1 // SPDX-License-Identifier: GPL-2.0 2 /* Marvell RVU Ethernet driver 3 * 4 * Copyright (C) 2020 Marvell. 5 * 6 */ 7 8 #include <linux/etherdevice.h> 9 #include <net/ip.h> 10 #include <net/tso.h> 11 #include <linux/bpf.h> 12 #include <linux/bpf_trace.h> 13 #include <net/ip6_checksum.h> 14 15 #include "otx2_reg.h" 16 #include "otx2_common.h" 17 #include "otx2_struct.h" 18 #include "otx2_txrx.h" 19 #include "otx2_ptp.h" 20 #include "cn10k.h" 21 22 #define CQE_ADDR(CQ, idx) ((CQ)->cqe_base + ((CQ)->cqe_size * (idx))) 23 #define PTP_PORT 0x13F 24 /* PTPv2 header Original Timestamp starts at byte offset 34 and 25 * contains 6 byte seconds field and 4 byte nano seconds field. 26 */ 27 #define PTP_SYNC_SEC_OFFSET 34 28 29 static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf, 30 struct bpf_prog *prog, 31 struct nix_cqe_rx_s *cqe, 32 struct otx2_cq_queue *cq, 33 bool *need_xdp_flush); 34 35 static int otx2_nix_cq_op_status(struct otx2_nic *pfvf, 36 struct otx2_cq_queue *cq) 37 { 38 u64 incr = (u64)(cq->cq_idx) << 32; 39 u64 status; 40 41 status = otx2_atomic64_fetch_add(incr, pfvf->cq_op_addr); 42 43 if (unlikely(status & BIT_ULL(CQ_OP_STAT_OP_ERR) || 44 status & BIT_ULL(CQ_OP_STAT_CQ_ERR))) { 45 dev_err(pfvf->dev, "CQ stopped due to error"); 46 return -EINVAL; 47 } 48 49 cq->cq_tail = status & 0xFFFFF; 50 cq->cq_head = (status >> 20) & 0xFFFFF; 51 if (cq->cq_tail < cq->cq_head) 52 cq->pend_cqe = (cq->cqe_cnt - cq->cq_head) + 53 cq->cq_tail; 54 else 55 cq->pend_cqe = cq->cq_tail - cq->cq_head; 56 57 return 0; 58 } 59 60 static struct nix_cqe_hdr_s *otx2_get_next_cqe(struct otx2_cq_queue *cq) 61 { 62 struct nix_cqe_hdr_s *cqe_hdr; 63 64 cqe_hdr = (struct nix_cqe_hdr_s *)CQE_ADDR(cq, cq->cq_head); 65 if (cqe_hdr->cqe_type == NIX_XQE_TYPE_INVALID) 66 return NULL; 67 68 cq->cq_head++; 69 cq->cq_head &= (cq->cqe_cnt - 1); 70 71 return cqe_hdr; 72 } 73 74 static unsigned int frag_num(unsigned int i) 75 { 76 #ifdef __BIG_ENDIAN 77 return (i & ~3) + 3 - (i & 3); 78 #else 79 return i; 80 #endif 81 } 82 83 static dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf, 84 struct sk_buff *skb, int seg, int *len) 85 { 86 const skb_frag_t *frag; 87 struct page *page; 88 int offset; 89 90 /* First segment is always skb->data */ 91 if (!seg) { 92 page = virt_to_page(skb->data); 93 offset = offset_in_page(skb->data); 94 *len = skb_headlen(skb); 95 } else { 96 frag = &skb_shinfo(skb)->frags[seg - 1]; 97 page = skb_frag_page(frag); 98 offset = skb_frag_off(frag); 99 *len = skb_frag_size(frag); 100 } 101 return otx2_dma_map_page(pfvf, page, offset, *len, DMA_TO_DEVICE); 102 } 103 104 static void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg) 105 { 106 int seg; 107 108 for (seg = 0; seg < sg->num_segs; seg++) { 109 otx2_dma_unmap_page(pfvf, sg->dma_addr[seg], 110 sg->size[seg], DMA_TO_DEVICE); 111 } 112 sg->num_segs = 0; 113 } 114 115 static void otx2_xdp_snd_pkt_handler(struct otx2_nic *pfvf, 116 struct otx2_snd_queue *sq, 117 struct nix_cqe_tx_s *cqe) 118 { 119 struct nix_send_comp_s *snd_comp = &cqe->comp; 120 struct sg_list *sg; 121 struct page *page; 122 u64 pa; 123 124 sg = &sq->sg[snd_comp->sqe_id]; 125 126 pa = otx2_iova_to_phys(pfvf->iommu_domain, sg->dma_addr[0]); 127 otx2_dma_unmap_page(pfvf, sg->dma_addr[0], 128 sg->size[0], DMA_TO_DEVICE); 129 page = virt_to_page(phys_to_virt(pa)); 130 put_page(page); 131 } 132 133 static void otx2_snd_pkt_handler(struct otx2_nic *pfvf, 134 struct otx2_cq_queue *cq, 135 struct otx2_snd_queue *sq, 136 struct nix_cqe_tx_s *cqe, 137 int budget, int *tx_pkts, int *tx_bytes) 138 { 139 struct nix_send_comp_s *snd_comp = &cqe->comp; 140 struct skb_shared_hwtstamps ts; 141 struct sk_buff *skb = NULL; 142 u64 timestamp, tsns; 143 struct sg_list *sg; 144 int err; 145 146 if (unlikely(snd_comp->status) && netif_msg_tx_err(pfvf)) 147 net_err_ratelimited("%s: TX%d: Error in send CQ status:%x\n", 148 pfvf->netdev->name, cq->cint_idx, 149 snd_comp->status); 150 151 sg = &sq->sg[snd_comp->sqe_id]; 152 skb = (struct sk_buff *)sg->skb; 153 if (unlikely(!skb)) 154 return; 155 156 if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) { 157 timestamp = ((u64 *)sq->timestamps->base)[snd_comp->sqe_id]; 158 if (timestamp != 1) { 159 timestamp = pfvf->ptp->convert_tx_ptp_tstmp(timestamp); 160 err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns); 161 if (!err) { 162 memset(&ts, 0, sizeof(ts)); 163 ts.hwtstamp = ns_to_ktime(tsns); 164 skb_tstamp_tx(skb, &ts); 165 } 166 } 167 } 168 169 *tx_bytes += skb->len; 170 (*tx_pkts)++; 171 otx2_dma_unmap_skb_frags(pfvf, sg); 172 napi_consume_skb(skb, budget); 173 sg->skb = (u64)NULL; 174 } 175 176 static void otx2_set_rxtstamp(struct otx2_nic *pfvf, 177 struct sk_buff *skb, void *data) 178 { 179 u64 timestamp, tsns; 180 int err; 181 182 if (!(pfvf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED)) 183 return; 184 185 timestamp = pfvf->ptp->convert_rx_ptp_tstmp(*(u64 *)data); 186 /* The first 8 bytes is the timestamp */ 187 err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns); 188 if (err) 189 return; 190 191 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(tsns); 192 } 193 194 static bool otx2_skb_add_frag(struct otx2_nic *pfvf, struct sk_buff *skb, 195 u64 iova, int len, struct nix_rx_parse_s *parse, 196 int qidx) 197 { 198 struct page *page; 199 int off = 0; 200 void *va; 201 202 va = phys_to_virt(otx2_iova_to_phys(pfvf->iommu_domain, iova)); 203 204 if (likely(!skb_shinfo(skb)->nr_frags)) { 205 /* Check if data starts at some nonzero offset 206 * from the start of the buffer. For now the 207 * only possible offset is 8 bytes in the case 208 * where packet is prepended by a timestamp. 