xref: /linux/drivers/net/ethernet/marvell/octeontx2/nic/otx2_txrx.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/etherdevice.h>
9 #include <net/ip.h>
10 #include <net/tso.h>
11 #include <linux/bpf.h>
12 #include <linux/bpf_trace.h>
13 
14 #include "otx2_reg.h"
15 #include "otx2_common.h"
16 #include "otx2_struct.h"
17 #include "otx2_txrx.h"
18 #include "otx2_ptp.h"
19 #include "cn10k.h"
20 
21 #define CQE_ADDR(CQ, idx) ((CQ)->cqe_base + ((CQ)->cqe_size * (idx)))
22 static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf,
23 				     struct bpf_prog *prog,
24 				     struct nix_cqe_rx_s *cqe,
25 				     struct otx2_cq_queue *cq);
26 
27 static int otx2_nix_cq_op_status(struct otx2_nic *pfvf,
28 				 struct otx2_cq_queue *cq)
29 {
30 	u64 incr = (u64)(cq->cq_idx) << 32;
31 	u64 status;
32 
33 	status = otx2_atomic64_fetch_add(incr, pfvf->cq_op_addr);
34 
35 	if (unlikely(status & BIT_ULL(CQ_OP_STAT_OP_ERR) ||
36 		     status & BIT_ULL(CQ_OP_STAT_CQ_ERR))) {
37 		dev_err(pfvf->dev, "CQ stopped due to error");
38 		return -EINVAL;
39 	}
40 
41 	cq->cq_tail = status & 0xFFFFF;
42 	cq->cq_head = (status >> 20) & 0xFFFFF;
43 	if (cq->cq_tail < cq->cq_head)
44 		cq->pend_cqe = (cq->cqe_cnt - cq->cq_head) +
45 				cq->cq_tail;
46 	else
47 		cq->pend_cqe = cq->cq_tail - cq->cq_head;
48 
49 	return 0;
50 }
51 
52 static struct nix_cqe_hdr_s *otx2_get_next_cqe(struct otx2_cq_queue *cq)
53 {
54 	struct nix_cqe_hdr_s *cqe_hdr;
55 
56 	cqe_hdr = (struct nix_cqe_hdr_s *)CQE_ADDR(cq, cq->cq_head);
57 	if (cqe_hdr->cqe_type == NIX_XQE_TYPE_INVALID)
58 		return NULL;
59 
60 	cq->cq_head++;
61 	cq->cq_head &= (cq->cqe_cnt - 1);
62 
63 	return cqe_hdr;
64 }
65 
66 static unsigned int frag_num(unsigned int i)
67 {
68 #ifdef __BIG_ENDIAN
69 	return (i & ~3) + 3 - (i & 3);
70 #else
71 	return i;
72 #endif
73 }
74 
75 static dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf,
76 					struct sk_buff *skb, int seg, int *len)
77 {
78 	const skb_frag_t *frag;
79 	struct page *page;
80 	int offset;
81 
82 	/* First segment is always skb->data */
83 	if (!seg) {
84 		page = virt_to_page(skb->data);
85 		offset = offset_in_page(skb->data);
86 		*len = skb_headlen(skb);
87 	} else {
88 		frag = &skb_shinfo(skb)->frags[seg - 1];
89 		page = skb_frag_page(frag);
90 		offset = skb_frag_off(frag);
91 		*len = skb_frag_size(frag);
92 	}
93 	return otx2_dma_map_page(pfvf, page, offset, *len, DMA_TO_DEVICE);
94 }
95 
96 static void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg)
97 {
98 	int seg;
99 
100 	for (seg = 0; seg < sg->num_segs; seg++) {
101 		otx2_dma_unmap_page(pfvf, sg->dma_addr[seg],
102 				    sg->size[seg], DMA_TO_DEVICE);
103 	}
104 	sg->num_segs = 0;
105 }
106 
107 static void otx2_xdp_snd_pkt_handler(struct otx2_nic *pfvf,
108 				     struct otx2_snd_queue *sq,
109 				 struct nix_cqe_tx_s *cqe)
110 {
111 	struct nix_send_comp_s *snd_comp = &cqe->comp;
112 	struct sg_list *sg;
113 	struct page *page;
114 	u64 pa;
115 
116 	sg = &sq->sg[snd_comp->sqe_id];
117 
118 	pa = otx2_iova_to_phys(pfvf->iommu_domain, sg->dma_addr[0]);
119 	otx2_dma_unmap_page(pfvf, sg->dma_addr[0],
120 			    sg->size[0], DMA_TO_DEVICE);
121 	page = virt_to_page(phys_to_virt(pa));
122 	put_page(page);
123 }
124 
125 static void otx2_snd_pkt_handler(struct otx2_nic *pfvf,
126 				 struct otx2_cq_queue *cq,
127 				 struct otx2_snd_queue *sq,
128 				 struct nix_cqe_tx_s *cqe,
129 				 int budget, int *tx_pkts, int *tx_bytes)
130 {
131 	struct nix_send_comp_s *snd_comp = &cqe->comp;
132 	struct skb_shared_hwtstamps ts;
133 	struct sk_buff *skb = NULL;
134 	u64 timestamp, tsns;
135 	struct sg_list *sg;
136 	int err;
137 
138 	if (unlikely(snd_comp->status) && netif_msg_tx_err(pfvf))
139 		net_err_ratelimited("%s: TX%d: Error in send CQ status:%x\n",
140 				    pfvf->netdev->name, cq->cint_idx,
141 				    snd_comp->status);
142 
143 	sg = &sq->sg[snd_comp->sqe_id];
144 	skb = (struct sk_buff *)sg->skb;
145 	if (unlikely(!skb))
146 		return;
147 
148 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
149 		timestamp = ((u64 *)sq->timestamps->base)[snd_comp->sqe_id];
150 		if (timestamp != 1) {
151 			timestamp = pfvf->ptp->convert_tx_ptp_tstmp(timestamp);
152 			err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns);
153 			if (!err) {
154 				memset(&ts, 0, sizeof(ts));
155 				ts.hwtstamp = ns_to_ktime(tsns);
156 				skb_tstamp_tx(skb, &ts);
157 			}
158 		}
159 	}
160 
161 	*tx_bytes += skb->len;
162 	(*tx_pkts)++;
163 	otx2_dma_unmap_skb_frags(pfvf, sg);
164 	napi_consume_skb(skb, budget);
165 	sg->skb = (u64)NULL;
166 }
167 
168 static void otx2_set_rxtstamp(struct otx2_nic *pfvf,
169 			      struct sk_buff *skb, void *data)
170 {
171 	u64 timestamp, tsns;
172 	int err;
173 
174 	if (!(pfvf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED))
175 		return;
176 
177 	timestamp = pfvf->ptp->convert_rx_ptp_tstmp(*(u64 *)data);
178 	/* The first 8 bytes is the timestamp */
179 	err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns);
180 	if (err)
181 		return;
182 
183 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(tsns);
184 }
185 
186 static bool otx2_skb_add_frag(struct otx2_nic *pfvf, struct sk_buff *skb,
187 			      u64 iova, int len, struct nix_rx_parse_s *parse,
188 			      int qidx)
189 {
190 	struct page *page;
191 	int off = 0;
192 	void *va;
193 
194 	va = phys_to_virt(otx2_iova_to_phys(pfvf->iommu_domain, iova));
195 
196 	if (likely(!skb_shinfo(skb)->nr_frags)) {
197 		/* Check if data starts at some nonzero offset
198 		 * from the start of the buffer.  For now the
199 		 * only possible offset is 8 bytes in the case
200 		 * where packet is prepended by a timestamp.
