1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright (C) 2011 John Crispin <blogic@openwrt.org>
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include <linux/errno.h>
10 #include <linux/types.h>
11 #include <linux/interrupt.h>
12 #include <linux/uaccess.h>
13 #include <linux/in.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/phy.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/skbuff.h>
20 #include <linux/mm.h>
21 #include <linux/platform_device.h>
22 #include <linux/ethtool.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/io.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/module.h>
28 #include <linux/property.h>
29
30 #include <asm/checksum.h>
31
32 #include <lantiq_soc.h>
33 #include <xway_dma.h>
34 #include <lantiq_platform.h>
35
36 #define LTQ_ETOP_MDIO 0x11804
37 #define MDIO_REQUEST 0x80000000
38 #define MDIO_READ 0x40000000
39 #define MDIO_ADDR_MASK 0x1f
40 #define MDIO_ADDR_OFFSET 0x15
41 #define MDIO_REG_MASK 0x1f
42 #define MDIO_REG_OFFSET 0x10
43 #define MDIO_VAL_MASK 0xffff
44
45 #define PPE32_CGEN 0x800
46 #define LQ_PPE32_ENET_MAC_CFG 0x1840
47
48 #define LTQ_ETOP_ENETS0 0x11850
49 #define LTQ_ETOP_MAC_DA0 0x1186C
50 #define LTQ_ETOP_MAC_DA1 0x11870
51 #define LTQ_ETOP_CFG 0x16020
52 #define LTQ_ETOP_IGPLEN 0x16080
53
54 #define MAX_DMA_CHAN 0x8
55 #define MAX_DMA_CRC_LEN 0x4
56 #define MAX_DMA_DATA_LEN 0x600
57
58 #define ETOP_FTCU BIT(28)
59 #define ETOP_MII_MASK 0xf
60 #define ETOP_MII_NORMAL 0xd
61 #define ETOP_MII_REVERSE 0xe
62 #define ETOP_PLEN_UNDER 0x40
63 #define ETOP_CGEN 0x800
64
65 /* use 2 static channels for TX/RX */
66 #define LTQ_ETOP_TX_CHANNEL 1
67 #define LTQ_ETOP_RX_CHANNEL 6
68 #define IS_TX(x) ((x) == LTQ_ETOP_TX_CHANNEL)
69 #define IS_RX(x) ((x) == LTQ_ETOP_RX_CHANNEL)
70
71 #define ltq_etop_r32(x) ltq_r32(ltq_etop_membase + (x))
72 #define ltq_etop_w32(x, y) ltq_w32(x, ltq_etop_membase + (y))
73 #define ltq_etop_w32_mask(x, y, z) \
74 ltq_w32_mask(x, y, ltq_etop_membase + (z))
75
76 #define DRV_VERSION "1.0"
77
78 static void __iomem *ltq_etop_membase;
79
80 struct ltq_etop_chan {
81 int idx;
82 int tx_free;
83 struct net_device *netdev;
84 struct napi_struct napi;
85 struct ltq_dma_channel dma;
86 struct sk_buff *skb[LTQ_DESC_NUM];
87 };
88
89 struct ltq_etop_priv {
90 struct net_device *netdev;
91 struct platform_device *pdev;
92 struct ltq_eth_data *pldata;
93 struct resource *res;
94
95 struct mii_bus *mii_bus;
96
97 struct ltq_etop_chan ch[MAX_DMA_CHAN];
98
99 int tx_burst_len;
100 int rx_burst_len;
101
102 spinlock_t lock;
103 };
104
105 static int
ltq_etop_alloc_skb(struct ltq_etop_chan * ch)106 ltq_etop_alloc_skb(struct ltq_etop_chan *ch)
107 {
108 struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
109
110 ch->skb[ch->dma.desc] = netdev_alloc_skb(ch->netdev, MAX_DMA_DATA_LEN);
111 if (!ch->skb[ch->dma.desc])
112 return -ENOMEM;
113 ch->dma.desc_base[ch->dma.desc].addr =
114 dma_map_single(&priv->pdev->dev, ch->skb[ch->dma.desc]->data,
115 MAX_DMA_DATA_LEN, DMA_FROM_DEVICE);
116 ch->dma.desc_base[ch->dma.desc].addr =
117 CPHYSADDR(ch->skb[ch->dma.desc]->data);
