1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright (C) 2011 John Crispin <blogic@openwrt.org> 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/slab.h> 9 #include <linux/errno.h> 10 #include <linux/types.h> 11 #include <linux/interrupt.h> 12 #include <linux/uaccess.h> 13 #include <linux/in.h> 14 #include <linux/netdevice.h> 15 #include <linux/etherdevice.h> 16 #include <linux/phy.h> 17 #include <linux/ip.h> 18 #include <linux/tcp.h> 19 #include <linux/skbuff.h> 20 #include <linux/mm.h> 21 #include <linux/platform_device.h> 22 #include <linux/ethtool.h> 23 #include <linux/init.h> 24 #include <linux/delay.h> 25 #include <linux/io.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/module.h> 28 #include <linux/property.h> 29 30 #include <asm/checksum.h> 31 32 #include <lantiq_soc.h> 33 #include <xway_dma.h> 34 #include <lantiq_platform.h> 35 36 #define LTQ_ETOP_MDIO 0x11804 37 #define MDIO_REQUEST 0x80000000 38 #define MDIO_READ 0x40000000 39 #define MDIO_ADDR_MASK 0x1f 40 #define MDIO_ADDR_OFFSET 0x15 41 #define MDIO_REG_MASK 0x1f 42 #define MDIO_REG_OFFSET 0x10 43 #define MDIO_VAL_MASK 0xffff 44 45 #define PPE32_CGEN 0x800 46 #define LQ_PPE32_ENET_MAC_CFG 0x1840 47 48 #define LTQ_ETOP_ENETS0 0x11850 49 #define LTQ_ETOP_MAC_DA0 0x1186C 50 #define LTQ_ETOP_MAC_DA1 0x11870 51 #define LTQ_ETOP_CFG 0x16020 52 #define LTQ_ETOP_IGPLEN 0x16080 53 54 #define MAX_DMA_CHAN 0x8 55 #define MAX_DMA_CRC_LEN 0x4 56 #define MAX_DMA_DATA_LEN 0x600 57 58 #define ETOP_FTCU BIT(28) 59 #define ETOP_MII_MASK 0xf 60 #define ETOP_MII_NORMAL 0xd 61 #define ETOP_MII_REVERSE 0xe 62 #define ETOP_PLEN_UNDER 0x40 63 #define ETOP_CGEN 0x800 64 65 /* use 2 static channels for TX/RX */ 66 #define LTQ_ETOP_TX_CHANNEL 1 67 #define LTQ_ETOP_RX_CHANNEL 6 68 #define IS_TX(x) ((x) == LTQ_ETOP_TX_CHANNEL) 69 #define IS_RX(x) ((x) == LTQ_ETOP_RX_CHANNEL) 70 71 #define ltq_etop_r32(x) ltq_r32(ltq_etop_membase + (x)) 72 #define ltq_etop_w32(x, y) ltq_w32(x, ltq_etop_membase + (y)) 73 #define ltq_etop_w32_mask(x, y, z) \ 74 ltq_w32_mask(x, y, ltq_etop_membase + (z)) 75 76 #define DRV_VERSION "1.0" 77 78 static void __iomem *ltq_etop_membase; 79 80 struct ltq_etop_chan { 81 int idx; 82 int tx_free; 83 struct net_device *netdev; 84 struct napi_struct napi; 85 struct ltq_dma_channel dma; 86 struct sk_buff *skb[LTQ_DESC_NUM]; 87 }; 88 89 struct ltq_etop_priv { 90 struct net_device *netdev; 91 struct platform_device *pdev; 92 struct ltq_eth_data *pldata; 93 struct resource *res; 94 95 struct mii_bus *mii_bus; 96 97 struct ltq_etop_chan ch[MAX_DMA_CHAN]; 98 99 int tx_burst_len; 100 int rx_burst_len; 101 102 spinlock_t lock; 103 }; 104 105 static int 106 ltq_etop_alloc_skb(struct ltq_etop_chan *ch) 107 { 108 struct ltq_etop_priv *priv = netdev_priv(ch->netdev); 109 110 ch->skb[ch->dma.desc] = netdev_alloc_skb(ch->netdev, MAX_DMA_DATA_LEN); 111 if (!ch->skb[ch->dma.desc]) 112 return -ENOMEM; 113 