201 		 */
202 		if (parse->laptr) {
203 			otx2_set_rxtstamp(pfvf, skb, va);
204 			off = OTX2_HW_TIMESTAMP_LEN;
205 		}
206 	}
207 
208 	page = virt_to_page(va);
209 	if (likely(skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS)) {
210 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
211 				va - page_address(page) + off,
212 				len - off, pfvf->rbsize);
213 
214 		otx2_dma_unmap_page(pfvf, iova - OTX2_HEAD_ROOM,
215 				    pfvf->rbsize, DMA_FROM_DEVICE);
216 		return true;
217 	}
218 
219 	/* If more than MAX_SKB_FRAGS fragments are received then
220 	 * give back those buffer pointers to hardware for reuse.
221 	 */
222 	pfvf->hw_ops->aura_freeptr(pfvf, qidx, iova & ~0x07ULL);
223 
224 	return false;
225 }
226 
227 static void otx2_set_rxhash(struct otx2_nic *pfvf,
228 			    struct nix_cqe_rx_s *cqe, struct sk_buff *skb)
229 {
230 	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
231 	struct otx2_rss_info *rss;
232 	u32 hash = 0;
233 
234 	if (!(pfvf->netdev->features & NETIF_F_RXHASH))
235 		return;
236 
237 	rss = &pfvf->hw.rss_info;
238 	if (rss->flowkey_cfg) {
239 		if (rss->flowkey_cfg &
240 		    ~(NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6))
241 			hash_type = PKT_HASH_TYPE_L4;
242 		else
243 			hash_type = PKT_HASH_TYPE_L3;
244 		hash = cqe->hdr.flow_tag;
245 	}
246 	skb_set_hash(skb, hash, hash_type);
247 }
248 
249 static void otx2_free_rcv_seg(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe,
250 			      int qidx)
251 {
252 	struct nix_rx_sg_s *sg = &cqe->sg;
253 	void *end, *start;
254 	u64 *seg_addr;
255 	int seg;
256 
257 	start = (void *)sg;
258 	end = start + ((cqe->parse.desc_sizem1 + 1) * 16);
259 	while (start < end) {
260 		sg = (struct nix_rx_sg_s *)start;
261 		seg_addr = &sg->seg_addr;
262 		for (seg = 0; seg < sg->segs; seg++, seg_addr++)
263 			pfvf->hw_ops->aura_freeptr(pfvf, qidx,
264 						   *seg_addr & ~0x07ULL);
265 		start += sizeof(*sg);
266 	}
267 }
268 
269 static bool otx2_check_rcv_errors(struct otx2_nic *pfvf,
270 				  struct nix_cqe_rx_s *cqe, int qidx)
271 {
272 	struct otx2_drv_stats *stats = &pfvf->hw.drv_stats;
273 	struct nix_rx_parse_s *parse = &cqe->parse;
274 
275 	if (netif_msg_rx_err(pfvf))
276 		netdev_err(pfvf->netdev,
277 			   "RQ%d: Error pkt with errlev:0x%x errcode:0x%x\n",
278 			   qidx, parse->errlev, parse->errcode);
279 
280 	if (parse->errlev == NPC_ERRLVL_RE) {
281 		switch (parse->errcode) {
282 		case ERRCODE_FCS:
283 		case ERRCODE_FCS_RCV:
284 			atomic_inc(&stats->rx_fcs_errs);
285 			break;
286 		case ERRCODE_UNDERSIZE:
287 			atomic_inc(&stats->rx_undersize_errs);
288 			break;
289 		case ERRCODE_OVERSIZE:
290 			atomic_inc(&stats->rx_oversize_errs);
291 			break;
292 		case ERRCODE_OL2_LEN_MISMATCH:
293 			atomic_inc(&stats->rx_len_errs);
294 			break;
295 		default:
296 			atomic_inc(&stats->rx_other_errs);
297 			break;
298 		}
299 	} else if (parse->errlev == NPC_ERRLVL_NIX) {
300 		switch (parse->errcode) {
301 		case ERRCODE_OL3_LEN:
302 		case ERRCODE_OL4_LEN:
303 		case ERRCODE_IL3_LEN:
304 		case ERRCODE_IL4_LEN:
305 			atomic_inc(&stats->rx_len_errs);
306 			break;
307 		case ERRCODE_OL4_CSUM:
308 		case ERRCODE_IL4_CSUM:
309 			atomic_inc(&stats->rx_csum_errs);
310 			break;
311 		default:
312 			atomic_inc(&stats->rx_other_errs);
313 			break;
314 		}
315 	} else {
316 		atomic_inc(&stats->rx_other_errs);
317 		/* For now ignore all the NPC parser errors and
318 		 * pass the packets to stack.
