xref: /linux/drivers/net/ethernet/marvell/octeontx2/nic/otx2_txrx.c (revision 3d0fe49454652117522f60bfbefb978ba0e5300b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/etherdevice.h>
9 #include <net/ip.h>
10 #include <net/tso.h>
11 #include <linux/bpf.h>
12 #include <linux/bpf_trace.h>
13 #include <net/ip6_checksum.h>
14 
15 #include "otx2_reg.h"
16 #include "otx2_common.h"
17 #include "otx2_struct.h"
18 #include "otx2_txrx.h"
19 #include "otx2_ptp.h"
20 #include "cn10k.h"
21 
22 #define CQE_ADDR(CQ, idx) ((CQ)->cqe_base + ((CQ)->cqe_size * (idx)))
23 #define PTP_PORT	        0x13F
24 /* PTPv2 header Original Timestamp starts at byte offset 34 and
25  * contains 6 byte seconds field and 4 byte nano seconds field.
26  */
27 #define PTP_SYNC_SEC_OFFSET	34
28 
29 static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf,
30 				     struct bpf_prog *prog,
31 				     struct nix_cqe_rx_s *cqe,
32 				     struct otx2_cq_queue *cq,
33 				     bool *need_xdp_flush);
34 
35 static int otx2_nix_cq_op_status(struct otx2_nic *pfvf,
36 				 struct otx2_cq_queue *cq)
37 {
38 	u64 incr = (u64)(cq->cq_idx) << 32;
39 	u64 status;
40 
41 	status = otx2_atomic64_fetch_add(incr, pfvf->cq_op_addr);
42 
43 	if (unlikely(status & BIT_ULL(CQ_OP_STAT_OP_ERR) ||
44 		     status & BIT_ULL(CQ_OP_STAT_CQ_ERR))) {
45 		dev_err(pfvf->dev, "CQ stopped due to error");
46 		return -EINVAL;
47 	}
48 
49 	cq->cq_tail = status & 0xFFFFF;
50 	cq->cq_head = (status >> 20) & 0xFFFFF;
51 	if (cq->cq_tail < cq->cq_head)
52 		cq->pend_cqe = (cq->cqe_cnt - cq->cq_head) +
53 				cq->cq_tail;
54 	else
55 		cq->pend_cqe = cq->cq_tail - cq->cq_head;
56 
57 	return 0;
58 }
59 
60 static struct nix_cqe_hdr_s *otx2_get_next_cqe(struct otx2_cq_queue *cq)
61 {
62 	struct nix_cqe_hdr_s *cqe_hdr;
63 
64 	cqe_hdr = (struct nix_cqe_hdr_s *)CQE_ADDR(cq, cq->cq_head);
65 	if (cqe_hdr->cqe_type == NIX_XQE_TYPE_INVALID)
66 		return NULL;
67 
68 	cq->cq_head++;
69 	cq->cq_head &= (cq->cqe_cnt - 1);
70 
71 	return cqe_hdr;
72 }
73 
74 static unsigned int frag_num(unsigned int i)
75 {
76 #ifdef __BIG_ENDIAN
77 	return (i & ~3) + 3 - (i & 3);
78 #else
79 	return i;
80 #endif
81 }
82 
83 static dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf,
84 					struct sk_buff *skb, int seg, int *len)
85 {
86 	const skb_frag_t *frag;
87 	struct page *page;
88 	int offset;
89 
90 	/* First segment is always skb->data */
91 	if (!seg) {
92 		page = virt_to_page(skb->data);
93 		offset = offset_in_page(skb->data);
94 		*len = skb_headlen(skb);
95 	} else {
96 		frag = &skb_shinfo(skb)->frags[seg - 1];
97 		page = skb_frag_page(frag);
98 		offset = skb_frag_off(frag);
99 		*len = skb_frag_size(frag);
100 	}
101 	return otx2_dma_map_page(pfvf, page, offset, *len, DMA_TO_DEVICE);
102 }
103 
104 static void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg)
105 {
106 	int seg;
107 
108 	for (seg = 0; seg < sg->num_segs; seg++) {
109 		otx2_dma_unmap_page(pfvf, sg->dma_addr[seg],
110 				    sg->size[seg], DMA_TO_DEVICE);
111 	}
112 	sg->num_segs = 0;
113 }
114 
115 static void otx2_xdp_snd_pkt_handler(struct otx2_nic *pfvf,
116 				     struct otx2_snd_queue *sq,
117 				 struct nix_cqe_tx_s *cqe)
118 {
119 	struct nix_send_comp_s *snd_comp = &cqe->comp;
120 	struct sg_list *sg;
121 	struct page *page;
122 	u64 pa;
123 
124 	sg = &sq->sg[snd_comp->sqe_id];
125 
126 	pa = otx2_iova_to_phys(pfvf->iommu_domain, sg->dma_addr[0]);
127 	otx2_dma_unmap_page(pfvf, sg->dma_addr[0],
128 			    sg->size[0], DMA_TO_DEVICE);
129 	page = virt_to_page(phys_to_virt(pa));
130 	put_page(page);
131 }
132 
133 static void otx2_snd_pkt_handler(struct otx2_nic *pfvf,
134 				 struct otx2_cq_queue *cq,
135 				 struct otx2_snd_queue *sq,
136 				 struct nix_cqe_tx_s *cqe,
137 				 int budget, int *tx_pkts, int *tx_bytes)
138 {
139 	struct nix_send_comp_s *snd_comp = &cqe->comp;
140 	struct skb_shared_hwtstamps ts;
141 	struct sk_buff *skb = NULL;
142 	u64 timestamp, tsns;
143 	struct sg_list *sg;
144 	int err;
145 
146 	if (unlikely(snd_comp->status) && netif_msg_tx_err(pfvf))
147 		net_err_ratelimited("%s: TX%d: Error in send CQ status:%x\n",
148 				    pfvf->netdev->name, cq->cint_idx,
149 				    snd_comp->status);
150 
151 	sg = &sq->sg[snd_comp->sqe_id];
152 	skb = (struct sk_buff *)sg->skb;
153 	if (unlikely(!skb))
154 		return;
155 
156 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
157 		timestamp = ((u64 *)sq->timestamps->base)[snd_comp->sqe_id];
158 		if (timestamp != 1) {
159 			timestamp = pfvf->ptp->convert_tx_ptp_tstmp(timestamp);
160 			err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns);
161 			if (!err) {
162 				memset(&ts, 0, sizeof(ts));
163 				ts.hwtstamp = ns_to_ktime(tsns);
164 				skb_tstamp_tx(skb, &ts);
165 			}
166 		}
167 	}
168 
169 	*tx_bytes += skb->len;
170 	(*tx_pkts)++;
171 	otx2_dma_unmap_skb_frags(pfvf, sg);
172 	napi_consume_skb(skb, budget);
173 	sg->skb = (u64)NULL;
174 }
175 
176 static void otx2_set_rxtstamp(struct otx2_nic *pfvf,
177 			      struct sk_buff *skb, void *data)
178 {
179 	u64 timestamp, tsns;
180 	int err;
181 
182 	if (!(pfvf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED))
183 		return;
184 
185 	timestamp = pfvf->ptp->convert_rx_ptp_tstmp(*(u64 *)data);
186 	/* The first 8 bytes is the timestamp */
187 	err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns);
188 	if (err)
189 		return;
190 
191 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(tsns);
192 }
193 
194 static bool otx2_skb_add_frag(struct otx2_nic *pfvf, struct sk_buff *skb,
195 			      u64 iova, int len, struct nix_rx_parse_s *parse,
196 			      int qidx)
197 {
198 	struct page *page;
199 	int off = 0;
200 	void *va;
201 
202 	va = phys_to_virt(otx2_iova_to_phys(pfvf->iommu_domain, iova));
203 
204 	if (likely(!skb_shinfo(skb)->nr_frags)) {
205 		/* Check if data starts at some nonzero offset
206 		 * from the start of the buffer.  For now the
207 		 * only possible offset is 8 bytes in the case
208 		 * where packet is prepended by a timestamp.
