1 // SPDX-License-Identifier: GPL-2.0 2 /* Marvell RVU Ethernet driver 3 * 4 * Copyright (C) 2020 Marvell. 5 * 6 */ 7 8 #include <linux/etherdevice.h> 9 #include <net/ip.h> 10 #include <net/tso.h> 11 #include <linux/bpf.h> 12 #include <linux/bpf_trace.h> 13 #include <net/ip6_checksum.h> 14 15 #include "otx2_reg.h" 16 #include "otx2_common.h" 17 #include "otx2_struct.h" 18 #include "otx2_txrx.h" 19 #include "otx2_ptp.h" 20 #include "cn10k.h" 21 22 #define CQE_ADDR(CQ, idx) ((CQ)->cqe_base + ((CQ)->cqe_size * (idx))) 23 #define PTP_PORT 0x13F 24 /* PTPv2 header Original Timestamp starts at byte offset 34 and 25 * contains 6 byte seconds field and 4 byte nano seconds field. 26 */ 27 #define PTP_SYNC_SEC_OFFSET 34 28 29 static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf, 30 struct bpf_prog *prog, 31 struct nix_cqe_rx_s *cqe, 32 struct otx2_cq_queue *cq, 33 bool *need_xdp_flush); 34 35 static int otx2_nix_cq_op_status(struct otx2_nic *pfvf, 36 struct otx2_cq_queue *cq) 37 { 38 u64 incr = (u64)(cq->cq_idx) << 32; 39 u64 status; 40 41 status = otx2_atomic64_fetch_add(incr, pfvf->cq_op_addr); 42 43 if (unlikely(status & BIT_ULL(CQ_OP_STAT_OP_ERR) || 44 status & BIT_ULL(CQ_OP_STAT_CQ_ERR))) { 45 dev_err(pfvf->dev, "CQ stopped due to error"); 46 return -EINVAL; 47 } 48 49 cq->cq_tail = status & 0xFFFFF; 50 cq->cq_head = (status >> 20) & 0xFFFFF; 51 if (cq->cq_tail < cq->cq_head) 52 cq->pend_cqe = (cq->cqe_cnt - cq->cq_head) + 53 cq->cq_tail; 54 else 55 cq->pend_cqe = cq->cq_tail - cq->cq_head; 56 57 return 0; 58 } 59 60 static struct nix_cqe_hdr_s *otx2_get_next_cqe(struct otx2_cq_queue *cq) 61 { 62 struct nix_cqe_hdr_s *cqe_hdr; 63 64 cqe_hdr = (struct nix_cqe_hdr_s *)CQE_ADDR(cq, cq->cq_head); 65 if (cqe_hdr->cqe_type == NIX_XQE_TYPE_INVALID) 66 return NULL; 67 68 cq->cq_head++; 69 cq->cq_head &= (cq->cqe_cnt - 1); 70 71 return cqe_hdr; 72 } 73 74 static unsigned int frag_num(unsigned int i) 75 { 76 #ifdef __BIG_ENDIAN 77 return (i & ~3) + 3 - (i & 3); 78 #else 79 return i; 80 #endif 81 } 82 83 static dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf, 84 struct sk_buff *skb, int seg, int *len) 85 { 86 const skb_frag_t *frag; 87 struct page *page; 88 int offset; 89 90 /* First segment is always skb->data */ 91 if (!seg) { 92 page = virt_to_page(skb->data); 93 offset = offset_in_page(skb->data); 94 *len = skb_headlen(skb); 95 } else { 96 frag = &skb_shinfo(skb)->frags[seg - 1]; 97 page = skb_frag_page(frag); 98 offset = skb_frag_off(frag); 99 *len = skb_frag_size(frag); 100 } 101 return otx2_dma_map_page(pfvf, page, offset, *len, DMA_TO_DEVICE); 102 } 103 104 static void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg) 105 { 106 int seg; 107 108 for (seg = 0; seg < sg->num_segs; seg++) { 109 otx2_dma_unmap_page(pfvf, sg->dma_addr[seg], 110 sg->size[seg], DMA_TO_DEVICE); 111 } 112 sg->num_segs = 0; 113 } 114 115 static void otx2_xdp_snd_pkt_handler(struct otx2_nic *pfvf, 116 struct otx2_snd_queue *sq, 117 struct nix_cqe_tx_s *cqe) 118 { 119 struct nix_send_comp_s *snd_comp = &cqe->comp; 120 struct sg_list *sg; 121 struct page *page; 122 u64 pa; 123 124 sg = &sq->sg[snd_comp->sqe_id]; 125 126 pa = otx2_iova_to_phys(pfvf->iommu_domain, sg->dma_addr[0]); 127 otx2_dma_unmap_page(pfvf, sg->dma_addr[0], 128 sg->size[0], DMA_TO_DEVICE); 129 page = virt_to_page(phys_to_virt(pa)); 130 put_page(page); 131 } 132 133 static void otx2_snd_pkt_handler(struct otx2_nic *pfvf, 134 struct otx2_cq_queue *cq, 135 struct otx2_snd_queue *sq, 136 struct nix_cqe_tx_s *cqe, 137 int budget, int *tx_pkts, int *tx_bytes) 138 { 139 struct nix_send_comp_s *snd_comp = &cqe->comp; 140 struct skb_shared_hwtstamps ts; 141 struct sk_buff *skb = NULL; 142 u64 timestamp, tsns; 143 struct sg_list *sg; 144 int err; 145 146 if (unlikely(snd_comp->status) && netif_msg_tx_err(pfvf)) 147 net_err_ratelimited("%s: TX%d: Error in send CQ status:%x\n", 148 pfvf->netdev->name, cq->cint_idx, 149 snd_comp->status); 150 151 sg = &sq->sg[snd_comp->sqe_id]; 152 skb = (struct sk_buff *)sg->skb; 153 if (unlikely(!skb)) 154 return; 155 156 if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) { 157 timestamp = ((u64 *)sq->timestamps->base)[snd_comp->sqe_id]; 158 if (timestamp != 1) { 159 timestamp = pfvf->ptp->convert_tx_ptp_tstmp(timestamp); 160 err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns); 161 if (!err) { 162 memset(&ts, 0, sizeof(ts)); 163 ts.hwtstamp = ns_to_ktime(tsns); 164 skb_tstamp_tx(skb, &ts); 165 } 166 } 167 } 168 169 *tx_bytes += skb->len; 170 (*tx_pkts)++; 171 otx2_dma_unmap_skb_frags(pfvf, sg); 172 napi_consume_skb(skb, budget); 173 sg->skb = (u64)NULL; 174 } 175 176 static void otx2_set_rxtstamp(struct otx2_nic *pfvf, 177 struct sk_buff *skb, void *data) 178 { 179 u64 timestamp, tsns; 180 int err; 181 182 if (!(pfvf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED)) 183 return; 184 185 timestamp = pfvf->ptp->convert_rx_ptp_tstmp(*(u64 *)data); 186 /* The first 8 bytes is the timestamp */ 187 err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns); 188 if (err) 189 return; 190 191 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(tsns); 192 } 193 194 static bool otx2_skb_add_frag(struct otx2_nic *pfvf, struct sk_buff *skb, 195 u64 iova, int len, struct nix_rx_parse_s *parse, 196 int qidx) 197 { 198 struct page *page; 199 int off = 0; 200 void *va; 201 202 va = phys_to_virt(otx2_iova_to_phys(pfvf->iommu_domain, iova)); 203 204 if (likely(!skb_shinfo(skb)->nr_frags)) { 205 /* Check if data starts at some nonzero offset 206 * from the start of the buffer. For now the 207 * only possible offset is 8 bytes in the case 208 * where packet is prepended by a timestamp. 