209 */ 210 if (parse->laptr) { 211 otx2_set_rxtstamp(pfvf, skb, va); 212 off = OTX2_HW_TIMESTAMP_LEN; 213 } 214 } 215 216 page = virt_to_page(va); 217 if (likely(skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS)) { 218 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 219 va - page_address(page) + off, 220 len - off, pfvf->rbsize); 221 return true; 222 } 223 224 /* If more than MAX_SKB_FRAGS fragments are received then 225 * give back those buffer pointers to hardware for reuse. 226 */ 227 pfvf->hw_ops->aura_freeptr(pfvf, qidx, iova & ~0x07ULL); 228 229 return false; 230 } 231 232 static void otx2_set_rxhash(struct otx2_nic *pfvf, 233 struct nix_cqe_rx_s *cqe, struct sk_buff *skb) 234 { 235 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE; 236 struct otx2_rss_info *rss; 237 u32 hash = 0; 238 239 if (!(pfvf->netdev->features & NETIF_F_RXHASH)) 240 return; 241 242 rss = &pfvf->hw.rss_info; 243 if (rss->flowkey_cfg) { 244 if (rss->flowkey_cfg & 245 ~(NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6)) 246 hash_type = PKT_HASH_TYPE_L4; 247 else 248 hash_type = PKT_HASH_TYPE_L3; 249 hash = cqe->hdr.flow_tag; 250 } 251 skb_set_hash(skb, hash, hash_type); 252 } 253 254 static void otx2_free_rcv_seg(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe, 255 int qidx) 256 { 257 struct nix_rx_sg_s *sg = &cqe->sg; 258 void *end, *start; 259 u64 *seg_addr; 260 int seg; 261 262 start = (void *)sg; 263 end = start + ((cqe->parse.desc_sizem1 + 1) * 16); 264 while (start < end) { 265 sg = (struct nix_rx_sg_s *)start; 266 seg_addr = &sg->seg_addr; 267 for (seg = 0; seg < sg->segs; seg++, seg_addr++) 268 pfvf->hw_ops->aura_freeptr(pfvf, qidx, 269 *seg_addr & ~0x07ULL); 270 start += sizeof(*sg); 271 } 272 } 273 274 static bool otx2_check_rcv_errors(struct otx2_nic *pfvf, 275 struct nix_cqe_rx_s *cqe, int qidx) 276 { 277 struct otx2_drv_stats *stats = &pfvf->hw.drv_stats; 278 struct nix_rx_parse_s *parse = &cqe->parse; 279 280 if (netif_msg_rx_err(pfvf)) 281 netdev_err(pfvf->netdev, 282 "RQ%d: Error pkt with errlev:0x%x errcode:0x%x\n", 283 qidx, parse->errlev, parse->errcode); 284 285 if (parse->errlev == NPC_ERRLVL_RE) { 286 switch (parse->errcode) { 287 case ERRCODE_FCS: 288 case ERRCODE_FCS_RCV: 289 atomic_inc(&stats->rx_fcs_errs); 290 break; 291 case ERRCODE_UNDERSIZE: 292 atomic_inc(&stats->rx_undersize_errs); 293 break; 294 case ERRCODE_OVERSIZE: 295 atomic_inc(&stats->rx_oversize_errs); 296 break; 297 case ERRCODE_OL2_LEN_MISMATCH: 298 atomic_inc(&stats->rx_len_errs); 299 break; 300 default: 301 atomic_inc(&stats->rx_other_errs); 302 break; 303 } 304 } else if (parse->errlev == NPC_ERRLVL_NIX) { 305 switch (parse->errcode) { 306 case ERRCODE_OL3_LEN: 307 case ERRCODE_OL4_LEN: 308 case ERRCODE_IL3_LEN: 309 case ERRCODE_IL4_LEN: 310 atomic_inc(&stats->rx_len_errs); 311 break; 312 case ERRCODE_OL4_CSUM: 313 case ERRCODE_IL4_CSUM: 314 atomic_inc(&stats->rx_csum_errs); 315 break; 316 default: 317 atomic_inc(&stats->rx_other_errs); 318 break; 319 } 320 } else { 321 atomic_inc(&stats->rx_other_errs); 322 /* For now ignore all the NPC parser errors and 323 * pass the packets to stack. 324 */ 325 return false; 326 } 327 328 /* If RXALL is enabled pass on packets to stack. */ 329 if (pfvf->netdev->features & NETIF_F_RXALL) 330 return false; 331 332 /* Free buffer back to pool */ 333 if (cqe->sg.segs) 334 otx2_free_rcv_seg(pfvf, cqe, qidx); 335 return true; 336 } 337 338 static void otx2_rcv_pkt_handler(struct otx2_nic *pfvf, 339 struct napi_struct *napi, 340 struct otx2_cq_queue *cq, 341 struct nix_cqe_rx_s *cqe, bool *need_xdp_flush) 342 { 343 struct nix_rx_parse_s *parse = &cqe->parse; 344 struct nix_rx_sg_s *sg = &cqe->sg; 345 struct sk_buff *skb = NULL; 346 void *end, *start; 347 u64 *seg_addr; 348 u16 *seg_size; 349 int seg; 350 351 if (unlikely(parse->errlev || parse->errcode)) { 352 if (otx2_check_rcv_errors(pfvf, cqe, cq->cq_idx)) 353 return; 354 } 355 356 if (pfvf->xdp_prog) 357 if (otx2_xdp_rcv_pkt_handler(pfvf, pfvf->xdp_prog, cqe, cq, need_xdp_flush)) 358 return; 359 360 skb = napi_get_frags(napi); 361 if (unlikely(!skb)) 362 return; 363 364 start = (void *)sg; 365 end = start + ((cqe->parse.desc_sizem1 + 1) * 16); 366 while (start < end) { 367 sg = (struct nix_rx_sg_s *)start; 368 seg_addr = &sg->seg_addr; 369 seg_size = (void *)sg; 370 for (seg = 0; seg < sg->segs; seg++, seg_addr++) { 371 if (otx2_skb_add_frag(pfvf, skb, *seg_addr, 372 seg_size[seg], parse, cq->cq_idx)) 373 cq->pool_ptrs++; 374 } 375 start += sizeof(*sg); 376 } 377 otx2_set_rxhash(pfvf, cqe, skb); 378 379 skb_record_rx_queue(skb, cq->cq_idx); 380 if (pfvf->netdev->features & NETIF_F_RXCSUM) 381 skb->ip_summed = CHECKSUM_UNNECESSARY; 382 383 skb_mark_for_recycle(skb); 384 385 napi_gro_frags(napi); 386 } 387 388 static int otx2_rx_napi_handler(struct otx2_nic *pfvf, 389 struct napi_struct *napi, 390 struct otx2_cq_queue *cq, int budget) 391 { 392 bool need_xdp_flush = false; 393 struct nix_cqe_rx_s *cqe; 394 int processed_cqe = 0; 395 396 if (cq->pend_cqe >= budget) 397 goto process_cqe; 398 399 if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) 400 return 0; 401 402 process_cqe: 403 while (likely(processed_cqe < budget) && cq->pend_cqe) { 404 cqe = (struct nix_cqe_rx_s *)CQE_ADDR(cq, cq->cq_head); 405 if (cqe->hdr.cqe_type == NIX_XQE_TYPE_INVALID || 406 !cqe->sg.seg_addr) { 407 if (!processed_cqe) 408 return 0; 409 break; 410 } 411 cq->cq_head++; 412 cq->cq_head &= (cq->cqe_cnt - 1); 413 414 otx2_rcv_pkt_handler(pfvf, napi, cq, cqe, &need_xdp_flush); 415 416 cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID; 417 cqe->sg.seg_addr = 0x00; 418 processed_cqe++; 419 cq->pend_cqe--; 420 } 421 if (need_xdp_flush) 422 xdp_do_flush(); 423 424 /* Free CQEs to HW */ 425 otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, 426 ((u64)cq->cq_idx << 32) | processed_cqe); 427 428 return processed_cqe; 429 } 430 431 int otx2_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq) 432 { 433 struct otx2_nic *pfvf = dev; 434 int cnt = cq->pool_ptrs; 435 dma_addr_t bufptr; 436 437 while (cq->pool_ptrs) { 438 if (otx2_alloc_buffer(pfvf, cq, &bufptr)) 439 break; 440 otx2_aura_freeptr(pfvf, cq->cq_idx, bufptr + OTX2_HEAD_ROOM); 441 cq->pool_ptrs--; 442 } 443 444 return cnt - cq->pool_ptrs; 445 } 446 447 static int otx2_tx_napi_handler(struct otx2_nic *pfvf, 448 struct otx2_cq_queue *cq, int budget) 449 { 450 int tx_pkts = 0, tx_bytes = 0, qidx; 451 struct otx2_snd_queue *sq; 452 struct nix_cqe_tx_s *cqe; 453 int processed_cqe = 0; 454 455 if (cq->pend_cqe >= budget) 456 goto process_cqe; 457 458 if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) 459 return 0; 460 461 process_cqe: 462 qidx = cq->cq_idx - pfvf->hw.rx_queues; 463 sq = &pfvf->qset.sq[qidx]; 464 465 while (likely(processed_cqe < budget) && cq->pend_cqe) { 466 cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq); 467 if (unlikely(!cqe)) { 468 if (!processed_cqe) 469 return 0; 470 break; 471 } 472 473 qidx = cq->cq_idx - pfvf->hw.rx_queues; 474 475 if (cq->cq_type == CQ_XDP) 476 otx2_xdp_snd_pkt_handler(pfvf, sq, cqe); 477 else 478 otx2_snd_pkt_handler(pfvf, cq, &pfvf->qset.sq[qidx], 479 cqe, budget, &tx_pkts, &tx_bytes); 480 481 cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID; 482 processed_cqe++; 483 cq->pend_cqe--; 484 485 sq->cons_head++; 486 sq->cons_head &= (sq->sqe_cnt - 1); 487 } 488 489 /* Free CQEs to HW */ 490 otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, 491 ((u64)cq->cq_idx << 32) | processed_cqe); 492 493 if (likely(tx_pkts)) { 494 struct netdev_queue *txq; 495 496 qidx = cq->cq_idx - pfvf->hw.rx_queues; 497 498 if (qidx >= pfvf->hw.tx_queues) 499 qidx -= pfvf->hw.xdp_queues; 500 txq = netdev_get_tx_queue(pfvf->netdev, qidx); 501 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 502 /* Check if queue was stopped earlier due to ring full */ 503 smp_mb(); 504 if (netif_tx_queue_stopped(txq) && 505 netif_carrier_ok(pfvf->netdev)) 506 netif_tx_wake_queue(txq); 507 } 508 return 0; 509 } 510 511 static void otx2_adjust_adaptive_coalese(struct otx2_nic *pfvf, struct otx2_cq_poll *cq_poll) 512 { 513 struct dim_sample dim_sample; 514 u64 rx_frames, rx_bytes; 515 516 rx_frames = OTX2_GET_RX_STATS(RX_BCAST) + OTX2_GET_RX_STATS(RX_MCAST) + 517 OTX2_GET_RX_STATS(RX_UCAST); 518 rx_bytes = OTX2_GET_RX_STATS(RX_OCTS); 519 dim_update_sample(pfvf->napi_events, rx_frames, rx_bytes, &dim_sample); 520 net_dim(&cq_poll->dim, dim_sample); 521 } 522 523 int otx2_napi_handler(struct napi_struct *napi, int budget) 524 { 525 struct otx2_cq_queue *rx_cq = NULL; 526 struct otx2_cq_poll *cq_poll; 527 int workdone = 0, cq_idx, i; 528 struct otx2_cq_queue *cq; 529 struct otx2_qset *qset; 530 struct otx2_nic *pfvf; 531 int filled_cnt = -1; 532 533 cq_poll = container_of(napi, struct otx2_cq_poll, napi); 534 pfvf = (struct otx2_nic *)cq_poll->dev; 535 qset = &pfvf->qset; 536 537 for (i = 0; i < CQS_PER_CINT; i++) { 538 cq_idx = cq_poll->cq_ids[i]; 539 if (unlikely(cq_idx == CINT_INVALID_CQ)) 540 continue; 541 cq = &qset->cq[cq_idx]; 542 if (cq->cq_type == CQ_RX) { 543 rx_cq = cq; 544 workdone += otx2_rx_napi_handler(pfvf, napi, 545 cq, budget); 546 } else { 547 workdone += otx2_tx_napi_handler(pfvf, cq, budget); 548 } 549 } 550 551 if (rx_cq && rx_cq->pool_ptrs) 552 filled_cnt = pfvf->hw_ops->refill_pool_ptrs(pfvf, rx_cq); 553 /* Clear the IRQ */ 554 otx2_write64(pfvf, NIX_LF_CINTX_INT(cq_poll->cint_idx), BIT_ULL(0)); 555 556 if (workdone < budget && napi_complete_done(napi, workdone)) { 557 /* If interface is going down, don't re-enable IRQ */ 558 if (pfvf->flags & OTX2_FLAG_INTF_DOWN) 559 return workdone; 560 561 /* Check for adaptive interrupt coalesce */ 562 if (workdone != 0 && 563 ((pfvf->flags & OTX2_FLAG_ADPTV_INT_COAL_ENABLED) == 564 OTX2_FLAG_ADPTV_INT_COAL_ENABLED)) { 565 /* Adjust irq coalese using net_dim */ 566 otx2_adjust_adaptive_coalese(pfvf, cq_poll); 567 /* Update irq coalescing */ 568 for (i = 0; i < pfvf->hw.cint_cnt; i++) 569 otx2_config_irq_coalescing(pfvf, i); 570 } 571 572 if (unlikely(!filled_cnt)) { 573 struct refill_work *work; 574 struct delayed_work *dwork; 575 576 work = &pfvf->refill_wrk[cq->cq_idx]; 577 dwork = &work->pool_refill_work; 578 /* Schedule a task if no other task is running */ 579 if (!cq->refill_task_sched) { 580 work->napi = napi; 581 cq->refill_task_sched = true; 582 schedule_delayed_work(dwork, 583 msecs_to_jiffies(100)); 584 } 585 } else { 586 /* Re-enable interrupts */ 587 otx2_write64(pfvf, 588 NIX_LF_CINTX_ENA_W1S(cq_poll->cint_idx), 589 BIT_ULL(0)); 590 } 591 } 592 return workdone; 593 } 594 595 void otx2_sqe_flush(void *dev, struct otx2_snd_queue *sq, 596 int size, int qidx) 597 { 598 u64 status; 599 600 /* Packet data stores should finish before SQE is flushed to HW */ 601 dma_wmb(); 602 603 do { 604 memcpy(sq->lmt_addr, sq->sqe_base, size); 605 status = otx2_lmt_flush(sq->io_addr); 606 } while (status == 0); 607 608 sq->head++; 609 sq->head &= (sq->sqe_cnt - 1); 610 } 611 612 #define MAX_SEGS_PER_SG 3 613 /* Add SQE scatter/gather subdescriptor structure */ 614 static bool otx2_sqe_add_sg(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, 615 struct sk_buff *skb, int num_segs, int *offset) 616 { 617 struct nix_sqe_sg_s *sg = NULL; 618 u64 dma_addr, *iova = NULL; 619 u16 *sg_lens = NULL; 620 int seg, len; 621 622 sq->sg[sq->head].num_segs = 0; 623 624 for (seg = 0; seg < num_segs; seg++) { 625 if ((seg % MAX_SEGS_PER_SG) == 0) { 626 sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset); 627 sg->ld_type = NIX_SEND_LDTYPE_LDD; 628 sg->subdc = NIX_SUBDC_SG; 629 sg->segs = 0; 630 sg_lens = (void *)sg; 631 iova = (void *)sg + sizeof(*sg); 632 /* Next subdc always starts at a 16byte boundary. 633 * So if sg->segs is whether 2 or 3, offset += 16bytes. 634 */ 635 if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1)) 636 *offset += sizeof(*sg) + (3 * sizeof(u64)); 637 else 638 *offset += sizeof(*sg) + sizeof(u64); 639 } 640 dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len); 641 if (dma_mapping_error(pfvf->dev, dma_addr)) 642 return false; 643 644 sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = len; 645 sg->segs++; 646 *iova++ = dma_addr; 647 648 /* Save DMA mapping info for later unmapping */ 649 sq->sg[sq->head].dma_addr[seg] = dma_addr; 650 sq->sg[sq->head].size[seg] = len; 651 sq->sg[sq->head].num_segs++; 652 } 653 654 sq->sg[sq->head].skb = (u64)skb; 655 return true; 656 } 657 658 /* Add SQE extended header subdescriptor */ 659 static void otx2_sqe_add_ext(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, 660 struct sk_buff *skb, int *offset) 661 { 662 struct nix_sqe_ext_s *ext; 663 664 ext = (struct nix_sqe_ext_s *)(sq->sqe_base + *offset); 665 ext->subdc = NIX_SUBDC_EXT; 666 if (skb_shinfo(skb)->gso_size) { 667 ext->lso = 1; 668 ext->lso_sb = skb_tcp_all_headers(skb); 669 ext->lso_mps = skb_shinfo(skb)->gso_size; 670 671 /* Only TSOv4 and TSOv6 GSO offloads are supported */ 672 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 673 ext->lso_format = pfvf->hw.lso_tsov4_idx; 674 675 /* HW adds payload size to 'ip_hdr->tot_len' while 676 * sending TSO segment, hence set payload length 677 * in IP header of the packet to just header length. 678 */ 679 ip_hdr(skb)->tot_len = 680 htons(ext->lso_sb - skb_network_offset(skb)); 681 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) { 682 ext->lso_format = pfvf->hw.lso_tsov6_idx; 683 ipv6_hdr(skb)->payload_len = htons(tcp_hdrlen(skb)); 684 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 685 __be16 l3_proto = vlan_get_protocol(skb); 686 struct udphdr *udph = udp_hdr(skb); 687 u16 iplen; 688 689 ext->lso_sb = skb_transport_offset(skb) + 690 sizeof(struct udphdr); 691 692 /* HW adds payload size to length fields in IP and 693 * UDP headers while segmentation, hence adjust the 694 * lengths to just header sizes. 695 */ 696 iplen = htons(ext->lso_sb - skb_network_offset(skb)); 697 if (l3_proto == htons(ETH_P_IP)) { 698 ip_hdr(skb)->tot_len = iplen; 699 ext->lso_format = pfvf->hw.lso_udpv4_idx; 700 } else { 701 ipv6_hdr(skb)->payload_len = iplen; 702 ext->lso_format = pfvf->hw.lso_udpv6_idx; 703 } 704 705 udph->len = htons(sizeof(struct udphdr)); 706 } 707 } else if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 708 ext->tstmp = 1; 709 } 710 711 #define OTX2_VLAN_PTR_OFFSET (ETH_HLEN - ETH_TLEN) 712 if (skb_vlan_tag_present(skb)) { 713 if (skb->vlan_proto == htons(ETH_P_8021Q)) { 714 ext->vlan1_ins_ena = 1; 715 ext->vlan1_ins_ptr = OTX2_VLAN_PTR_OFFSET; 716 ext->vlan1_ins_tci = skb_vlan_tag_get(skb); 717 } else if (skb->vlan_proto == htons(ETH_P_8021AD)) { 718 ext->vlan0_ins_ena = 1; 719 ext->vlan0_ins_ptr = OTX2_VLAN_PTR_OFFSET; 720 ext->vlan0_ins_tci = skb_vlan_tag_get(skb); 721 } 722 } 723 724 *offset += sizeof(*ext); 725 } 726 727 static void otx2_sqe_add_mem(struct otx2_snd_queue *sq, int *offset, 728 int alg, u64 iova, int ptp_offset, 729 u64 base_ns, bool udp_csum_crt) 730 { 731 struct nix_sqe_mem_s *mem; 732 733 mem = (struct nix_sqe_mem_s *)(sq->sqe_base + *offset); 734 mem->subdc = NIX_SUBDC_MEM; 735 mem->alg = alg; 736 mem->wmem = 1; /* wait for the memory operation */ 737 mem->addr = iova; 738 739 if (ptp_offset) { 740 mem->start_offset = ptp_offset; 741 mem->udp_csum_crt = !!udp_csum_crt; 742 mem->base_ns = base_ns; 743 mem->step_type = 1; 744 } 745 746 *offset += sizeof(*mem); 747 } 748 749 /* Add SQE header subdescriptor structure */ 750 static void otx2_sqe_add_hdr(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, 751 struct nix_sqe_hdr_s *sqe_hdr, 752 struct sk_buff *skb, u16 qidx) 753 { 754 int proto = 0; 755 756 /* Check if SQE was framed before, if yes then no need to 757 * set these constants again and again. 