118 ch->dma.desc_base[ch->dma.desc].ctl =
119 LTQ_DMA_OWN | LTQ_DMA_RX_OFFSET(NET_IP_ALIGN) |
120 MAX_DMA_DATA_LEN;
121 skb_reserve(ch->skb[ch->dma.desc], NET_IP_ALIGN);
122 return 0;
123 }
124
125 static void
ltq_etop_hw_receive(struct ltq_etop_chan * ch)126 ltq_etop_hw_receive(struct ltq_etop_chan *ch)
127 {
128 struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
129 struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
130 struct sk_buff *skb = ch->skb[ch->dma.desc];
131 int len = (desc->ctl & LTQ_DMA_SIZE_MASK) - MAX_DMA_CRC_LEN;
132 unsigned long flags;
133
134 spin_lock_irqsave(&priv->lock, flags);
135 if (ltq_etop_alloc_skb(ch)) {
136 netdev_err(ch->netdev,
137 "failed to allocate new rx buffer, stopping DMA\n");
138 ltq_dma_close(&ch->dma);
139 }
140 ch->dma.desc++;
141 ch->dma.desc %= LTQ_DESC_NUM;
142 spin_unlock_irqrestore(&priv->lock, flags);
143
144 skb_put(skb, len);
145 skb->protocol = eth_type_trans(skb, ch->netdev);
146 netif_receive_skb(skb);
147 }
148
149 static int
ltq_etop_poll_rx(struct napi_struct * napi,int budget)150 ltq_etop_poll_rx(struct napi_struct *napi, int budget)
151 {
152 struct ltq_etop_chan *ch = container_of(napi,
153 struct ltq_etop_chan, napi);
154 int work_done = 0;
155
156 while (work_done < budget) {
157 struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
158
159 if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) != LTQ_DMA_C)
160 break;
161 ltq_etop_hw_receive(ch);
162 work_done++;
163 }
164 if (work_done < budget) {
165 napi_complete_done(&ch->napi, work_done);
166 ltq_dma_ack_irq(&ch->dma);
167 }
168 return work_done;
169 }
170
171 static int
ltq_etop_poll_tx(struct napi_struct * napi,int budget)172 ltq_etop_poll_tx(struct napi_struct *napi, int budget)
173 {
174 struct ltq_etop_chan *ch =
175 container_of(napi, struct ltq_etop_chan, napi);
176 struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
177 struct netdev_queue *txq =
178 netdev_get_tx_queue(ch->netdev, ch->idx >> 1);
179 unsigned long flags;
180
181 spin_lock_irqsave(&priv->lock, flags);
182 while ((ch->dma.desc_base[ch->tx_free].ctl &
183 (LTQ_DMA_OWN | LTQ_DMA_C)) == LTQ_DMA_C) {
184 dev_kfree_skb_any(ch->skb[ch->tx_free]);
185 ch->skb[ch->tx_free] = NULL;
186 memset(&ch->dma.desc_base[ch->tx_free], 0,
187 sizeof(struct ltq_dma_desc));
188 ch->tx_free++;
189 ch->tx_free %= LTQ_DESC_NUM;
190 }
191 spin_unlock_irqrestore(&priv->lock, flags);
192
193 if (netif_tx_queue_stopped(txq))
194 netif_tx_start_queue(txq);
195 napi_complete(&ch->napi);
196 ltq_dma_ack_irq(&ch->dma);
197 return 1;
198 }
199
200 static irqreturn_t
ltq_etop_dma_irq(int irq,void * _priv)201 ltq_etop_dma_irq(int irq, void *_priv)
202 {
203 struct ltq_etop_priv *priv = _priv;
204 int ch = irq - LTQ_DMA_CH0_INT;
205
206 napi_schedule(&priv->ch[ch].napi);
207 return IRQ_HANDLED;
208 }
209
210 static void
ltq_etop_free_channel(struct net_device * dev,struct ltq_etop_chan * ch)211 ltq_etop_free_channel(struct net_device *dev, struct ltq_etop_chan *ch)
212 {
213 struct ltq_etop_priv *priv = netdev_priv(dev);
214
215 ltq_dma_free(&ch->dma);