209 		 */
210 		if (parse->laptr) {
211 			otx2_set_rxtstamp(pfvf, skb, va);
212 			off = OTX2_HW_TIMESTAMP_LEN;
213 		}
214 	}
215 
216 	page = virt_to_page(va);
217 	if (likely(skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS)) {
218 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
219 				va - page_address(page) + off,
220 				len - off, pfvf->rbsize);
221 		return true;
222 	}
223 
224 	/* If more than MAX_SKB_FRAGS fragments are received then
225 	 * give back those buffer pointers to hardware for reuse.
226 	 */
227 	pfvf->hw_ops->aura_freeptr(pfvf, qidx, iova & ~0x07ULL);
228 
229 	return false;
230 }
231 
232 static void otx2_set_rxhash(struct otx2_nic *pfvf,
233 			    struct nix_cqe_rx_s *cqe, struct sk_buff *skb)
234 {
235 	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
236 	struct otx2_rss_info *rss;
237 	u32 hash = 0;
238 
239 	if (!(pfvf->netdev->features & NETIF_F_RXHASH))
240 		return;
241 
242 	rss = &pfvf->hw.rss_info;
243 	if (rss->flowkey_cfg) {
244 		if (rss->flowkey_cfg &
245 		    ~(NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6))
246 			hash_type = PKT_HASH_TYPE_L4;
247 		else
248 			hash_type = PKT_HASH_TYPE_L3;
249 		hash = cqe->hdr.flow_tag;
250 	}
251 	skb_set_hash(skb, hash, hash_type);
252 }
253 
254 static void otx2_free_rcv_seg(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe,
255 			      int qidx)
256 {
257 	struct nix_rx_sg_s *sg = &cqe->sg;
258 	void *end, *start;
259 	u64 *seg_addr;
260 	int seg;
261 
262 	start = (void *)sg;
263 	end = start + ((cqe->parse.desc_sizem1 + 1) * 16);
264 	while (start < end) {
265 		sg = (struct nix_rx_sg_s *)start;
266 		seg_addr = &sg->seg_addr;
267 		for (seg = 0; seg < sg->segs; seg++, seg_addr++)
268 			pfvf->hw_ops->aura_freeptr(pfvf, qidx,
269 						   *seg_addr & ~0x07ULL);
270 		start += sizeof(*sg);
271 	}
272 }
273 
274 static bool otx2_check_rcv_errors(struct otx2_nic *pfvf,
275 				  struct nix_cqe_rx_s *cqe, int qidx)
276 {
277 	struct otx2_drv_stats *stats = &pfvf->hw.drv_stats;
278 	struct nix_rx_parse_s *parse = &cqe->parse;
279 
280 	if (netif_msg_rx_err(pfvf))
281 		netdev_err(pfvf->netdev,
282 			   "RQ%d: Error pkt with errlev:0x%x errcode:0x%x\n",
283 			   qidx, parse->errlev, parse->errcode);
284 
285 	if (parse->errlev == NPC_ERRLVL_RE) {
286 		switch (parse->errcode) {
287 		case ERRCODE_FCS:
288 		case ERRCODE_FCS_RCV:
289 			atomic_inc(&stats->rx_fcs_errs);
290 			break;
291 		case ERRCODE_UNDERSIZE:
292 			atomic_inc(&stats->rx_undersize_errs);
293 			break;
294 		case ERRCODE_OVERSIZE:
295 			atomic_inc(&stats->rx_oversize_errs);
296 			break;
297 		case ERRCODE_OL2_LEN_MISMATCH:
298 			atomic_inc(&stats->rx_len_errs);
299 			break;
300 		default:
301 			atomic_inc(&stats->rx_other_errs);
302 			break;
303 		}
304 	} else if (parse->errlev == NPC_ERRLVL_NIX) {
305 		switch (parse->errcode) {
306 		case ERRCODE_OL3_LEN:
307 		case ERRCODE_OL4_LEN:
308 		case ERRCODE_IL3_LEN:
309 		case ERRCODE_IL4_LEN:
310 			atomic_inc(&stats->rx_len_errs);
311 			break;
312 		case ERRCODE_OL4_CSUM:
313 		case ERRCODE_IL4_CSUM:
314 			atomic_inc(&stats->rx_csum_errs);
315 			break;
316 		default:
317 			atomic_inc(&stats->rx_other_errs);
318 			break;
319 		}
320 	} else {
321 		atomic_inc(&stats->rx_other_errs);
322 		/* For now ignore all the NPC parser errors and
323 		 * pass the packets to stack.