758 */ 759 if (!sqe_hdr->total) { 760 /* Don't free Tx buffers to Aura */ 761 sqe_hdr->df = 1; 762 sqe_hdr->aura = sq->aura_id; 763 /* Post a CQE Tx after pkt transmission */ 764 sqe_hdr->pnc = 1; 765 sqe_hdr->sq = (qidx >= pfvf->hw.tx_queues) ? 766 qidx + pfvf->hw.xdp_queues : qidx; 767 } 768 sqe_hdr->total = skb->len; 769 /* Set SQE identifier which will be used later for freeing SKB */ 770 sqe_hdr->sqe_id = sq->head; 771 772 /* Offload TCP/UDP checksum to HW */ 773 if (skb->ip_summed == CHECKSUM_PARTIAL) { 774 sqe_hdr->ol3ptr = skb_network_offset(skb); 775 sqe_hdr->ol4ptr = skb_transport_offset(skb); 776 /* get vlan protocol Ethertype */ 777 if (eth_type_vlan(skb->protocol)) 778 skb->protocol = vlan_get_protocol(skb); 779 780 if (skb->protocol == htons(ETH_P_IP)) { 781 proto = ip_hdr(skb)->protocol; 782 /* In case of TSO, HW needs this to be explicitly set. 783 * So set this always, instead of adding a check. 784 */ 785 sqe_hdr->ol3type = NIX_SENDL3TYPE_IP4_CKSUM; 786 } else if (skb->protocol == htons(ETH_P_IPV6)) { 787 proto = ipv6_hdr(skb)->nexthdr; 788 sqe_hdr->ol3type = NIX_SENDL3TYPE_IP6; 789 } 790 791 if (proto == IPPROTO_TCP) 792 sqe_hdr->ol4type = NIX_SENDL4TYPE_TCP_CKSUM; 793 else if (proto == IPPROTO_UDP) 794 sqe_hdr->ol4type = NIX_SENDL4TYPE_UDP_CKSUM; 795 } 796 } 797 798 static int otx2_dma_map_tso_skb(struct otx2_nic *pfvf, 799 struct otx2_snd_queue *sq, 800 struct sk_buff *skb, int sqe, int hdr_len) 801 { 802 int num_segs = skb_shinfo(skb)->nr_frags + 1; 803 struct sg_list *sg = &sq->sg[sqe]; 804 u64 dma_addr; 805 int seg, len; 806 807 sg->num_segs = 0; 808 809 /* Get payload length at skb->data */ 810 len = skb_headlen(skb) - hdr_len; 811 812 for (seg = 0; seg < num_segs; seg++) { 813 /* Skip skb->data, if there is no payload */ 814 if (!seg && !len) 815 continue; 816 dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len); 817 if (dma_mapping_error(pfvf->dev, dma_addr)) 818 goto unmap; 819 820 /* Save DMA mapping info for later unmapping */ 821 sg->dma_addr[sg->num_segs] = dma_addr; 822 sg->size[sg->num_segs] = len; 823 sg->num_segs++; 824 } 825 return 0; 826 unmap: 827 otx2_dma_unmap_skb_frags(pfvf, sg); 828 return -EINVAL; 829 } 830 831 static u64 otx2_tso_frag_dma_addr(struct otx2_snd_queue *sq, 832 struct sk_buff *skb, int seg, 833 u64 seg_addr, int hdr_len, int sqe) 834 { 835 struct sg_list *sg = &sq->sg[sqe]; 836 const skb_frag_t *frag; 837 int offset; 838 839 if (seg < 0) 840 return sg->dma_addr[0] + (seg_addr - (u64)skb->data); 841 842 frag = &skb_shinfo(skb)->frags[seg]; 843 offset = seg_addr - (u64)skb_frag_address(frag); 844 if (skb_headlen(skb) - hdr_len) 845 seg++; 846 return sg->dma_addr[seg] + offset; 847 } 848 849 static void otx2_sqe_tso_add_sg(struct otx2_snd_queue *sq, 850 struct sg_list *list, int *offset) 851 { 852 struct nix_sqe_sg_s *sg = NULL; 853 u16 *sg_lens = NULL; 854 u64 *iova = NULL; 855 int seg; 856 857 /* Add SG descriptors with buffer addresses */ 858 for (seg = 0; seg < list->num_segs; seg++) { 859 if ((seg % MAX_SEGS_PER_SG) == 0) { 860 sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset); 861 sg->ld_type = NIX_SEND_LDTYPE_LDD; 862 sg->subdc = NIX_SUBDC_SG; 863 sg->segs = 0; 864 sg_lens = (void *)sg; 865 iova = (void *)sg + sizeof(*sg); 866 /* Next subdc always starts at a 16byte boundary. 867 * So if sg->segs is whether 2 or 3, offset += 16bytes. 868 */ 869 if ((list->num_segs - seg) >= (MAX_SEGS_PER_SG - 1)) 870 *offset += sizeof(*sg) + (3 * sizeof(u64)); 871 else 872 *offset += sizeof(*sg) + sizeof(u64); 873 } 874 sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = list->size[seg]; 875 *iova++ = list->dma_addr[seg]; 876 sg->segs++; 877 } 878 } 879 880 static void otx2_sq_append_tso(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, 881 struct sk_buff *skb, u16 qidx) 882 { 883 struct netdev_queue *txq = netdev_get_tx_queue(pfvf->netdev, qidx); 884 int hdr_len, tcp_data, seg_len, pkt_len, offset; 885 struct nix_sqe_hdr_s *sqe_hdr; 886 int first_sqe = sq->head; 887 struct sg_list list; 888 struct tso_t tso; 889 890 hdr_len = tso_start(skb, &tso); 891 892 /* Map SKB's fragments to DMA. 893 * It's done here to avoid mapping for every TSO segment's packet. 