xref: /linux/drivers/net/ethernet/lantiq_etop.c (revision 816b02e63a759c4458edee142b721ab09c918b3d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  *   Copyright (C) 2011 John Crispin <blogic@openwrt.org>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include <linux/errno.h>
10 #include <linux/types.h>
11 #include <linux/interrupt.h>
12 #include <linux/uaccess.h>
13 #include <linux/in.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/phy.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/skbuff.h>
20 #include <linux/mm.h>
21 #include <linux/platform_device.h>
22 #include <linux/ethtool.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/io.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/module.h>
28 #include <linux/property.h>
29 
30 #include <asm/checksum.h>
31 
32 #include <lantiq_soc.h>
33 #include <xway_dma.h>
34 #include <lantiq_platform.h>
35 
36 #define LTQ_ETOP_MDIO		0x11804
37 #define MDIO_REQUEST		0x80000000
38 #define MDIO_READ		0x40000000
39 #define MDIO_ADDR_MASK		0x1f
40 #define MDIO_ADDR_OFFSET	0x15
41 #define MDIO_REG_MASK		0x1f
42 #define MDIO_REG_OFFSET		0x10
43 #define MDIO_VAL_MASK		0xffff
44 
45 #define PPE32_CGEN		0x800
46 #define LQ_PPE32_ENET_MAC_CFG	0x1840
47 
48 #define LTQ_ETOP_ENETS0		0x11850
49 #define LTQ_ETOP_MAC_DA0	0x1186C
50 #define LTQ_ETOP_MAC_DA1	0x11870
51 #define LTQ_ETOP_CFG		0x16020
52 #define LTQ_ETOP_IGPLEN		0x16080
53 
54 #define MAX_DMA_CHAN		0x8
55 #define MAX_DMA_CRC_LEN		0x4
56 #define MAX_DMA_DATA_LEN	0x600
57 
58 #define ETOP_FTCU		BIT(28)
59 #define ETOP_MII_MASK		0xf
60 #define ETOP_MII_NORMAL		0xd
61 #define ETOP_MII_REVERSE	0xe
62 #define ETOP_PLEN_UNDER		0x40
63 #define ETOP_CGEN		0x800
64 
65 /* use 2 static channels for TX/RX */
66 #define LTQ_ETOP_TX_CHANNEL	1
67 #define LTQ_ETOP_RX_CHANNEL	6
68 #define IS_TX(x)		((x) == LTQ_ETOP_TX_CHANNEL)
69 #define IS_RX(x)		((x) == LTQ_ETOP_RX_CHANNEL)
70 
71 #define ltq_etop_r32(x)		ltq_r32(ltq_etop_membase + (x))
72 #define ltq_etop_w32(x, y)	ltq_w32(x, ltq_etop_membase + (y))
73 #define ltq_etop_w32_mask(x, y, z)	\
74 		ltq_w32_mask(x, y, ltq_etop_membase + (z))
75 
76 #define DRV_VERSION	"1.0"
77 
78 static void __iomem *ltq_etop_membase;
79 
80 struct ltq_etop_chan {
81 	int idx;
82 	int tx_free;
83 	struct net_device *netdev;
84 	struct napi_struct napi;
85 	struct ltq_dma_channel dma;
86 	struct sk_buff *skb[LTQ_DESC_NUM];
87 };
88 
89 struct ltq_etop_priv {
90 	struct net_device *netdev;
91 	struct platform_device *pdev;
92 	struct ltq_eth_data *pldata;
93 
94 	struct mii_bus *mii_bus;
95 
96 	struct ltq_etop_chan ch[MAX_DMA_CHAN];
97 
98 	int tx_burst_len;
99 	int rx_burst_len;
100 
101 	spinlock_t lock;
102 };
103 
104 static int
105 ltq_etop_alloc_skb(struct ltq_etop_chan *ch)
106 {
107 	struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
108 
109 	ch->skb[ch->dma.desc] = netdev_alloc_skb(ch->netdev, MAX_DMA_DATA_LEN);
110 	if (!ch->skb[ch->dma.desc])
111 		return -ENOMEM;
