xref: /linux/drivers/net/ethernet/lantiq_etop.c (revision 94737ef56b610d94a24fadfb8386fc17dbd79ddd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  *   Copyright (C) 2011 John Crispin <blogic@openwrt.org>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include <linux/errno.h>
10 #include <linux/types.h>
11 #include <linux/interrupt.h>
12 #include <linux/uaccess.h>
13 #include <linux/in.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/phy.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/skbuff.h>
20 #include <linux/mm.h>
21 #include <linux/platform_device.h>
22 #include <linux/ethtool.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/io.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/module.h>
28 #include <linux/property.h>
29 
30 #include <asm/checksum.h>
31 
32 #include <lantiq_soc.h>
33 #include <xway_dma.h>
34 #include <lantiq_platform.h>
35 
36 #define LTQ_ETOP_MDIO		0x11804
37 #define MDIO_REQUEST		0x80000000
38 #define MDIO_READ		0x40000000
39 #define MDIO_ADDR_MASK		0x1f
40 #define MDIO_ADDR_OFFSET	0x15
41 #define MDIO_REG_MASK		0x1f
42 #define MDIO_REG_OFFSET		0x10
43 #define MDIO_VAL_MASK		0xffff
44 
45 #define PPE32_CGEN		0x800
46 #define LQ_PPE32_ENET_MAC_CFG	0x1840
47 
48 #define LTQ_ETOP_ENETS0		0x11850
49 #define LTQ_ETOP_MAC_DA0	0x1186C
50 #define LTQ_ETOP_MAC_DA1	0x11870
51 #define LTQ_ETOP_CFG		0x16020
52 #define LTQ_ETOP_IGPLEN		0x16080
53 
54 #define MAX_DMA_CHAN		0x8
55 #define MAX_DMA_CRC_LEN		0x4
56 #define MAX_DMA_DATA_LEN	0x600
57 
58 #define ETOP_FTCU		BIT(28)
59 #define ETOP_MII_MASK		0xf
60 #define ETOP_MII_NORMAL		0xd
61 #define ETOP_MII_REVERSE	0xe
62 #define ETOP_PLEN_UNDER		0x40
63 #define ETOP_CGEN		0x800
64 
65 /* use 2 static channels for TX/RX */
66 #define LTQ_ETOP_TX_CHANNEL	1
67 #define LTQ_ETOP_RX_CHANNEL	6
68 #define IS_TX(x)		((x) == LTQ_ETOP_TX_CHANNEL)
69 #define IS_RX(x)		((x) == LTQ_ETOP_RX_CHANNEL)
70 
71 #define ltq_etop_r32(x)		ltq_r32(ltq_etop_membase + (x))
72 #define ltq_etop_w32(x, y)	ltq_w32(x, ltq_etop_membase + (y))
73 #define ltq_etop_w32_mask(x, y, z)	\
74 		ltq_w32_mask(x, y, ltq_etop_membase + (z))
75 
76 #define DRV_VERSION	"1.0"
77 
78 static void __iomem *ltq_etop_membase;
79 
80 struct ltq_etop_chan {
81 	int idx;
82 	int tx_free;
83 	struct net_device *netdev;
84 	struct napi_struct napi;
85 	struct ltq_dma_channel dma;
86 	struct sk_buff *skb[LTQ_DESC_NUM];
87 };
88 
89 struct ltq_etop_priv {
90 	struct net_device *netdev;
91 	struct platform_device *pdev;
92 	struct ltq_eth_data *pldata;
93 	struct resource *res;
94 
95 	struct mii_bus *mii_bus;
96 
97 	struct ltq_etop_chan ch[MAX_DMA_CHAN];
98 	int tx_free[MAX_DMA_CHAN >> 1];
99 
100 	int tx_burst_len;
101 	int rx_burst_len;
102 
103 	spinlock_t lock;
104 };
105 
106 static int
107 ltq_etop_alloc_skb(struct ltq_etop_chan *ch)
108 {
109 	struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
110 
111 	ch->skb[ch->dma.desc] = netdev_alloc_skb(ch->netdev, MAX_DMA_DATA_LEN);
112 	if (!ch->skb[ch->dma.desc])
113 		return -ENOMEM;
114 	ch->dma.desc_base[ch->dma.desc].addr =