ch->dma.desc_base[ch->dma.desc].addr = 114 dma_map_single(&priv->pdev->dev, ch->skb[ch->dma.desc]->data, 115 MAX_DMA_DATA_LEN, DMA_FROM_DEVICE); 116 ch->dma.desc_base[ch->dma.desc].addr = 117 CPHYSADDR(ch->skb[ch->dma.desc]->data); 118 ch->dma.desc_base[ch->dma.desc].ctl = 119 LTQ_DMA_OWN | LTQ_DMA_RX_OFFSET(NET_IP_ALIGN) | 120 MAX_DMA_DATA_LEN; 121 skb_reserve(ch->skb[ch->dma.desc], NET_IP_ALIGN); 122 return 0; 123 } 124 125 static void 126 ltq_etop_hw_receive(struct ltq_etop_chan *ch) 127 { 128 struct ltq_etop_priv *priv = netdev_priv(ch->netdev); 129 struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc]; 130 struct sk_buff *skb = ch->skb[ch->dma.desc]; 131 int len = (desc->ctl & LTQ_DMA_SIZE_MASK) - MAX_DMA_CRC_LEN; 132 unsigned long flags; 133 134 spin_lock_irqsave(&priv->lock, flags); 135 if (ltq_etop_alloc_skb(ch)) { 136 netdev_err(ch->netdev, 137 "failed to allocate new rx buffer, stopping DMA\n"); 138 ltq_dma_close(&ch->dma); 139 } 140 ch->dma.desc++; 141 ch->dma.desc %= LTQ_DESC_NUM; 142 spin_unlock_irqrestore(&priv->lock, flags); 143 144 skb_put(skb, len); 145 skb->protocol = eth_type_trans(skb, ch->netdev); 146 netif_receive_skb(skb); 147 } 148 149 static int 150 ltq_etop_poll_rx(struct napi_struct *napi, int budget) 151 { 152 struct ltq_etop_chan *ch = container_of(napi, 153 struct ltq_etop_chan, napi); 154 int work_done = 0; 155 156 while (work_done < budget) { 157 struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc]; 158 159 if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) != LTQ_DMA_C) 160 break; 161 ltq_etop_hw_receive(ch); 162 work_done++; 163 } 164 if (work_done < budget) { 165 napi_complete_done(&ch->napi, work_done); 166 ltq_dma_ack_irq(&ch->dma); 167 } 168 return work_done; 169 } 170 171 static int 172 ltq_etop_poll_tx(struct napi_struct *napi, int budget) 173 { 174 struct ltq_etop_chan *ch = 175 container_of(napi, struct ltq_etop_chan, napi); 176 struct ltq_etop_priv *priv = netdev_priv(ch->netdev); 177 struct netdev_queue *txq = 178 netdev_get_tx_queue(ch->netdev, ch->idx >> 1); 179 unsigned long flags; 180 181 spin_lock_irqsave(&priv->lock, flags); 182 while ((ch->dma.desc_base[ch->tx_free].ctl & 183 (LTQ_DMA_OWN | LTQ_DMA_C)) == LTQ_DMA_C) { 184 dev_kfree_skb_any(ch->skb[ch->tx_free]); 185 ch->skb[ch->tx_free] = NULL; 186 memset(&ch->dma.desc_base[ch->tx_free], 0, 187 sizeof(struct ltq_dma_desc)); 188 ch->tx_free++; 189 ch->tx_free %= LTQ_DESC_NUM; 190 } 191 spin_unlock_irqrestore(&priv->lock, flags); 192 193 if (netif_tx_queue_stopped(txq)) 194 netif_tx_start_queue(txq); 195 napi_complete(&ch->napi); 196 ltq_dma_ack_irq(&ch->dma); 197 return 1; 198 } 199 200 static irqreturn_t 201 ltq_etop_dma_irq(int irq, void *_priv) 202 { 203 struct ltq_etop_priv *priv = _priv; 204 int ch = irq - LTQ_DMA_CH0_INT; 205 206 napi_schedule(&priv->ch[ch].napi); 207 return IRQ_HANDLED; 208 } 209 210 static void 211 ltq_etop_free_channel(struct net_device *dev, struct ltq_etop_chan *ch) 212 { 213 struct ltq_etop_priv *priv = netdev_priv(dev); 214 215 ltq_dma_free(&ch->dma); 216 if (ch->dma.irq) 217 free_irq(ch->dma.irq, priv); 218 if (IS_RX(ch->idx)) { 219 struct ltq_dma_channel *dma = &ch->dma; 220 221 for (dma->desc = 0; dma->desc < LTQ_DESC_NUM; dma->desc++) 222 dev_kfree_skb_any(ch->skb[ch->dma.desc]); 223 } 224 } 225 226 static void 227 ltq_etop_hw_exit(struct net_device *dev) 228 { 229 struct ltq_etop_priv *priv = netdev_priv(dev); 230 int i; 231 232 ltq_pmu_disable(PMU_PPE); 233 for (i = 0; i < MAX_DMA_CHAN; i++) 234 if (IS_TX(i) || IS_RX(i)) 235 ltq_etop_free_channel(dev, &priv->ch[i]); 236 } 237 238 static int 239 ltq_etop_hw_init(struct net_device *dev) 240 { 241 struct ltq_etop_priv *priv = netdev_priv(dev); 242 int i; 243 int err; 244 245 ltq_pmu_enable(PMU_PPE); 246 247 switch (priv->pldata->mii_mode) { 248 case PHY_INTERFACE_MODE_RMII: 249 ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_REVERSE, 250 LTQ_ETOP_CFG); 251 break; 252 253 case PHY_INTERFACE_MODE_MII: 254 ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_NORMAL, 255 LTQ_ETOP_CFG); 256 break; 257 258 default: 259 netdev_err(dev, "unknown mii mode %d\n", 260 priv->pldata->mii_mode); 261 return -ENOTSUPP; 262 } 263 264 /* enable crc generation */ 265 ltq_etop_w32(PPE32_CGEN, LQ_PPE32_ENET_MAC_CFG); 266 267 ltq_dma_init_port(DMA_PORT_ETOP, priv->tx_burst_len, priv->rx_burst_len); 268 269 for (i = 0; i < MAX_DMA_CHAN; i++) { 270 int irq = LTQ_DMA_CH0_INT + i; 271 struct ltq_etop_chan *ch = &priv->ch[i]; 272 273 ch->dma.nr = i; 274 ch->idx = ch->dma.nr; 275 ch->dma.dev = &priv->pdev->dev; 276 277 if (IS_TX(i)) { 278 ltq_dma_alloc_tx(&ch->dma); 279 err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_tx", priv); 280 if (err) { 281 netdev_err(dev, 282 "Unable to get Tx DMA IRQ %d\n", 283 irq); 284 return err; 285 } 286 } else if (IS_RX(i)) { 287 ltq_dma_alloc_rx(&ch->dma); 288 for (ch->dma.desc = 0; ch->dma.desc < LTQ_DESC_NUM; 289 ch->dma.desc++) 290 if (ltq_etop_alloc_skb(ch)) 291 return -ENOMEM; 292 ch->dma.desc = 0; 293 err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_rx", priv); 294 if (err) { 295 netdev_err(dev, 296 "Unable to get Rx DMA IRQ %d\n", 297 irq); 298 return err; 299 } 300 } 301 ch->dma.irq = irq; 302 } 303 return 0; 304 } 305 306 static void 307 ltq_etop_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 308 { 309 strscpy(info->driver, "Lantiq ETOP", sizeof(info->driver)); 310 strscpy(info->bus_info, "internal", sizeof(info->bus_info)); 311 strscpy(info->version, DRV_VERSION, sizeof(info->version)); 312 } 313 314 static const struct ethtool_ops ltq_etop_ethtool_ops = { 315 .get_drvinfo = ltq_etop_get_drvinfo, 316 .nway_reset = phy_ethtool_nway_reset, 317 .get_link_ksettings = phy_ethtool_get_link_ksettings, 318 .set_link_ksettings = phy_ethtool_set_link_ksettings, 319 }; 320 321 static int 322 