xref: /linux/drivers/net/ethernet/lantiq_etop.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  *   Copyright (C) 2011 John Crispin <blogic@openwrt.org>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include <linux/errno.h>
10 #include <linux/types.h>
11 #include <linux/interrupt.h>
12 #include <linux/uaccess.h>
13 #include <linux/in.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/phy.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/skbuff.h>
20 #include <linux/mm.h>
21 #include <linux/platform_device.h>
22 #include <linux/ethtool.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/io.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/module.h>
28 #include <linux/property.h>
29 
30 #include <asm/checksum.h>
31 
32 #include <lantiq_soc.h>
33 #include <xway_dma.h>
34 #include <lantiq_platform.h>
35 
36 #define LTQ_ETOP_MDIO		0x11804
37 #define MDIO_REQUEST		0x80000000
38 #define MDIO_READ		0x40000000
39 #define MDIO_ADDR_MASK		0x1f
40 #define MDIO_ADDR_OFFSET	0x15
41 #define MDIO_REG_MASK		0x1f
42 #define MDIO_REG_OFFSET		0x10
43 #define MDIO_VAL_MASK		0xffff
44 
45 #define PPE32_CGEN		0x800
46 #define LQ_PPE32_ENET_MAC_CFG	0x1840
47 
48 #define LTQ_ETOP_ENETS0		0x11850
49 #define LTQ_ETOP_MAC_DA0	0x1186C
50 #define LTQ_ETOP_MAC_DA1	0x11870
51 #define LTQ_ETOP_CFG		0x16020
52 #define LTQ_ETOP_IGPLEN		0x16080
53 
54 #define MAX_DMA_CHAN		0x8
55 #define MAX_DMA_CRC_LEN		0x4
56 #define MAX_DMA_DATA_LEN	0x600
57 
58 #define ETOP_FTCU		BIT(28)
59 #define ETOP_MII_MASK		0xf
60 #define ETOP_MII_NORMAL		0xd
61 #define ETOP_MII_REVERSE	0xe
62 #define ETOP_PLEN_UNDER		0x40
63 #define ETOP_CGEN		0x800
64 
65 /* use 2 static channels for TX/RX */
66 #define LTQ_ETOP_TX_CHANNEL	1
67 #define LTQ_ETOP_RX_CHANNEL	6
68 #define IS_TX(x)		((x) == LTQ_ETOP_TX_CHANNEL)
69 #define IS_RX(x)		((x) == LTQ_ETOP_RX_CHANNEL)
70 
71 #define ltq_etop_r32(x)		ltq_r32(ltq_etop_membase + (x))
72 #define ltq_etop_w32(x, y)	ltq_w32(x, ltq_etop_membase + (y))
73 #define ltq_etop_w32_mask(x, y, z)	\
74 		ltq_w32_mask(x, y, ltq_etop_membase + (z))
75 
76 #define DRV_VERSION	"1.0"
77 
78 static void __iomem *ltq_etop_membase;
79 
80 struct ltq_etop_chan {
81 	int idx;
82 	int tx_free;
83 	struct net_device *netdev;
84 	struct napi_struct napi;
85 	struct ltq_dma_channel dma;
86 	struct sk_buff *skb[LTQ_DESC_NUM];
87 };
88 
89 struct ltq_etop_priv {
90 	struct net_device *netdev;
91 	struct platform_device *pdev;
92 	struct ltq_eth_data *pldata;
93 	struct resource *res;
94 
95 	struct mii_bus *mii_bus;
96 
97 	struct ltq_etop_chan ch[MAX_DMA_CHAN];
98 
99 	int tx_burst_len;
100 	int rx_burst_len;
101 
102 	spinlock_t lock;
103 };
104 
105 static int
106 ltq_etop_alloc_skb(struct ltq_etop_chan *ch)
107 {
108 	struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
109 
110 	ch->skb[ch->dma.desc] = netdev_alloc_skb(ch->netdev, MAX_DMA_DATA_LEN);
111 	if (!ch->skb[ch->dma.desc])
112 		return -ENOMEM;
113 	ch->dma.desc_base[ch->dma.desc].addr =
114 		dma_map_single(&priv->pdev->dev, ch->skb[ch->dma.desc]->data,