115 		dma_map_single(&priv->pdev->dev, ch->skb[ch->dma.desc]->data,
116 			       MAX_DMA_DATA_LEN, DMA_FROM_DEVICE);
117 	ch->dma.desc_base[ch->dma.desc].addr =
118 		CPHYSADDR(ch->skb[ch->dma.desc]->data);
119 	ch->dma.desc_base[ch->dma.desc].ctl =
120 		LTQ_DMA_OWN | LTQ_DMA_RX_OFFSET(NET_IP_ALIGN) |
121 		MAX_DMA_DATA_LEN;
122 	skb_reserve(ch->skb[ch->dma.desc], NET_IP_ALIGN);
123 	return 0;
124 }
125 
126 static void
127 ltq_etop_hw_receive(struct ltq_etop_chan *ch)
128 {
129 	struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
130 	struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
131 	struct sk_buff *skb = ch->skb[ch->dma.desc];
132 	int len = (desc->ctl & LTQ_DMA_SIZE_MASK) - MAX_DMA_CRC_LEN;
133 	unsigned long flags;
134 
135 	spin_lock_irqsave(&priv->lock, flags);
136 	if (ltq_etop_alloc_skb(ch)) {
137 		netdev_err(ch->netdev,
138 			   "failed to allocate new rx buffer, stopping DMA\n");
139 		ltq_dma_close(&ch->dma);
140 	}
141 	ch->dma.desc++;
142 	ch->dma.desc %= LTQ_DESC_NUM;
143 	spin_unlock_irqrestore(&priv->lock, flags);
144 
145 	skb_put(skb, len);
146 	skb->protocol = eth_type_trans(skb, ch->netdev);
147 	netif_receive_skb(skb);
148 }
149 
150 static int
151 ltq_etop_poll_rx(struct napi_struct *napi, int budget)
152 {
153 	struct ltq_etop_chan *ch = container_of(napi,
154 				struct ltq_etop_chan, napi);
155 	int work_done = 0;
156 
157 	while (work_done < budget) {
158 		struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
159 
160 		if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) != LTQ_DMA_C)
161 			break;
162 		ltq_etop_hw_receive(ch);
163 		work_done++;
164 	}
165 	if (work_done < budget) {
166 		napi_complete_done(&ch->napi, work_done);
167 		ltq_dma_ack_irq(&ch->dma);
168 	}
169 	return work_done;
170 }
171 
172 static int
173 ltq_etop_poll_tx(struct napi_struct *napi, int budget)
174 {
175 	struct ltq_etop_chan *ch =
176 		container_of(napi, struct ltq_etop_chan, napi);
177 	struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
178 	struct netdev_queue *txq =
179 		netdev_get_tx_queue(ch->netdev, ch->idx >> 1);
180 	unsigned long flags;
181 
182 	spin_lock_irqsave(&priv->lock, flags);
183 	while ((ch->dma.desc_base[ch->tx_free].ctl &
184 			(LTQ_DMA_OWN | LTQ_DMA_C)) == LTQ_DMA_C) {
185 		dev_kfree_skb_any(ch->skb[ch->tx_free]);
186 		ch->skb[ch->tx_free] = NULL;
187 		memset(&ch->dma.desc_base[ch->tx_free], 0,
188 		       sizeof(struct ltq_dma_desc));
189 		ch->tx_free++;
190 		ch->tx_free %= LTQ_DESC_NUM;
191 	}
192 	spin_unlock_irqrestore(&priv->lock, flags);
193 
194 	if (netif_tx_queue_stopped(txq))
195 		netif_tx_start_queue(txq);
196 	napi_complete(&ch->napi);
197 	ltq_dma_ack_irq(&ch->dma);
198 	return 1;
199 }
200 
201 static irqreturn_t
202 ltq_etop_dma_irq(int irq, void *_priv)
203 {
204 	struct ltq_etop_priv *priv = _priv;
205 	int ch = irq - LTQ_DMA_CH0_INT;
206 
207 	napi_schedule(&priv->ch[ch].napi);
208 	return IRQ_HANDLED;
209 }
210 
211 static void
212 ltq_etop_free_channel(struct net_device *dev, struct ltq_etop_chan *ch)