216 if (ch->dma.irq)
217 free_irq(ch->dma.irq, priv);
218 if (IS_RX(ch->idx)) {
219 struct ltq_dma_channel *dma = &ch->dma;
220
221 for (dma->desc = 0; dma->desc < LTQ_DESC_NUM; dma->desc++)
222 dev_kfree_skb_any(ch->skb[ch->dma.desc]);
223 }
224 }
225
226 static void
ltq_etop_hw_exit(struct net_device * dev)227 ltq_etop_hw_exit(struct net_device *dev)
228 {
229 struct ltq_etop_priv *priv = netdev_priv(dev);
230 int i;
231
232 ltq_pmu_disable(PMU_PPE);
233 for (i = 0; i < MAX_DMA_CHAN; i++)
234 if (IS_TX(i) || IS_RX(i))
235 ltq_etop_free_channel(dev, &priv->ch[i]);
236 }
237
238 static int
ltq_etop_hw_init(struct net_device * dev)239 ltq_etop_hw_init(struct net_device *dev)
240 {
241 struct ltq_etop_priv *priv = netdev_priv(dev);
242 int i;
243 int err;
244
245 ltq_pmu_enable(PMU_PPE);
246
247 switch (priv->pldata->mii_mode) {
248 case PHY_INTERFACE_MODE_RMII:
249 ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_REVERSE,
250 LTQ_ETOP_CFG);
251 break;
252
253 case PHY_INTERFACE_MODE_MII:
254 ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_NORMAL,
255 LTQ_ETOP_CFG);
256 break;
257
258 default:
259 netdev_err(dev, "unknown mii mode %d\n",
260 priv->pldata->mii_mode);
261 return -ENOTSUPP;
262 }
263
264 /* enable crc generation */
265 ltq_etop_w32(PPE32_CGEN, LQ_PPE32_ENET_MAC_CFG);
266
267 ltq_dma_init_port(DMA_PORT_ETOP, priv->tx_burst_len, priv->rx_burst_len);
268
269 for (i = 0; i < MAX_DMA_CHAN; i++) {
270 int irq = LTQ_DMA_CH0_INT + i;
271 struct ltq_etop_chan *ch = &priv->ch[i];
272
273 ch->dma.nr = i;
274 ch->idx = ch->dma.nr;
275 ch->dma.dev = &priv->pdev->dev;
276
277 if (IS_TX(i)) {
278 ltq_dma_alloc_tx(&ch->dma);
279 err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_tx", priv);
280 if (err) {
281 netdev_err(dev,
282 "Unable to get Tx DMA IRQ %d\n",
283 irq);
284 return err;
285 }
286 } else if (IS_RX(i)) {
287 ltq_dma_alloc_rx(&ch->dma);
288 for (ch->dma.desc = 0; ch->dma.desc < LTQ_DESC_NUM;
289 ch->dma.desc++)
290 if (ltq_etop_alloc_skb(ch))
291 return -ENOMEM;
292 ch->dma.desc = 0;
293 err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_rx", priv);
294 if (err) {
295 netdev_err(dev,
296 "Unable to get Rx DMA IRQ %d\n",
297 irq);
298 return err;
299 }
300 }
301 ch->dma.irq = irq;
302 }
303 return 0;
304 }
305
306 static void
ltq_etop_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)307 ltq_etop_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
308 {
309 strscpy(info->driver, "Lantiq ETOP", sizeof(info->driver));
310 strscpy(info->bus_info, "internal", sizeof(info->bus_info));
311 strscpy(info->version, DRV_VERSION, sizeof(info->version));
312 }
313
314 static const struct ethtool_ops ltq_etop_ethtool_ops = {
315 .get_drvinfo = ltq_etop_get_drvinfo,
316 .nway_reset = phy_ethtool_nway_reset,
317 .get_link_ksettings = phy_ethtool_get_link_ksettings,
318 .set_link_ksettings = phy_ethtool_set_link_ksettings,
319 };
320
321 static int
ltq_etop_mdio_wr(struct mii_bus * bus,int phy_addr,int phy_reg,u16 phy_data)322 ltq_etop_mdio_wr(struct mii_bus *bus, int phy_addr, int phy_reg, u16 phy_data)
323 {