115 			       MAX_DMA_DATA_LEN, DMA_FROM_DEVICE);
116 	ch->dma.desc_base[ch->dma.desc].addr =
117 		CPHYSADDR(ch->skb[ch->dma.desc]->data);
118 	ch->dma.desc_base[ch->dma.desc].ctl =
119 		LTQ_DMA_OWN | LTQ_DMA_RX_OFFSET(NET_IP_ALIGN) |
120 		MAX_DMA_DATA_LEN;
121 	skb_reserve(ch->skb[ch->dma.desc], NET_IP_ALIGN);
122 	return 0;
123 }
124 
125 static void
126 ltq_etop_hw_receive(struct ltq_etop_chan *ch)
127 {
128 	struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
129 	struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
130 	struct sk_buff *skb = ch->skb[ch->dma.desc];
131 	int len = (desc->ctl & LTQ_DMA_SIZE_MASK) - MAX_DMA_CRC_LEN;
132 	unsigned long flags;
133 
134 	spin_lock_irqsave(&priv->lock, flags);
135 	if (ltq_etop_alloc_skb(ch)) {
136 		netdev_err(ch->netdev,
137 			   "failed to allocate new rx buffer, stopping DMA\n");
138 		ltq_dma_close(&ch->dma);
139 	}
140 	ch->dma.desc++;
141 	ch->dma.desc %= LTQ_DESC_NUM;
142 	spin_unlock_irqrestore(&priv->lock, flags);
143 
144 	skb_put(skb, len);
145 	skb->protocol = eth_type_trans(skb, ch->netdev);
146 	netif_receive_skb(skb);
147 }
148 
149 static int
150 ltq_etop_poll_rx(struct napi_struct *napi, int budget)
151 {
152 	struct ltq_etop_chan *ch = container_of(napi,
153 				struct ltq_etop_chan, napi);
154 	int work_done = 0;
155 
156 	while (work_done < budget) {
157 		struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
158 
159 		if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) != LTQ_DMA_C)
160 			break;
161 		ltq_etop_hw_receive(ch);
162 		work_done++;
163 	}
164 	if (work_done < budget) {
165 		napi_complete_done(&ch->napi, work_done);
166 		ltq_dma_ack_irq(&ch->dma);
167 	}
168 	return work_done;
169 }
170 
171 static int
172 ltq_etop_poll_tx(struct napi_struct *napi, int budget)
173 {
174 	struct ltq_etop_chan *ch =
175 		container_of(napi, struct ltq_etop_chan, napi);
176 	struct ltq_etop_priv *priv = netdev_priv(ch->netdev);
177 	struct netdev_queue *txq =
178 		netdev_get_tx_queue(ch->netdev, ch->idx >> 1);
179 	unsigned long flags;
180 
181 	spin_lock_irqsave(&priv->lock, flags);
182 	while ((ch->dma.desc_base[ch->tx_free].ctl &
183 			(LTQ_DMA_OWN | LTQ_DMA_C)) == LTQ_DMA_C) {
184 		dev_kfree_skb_any(ch->skb[ch->tx_free]);
185 		ch->skb[ch->tx_free] = NULL;
186 		memset(&ch->dma.desc_base[ch->tx_free], 0,
187 		       sizeof(struct ltq_dma_desc));
188 		ch->tx_free++;
189 		ch->tx_free %= LTQ_DESC_NUM;
190 	}
191 	spin_unlock_irqrestore(&priv->lock, flags);
192 
193 	if (netif_tx_queue_stopped(txq))
194 		netif_tx_start_queue(txq);
195 	napi_complete(&ch->napi);
196 	ltq_dma_ack_irq(&ch->dma);
197 	return 1;
198 }
199 
200 static irqreturn_t
201 ltq_etop_dma_irq(int irq, void *_priv)
202 {
203 	struct ltq_etop_priv *priv = _priv;
204 	int ch = irq - LTQ_DMA_CH0_INT;
205 
206 	napi_schedule(&priv->ch[ch].napi);
207 	return IRQ_HANDLED;
208 }
209 
210 static void
211 ltq_etop_free_channel(struct net_device *dev, struct ltq_etop_chan *ch)
212 {
213 	struct ltq_etop_priv *priv = netdev_priv(dev);