213 {
214 	struct ltq_etop_priv *priv = netdev_priv(dev);
215 
216 	ltq_dma_free(&ch->dma);
217 	if (ch->dma.irq)
218 		free_irq(ch->dma.irq, priv);
219 	if (IS_RX(ch->idx)) {
220 		int desc;
221 
222 		for (desc = 0; desc < LTQ_DESC_NUM; desc++)
223 			dev_kfree_skb_any(ch->skb[ch->dma.desc]);
224 	}
225 }
226 
227 static void
228 ltq_etop_hw_exit(struct net_device *dev)
229 {
230 	struct ltq_etop_priv *priv = netdev_priv(dev);
231 	int i;
232 
233 	ltq_pmu_disable(PMU_PPE);
234 	for (i = 0; i < MAX_DMA_CHAN; i++)
235 		if (IS_TX(i) || IS_RX(i))
236 			ltq_etop_free_channel(dev, &priv->ch[i]);
237 }
238 
239 static int
240 ltq_etop_hw_init(struct net_device *dev)
241 {
242 	struct ltq_etop_priv *priv = netdev_priv(dev);
243 	int i;
244 	int err;
245 
246 	ltq_pmu_enable(PMU_PPE);
247 
248 	switch (priv->pldata->mii_mode) {
249 	case PHY_INTERFACE_MODE_RMII:
250 		ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_REVERSE,
251 				  LTQ_ETOP_CFG);
252 		break;
253 
254 	case PHY_INTERFACE_MODE_MII:
255 		ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_NORMAL,
256 				  LTQ_ETOP_CFG);
257 		break;
258 
259 	default:
260 		netdev_err(dev, "unknown mii mode %d\n",
261 			   priv->pldata->mii_mode);
262 		return -ENOTSUPP;
263 	}
264 
265 	/* enable crc generation */
266 	ltq_etop_w32(PPE32_CGEN, LQ_PPE32_ENET_MAC_CFG);
267 
268 	ltq_dma_init_port(DMA_PORT_ETOP, priv->tx_burst_len, priv->rx_burst_len);
269 
270 	for (i = 0; i < MAX_DMA_CHAN; i++) {
271 		int irq = LTQ_DMA_CH0_INT + i;
272 		struct ltq_etop_chan *ch = &priv->ch[i];
273 
274 		ch->dma.nr = i;
275 		ch->idx = ch->dma.nr;
276 		ch->dma.dev = &priv->pdev->dev;
277 
278 		if (IS_TX(i)) {
279 			ltq_dma_alloc_tx(&ch->dma);
280 			err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_tx", priv);
281 			if (err) {
282 				netdev_err(dev,
283 					   "Unable to get Tx DMA IRQ %d\n",
284 					   irq);
285 				return err;
286 			}
287 		} else if (IS_RX(i)) {
288 			ltq_dma_alloc_rx(&ch->dma);
289 			for (ch->dma.desc = 0; ch->dma.desc < LTQ_DESC_NUM;
290 					ch->dma.desc++)
291 				if (ltq_etop_alloc_skb(ch))
292 					return -ENOMEM;
293 			ch->dma.desc = 0;
294 			err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_rx", priv);
295 			if (err) {
296 				netdev_err(dev,
297 					   "Unable to get Rx DMA IRQ %d\n",
298 					   irq);
299 				return err;
300 			}
301 		}
302 		ch->dma.irq = irq;
303 	}
304 	return 0;
305 }
306 
307 static void
308 ltq_etop_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
309 {
310 	strscpy(info->driver, "Lantiq ETOP", sizeof(info->driver));
311 	strscpy(info->bus_info, "internal", sizeof(info->bus_info));
312 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
313 }
314 
315 static const struct ethtool_ops ltq_etop_ethtool_ops = {
316 	.get_drvinfo = ltq_etop_get_drvinfo,
317 	.nway_reset = phy_ethtool_nway_reset,
318 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
319 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
320 };
321 
322 static int