324 		 */
325 		return false;
326 	}
327 
328 	/* If RXALL is enabled pass on packets to stack. */
329 	if (pfvf->netdev->features & NETIF_F_RXALL)
330 		return false;
331 
332 	/* Free buffer back to pool */
333 	if (cqe->sg.segs)
334 		otx2_free_rcv_seg(pfvf, cqe, qidx);
335 	return true;
336 }
337 
338 static void otx2_rcv_pkt_handler(struct otx2_nic *pfvf,
339 				 struct napi_struct *napi,
340 				 struct otx2_cq_queue *cq,
341 				 struct nix_cqe_rx_s *cqe, bool *need_xdp_flush)
342 {
343 	struct nix_rx_parse_s *parse = &cqe->parse;
344 	struct nix_rx_sg_s *sg = &cqe->sg;
345 	struct sk_buff *skb = NULL;
346 	void *end, *start;
347 	u64 *seg_addr;
348 	u16 *seg_size;
349 	int seg;
350 
351 	if (unlikely(parse->errlev || parse->errcode)) {
352 		if (otx2_check_rcv_errors(pfvf, cqe, cq->cq_idx))
353 			return;
354 	}
355 
356 	if (pfvf->xdp_prog)
357 		if (otx2_xdp_rcv_pkt_handler(pfvf, pfvf->xdp_prog, cqe, cq, need_xdp_flush))
358 			return;
359 
360 	skb = napi_get_frags(napi);
361 	if (unlikely(!skb))
362 		return;
363 
364 	start = (void *)sg;
365 	end = start + ((cqe->parse.desc_sizem1 + 1) * 16);
366 	while (start < end) {
367 		sg = (struct nix_rx_sg_s *)start;
368 		seg_addr = &sg->seg_addr;
369 		seg_size = (void *)sg;
370 		for (seg = 0; seg < sg->segs; seg++, seg_addr++) {
371 			if (otx2_skb_add_frag(pfvf, skb, *seg_addr,
372 					      seg_size[seg], parse, cq->cq_idx))
373 				cq->pool_ptrs++;
374 		}
375 		start += sizeof(*sg);
376 	}
377 	otx2_set_rxhash(pfvf, cqe, skb);
378 
379 	skb_record_rx_queue(skb, cq->cq_idx);
380 	if (pfvf->netdev->features & NETIF_F_RXCSUM)
381 		skb->ip_summed = CHECKSUM_UNNECESSARY;
382 
383 	skb_mark_for_recycle(skb);
384 
385 	napi_gro_frags(napi);
386 }
387 
388 static int otx2_rx_napi_handler(struct otx2_nic *pfvf,
389 				struct napi_struct *napi,
390 				struct otx2_cq_queue *cq, int budget)
391 {
392 	bool need_xdp_flush = false;
393 	struct nix_cqe_rx_s *cqe;
394 	int processed_cqe = 0;
395 
396 	if (cq->pend_cqe >= budget)
397 		goto process_cqe;
398 
399 	if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
400 		return 0;
401 
402 process_cqe:
403 	while (likely(processed_cqe < budget) && cq->pend_cqe) {
404 		cqe = (struct nix_cqe_rx_s *)CQE_ADDR(cq, cq->cq_head);
405 		if (cqe->hdr.cqe_type == NIX_XQE_TYPE_INVALID ||
406 		    !cqe->sg.seg_addr) {
407 			if (!processed_cqe)
408 				return 0;
409 			break;
410 		}
411 		cq->cq_head++;
412 		cq->cq_head &= (cq->cqe_cnt - 1);
413 
414 		otx2_rcv_pkt_handler(pfvf, napi, cq, cqe, &need_xdp_flush);
415 
416 		cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
417 		cqe->sg.seg_addr = 0x00;
418 		processed_cqe++;
419 		cq->pend_cqe--;
420 	}
421 	if (need_xdp_flush)
422 		xdp_do_flush();
423 
424 	/* Free CQEs to HW */
425 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
426 		     ((u64)cq->cq_idx << 32) | processed_cqe);
427 
428 	return processed_cqe;
429 }
430 
431 int otx2_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq)
432 {
433 	struct otx2_nic *pfvf = dev;
434 	int cnt = cq->pool_ptrs;
435 	dma_addr_t bufptr;
436 
437 	while (cq->pool_ptrs) {
438 		if (otx2_alloc_buffer(pfvf, cq, &bufptr))
439 			break;
440 		otx2_aura_freeptr(pfvf, cq->cq_idx, bufptr + OTX2_HEAD_ROOM);
441 		cq->pool_ptrs--;
442 	}
443 
444 	return cnt - cq->pool_ptrs;
445 }
446 
447 static int otx2_tx_napi_handler(struct otx2_nic *pfvf,
448 				struct otx2_cq_queue *cq, int budget)
449 {
450 	int tx_pkts = 0, tx_bytes = 0, qidx;
451 	struct otx2_snd_queue *sq;
452 	struct nix_cqe_tx_s *cqe;
453 	int processed_cqe = 0;
454 
455 	if (cq->pend_cqe >= budget)
456 		goto process_cqe;
457 
458 	if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
459 		return 0;
460 
461 process_cqe:
462 	qidx = cq->cq_idx - pfvf->hw.rx_queues;
463 	sq = &pfvf->qset.sq[qidx];
464 
465 	while (likely(processed_cqe < budget) && cq->pend_cqe) {
466 		cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq);
467 		if (unlikely(!cqe)) {
468 			if (!processed_cqe)
469 				return 0;
470 			break;
471 		}
472 
473 		qidx = cq->cq_idx - pfvf->hw.rx_queues;
474 
475 		if (cq->cq_type == CQ_XDP)
476 			otx2_xdp_snd_pkt_handler(pfvf, sq, cqe);
477 		else
478 			otx2_snd_pkt_handler(pfvf, cq, &pfvf->qset.sq[qidx],
479 					     cqe, budget, &tx_pkts, &tx_bytes);
480 
481 		cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
482 		processed_cqe++;
483 		cq->pend_cqe--;
484 
485 		sq->cons_head++;
486 		sq->cons_head &= (sq->sqe_cnt - 1);
487 	}
488 
489 	/* Free CQEs to HW */
490 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
491 		     ((u64)cq->cq_idx << 32) | processed_cqe);
492 
493 	if (likely(tx_pkts)) {
494 		struct netdev_queue *txq;
495 
496 		qidx = cq->cq_idx - pfvf->hw.rx_queues;
497 
498 		if (qidx >= pfvf->hw.tx_queues)
499 			qidx -= pfvf->hw.xdp_queues;
500 		txq = netdev_get_tx_queue(pfvf->netdev, qidx);
501 		netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
502 		/* Check if queue was stopped earlier due to ring full */
503 		smp_mb();
504 		if (netif_tx_queue_stopped(txq) &&
505 		    netif_carrier_ok(pfvf->netdev))
506 			netif_tx_wake_queue(txq);
507 	}
508 	return 0;
509 }
510 
511 static void otx2_adjust_adaptive_coalese(struct otx2_nic *pfvf, struct otx2_cq_poll *cq_poll)
512 {
513 	struct dim_sample dim_sample;
514 	u64 rx_frames, rx_bytes;
515 
516 	rx_frames = OTX2_GET_RX_STATS(RX_BCAST) + OTX2_GET_RX_STATS(RX_MCAST) +
517 		OTX2_GET_RX_STATS(RX_UCAST);
518 	rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
519 	dim_update_sample(pfvf->napi_events, rx_frames, rx_bytes, &dim_sample);
520 	net_dim(&cq_poll->dim, dim_sample);
521 }
522 
523 int otx2_napi_handler(struct napi_struct *napi, int budget)
524 {
525 	struct otx2_cq_queue *rx_cq = NULL;
526 	struct otx2_cq_poll *cq_poll;
527 	int workdone = 0, cq_idx, i;
528 	struct otx2_cq_queue *cq;
529 	struct otx2_qset *qset;
530 	struct otx2_nic *pfvf;
531 	int filled_cnt = -1;
532 
533 	cq_poll = container_of(napi, struct otx2_cq_poll, napi);
534 	pfvf = (struct otx2_nic *)cq_poll->dev;
535 	qset = &pfvf->qset;
536 
537 	for (i = 0; i < CQS_PER_CINT; i++) {
538 		cq_idx = cq_poll->cq_ids[i];
539 		if (unlikely(cq_idx == CINT_INVALID_CQ))
540 			continue;
541 		cq = &qset->cq[cq_idx];
542 		if (cq->cq_type == CQ_RX) {
543 			rx_cq = cq;
544 			workdone += otx2_rx_napi_handler(pfvf, napi,
545 							 cq, budget);
546 		} else {
547 			workdone += otx2_tx_napi_handler(pfvf, cq, budget);
548 		}
549 	}
550 
551 	if (rx_cq && rx_cq->pool_ptrs)
552 		filled_cnt = pfvf->hw_ops->refill_pool_ptrs(pfvf, rx_cq);
553 	/* Clear the IRQ */
554 	otx2_write64(pfvf, NIX_LF_CINTX_INT(cq_poll->cint_idx), BIT_ULL(0));
555 