324 u32 val = MDIO_REQUEST |
325 ((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) |
326 ((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET) |
327 phy_data;
328
329 while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
330 ;
331 ltq_etop_w32(val, LTQ_ETOP_MDIO);
332 return 0;
333 }
334
335 static int
ltq_etop_mdio_rd(struct mii_bus * bus,int phy_addr,int phy_reg)336 ltq_etop_mdio_rd(struct mii_bus *bus, int phy_addr, int phy_reg)
337 {
338 u32 val = MDIO_REQUEST | MDIO_READ |
339 ((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) |
340 ((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET);
341
342 while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
343 ;
344 ltq_etop_w32(val, LTQ_ETOP_MDIO);
345 while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
346 ;
347 val = ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_VAL_MASK;
348 return val;
349 }
350
351 static void
ltq_etop_mdio_link(struct net_device * dev)352 ltq_etop_mdio_link(struct net_device *dev)
353 {
354 /* nothing to do */
355 }
356
357 static int
ltq_etop_mdio_probe(struct net_device * dev)358 ltq_etop_mdio_probe(struct net_device *dev)
359 {
360 struct ltq_etop_priv *priv = netdev_priv(dev);
361 struct phy_device *phydev;
362
363 phydev = phy_find_first(priv->mii_bus);
364
365 if (!phydev) {
366 netdev_err(dev, "no PHY found\n");
367 return -ENODEV;
368 }
369
370 phydev = phy_connect(dev, phydev_name(phydev),
371 <q_etop_mdio_link, priv->pldata->mii_mode);
372
373 if (IS_ERR(phydev)) {
374 netdev_err(dev, "Could not attach to PHY\n");
375 return PTR_ERR(phydev);
376 }
377
378 phy_set_max_speed(phydev, SPEED_100);
379
380 phy_attached_info(phydev);
381
382 return 0;
383 }
384
385 static int
ltq_etop_mdio_init(struct net_device * dev)386 ltq_etop_mdio_init(struct net_device *dev)
387 {
388 struct ltq_etop_priv *priv = netdev_priv(dev);
389 int err;
390
391 priv->mii_bus = mdiobus_alloc();
392 if (!priv->mii_bus) {
393 netdev_err(dev, "failed to allocate mii bus\n");
394 err = -ENOMEM;
395 goto err_out;
396 }
397
398 priv->mii_bus->priv = dev;
399 priv->mii_bus->read = ltq_etop_mdio_rd;
400 priv->mii_bus->write = ltq_etop_mdio_wr;
401 priv->mii_bus->name = "ltq_mii";
402 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
403 priv->pdev->name, priv->pdev->id);
404 if (mdiobus_register(priv->mii_bus)) {
405 err = -ENXIO;
406 goto err_out_free_mdiobus;
407 }
408
409 if (ltq_etop_mdio_probe(dev)) {
410 err = -ENXIO;
411 goto err_out_unregister_bus;
412 }
413 return 0;
414
415 err_out_unregister_bus:
416 mdiobus_unregister(priv->mii_bus);
417 err_out_free_mdiobus:
418 mdiobus_free(priv->mii_bus);
419 err_out:
420 return err;
421 }
422
423 static void
ltq_etop_mdio_cleanup(struct net_device * dev)424 ltq_etop_mdio_cleanup(struct net_device *dev)
425 {
426 struct ltq_etop_priv *priv = netdev_priv(dev);
427
428 phy_disconnect(dev->phydev);
429 mdiobus_unregister(priv->mii_bus);
430 mdiobus_free(priv->mii_bus);
431 }
432
433 static int
ltq_etop_open(struct net_device * dev)434 ltq_etop_open(struct net_device *dev)
435 {