214 
215 	ltq_dma_free(&ch->dma);
216 	if (ch->dma.irq)
217 		free_irq(ch->dma.irq, priv);
218 	if (IS_RX(ch->idx)) {
219 		struct ltq_dma_channel *dma = &ch->dma;
220 
221 		for (dma->desc = 0; dma->desc < LTQ_DESC_NUM; dma->desc++)
222 			dev_kfree_skb_any(ch->skb[ch->dma.desc]);
223 	}
224 }
225 
226 static void
227 ltq_etop_hw_exit(struct net_device *dev)
228 {
229 	struct ltq_etop_priv *priv = netdev_priv(dev);
230 	int i;
231 
232 	ltq_pmu_disable(PMU_PPE);
233 	for (i = 0; i < MAX_DMA_CHAN; i++)
234 		if (IS_TX(i) || IS_RX(i))
235 			ltq_etop_free_channel(dev, &priv->ch[i]);
236 }
237 
238 static int
239 ltq_etop_hw_init(struct net_device *dev)
240 {
241 	struct ltq_etop_priv *priv = netdev_priv(dev);
242 	int i;
243 	int err;
244 
245 	ltq_pmu_enable(PMU_PPE);
246 
247 	switch (priv->pldata->mii_mode) {
248 	case PHY_INTERFACE_MODE_RMII:
249 		ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_REVERSE,
250 				  LTQ_ETOP_CFG);
251 		break;
252 
253 	case PHY_INTERFACE_MODE_MII:
254 		ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_NORMAL,
255 				  LTQ_ETOP_CFG);
256 		break;
257 
258 	default:
259 		netdev_err(dev, "unknown mii mode %d\n",
260 			   priv->pldata->mii_mode);
261 		return -ENOTSUPP;
262 	}
263 
264 	/* enable crc generation */
265 	ltq_etop_w32(PPE32_CGEN, LQ_PPE32_ENET_MAC_CFG);
266 
267 	ltq_dma_init_port(DMA_PORT_ETOP, priv->tx_burst_len, priv->rx_burst_len);
268 
269 	for (i = 0; i < MAX_DMA_CHAN; i++) {
270 		int irq = LTQ_DMA_CH0_INT + i;
271 		struct ltq_etop_chan *ch = &priv->ch[i];
272 
273 		ch->dma.nr = i;
274 		ch->idx = ch->dma.nr;
275 		ch->dma.dev = &priv->pdev->dev;
276 
277 		if (IS_TX(i)) {
278 			ltq_dma_alloc_tx(&ch->dma);
279 			err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_tx", priv);
280 			if (err) {
281 				netdev_err(dev,
282 					   "Unable to get Tx DMA IRQ %d\n",
283 					   irq);
284 				return err;
285 			}
286 		} else if (IS_RX(i)) {
287 			ltq_dma_alloc_rx(&ch->dma);
288 			for (ch->dma.desc = 0; ch->dma.desc < LTQ_DESC_NUM;
289 					ch->dma.desc++)
290 				if (ltq_etop_alloc_skb(ch))
291 					return -ENOMEM;
292 			ch->dma.desc = 0;
293 			err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_rx", priv);
294 			if (err) {
295 				netdev_err(dev,
296 					   "Unable to get Rx DMA IRQ %d\n",
297 					   irq);
298 				return err;
299 			}
300 		}
301 		ch->dma.irq = irq;
302 	}
303 	return 0;
304 }
305 
306 static void
307 ltq_etop_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
308 {
309 	strscpy(info->driver, "Lantiq ETOP", sizeof(info->driver));
310 	strscpy(info->bus_info, "internal", sizeof(info->bus_info));
311 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
312 }
313 
314 static const struct ethtool_ops ltq_etop_ethtool_ops = {
315 	.get_drvinfo = ltq_etop_get_drvinfo,
316 	.nway_reset = phy_ethtool_nway_reset,
317 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
318 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
319 };
320 
321 static int