323 ltq_etop_mdio_wr(struct mii_bus *bus, int phy_addr, int phy_reg, u16 phy_data)
324 {
325 	u32 val = MDIO_REQUEST |
326 		((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) |
327 		((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET) |
328 		phy_data;
329 
330 	while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
331 		;
332 	ltq_etop_w32(val, LTQ_ETOP_MDIO);
333 	return 0;
334 }
335 
336 static int
337 ltq_etop_mdio_rd(struct mii_bus *bus, int phy_addr, int phy_reg)
338 {
339 	u32 val = MDIO_REQUEST | MDIO_READ |
340 		((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) |
341 		((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET);
342 
343 	while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
344 		;
345 	ltq_etop_w32(val, LTQ_ETOP_MDIO);
346 	while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
347 		;
348 	val = ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_VAL_MASK;
349 	return val;
350 }
351 
352 static void
353 ltq_etop_mdio_link(struct net_device *dev)
354 {
355 	/* nothing to do  */
356 }
357 
358 static int
359 ltq_etop_mdio_probe(struct net_device *dev)
360 {
361 	struct ltq_etop_priv *priv = netdev_priv(dev);
362 	struct phy_device *phydev;
363 
364 	phydev = phy_find_first(priv->mii_bus);
365 
366 	if (!phydev) {
367 		netdev_err(dev, "no PHY found\n");
368 		return -ENODEV;
369 	}
370 
371 	phydev = phy_connect(dev, phydev_name(phydev),
372 			     &ltq_etop_mdio_link, priv->pldata->mii_mode);
373 
374 	if (IS_ERR(phydev)) {
375 		netdev_err(dev, "Could not attach to PHY\n");
376 		return PTR_ERR(phydev);
377 	}
378 
379 	phy_set_max_speed(phydev, SPEED_100);
380 
381 	phy_attached_info(phydev);
382 
383 	return 0;
384 }
385 
386 static int
387 ltq_etop_mdio_init(struct net_device *dev)
388 {
389 	struct ltq_etop_priv *priv = netdev_priv(dev);
390 	int err;
391 
392 	priv->mii_bus = mdiobus_alloc();
393 	if (!priv->mii_bus) {
394 		netdev_err(dev, "failed to allocate mii bus\n");
395 		err = -ENOMEM;
396 		goto err_out;
397 	}
398 
399 	priv->mii_bus->priv = dev;
400 	priv->mii_bus->read = ltq_etop_mdio_rd;
401 	priv->mii_bus->write = ltq_etop_mdio_wr;
402 	priv->mii_bus->name = "ltq_mii";
403 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
404 		 priv->pdev->name, priv->pdev->id);
405 	if (mdiobus_register(priv->mii_bus)) {
406 		err = -ENXIO;
407 		goto err_out_free_mdiobus;
408 	}
409 
410 	if (ltq_etop_mdio_probe(dev)) {
411 		err = -ENXIO;
412 		goto err_out_unregister_bus;
413 	}
414 	return 0;
415 
416 err_out_unregister_bus:
417 	mdiobus_unregister(priv->mii_bus);
418 err_out_free_mdiobus:
419 	mdiobus_free(priv->mii_bus);
420 err_out:
421 	return err;
422 }
423 
424 static void
425 ltq_etop_mdio_cleanup(struct net_device *dev)
426 {
427 	struct ltq_etop_priv *priv = netdev_priv(dev);
428 
429 	phy_disconnect(dev->phydev);
430 	mdiobus_unregister(priv->mii_bus);
431 	mdiobus_free(priv->mii_bus);
432 }
433 
434 static int
435 ltq_etop_open(struct net_device *dev)
436 {
437 	struct ltq_etop_priv *priv = netdev_priv(dev);
438 	int i;
439 