319 		 */
320 		return false;
321 	}
322 
323 	/* If RXALL is enabled pass on packets to stack. */
324 	if (pfvf->netdev->features & NETIF_F_RXALL)
325 		return false;
326 
327 	/* Free buffer back to pool */
328 	if (cqe->sg.segs)
329 		otx2_free_rcv_seg(pfvf, cqe, qidx);
330 	return true;
331 }
332 
333 static void otx2_rcv_pkt_handler(struct otx2_nic *pfvf,
334 				 struct napi_struct *napi,
335 				 struct otx2_cq_queue *cq,
336 				 struct nix_cqe_rx_s *cqe)
337 {
338 	struct nix_rx_parse_s *parse = &cqe->parse;
339 	struct nix_rx_sg_s *sg = &cqe->sg;
340 	struct sk_buff *skb = NULL;
341 	void *end, *start;
342 	u64 *seg_addr;
343 	u16 *seg_size;
344 	int seg;
345 
346 	if (unlikely(parse->errlev || parse->errcode)) {
347 		if (otx2_check_rcv_errors(pfvf, cqe, cq->cq_idx))
348 			return;
349 	}
350 
351 	if (pfvf->xdp_prog)
352 		if (otx2_xdp_rcv_pkt_handler(pfvf, pfvf->xdp_prog, cqe, cq))
353 			return;
354 
355 	skb = napi_get_frags(napi);
356 	if (unlikely(!skb))
357 		return;
358 
359 	start = (void *)sg;
360 	end = start + ((cqe->parse.desc_sizem1 + 1) * 16);
361 	while (start < end) {
362 		sg = (struct nix_rx_sg_s *)start;
363 		seg_addr = &sg->seg_addr;
364 		seg_size = (void *)sg;
365 		for (seg = 0; seg < sg->segs; seg++, seg_addr++) {
366 			if (otx2_skb_add_frag(pfvf, skb, *seg_addr,
367 					      seg_size[seg], parse, cq->cq_idx))
368 				cq->pool_ptrs++;
369 		}
370 		start += sizeof(*sg);
371 	}
372 	otx2_set_rxhash(pfvf, cqe, skb);
373 
374 	skb_record_rx_queue(skb, cq->cq_idx);
375 	if (pfvf->netdev->features & NETIF_F_RXCSUM)
376 		skb->ip_summed = CHECKSUM_UNNECESSARY;
377 
378 	napi_gro_frags(napi);
379 }
380 
381 static int otx2_rx_napi_handler(struct otx2_nic *pfvf,
382 				struct napi_struct *napi,
383 				struct otx2_cq_queue *cq, int budget)
384 {
385 	struct nix_cqe_rx_s *cqe;
386 	int processed_cqe = 0;
387 
388 	if (cq->pend_cqe >= budget)
389 		goto process_cqe;
390 
391 	if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
392 		return 0;
393 
394 process_cqe:
395 	while (likely(processed_cqe < budget) && cq->pend_cqe) {
396 		cqe = (struct nix_cqe_rx_s *)CQE_ADDR(cq, cq->cq_head);
397 		if (cqe->hdr.cqe_type == NIX_XQE_TYPE_INVALID ||
398 		    !cqe->sg.seg_addr) {
399 			if (!processed_cqe)
400 				return 0;
401 			break;
402 		}
403 		cq->cq_head++;
404 		cq->cq_head &= (cq->cqe_cnt - 1);
405 
406 		otx2_rcv_pkt_handler(pfvf, napi, cq, cqe);
407 
408 		cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
409 		cqe->sg.seg_addr = 0x00;
410 		processed_cqe++;
411 		cq->pend_cqe--;
412 	}
413 
414 	/* Free CQEs to HW */
415 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
416 		     ((u64)cq->cq_idx << 32) | processed_cqe);
417 
418 	return processed_cqe;
419 }
420 
421 void otx2_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq)
422 {
423 	struct otx2_nic *pfvf = dev;
424 	dma_addr_t bufptr;
425 
426 	while (cq->pool_ptrs) {
427 		if (otx2_alloc_buffer(pfvf, cq, &bufptr))
428 			break;
429 		otx2_aura_freeptr(pfvf, cq->cq_idx, bufptr + OTX2_HEAD_ROOM);
430 		cq->pool_ptrs--;
431 	}
432 }
433 
434 static int otx2_tx_napi_handler(struct otx2_nic *pfvf,
435 				struct otx2_cq_queue *cq, int budget)
436 {
437 	int tx_pkts = 0, tx_bytes = 0, qidx;
438 	struct nix_cqe_tx_s *cqe;
439 	int processed_cqe = 0;
440 
441 	if (cq->pend_cqe >= budget)
442 		goto process_cqe;
443 
444 	if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
445 		return 0;
446 
447 process_cqe:
448 	while (likely(processed_cqe < budget) && cq->pend_cqe) {
449 		cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq);
450 		if (unlikely(!cqe)) {
451 			if (!processed_cqe)
452 				return 0;
453 			break;
454 		}
455 		if (cq->cq_type == CQ_XDP) {
456 			qidx = cq->cq_idx - pfvf->hw.rx_queues;
457 			otx2_xdp_snd_pkt_handler(pfvf, &pfvf->qset.sq[qidx],
458 						 cqe);
459 		} else {
460 			otx2_snd_pkt_handler(pfvf, cq,
461 					     &pfvf->qset.sq[cq->cint_idx],
462 					     cqe, budget, &tx_pkts, &tx_bytes);
463 		}
464 		cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
465 		processed_cqe++;
466 		cq->pend_cqe--;
467 	}
468 
469 	/* Free CQEs to HW */
470 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
471 		     ((u64)cq->cq_idx << 32) | processed_cqe);
472 
473 	if (likely(tx_pkts)) {
474 		struct netdev_queue *txq;
475 
476 		txq = netdev_get_tx_queue(pfvf->netdev, cq->cint_idx);
477 		netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
478 		/* Check if queue was stopped earlier due to ring full */
479 		smp_mb();
480 		if (netif_tx_queue_stopped(txq) &&
481 		    netif_carrier_ok(pfvf->netdev))
482 			netif_tx_wake_queue(txq);
483 	}
484 	return 0;
485 }
486 
487 static void otx2_adjust_adaptive_coalese(struct otx2_nic *pfvf, struct otx2_cq_poll *cq_poll)
488 {
489 	struct dim_sample dim_sample;
490 	u64 rx_frames, rx_bytes;
491 