556 	if (workdone < budget && napi_complete_done(napi, workdone)) {
557 		/* If interface is going down, don't re-enable IRQ */
558 		if (pfvf->flags & OTX2_FLAG_INTF_DOWN)
559 			return workdone;
560 
561 		/* Check for adaptive interrupt coalesce */
562 		if (workdone != 0 &&
563 		    ((pfvf->flags & OTX2_FLAG_ADPTV_INT_COAL_ENABLED) ==
564 		     OTX2_FLAG_ADPTV_INT_COAL_ENABLED)) {
565 			/* Adjust irq coalese using net_dim */
566 			otx2_adjust_adaptive_coalese(pfvf, cq_poll);
567 			/* Update irq coalescing */
568 			for (i = 0; i < pfvf->hw.cint_cnt; i++)
569 				otx2_config_irq_coalescing(pfvf, i);
570 		}
571 
572 		if (unlikely(!filled_cnt)) {
573 			struct refill_work *work;
574 			struct delayed_work *dwork;
575 
576 			work = &pfvf->refill_wrk[cq->cq_idx];
577 			dwork = &work->pool_refill_work;
578 			/* Schedule a task if no other task is running */
579 			if (!cq->refill_task_sched) {
580 				work->napi = napi;
581 				cq->refill_task_sched = true;
582 				schedule_delayed_work(dwork,
583 						      msecs_to_jiffies(100));
584 			}
585 		} else {
586 			/* Re-enable interrupts */
587 			otx2_write64(pfvf,
588 				     NIX_LF_CINTX_ENA_W1S(cq_poll->cint_idx),
589 				     BIT_ULL(0));
590 		}
591 	}
592 	return workdone;
593 }
594 
595 void otx2_sqe_flush(void *dev, struct otx2_snd_queue *sq,
596 		    int size, int qidx)
597 {
598 	u64 status;
599 
600 	/* Packet data stores should finish before SQE is flushed to HW */
601 	dma_wmb();
602 
603 	do {
604 		memcpy(sq->lmt_addr, sq->sqe_base, size);
605 		status = otx2_lmt_flush(sq->io_addr);
606 	} while (status == 0);
607 
608 	sq->head++;
609 	sq->head &= (sq->sqe_cnt - 1);
610 }
611 
612 #define MAX_SEGS_PER_SG	3
613 /* Add SQE scatter/gather subdescriptor structure */
614 static bool otx2_sqe_add_sg(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
615 			    struct sk_buff *skb, int num_segs, int *offset)
616 {
617 	struct nix_sqe_sg_s *sg = NULL;
618 	u64 dma_addr, *iova = NULL;
619 	u16 *sg_lens = NULL;
620 	int seg, len;
621 
622 	sq->sg[sq->head].num_segs = 0;
623 
624 	for (seg = 0; seg < num_segs; seg++) {
625 		if ((seg % MAX_SEGS_PER_SG) == 0) {
626 			sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
627 			sg->ld_type = NIX_SEND_LDTYPE_LDD;
628 			sg->subdc = NIX_SUBDC_SG;
629 			sg->segs = 0;
630 			sg_lens = (void *)sg;
631 			iova = (void *)sg + sizeof(*sg);
632 			/* Next subdc always starts at a 16byte boundary.
633 			 * So if sg->segs is whether 2 or 3, offset += 16bytes.
634 			 */
635 			if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
636 				*offset += sizeof(*sg) + (3 * sizeof(u64));
637 			else
638 				*offset += sizeof(*sg) + sizeof(u64);
639 		}
640 		dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
641 		if (dma_mapping_error(pfvf->dev, dma_addr))
642 			return false;
643 
644 		sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = len;
645 		sg->segs++;
646 		*iova++ = dma_addr;
647 
648 		/* Save DMA mapping info for later unmapping */
649 		sq->sg[sq->head].dma_addr[seg] = dma_addr;
650 		sq->sg[sq->head].size[seg] = len;
651 		sq->sg[sq->head].num_segs++;
652 	}
653 
654 	sq->sg[sq->head].skb = (u64)skb;
655 	return true;
656 }
657 
658 /* Add SQE extended header subdescriptor */
659 static void otx2_sqe_add_ext(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
660 			     struct sk_buff *skb, int *offset)
661 {
662 	struct nix_sqe_ext_s *ext;
663 
664 	ext = (struct nix_sqe_ext_s *)(sq->sqe_base + *offset);
665 	ext->subdc = NIX_SUBDC_EXT;
666 	if (skb_shinfo(skb)->gso_size) {
667 		ext->lso = 1;
668 		ext->lso_sb = skb_tcp_all_headers(skb);
669 		ext->lso_mps = skb_shinfo(skb)->gso_size;
670 
671 		/* Only TSOv4 and TSOv6 GSO offloads are supported */
672 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
673 			ext->lso_format = pfvf->hw.lso_tsov4_idx;
674 
675 			/* HW adds payload size to 'ip_hdr->tot_len' while
676 			 * sending TSO segment, hence set payload length
677 			 * in IP header of the packet to just header length.
678 			 */
679 			ip_hdr(skb)->tot_len =
680 				htons(ext->lso_sb - skb_network_offset(skb));
681 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
682 			ext->lso_format = pfvf->hw.lso_tsov6_idx;
683 			ipv6_hdr(skb)->payload_len = htons(tcp_hdrlen(skb));
684 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
685 			__be16 l3_proto = vlan_get_protocol(skb);
686 			struct udphdr *udph = udp_hdr(skb);
687 			u16 iplen;
688 
689 			ext->lso_sb = skb_transport_offset(skb) +
690 					sizeof(struct udphdr);
691 
692 			/* HW adds payload size to length fields in IP and
693 			 * UDP headers while segmentation, hence adjust the
694 			 * lengths to just header sizes.
695 			 */
696 			iplen = htons(ext->lso_sb - skb_network_offset(skb));
697 			if (l3_proto == htons(ETH_P_IP)) {
698 				ip_hdr(skb)->tot_len = iplen;
699 				ext->lso_format = pfvf->hw.lso_udpv4_idx;
700 			} else {
701 				ipv6_hdr(skb)->payload_len = iplen;
702 				ext->lso_format = pfvf->hw.lso_udpv6_idx;
703 			}
704 
705 			udph->len = htons(sizeof(struct udphdr));
706 		}
707 	} else if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
708 		ext->tstmp = 1;
709 	}
710 
711 #define OTX2_VLAN_PTR_OFFSET     (ETH_HLEN - ETH_TLEN)
712 	if (skb_vlan_tag_present(skb)) {
713 		if (skb->vlan_proto == htons(ETH_P_8021Q)) {
714 			ext->vlan1_ins_ena = 1;
715 			ext->vlan1_ins_ptr = OTX2_VLAN_PTR_OFFSET;
716 			ext->vlan1_ins_tci = skb_vlan_tag_get(skb);
717 		} else if (skb->vlan_proto == htons(ETH_P_8021AD)) {
718 			ext->vlan0_ins_ena = 1;
719 			ext->vlan0_ins_ptr = OTX2_VLAN_PTR_OFFSET;
720 			ext->vlan0_ins_tci = skb_vlan_tag_get(skb);
721 		}
722 	}
723 
724 	*offset += sizeof(*ext);
725 }
726 
727 static void otx2_sqe_add_mem(struct otx2_snd_queue *sq, int *offset,
728 			     int alg, u64 iova, int ptp_offset,
729 			     u64 base_ns, bool udp_csum_crt)
730 {
731 	struct nix_sqe_mem_s *mem;
732 
733 	mem = (struct nix_sqe_mem_s *)(sq->sqe_base + *offset);
734 	mem->subdc = NIX_SUBDC_MEM;
735 	mem->alg = alg;
736 	mem->wmem = 1; /* wait for the memory operation */
737 	mem->addr = iova;
738 
739 	if (ptp_offset) {
740 		mem->start_offset = ptp_offset;
741 		mem->udp_csum_crt = !!udp_csum_crt;
742 		mem->base_ns = base_ns;
743 		mem->step_type = 1;
744 	}
745 
746 	*offset += sizeof(*mem);
747 }
748 
749 /* Add SQE header subdescriptor structure */
750 static void otx2_sqe_add_hdr(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
751 			     struct nix_sqe_hdr_s *sqe_hdr,
752 			     struct sk_buff *skb, u16 qidx)
753 {
754 	int proto = 0;
755 
756 	/* Check if SQE was framed before, if yes then no need to
757 	 * set these constants again and again.