894 */ 895 if (otx2_dma_map_tso_skb(pfvf, sq, skb, first_sqe, hdr_len)) { 896 dev_kfree_skb_any(skb); 897 return; 898 } 899 900 netdev_tx_sent_queue(txq, skb->len); 901 902 tcp_data = skb->len - hdr_len; 903 while (tcp_data > 0) { 904 char *hdr; 905 906 seg_len = min_t(int, skb_shinfo(skb)->gso_size, tcp_data); 907 tcp_data -= seg_len; 908 909 /* Set SQE's SEND_HDR */ 910 memset(sq->sqe_base, 0, sq->sqe_size); 911 sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base); 912 otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx); 913 offset = sizeof(*sqe_hdr); 914 915 /* Add TSO segment's pkt header */ 916 hdr = sq->tso_hdrs->base + (sq->head * TSO_HEADER_SIZE); 917 tso_build_hdr(skb, hdr, &tso, seg_len, tcp_data == 0); 918 list.dma_addr[0] = 919 sq->tso_hdrs->iova + (sq->head * TSO_HEADER_SIZE); 920 list.size[0] = hdr_len; 921 list.num_segs = 1; 922 923 /* Add TSO segment's payload data fragments */ 924 pkt_len = hdr_len; 925 while (seg_len > 0) { 926 int size; 927 928 size = min_t(int, tso.size, seg_len); 929 930 list.size[list.num_segs] = size; 931 list.dma_addr[list.num_segs] = 932 otx2_tso_frag_dma_addr(sq, skb, 933 tso.next_frag_idx - 1, 934 (u64)tso.data, hdr_len, 935 first_sqe); 936 list.num_segs++; 937 pkt_len += size; 938 seg_len -= size; 939 tso_build_data(skb, &tso, size); 940 } 941 sqe_hdr->total = pkt_len; 942 otx2_sqe_tso_add_sg(sq, &list, &offset); 943 944 /* DMA mappings and skb needs to be freed only after last 945 * TSO segment is transmitted out. So set 'PNC' only for 946 * last segment. Also point last segment's sqe_id to first 947 * segment's SQE index where skb address and DMA mappings 948 * are saved. 949 */ 950 if (!tcp_data) { 951 sqe_hdr->pnc = 1; 952 sqe_hdr->sqe_id = first_sqe; 953 sq->sg[first_sqe].skb = (u64)skb; 954 } else { 955 sqe_hdr->pnc = 0; 956 } 957 958 sqe_hdr->sizem1 = (offset / 16) - 1; 959 960 /* Flush SQE to HW */ 961 pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx); 962 } 963 } 964 965 static bool is_hw_tso_supported(struct otx2_nic *pfvf, 966 struct sk_buff *skb) 967 { 968 int payload_len, last_seg_size; 969 970 if (test_bit(HW_TSO, &pfvf->hw.cap_flag)) 971 return true; 972 973 /* On 96xx A0, HW TSO not supported */ 974 if (!is_96xx_B0(pfvf->pdev)) 975 return false; 976 977 /* HW has an issue due to which when the payload of the last LSO 978 * segment is shorter than 16 bytes, some header fields may not 979 * be correctly modified, hence don't offload such TSO segments. 980 */ 981 982 payload_len = skb->len - skb_tcp_all_headers(skb); 983 last_seg_size = payload_len % skb_shinfo(skb)->gso_size; 984 if (last_seg_size && last_seg_size < 16) 985 return false; 986 987 return true; 988 } 989 990 static int otx2_get_sqe_count(struct otx2_nic *pfvf, struct sk_buff *skb) 991 { 992 if (!skb_shinfo(skb)->gso_size) 993 return 1; 994 995 /* HW TSO */ 996 if (is_hw_tso_supported(pfvf, skb)) 997 return 1; 998 999 /* SW TSO */ 1000 return skb_shinfo(skb)->gso_segs; 1001 } 1002 1003 static bool otx2_validate_network_transport(struct sk_buff *skb) 1004 { 1005 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) || 1006 (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)) { 1007 struct udphdr *udph = udp_hdr(skb); 1008 1009 if (udph->source == htons(PTP_PORT) && 1010 udph->dest == htons(PTP_PORT)) 1011 return true; 1012 } 1013 1014 return false; 1015 } 1016 1017 static bool otx2_ptp_is_sync(struct sk_buff *skb, int *offset, bool *udp_csum_crt) 1018 { 1019 struct ethhdr *eth = (struct ethhdr *)(skb->data); 1020 u16 nix_offload_hlen = 0, inner_vhlen = 0; 1021 bool udp_hdr_present = false, is_sync; 1022 u8 *data = skb->data, *msgtype; 1023 __be16 proto = eth->h_proto; 1024 int network_depth = 0; 1025 1026 /* NIX is programmed to offload outer VLAN header 1027 * in case of single vlan protocol field holds Network header ETH_IP/V6 1028 * in case of stacked vlan protocol field holds Inner vlan (8100) 1029 */ 1030 if (skb->dev->features & NETIF_F_HW_VLAN_CTAG_TX && 1031 skb->dev->features & NETIF_F_HW_VLAN_STAG_TX) { 1032 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 1033 /* Get vlan protocol */ 1034 proto = __vlan_get_protocol(skb, eth->h_proto, NULL); 1035 /* SKB APIs like skb_transport_offset does not include 1036 * offloaded vlan header length. Need to explicitly add 1037 * the length 1038 */ 1039 nix_offload_hlen = VLAN_HLEN; 1040 inner_vhlen = VLAN_HLEN; 1041 } else if (skb->vlan_proto == htons(ETH_P_8021Q)) { 1042 nix_offload_hlen = VLAN_HLEN; 1043 } 1044 } else if (eth_type_vlan(eth->h_proto)) { 1045 proto = __vlan_get_protocol(skb, eth->h_proto, &network_depth); 1046 } 1047 1048 switch (ntohs(proto)) { 1049 case ETH_P_1588: 1050 if (network_depth) 1051 *offset = network_depth; 1052 else 1053 *offset = ETH_HLEN + nix_offload_hlen + 1054 inner_vhlen; 1055 break; 1056 case ETH_P_IP: 1057 case ETH_P_IPV6: 1058 if (!otx2_validate_network_transport(skb)) 1059 return false; 1060 1061 *offset = nix_offload_hlen + skb_transport_offset(skb) + 1062 sizeof(struct udphdr); 1063 udp_hdr_present = true; 1064 1065 } 1066 1067 msgtype = data + *offset; 1068 /* Check PTP messageId is SYNC or not */ 1069 is_sync = !(*msgtype & 0xf); 1070 if (is_sync) 1071 *udp_csum_crt = udp_hdr_present; 1072 else 1073 *offset = 0; 1074 1075 return is_sync; 1076 } 1077 1078 static void otx2_set_txtstamp(struct otx2_nic *pfvf, struct sk_buff *skb, 1079 struct otx2_snd_queue *sq, int *offset) 1080 { 1081 struct ethhdr *eth = (struct ethhdr *)(skb->data); 1082 struct ptpv2_tstamp *origin_tstamp; 1083 bool udp_csum_crt = false; 1084 unsigned int udphoff; 1085 struct timespec64 ts; 1086 int ptp_offset = 0; 1087 __wsum skb_csum; 1088 u64 iova; 1089 1090 if (unlikely(!skb_shinfo(skb)->gso_size && 1091 (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) { 1092 if (unlikely(pfvf->flags & OTX2_FLAG_PTP_ONESTEP_SYNC && 1093 otx2_ptp_is_sync(skb, &ptp_offset, &udp_csum_crt))) { 1094 origin_tstamp = (struct ptpv2_tstamp *) 1095 ((u8 *)skb->data + ptp_offset + 1096 PTP_SYNC_SEC_OFFSET); 1097 ts = ns_to_timespec64(pfvf->ptp->tstamp); 1098 origin_tstamp->seconds_msb = htons((ts.tv_sec >> 32) & 0xffff); 1099 origin_tstamp->seconds_lsb = htonl(ts.tv_sec & 0xffffffff); 1100 origin_tstamp->nanoseconds = htonl(ts.tv_nsec); 1101 /* Point to correction field in PTP packet */ 1102 ptp_offset += 8; 1103 1104 /* When user disables hw checksum, stack calculates the csum, 1105 * but it does not cover ptp timestamp which is added later. 