440 	for (i = 0; i < MAX_DMA_CHAN; i++) {
441 		struct ltq_etop_chan *ch = &priv->ch[i];
442 
443 		if (!IS_TX(i) && (!IS_RX(i)))
444 			continue;
445 		ltq_dma_open(&ch->dma);
446 		ltq_dma_enable_irq(&ch->dma);
447 		napi_enable(&ch->napi);
448 	}
449 	phy_start(dev->phydev);
450 	netif_tx_start_all_queues(dev);
451 	return 0;
452 }
453 
454 static int
455 ltq_etop_stop(struct net_device *dev)
456 {
457 	struct ltq_etop_priv *priv = netdev_priv(dev);
458 	int i;
459 
460 	netif_tx_stop_all_queues(dev);
461 	phy_stop(dev->phydev);
462 	for (i = 0; i < MAX_DMA_CHAN; i++) {
463 		struct ltq_etop_chan *ch = &priv->ch[i];
464 
465 		if (!IS_RX(i) && !IS_TX(i))
466 			continue;
467 		napi_disable(&ch->napi);
468 		ltq_dma_close(&ch->dma);
469 	}
470 	return 0;
471 }
472 
473 static int
474 ltq_etop_tx(struct sk_buff *skb, struct net_device *dev)
475 {
476 	int queue = skb_get_queue_mapping(skb);
477 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue);
478 	struct ltq_etop_priv *priv = netdev_priv(dev);
479 	struct ltq_etop_chan *ch = &priv->ch[(queue << 1) | 1];
480 	struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
481 	int len;
482 	unsigned long flags;
483 	u32 byte_offset;
484 
485 	len = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
486 
487 	if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) || ch->skb[ch->dma.desc]) {
488 		dev_kfree_skb_any(skb);
489 		netdev_err(dev, "tx ring full\n");
490 		netif_tx_stop_queue(txq);
491 		return NETDEV_TX_BUSY;
492 	}
493 
494 	/* dma needs to start on a burst length value aligned address */
495 	byte_offset = CPHYSADDR(skb->data) % (priv->tx_burst_len * 4);
496 	ch->skb[ch->dma.desc] = skb;
497 
498 	netif_trans_update(dev);
499 
500 	spin_lock_irqsave(&priv->lock, flags);
501 	desc->addr = ((unsigned int)dma_map_single(&priv->pdev->dev, skb->data, len,
502 						DMA_TO_DEVICE)) - byte_offset;
503 	/* Make sure the address is written before we give it to HW */
504 	wmb();
505 	desc->ctl = LTQ_DMA_OWN | LTQ_DMA_SOP | LTQ_DMA_EOP |
506 		LTQ_DMA_TX_OFFSET(byte_offset) | (len & LTQ_DMA_SIZE_MASK);
507 	ch->dma.desc++;
508 	ch->dma.desc %= LTQ_DESC_NUM;
509 	spin_unlock_irqrestore(&priv->lock, flags);
510 
511 	if (ch->dma.desc_base[ch->dma.desc].ctl & LTQ_DMA_OWN)
512 		netif_tx_stop_queue(txq);
513 
514 	return NETDEV_TX_OK;
515 }
516 
517 static int
518 ltq_etop_change_mtu(struct net_device *dev, int new_mtu)
519 {
520 	struct ltq_etop_priv *priv = netdev_priv(dev);
521 	unsigned long flags;
522 
523 	dev->mtu = new_mtu;
524 
525 	spin_lock_irqsave(&priv->lock, flags);
526 	ltq_etop_w32((ETOP_PLEN_UNDER << 16) | new_mtu, LTQ_ETOP_IGPLEN);
527 	spin_unlock_irqrestore(&priv->lock, flags);
528 
529 	return 0;
530 }
531 
532 static int
533 ltq_etop_set_mac_address(struct net_device *dev, void *p)
534 {
535 	int ret = eth_mac_addr(dev, p);
536 
537 	if (!ret) {
538 		struct ltq_etop_priv *priv = netdev_priv(dev);
539 		unsigned long flags;
540 
541 		/* store the mac for the unicast filter */
542 		spin_lock_irqsave(&priv->lock, flags);