492 	rx_frames = OTX2_GET_RX_STATS(RX_BCAST) + OTX2_GET_RX_STATS(RX_MCAST) +
493 		OTX2_GET_RX_STATS(RX_UCAST);
494 	rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
495 	dim_update_sample(pfvf->napi_events, rx_frames, rx_bytes, &dim_sample);
496 	net_dim(&cq_poll->dim, dim_sample);
497 }
498 
499 int otx2_napi_handler(struct napi_struct *napi, int budget)
500 {
501 	struct otx2_cq_queue *rx_cq = NULL;
502 	struct otx2_cq_poll *cq_poll;
503 	int workdone = 0, cq_idx, i;
504 	struct otx2_cq_queue *cq;
505 	struct otx2_qset *qset;
506 	struct otx2_nic *pfvf;
507 
508 	cq_poll = container_of(napi, struct otx2_cq_poll, napi);
509 	pfvf = (struct otx2_nic *)cq_poll->dev;
510 	qset = &pfvf->qset;
511 
512 	for (i = 0; i < CQS_PER_CINT; i++) {
513 		cq_idx = cq_poll->cq_ids[i];
514 		if (unlikely(cq_idx == CINT_INVALID_CQ))
515 			continue;
516 		cq = &qset->cq[cq_idx];
517 		if (cq->cq_type == CQ_RX) {
518 			rx_cq = cq;
519 			workdone += otx2_rx_napi_handler(pfvf, napi,
520 							 cq, budget);
521 		} else {
522 			workdone += otx2_tx_napi_handler(pfvf, cq, budget);
523 		}
524 	}
525 
526 	if (rx_cq && rx_cq->pool_ptrs)
527 		pfvf->hw_ops->refill_pool_ptrs(pfvf, rx_cq);
528 	/* Clear the IRQ */
529 	otx2_write64(pfvf, NIX_LF_CINTX_INT(cq_poll->cint_idx), BIT_ULL(0));
530 
531 	if (workdone < budget && napi_complete_done(napi, workdone)) {
532 		/* If interface is going down, don't re-enable IRQ */
533 		if (pfvf->flags & OTX2_FLAG_INTF_DOWN)
534 			return workdone;
535 
536 		/* Check for adaptive interrupt coalesce */
537 		if (workdone != 0 &&
538 		    ((pfvf->flags & OTX2_FLAG_ADPTV_INT_COAL_ENABLED) ==
539 		     OTX2_FLAG_ADPTV_INT_COAL_ENABLED)) {
540 			/* Adjust irq coalese using net_dim */
541 			otx2_adjust_adaptive_coalese(pfvf, cq_poll);
542 			/* Update irq coalescing */
543 			for (i = 0; i < pfvf->hw.cint_cnt; i++)
544 				otx2_config_irq_coalescing(pfvf, i);
545 		}
546 
547 		/* Re-enable interrupts */
548 		otx2_write64(pfvf, NIX_LF_CINTX_ENA_W1S(cq_poll->cint_idx),
549 			     BIT_ULL(0));
550 	}
551 	return workdone;
552 }
553 
554 void otx2_sqe_flush(void *dev, struct otx2_snd_queue *sq,
555 		    int size, int qidx)
556 {
557 	u64 status;
558 
559 	/* Packet data stores should finish before SQE is flushed to HW */
560 	dma_wmb();
561 
562 	do {
563 		memcpy(sq->lmt_addr, sq->sqe_base, size);
564 		status = otx2_lmt_flush(sq->io_addr);
565 	} while (status == 0);
566 
567 	sq->head++;
568 	sq->head &= (sq->sqe_cnt - 1);
569 }
570 
571 #define MAX_SEGS_PER_SG	3
572 /* Add SQE scatter/gather subdescriptor structure */
573 static bool otx2_sqe_add_sg(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
574 			    struct sk_buff *skb, int num_segs, int *offset)
575 {
576 	struct nix_sqe_sg_s *sg = NULL;
577 	u64 dma_addr, *iova = NULL;
578 	u16 *sg_lens = NULL;
579 	int seg, len;
580 
581 	sq->sg[sq->head].num_segs = 0;
582 
583 	for (seg = 0; seg < num_segs; seg++) {
584 		if ((seg % MAX_SEGS_PER_SG) == 0) {
585 			sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
586 			sg->ld_type = NIX_SEND_LDTYPE_LDD;
587 			sg->subdc = NIX_SUBDC_SG;
588 			sg->segs = 0;
589 			sg_lens = (void *)sg;
590 			iova = (void *)sg + sizeof(*sg);
591 			/* Next subdc always starts at a 16byte boundary.
592 			 * So if sg->segs is whether 2 or 3, offset += 16bytes.
593 			 */
594 			if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
595 				*offset += sizeof(*sg) + (3 * sizeof(u64));
596 			else
597 				*offset += sizeof(*sg) + sizeof(u64);
598 		}
599 		dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
600 		if (dma_mapping_error(pfvf->dev, dma_addr))
601 			return false;
602 
603 		sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = len;
604 		sg->segs++;
605 		*iova++ = dma_addr;
606 
607 		/* Save DMA mapping info for later unmapping */
608 		sq->sg[sq->head].dma_addr[seg] = dma_addr;
609 		sq->sg[sq->head].size[seg] = len;
610 		sq->sg[sq->head].num_segs++;
611 	}
612 
613 	sq->sg[sq->head].skb = (u64)skb;
614 	return true;
615 }
616 
617 /* Add SQE extended header subdescriptor */
618 static void otx2_sqe_add_ext(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
619 			     struct sk_buff *skb, int *offset)
620 {
621 	struct nix_sqe_ext_s *ext;
622 
623 	ext = (struct nix_sqe_ext_s *)(sq->sqe_base + *offset);
624 	ext->subdc = NIX_SUBDC_EXT;
625 	if (skb_shinfo(skb)->gso_size) {
626 		ext->lso = 1;
627 		ext->lso_sb = skb_transport_offset(skb) + tcp_hdrlen(skb);
628 		ext->lso_mps = skb_shinfo(skb)->gso_size;
629 
630 		/* Only TSOv4 and TSOv6 GSO offloads are supported */
631 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
632 			ext->lso_format = pfvf->hw.lso_tsov4_idx;
633 
634 			/* HW adds payload size to 'ip_hdr->tot_len' while
635 			 * sending TSO segment, hence set payload length
636 			 * in IP header of the packet to just header length.