322 ltq_etop_mdio_wr(struct mii_bus *bus, int phy_addr, int phy_reg, u16 phy_data)
323 {
324 	u32 val = MDIO_REQUEST |
325 		((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) |
326 		((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET) |
327 		phy_data;
328 
329 	while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
330 		;
331 	ltq_etop_w32(val, LTQ_ETOP_MDIO);
332 	return 0;
333 }
334 
335 static int
336 ltq_etop_mdio_rd(struct mii_bus *bus, int phy_addr, int phy_reg)
337 {
338 	u32 val = MDIO_REQUEST | MDIO_READ |
339 		((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) |
340 		((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET);
341 
342 	while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
343 		;
344 	ltq_etop_w32(val, LTQ_ETOP_MDIO);
345 	while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST)
346 		;
347 	val = ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_VAL_MASK;
348 	return val;
349 }
350 
351 static void
352 ltq_etop_mdio_link(struct net_device *dev)
353 {
354 	/* nothing to do  */
355 }
356 
357 static int
358 ltq_etop_mdio_probe(struct net_device *dev)
359 {
360 	struct ltq_etop_priv *priv = netdev_priv(dev);
361 	struct phy_device *phydev;
362 
363 	phydev = phy_find_first(priv->mii_bus);
364 
365 	if (!phydev) {
366 		netdev_err(dev, "no PHY found\n");
367 		return -ENODEV;
368 	}
369 
370 	phydev = phy_connect(dev, phydev_name(phydev),
371 			     &ltq_etop_mdio_link, priv->pldata->mii_mode);
372 
373 	if (IS_ERR(phydev)) {
374 		netdev_err(dev, "Could not attach to PHY\n");
375 		return PTR_ERR(phydev);
376 	}
377 
378 	phy_set_max_speed(phydev, SPEED_100);
379 
380 	phy_attached_info(phydev);
381 
382 	return 0;
383 }
384 
385 static int
386 ltq_etop_mdio_init(struct net_device *dev)
387 {
388 	struct ltq_etop_priv *priv = netdev_priv(dev);
389 	int err;
390 
391 	priv->mii_bus = mdiobus_alloc();
392 	if (!priv->mii_bus) {
393 		netdev_err(dev, "failed to allocate mii bus\n");
394 		err = -ENOMEM;
395 		goto err_out;
396 	}
397 
398 	priv->mii_bus->priv = dev;
399 	priv->mii_bus->read = ltq_etop_mdio_rd;
400 	priv->mii_bus->write = ltq_etop_mdio_wr;
401 	priv->mii_bus->name = "ltq_mii";
402 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
403 		 priv->pdev->name, priv->pdev->id);
404 	if (mdiobus_register(priv->mii_bus)) {
405 		err = -ENXIO;
406 		goto err_out_free_mdiobus;
407 	}
408 
409 	if (ltq_etop_mdio_probe(dev)) {
410 		err = -ENXIO;
411 		goto err_out_unregister_bus;
412 	}
413 	return 0;
414 
415 err_out_unregister_bus:
416 	mdiobus_unregister(priv->mii_bus);
417 err_out_free_mdiobus:
418 	mdiobus_free(priv->mii_bus);
419 err_out:
420 	return err;
421 }
422 
423 static void
424 ltq_etop_mdio_cleanup(struct net_device *dev)
425 {
426 	struct ltq_etop_priv *priv = netdev_priv(dev);
427 
428 	phy_disconnect(dev->phydev);
429 	mdiobus_unregister(priv->mii_bus);
430 	mdiobus_free(priv->mii_bus);
431 }
432 
433 static int
434 ltq_etop_open(struct net_device *dev)
435 {
436 	struct ltq_etop_priv *priv = netdev_priv(dev);
437 	int i;