209 */ 210 if (parse->laptr) { 211 otx2_set_rxtstamp(pfvf, skb, va); 212 off = OTX2_HW_TIMESTAMP_LEN; 213 } 214 } 215 216 page = virt_to_page(va); 217 if (likely(skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS)) { 218 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 219 va - page_address(page) + off, 220 len - off, pfvf->rbsize); 221 return true; 222 } 223 224 /* If more than MAX_SKB_FRAGS fragments are received then 225 * give back those buffer pointers to hardware for reuse. 226 */ 227 pfvf->hw_ops->aura_freeptr(pfvf, qidx, iova & ~0x07ULL); 228 229 return false; 230 } 231 232 static void otx2_set_rxhash(struct otx2_nic *pfvf, 233 struct nix_cqe_rx_s *cqe, struct sk_buff *skb) 234 { 235 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE; 236 struct otx2_rss_info *rss; 237 u32 hash = 0; 238 239 if (!(pfvf->netdev->features & NETIF_F_RXHASH)) 240 return; 241 242 rss = &pfvf->hw.rss_info; 243 if (rss->flowkey_cfg) { 244 if (rss->flowkey_cfg & 245 ~(NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6)) 246 hash_type = PKT_HASH_TYPE_L4; 247 else 248 hash_type = PKT_HASH_TYPE_L3; 249 hash = cqe->hdr.flow_tag; 250 } 251 skb_set_hash(skb, hash, hash_type); 252 } 253 254 static void otx2_free_rcv_seg(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe, 255 int qidx) 256 { 257 struct nix_rx_sg_s *sg = &cqe->sg; 258 void *end, *start; 259 u64 *seg_addr; 260 int seg; 261 262 start = (void *)sg; 263 end = start + ((cqe->parse.desc_sizem1 + 1) * 16); 264 while (start < end) { 265 sg = (struct nix_rx_sg_s *)start; 266 seg_addr = &sg->seg_addr; 267 for (seg = 0; seg < sg->segs; seg++, seg_addr++) 268 pfvf->hw_ops->aura_freeptr(pfvf, qidx, 269 *seg_addr & ~0x07ULL); 270 start += sizeof(*sg); 271 } 272 } 273 274 static bool otx2_check_rcv_errors(struct otx2_nic *pfvf, 275 struct nix_cqe_rx_s *cqe, int qidx) 276 { 277 struct otx2_drv_stats *stats = &pfvf->hw.drv_stats; 278 struct nix_rx_parse_s *parse = &cqe->parse; 279 280 if (netif_msg_rx_err(pfvf)) 281 netdev_err(pfvf->netdev, 282 "RQ%d: Error pkt with errlev:0x%x errcode:0x%x\n", 283 qidx, parse->errlev, parse->errcode); 284 285 if (parse->errlev == NPC_ERRLVL_RE) { 286 switch (parse->errcode) { 287 case ERRCODE_FCS: 288 case ERRCODE_FCS_RCV: 289 atomic_inc(&stats->rx_fcs_errs); 290 break; 291 case ERRCODE_UNDERSIZE: 292 atomic_inc(&stats->rx_undersize_errs); 293 break; 294 case ERRCODE_OVERSIZE: 295 atomic_inc(&stats->rx_oversize_errs); 296 break; 297 case ERRCODE_OL2_LEN_MISMATCH: 298 atomic_inc(&stats->rx_len_errs); 299 break; 300 default: 301 atomic_inc(&stats->rx_other_errs); 302 break; 303 } 304 } else if (parse->errlev == NPC_ERRLVL_NIX) { 305 switch (parse->errcode) { 306 case ERRCODE_OL3_LEN: 307 case ERRCODE_OL4_LEN: 308 case ERRCODE_IL3_LEN: 309 case ERRCODE_IL4_LEN: 310 atomic_inc(&stats->rx_len_errs); 311 break; 312 case ERRCODE_OL4_CSUM: 313 case ERRCODE_IL4_CSUM: 314 atomic_inc(&stats->rx_csum_errs); 315 break; 316 default: 317 atomic_inc(&stats->rx_other_errs); 318 break; 319 } 320 } else { 321 atomic_inc(&stats->rx_other_errs); 322 /* For now ignore all the NPC parser errors and 323 * pass the packets to stack. 324 */ 325 return false; 326 } 327 328 /* If RXALL is enabled pass on packets to stack. */ 329 if (pfvf->netdev->features & NETIF_F_RXALL) 330 return false; 331 332 /* Free buffer back to pool */ 333 if (cqe->sg.segs) 334 otx2_free_rcv_seg(pfvf, cqe, qidx); 335 return true; 336 } 337 338 static void otx2_rcv_pkt_handler(struct otx2_nic *pfvf, 339 struct napi_struct *napi, 340 struct otx2_cq_queue *cq, 341 struct nix_cqe_rx_s *cqe, bool *need_xdp_flush) 342 { 343 struct nix_rx_parse_s *parse = &cqe->parse; 344 struct nix_rx_sg_s *sg = &cqe->sg; 345 struct sk_buff *skb = NULL; 346 void *end, *start; 347 u64 *seg_addr; 348 u16 *seg_size; 349 int seg; 350 351 if (unlikely(parse->errlev || parse->errcode)) { 352 if (otx2_check_rcv_errors(pfvf, cqe, cq->cq_idx)) 353 return; 354 } 355 356 if (pfvf->xdp_prog) 357 if (otx2_xdp_rcv_pkt_handler(pfvf, pfvf->xdp_prog, cqe, cq, need_xdp_flush)) 358 return; 359 360 skb = napi_get_frags(napi); 361 if (unlikely(!skb)) 362 return; 363 364 start = (void *)sg; 365 end = start + ((cqe->parse.desc_sizem1 + 1) * 16); 366 while (start < end) { 367 sg = (struct nix_rx_sg_s *)start; 368 seg_addr = &sg->seg_addr; 369 seg_size = (void *)sg; 370 for (seg = 0; seg < sg->segs; seg++, seg_addr++) { 371 if (otx2_skb_add_frag(pfvf, skb, *seg_addr, 372 seg_size[seg], parse, cq->cq_idx)) 373 cq->pool_ptrs++; 374 } 375 start += sizeof(*sg); 376 } 377 otx2_set_rxhash(pfvf, cqe, skb); 378 379 skb_record_rx_queue(skb, cq->cq_idx); 380 if (pfvf->netdev->features & NETIF_F_RXCSUM) 381 skb->ip_summed = CHECKSUM_UNNECESSARY; 382 383 if (pfvf->flags & OTX2_FLAG_TC_MARK_ENABLED) 384 skb->mark = parse->match_id; 385 386 skb_mark_for_recycle(skb); 387 388 napi_gro_frags(napi); 389 } 