758 	 */
759 	if (!sqe_hdr->total) {
760 		/* Don't free Tx buffers to Aura */
761 		sqe_hdr->df = 1;
762 		sqe_hdr->aura = sq->aura_id;
763 		/* Post a CQE Tx after pkt transmission */
764 		sqe_hdr->pnc = 1;
765 		sqe_hdr->sq = (qidx >=  pfvf->hw.tx_queues) ?
766 			       qidx + pfvf->hw.xdp_queues : qidx;
767 	}
768 	sqe_hdr->total = skb->len;
769 	/* Set SQE identifier which will be used later for freeing SKB */
770 	sqe_hdr->sqe_id = sq->head;
771 
772 	/* Offload TCP/UDP checksum to HW */
773 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
774 		sqe_hdr->ol3ptr = skb_network_offset(skb);
775 		sqe_hdr->ol4ptr = skb_transport_offset(skb);
776 		/* get vlan protocol Ethertype */
777 		if (eth_type_vlan(skb->protocol))
778 			skb->protocol = vlan_get_protocol(skb);
779 
780 		if (skb->protocol == htons(ETH_P_IP)) {
781 			proto = ip_hdr(skb)->protocol;
782 			/* In case of TSO, HW needs this to be explicitly set.
783 			 * So set this always, instead of adding a check.
784 			 */
785 			sqe_hdr->ol3type = NIX_SENDL3TYPE_IP4_CKSUM;
786 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
787 			proto = ipv6_hdr(skb)->nexthdr;
788 			sqe_hdr->ol3type = NIX_SENDL3TYPE_IP6;
789 		}
790 
791 		if (proto == IPPROTO_TCP)
792 			sqe_hdr->ol4type = NIX_SENDL4TYPE_TCP_CKSUM;
793 		else if (proto == IPPROTO_UDP)
794 			sqe_hdr->ol4type = NIX_SENDL4TYPE_UDP_CKSUM;
795 	}
796 }
797 
798 static int otx2_dma_map_tso_skb(struct otx2_nic *pfvf,
799 				struct otx2_snd_queue *sq,
800 				struct sk_buff *skb, int sqe, int hdr_len)
801 {
802 	int num_segs = skb_shinfo(skb)->nr_frags + 1;
803 	struct sg_list *sg = &sq->sg[sqe];
804 	u64 dma_addr;
805 	int seg, len;
806 
807 	sg->num_segs = 0;
808 
809 	/* Get payload length at skb->data */
810 	len = skb_headlen(skb) - hdr_len;
811 
812 	for (seg = 0; seg < num_segs; seg++) {
813 		/* Skip skb->data, if there is no payload */
814 		if (!seg && !len)
815 			continue;
816 		dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
817 		if (dma_mapping_error(pfvf->dev, dma_addr))
818 			goto unmap;
819 
820 		/* Save DMA mapping info for later unmapping */
821 		sg->dma_addr[sg->num_segs] = dma_addr;
822 		sg->size[sg->num_segs] = len;
823 		sg->num_segs++;
824 	}
825 	return 0;
826 unmap:
827 	otx2_dma_unmap_skb_frags(pfvf, sg);
828 	return -EINVAL;
829 }
830 
831 static u64 otx2_tso_frag_dma_addr(struct otx2_snd_queue *sq,
832 				  struct sk_buff *skb, int seg,
833 				  u64 seg_addr, int hdr_len, int sqe)
834 {
835 	struct sg_list *sg = &sq->sg[sqe];
836 	const skb_frag_t *frag;
837 	int offset;
838 
839 	if (seg < 0)
840 		return sg->dma_addr[0] + (seg_addr - (u64)skb->data);
841 
842 	frag = &skb_shinfo(skb)->frags[seg];
843 	offset = seg_addr - (u64)skb_frag_address(frag);
844 	if (skb_headlen(skb) - hdr_len)
845 		seg++;
846 	return sg->dma_addr[seg] + offset;
847 }
848 
849 static void otx2_sqe_tso_add_sg(struct otx2_snd_queue *sq,
850 				struct sg_list *list, int *offset)
851 {
852 	struct nix_sqe_sg_s *sg = NULL;
853 	u16 *sg_lens = NULL;
854 	u64 *iova = NULL;
855 	int seg;
856 
857 	/* Add SG descriptors with buffer addresses */
858 	for (seg = 0; seg < list->num_segs; seg++) {
859 		if ((seg % MAX_SEGS_PER_SG) == 0) {
860 			sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
861 			sg->ld_type = NIX_SEND_LDTYPE_LDD;
862 			sg->subdc = NIX_SUBDC_SG;
863 			sg->segs = 0;
864 			sg_lens = (void *)sg;
865 			iova = (void *)sg + sizeof(*sg);
866 			/* Next subdc always starts at a 16byte boundary.
867 			 * So if sg->segs is whether 2 or 3, offset += 16bytes.
868 			 */
869 			if ((list->num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
870 				*offset += sizeof(*sg) + (3 * sizeof(u64));
871 			else
872 				*offset += sizeof(*sg) + sizeof(u64);
873 		}
874 		sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = list->size[seg];
875 		*iova++ = list->dma_addr[seg];
876 		sg->segs++;
877 	}
878 }
879 
880 static void otx2_sq_append_tso(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
881 			       struct sk_buff *skb, u16 qidx)
882 {
883 	struct netdev_queue *txq = netdev_get_tx_queue(pfvf->netdev, qidx);
884 	int hdr_len, tcp_data, seg_len, pkt_len, offset;
885 	struct nix_sqe_hdr_s *sqe_hdr;
886 	int first_sqe = sq->head;
887 	struct sg_list list;
888 	struct tso_t tso;
889 
890 	hdr_len = tso_start(skb, &tso);
891 
892 	/* Map SKB's fragments to DMA.
893 	 * It's done here to avoid mapping for every TSO segment's packet.