1106 * Recalculate the checksum manually considering the timestamp. 1107 */ 1108 if (udp_csum_crt) { 1109 struct udphdr *uh = udp_hdr(skb); 1110 1111 if (skb->ip_summed != CHECKSUM_PARTIAL && uh->check != 0) { 1112 udphoff = skb_transport_offset(skb); 1113 uh->check = 0; 1114 skb_csum = skb_checksum(skb, udphoff, skb->len - udphoff, 1115 0); 1116 if (ntohs(eth->h_proto) == ETH_P_IPV6) 1117 uh->check = csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 1118 &ipv6_hdr(skb)->daddr, 1119 skb->len - udphoff, 1120 ipv6_hdr(skb)->nexthdr, 1121 skb_csum); 1122 else 1123 uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr, 1124 ip_hdr(skb)->daddr, 1125 skb->len - udphoff, 1126 IPPROTO_UDP, 1127 skb_csum); 1128 } 1129 } 1130 } else { 1131 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1132 } 1133 iova = sq->timestamps->iova + (sq->head * sizeof(u64)); 1134 otx2_sqe_add_mem(sq, offset, NIX_SENDMEMALG_E_SETTSTMP, iova, 1135 ptp_offset, pfvf->ptp->base_ns, udp_csum_crt); 1136 } else { 1137 skb_tx_timestamp(skb); 1138 } 1139 } 1140 1141 bool otx2_sq_append_skb(struct net_device *netdev, struct otx2_snd_queue *sq, 1142 struct sk_buff *skb, u16 qidx) 1143 { 1144 struct netdev_queue *txq = netdev_get_tx_queue(netdev, qidx); 1145 struct otx2_nic *pfvf = netdev_priv(netdev); 1146 int offset, num_segs, free_desc; 1147 struct nix_sqe_hdr_s *sqe_hdr; 1148 1149 /* Check if there is enough room between producer 1150 * and consumer index. 1151 */ 1152 free_desc = (sq->cons_head - sq->head - 1 + sq->sqe_cnt) & (sq->sqe_cnt - 1); 1153 if (free_desc < sq->sqe_thresh) 1154 return false; 1155 1156 if (free_desc < otx2_get_sqe_count(pfvf, skb)) 1157 return false; 1158 1159 num_segs = skb_shinfo(skb)->nr_frags + 1; 1160 1161 /* If SKB doesn't fit in a single SQE, linearize it. 1162 * TODO: Consider adding JUMP descriptor instead. 1163 */ 1164 if (unlikely(num_segs > OTX2_MAX_FRAGS_IN_SQE)) { 1165 if (__skb_linearize(skb)) { 1166 dev_kfree_skb_any(skb); 1167 return true; 1168 } 1169 num_segs = skb_shinfo(skb)->nr_frags + 1; 1170 } 1171 1172 if (skb_shinfo(skb)->gso_size && !is_hw_tso_supported(pfvf, skb)) { 1173 /* Insert vlan tag before giving pkt to tso */ 1174 if (skb_vlan_tag_present(skb)) 1175 skb = __vlan_hwaccel_push_inside(skb); 1176 otx2_sq_append_tso(pfvf, sq, skb, qidx); 1177 return true; 1178 } 1179 1180 /* Set SQE's SEND_HDR. 1181 * Do not clear the first 64bit as it contains constant info. 1182 */ 1183 memset(sq->sqe_base + 8, 0, sq->sqe_size - 8); 1184 sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base); 1185 otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx); 1186 offset = sizeof(*sqe_hdr); 1187 1188 /* Add extended header if needed */ 1189 otx2_sqe_add_ext(pfvf, sq, skb, &offset); 1190 1191 /* Add SG subdesc with data frags */ 1192 if (!otx2_sqe_add_sg(pfvf, sq, skb, num_segs, &offset)) { 1193 otx2_dma_unmap_skb_frags(pfvf, &sq->sg[sq->head]); 1194 return false; 1195 } 1196 1197 otx2_set_txtstamp(pfvf, skb, sq, &offset); 1198 1199 sqe_hdr->sizem1 = (offset / 16) - 1; 1200 1201 netdev_tx_sent_queue(txq, skb->len); 1202 1203 /* Flush SQE to HW */ 1204 pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx); 1205 1206 return true; 1207 } 1208 EXPORT_SYMBOL(otx2_sq_append_skb); 1209 1210 void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, int qidx) 1211 { 1212 struct nix_cqe_rx_s *cqe; 1213 struct otx2_pool *pool; 1214 int processed_cqe = 0; 1215 u16 pool_id; 1216 u64 iova; 1217 1218 if (pfvf->xdp_prog) 1219 xdp_rxq_info_unreg(&cq->xdp_rxq); 1220 1221 if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) 1222 return; 1223 1224 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx); 1225 pool = &pfvf->qset.pool[pool_id]; 1226 1227 while (cq->pend_cqe) { 1228 cqe = (struct nix_cqe_rx_s *)otx2_get_next_cqe(cq); 1229 processed_cqe++; 1230 cq->pend_cqe--; 1231 1232 if (!cqe) 1233 continue; 1234 if (cqe->sg.segs > 1) { 1235 otx2_free_rcv_seg(pfvf, cqe, cq->cq_idx); 1236 continue; 1237 } 1238 iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM; 1239 1240 otx2_free_bufs(pfvf, pool, iova, pfvf->rbsize); 1241 } 1242 1243 /* Free CQEs to HW */ 1244 otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, 1245 ((u64)cq->cq_idx << 32) | processed_cqe); 1246 } 1247 1248 void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq) 1249 { 1250 int tx_pkts = 0, tx_bytes = 0; 1251 struct sk_buff *skb = NULL; 1252 struct otx2_snd_queue *sq; 1253 struct nix_cqe_tx_s *cqe; 1254 struct netdev_queue *txq; 1255 int processed_cqe = 0; 1256 struct sg_list *sg; 1257 int qidx; 1258 1259 qidx = cq->cq_idx - pfvf->hw.rx_queues; 1260 sq = &pfvf->qset.sq[qidx]; 1261 1262 if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) 1263 return; 1264 1265 while (cq->pend_cqe) { 1266 cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq); 