112 	ch->dma.desc_base[ch->dma.desc].addr =
113 		dma_map_single(&priv->pdev->dev, ch->skb[ch->dma.desc]->data,
114 			       MAX_DMA_DATA_LEN, DMA_FROM_DEVICE);
115 	ch->dma.desc_base[ch->dma.desc].addr =
116 		CPHYSADDR(ch->skb[ch->dma.desc]->data);
117 	ch->dma.desc_base[ch->dma.desc].ctl =
118 		LTQ_DMA_OWN | LTQ_DMA_RX_OFFSET(NET_IP_ALIGN) |
119 		MAX_DMA_DATA_LEN;
120 	skb_reserve(ch->skb[ch->dma.desc], NET_IP_ALIGN);
121 	return 0;
122 }
123 
124 static void
125 ltq_etop_hw_receive(struct ltq_etop_chan *ch)
126 {
127 	struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
128 	struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
129 	struct sk_buff *skb = ch->skb[ch->dma.desc];
130 	int len = (desc->ctl & LTQ_DMA_SIZE_MASK) - MAX_DMA_CRC_LEN;
131 	unsigned long flags;
132 
133 	spin_lock_irqsave(&priv->lock, flags);
134 	if (ltq_etop_alloc_skb(ch)) {
135 		netdev_err(ch->netdev,
136 			   "failed to allocate new rx buffer, stopping DMA\n");
137 		ltq_dma_close(&ch->dma);
138 	}
139 	ch->dma.desc++;
140 	ch->dma.desc %= LTQ_DESC_NUM;
141 	spin_unlock_irqrestore(&priv->lock, flags);
142 
143 	skb_put(skb, len);
144 	skb->protocol = eth_type_trans(skb, ch->netdev);
145 	netif_receive_skb(skb);
146 }
147 
148 static int
149 ltq_etop_poll_rx(struct napi_struct *napi, int budget)
150 {
151 	struct ltq_etop_chan *ch = container_of(napi,
152 				struct ltq_etop_chan, napi);
153 	int work_done = 0;
154 
155 	while (work_done < budget) {
156 		struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
157 
158 		if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) != LTQ_DMA_C)
159 			break;
160 		ltq_etop_hw_receive(ch);
161 		work_done++;
162 	}
163 	if (work_done < budget) {
164 		napi_complete_done(&ch->napi, work_done);
165 		ltq_dma_ack_irq(&ch->dma);
166 	}
167 	return work_done;
168 }
169 
170 static int
171 ltq_etop_poll_tx(struct napi_struct *napi, int budget)
172 {
173 	struct ltq_etop_chan *ch =
174 		container_of(napi, struct ltq_etop_chan, napi);
175 	struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
176 	struct netdev_queue *txq =
177 		netdev_get_tx_queue(ch->netdev, ch->idx >> 1);
178 	unsigned long flags;
179 
180 	spin_lock_irqsave(&priv->lock, flags);
181 	while ((ch->dma.desc_base[ch->tx_free].ctl &
182 			(LTQ_DMA_OWN | LTQ_DMA_C)) == LTQ_DMA_C) {
183 		dev_kfree_skb_any(ch->skb[ch->tx_free]);
184 		ch->skb[ch->tx_free] = NULL;
185 		memset(&ch->dma.desc_base[ch->tx_free], 0,
186 		       sizeof(struct ltq_dma_desc));
187 		ch->tx_free++;
188 		ch->tx_free %= LTQ_DESC_NUM;
189 	}
190 	spin_unlock_irqrestore(&priv->lock, flags);
191 
192 	if (netif_tx_queue_stopped(txq))
193 		netif_tx_start_queue(txq);
194 	napi_complete(&ch->napi);
195 	ltq_dma_ack_irq(&ch->dma);
196 	return 1;
197 }
198 
199 static irqreturn_t
200 ltq_etop_dma_irq(int irq, void *_priv)
201 {
202 	struct ltq_etop_priv *priv = _priv;
203 	int ch = irq - LTQ_DMA_CH0_INT;
204 
205 	napi_schedule(&priv->ch[ch].napi);
206 	return IRQ_HANDLED;