438 
439 	for (i = 0; i < MAX_DMA_CHAN; i++) {
440 		struct ltq_etop_chan *ch = &priv->ch[i];
441 
442 		if (!IS_TX(i) && (!IS_RX(i)))
443 			continue;
444 		ltq_dma_open(&ch->dma);
445 		ltq_dma_enable_irq(&ch->dma);
446 		napi_enable(&ch->napi);
447 	}
448 	phy_start(dev->phydev);
449 	netif_tx_start_all_queues(dev);
450 	return 0;
451 }
452 
453 static int
454 ltq_etop_stop(struct net_device *dev)
455 {
456 	struct ltq_etop_priv *priv = netdev_priv(dev);
457 	int i;
458 
459 	netif_tx_stop_all_queues(dev);
460 	phy_stop(dev->phydev);
461 	for (i = 0; i < MAX_DMA_CHAN; i++) {
462 		struct ltq_etop_chan *ch = &priv->ch[i];
463 
464 		if (!IS_RX(i) && !IS_TX(i))
465 			continue;
466 		napi_disable(&ch->napi);
467 		ltq_dma_close(&ch->dma);
468 	}
469 	return 0;
470 }
471 
472 static netdev_tx_t
473 ltq_etop_tx(struct sk_buff *skb, struct net_device *dev)
474 {
475 	int queue = skb_get_queue_mapping(skb);
476 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue);
477 	struct ltq_etop_priv *priv = netdev_priv(dev);
478 	struct ltq_etop_chan *ch = &priv->ch[(queue << 1) | 1];
479 	struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
480 	int len;
481 	unsigned long flags;
482 	u32 byte_offset;
483 
484 	if (skb_put_padto(skb, ETH_ZLEN))
485 		return NETDEV_TX_OK;
486 	len = skb->len;
487 
488 	if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) || ch->skb[ch->dma.desc]) {
489 		netdev_err(dev, "tx ring full\n");
490 		netif_tx_stop_queue(txq);
491 		return NETDEV_TX_BUSY;
492 	}
493 
494 	/* dma needs to start on a burst length value aligned address */
495 	byte_offset = CPHYSADDR(skb->data) % (priv->tx_burst_len * 4);
496 	ch->skb[ch->dma.desc] = skb;
497 
498 	netif_trans_update(dev);
499 
500 	spin_lock_irqsave(&priv->lock, flags);
501 	desc->addr = ((unsigned int)dma_map_single(&priv->pdev->dev, skb->data, len,
502 						DMA_TO_DEVICE)) - byte_offset;
503 	/* Make sure the address is written before we give it to HW */
504 	wmb();
505 	desc->ctl = LTQ_DMA_OWN | LTQ_DMA_SOP | LTQ_DMA_EOP |
506 		LTQ_DMA_TX_OFFSET(byte_offset) | (len & LTQ_DMA_SIZE_MASK);
507 	ch->dma.desc++;
508 	ch->dma.desc %= LTQ_DESC_NUM;
509 	spin_unlock_irqrestore(&priv->lock, flags);
510 
511 	if (ch->dma.desc_base[ch->dma.desc].ctl & LTQ_DMA_OWN)
512 		netif_tx_stop_queue(txq);
513 
514 	return NETDEV_TX_OK;
515 }
516 
517 static int
518 ltq_etop_change_mtu(struct net_device *dev, int new_mtu)
519 {
520 	struct ltq_etop_priv *priv = netdev_priv(dev);
521 	unsigned long flags;
522 
523 	WRITE_ONCE(dev->mtu, new_mtu);
524 
525 	spin_lock_irqsave(&priv->lock, flags);
526 	ltq_etop_w32((ETOP_PLEN_UNDER << 16) | new_mtu, LTQ_ETOP_IGPLEN);
527 	spin_unlock_irqrestore(&priv->lock, flags);
528 
529 	return 0;
530 }
531 
532 static int
533 ltq_etop_set_mac_address(struct net_device *dev, void *p)
534 {
535 	int ret = eth_mac_addr(dev, p);
536 
537 	if (!ret) {
538 		struct ltq_etop_priv *priv = netdev_priv(dev);
539 		unsigned long flags;
540 
541 		/* store the mac for the unicast filter */