637 			 */
638 			ip_hdr(skb)->tot_len =
639 				htons(ext->lso_sb - skb_network_offset(skb));
640 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
641 			ext->lso_format = pfvf->hw.lso_tsov6_idx;
642 
643 			ipv6_hdr(skb)->payload_len =
644 				htons(ext->lso_sb - skb_network_offset(skb));
645 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
646 			__be16 l3_proto = vlan_get_protocol(skb);
647 			struct udphdr *udph = udp_hdr(skb);
648 			u16 iplen;
649 
650 			ext->lso_sb = skb_transport_offset(skb) +
651 					sizeof(struct udphdr);
652 
653 			/* HW adds payload size to length fields in IP and
654 			 * UDP headers while segmentation, hence adjust the
655 			 * lengths to just header sizes.
656 			 */
657 			iplen = htons(ext->lso_sb - skb_network_offset(skb));
658 			if (l3_proto == htons(ETH_P_IP)) {
659 				ip_hdr(skb)->tot_len = iplen;
660 				ext->lso_format = pfvf->hw.lso_udpv4_idx;
661 			} else {
662 				ipv6_hdr(skb)->payload_len = iplen;
663 				ext->lso_format = pfvf->hw.lso_udpv6_idx;
664 			}
665 
666 			udph->len = htons(sizeof(struct udphdr));
667 		}
668 	} else if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
669 		ext->tstmp = 1;
670 	}
671 
672 #define OTX2_VLAN_PTR_OFFSET     (ETH_HLEN - ETH_TLEN)
673 	if (skb_vlan_tag_present(skb)) {
674 		if (skb->vlan_proto == htons(ETH_P_8021Q)) {
675 			ext->vlan1_ins_ena = 1;
676 			ext->vlan1_ins_ptr = OTX2_VLAN_PTR_OFFSET;
677 			ext->vlan1_ins_tci = skb_vlan_tag_get(skb);
678 		} else if (skb->vlan_proto == htons(ETH_P_8021AD)) {
679 			ext->vlan0_ins_ena = 1;
680 			ext->vlan0_ins_ptr = OTX2_VLAN_PTR_OFFSET;
681 			ext->vlan0_ins_tci = skb_vlan_tag_get(skb);
682 		}
683 	}
684 
685 	*offset += sizeof(*ext);
686 }
687 
688 static void otx2_sqe_add_mem(struct otx2_snd_queue *sq, int *offset,
689 			     int alg, u64 iova)
690 {
691 	struct nix_sqe_mem_s *mem;
692 
693 	mem = (struct nix_sqe_mem_s *)(sq->sqe_base + *offset);
694 	mem->subdc = NIX_SUBDC_MEM;
695 	mem->alg = alg;
696 	mem->wmem = 1; /* wait for the memory operation */
697 	mem->addr = iova;
698 
699 	*offset += sizeof(*mem);
700 }
701 
702 /* Add SQE header subdescriptor structure */
703 static void otx2_sqe_add_hdr(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
704 			     struct nix_sqe_hdr_s *sqe_hdr,
705 			     struct sk_buff *skb, u16 qidx)
706 {
707 	int proto = 0;
708 
709 	/* Check if SQE was framed before, if yes then no need to
710 	 * set these constants again and again.
711 	 */
712 	if (!sqe_hdr->total) {
713 		/* Don't free Tx buffers to Aura */
714 		sqe_hdr->df = 1;
715 		sqe_hdr->aura = sq->aura_id;
716 		/* Post a CQE Tx after pkt transmission */
717 		sqe_hdr->pnc = 1;
718 		sqe_hdr->sq = qidx;
719 	}
720 	sqe_hdr->total = skb->len;
721 	/* Set SQE identifier which will be used later for freeing SKB */
722 	sqe_hdr->sqe_id = sq->head;
723 
724 	/* Offload TCP/UDP checksum to HW */
725 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
726 		sqe_hdr->ol3ptr = skb_network_offset(skb);
727 		sqe_hdr->ol4ptr = skb_transport_offset(skb);
728 		/* get vlan protocol Ethertype */
729 		if (eth_type_vlan(skb->protocol))
730 			skb->protocol = vlan_get_protocol(skb);
731 
732 		if (skb->protocol == htons(ETH_P_IP)) {
733 			proto = ip_hdr(skb)->protocol;
734 			/* In case of TSO, HW needs this to be explicitly set.
735 			 * So set this always, instead of adding a check.