207 }
208 
209 static void
210 ltq_etop_free_channel(struct net_device *dev, struct ltq_etop_chan *ch)
211 {
212 	struct ltq_etop_priv *priv = netdev_priv(dev);
213 
214 	ltq_dma_free(&ch->dma);
215 	if (ch->dma.irq)
216 		free_irq(ch->dma.irq, priv);
217 	if (IS_RX(ch->idx)) {
218 		struct ltq_dma_channel *dma = &ch->dma;
219 
220 		for (dma->desc = 0; dma->desc < LTQ_DESC_NUM; dma->desc++)
221 			dev_kfree_skb_any(ch->skb[ch->dma.desc]);
222 	}
223 }
224 
225 static void
226 ltq_etop_hw_exit(struct net_device *dev)
227 {
228 	struct ltq_etop_priv *priv = netdev_priv(dev);
229 	int i;
230 
231 	ltq_pmu_disable(PMU_PPE);
232 	for (i = 0; i < MAX_DMA_CHAN; i++)
233 		if (IS_TX(i) || IS_RX(i))
234 			ltq_etop_free_channel(dev, &priv->ch[i]);
235 }
236 
237 static int
238 ltq_etop_hw_init(struct net_device *dev)
239 {
240 	struct ltq_etop_priv *priv = netdev_priv(dev);
241 	int i;
242 	int err;
243 
244 	ltq_pmu_enable(PMU_PPE);
245 
246 	switch (priv->pldata->mii_mode) {
247 	case PHY_INTERFACE_MODE_RMII:
248 		ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_REVERSE,
249 				  LTQ_ETOP_CFG);
250 		break;
251 
252 	case PHY_INTERFACE_MODE_MII:
253 		ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_NORMAL,
254 				  LTQ_ETOP_CFG);
255 		break;
256 
257 	default:
258 		netdev_err(dev, "unknown mii mode %d\n",
259 			   priv->pldata->mii_mode);
260 		return -ENOTSUPP;
261 	}
262 
263 	/* enable crc generation */
264 	ltq_etop_w32(PPE32_CGEN, LQ_PPE32_ENET_MAC_CFG);
265 
266 	ltq_dma_init_port(DMA_PORT_ETOP, priv->tx_burst_len, priv->rx_burst_len);
267 
268 	for (i = 0; i < MAX_DMA_CHAN; i++) {
269 		int irq = LTQ_DMA_CH0_INT + i;
270 		struct ltq_etop_chan *ch = &priv->ch[i];
271 
272 		ch->dma.nr = i;
273 		ch->idx = ch->dma.nr;
274 		ch->dma.dev = &priv->pdev->dev;
275 
276 		if (IS_TX(i)) {
277 			ltq_dma_alloc_tx(&ch->dma);
278 			err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_tx", priv);
279 			if (err) {
280 				netdev_err(dev,
281 					   "Unable to get Tx DMA IRQ %d\n",
282 					   irq);
283 				return err;
284 			}
285 		} else if (IS_RX(i)) {
286 			ltq_dma_alloc_rx(&ch->dma);
287 			for (ch->dma.desc = 0; ch->dma.desc < LTQ_DESC_NUM;
288 					ch->dma.desc++)
289 				if (ltq_etop_alloc_skb(ch))
290 					return -ENOMEM;
291 			ch->dma.desc = 0;
292 			err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_rx", priv);
293 			if (err) {
294 				netdev_err(dev,
295 					   "Unable to get Rx DMA IRQ %d\n",
296 					   irq);
297 				return err;
298 			}
299 		}
300 		ch->dma.irq = irq;
301 	}
302 	return 0;
303 }
304 
305 static void
306 ltq_etop_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
307 {
308 	strscpy(info->driver, "Lantiq ETOP", sizeof(info->driver));
309 	strscpy(info->bus_info, "internal", sizeof(info->bus_info));
310 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
311 }
312 
313 static const struct ethtool_ops ltq_etop_ethtool_ops = {
314 	.get_drvinfo = ltq_etop_get_drvinfo,