542 		spin_lock_irqsave(&priv->lock, flags);
543 		ltq_etop_w32(*((u32 *)dev->dev_addr), LTQ_ETOP_MAC_DA0);
544 		ltq_etop_w32(*((u16 *)&dev->dev_addr[4]) << 16,
545 			     LTQ_ETOP_MAC_DA1);
546 		spin_unlock_irqrestore(&priv->lock, flags);
547 	}
548 	return ret;
549 }
550 
551 static void
552 ltq_etop_set_multicast_list(struct net_device *dev)
553 {
554 	struct ltq_etop_priv *priv = netdev_priv(dev);
555 	unsigned long flags;
556 
557 	/* ensure that the unicast filter is not enabled in promiscious mode */
558 	spin_lock_irqsave(&priv->lock, flags);
559 	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI))
560 		ltq_etop_w32_mask(ETOP_FTCU, 0, LTQ_ETOP_ENETS0);
561 	else
562 		ltq_etop_w32_mask(0, ETOP_FTCU, LTQ_ETOP_ENETS0);
563 	spin_unlock_irqrestore(&priv->lock, flags);
564 }
565 
566 static int
567 ltq_etop_init(struct net_device *dev)
568 {
569 	struct ltq_etop_priv *priv = netdev_priv(dev);
570 	struct sockaddr mac;
571 	int err;
572 	bool random_mac = false;
573 
574 	dev->watchdog_timeo = 10 * HZ;
575 	err = ltq_etop_hw_init(dev);
576 	if (err)
577 		goto err_hw;
578 	ltq_etop_change_mtu(dev, 1500);
579 
580 	memcpy(&mac, &priv->pldata->mac, sizeof(struct sockaddr));
581 	if (!is_valid_ether_addr(mac.sa_data)) {
582 		pr_warn("etop: invalid MAC, using random\n");
583 		eth_random_addr(mac.sa_data);
584 		random_mac = true;
585 	}
586 
587 	err = ltq_etop_set_mac_address(dev, &mac);
588 	if (err)
589 		goto err_netdev;
590 
591 	/* Set addr_assign_type here, ltq_etop_set_mac_address would reset it. */
592 	if (random_mac)
593 		dev->addr_assign_type = NET_ADDR_RANDOM;
594 
595 	ltq_etop_set_multicast_list(dev);
596 	err = ltq_etop_mdio_init(dev);
597 	if (err)
598 		goto err_netdev;
599 	return 0;
600 
601 err_netdev:
602 	unregister_netdev(dev);
603 	free_netdev(dev);
604 err_hw:
605 	ltq_etop_hw_exit(dev);
606 	return err;
607 }
608 
609 static void
610 ltq_etop_tx_timeout(struct net_device *dev, unsigned int txqueue)
611 {
612 	int err;
613 
614 	ltq_etop_hw_exit(dev);
615 	err = ltq_etop_hw_init(dev);
616 	if (err)
617 		goto err_hw;
618 	netif_trans_update(dev);
619 	netif_wake_queue(dev);
620 	return;
621 
622 err_hw:
623 	ltq_etop_hw_exit(dev);
624 	netdev_err(dev, "failed to restart etop after TX timeout\n");
625 }
626 
627 static const struct net_device_ops ltq_eth_netdev_ops = {
628 	.ndo_open = ltq_etop_open,
629 	.ndo_stop = ltq_etop_stop,
630 	.ndo_start_xmit = ltq_etop_tx,
631 	.ndo_change_mtu = ltq_etop_change_mtu,
632 	.ndo_eth_ioctl = phy_do_ioctl,
633 	.ndo_set_mac_address = ltq_etop_set_mac_address,
634 	.ndo_validate_addr = eth_validate_addr,
635 	.ndo_set_rx_mode = ltq_etop_set_multicast_list,
636 	.ndo_select_queue = dev_pick_tx_zero,
637 	.ndo_init = ltq_etop_init,
638 	.ndo_tx_timeout = ltq_etop_tx_timeout,
639 };
640 
641 static int __init
642 ltq_etop_probe(struct platform_device *pdev)
643 {
644 	struct net_device *dev;
645 	struct ltq_etop_priv *priv;
646 	struct resource *res;
647 	int err;
648 	int i;
649 
650 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