390 391 static int otx2_rx_napi_handler(struct otx2_nic *pfvf, 392 struct napi_struct *napi, 393 struct otx2_cq_queue *cq, int budget) 394 { 395 bool need_xdp_flush = false; 396 struct nix_cqe_rx_s *cqe; 397 int processed_cqe = 0; 398 399 if (cq->pend_cqe >= budget) 400 goto process_cqe; 401 402 if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) 403 return 0; 404 405 process_cqe: 406 while (likely(processed_cqe < budget) && cq->pend_cqe) { 407 cqe = (struct nix_cqe_rx_s *)CQE_ADDR(cq, cq->cq_head); 408 if (cqe->hdr.cqe_type == NIX_XQE_TYPE_INVALID || 409 !cqe->sg.seg_addr) { 410 if (!processed_cqe) 411 return 0; 412 break; 413 } 414 cq->cq_head++; 415 cq->cq_head &= (cq->cqe_cnt - 1); 416 417 otx2_rcv_pkt_handler(pfvf, napi, cq, cqe, &need_xdp_flush); 418 419 cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID; 420 cqe->sg.seg_addr = 0x00; 421 processed_cqe++; 422 cq->pend_cqe--; 423 } 424 if (need_xdp_flush) 425 xdp_do_flush(); 426 427 /* Free CQEs to HW */ 428 otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, 429 ((u64)cq->cq_idx << 32) | processed_cqe); 430 431 return processed_cqe; 432 } 433 434 int otx2_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq) 435 { 436 struct otx2_nic *pfvf = dev; 437 int cnt = cq->pool_ptrs; 438 dma_addr_t bufptr; 439 440 while (cq->pool_ptrs) { 441 if (otx2_alloc_buffer(pfvf, cq, &bufptr)) 442 break; 443 otx2_aura_freeptr(pfvf, cq->cq_idx, bufptr + OTX2_HEAD_ROOM); 444 cq->pool_ptrs--; 445 } 446 447 return cnt - cq->pool_ptrs; 448 } 449 450 static int otx2_tx_napi_handler(struct otx2_nic *pfvf, 451 struct otx2_cq_queue *cq, int budget) 452 { 453 int tx_pkts = 0, tx_bytes = 0, qidx; 454 struct otx2_snd_queue *sq; 455 struct nix_cqe_tx_s *cqe; 456 int processed_cqe = 0; 457 458 if (cq->pend_cqe >= budget) 459 goto process_cqe; 460 461 if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) 462 return 0; 463 464 process_cqe: 465 qidx = cq->cq_idx - pfvf->hw.rx_queues; 466 sq = &pfvf->qset.sq[qidx]; 467 468 while (likely(processed_cqe < budget) && cq->pend_cqe) { 469 cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq); 470 if (unlikely(!cqe)) { 471 if (!processed_cqe) 472 return 0; 473 break; 474 } 475 476 qidx = cq->cq_idx - pfvf->hw.rx_queues; 477 478 if (cq->cq_type == CQ_XDP) 479 otx2_xdp_snd_pkt_handler(pfvf, sq, cqe); 480 else 481 otx2_snd_pkt_handler(pfvf, cq, &pfvf->qset.sq[qidx], 482 cqe, budget, &tx_pkts, &tx_bytes); 483 484 cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID; 485 processed_cqe++; 486 cq->pend_cqe--; 487 488 sq->cons_head++; 489 sq->cons_head &= (sq->sqe_cnt - 1); 490 } 491 492 /* Free CQEs to HW */ 493 otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, 494 ((u64)cq->cq_idx << 32) | processed_cqe); 495 496 if (likely(tx_pkts)) { 497 struct netdev_queue *txq; 498 499 qidx = cq->cq_idx - pfvf->hw.rx_queues; 500 501 if (qidx >= pfvf->hw.tx_queues) 502 qidx -= pfvf->hw.xdp_queues; 503 txq = netdev_get_tx_queue(pfvf->netdev, qidx); 504 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 505 /* Check if queue was stopped earlier due to ring full */ 506 smp_mb(); 507 if (netif_tx_queue_stopped(txq) && 508 netif_carrier_ok(pfvf->netdev)) 509 netif_tx_wake_queue(txq); 510 } 511 return 0; 512 } 513 514 static void otx2_adjust_adaptive_coalese(struct otx2_nic *pfvf, struct otx2_cq_poll *cq_poll) 515 { 516 struct dim_sample dim_sample = { 0 }; 517 u64 rx_frames, rx_bytes; 518 u64 tx_frames, tx_bytes; 519 520 rx_frames = OTX2_GET_RX_STATS(RX_BCAST) + OTX2_GET_RX_STATS(RX_MCAST) + 521 OTX2_GET_RX_STATS(RX_UCAST); 522 rx_bytes = OTX2_GET_RX_STATS(RX_OCTS); 523 tx_bytes = OTX2_GET_TX_STATS(TX_OCTS); 524 tx_frames = OTX2_GET_TX_STATS(TX_UCAST); 525 526 dim_update_sample(pfvf->napi_events, 527 rx_frames + tx_frames, 528 rx_bytes + tx_bytes, 529 &dim_sample); 530 net_dim(&cq_poll->dim, dim_sample); 531 } 532 533 int otx2_napi_handler(struct napi_struct *napi, int budget) 534 { 535 struct otx2_cq_queue *rx_cq = NULL; 536 struct otx2_cq_poll *cq_poll; 537 int workdone = 0, cq_idx, i; 538 struct otx2_cq_queue *cq; 539 struct otx2_qset *qset; 540 struct otx2_nic *pfvf; 541 int filled_cnt = -1; 542 543 cq_poll = container_of(napi, struct otx2_cq_poll, napi); 544 pfvf = (struct otx2_nic *)cq_poll->dev; 545 qset = &pfvf->qset; 546 547 for (i = 0; i < CQS_PER_CINT; i++) { 548 cq_idx = cq_poll->cq_ids[i]; 549 if (unlikely(cq_idx == CINT_INVALID_CQ)) 550 continue; 551 cq = &qset->cq[cq_idx]; 552 if (cq->cq_type == CQ_RX) { 553 rx_cq = cq; 554 workdone += otx2_rx_napi_handler(pfvf, napi, 555 cq, budget); 556 } else { 557 workdone += otx2_tx_napi_handler(pfvf, cq, budget); 558 } 559 } 560 561 if (rx_cq && rx_cq->pool_ptrs) 562 filled_cnt = pfvf->hw_ops->refill_pool_ptrs(pfvf, rx_cq); 563 /* Clear the IRQ */ 564 otx2_write64(pfvf, NIX_LF_CINTX_INT(cq_poll->cint_idx), BIT_ULL(0)); 565 566 if (workdone < budget && napi_complete_done(napi, workdone)) { 567 /* If interface is going down, don't re-enable IRQ */ 568 if (pfvf->flags & OTX2_FLAG_INTF_DOWN) 569 return workdone; 570 571 /* Adjust irq coalese using net_dim */ 572 if (pfvf->flags & OTX2_FLAG_ADPTV_INT_COAL_ENABLED) 573 otx2_adjust_adaptive_coalese(pfvf, cq_poll); 574 575 if (unlikely(!filled_cnt)) { 576 struct refill_work *work; 577 struct delayed_work *dwork; 578 579 work = &pfvf->refill_wrk[cq->cq_idx]; 580 dwork = &work->pool_refill_work; 581 /* Schedule a task if no other task is running */ 582 if (!cq->refill_task_sched) { 583 work->napi = napi; 584 cq->refill_task_sched = true; 585 schedule_delayed_work(dwork, 586 msecs_to_jiffies(100)); 587 } 588 } else { 589 /* Re-enable interrupts */ 590 otx2_write64(pfvf, 591 NIX_LF_CINTX_ENA_W1S(cq_poll->cint_idx), 592 BIT_ULL(0)); 593 } 594 } 595 return workdone; 596 } 597 598 void otx2_sqe_flush(void *dev, struct otx2_snd_queue *sq, 599 int size, int qidx) 600 { 601 u64 status; 602 603 /* Packet data stores should finish before SQE is flushed to HW */ 604 dma_wmb(); 605 606 do { 607 memcpy(sq->lmt_addr, sq->sqe_base, size); 608 status = otx2_lmt_flush(sq->io_addr); 609 } while (status == 0); 610 611 sq->head++; 612 sq->head &= (sq->sqe_cnt - 1); 613 } 614 615 #define MAX_SEGS_PER_SG 3 616 /* Add SQE scatter/gather subdescriptor structure */ 617 static bool otx2_sqe_add_sg(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, 618 struct sk_buff *skb, int num_segs, int *offset) 619 { 620 struct nix_sqe_sg_s *sg = NULL; 621 u64 dma_addr, *iova = NULL; 622 u16 *sg_lens = NULL; 623 int seg, len; 624 625 sq->sg[sq->head].num_segs = 0; 626 627 for (seg = 0; seg < num_segs; seg++) { 628 if ((seg % MAX_SEGS_PER_SG) == 0) { 629 sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset); 630 sg->ld_type = NIX_SEND_LDTYPE_LDD; 631 sg->subdc = NIX_SUBDC_SG; 632 sg->segs = 0; 633 sg_lens = (void *)sg; 634 iova = (void *)sg + sizeof(*sg); 635 /* Next subdc always starts at a 16byte boundary. 636 * So if sg->segs is whether 2 or 3, offset += 16bytes. 637 */ 638 if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1)) 639 *offset += sizeof(*sg) + (3 * sizeof(u64)); 640 else 641 *offset += sizeof(*sg) + sizeof(u64); 642 } 643 dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len); 644 if (dma_mapping_error(pfvf->dev, dma_addr)) 645 return false; 646 647 sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = len; 648 sg->segs++; 649 *iova++ = dma_addr; 650 651 /* Save DMA mapping info for later unmapping */ 652 sq->sg[sq->head].dma_addr[seg] = dma_addr; 653 sq->sg[sq->head].size[seg] = len; 654 sq->sg[sq->head].num_segs++; 655 } 656 657 sq->sg[sq->head].skb = (u64)skb; 658 return true; 659 } 660 661 /* Add SQE extended header subdescriptor */ 662 static void otx2_sqe_add_ext(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, 663 struct sk_buff *skb, int *offset) 664 { 665 struct nix_sqe_ext_s *ext; 666 667 ext = (struct nix_sqe_ext_s *)(sq->sqe_base + *offset); 668 ext->subdc = NIX_SUBDC_EXT; 669 if (skb_shinfo(skb)->gso_size) { 670 ext->lso = 1; 671 ext->lso_sb = skb_tcp_all_headers(skb); 672 ext->lso_mps = skb_shinfo(skb)->gso_size; 673 674 /* Only TSOv4 and TSOv6 GSO offloads are supported */ 675 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 676 ext->lso_format = pfvf->hw.lso_tsov4_idx; 677 678 /* HW adds payload size to 'ip_hdr->tot_len' while 679 * sending TSO segment, hence set payload length 680 * in IP header of the packet to just header length. 681 */ 682 ip_hdr(skb)->tot_len = 683 htons(ext->lso_sb - skb_network_offset(skb)); 684 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) { 685 ext->lso_format = pfvf->hw.lso_tsov6_idx; 686 ipv6_hdr(skb)->payload_len = htons(tcp_hdrlen(skb)); 687 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 688 __be16 l3_proto = vlan_get_protocol(skb); 689 struct udphdr *udph = udp_hdr(skb); 690 __be16 iplen; 691 692 ext->lso_sb = skb_transport_offset(skb) + 693 sizeof(struct udphdr); 694 695 /* HW adds payload size to length fields in IP and 696 * UDP headers while segmentation, hence adjust the 697 * lengths to just header sizes. 698 */ 699 iplen = htons(ext->lso_sb - skb_network_offset(skb)); 700 if (l3_proto == htons(ETH_P_IP)) { 701 ip_hdr(skb)->tot_len = iplen; 702 ext->lso_format = pfvf->hw.lso_udpv4_idx; 703 } else { 704 ipv6_hdr(skb)->payload_len = iplen; 705 ext->lso_format = pfvf->hw.lso_udpv6_idx; 706 } 707 708 udph->len = htons(sizeof(struct udphdr)); 709 } 710 } else if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 711 ext->tstmp = 1; 712 } 713 714 #define OTX2_VLAN_PTR_OFFSET (ETH_HLEN - ETH_TLEN) 715 if (skb_vlan_tag_present(skb)) { 716 if (skb->vlan_proto == htons(ETH_P_8021Q)) { 717 ext->vlan1_ins_ena = 1; 718 ext->vlan1_ins_ptr = OTX2_VLAN_PTR_OFFSET; 719 ext->vlan1_ins_tci = skb_vlan_tag_get(skb); 720 } else if (skb->vlan_proto == htons(ETH_P_8021AD)) { 721 ext->vlan0_ins_ena = 1; 722 ext->vlan0_ins_ptr = OTX2_VLAN_PTR_OFFSET; 723 ext->vlan0_ins_tci = skb_vlan_tag_get(skb); 724 } 725 } 726 727 *offset += sizeof(*ext); 728 } 729 730 static void otx2_sqe_add_mem(struct otx2_snd_queue *sq, int *offset, 731 int alg, u64 iova, int ptp_offset, 732 u64 base_ns, bool udp_csum_crt) 733 { 734 struct nix_sqe_mem_s *mem; 735 736 mem = (struct nix_sqe_mem_s *)(sq->sqe_base + *offset); 737 mem->subdc = NIX_SUBDC_MEM; 738 mem->alg = alg; 739 mem->wmem = 1; /* wait for the memory operation */ 740 mem->addr = iova; 741 742 if (ptp_offset) { 743 mem->start_offset = ptp_offset; 744 mem->udp_csum_crt = !!udp_csum_crt; 745 mem->base_ns = base_ns; 746 mem->step_type = 1; 747 } 748 749 *offset += sizeof(*mem); 750 } 751 752 /* Add SQE header subdescriptor structure */ 753 static void otx2_sqe_add_hdr(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, 754 struct nix_sqe_hdr_s *sqe_hdr, 755 struct sk_buff *skb, u16 qidx) 756 { 757 int proto = 0; 758 759 /* Check if SQE was framed before, if yes then no need to 760 * set these constants again and again. 