315 	.nway_reset = phy_ethtool_nway_reset,
316 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
317 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
318 };
319 
320 static int
321 ltq_etop_mdio_wr(struct mii_bus *bus, int phy_addr, int phy_reg, u16 phy_data)
322 {
323 	u32 val = MDIO_REQUEST |
324 		((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) |
325 		((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET) |
326 		phy_data;
327 
328 	while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
329 		;
330 	ltq_etop_w32(val, LTQ_ETOP_MDIO);
331 	return 0;
332 }
333 
334 static int
335 ltq_etop_mdio_rd(struct mii_bus *bus, int phy_addr, int phy_reg)
336 {
337 	u32 val = MDIO_REQUEST | MDIO_READ |
338 		((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) |
339 		((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET);
340 
341 	while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
342 		;
343 	ltq_etop_w32(val, LTQ_ETOP_MDIO);
344 	while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
345 		;
346 	val = ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_VAL_MASK;
347 	return val;
348 }
349 
350 static void
351 ltq_etop_mdio_link(struct net_device *dev)
352 {
353 	/* nothing to do  */
354 }
355 
356 static int
357 ltq_etop_mdio_probe(struct net_device *dev)
358 {
359 	struct ltq_etop_priv *priv = netdev_priv(dev);
360 	struct phy_device *phydev;
361 
362 	phydev = phy_find_first(priv->mii_bus);
363 
364 	if (!phydev) {
365 		netdev_err(dev, "no PHY found\n");
366 		return -ENODEV;
367 	}
368 
369 	phydev = phy_connect(dev, phydev_name(phydev),
370 			     &ltq_etop_mdio_link, priv->pldata->mii_mode);
371 
372 	if (IS_ERR(phydev)) {
373 		netdev_err(dev, "Could not attach to PHY\n");
374 		return PTR_ERR(phydev);
375 	}
376 
377 	phy_set_max_speed(phydev, SPEED_100);
378 
379 	phy_attached_info(phydev);
380 
381 	return 0;
382 }
383 
384 static int
385 ltq_etop_mdio_init(struct net_device *dev)
386 {
387 	struct ltq_etop_priv *priv = netdev_priv(dev);
388 	int err;
389 
390 	priv->mii_bus = mdiobus_alloc();
391 	if (!priv->mii_bus) {
392 		netdev_err(dev, "failed to allocate mii bus\n");
393 		err = -ENOMEM;
394 		goto err_out;
395 	}
396 
397 	priv->mii_bus->priv = dev;
398 	priv->mii_bus->read = ltq_etop_mdio_rd;
399 	priv->mii_bus->write = ltq_etop_mdio_wr;
400 	priv->mii_bus->name = "ltq_mii";
401 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
402 		 priv->pdev->name, priv->pdev->id);
403 	if (mdiobus_register(priv->mii_bus)) {
404 		err = -ENXIO;
405 		goto err_out_free_mdiobus;
406 	}
407 
408 	if (ltq_etop_mdio_probe(dev)) {
409 		err = -ENXIO;
410 		goto err_out_unregister_bus;
411 	}
412 	return 0;
413 
414 err_out_unregister_bus:
415 	mdiobus_unregister(priv->mii_bus);
416 err_out_free_mdiobus:
417 	mdiobus_free(priv->mii_bus);
418 err_out:
419 	return err;
420 }
421 
422 static void
423 ltq_etop_mdio_cleanup(struct net_device *dev)
424 {