543 		ltq_etop_w32(*((u32 *)dev->dev_addr), LTQ_ETOP_MAC_DA0);
544 		ltq_etop_w32(*((u16 *)&dev->dev_addr[4]) << 16,
545 			     LTQ_ETOP_MAC_DA1);
546 		spin_unlock_irqrestore(&priv->lock, flags);
547 	}
548 	return ret;
549 }
550 
551 static void
552 ltq_etop_set_multicast_list(struct net_device *dev)
553 {
554 	struct ltq_etop_priv *priv = netdev_priv(dev);
555 	unsigned long flags;
556 
557 	/* ensure that the unicast filter is not enabled in promiscious mode */
558 	spin_lock_irqsave(&priv->lock, flags);
559 	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI))
560 		ltq_etop_w32_mask(ETOP_FTCU, 0, LTQ_ETOP_ENETS0);
561 	else
562 		ltq_etop_w32_mask(0, ETOP_FTCU, LTQ_ETOP_ENETS0);
563 	spin_unlock_irqrestore(&priv->lock, flags);
564 }
565 
566 static int
567 ltq_etop_init(struct net_device *dev)
568 {
569 	struct ltq_etop_priv *priv = netdev_priv(dev);
570 	struct sockaddr mac;
571 	int err;
572 	bool random_mac = false;
573 
574 	dev->watchdog_timeo = 10 * HZ;
575 	err = ltq_etop_hw_init(dev);
576 	if (err)
577 		goto err_hw;
578 	ltq_etop_change_mtu(dev, 1500);
579 
580 	memcpy(&mac, &priv->pldata->mac, sizeof(struct sockaddr));
581 	if (!is_valid_ether_addr(mac.sa_data)) {
582 		pr_warn("etop: invalid MAC, using random\n");
583 		eth_random_addr(mac.sa_data);
584 		random_mac = true;
585 	}
586 
587 	err = ltq_etop_set_mac_address(dev, &mac);
588 	if (err)
589 		goto err_netdev;
590 
591 	/* Set addr_assign_type here, ltq_etop_set_mac_address would reset it. */
592 	if (random_mac)
593 		dev->addr_assign_type = NET_ADDR_RANDOM;
594 
595 	ltq_etop_set_multicast_list(dev);
596 	err = ltq_etop_mdio_init(dev);
597 	if (err)
598 		goto err_netdev;
599 	return 0;
600 
601 err_netdev:
602 	unregister_netdev(dev);
603 	free_netdev(dev);
604 err_hw:
605 	ltq_etop_hw_exit(dev);
606 	return err;
607 }
608 
609 static void
610 ltq_etop_tx_timeout(struct net_device *dev, unsigned int txqueue)
611 {
612 	int err;
613 
614 	ltq_etop_hw_exit(dev);
615 	err = ltq_etop_hw_init(dev);
616 	if (err)
617 		goto err_hw;
618 	netif_trans_update(dev);
619 	netif_wake_queue(dev);
620 	return;
621 
622 err_hw:
623 	ltq_etop_hw_exit(dev);
624 	netdev_err(dev, "failed to restart etop after TX timeout\n");
625 }
626 
627 static const struct net_device_ops ltq_eth_netdev_ops = {
628 	.ndo_open = ltq_etop_open,
629 	.ndo_stop = ltq_etop_stop,
630 	.ndo_start_xmit = ltq_etop_tx,
631 	.ndo_change_mtu = ltq_etop_change_mtu,
632 	.ndo_eth_ioctl = phy_do_ioctl,
633 	.ndo_set_mac_address = ltq_etop_set_mac_address,
634 	.ndo_validate_addr = eth_validate_addr,
635 	.ndo_set_rx_mode = ltq_etop_set_multicast_list,
636 	.ndo_select_queue = dev_pick_tx_zero,
637 	.ndo_init = ltq_etop_init,
638 	.ndo_tx_timeout = ltq_etop_tx_timeout,
639 };
640 
641 static int __init
642 ltq_etop_probe(struct platform_device *pdev)
643 {
644 	struct net_device *dev;
645 	struct ltq_etop_priv *priv;
646 	struct resource *res;
647 	int err;
648 	int i;
649 
650 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
651 	if (!res) {