436 struct ltq_etop_priv *priv = netdev_priv(dev);
437 int i;
438
439 for (i = 0; i < MAX_DMA_CHAN; i++) {
440 struct ltq_etop_chan *ch = &priv->ch[i];
441
442 if (!IS_TX(i) && (!IS_RX(i)))
443 continue;
444 ltq_dma_open(&ch->dma);
445 ltq_dma_enable_irq(&ch->dma);
446 napi_enable(&ch->napi);
447 }
448 phy_start(dev->phydev);
449 netif_tx_start_all_queues(dev);
450 return 0;
451 }
452
453 static int
ltq_etop_stop(struct net_device * dev)454 ltq_etop_stop(struct net_device *dev)
455 {
456 struct ltq_etop_priv *priv = netdev_priv(dev);
457 int i;
458
459 netif_tx_stop_all_queues(dev);
460 phy_stop(dev->phydev);
461 for (i = 0; i < MAX_DMA_CHAN; i++) {
462 struct ltq_etop_chan *ch = &priv->ch[i];
463
464 if (!IS_RX(i) && !IS_TX(i))
465 continue;
466 napi_disable(&ch->napi);
467 ltq_dma_close(&ch->dma);
468 }
469 return 0;
470 }
471
472 static netdev_tx_t
ltq_etop_tx(struct sk_buff * skb,struct net_device * dev)473 ltq_etop_tx(struct sk_buff *skb, struct net_device *dev)
474 {
475 int queue = skb_get_queue_mapping(skb);
476 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue);
477 struct ltq_etop_priv *priv = netdev_priv(dev);
478 struct ltq_etop_chan *ch = &priv->ch[(queue << 1) | 1];
479 struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
480 int len;
481 unsigned long flags;
482 u32 byte_offset;
483
484 if (skb_put_padto(skb, ETH_ZLEN))
485 return NETDEV_TX_OK;
486 len = skb->len;
487
488 if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) || ch->skb[ch->dma.desc]) {
489 netdev_err(dev, "tx ring full\n");
490 netif_tx_stop_queue(txq);
491 return NETDEV_TX_BUSY;
492 }
493
494 /* dma needs to start on a burst length value aligned address */
495 byte_offset = CPHYSADDR(skb->data) % (priv->tx_burst_len * 4);
496 ch->skb[ch->dma.desc] = skb;
497
498 netif_trans_update(dev);
499
500 spin_lock_irqsave(&priv->lock, flags);
501 desc->addr = ((unsigned int)dma_map_single(&priv->pdev->dev, skb->data, len,
502 DMA_TO_DEVICE)) - byte_offset;
503 /* Make sure the address is written before we give it to HW */
504 wmb();
505 desc->ctl = LTQ_DMA_OWN | LTQ_DMA_SOP | LTQ_DMA_EOP |
506 LTQ_DMA_TX_OFFSET(byte_offset) | (len & LTQ_DMA_SIZE_MASK);
507 ch->dma.desc++;
508 ch->dma.desc %= LTQ_DESC_NUM;
509 spin_unlock_irqrestore(&priv->lock, flags);
510
511 if (ch->dma.desc_base[ch->dma.desc].ctl & LTQ_DMA_OWN)
512 netif_tx_stop_queue(txq);
513
514 return NETDEV_TX_OK;
515 }
516
517 static int
ltq_etop_change_mtu(struct net_device * dev,int new_mtu)518 ltq_etop_change_mtu(struct net_device *dev, int new_mtu)
519 {
520 struct ltq_etop_priv *priv = netdev_priv(dev);
521 unsigned long flags;
522
523 WRITE_ONCE(dev->mtu, new_mtu);
524
525 spin_lock_irqsave(&priv->lock, flags);
526 ltq_etop_w32((ETOP_PLEN_UNDER << 16) | new_mtu, LTQ_ETOP_IGPLEN);
527 spin_unlock_irqrestore(&priv->lock, flags);
528
529 return 0;
530 }
531
532 static int
ltq_etop_set_mac_address(struct net_device * dev,void * p)533 ltq_etop_set_mac_address(struct net_device *dev, void *p)
534 {
535 int ret = eth_mac_addr(dev, p);
536
537 if (!ret) {
538 struct ltq_etop_priv *priv = netdev_priv(dev);