425 	struct ltq_etop_priv *priv = netdev_priv(dev);
426 
427 	phy_disconnect(dev->phydev);
428 	mdiobus_unregister(priv->mii_bus);
429 	mdiobus_free(priv->mii_bus);
430 }
431 
432 static int
433 ltq_etop_open(struct net_device *dev)
434 {
435 	struct ltq_etop_priv *priv = netdev_priv(dev);
436 	int i;
437 
438 	for (i = 0; i < MAX_DMA_CHAN; i++) {
439 		struct ltq_etop_chan *ch = &priv->ch[i];
440 
441 		if (!IS_TX(i) && (!IS_RX(i)))
442 			continue;
443 		ltq_dma_open(&ch->dma);
444 		ltq_dma_enable_irq(&ch->dma);
445 		napi_enable(&ch->napi);
446 	}
447 	phy_start(dev->phydev);
448 	netif_tx_start_all_queues(dev);
449 	return 0;
450 }
451 
452 static int
453 ltq_etop_stop(struct net_device *dev)
454 {
455 	struct ltq_etop_priv *priv = netdev_priv(dev);
456 	int i;
457 
458 	netif_tx_stop_all_queues(dev);
459 	phy_stop(dev->phydev);
460 	for (i = 0; i < MAX_DMA_CHAN; i++) {
461 		struct ltq_etop_chan *ch = &priv->ch[i];
462 
463 		if (!IS_RX(i) && !IS_TX(i))
464 			continue;
465 		napi_disable(&ch->napi);
466 		ltq_dma_close(&ch->dma);
467 	}
468 	return 0;
469 }
470 
471 static netdev_tx_t
472 ltq_etop_tx(struct sk_buff *skb, struct net_device *dev)
473 {
474 	int queue = skb_get_queue_mapping(skb);
475 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue);
476 	struct ltq_etop_priv *priv = netdev_priv(dev);
477 	struct ltq_etop_chan *ch = &priv->ch[(queue << 1) | 1];
478 	struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
479 	int len;
480 	unsigned long flags;
481 	u32 byte_offset;
482 
483 	if (skb_put_padto(skb, ETH_ZLEN))
484 		return NETDEV_TX_OK;
485 	len = skb->len;
486 
487 	if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) || ch->skb[ch->dma.desc]) {
488 		netdev_err(dev, "tx ring full\n");
489 		netif_tx_stop_queue(txq);
490 		return NETDEV_TX_BUSY;
491 	}
492 
493 	/* dma needs to start on a burst length value aligned address */
494 	byte_offset = CPHYSADDR(skb->data) % (priv->tx_burst_len * 4);
495 	ch->skb[ch->dma.desc] = skb;
496 
497 	netif_trans_update(dev);
498 
499 	spin_lock_irqsave(&priv->lock, flags);
500 	desc->addr = ((unsigned int)dma_map_single(&priv->pdev->dev, skb->data, len,
501 						DMA_TO_DEVICE)) - byte_offset;
502 	/* Make sure the address is written before we give it to HW */
503 	wmb();
504 	desc->ctl = LTQ_DMA_OWN | LTQ_DMA_SOP | LTQ_DMA_EOP |
505 		LTQ_DMA_TX_OFFSET(byte_offset) | (len & LTQ_DMA_SIZE_MASK);
506 	ch->dma.desc++;
507 	ch->dma.desc %= LTQ_DESC_NUM;
508 	spin_unlock_irqrestore(&priv->lock, flags);
509 
510 	if (ch->dma.desc_base[ch->dma.desc].ctl & LTQ_DMA_OWN)
511 		netif_tx_stop_queue(txq);
512 
513 	return NETDEV_TX_OK;
514 }
515 
516 static int
517 ltq_etop_change_mtu(struct net_device *dev, int new_mtu)
518 {
519 	struct ltq_etop_priv *priv = netdev_priv(dev);
520 	unsigned long flags;
521 
522 	WRITE_ONCE(dev->mtu, new_mtu);
523 
524 	spin_lock_irqsave(&priv->lock, flags);
525 	ltq_etop_w32((ETOP_PLEN_UNDER << 16) | new_mtu, LTQ_ETOP_IGPLEN);