ltq_etop_mdio_wr(struct mii_bus *bus, int phy_addr, int phy_reg, u16 phy_data) 323 { 324 u32 val = MDIO_REQUEST | 325 ((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) | 326 ((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET) | 327 phy_data; 328 329 while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST) 330 ; 331 ltq_etop_w32(val, LTQ_ETOP_MDIO); 332 return 0; 333 } 334 335 static int 336 ltq_etop_mdio_rd(struct mii_bus *bus, int phy_addr, int phy_reg) 337 { 338 u32 val = MDIO_REQUEST | MDIO_READ | 339 ((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) | 340 ((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET); 341 342 while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST) 343 ; 344 ltq_etop_w32(val, LTQ_ETOP_MDIO); 345 while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST) 346 ; 347 val = ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_VAL_MASK; 348 return val; 349 } 350 351 static void 352 ltq_etop_mdio_link(struct net_device *dev) 353 { 354 /* nothing to do */ 355 } 356 357 static int 358 ltq_etop_mdio_probe(struct net_device *dev) 359 { 360 struct ltq_etop_priv *priv = netdev_priv(dev); 361 struct phy_device *phydev; 362 363 phydev = phy_find_first(priv->mii_bus); 364 365 if (!phydev) { 366 netdev_err(dev, "no PHY found\n"); 367 return -ENODEV; 368 } 369 370 phydev = phy_connect(dev, phydev_name(phydev), 371 <q_etop_mdio_link, priv->pldata->mii_mode); 372 373 if (IS_ERR(phydev)) { 374 netdev_err(dev, "Could not attach to PHY\n"); 375 return PTR_ERR(phydev); 376 } 377 378 phy_set_max_speed(phydev, SPEED_100); 379 380 phy_attached_info(phydev); 381 382 return 0; 383 } 384 385 static int 386 ltq_etop_mdio_init(struct net_device *dev) 387 { 388 struct ltq_etop_priv *priv = netdev_priv(dev); 389 int err; 390 391 priv->mii_bus = mdiobus_alloc(); 392 if (!priv->mii_bus) { 393 netdev_err(dev, "failed to allocate mii bus\n"); 394 err = -ENOMEM; 395 goto err_out; 396 } 397 398 priv->mii_bus->priv = dev; 399 priv->mii_bus->read = ltq_etop_mdio_rd; 400 priv->mii_bus->write = ltq_etop_mdio_wr; 401 priv->mii_bus->name = "ltq_mii"; 402 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 403 priv->pdev->name, priv->pdev->id); 404 if (mdiobus_register(priv->mii_bus)) { 405 err = -ENXIO; 406 goto err_out_free_mdiobus; 407 } 408 409 if (ltq_etop_mdio_probe(dev)) { 410 err = -ENXIO; 411 goto err_out_unregister_bus; 412 } 413 return 0; 414 415 err_out_unregister_bus: 416 mdiobus_unregister(priv->mii_bus); 417 err_out_free_mdiobus: 418 mdiobus_free(priv->mii_bus); 419 err_out: 420 return err; 421 } 422 423 static void 424 ltq_etop_mdio_cleanup(struct net_device *dev) 425 { 426 struct ltq_etop_priv *priv = netdev_priv(dev); 427 428 phy_disconnect(dev->phydev); 429 mdiobus_unregister(priv->mii_bus); 430 mdiobus_free(priv->mii_bus); 431 } 432 433 static int 434 ltq_etop_open(struct net_device *dev) 435 { 436 struct ltq_etop_priv *priv = netdev_priv(dev); 437 int i; 438 439 for (i = 0; i < MAX_DMA_CHAN; i++) { 440 struct ltq_etop_chan *ch = &priv->ch[i]; 441 442 if (!IS_TX(i) && (!IS_RX(i))) 443 continue; 444 ltq_dma_open(&ch->dma); 445 ltq_dma_enable_irq(&ch->dma); 446 napi_enable(&ch->napi); 447 } 448 phy_start(dev->phydev); 449 netif_tx_start_all_queues(dev); 450 return 0; 451 } 452 453 static int 454 ltq_etop_stop(struct net_device *dev) 455 { 456 struct ltq_etop_priv *priv = netdev_priv(dev); 457 int i; 458 459 netif_tx_stop_all_queues(dev); 460 phy_stop(dev->phydev); 461 for (i = 0; i < MAX_DMA_CHAN; i++) { 462 struct ltq_etop_chan *ch = &priv->ch[i]; 463 464 if (!IS_RX(i) && !IS_TX(i)) 465 continue; 466 napi_disable(&ch->napi); 467 ltq_dma_close(&ch->dma); 468 } 469 return 0; 470 } 471 472 static netdev_tx_t 473 ltq_etop_tx(struct sk_buff *skb, struct net_device *dev) 474 { 475 int queue = skb_get_queue_mapping(skb); 476 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue); 477 struct ltq_etop_priv *priv = netdev_priv(dev); 478 struct ltq_etop_chan *ch = &priv->ch[(queue << 1) | 1]; 479 struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc]; 480 int len; 481 unsigned long flags; 482 u32 byte_offset; 483 484 if (skb_put_padto(skb, ETH_ZLEN)) 485 return NETDEV_TX_OK; 486 len = skb->len; 487 488 if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) || ch->skb[ch->dma.desc]) { 489 netdev_err(dev, "tx ring full\n"); 490 netif_tx_stop_queue(txq); 491 return NETDEV_TX_BUSY; 492 } 493 494 /* dma needs to start on a burst length value aligned address */ 495 byte_offset = CPHYSADDR(skb->data) % (priv->tx_burst_len * 4); 496 ch->skb[ch->dma.desc] = skb; 497 498 netif_trans_update(dev); 499 500 spin_lock_irqsave(&priv->lock, flags); 501 desc->addr = ((unsigned int)dma_map_single(&priv->pdev->dev, skb->data, len, 502 DMA_TO_DEVICE)) - byte_offset; 503 /* Make sure the address is written before we give it to HW */ 504 wmb(); 505 desc->ctl = LTQ_DMA_OWN | LTQ_DMA_SOP | LTQ_DMA_EOP | 506 LTQ_DMA_TX_OFFSET(byte_offset) | (len & LTQ_DMA_SIZE_MASK); 507 ch->dma.desc++; 508 ch->dma.desc %= LTQ_DESC_NUM; 509 spin_unlock_irqrestore(&priv->lock, flags); 510 511 if (ch->dma.desc_base[ch->dma.desc].ctl & LTQ_DMA_OWN) 512 netif_tx_stop_queue(txq); 513 514 return NETDEV_TX_OK; 515 } 516 517 static int 518 ltq_etop_change_mtu(struct net_device *dev, int new_mtu) 519 { 520 struct ltq_etop_priv *priv = netdev_priv(dev); 521 unsigned long flags; 522 523 WRITE_ONCE(dev->mtu, new_mtu); 524 525 spin_lock_irqsave(&priv->lock, flags); 526 ltq_etop_w32((ETOP_PLEN_UNDER << 16) | new_mtu, LTQ_ETOP_IGPLEN); 527 spin_unlock_irqrestore(&priv->lock, flags); 528 529 return 0; 530 } 531 532 static int 533 ltq_etop_set_mac_address(struct net_device *dev, void *p) 534 { 535 int ret = eth_mac_addr(dev, p); 536 537 if (!ret) { 538 struct ltq_etop_priv *priv = netdev_priv(dev); 539 unsigned long flags; 540 541 /* store the mac for the