651 	if (!res) {
652 		dev_err(&pdev->dev, "failed to get etop resource\n");
653 		err = -ENOENT;
654 		goto err_out;
655 	}
656 
657 	res = devm_request_mem_region(&pdev->dev, res->start,
658 				      resource_size(res), dev_name(&pdev->dev));
659 	if (!res) {
660 		dev_err(&pdev->dev, "failed to request etop resource\n");
661 		err = -EBUSY;
662 		goto err_out;
663 	}
664 
665 	ltq_etop_membase = devm_ioremap(&pdev->dev, res->start,
666 					resource_size(res));
667 	if (!ltq_etop_membase) {
668 		dev_err(&pdev->dev, "failed to remap etop engine %d\n",
669 			pdev->id);
670 		err = -ENOMEM;
671 		goto err_out;
672 	}
673 
674 	dev = alloc_etherdev_mq(sizeof(struct ltq_etop_priv), 4);
675 	if (!dev) {
676 		err = -ENOMEM;
677 		goto err_out;
678 	}
679 	dev->netdev_ops = &ltq_eth_netdev_ops;
680 	dev->ethtool_ops = &ltq_etop_ethtool_ops;
681 	priv = netdev_priv(dev);
682 	priv->res = res;
683 	priv->pdev = pdev;
684 	priv->pldata = dev_get_platdata(&pdev->dev);
685 	priv->netdev = dev;
686 	spin_lock_init(&priv->lock);
687 	SET_NETDEV_DEV(dev, &pdev->dev);
688 
689 	err = device_property_read_u32(&pdev->dev, "lantiq,tx-burst-length", &priv->tx_burst_len);
690 	if (err < 0) {
691 		dev_err(&pdev->dev, "unable to read tx-burst-length property\n");
692 		goto err_free;
693 	}
694 
695 	err = device_property_read_u32(&pdev->dev, "lantiq,rx-burst-length", &priv->rx_burst_len);
696 	if (err < 0) {
697 		dev_err(&pdev->dev, "unable to read rx-burst-length property\n");
698 		goto err_free;
699 	}
700 
701 	for (i = 0; i < MAX_DMA_CHAN; i++) {
702 		if (IS_TX(i))
703 			netif_napi_add_weight(dev, &priv->ch[i].napi,
704 					      ltq_etop_poll_tx, 8);
705 		else if (IS_RX(i))
706 			netif_napi_add_weight(dev, &priv->ch[i].napi,
707 					      ltq_etop_poll_rx, 32);
708 		priv->ch[i].netdev = dev;
709 	}
710 
711 	err = register_netdev(dev);
712 	if (err)
713 		goto err_free;
714 
715 	platform_set_drvdata(pdev, dev);
716 	return 0;
717 
718 err_free:
719 	free_netdev(dev);
720 err_out:
721 	return err;
722 }
723 
724 static void ltq_etop_remove(struct platform_device *pdev)
725 {
726 	struct net_device *dev = platform_get_drvdata(pdev);
727 
728 	if (dev) {
729 		netif_tx_stop_all_queues(dev);
730 		ltq_etop_hw_exit(dev);
731 		ltq_etop_mdio_cleanup(dev);
732 		unregister_netdev(dev);
733 	}
734 }
735 
736 static struct platform_driver ltq_mii_driver = {
737 	.remove_new = ltq_etop_remove,
738 	.driver = {
739 		.name = "ltq_etop",
740 	},
741 };
742 
743 static int __init
744 init_ltq_etop(void)
745 {
746 	int ret = platform_driver_probe(&ltq_mii_driver, ltq_etop_probe);
747 
748 	if (ret)
749 		pr_err("ltq_etop: Error registering platform driver!");
750 	return ret;
751 }
752 
753 static void __exit
754 exit_ltq_etop(void)
755 {
756 	platform_driver_unregister(&ltq_mii_driver);
757 }
758 
759 module_init(init_ltq_etop);
760 module_exit(exit_ltq_etop);
761 
762 MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
763 MODULE_DESCRIPTION("Lantiq SoC ETOP");
764 MODULE_LICENSE("GPL");
765