652 		dev_err(&pdev->dev, "failed to get etop resource\n");
653 		err = -ENOENT;
654 		goto err_out;
655 	}
656 
657 	res = devm_request_mem_region(&pdev->dev, res->start,
658 				      resource_size(res), dev_name(&pdev->dev));
659 	if (!res) {
660 		dev_err(&pdev->dev, "failed to request etop resource\n");
661 		err = -EBUSY;
662 		goto err_out;
663 	}
664 
665 	ltq_etop_membase = devm_ioremap(&pdev->dev, res->start,
666 					resource_size(res));
667 	if (!ltq_etop_membase) {
668 		dev_err(&pdev->dev, "failed to remap etop engine %d\n",
669 			pdev->id);
670 		err = -ENOMEM;
671 		goto err_out;
672 	}
673 
674 	dev = alloc_etherdev_mq(sizeof(struct ltq_etop_priv), 4);
675 	if (!dev) {
676 		err = -ENOMEM;
677 		goto err_out;
678 	}
679 	strcpy(dev->name, "eth%d");
680 	dev->netdev_ops = &ltq_eth_netdev_ops;
681 	dev->ethtool_ops = &ltq_etop_ethtool_ops;
682 	priv = netdev_priv(dev);
683 	priv->res = res;
684 	priv->pdev = pdev;
685 	priv->pldata = dev_get_platdata(&pdev->dev);
686 	priv->netdev = dev;
687 	spin_lock_init(&priv->lock);
688 	SET_NETDEV_DEV(dev, &pdev->dev);
689 
690 	err = device_property_read_u32(&pdev->dev, "lantiq,tx-burst-length", &priv->tx_burst_len);
691 	if (err < 0) {
692 		dev_err(&pdev->dev, "unable to read tx-burst-length property\n");
693 		goto err_free;
694 	}
695 
696 	err = device_property_read_u32(&pdev->dev, "lantiq,rx-burst-length", &priv->rx_burst_len);
697 	if (err < 0) {
698 		dev_err(&pdev->dev, "unable to read rx-burst-length property\n");
699 		goto err_free;
700 	}
701 
702 	for (i = 0; i < MAX_DMA_CHAN; i++) {
703 		if (IS_TX(i))
704 			netif_napi_add_weight(dev, &priv->ch[i].napi,
705 					      ltq_etop_poll_tx, 8);
706 		else if (IS_RX(i))
707 			netif_napi_add_weight(dev, &priv->ch[i].napi,
708 					      ltq_etop_poll_rx, 32);
709 		priv->ch[i].netdev = dev;
710 	}
711 
712 	err = register_netdev(dev);
713 	if (err)
714 		goto err_free;
715 
716 	platform_set_drvdata(pdev, dev);
717 	return 0;
718 
719 err_free:
720 	free_netdev(dev);
721 err_out:
722 	return err;
723 }
724 
725 static int
726 ltq_etop_remove(struct platform_device *pdev)
727 {
728 	struct net_device *dev = platform_get_drvdata(pdev);
729 
730 	if (dev) {
731 		netif_tx_stop_all_queues(dev);
732 		ltq_etop_hw_exit(dev);
733 		ltq_etop_mdio_cleanup(dev);
734 		unregister_netdev(dev);
735 	}
736 	return 0;
737 }
738 
739 static struct platform_driver ltq_mii_driver = {
740 	.remove = ltq_etop_remove,
741 	.driver = {
742 		.name = "ltq_etop",
743 	},
744 };
745 
746 static int __init
747 init_ltq_etop(void)
748 {
749 	int ret = platform_driver_probe(&ltq_mii_driver, ltq_etop_probe);
750 
751 	if (ret)
752 		pr_err("ltq_etop: Error registering platform driver!");
753 	return ret;
754 }
755 
756 static void __exit
757 exit_ltq_etop(void)
758 {
759 	platform_driver_unregister(&ltq_mii_driver);
760 }
761 
762 module_init(init_ltq_etop);
763 module_exit(exit_ltq_etop);
764 
765 MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
766 MODULE_DESCRIPTION("Lantiq SoC ETOP");
767 MODULE_LICENSE("GPL");
768