526 	spin_unlock_irqrestore(&priv->lock, flags);
527 
528 	return 0;
529 }
530 
531 static int
532 ltq_etop_set_mac_address(struct net_device *dev, void *p)
533 {
534 	int ret = eth_mac_addr(dev, p);
535 
536 	if (!ret) {
537 		struct ltq_etop_priv *priv = netdev_priv(dev);
538 		unsigned long flags;
539 
540 		/* store the mac for the unicast filter */
541 		spin_lock_irqsave(&priv->lock, flags);
542 		ltq_etop_w32(*((u32 *)dev->dev_addr), LTQ_ETOP_MAC_DA0);
543 		ltq_etop_w32(*((u16 *)&dev->dev_addr[4]) << 16,
544 			     LTQ_ETOP_MAC_DA1);
545 		spin_unlock_irqrestore(&priv->lock, flags);
546 	}
547 	return ret;
548 }
549 
550 static void
551 ltq_etop_set_multicast_list(struct net_device *dev)
552 {
553 	struct ltq_etop_priv *priv = netdev_priv(dev);
554 	unsigned long flags;
555 
556 	/* ensure that the unicast filter is not enabled in promiscious mode */
557 	spin_lock_irqsave(&priv->lock, flags);
558 	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI))
559 		ltq_etop_w32_mask(ETOP_FTCU, 0, LTQ_ETOP_ENETS0);
560 	else
561 		ltq_etop_w32_mask(0, ETOP_FTCU, LTQ_ETOP_ENETS0);
562 	spin_unlock_irqrestore(&priv->lock, flags);
563 }
564 
565 static int
566 ltq_etop_init(struct net_device *dev)
567 {
568 	struct ltq_etop_priv *priv = netdev_priv(dev);
569 	struct sockaddr mac;
570 	int err;
571 	bool random_mac = false;
572 
573 	dev->watchdog_timeo = 10 * HZ;
574 	err = ltq_etop_hw_init(dev);
575 	if (err)
576 		goto err_hw;
577 	ltq_etop_change_mtu(dev, 1500);
578 
579 	memcpy(&mac, &priv->pldata->mac, sizeof(struct sockaddr));
580 	if (!is_valid_ether_addr(mac.sa_data)) {
581 		pr_warn("etop: invalid MAC, using random\n");
582 		eth_random_addr(mac.sa_data);
583 		random_mac = true;
584 	}
585 
586 	err = ltq_etop_set_mac_address(dev, &mac);
587 	if (err)
588 		goto err_netdev;
589 
590 	/* Set addr_assign_type here, ltq_etop_set_mac_address would reset it. */
591 	if (random_mac)
592 		dev->addr_assign_type = NET_ADDR_RANDOM;
593 
594 	ltq_etop_set_multicast_list(dev);
595 	err = ltq_etop_mdio_init(dev);
596 	if (err)
597 		goto err_netdev;
598 	return 0;
599 
600 err_netdev:
601 	unregister_netdev(dev);
602 	free_netdev(dev);
603 err_hw:
604 	ltq_etop_hw_exit(dev);
605 	return err;
606 }
607 
608 static void
609 ltq_etop_tx_timeout(struct net_device *dev, unsigned int txqueue)
610 {
611 	int err;
612 
613 	ltq_etop_hw_exit(dev);
614 	err = ltq_etop_hw_init(dev);
615 	if (err)
616 		goto err_hw;
617 	netif_trans_update(dev);
618 	netif_wake_queue(dev);
619 	return;
620 
621 err_hw:
622 	ltq_etop_hw_exit(dev);
623 	netdev_err(dev, "failed to restart etop after TX timeout\n");
624 }
625 
626 static const struct net_device_ops ltq_eth_netdev_ops = {
627 	.ndo_open = ltq_etop_open,
628 	.ndo_stop = ltq_etop_stop,
629 	.ndo_start_xmit = ltq_etop_tx,
630 	.ndo_change_mtu = ltq_etop_change_mtu,
631 	.ndo_eth_ioctl = phy_do_ioctl,
632 	.ndo_set_mac_address = ltq_etop_set_mac_address,
633 	.ndo_validate_addr = eth_validate_addr,