539 unsigned long flags;
540
541 /* store the mac for the unicast filter */
542 spin_lock_irqsave(&priv->lock, flags);
543 ltq_etop_w32(*((u32 *)dev->dev_addr), LTQ_ETOP_MAC_DA0);
544 ltq_etop_w32(*((u16 *)&dev->dev_addr[4]) << 16,
545 LTQ_ETOP_MAC_DA1);
546 spin_unlock_irqrestore(&priv->lock, flags);
547 }
548 return ret;
549 }
550
551 static void
ltq_etop_set_multicast_list(struct net_device * dev)552 ltq_etop_set_multicast_list(struct net_device *dev)
553 {
554 struct ltq_etop_priv *priv = netdev_priv(dev);
555 unsigned long flags;
556
557 /* ensure that the unicast filter is not enabled in promiscious mode */
558 spin_lock_irqsave(&priv->lock, flags);
559 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI))
560 ltq_etop_w32_mask(ETOP_FTCU, 0, LTQ_ETOP_ENETS0);
561 else
562 ltq_etop_w32_mask(0, ETOP_FTCU, LTQ_ETOP_ENETS0);
563 spin_unlock_irqrestore(&priv->lock, flags);
564 }
565
566 static int
ltq_etop_init(struct net_device * dev)567 ltq_etop_init(struct net_device *dev)
568 {
569 struct ltq_etop_priv *priv = netdev_priv(dev);
570 struct sockaddr mac;
571 int err;
572 bool random_mac = false;
573
574 dev->watchdog_timeo = 10 * HZ;
575 err = ltq_etop_hw_init(dev);
576 if (err)
577 goto err_hw;
578 ltq_etop_change_mtu(dev, 1500);
579
580 memcpy(&mac, &priv->pldata->mac, sizeof(struct sockaddr));
581 if (!is_valid_ether_addr(mac.sa_data)) {
582 pr_warn("etop: invalid MAC, using random\n");
583 eth_random_addr(mac.sa_data);
584 random_mac = true;
585 }
586
587 err = ltq_etop_set_mac_address(dev, &mac);
588 if (err)
589 goto err_netdev;
590
591 /* Set addr_assign_type here, ltq_etop_set_mac_address would reset it. */
592 if (random_mac)
593 dev->addr_assign_type = NET_ADDR_RANDOM;
594
595 ltq_etop_set_multicast_list(dev);
596 err = ltq_etop_mdio_init(dev);
597 if (err)
598 goto err_netdev;
599 return 0;
600
601 err_netdev:
602 unregister_netdev(dev);
603 free_netdev(dev);
604 err_hw:
605 ltq_etop_hw_exit(dev);
606 return err;
607 }
608
609 static void
ltq_etop_tx_timeout(struct net_device * dev,unsigned int txqueue)610 ltq_etop_tx_timeout(struct net_device *dev, unsigned int txqueue)
611 {
612 int err;
613
614 ltq_etop_hw_exit(dev);
615 err = ltq_etop_hw_init(dev);
616 if (err)
617 goto err_hw;
618 netif_trans_update(dev);
619 netif_wake_queue(dev);
620 return;
621
622 err_hw:
623 ltq_etop_hw_exit(dev);
624 netdev_err(dev, "failed to restart etop after TX timeout\n");
625 }
626
627 static const struct net_device_ops ltq_eth_netdev_ops = {
628 .ndo_open = ltq_etop_open,
629 .ndo_stop = ltq_etop_stop,
630 .ndo_start_xmit = ltq_etop_tx,
631 .ndo_change_mtu = ltq_etop_change_mtu,
632 .ndo_eth_ioctl = phy_do_ioctl,
633 .ndo_set_mac_address = ltq_etop_set_mac_address,
634 .ndo_validate_addr = eth_validate_addr,
635 .ndo_set_rx_mode = ltq_etop_set_multicast_list,
636 .ndo_select_queue = dev_pick_tx_zero,
637 .ndo_init = ltq_etop_init,
638 .ndo_tx_timeout = ltq_etop_tx_timeout,
639 };
640
641 static int __init
ltq_etop_probe(struct platform_device * pdev)642 ltq_etop_probe(struct platform_device *pdev)
643 {
644 struct net_device *dev;