894 	 */
895 	if (otx2_dma_map_tso_skb(pfvf, sq, skb, first_sqe, hdr_len)) {
896 		dev_kfree_skb_any(skb);
897 		return;
898 	}
899 
900 	netdev_tx_sent_queue(txq, skb->len);
901 
902 	tcp_data = skb->len - hdr_len;
903 	while (tcp_data > 0) {
904 		char *hdr;
905 
906 		seg_len = min_t(int, skb_shinfo(skb)->gso_size, tcp_data);
907 		tcp_data -= seg_len;
908 
909 		/* Set SQE's SEND_HDR */
910 		memset(sq->sqe_base, 0, sq->sqe_size);
911 		sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
912 		otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
913 		offset = sizeof(*sqe_hdr);
914 
915 		/* Add TSO segment's pkt header */
916 		hdr = sq->tso_hdrs->base + (sq->head * TSO_HEADER_SIZE);
917 		tso_build_hdr(skb, hdr, &tso, seg_len, tcp_data == 0);
918 		list.dma_addr[0] =
919 			sq->tso_hdrs->iova + (sq->head * TSO_HEADER_SIZE);
920 		list.size[0] = hdr_len;
921 		list.num_segs = 1;
922 
923 		/* Add TSO segment's payload data fragments */
924 		pkt_len = hdr_len;
925 		while (seg_len > 0) {
926 			int size;
927 
928 			size = min_t(int, tso.size, seg_len);
929 
930 			list.size[list.num_segs] = size;
931 			list.dma_addr[list.num_segs] =
932 				otx2_tso_frag_dma_addr(sq, skb,
933 						       tso.next_frag_idx - 1,
934 						       (u64)tso.data, hdr_len,
935 						       first_sqe);
936 			list.num_segs++;
937 			pkt_len += size;
938 			seg_len -= size;
939 			tso_build_data(skb, &tso, size);
940 		}
941 		sqe_hdr->total = pkt_len;
942 		otx2_sqe_tso_add_sg(sq, &list, &offset);
943 
944 		/* DMA mappings and skb needs to be freed only after last
945 		 * TSO segment is transmitted out. So set 'PNC' only for
946 		 * last segment. Also point last segment's sqe_id to first
947 		 * segment's SQE index where skb address and DMA mappings
948 		 * are saved.
949 		 */
950 		if (!tcp_data) {
951 			sqe_hdr->pnc = 1;
952 			sqe_hdr->sqe_id = first_sqe;
953 			sq->sg[first_sqe].skb = (u64)skb;
954 		} else {
955 			sqe_hdr->pnc = 0;
956 		}
957 
958 		sqe_hdr->sizem1 = (offset / 16) - 1;
959 
960 		/* Flush SQE to HW */
961 		pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
962 	}
963 }
964 
965 static bool is_hw_tso_supported(struct otx2_nic *pfvf,
966 				struct sk_buff *skb)
967 {
968 	int payload_len, last_seg_size;
969 
970 	if (test_bit(HW_TSO, &pfvf->hw.cap_flag))
971 		return true;
972 
973 	/* On 96xx A0, HW TSO not supported */
974 	if (!is_96xx_B0(pfvf->pdev))
975 		return false;
976 
977 	/* HW has an issue due to which when the payload of the last LSO
978 	 * segment is shorter than 16 bytes, some header fields may not
979 	 * be correctly modified, hence don't offload such TSO segments.
980 	 */
981 
982 	payload_len = skb->len - skb_tcp_all_headers(skb);
983 	last_seg_size = payload_len % skb_shinfo(skb)->gso_size;
984 	if (last_seg_size && last_seg_size < 16)
985 		return false;
986 
987 	return true;
988 }
989 
990 static int otx2_get_sqe_count(struct otx2_nic *pfvf, struct sk_buff *skb)
991 {
992 	if (!skb_shinfo(skb)->gso_size)
993 		return 1;
994 
995 	/* HW TSO */
996 	if (is_hw_tso_supported(pfvf, skb))
997 		return 1;
998 
999 	/* SW TSO */
1000 	return skb_shinfo(skb)->gso_segs;
1001 }
1002 
1003 static bool otx2_validate_network_transport(struct sk_buff *skb)
1004 {
1005 	if ((ip_hdr(skb)->protocol == IPPROTO_UDP) ||
1006 	    (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)) {
1007 		struct udphdr *udph = udp_hdr(skb);
1008 
1009 		if (udph->source == htons(PTP_PORT) &&
1010 		    udph->dest == htons(PTP_PORT))
1011 			return true;
1012 	}
1013 
1014 	return false;
1015 }
1016 
1017 static bool otx2_ptp_is_sync(struct sk_buff *skb, int *offset, bool *udp_csum_crt)
1018 {
1019 	struct ethhdr *eth = (struct ethhdr *)(skb->data);
1020 	u16 nix_offload_hlen = 0, inner_vhlen = 0;
1021 	bool udp_hdr_present = false, is_sync;
1022 	u8 *data = skb->data, *msgtype;
1023 	__be16 proto = eth->h_proto;
1024 	int network_depth = 0;
1025 
1026 	/* NIX is programmed to offload outer  VLAN header
1027 	 * in case of single vlan protocol field holds Network header ETH_IP/V6
1028 	 * in case of stacked vlan protocol field holds Inner vlan (8100)
1029 	 */
1030 	if (skb->dev->features & NETIF_F_HW_VLAN_CTAG_TX &&
1031 	    skb->dev->features & NETIF_F_HW_VLAN_STAG_TX) {
1032 		if (skb->vlan_proto == htons(ETH_P_8021AD)) {
1033 			/* Get vlan protocol */
1034 			proto = __vlan_get_protocol(skb, eth->h_proto, NULL);
1035 			/* SKB APIs like skb_transport_offset does not include
1036 			 * offloaded vlan header length. Need to explicitly add
1037 			 * the length
1038 			 */
1039 			nix_offload_hlen = VLAN_HLEN;
1040 			inner_vhlen = VLAN_HLEN;
1041 		} else if (skb->vlan_proto == htons(ETH_P_8021Q)) {
1042 			nix_offload_hlen = VLAN_HLEN;
1043 		}
1044 	} else if (eth_type_vlan(eth->h_proto)) {
1045 		proto = __vlan_get_protocol(skb, eth->h_proto, &network_depth);
1046 	}
1047 
1048 	switch (ntohs(proto)) {
1049 	case ETH_P_1588:
1050 		if (network_depth)
1051 			*offset = network_depth;
1052 		else
1053 			*offset = ETH_HLEN + nix_offload_hlen +
1054 				  inner_vhlen;
1055 		break;
1056 	case ETH_P_IP:
1057 	case ETH_P_IPV6:
1058 		if (!otx2_validate_network_transport(skb))
1059 			return false;
1060 
1061 		*offset = nix_offload_hlen + skb_transport_offset(skb) +
1062 			  sizeof(struct udphdr);
1063 		udp_hdr_present = true;
1064 
1065 	}
1066 
1067 	msgtype = data + *offset;
1068 	/* Check PTP messageId is SYNC or not */
1069 	is_sync = !(*msgtype & 0xf);
1070 	if (is_sync)
1071 		*udp_csum_crt = udp_hdr_present;
1072 	else
1073 		*offset = 0;
1074 
1075 	return is_sync;
1076 }
1077 
1078 static void otx2_set_txtstamp(struct otx2_nic *pfvf, struct sk_buff *skb,
1079 			      struct otx2_snd_queue *sq, int *offset)
1080 {
1081 	struct ethhdr	*eth = (struct ethhdr *)(skb->data);
1082 	struct ptpv2_tstamp *origin_tstamp;
1083 	bool udp_csum_crt = false;
1084 	unsigned int udphoff;
1085 	struct timespec64 ts;
1086 	int ptp_offset = 0;
1087 	__wsum skb_csum;
1088 	u64 iova;
1089 
1090 	if (unlikely(!skb_shinfo(skb)->gso_size &&
1091 		     (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) {
1092 		if (unlikely(pfvf->flags & OTX2_FLAG_PTP_ONESTEP_SYNC &&
1093 			     otx2_ptp_is_sync(skb, &ptp_offset, &udp_csum_crt))) {
1094 			origin_tstamp = (struct ptpv2_tstamp *)
1095 					((u8 *)skb->data + ptp_offset +
1096 					 PTP_SYNC_SEC_OFFSET);
1097 			ts = ns_to_timespec64(pfvf->ptp->tstamp);
1098 			origin_tstamp->seconds_msb = htons((ts.tv_sec >> 32) & 0xffff);
1099 			origin_tstamp->seconds_lsb = htonl(ts.tv_sec & 0xffffffff);
1100 			origin_tstamp->nanoseconds = htonl(ts.tv_nsec);
1101 			/* Point to correction field in PTP packet */
1102 			ptp_offset += 8;
1103 
1104 			/* When user disables hw checksum, stack calculates the csum,
1105 			 * but it does not cover ptp timestamp which is added later.