736 			 */
737 			sqe_hdr->ol3type = NIX_SENDL3TYPE_IP4_CKSUM;
738 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
739 			proto = ipv6_hdr(skb)->nexthdr;
740 			sqe_hdr->ol3type = NIX_SENDL3TYPE_IP6;
741 		}
742 
743 		if (proto == IPPROTO_TCP)
744 			sqe_hdr->ol4type = NIX_SENDL4TYPE_TCP_CKSUM;
745 		else if (proto == IPPROTO_UDP)
746 			sqe_hdr->ol4type = NIX_SENDL4TYPE_UDP_CKSUM;
747 	}
748 }
749 
750 static int otx2_dma_map_tso_skb(struct otx2_nic *pfvf,
751 				struct otx2_snd_queue *sq,
752 				struct sk_buff *skb, int sqe, int hdr_len)
753 {
754 	int num_segs = skb_shinfo(skb)->nr_frags + 1;
755 	struct sg_list *sg = &sq->sg[sqe];
756 	u64 dma_addr;
757 	int seg, len;
758 
759 	sg->num_segs = 0;
760 
761 	/* Get payload length at skb->data */
762 	len = skb_headlen(skb) - hdr_len;
763 
764 	for (seg = 0; seg < num_segs; seg++) {
765 		/* Skip skb->data, if there is no payload */
766 		if (!seg && !len)
767 			continue;
768 		dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
769 		if (dma_mapping_error(pfvf->dev, dma_addr))
770 			goto unmap;
771 
772 		/* Save DMA mapping info for later unmapping */
773 		sg->dma_addr[sg->num_segs] = dma_addr;
774 		sg->size[sg->num_segs] = len;
775 		sg->num_segs++;
776 	}
777 	return 0;
778 unmap:
779 	otx2_dma_unmap_skb_frags(pfvf, sg);
780 	return -EINVAL;
781 }
782 
783 static u64 otx2_tso_frag_dma_addr(struct otx2_snd_queue *sq,
784 				  struct sk_buff *skb, int seg,
785 				  u64 seg_addr, int hdr_len, int sqe)
786 {
787 	struct sg_list *sg = &sq->sg[sqe];
788 	const skb_frag_t *frag;
789 	int offset;
790 
791 	if (seg < 0)
792 		return sg->dma_addr[0] + (seg_addr - (u64)skb->data);
793 
794 	frag = &skb_shinfo(skb)->frags[seg];
795 	offset = seg_addr - (u64)skb_frag_address(frag);
796 	if (skb_headlen(skb) - hdr_len)
797 		seg++;
798 	return sg->dma_addr[seg] + offset;
799 }
800 
801 static void otx2_sqe_tso_add_sg(struct otx2_snd_queue *sq,
802 				struct sg_list *list, int *offset)
803 {
804 	struct nix_sqe_sg_s *sg = NULL;
805 	u16 *sg_lens = NULL;
806 	u64 *iova = NULL;
807 	int seg;
808 
809 	/* Add SG descriptors with buffer addresses */
810 	for (seg = 0; seg < list->num_segs; seg++) {
811 		if ((seg % MAX_SEGS_PER_SG) == 0) {
812 			sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
813 			sg->ld_type = NIX_SEND_LDTYPE_LDD;
814 			sg->subdc = NIX_SUBDC_SG;
815 			sg->segs = 0;
816 			sg_lens = (void *)sg;
817 			iova = (void *)sg + sizeof(*sg);
818 			/* Next subdc always starts at a 16byte boundary.
819 			 * So if sg->segs is whether 2 or 3, offset += 16bytes.
820 			 */
821 			if ((list->num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
822 				*offset += sizeof(*sg) + (3 * sizeof(u64));
823 			else
824 				*offset += sizeof(*sg) + sizeof(u64);
825 		}
826 		sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = list->size[seg];
827 		*iova++ = list->dma_addr[seg];
828 		sg->segs++;
829 	}
830 }
831 
832 static void otx2_sq_append_tso(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
833 			       struct sk_buff *skb, u16 qidx)
834 {
835 	struct netdev_queue *txq = netdev_get_tx_queue(pfvf->netdev, qidx);
836 	int hdr_len, tcp_data, seg_len, pkt_len, offset;
837 	struct nix_sqe_hdr_s *sqe_hdr;
838 	int first_sqe = sq->head;
839 	struct sg_list list;
840 	struct tso_t tso;
841 
842 	hdr_len = tso_start(skb, &tso);
843 
844 	/* Map SKB's fragments to DMA.
845 	 * It's done here to avoid mapping for every TSO segment's packet.
846 	 */
847 	if (otx2_dma_map_tso_skb(pfvf, sq, skb, first_sqe, hdr_len)) {
848 		dev_kfree_skb_any(skb);
849 		return;
850 	}
851 
852 	netdev_tx_sent_queue(txq, skb->len);
853 
854 	tcp_data = skb->len - hdr_len;
855 	while (tcp_data > 0) {
856 		char *hdr;
857 
858 		seg_len = min_t(int, skb_shinfo(skb)->gso_size, tcp_data);
859 		tcp_data -= seg_len;
860 
861 		/* Set SQE's SEND_HDR */
862 		memset(sq->sqe_base, 0, sq->sqe_size);
863 		sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
864 		otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
865 		offset = sizeof(*sqe_hdr);
866 
867 		/* Add TSO segment's pkt header */
868 		hdr = sq->tso_hdrs->base + (sq->head * TSO_HEADER_SIZE);
869 		tso_build_hdr(skb, hdr, &tso, seg_len, tcp_data == 0);
870 		list.dma_addr[0] =
871 			sq->tso_hdrs->iova + (sq->head * TSO_HEADER_SIZE);
872 		list.size[0] = hdr_len;
873 		list.num_segs = 1;
874 
875 		/* Add TSO segment's payload data fragments */
876 		pkt_len = hdr_len;
877 		while (seg_len > 0) {
878 			int size;
879 
880 			size = min_t(int, tso.size, seg_len);
881 
882 			list.size[list.num_segs] = size;
883 			list.dma_addr[list.num_segs] =
884 				otx2_tso_frag_dma_addr(sq, skb,
885 						       tso.next_frag_idx - 1,
886 						       (u64)tso.data, hdr_len,
887 						       first_sqe);
888 			list.num_segs++;
889 			pkt_len += size;
890 			seg_len -= size;
891 			tso_build_data(skb, &tso, size);
892 		}
893 		sqe_hdr->total = pkt_len;
894 		otx2_sqe_tso_add_sg(sq, &list, &offset);
895 
896 		/* DMA mappings and skb needs to be freed only after last
897 		 * TSO segment is transmitted out. So set 'PNC' only for
898 		 * last segment. Also point last segment's sqe_id to first
899 		 * segment's SQE index where skb address and DMA mappings
900 		 * are saved.