1267 processed_cqe++; 1268 cq->pend_cqe--; 1269 1270 if (!cqe) 1271 continue; 1272 sg = &sq->sg[cqe->comp.sqe_id]; 1273 skb = (struct sk_buff *)sg->skb; 1274 if (skb) { 1275 tx_bytes += skb->len; 1276 tx_pkts++; 1277 otx2_dma_unmap_skb_frags(pfvf, sg); 1278 dev_kfree_skb_any(skb); 1279 sg->skb = (u64)NULL; 1280 } 1281 } 1282 1283 if (likely(tx_pkts)) { 1284 if (qidx >= pfvf->hw.tx_queues) 1285 qidx -= pfvf->hw.xdp_queues; 1286 txq = netdev_get_tx_queue(pfvf->netdev, qidx); 1287 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 1288 } 1289 /* Free CQEs to HW */ 1290 otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, 1291 ((u64)cq->cq_idx << 32) | processed_cqe); 1292 } 1293 1294 int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable) 1295 { 1296 struct msg_req *msg; 1297 int err; 1298 1299 mutex_lock(&pfvf->mbox.lock); 1300 if (enable) 1301 msg = otx2_mbox_alloc_msg_nix_lf_start_rx(&pfvf->mbox); 1302 else 1303 msg = otx2_mbox_alloc_msg_nix_lf_stop_rx(&pfvf->mbox); 1304 1305 if (!msg) { 1306 mutex_unlock(&pfvf->mbox.lock); 1307 return -ENOMEM; 1308 } 1309 1310 err = otx2_sync_mbox_msg(&pfvf->mbox); 1311 mutex_unlock(&pfvf->mbox.lock); 1312 return err; 1313 } 1314 1315 void otx2_free_pending_sqe(struct otx2_nic *pfvf) 1316 { 1317 int tx_pkts = 0, tx_bytes = 0; 1318 struct sk_buff *skb = NULL; 1319 struct otx2_snd_queue *sq; 1320 struct netdev_queue *txq; 1321 struct sg_list *sg; 1322 int sq_idx, sqe; 1323 1324 for (sq_idx = 0; sq_idx < pfvf->hw.tx_queues; sq_idx++) { 1325 sq = &pfvf->qset.sq[sq_idx]; 1326 for (sqe = 0; sqe < sq->sqe_cnt; sqe++) { 1327 sg = &sq->sg[sqe]; 1328 skb = (struct sk_buff *)sg->skb; 1329 if (skb) { 1330 tx_bytes += skb->len; 1331 tx_pkts++; 1332 otx2_dma_unmap_skb_frags(pfvf, sg); 1333 dev_kfree_skb_any(skb); 1334 sg->skb = (u64)NULL; 1335 } 1336 } 1337 1338 if (!tx_pkts) 1339 continue; 1340 txq = netdev_get_tx_queue(pfvf->netdev, sq_idx); 1341 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 1342 tx_pkts = 0; 1343 tx_bytes = 0; 1344 } 1345 } 1346 1347 static void otx2_xdp_sqe_add_sg(struct otx2_snd_queue *sq, u64 dma_addr, 1348 int len, int *offset) 1349 { 1350 struct nix_sqe_sg_s *sg = NULL; 1351 u64 *iova = NULL; 1352 1353 sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset); 1354 sg->ld_type = NIX_SEND_LDTYPE_LDD; 1355 sg->subdc = NIX_SUBDC_SG; 1356 sg->segs = 1; 1357 sg->seg1_size = len; 1358 iova = (void *)sg + sizeof(*sg); 1359 *iova = dma_addr; 1360 *offset += sizeof(*sg) + sizeof(u64); 1361 1362 sq->sg[sq->head].dma_addr[0] = dma_addr; 1363 sq->sg[sq->head].size[0] = len; 1364 sq->sg[sq->head].num_segs = 1; 1365 } 1366 1367 bool otx2_xdp_sq_append_pkt(struct otx2_nic *pfvf, u64 iova, int len, u16 qidx) 1368 { 1369 struct nix_sqe_hdr_s *sqe_hdr; 1370 struct otx2_snd_queue *sq; 1371 int offset, free_sqe; 1372 1373 sq = &pfvf->qset.sq[qidx]; 1374 free_sqe = (sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb; 1375 if (free_sqe < sq->sqe_thresh) 1376 return false; 1377 1378 memset(sq->sqe_base + 8, 0, sq->sqe_size - 8); 1379 1380 sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base); 1381 1382 if (!sqe_hdr->total) { 1383 sqe_hdr->aura = sq->aura_id; 1384 sqe_hdr->df = 1; 1385 sqe_hdr->sq = qidx; 1386 sqe_hdr->pnc = 1; 1387 } 1388 sqe_hdr->total = len; 1389 sqe_hdr->sqe_id = sq->head; 1390 1391 offset = sizeof(*sqe_hdr); 1392 1393 otx2_xdp_sqe_add_sg(sq, iova, len, &offset); 1394 sqe_hdr->sizem1 = (offset / 16) - 1; 1395 pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx); 1396 1397 return true; 1398 } 1399 1400 static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf, 1401 struct bpf_prog *prog, 1402 struct nix_cqe_rx_s *cqe, 1403 struct otx2_cq_queue *cq, 1404 bool *need_xdp_flush) 1405 { 1406 unsigned char *hard_start, *data; 1407 int qidx = cq->cq_idx; 1408 struct xdp_buff xdp; 1409 struct page *page; 1410 u64 iova, pa; 1411 u32 act; 1412 int err; 1413 1414 iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM; 1415 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova); 1416 page = virt_to_page(phys_to_virt(pa)); 1417 1418 xdp_init_buff(&xdp, pfvf->rbsize, &cq->xdp_rxq); 1419 1420 data = (unsigned char *)phys_to_virt(pa); 1421 hard_start = page_address(page); 1422 xdp_prepare_buff(&xdp, hard_start, data - hard_start, 1423 cqe->sg.seg_size, false); 1424 1425 act = bpf_prog_run_xdp(prog, &xdp); 1426 1427 switch (act) { 1428 case XDP_PASS: 1429 break; 1430 case XDP_TX: 1431 qidx += pfvf->hw.tx_queues; 1432 cq->pool_ptrs++; 1433 return otx2_xdp_sq_append_pkt(pfvf, iova, 1434 cqe->sg.seg_size, qidx); 1435 case XDP_REDIRECT: 1436 cq->pool_ptrs++; 1437 err = xdp_do_redirect(pfvf->netdev, &xdp, prog); 1438 1439 otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize, 1440 DMA_FROM_DEVICE); 1441 if (!err) { 1442 *need_xdp_flush = true; 1443 return true; 1444 } 1445 put_page(page); 1446 break; 1447 default: 1448 bpf_warn_invalid_xdp_action(pfvf->netdev, prog, act); 1449 break; 1450 case XDP_ABORTED: 1451 trace_xdp_exception(pfvf->netdev, prog, act); 1452 break; 1453 case XDP_DROP: 1454 otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize, 1455 DMA_FROM_DEVICE); 1456 put_page(page); 1457 cq->pool_ptrs++; 1458 return true; 1459 } 1460 return false; 1461 } 1462