1106 			 * Recalculate the checksum manually considering the timestamp.
1107 			 */
1108 			if (udp_csum_crt) {
1109 				struct udphdr *uh = udp_hdr(skb);
1110 
1111 				if (skb->ip_summed != CHECKSUM_PARTIAL && uh->check != 0) {
1112 					udphoff = skb_transport_offset(skb);
1113 					uh->check = 0;
1114 					skb_csum = skb_checksum(skb, udphoff, skb->len - udphoff,
1115 								0);
1116 					if (ntohs(eth->h_proto) == ETH_P_IPV6)
1117 						uh->check = csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1118 									    &ipv6_hdr(skb)->daddr,
1119 									    skb->len - udphoff,
1120 									    ipv6_hdr(skb)->nexthdr,
1121 									    skb_csum);
1122 					else
1123 						uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
1124 									      ip_hdr(skb)->daddr,
1125 									      skb->len - udphoff,
1126 									      IPPROTO_UDP,
1127 									      skb_csum);
1128 				}
1129 			}
1130 		} else {
1131 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1132 		}
1133 		iova = sq->timestamps->iova + (sq->head * sizeof(u64));
1134 		otx2_sqe_add_mem(sq, offset, NIX_SENDMEMALG_E_SETTSTMP, iova,
1135 				 ptp_offset, pfvf->ptp->base_ns, udp_csum_crt);
1136 	} else {
1137 		skb_tx_timestamp(skb);
1138 	}
1139 }
1140 
1141 bool otx2_sq_append_skb(struct net_device *netdev, struct otx2_snd_queue *sq,
1142 			struct sk_buff *skb, u16 qidx)
1143 {
1144 	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qidx);
1145 	struct otx2_nic *pfvf = netdev_priv(netdev);
1146 	int offset, num_segs, free_desc;
1147 	struct nix_sqe_hdr_s *sqe_hdr;
1148 
1149 	/* Check if there is enough room between producer
1150 	 * and consumer index.
1151 	 */
1152 	free_desc = (sq->cons_head - sq->head - 1 + sq->sqe_cnt) & (sq->sqe_cnt - 1);
1153 	if (free_desc < sq->sqe_thresh)
1154 		return false;
1155 
1156 	if (free_desc < otx2_get_sqe_count(pfvf, skb))
1157 		return false;
1158 
1159 	num_segs = skb_shinfo(skb)->nr_frags + 1;
1160 
1161 	/* If SKB doesn't fit in a single SQE, linearize it.
1162 	 * TODO: Consider adding JUMP descriptor instead.
1163 	 */
1164 	if (unlikely(num_segs > OTX2_MAX_FRAGS_IN_SQE)) {
1165 		if (__skb_linearize(skb)) {
1166 			dev_kfree_skb_any(skb);
1167 			return true;
1168 		}
1169 		num_segs = skb_shinfo(skb)->nr_frags + 1;
1170 	}
1171 
1172 	if (skb_shinfo(skb)->gso_size && !is_hw_tso_supported(pfvf, skb)) {
1173 		/* Insert vlan tag before giving pkt to tso */
1174 		if (skb_vlan_tag_present(skb))
1175 			skb = __vlan_hwaccel_push_inside(skb);
1176 		otx2_sq_append_tso(pfvf, sq, skb, qidx);
1177 		return true;
1178 	}
1179 
1180 	/* Set SQE's SEND_HDR.
1181 	 * Do not clear the first 64bit as it contains constant info.
1182 	 */
1183 	memset(sq->sqe_base + 8, 0, sq->sqe_size - 8);
1184 	sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
1185 	otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
1186 	offset = sizeof(*sqe_hdr);
1187 
1188 	/* Add extended header if needed */
1189 	otx2_sqe_add_ext(pfvf, sq, skb, &offset);
1190 
1191 	/* Add SG subdesc with data frags */
1192 	if (!otx2_sqe_add_sg(pfvf, sq, skb, num_segs, &offset)) {
1193 		otx2_dma_unmap_skb_frags(pfvf, &sq->sg[sq->head]);
1194 		return false;
1195 	}
1196 
1197 	otx2_set_txtstamp(pfvf, skb, sq, &offset);
1198 
1199 	sqe_hdr->sizem1 = (offset / 16) - 1;
1200 
1201 	netdev_tx_sent_queue(txq, skb->len);
1202 
1203 	/* Flush SQE to HW */
1204 	pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
1205 
1206 	return true;
1207 }
1208 EXPORT_SYMBOL(otx2_sq_append_skb);
1209 
1210 void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, int qidx)
1211 {
1212 	struct nix_cqe_rx_s *cqe;
1213 	struct otx2_pool *pool;
1214 	int processed_cqe = 0;
1215 	u16 pool_id;
1216 	u64 iova;
1217 
1218 	if (pfvf->xdp_prog)
1219 		xdp_rxq_info_unreg(&cq->xdp_rxq);
1220 
1221 	if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
1222 		return;
1223 
1224 	pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
1225 	pool = &pfvf->qset.pool[pool_id];
1226 
1227 	while (cq->pend_cqe) {
1228 		cqe = (struct nix_cqe_rx_s *)otx2_get_next_cqe(cq);
1229 		processed_cqe++;
1230 		cq->pend_cqe--;
1231 
1232 		if (!cqe)
1233 			continue;
1234 		if (cqe->sg.segs > 1) {
1235 			otx2_free_rcv_seg(pfvf, cqe, cq->cq_idx);
1236 			continue;
1237 		}
1238 		iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM;
1239 
1240 		otx2_free_bufs(pfvf, pool, iova, pfvf->rbsize);
1241 	}
1242 
1243 	/* Free CQEs to HW */
1244 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
1245 		     ((u64)cq->cq_idx << 32) | processed_cqe);
1246 }
1247 
1248 void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq)
1249 {
1250 	int tx_pkts = 0, tx_bytes = 0;
1251 	struct sk_buff *skb = NULL;
1252 	struct otx2_snd_queue *sq;
1253 	struct nix_cqe_tx_s *cqe;
1254 	struct netdev_queue *txq;
1255 	int processed_cqe = 0;
1256 	struct sg_list *sg;
1257 	int qidx;
1258 
1259 	qidx = cq->cq_idx - pfvf->hw.rx_queues;
1260 	sq = &pfvf->qset.sq[qidx];
1261 
1262 	if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
1263 		return;
1264 
1265 	while (cq->pend_cqe) {
1266 		cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq);
1267 		processed_cqe++;
1268 		cq->pend_cqe--;
1269 
1270 		if (!cqe)
1271 			continue;
1272 		sg = &sq->sg[cqe->comp.sqe_id];
1273 		skb = (struct sk_buff *)sg->skb;
1274 		if (skb) {
1275 			tx_bytes += skb->len;