761 */ 762 if (!sqe_hdr->total) { 763 /* Don't free Tx buffers to Aura */ 764 sqe_hdr->df = 1; 765 sqe_hdr->aura = sq->aura_id; 766 /* Post a CQE Tx after pkt transmission */ 767 sqe_hdr->pnc = 1; 768 sqe_hdr->sq = (qidx >= pfvf->hw.tx_queues) ? 769 qidx + pfvf->hw.xdp_queues : qidx; 770 } 771 sqe_hdr->total = skb->len; 772 /* Set SQE identifier which will be used later for freeing SKB */ 773 sqe_hdr->sqe_id = sq->head; 774 775 /* Offload TCP/UDP checksum to HW */ 776 if (skb->ip_summed == CHECKSUM_PARTIAL) { 777 sqe_hdr->ol3ptr = skb_network_offset(skb); 778 sqe_hdr->ol4ptr = skb_transport_offset(skb); 779 /* get vlan protocol Ethertype */ 780 if (eth_type_vlan(skb->protocol)) 781 skb->protocol = vlan_get_protocol(skb); 782 783 if (skb->protocol == htons(ETH_P_IP)) { 784 proto = ip_hdr(skb)->protocol; 785 /* In case of TSO, HW needs this to be explicitly set. 786 * So set this always, instead of adding a check. 787 */ 788 sqe_hdr->ol3type = NIX_SENDL3TYPE_IP4_CKSUM; 789 } else if (skb->protocol == htons(ETH_P_IPV6)) { 790 proto = ipv6_hdr(skb)->nexthdr; 791 sqe_hdr->ol3type = NIX_SENDL3TYPE_IP6; 792 } 793 794 if (proto == IPPROTO_TCP) 795 sqe_hdr->ol4type = NIX_SENDL4TYPE_TCP_CKSUM; 796 else if (proto == IPPROTO_UDP) 797 sqe_hdr->ol4type = NIX_SENDL4TYPE_UDP_CKSUM; 798 } 799 } 800 801 static int otx2_dma_map_tso_skb(struct otx2_nic *pfvf, 802 struct otx2_snd_queue *sq, 803 struct sk_buff *skb, int sqe, int hdr_len) 804 { 805 int num_segs = skb_shinfo(skb)->nr_frags + 1; 806 struct sg_list *sg = &sq->sg[sqe]; 807 u64 dma_addr; 808 int seg, len; 809 810 sg->num_segs = 0; 811 812 /* Get payload length at skb->data */ 813 len = skb_headlen(skb) - hdr_len; 814 815 for (seg = 0; seg < num_segs; seg++) { 816 /* Skip skb->data, if there is no payload */ 817 if (!seg && !len) 818 continue; 819 dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len); 820 if (dma_mapping_error(pfvf->dev, dma_addr)) 821 goto unmap; 822 823 /* Save DMA mapping info for later unmapping */ 824 sg->dma_addr[sg->num_segs] = dma_addr; 825 sg->size[sg->num_segs] = len; 826 sg->num_segs++; 827 } 828 return 0; 829 unmap: 830 otx2_dma_unmap_skb_frags(pfvf, sg); 831 return -EINVAL; 832 } 833 834 static u64 otx2_tso_frag_dma_addr(struct otx2_snd_queue *sq, 835 struct sk_buff *skb, int seg, 836 u64 seg_addr, int hdr_len, int sqe) 837 { 838 struct sg_list *sg = &sq->sg[sqe]; 839 const skb_frag_t *frag; 840 int offset; 841 842 if (seg < 0) 843 return sg->dma_addr[0] + (seg_addr - (u64)skb->data); 844 845 frag = &skb_shinfo(skb)->frags[seg]; 846 offset = seg_addr - (u64)skb_frag_address(frag); 847 if (skb_headlen(skb) - hdr_len) 848 seg++; 849 return sg->dma_addr[seg] + offset; 850 } 851 852 static void otx2_sqe_tso_add_sg(struct otx2_snd_queue *sq, 853 struct sg_list *list, int *offset) 854 { 855 struct nix_sqe_sg_s *sg = NULL; 856 u16 *sg_lens = NULL; 857 u64 *iova = NULL; 858 int seg; 859 860 /* Add SG descriptors with buffer addresses */ 861 for (seg = 0; seg < list->num_segs; seg++) { 862 if ((seg % MAX_SEGS_PER_SG) == 0) { 863 sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset); 864 sg->ld_type = NIX_SEND_LDTYPE_LDD; 865 sg->subdc = NIX_SUBDC_SG; 866 sg->segs = 0; 867 sg_lens = (void *)sg; 868 iova = (void *)sg + sizeof(*sg); 869 /* Next subdc always starts at a 16byte boundary. 870 * So if sg->segs is whether 2 or 3, offset += 16bytes. 871 */ 872 if ((list->num_segs - seg) >= (MAX_SEGS_PER_SG - 1)) 873 *offset += sizeof(*sg) + (3 * sizeof(u64)); 874 else 875 *offset += sizeof(*sg) + sizeof(u64); 876 } 877 sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = list->size[seg]; 878 *iova++ = list->dma_addr[seg]; 879 sg->segs++; 880 } 881 } 882 883 static void otx2_sq_append_tso(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, 884 struct sk_buff *skb, u16 qidx) 885 { 886 struct netdev_queue *txq = netdev_get_tx_queue(pfvf->netdev, qidx); 887 int hdr_len, tcp_data, seg_len, pkt_len, offset; 888 struct nix_sqe_hdr_s *sqe_hdr; 889 int first_sqe = sq->head; 890 struct sg_list list; 891 struct tso_t tso; 892 893 hdr_len = tso_start(skb, &tso); 894 895 /* Map SKB's fragments to DMA. 896 * It's done here to avoid mapping for every TSO segment's packet. 