unicast filter */ 542 spin_lock_irqsave(&priv->lock, flags); 543 ltq_etop_w32(*((u32 *)dev->dev_addr), LTQ_ETOP_MAC_DA0); 544 ltq_etop_w32(*((u16 *)&dev->dev_addr[4]) << 16, 545 LTQ_ETOP_MAC_DA1); 546 spin_unlock_irqrestore(&priv->lock, flags); 547 } 548 return ret; 549 } 550 551 static void 552 ltq_etop_set_multicast_list(struct net_device *dev) 553 { 554 struct ltq_etop_priv *priv = netdev_priv(dev); 555 unsigned long flags; 556 557 /* ensure that the unicast filter is not enabled in promiscious mode */ 558 spin_lock_irqsave(&priv->lock, flags); 559 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) 560 ltq_etop_w32_mask(ETOP_FTCU, 0, LTQ_ETOP_ENETS0); 561 else 562 ltq_etop_w32_mask(0, ETOP_FTCU, LTQ_ETOP_ENETS0); 563 spin_unlock_irqrestore(&priv->lock, flags); 564 } 565 566 static int 567 ltq_etop_init(struct net_device *dev) 568 { 569 struct ltq_etop_priv *priv = netdev_priv(dev); 570 struct sockaddr mac; 571 int err; 572 bool random_mac = false; 573 574 dev->watchdog_timeo = 10 * HZ; 575 err = ltq_etop_hw_init(dev); 576 if (err) 577 goto err_hw; 578 ltq_etop_change_mtu(dev, 1500); 579 580 memcpy(&mac, &priv->pldata->mac, sizeof(struct sockaddr)); 581 if (!is_valid_ether_addr(mac.sa_data)) { 582 pr_warn("etop: invalid MAC, using random\n"); 583 eth_random_addr(mac.sa_data); 584 random_mac = true; 585 } 586 587 err = ltq_etop_set_mac_address(dev, &mac); 588 if (err) 589 goto err_netdev; 590 591 /* Set addr_assign_type here, ltq_etop_set_mac_address would reset it. */ 592 if (random_mac) 593 dev->addr_assign_type = NET_ADDR_RANDOM; 594 595 ltq_etop_set_multicast_list(dev); 596 err = ltq_etop_mdio_init(dev); 597 if (err) 598 goto err_netdev; 599 return 0; 600 601 err_netdev: 602 unregister_netdev(dev); 603 free_netdev(dev); 604 err_hw: 605 ltq_etop_hw_exit(dev); 606 return err; 607 } 608 609 static void 610 ltq_etop_tx_timeout(struct net_device *dev, unsigned int txqueue) 611 { 612 int err; 613 614 ltq_etop_hw_exit(dev); 615 err = ltq_etop_hw_init(dev); 616 if (err) 617 goto err_hw; 618 netif_trans_update(dev); 619 netif_wake_queue(dev); 620 return; 621 622 err_hw: 623 ltq_etop_hw_exit(dev); 624 netdev_err(dev, "failed to restart etop after TX timeout\n"); 625 } 626 627 static const struct net_device_ops ltq_eth_netdev_ops = { 628 .ndo_open = ltq_etop_open, 629 .ndo_stop = ltq_etop_stop, 630 .ndo_start_xmit = ltq_etop_tx, 631 .ndo_change_mtu = ltq_etop_change_mtu, 632 .ndo_eth_ioctl = phy_do_ioctl, 633 .ndo_set_mac_address = ltq_etop_set_mac_address, 634 .ndo_validate_addr = eth_validate_addr, 635 .ndo_set_rx_mode = ltq_etop_set_multicast_list, 636 .ndo_select_queue = dev_pick_tx_zero, 637 .ndo_init = ltq_etop_init, 638 .ndo_tx_timeout = ltq_etop_tx_timeout, 639 }; 640 641 static int __init 642 ltq_etop_probe(struct platform_device *pdev) 643 { 644 struct net_device *dev; 645 struct ltq_etop_priv *priv; 646 struct resource *res; 647 int err; 648 int i; 649 650 