3138 
3139 	ravb_mdio_release(priv);
3140 
3141 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3142 			  priv->desc_bat_dma);
3143 
3144 	pm_runtime_put_sync_suspend(&pdev->dev);
3145 	pm_runtime_disable(&pdev->dev);
3146 	pm_runtime_dont_use_autosuspend(dev);
3147 	clk_unprepare(priv->refclk);
3148 	reset_control_assert(priv->rstc);
3149 	free_netdev(ndev);
3150 	platform_set_drvdata(pdev, NULL);
3151 }
3152 
3153 static int ravb_wol_setup(struct net_device *ndev)
3154 {
3155 	struct ravb_private *priv = netdev_priv(ndev);
3156 	const struct ravb_hw_info *info = priv->info;
3157 
3158 	/* Disable interrupts by clearing the interrupt masks. */
3159 	ravb_write(ndev, 0, RIC0);
3160 	ravb_write(ndev, 0, RIC2);
3161 	ravb_write(ndev, 0, TIC);
3162 
3163 	/* Only allow ECI interrupts */
3164 	synchronize_irq(priv->emac_irq);
3165 	if (info->nc_queues)
3166 		napi_disable(&priv->napi[RAVB_NC]);
3167 	napi_disable(&priv->napi[RAVB_BE]);
3168 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
3169 
3170 	/* Enable MagicPacket */
3171 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3172 
3173 	if (priv->info->ccc_gac)
3174 		ravb_ptp_stop(ndev);
3175 
3176 	return enable_irq_wake(priv->emac_irq);
3177 }
3178 
3179 static int ravb_wol_restore(struct net_device *ndev)
3180 {
3181 	struct ravb_private *priv = netdev_priv(ndev);
3182 	const struct ravb_hw_info *info = priv->info;
3183 	int error;
3184 
3185 	/* Set reset mode to rearm the WoL logic. */
3186 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3187 	if (error)
3188 		return error;
3189 
3190 	/* Set AVB config mode. */
3191 	error = ravb_set_config_mode(ndev);
3192 	if (error)
3193 		return error;
3194 
3195 	if (priv->info->ccc_gac)
3196 		ravb_ptp_init(ndev, priv->pdev);
3197 
3198 	if (info->nc_queues)
3199 		napi_enable(&priv->napi[RAVB_NC]);
3200 	napi_enable(&priv->napi[RAVB_BE]);
3201 
3202 	/* Disable MagicPacket */
3203 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
3204 
3205 	ravb_close(ndev);
3206 
3207 	return disable_irq_wake(priv->emac_irq);
3208 }
3209 
3210 static int ravb_suspend(struct device *dev)
3211 {
3212 	struct net_device *ndev = dev_get_drvdata(dev);
3213 	struct ravb_private *priv = netdev_priv(ndev);
3214 	int ret;
3215 
3216 	if (!netif_running(ndev))
3217 		goto reset_assert;
3218 
3219 	netif_device_detach(ndev);
3220 
3221 	rtnl_lock();
3222 	if (priv->wol_enabled) {
3223 		ret = ravb_wol_setup(ndev);
3224 		rtnl_unlock();
3225 		return ret;
3226 	}
3227 
3228 	ret = ravb_close(ndev);
3229 	rtnl_unlock();
3230 	if (ret)
3231 		return ret;
3232 
3233 	ret = pm_runtime_force_suspend(&priv->pdev->dev);
3234 	if (ret)
3235 		return ret;
3236 
3237 reset_assert:
3238 	return reset_control_assert(priv->rstc);
3239 }
3240 
3241 static int ravb_resume(struct device *dev)
3242 {
3243 	struct net_device *ndev = dev_get_drvdata(dev);
3244 	struct ravb_private *priv = netdev_priv(ndev);
3245 	int ret;
3246 
3247 	ret = reset_control_deassert(priv->rstc);
3248 	if (ret)
3249 		return ret;
3250 
3251 	if (!netif_running(ndev))
3252 		return 0;
3253 
3254 	rtnl_lock();
3255 	/* If WoL is enabled restore the interface. */
3256 	if (priv->wol_enabled)
3257 		ret = ravb_wol_restore(ndev);
3258 	else
3259 		ret = pm_runtime_force_resume(dev);
3260 	if (ret) {
3261 		rtnl_unlock();
3262 		return ret;
3263 	}
3264 
3265 	/* Reopening the interface will restore the device to the working state. */
3266 	ret = ravb_open(ndev);
3267 	rtnl_unlock();
3268 	if (ret < 0)
3269 		goto out_rpm_put;
3270 
3271 	ravb_set_rx_mode(ndev);
3272 	netif_device_attach(ndev);
3273 
3274 	return 0;
3275 
3276 out_rpm_put:
3277 	if (!priv->wol_enabled) {
3278 		pm_runtime_mark_last_busy(dev);
3279 		pm_runtime_put_autosuspend(dev);
3280 	}
3281 
3282 	return ret;
3283 }
3284 
3285 static int ravb_runtime_suspend(struct device *dev)
3286 {
3287 	struct net_device *ndev = dev_get_drvdata(dev);
3288 	struct ravb_private *priv = netdev_priv(ndev);
3289 
3290 	clk_disable(priv->refclk);
3291 
3292 	return 0;
3293 }
3294 
3295 static int ravb_runtime_resume(struct device *dev)
3296 {
3297 	struct net_device *ndev = dev_get_drvdata(dev);
3298 	struct ravb_private *priv = netdev_priv(ndev);
3299 
3300 	return clk_enable(priv->refclk);
3301 }
3302 
3303 static const struct dev_pm_ops ravb_dev_pm_ops = {
3304 	SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3305 	RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3306 };
3307 
3308 static struct platform_driver ravb_driver = {
3309 	.probe		= ravb_probe,
3310 	.remove		= ravb_remove,
3311 	.driver = {
3312 		.name	= "ravb",
3313 		.pm	= pm_ptr(&ravb_dev_pm_ops),
3314 		.of_match_table = ravb_match_table,
3315 	},
3316 };
3317 
3318 module_platform_driver(ravb_driver);
3319 
3320 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3321 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3322 MODULE_LICENSE("GPL v2");
3323