897 */ 898 if (otx2_dma_map_tso_skb(pfvf, sq, skb, first_sqe, hdr_len)) { 899 dev_kfree_skb_any(skb); 900 return; 901 } 902 903 netdev_tx_sent_queue(txq, skb->len); 904 905 tcp_data = skb->len - hdr_len; 906 while (tcp_data > 0) { 907 char *hdr; 908 909 seg_len = min_t(int, skb_shinfo(skb)->gso_size, tcp_data); 910 tcp_data -= seg_len; 911 912 /* Set SQE's SEND_HDR */ 913 memset(sq->sqe_base, 0, sq->sqe_size); 914 sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base); 915 otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx); 916 offset = sizeof(*sqe_hdr); 917 918 /* Add TSO segment's pkt header */ 919 hdr = sq->tso_hdrs->base + (sq->head * TSO_HEADER_SIZE); 920 tso_build_hdr(skb, hdr, &tso, seg_len, tcp_data == 0); 921 list.dma_addr[0] = 922 sq->tso_hdrs->iova + (sq->head * TSO_HEADER_SIZE); 923 list.size[0] = hdr_len; 924 list.num_segs = 1; 925 926 /* Add TSO segment's payload data fragments */ 927 pkt_len = hdr_len; 928 while (seg_len > 0) { 929 int size; 930 931 size = min_t(int, tso.size, seg_len); 932 933 list.size[list.num_segs] = size; 934 list.dma_addr[list.num_segs] = 935 otx2_tso_frag_dma_addr(sq, skb, 936 tso.next_frag_idx - 1, 937 (u64)tso.data, hdr_len, 938 first_sqe); 939 list.num_segs++; 940 pkt_len += size; 941 seg_len -= size; 942 tso_build_data(skb, &tso, size); 943 } 944 sqe_hdr->total = pkt_len; 945 otx2_sqe_tso_add_sg(sq, &list, &offset); 946 947 /* DMA mappings and skb needs to be freed only after last 948 * TSO segment is transmitted out. So set 'PNC' only for 949 * last segment. Also point last segment's sqe_id to first 950 * segment's SQE index where skb address and DMA mappings 951 * are saved. 952 */ 953 if (!tcp_data) { 954 sqe_hdr->pnc = 1; 955 sqe_hdr->sqe_id = first_sqe; 956 sq->sg[first_sqe].skb = (u64)skb; 957 } else { 958 sqe_hdr->pnc = 0; 959 } 960 961 sqe_hdr->sizem1 = (offset / 16) - 1; 962 963 /* Flush SQE to HW */ 964 pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx); 965 } 966 } 967 968 static bool is_hw_tso_supported(struct otx2_nic *pfvf, 969 struct sk_buff *skb) 970 { 971 int payload_len, last_seg_size; 972 973 if (test_bit(HW_TSO, &pfvf->hw.cap_flag)) 974 return true; 975 976 /* On 96xx A0, HW TSO not supported */ 977 if (!is_96xx_B0(pfvf->pdev)) 978 return false; 979 980 /* HW has an issue due to which when the payload of the last LSO 981 * segment is shorter than 16 bytes, some header fields may not 982 * be correctly modified, hence don't offload such TSO segments. 983 */ 984 985 payload_len = skb->len - skb_tcp_all_headers(skb); 986 last_seg_size = payload_len % skb_shinfo(skb)->gso_size; 987 if (last_seg_size && last_seg_size < 16) 988 return false; 989 990 return true; 991 } 992 993 static int otx2_get_sqe_count(struct otx2_nic *pfvf, struct sk_buff *skb) 994 { 995 if (!skb_shinfo(skb)->gso_size) 996 return 1; 997 998 /* HW TSO */ 999 if (is_hw_tso_supported(pfvf, skb)) 1000 return 1; 1001 1002 /* SW TSO */ 1003 return skb_shinfo(skb)->gso_segs; 1004 } 1005 1006 static bool otx2_validate_network_transport(struct sk_buff *skb) 1007 { 1008 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) || 1009 (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)) { 1010 struct udphdr *udph = udp_hdr(skb); 1011 1012 if (udph->source == htons(PTP_PORT) && 1013 udph->dest == htons(PTP_PORT)) 1014 return true; 1015 } 1016 1017 return false; 1018 } 1019 1020 static bool otx2_ptp_is_sync(struct sk_buff *skb, int *offset, bool *udp_csum_crt) 1021 { 1022 struct ethhdr *eth = (struct ethhdr *)(skb->data); 1023 u16 nix_offload_hlen = 0, inner_vhlen = 0; 1024 bool udp_hdr_present = false, is_sync; 1025 u8 *data = skb->data, *msgtype; 1026 __be16 proto = eth->h_proto; 1027 int network_depth = 0; 1028 1029 /* NIX is programmed to offload outer VLAN header 1030 * in case of single vlan protocol field holds Network header ETH_IP/V6 1031 * in case of stacked vlan protocol field holds Inner vlan (8100) 1032 */ 1033 if (skb->dev->features & NETIF_F_HW_VLAN_CTAG_TX && 1034 skb->dev->features & NETIF_F_HW_VLAN_STAG_TX) { 1035 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 1036 /* Get vlan protocol */ 1037 proto = __vlan_get_protocol(skb, eth->h_proto, NULL); 1038 /* SKB APIs like skb_transport_offset does not include 1039 * offloaded vlan header length. Need to explicitly add 1040 * the length 1041 */ 1042 nix_offload_hlen = VLAN_HLEN; 1043 inner_vhlen = VLAN_HLEN; 1044 } else if (skb->vlan_proto == htons(ETH_P_8021Q)) { 1045 nix_offload_hlen = VLAN_HLEN; 1046 } 1047 } else if (eth_type_vlan(eth->h_proto)) { 1048 proto = __vlan_get_protocol(skb, eth->h_proto, &network_depth); 1049 } 1050 1051 switch (ntohs(proto)) { 1052 case ETH_P_1588: 1053 if (network_depth) 1054 *offset = network_depth; 1055 else 1056 *offset = ETH_HLEN + nix_offload_hlen + 1057 inner_vhlen; 1058 break; 1059 case ETH_P_IP: 1060 case ETH_P_IPV6: 1061 if (!otx2_validate_network_transport(skb)) 1062 return false; 1063 1064 *offset = nix_offload_hlen + skb_transport_offset(skb) + 1065 sizeof(struct udphdr); 1066 udp_hdr_present = true; 1067 1068 } 1069 1070 msgtype = data + *offset; 1071 /* Check PTP messageId is SYNC or not */ 1072 is_sync = !(*msgtype & 0xf); 1073 if (is_sync) 1074 *udp_csum_crt = udp_hdr_present; 1075 else 1076 *offset = 0; 1077 1078 return is_sync; 1079 } 1080 1081 static void otx2_set_txtstamp(struct otx2_nic *pfvf, struct sk_buff *skb, 1082 struct otx2_snd_queue *sq, int *offset) 1083 { 1084 struct ethhdr *eth = (struct ethhdr *)(skb->data); 1085 struct ptpv2_tstamp *origin_tstamp; 1086 bool udp_csum_crt = false; 1087 unsigned int udphoff; 1088 struct timespec64 ts; 1089 int ptp_offset = 0; 1090 __wsum skb_csum; 1091 u64 iova; 1092 1093 if (unlikely(!skb_shinfo(skb)->gso_size && 1094 (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) { 1095 if (unlikely(pfvf->flags & OTX2_FLAG_PTP_ONESTEP_SYNC && 1096 otx2_ptp_is_sync(skb, &ptp_offset, &udp_csum_crt))) { 1097 origin_tstamp = (struct ptpv2_tstamp *) 1098 ((u8 *)skb->data + ptp_offset + 1099 PTP_SYNC_SEC_OFFSET); 1100 ts = ns_to_timespec64(pfvf->ptp->tstamp); 1101 origin_tstamp->seconds_msb = htons((ts.tv_sec >> 32) & 0xffff); 1102 origin_tstamp->seconds_lsb = htonl(ts.tv_sec & 0xffffffff); 1103 origin_tstamp->nanoseconds = htonl(ts.tv_nsec); 1104 /* Point to correction field in PTP packet */ 1105 ptp_offset += 8; 1106 1107 /* When user disables hw checksum, stack calculates the csum, 1108 * but it does not cover ptp timestamp which is added later. 