901 		 */
902 		if (!tcp_data) {
903 			sqe_hdr->pnc = 1;
904 			sqe_hdr->sqe_id = first_sqe;
905 			sq->sg[first_sqe].skb = (u64)skb;
906 		} else {
907 			sqe_hdr->pnc = 0;
908 		}
909 
910 		sqe_hdr->sizem1 = (offset / 16) - 1;
911 
912 		/* Flush SQE to HW */
913 		pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
914 	}
915 }
916 
917 static bool is_hw_tso_supported(struct otx2_nic *pfvf,
918 				struct sk_buff *skb)
919 {
920 	int payload_len, last_seg_size;
921 
922 	if (test_bit(HW_TSO, &pfvf->hw.cap_flag))
923 		return true;
924 
925 	/* On 96xx A0, HW TSO not supported */
926 	if (!is_96xx_B0(pfvf->pdev))
927 		return false;
928 
929 	/* HW has an issue due to which when the payload of the last LSO
930 	 * segment is shorter than 16 bytes, some header fields may not
931 	 * be correctly modified, hence don't offload such TSO segments.
932 	 */
933 
934 	payload_len = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
935 	last_seg_size = payload_len % skb_shinfo(skb)->gso_size;
936 	if (last_seg_size && last_seg_size < 16)
937 		return false;
938 
939 	return true;
940 }
941 
942 static int otx2_get_sqe_count(struct otx2_nic *pfvf, struct sk_buff *skb)
943 {
944 	if (!skb_shinfo(skb)->gso_size)
945 		return 1;
946 
947 	/* HW TSO */
948 	if (is_hw_tso_supported(pfvf, skb))
949 		return 1;
950 
951 	/* SW TSO */
952 	return skb_shinfo(skb)->gso_segs;
953 }
954 
955 static void otx2_set_txtstamp(struct otx2_nic *pfvf, struct sk_buff *skb,
956 			      struct otx2_snd_queue *sq, int *offset)
957 {
958 	u64 iova;
959 
960 	if (!skb_shinfo(skb)->gso_size &&
961 	    skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
962 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
963 		iova = sq->timestamps->iova + (sq->head * sizeof(u64));
964 		otx2_sqe_add_mem(sq, offset, NIX_SENDMEMALG_E_SETTSTMP, iova);
965 	} else {
966 		skb_tx_timestamp(skb);
967 	}
968 }
969 
970 bool otx2_sq_append_skb(struct net_device *netdev, struct otx2_snd_queue *sq,
971 			struct sk_buff *skb, u16 qidx)
972 {
973 	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qidx);
974 	struct otx2_nic *pfvf = netdev_priv(netdev);
975 	int offset, num_segs, free_sqe;
976 	struct nix_sqe_hdr_s *sqe_hdr;
977 
978 	/* Check if there is room for new SQE.
979 	 * 'Num of SQBs freed to SQ's pool - SQ's Aura count'
980 	 * will give free SQE count.
981 	 */
982 	free_sqe = (sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb;
983 
984 	if (free_sqe < sq->sqe_thresh ||
985 	    free_sqe < otx2_get_sqe_count(pfvf, skb))
986 		return false;
987 
988 	num_segs = skb_shinfo(skb)->nr_frags + 1;
989 
990 	/* If SKB doesn't fit in a single SQE, linearize it.
991 	 * TODO: Consider adding JUMP descriptor instead.
992 	 */
993 	if (unlikely(num_segs > OTX2_MAX_FRAGS_IN_SQE)) {
994 		if (__skb_linearize(skb)) {
995 			dev_kfree_skb_any(skb);
996 			return true;
997 		}
998 		num_segs = skb_shinfo(skb)->nr_frags + 1;
999 	}
1000 
1001 	if (skb_shinfo(skb)->gso_size && !is_hw_tso_supported(pfvf, skb)) {
1002 		/* Insert vlan tag before giving pkt to tso */
1003 		if (skb_vlan_tag_present(skb))
1004 			skb = __vlan_hwaccel_push_inside(skb);
1005 		otx2_sq_append_tso(pfvf, sq, skb, qidx);
1006 		return true;
1007 	}
1008 
1009 	/* Set SQE's SEND_HDR.
1010 	 * Do not clear the first 64bit as it contains constant info.
1011 	 */
1012 	memset(sq->sqe_base + 8, 0, sq->sqe_size - 8);
1013 	sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
1014 	otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
1015 	offset = sizeof(*sqe_hdr);
1016 
1017 	/* Add extended header if needed */
1018 	otx2_sqe_add_ext(pfvf, sq, skb, &offset);
1019 
1020 	/* Add SG subdesc with data frags */
1021 	if (!otx2_sqe_add_sg(pfvf, sq, skb, num_segs, &offset)) {
1022 		otx2_dma_unmap_skb_frags(pfvf, &sq->sg[sq->head]);
1023 		return false;
1024 	}
1025 
1026 	otx2_set_txtstamp(pfvf, skb, sq, &offset);
1027 
1028 	sqe_hdr->sizem1 = (offset / 16) - 1;
1029 
1030 	netdev_tx_sent_queue(txq, skb->len);
1031 
1032 	/* Flush SQE to HW */
1033 	pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
1034 
1035 	return true;
1036 }
1037 EXPORT_SYMBOL(otx2_sq_append_skb);
1038 
1039 void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq)
1040 {
1041 	struct nix_cqe_rx_s *cqe;
1042 	int processed_cqe = 0;
1043 	u64 iova, pa;
1044 
1045 	if (pfvf->xdp_prog)
1046 		xdp_rxq_info_unreg(&cq->xdp_rxq);
1047 
1048 	if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
1049 		return;
1050 
1051 	while (cq->pend_cqe) {
1052 		cqe = (struct nix_cqe_rx_s *)otx2_get_next_cqe(cq);
1053 		processed_cqe++;
1054 		cq->pend_cqe--;
1055 
1056 		if (!cqe)
1057 			continue;
1058 		if (cqe->sg.segs > 1) {
1059 			otx2_free_rcv_seg(pfvf, cqe, cq->cq_idx);
1060 			continue;
1061 		}
1062 		iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM;
1063 		pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1064 		otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize, DMA_FROM_DEVICE);