645 struct ltq_etop_priv *priv;
646 struct resource *res;
647 int err;
648 int i;
649
650 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
651 if (!res) {
652 dev_err(&pdev->dev, "failed to get etop resource\n");
653 err = -ENOENT;
654 goto err_out;
655 }
656
657 res = devm_request_mem_region(&pdev->dev, res->start,
658 resource_size(res), dev_name(&pdev->dev));
659 if (!res) {
660 dev_err(&pdev->dev, "failed to request etop resource\n");
661 err = -EBUSY;
662 goto err_out;
663 }
664
665 ltq_etop_membase = devm_ioremap(&pdev->dev, res->start,
666 resource_size(res));
667 if (!ltq_etop_membase) {
668 dev_err(&pdev->dev, "failed to remap etop engine %d\n",
669 pdev->id);
670 err = -ENOMEM;
671 goto err_out;
672 }
673
674 dev = alloc_etherdev_mq(sizeof(struct ltq_etop_priv), 4);
675 if (!dev) {
676 err = -ENOMEM;
677 goto err_out;
678 }
679 dev->netdev_ops = <q_eth_netdev_ops;
680 dev->ethtool_ops = <q_etop_ethtool_ops;
681 priv = netdev_priv(dev);
682 priv->res = res;
683 priv->pdev = pdev;
684 priv->pldata = dev_get_platdata(&pdev->dev);
685 priv->netdev = dev;
686 spin_lock_init(&priv->lock);
687 SET_NETDEV_DEV(dev, &pdev->dev);
688
689 err = device_property_read_u32(&pdev->dev, "lantiq,tx-burst-length", &priv->tx_burst_len);
690 if (err < 0) {
691 dev_err(&pdev->dev, "unable to read tx-burst-length property\n");
692 goto err_free;
693 }
694
695 err = device_property_read_u32(&pdev->dev, "lantiq,rx-burst-length", &priv->rx_burst_len);
696 if (err < 0) {
697 dev_err(&pdev->dev, "unable to read rx-burst-length property\n");
698 goto err_free;
699 }
700
701 for (i = 0; i < MAX_DMA_CHAN; i++) {
702 if (IS_TX(i))
703 netif_napi_add_weight(dev, &priv->ch[i].napi,
704 ltq_etop_poll_tx, 8);
705 else if (IS_RX(i))
706 netif_napi_add_weight(dev, &priv->ch[i].napi,
707 ltq_etop_poll_rx, 32);
708 priv->ch[i].netdev = dev;
709 }
710
711 err = register_netdev(dev);
712 if (err)
713 goto err_free;
714
715 platform_set_drvdata(pdev, dev);
716 return 0;
717
718 err_free:
719 free_netdev(dev);
720 err_out:
721 return err;
722 }
723
ltq_etop_remove(struct platform_device * pdev)724 static void ltq_etop_remove(struct platform_device *pdev)
725 {
726 struct net_device *dev = platform_get_drvdata(pdev);
727
728 if (dev) {
729 netif_tx_stop_all_queues(dev);
730 ltq_etop_hw_exit(dev);
731 ltq_etop_mdio_cleanup(dev);
732 unregister_netdev(dev);
733 }
734 }
735
736 static struct platform_driver ltq_mii_driver = {
737 .remove_new = ltq_etop_remove,
738 .driver = {
739 .name = "ltq_etop",
740 },
741 };
742
743 static int __init
init_ltq_etop(void)744 init_ltq_etop(void)
745 {
746 int ret = platform_driver_probe(<q_mii_driver, ltq_etop_probe);
747
748 if (ret)
749 pr_err("ltq_etop: Error registering platform driver!");
750 return ret;
751 }
752
753 static void __exit
exit_ltq_etop(void)754 exit_ltq_etop(void)
755 {
756 platform_driver_unregister(<q_mii_driver);
757 }
758
759 module_init(init_ltq_etop);
760 module_exit(exit_ltq_etop);
761
762 MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
763 MODULE_DESCRIPTION("Lantiq SoC ETOP");
764 MODULE_LICENSE("GPL");
765