1109 * Recalculate the checksum manually considering the timestamp. 1110 */ 1111 if (udp_csum_crt) { 1112 struct udphdr *uh = udp_hdr(skb); 1113 1114 if (skb->ip_summed != CHECKSUM_PARTIAL && uh->check != 0) { 1115 udphoff = skb_transport_offset(skb); 1116 uh->check = 0; 1117 skb_csum = skb_checksum(skb, udphoff, skb->len - udphoff, 1118 0); 1119 if (ntohs(eth->h_proto) == ETH_P_IPV6) 1120 uh->check = csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 1121 &ipv6_hdr(skb)->daddr, 1122 skb->len - udphoff, 1123 ipv6_hdr(skb)->nexthdr, 1124 skb_csum); 1125 else 1126 uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr, 1127 ip_hdr(skb)->daddr, 1128 skb->len - udphoff, 1129 IPPROTO_UDP, 1130 skb_csum); 1131 } 1132 } 1133 } else { 1134 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1135 } 1136 iova = sq->timestamps->iova + (sq->head * sizeof(u64)); 1137 otx2_sqe_add_mem(sq, offset, NIX_SENDMEMALG_E_SETTSTMP, iova, 1138 ptp_offset, pfvf->ptp->base_ns, udp_csum_crt); 1139 } else { 1140 skb_tx_timestamp(skb); 1141 } 1142 } 1143 1144 bool otx2_sq_append_skb(struct net_device *netdev, struct otx2_snd_queue *sq, 1145 struct sk_buff *skb, u16 qidx) 1146 { 1147 struct netdev_queue *txq = netdev_get_tx_queue(netdev, qidx); 1148 struct otx2_nic *pfvf = netdev_priv(netdev); 1149 int offset, num_segs, free_desc; 1150 struct nix_sqe_hdr_s *sqe_hdr; 1151 1152 /* Check if there is enough room between producer 1153 * and consumer index. 1154 */ 1155 free_desc = (sq->cons_head - sq->head - 1 + sq->sqe_cnt) & (sq->sqe_cnt - 1); 1156 if (free_desc < sq->sqe_thresh) 1157 return false; 1158 1159 if (free_desc < otx2_get_sqe_count(pfvf, skb)) 1160 return false; 1161 1162 num_segs = skb_shinfo(skb)->nr_frags + 1; 1163 1164 /* If SKB doesn't fit in a single SQE, linearize it. 1165 * TODO: Consider adding JUMP descriptor instead. 1166 */ 1167 if (unlikely(num_segs > OTX2_MAX_FRAGS_IN_SQE)) { 1168 if (__skb_linearize(skb)) { 1169 dev_kfree_skb_any(skb); 1170 return true; 1171 } 1172 num_segs = skb_shinfo(skb)->nr_frags + 1; 1173 } 1174 1175 if (skb_shinfo(skb)->gso_size && !is_hw_tso_supported(pfvf, skb)) { 1176 /* Insert vlan tag before giving pkt to tso */ 1177 if (skb_vlan_tag_present(skb)) { 1178 skb = __vlan_hwaccel_push_inside(skb); 1179 if (!skb) 1180 return true; 1181 } 1182 otx2_sq_append_tso(pfvf, sq, skb, qidx); 1183 return true; 1184 } 1185 1186 /* Set SQE's SEND_HDR. 1187 * Do not clear the first 64bit as it contains constant info. 1188 */ 1189 memset(sq->sqe_base + 8, 0, sq->sqe_size - 8); 1190 sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base); 1191 otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx); 1192 offset = sizeof(*sqe_hdr); 1193 1194 /* Add extended header if needed */ 1195 otx2_sqe_add_ext(pfvf, sq, skb, &offset); 1196 1197 /* Add SG subdesc with data frags */ 1198 if (!otx2_sqe_add_sg(pfvf, sq, skb, num_segs, &offset)) { 1199 otx2_dma_unmap_skb_frags(pfvf, &sq->sg[sq->head]); 1200 return false; 1201 } 1202 1203 otx2_set_txtstamp(pfvf, skb, sq, &offset); 1204 1205 sqe_hdr->sizem1 = (offset / 16) - 1; 1206 1207 netdev_tx_sent_queue(txq, skb->len); 1208 1209 /* Flush SQE to HW */ 1210 pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx); 1211 1212 return true; 1213 } 1214 EXPORT_SYMBOL(otx2_sq_append_skb); 1215 1216 void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, int qidx) 1217 { 1218 struct nix_cqe_rx_s *cqe; 1219 struct otx2_pool *pool; 1220 int processed_cqe = 0; 1221 u16 pool_id; 1222 u64 iova; 1223 1224 if (pfvf->xdp_prog) 1225 xdp_rxq_info_unreg(&cq->xdp_rxq); 1226 1227 if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) 1228 return; 1229 1230 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx); 1231 pool = &pfvf->qset.pool[pool_id]; 1232 1233 while (cq->pend_cqe) { 1234 cqe = (struct nix_cqe_rx_s *)otx2_get_next_cqe(cq); 1235 processed_cqe++; 1236 cq->pend_cqe--; 1237 1238 if (!cqe) 1239 continue; 1240 if (cqe->sg.segs > 1) { 1241 otx2_free_rcv_seg(pfvf, cqe, cq->cq_idx); 1242 continue; 1243 } 1244 iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM; 1245 1246 otx2_free_bufs(pfvf, pool, iova, pfvf->rbsize); 1247 } 1248 1249 /* Free CQEs to HW */ 1250 otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, 1251 ((u64)cq->cq_idx << 32) | processed_cqe); 1252 } 1253 1254 void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq) 1255 { 1256 int tx_pkts = 0, tx_bytes = 0; 1257 struct sk_buff *skb = NULL; 1258 struct otx2_snd_queue *sq; 1259 struct nix_cqe_tx_s *cqe; 1260 struct netdev_queue *txq; 1261 int processed_cqe = 0; 1262 struct sg_list *sg; 1263 int qidx; 1264 1265 qidx = cq->cq_idx - pfvf->hw.rx_queues; 1266 sq = &pfvf->qset.sq[qidx]; 1267 1268 if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) 1269 return; 1270 1271 while (cq->pend_cqe) { 1272 cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq); 1273 processed_cqe++; 1274 cq->pend_cqe--; 1275 1276 if (!cqe) 1277 continue; 1278 sg = &sq->sg[cqe->comp.sqe_id]; 1279 skb = (struct sk_buff *)sg->skb; 1280 if (skb) { 1281 tx_bytes += skb->len; 1282 tx_pkts++; 1283 otx2_dma_unmap_skb_frags(pfvf, sg); 1284 dev_kfree_skb_any(skb); 1285 sg->skb = (u64)NULL; 1286 } 1287 } 1288 1289 if (likely(tx_pkts)) { 1290 if (qidx >= pfvf->hw.tx_queues) 1291 qidx -= pfvf->hw.xdp_queues; 1292 txq = netdev_get_tx_queue(pfvf->netdev, qidx); 1293 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 1294 } 1295 /* Free CQEs to HW */ 1296 otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, 1297 ((u64)cq->cq_idx << 32) | processed_cqe); 1298 } 1299 1300 int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable) 1301 { 1302 struct msg_req *msg; 1303 int err; 1304 1305 mutex_lock(&pfvf->mbox.lock); 1306 if (enable) 1307 msg = otx2_mbox_alloc_msg_nix_lf_start_rx(&pfvf->mbox); 1308 else 1309 msg = otx2_mbox_alloc_msg_nix_lf_stop_rx(&pfvf->mbox); 1310 1311 if (!msg) { 1312 mutex_unlock(&pfvf->mbox.lock); 1313 return -ENOMEM; 1314 } 1315 1316 err = otx2_sync_mbox_msg(&pfvf->mbox); 1317 mutex_unlock(&pfvf->mbox.lock); 1318 return err; 1319 } 1320 1321 void otx2_free_pending_sqe(struct otx2_nic *pfvf) 1322 { 1323 int tx_pkts = 0, tx_bytes = 0; 1324 struct sk_buff *skb = NULL; 1325 struct otx2_snd_queue *sq; 1326 struct netdev_queue *txq; 1327 struct sg_list *sg; 1328 int sq_idx, sqe; 1329 1330 for (sq_idx = 0; sq_idx < pfvf->hw.tx_queues; sq_idx++) { 1331 sq = &pfvf->qset.sq[sq_idx]; 1332 for (sqe = 0; sqe < sq->sqe_cnt; sqe++) { 1333 sg = &sq->sg[sqe]; 1334 skb = (struct sk_buff *)sg->skb; 1335 if (skb) { 1336 tx_bytes += skb->len; 1337 tx_pkts++; 1338 otx2_dma_unmap_skb_frags(pfvf, sg); 1339 dev_kfree_skb_any(skb); 1340 sg->skb = (u64)NULL; 1341 } 1342 } 1343 1344 if (!tx_pkts) 1345 continue; 1346 txq = netdev_get_tx_queue(pfvf->netdev, sq_idx); 1347 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 1348 tx_pkts = 0; 1349 tx_bytes = 0; 1350 } 1351 } 1352 1353 static void otx2_xdp_sqe_add_sg(struct otx2_snd_queue *sq, u64 dma_addr, 1354 int len, int *offset) 1355 { 1356 struct nix_sqe_sg_s *sg = NULL; 1357 u64 *iova = NULL; 1358 1359 sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset); 1360 sg->ld_type = NIX_SEND_LDTYPE_LDD; 1361 sg->subdc = NIX_SUBDC_SG; 1362 sg->segs = 1; 1363 sg->seg1_size = len; 1364 iova = (void *)sg + sizeof(*sg); 1365 *iova = dma_addr; 1366 *offset += sizeof(*sg) + sizeof(u64); 1367 1368 sq->sg[sq->head].dma_addr[0] = dma_addr; 1369 sq->sg[sq->head].size[0] = len; 1370 sq->sg[sq->head].num_segs = 1; 1371 } 1372 1373 bool otx2_xdp_sq_append_pkt(struct otx2_nic *pfvf, u64 iova, int len, u16 qidx) 1374 { 1375 struct nix_sqe_hdr_s *sqe_hdr; 1376 struct otx2_snd_queue *sq; 1377 int offset, free_sqe; 1378 1379 sq = &pfvf->qset.sq[qidx]; 1380 free_sqe = (sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb; 1381 if (free_sqe < sq->sqe_thresh) 1382 return false; 1383 1384 memset(sq->sqe_base + 8, 0, sq->sqe_size - 8); 1385 1386 sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base); 1387 1388 if (!sqe_hdr->total) { 1389 sqe_hdr->aura = sq->aura_id; 1390 sqe_hdr->df = 1; 1391 sqe_hdr->sq = qidx; 1392 sqe_hdr->pnc = 1; 1393 } 1394 sqe_hdr->total = len; 1395 sqe_hdr->sqe_id = sq->head; 1396 1397 offset = sizeof(*sqe_hdr); 1398 1399 otx2_xdp_sqe_add_sg(sq, iova, len, &offset); 1400 sqe_hdr->sizem1 = (offset / 16) - 1; 1401 pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx); 1402 1403 return true; 1404 } 1405 1406 static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf, 1407 struct bpf_prog *prog, 1408 struct nix_cqe_rx_s *cqe, 1409 struct otx2_cq_queue *cq, 1410 bool *need_xdp_flush) 1411 { 1412 unsigned char *hard_start; 1413 int qidx = cq->cq_idx; 1414 struct xdp_buff xdp; 1415 struct page *page; 1416 u64 iova, pa; 1417 u32 act; 1418 int err; 1419 1420 iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM; 1421 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova); 1422 page = virt_to_page(phys_to_virt(pa)); 1423 1424 xdp_init_buff(&xdp, pfvf->rbsize, &cq->xdp_rxq); 1425 1426 hard_start = (unsigned char *)phys_to_virt(pa); 1427 xdp_prepare_buff(&xdp, hard_start, OTX2_HEAD_ROOM, 1428 cqe->sg.seg_size, false); 1429 1430 act = bpf_prog_run_xdp(prog, &xdp); 1431 1432 switch (act) { 1433 case XDP_PASS: 1434 break; 1435 case XDP_TX: 1436 qidx += pfvf->hw.tx_queues; 1437 cq->pool_ptrs++; 1438 return otx2_xdp_sq_append_pkt(pfvf, iova, 1439 cqe->sg.seg_size, qidx); 1440 case XDP_REDIRECT: 1441 cq->pool_ptrs++; 1442 err = xdp_do_redirect(pfvf->netdev, &xdp, prog); 1443 1444 otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize, 1445 DMA_FROM_DEVICE); 1446 if (!err) { 1447 *need_xdp_flush = true; 1448 return true; 1449 } 1450 put_page(page); 1451 break; 1452 default: 1453 bpf_warn_invalid_xdp_action(pfvf->netdev, prog, act); 1454 break; 1455 case XDP_ABORTED: 1456 trace_xdp_exception(pfvf->netdev, prog, act); 1457 break; 1458 case XDP_DROP: 1459 otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize, 1460 DMA_FROM_DEVICE); 1461 put_page(page); 1462 cq->pool_ptrs++; 1463 return true; 1464 } 1465 return false; 1466 } 1467