634 	.ndo_set_rx_mode = ltq_etop_set_multicast_list,
635 	.ndo_select_queue = dev_pick_tx_zero,
636 	.ndo_init = ltq_etop_init,
637 	.ndo_tx_timeout = ltq_etop_tx_timeout,
638 };
639 
640 static int __init
641 ltq_etop_probe(struct platform_device *pdev)
642 {
643 	struct net_device *dev;
644 	struct ltq_etop_priv *priv;
645 	int err;
646 	int i;
647 
648 	ltq_etop_membase = devm_platform_ioremap_resource(pdev, 0);
649 	if (IS_ERR(ltq_etop_membase)) {
650 		dev_err(&pdev->dev, "failed to remap etop engine %d\n",
651 			pdev->id);
652 		err = PTR_ERR(ltq_etop_membase);
653 		goto err_out;
654 	}
655 
656 	dev = alloc_etherdev_mq(sizeof(struct ltq_etop_priv), 4);
657 	if (!dev) {
658 		err = -ENOMEM;
659 		goto err_out;
660 	}
661 	dev->netdev_ops = &ltq_eth_netdev_ops;
662 	dev->ethtool_ops = &ltq_etop_ethtool_ops;
663 	priv = netdev_priv(dev);
664 	priv->pdev = pdev;
665 	priv->pldata = dev_get_platdata(&pdev->dev);
666 	priv->netdev = dev;
667 	spin_lock_init(&priv->lock);
668 	SET_NETDEV_DEV(dev, &pdev->dev);
669 
670 	err = device_property_read_u32(&pdev->dev, "lantiq,tx-burst-length", &priv->tx_burst_len);
671 	if (err < 0) {
672 		dev_err(&pdev->dev, "unable to read tx-burst-length property\n");
673 		goto err_free;
674 	}
675 
676 	err = device_property_read_u32(&pdev->dev, "lantiq,rx-burst-length", &priv->rx_burst_len);
677 	if (err < 0) {
678 		dev_err(&pdev->dev, "unable to read rx-burst-length property\n");
679 		goto err_free;
680 	}
681 
682 	for (i = 0; i < MAX_DMA_CHAN; i++) {
683 		if (IS_TX(i))
684 			netif_napi_add_weight(dev, &priv->ch[i].napi,
685 					      ltq_etop_poll_tx, 8);
686 		else if (IS_RX(i))
687 			netif_napi_add_weight(dev, &priv->ch[i].napi,
688 					      ltq_etop_poll_rx, 32);
689 		priv->ch[i].netdev = dev;
690 	}
691 
692 	err = register_netdev(dev);
693 	if (err)
694 		goto err_free;
695 
696 	platform_set_drvdata(pdev, dev);
697 	return 0;
698 
699 err_free:
700 	free_netdev(dev);
701 err_out:
702 	return err;
703 }
704 
705 static void ltq_etop_remove(struct platform_device *pdev)
706 {
707 	struct net_device *dev = platform_get_drvdata(pdev);
708 
709 	if (dev) {
710 		netif_tx_stop_all_queues(dev);
711 		ltq_etop_hw_exit(dev);
712 		ltq_etop_mdio_cleanup(dev);
713 		unregister_netdev(dev);
714 	}
715 }
716 
717 static struct platform_driver ltq_mii_driver = {
718 	.remove = ltq_etop_remove,
719 	.driver = {
720 		.name = "ltq_etop",
721 	},
722 };
723 
724 static int __init
725 init_ltq_etop(void)
726 {
727 	int ret = platform_driver_probe(&ltq_mii_driver, ltq_etop_probe);
728 
729 	if (ret)
730 		pr_err("ltq_etop: Error registering platform driver!");
731 	return ret;
732 }
733 
734 static void __exit
735 exit_ltq_etop(void)
736 {
737 	platform_driver_unregister(&ltq_mii_driver);
738 }
739 
740 module_init(init_ltq_etop);
741 module_exit(exit_ltq_etop);
742 
743 MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
744 MODULE_DESCRIPTION("Lantiq SoC ETOP");
745 MODULE_LICENSE("GPL");
746