1276 			tx_pkts++;
1277 			otx2_dma_unmap_skb_frags(pfvf, sg);
1278 			dev_kfree_skb_any(skb);
1279 			sg->skb = (u64)NULL;
1280 		}
1281 	}
1282 
1283 	if (likely(tx_pkts)) {
1284 		if (qidx >= pfvf->hw.tx_queues)
1285 			qidx -= pfvf->hw.xdp_queues;
1286 		txq = netdev_get_tx_queue(pfvf->netdev, qidx);
1287 		netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
1288 	}
1289 	/* Free CQEs to HW */
1290 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
1291 		     ((u64)cq->cq_idx << 32) | processed_cqe);
1292 }
1293 
1294 int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable)
1295 {
1296 	struct msg_req *msg;
1297 	int err;
1298 
1299 	mutex_lock(&pfvf->mbox.lock);
1300 	if (enable)
1301 		msg = otx2_mbox_alloc_msg_nix_lf_start_rx(&pfvf->mbox);
1302 	else
1303 		msg = otx2_mbox_alloc_msg_nix_lf_stop_rx(&pfvf->mbox);
1304 
1305 	if (!msg) {
1306 		mutex_unlock(&pfvf->mbox.lock);
1307 		return -ENOMEM;
1308 	}
1309 
1310 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1311 	mutex_unlock(&pfvf->mbox.lock);
1312 	return err;
1313 }
1314 
1315 void otx2_free_pending_sqe(struct otx2_nic *pfvf)
1316 {
1317 	int tx_pkts = 0, tx_bytes = 0;
1318 	struct sk_buff *skb = NULL;
1319 	struct otx2_snd_queue *sq;
1320 	struct netdev_queue *txq;
1321 	struct sg_list *sg;
1322 	int sq_idx, sqe;
1323 
1324 	for (sq_idx = 0; sq_idx < pfvf->hw.tx_queues; sq_idx++) {
1325 		sq = &pfvf->qset.sq[sq_idx];
1326 		for (sqe = 0; sqe < sq->sqe_cnt; sqe++) {
1327 			sg = &sq->sg[sqe];
1328 			skb = (struct sk_buff *)sg->skb;
1329 			if (skb) {
1330 				tx_bytes += skb->len;
1331 				tx_pkts++;
1332 				otx2_dma_unmap_skb_frags(pfvf, sg);
1333 				dev_kfree_skb_any(skb);
1334 				sg->skb = (u64)NULL;
1335 			}
1336 		}
1337 
1338 		if (!tx_pkts)
1339 			continue;
1340 		txq = netdev_get_tx_queue(pfvf->netdev, sq_idx);
1341 		netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
1342 		tx_pkts = 0;
1343 		tx_bytes = 0;
1344 	}
1345 }
1346 
1347 static void otx2_xdp_sqe_add_sg(struct otx2_snd_queue *sq, u64 dma_addr,
1348 				int len, int *offset)
1349 {
1350 	struct nix_sqe_sg_s *sg = NULL;
1351 	u64 *iova = NULL;
1352 
1353 	sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
1354 	sg->ld_type = NIX_SEND_LDTYPE_LDD;
1355 	sg->subdc = NIX_SUBDC_SG;
1356 	sg->segs = 1;
1357 	sg->seg1_size = len;
1358 	iova = (void *)sg + sizeof(*sg);
1359 	*iova = dma_addr;
1360 	*offset += sizeof(*sg) + sizeof(u64);
1361 
1362 	sq->sg[sq->head].dma_addr[0] = dma_addr;
1363 	sq->sg[sq->head].size[0] = len;
1364 	sq->sg[sq->head].num_segs = 1;
1365 }
1366 
1367 bool otx2_xdp_sq_append_pkt(struct otx2_nic *pfvf, u64 iova, int len, u16 qidx)
1368 {
1369 	struct nix_sqe_hdr_s *sqe_hdr;
1370 	struct otx2_snd_queue *sq;
1371 	int offset, free_sqe;
1372 
1373 	sq = &pfvf->qset.sq[qidx];
1374 	free_sqe = (sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb;
1375 	if (free_sqe < sq->sqe_thresh)
1376 		return false;
1377 
1378 	memset(sq->sqe_base + 8, 0, sq->sqe_size - 8);
1379 
1380 	sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
1381 
1382 	if (!sqe_hdr->total) {
1383 		sqe_hdr->aura = sq->aura_id;
1384 		sqe_hdr->df = 1;
1385 		sqe_hdr->sq = qidx;
1386 		sqe_hdr->pnc = 1;
1387 	}
1388 	sqe_hdr->total = len;
1389 	sqe_hdr->sqe_id = sq->head;
1390 
1391 	offset = sizeof(*sqe_hdr);
1392 
1393 	otx2_xdp_sqe_add_sg(sq, iova, len, &offset);
1394 	sqe_hdr->sizem1 = (offset / 16) - 1;
1395 	pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
1396 
1397 	return true;
1398 }
1399 
1400 static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf,
1401 				     struct bpf_prog *prog,
1402 				     struct nix_cqe_rx_s *cqe,
1403 				     struct otx2_cq_queue *cq,
1404 				     bool *need_xdp_flush)
1405 {
1406 	unsigned char *hard_start, *data;
1407 	int qidx = cq->cq_idx;
1408 	struct xdp_buff xdp;
1409 	struct page *page;
1410 	u64 iova, pa;
1411 	u32 act;
1412 	int err;
1413 
1414 	iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM;
1415 	pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1416 	page = virt_to_page(phys_to_virt(pa));
1417 
1418 	xdp_init_buff(&xdp, pfvf->rbsize, &cq->xdp_rxq);
1419 
1420 	data = (unsigned char *)phys_to_virt(pa);
1421 	hard_start = page_address(page);
1422 	xdp_prepare_buff(&xdp, hard_start, data - hard_start,
1423 			 cqe->sg.seg_size, false);
1424 
1425 	act = bpf_prog_run_xdp(prog, &xdp);
1426 
1427 	switch (act) {
1428 	case XDP_PASS:
1429 		break;
1430 	case XDP_TX:
1431 		qidx += pfvf->hw.tx_queues;
1432 		cq->pool_ptrs++;
1433 		return otx2_xdp_sq_append_pkt(pfvf, iova,
1434 					      cqe->sg.seg_size, qidx);
1435 	case XDP_REDIRECT:
1436 		cq->pool_ptrs++;
1437 		err = xdp_do_redirect(pfvf->netdev, &xdp, prog);
1438 
1439 		otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize,
1440 				    DMA_FROM_DEVICE);
1441 		if (!err) {
1442 			*need_xdp_flush = true;
1443 			return true;
1444 		}
1445 		put_page(page);
1446 		break;
1447 	default:
1448 		bpf_warn_invalid_xdp_action(pfvf->netdev, prog, act);
1449 		break;
1450 	case XDP_ABORTED:
1451 		trace_xdp_exception(pfvf->netdev, prog, act);
1452 		break;
1453 	case XDP_DROP:
1454 		otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize,
1455 				    DMA_FROM_DEVICE);
1456 		put_page(page);
1457 		cq->pool_ptrs++;
1458 		return true;
1459 	}
1460 	return false;
1461 }
1462