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 651 if (!res) { 652 dev_err(&pdev->dev, "failed to get etop resource\n"); 653 err = -ENOENT; 654 goto err_out; 655 } 656 657 res = devm_request_mem_region(&pdev->dev, res->start, 658 resource_size(res), dev_name(&pdev->dev)); 659 if (!res) { 660 dev_err(&pdev->dev, "failed to request etop resource\n"); 661 err = -EBUSY; 662 goto err_out; 663 } 664 665 ltq_etop_membase = devm_ioremap(&pdev->dev, res->start, 666 resource_size(res)); 667 if (!ltq_etop_membase) { 668 dev_err(&pdev->dev, "failed to remap etop engine %d\n", 669 pdev->id); 670 err = -ENOMEM; 671 goto err_out; 672 } 673 674 dev = alloc_etherdev_mq(sizeof(struct ltq_etop_priv), 4); 675 if (!dev) { 676 err = -ENOMEM; 677 goto err_out; 678 } 679 dev->netdev_ops = <q_eth_netdev_ops; 680 dev->ethtool_ops = <q_etop_ethtool_ops; 681 priv = netdev_priv(dev); 682 priv->res = res; 683 priv->pdev = pdev; 684 priv->pldata = dev_get_platdata(&pdev->dev); 685 priv->netdev = dev; 686 spin_lock_init(&priv->lock); 687 SET_NETDEV_DEV(dev, &pdev->dev); 688 689 err = device_property_read_u32(&pdev->dev, "lantiq,tx-burst-length", &priv->tx_burst_len); 690 if (err < 0) { 691 dev_err(&pdev->dev, "unable to read tx-burst-length property\n"); 692 goto err_free; 693 } 694 695 err = device_property_read_u32(&pdev->dev, "lantiq,rx-burst-length", &priv->rx_burst_len); 696 if (err < 0) { 697 dev_err(&pdev->dev, "unable to read rx-burst-length property\n"); 698 goto err_free; 699 } 700 701 for (i = 0; i < MAX_DMA_CHAN; i++) { 702 if (IS_TX(i)) 703 netif_napi_add_weight(dev, &priv->ch[i].napi, 704 ltq_etop_poll_tx, 8); 705 else if (IS_RX(i)) 706 netif_napi_add_weight(dev, &priv->ch[i].napi, 707 ltq_etop_poll_rx, 32); 708 priv->ch[i].netdev = dev; 709 } 710 711 err = register_netdev(dev); 712 if (err) 713 goto err_free; 714 715 platform_set_drvdata(pdev, dev); 716 return 0; 717 718 err_free: 719 free_netdev(dev); 720 err_out: 721 return err; 722 } 723 724 static void ltq_etop_remove(struct platform_device *pdev) 725 { 726 struct net_device *dev = platform_get_drvdata(pdev); 727 728 if (dev) { 729 netif_tx_stop_all_queues(dev); 730 ltq_etop_hw_exit(dev); 731 ltq_etop_mdio_cleanup(dev); 732 unregister_netdev(dev); 733 } 734 } 735 736 static struct platform_driver ltq_mii_driver = { 737 .remove_new = ltq_etop_remove, 738 .driver = { 739 .name = "ltq_etop", 740 }, 741 }; 742 743 static int __init 744 init_ltq_etop(void) 745 { 746 int ret = platform_driver_probe(<q_mii_driver, ltq_etop_probe); 747 748 if (ret) 749 pr_err("ltq_etop: Error registering platform driver!"); 750 return ret; 751 } 752 753 static void __exit 754 exit_ltq_etop(void) 755 { 756 platform_driver_unregister(<q_mii_driver); 757 } 758 759 module_init(init_ltq_etop); 760 module_exit(exit_ltq_etop); 761 762 MODULE_AUTHOR("John Crispin <blogic@openwrt.org>"); 763 MODULE_DESCRIPTION("Lantiq SoC ETOP"); 764 MODULE_LICENSE("GPL"); 765