1065 		put_page(virt_to_page(phys_to_virt(pa)));
1066 	}
1067 
1068 	/* Free CQEs to HW */
1069 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
1070 		     ((u64)cq->cq_idx << 32) | processed_cqe);
1071 }
1072 
1073 void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq)
1074 {
1075 	struct sk_buff *skb = NULL;
1076 	struct otx2_snd_queue *sq;
1077 	struct nix_cqe_tx_s *cqe;
1078 	int processed_cqe = 0;
1079 	struct sg_list *sg;
1080 
1081 	sq = &pfvf->qset.sq[cq->cint_idx];
1082 
1083 	if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
1084 		return;
1085 
1086 	while (cq->pend_cqe) {
1087 		cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq);
1088 		processed_cqe++;
1089 		cq->pend_cqe--;
1090 
1091 		if (!cqe)
1092 			continue;
1093 		sg = &sq->sg[cqe->comp.sqe_id];
1094 		skb = (struct sk_buff *)sg->skb;
1095 		if (skb) {
1096 			otx2_dma_unmap_skb_frags(pfvf, sg);
1097 			dev_kfree_skb_any(skb);
1098 			sg->skb = (u64)NULL;
1099 		}
1100 	}
1101 
1102 	/* Free CQEs to HW */
1103 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
1104 		     ((u64)cq->cq_idx << 32) | processed_cqe);
1105 }
1106 
1107 int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable)
1108 {
1109 	struct msg_req *msg;
1110 	int err;
1111 
1112 	mutex_lock(&pfvf->mbox.lock);
1113 	if (enable)
1114 		msg = otx2_mbox_alloc_msg_nix_lf_start_rx(&pfvf->mbox);
1115 	else
1116 		msg = otx2_mbox_alloc_msg_nix_lf_stop_rx(&pfvf->mbox);
1117 
1118 	if (!msg) {
1119 		mutex_unlock(&pfvf->mbox.lock);
1120 		return -ENOMEM;
1121 	}
1122 
1123 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1124 	mutex_unlock(&pfvf->mbox.lock);
1125 	return err;
1126 }
1127 
1128 static void otx2_xdp_sqe_add_sg(struct otx2_snd_queue *sq, u64 dma_addr,
1129 				int len, int *offset)
1130 {
1131 	struct nix_sqe_sg_s *sg = NULL;
1132 	u64 *iova = NULL;
1133 
1134 	sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
1135 	sg->ld_type = NIX_SEND_LDTYPE_LDD;
1136 	sg->subdc = NIX_SUBDC_SG;
1137 	sg->segs = 1;
1138 	sg->seg1_size = len;
1139 	iova = (void *)sg + sizeof(*sg);
1140 	*iova = dma_addr;
1141 	*offset += sizeof(*sg) + sizeof(u64);
1142 
1143 	sq->sg[sq->head].dma_addr[0] = dma_addr;
1144 	sq->sg[sq->head].size[0] = len;
1145 	sq->sg[sq->head].num_segs = 1;
1146 }
1147 
1148 bool otx2_xdp_sq_append_pkt(struct otx2_nic *pfvf, u64 iova, int len, u16 qidx)
1149 {
1150 	struct nix_sqe_hdr_s *sqe_hdr;
1151 	struct otx2_snd_queue *sq;
1152 	int offset, free_sqe;
1153 
1154 	sq = &pfvf->qset.sq[qidx];
1155 	free_sqe = (sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb;
1156 	if (free_sqe < sq->sqe_thresh)
1157 		return false;
1158 
1159 	memset(sq->sqe_base + 8, 0, sq->sqe_size - 8);
1160 
1161 	sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
1162 
1163 	if (!sqe_hdr->total) {
1164 		sqe_hdr->aura = sq->aura_id;
1165 		sqe_hdr->df = 1;
1166 		sqe_hdr->sq = qidx;
1167 		sqe_hdr->pnc = 1;
1168 	}
1169 	sqe_hdr->total = len;
1170 	sqe_hdr->sqe_id = sq->head;
1171 
1172 	offset = sizeof(*sqe_hdr);
1173 
1174 	otx2_xdp_sqe_add_sg(sq, iova, len, &offset);
1175 	sqe_hdr->sizem1 = (offset / 16) - 1;
1176 	pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
1177 
1178 	return true;
1179 }
1180 
1181 static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf,
1182 				     struct bpf_prog *prog,
1183 				     struct nix_cqe_rx_s *cqe,
1184 				     struct otx2_cq_queue *cq)
1185 {
1186 	unsigned char *hard_start, *data;
1187 	int qidx = cq->cq_idx;
1188 	struct xdp_buff xdp;
1189 	struct page *page;
1190 	u64 iova, pa;
1191 	u32 act;
1192 	int err;
1193 
1194 	iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM;
1195 	pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1196 	page = virt_to_page(phys_to_virt(pa));
1197 
1198 	xdp_init_buff(&xdp, pfvf->rbsize, &cq->xdp_rxq);
1199 
1200 	data = (unsigned char *)phys_to_virt(pa);
1201 	hard_start = page_address(page);
1202 	xdp_prepare_buff(&xdp, hard_start, data - hard_start,
1203 			 cqe->sg.seg_size, false);
1204 
1205 	act = bpf_prog_run_xdp(prog, &xdp);
1206 
1207 	switch (act) {
1208 	case XDP_PASS:
1209 		break;
1210 	case XDP_TX:
1211 		qidx += pfvf->hw.tx_queues;
1212 		cq->pool_ptrs++;
1213 		return otx2_xdp_sq_append_pkt(pfvf, iova,
1214 					      cqe->sg.seg_size, qidx);
1215 	case XDP_REDIRECT:
1216 		cq->pool_ptrs++;
1217 		err = xdp_do_redirect(pfvf->netdev, &xdp, prog);
1218 
1219 		otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize,
1220 				    DMA_FROM_DEVICE);
1221 		if (!err)
1222 			return true;
1223 		put_page(page);
1224 		break;
1225 	default:
1226 		bpf_warn_invalid_xdp_action(pfvf->netdev, prog, act);
1227 		break;
1228 	case XDP_ABORTED:
1229 		trace_xdp_exception(pfvf->netdev, prog, act);
1230 		break;
1231 	case XDP_DROP:
1232 		otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize,
1233 				    DMA_FROM_DEVICE);
1234 		put_page(page);
1235 		cq->pool_ptrs++;
1236 		return true;
1237 	}
1238 	return false;
1239 }
1240