1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright (C) 2011 John Crispin <blogic@openwrt.org> 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/slab.h> 9 #include <linux/errno.h> 10 #include <linux/types.h> 11 #include <linux/interrupt.h> 12 #include <linux/uaccess.h> 13 #include <linux/in.h> 14 #include <linux/netdevice.h> 15 #include <linux/etherdevice.h> 16 #include <linux/phy.h> 17 #include <linux/ip.h> 18 #include <linux/tcp.h> 19 #include <linux/skbuff.h> 20 #include <linux/mm.h> 21 #include <linux/platform_device.h> 22 #include <linux/ethtool.h> 23 #include <linux/init.h> 24 #include <linux/delay.h> 25 #include <linux/io.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/module.h> 28 #include <linux/property.h> 29 30 #include <asm/checksum.h> 31 32 #include <lantiq_soc.h> 33 #include <xway_dma.h> 34 #include <lantiq_platform.h> 35 36 #define LTQ_ETOP_MDIO 0x11804 37 #define MDIO_REQUEST 0x80000000 38 #define MDIO_READ 0x40000000 39 #define MDIO_ADDR_MASK 0x1f 40 #define MDIO_ADDR_OFFSET 0x15 41 #define MDIO_REG_MASK 0x1f 42 #define MDIO_REG_OFFSET 0x10 43 #define MDIO_VAL_MASK 0xffff 44 45 #define PPE32_CGEN 0x800 46 #define LQ_PPE32_ENET_MAC_CFG 0x1840 47 48 #define LTQ_ETOP_ENETS0 0x11850 49 #define LTQ_ETOP_MAC_DA0 0x1186C 50 #define LTQ_ETOP_MAC_DA1 0x11870 51 #define LTQ_ETOP_CFG 0x16020 52 #define LTQ_ETOP_IGPLEN 0x16080 53 54 #define MAX_DMA_CHAN 0x8 55 #define MAX_DMA_CRC_LEN 0x4 56 #define MAX_DMA_DATA_LEN 0x600 57 58 #define ETOP_FTCU BIT(28) 59 #define ETOP_MII_MASK 0xf 60 #define ETOP_MII_NORMAL 0xd 61 #define ETOP_MII_REVERSE 0xe 62 #define ETOP_PLEN_UNDER 0x40 63 #define ETOP_CGEN 0x800 64 65 /* use 2 static channels for TX/RX */ 66 #define LTQ_ETOP_TX_CHANNEL 1 67 #define LTQ_ETOP_RX_CHANNEL 6 68 #define IS_TX(x) ((x) == LTQ_ETOP_TX_CHANNEL) 69 #define IS_RX(x) ((x) == LTQ_ETOP_RX_CHANNEL) 70 71 #define ltq_etop_r32(x) ltq_r32(ltq_etop_membase + (x)) 72 #define ltq_etop_w32(x, y) ltq_w32(x, ltq_etop_membase + (y)) 73 #define ltq_etop_w32_mask(x, y, z) \ 74 ltq_w32_mask(x, y, ltq_etop_membase + (z)) 75 76 #define DRV_VERSION "1.0" 77 78 static void __iomem *ltq_etop_membase; 79 80 struct ltq_etop_chan { 81 int idx; 82 int tx_free; 83 struct net_device *netdev; 84 struct napi_struct napi; 85 struct ltq_dma_channel dma; 86 struct sk_buff *skb[LTQ_DESC_NUM]; 87 }; 88 89 struct ltq_etop_priv { 90 struct net_device *netdev; 91 struct platform_device *pdev; 92 struct ltq_eth_data *pldata; 93 struct resource *res; 94 95 struct mii_bus *mii_bus; 96 97 struct ltq_etop_chan ch[MAX_DMA_CHAN]; 98 int tx_free[MAX_DMA_CHAN >> 1]; 99 100 int tx_burst_len; 101 int rx_burst_len; 102 103 spinlock_t lock; 104 }; 105 106 static int 107 ltq_etop_alloc_skb(struct ltq_etop_chan *ch) 108 { 109 struct ltq_etop_priv *priv = netdev_priv(ch->netdev); 110 111 ch->skb[ch->dma.desc] = netdev_alloc_skb(ch->netdev, MAX_DMA_DATA_LEN); 112 if (!ch->skb[ch->dma.desc]) 113 return -ENOMEM; 114 ch->dma.desc_base[ch->dma.desc].addr = 115 dma_map_single(&priv->pdev->dev, ch->skb[ch->dma.desc]->data, 116 MAX_DMA_DATA_LEN, DMA_FROM_DEVICE); 117 ch->dma.desc_base[ch->dma.desc].addr = 118 CPHYSADDR(ch->skb[ch->dma.desc]->data); 119 ch->dma.desc_base[ch->dma.desc].ctl = 120 LTQ_DMA_OWN | LTQ_DMA_RX_OFFSET(NET_IP_ALIGN) | 121 MAX_DMA_DATA_LEN; 122 skb_reserve(ch->skb[ch->dma.desc], NET_IP_ALIGN); 123 return 0; 124 } 125 126 static void 127 ltq_etop_hw_receive(struct ltq_etop_chan *ch) 128 { 129 struct ltq_etop_priv *priv = netdev_priv(ch->netdev); 130 struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc]; 131 struct sk_buff *skb = ch->skb[ch->dma.desc]; 132 int len = (desc->ctl & LTQ_DMA_SIZE_MASK) - MAX_DMA_CRC_LEN; 133 unsigned long flags; 134 135 spin_lock_irqsave(&priv->lock, flags); 136 if (ltq_etop_alloc_skb(ch)) { 137 netdev_err(ch->netdev, 138 "failed to allocate new rx buffer, stopping DMA\n"); 139 ltq_dma_close(&ch->dma); 140 } 141 ch->dma.desc++; 142 ch->dma.desc %= LTQ_DESC_NUM; 143 spin_unlock_irqrestore(&priv->lock, flags); 144 145 skb_put(skb, len); 146 skb->protocol = eth_type_trans(skb, ch->netdev); 147 netif_receive_skb(skb); 148 } 149 150 static int 151 ltq_etop_poll_rx(struct napi_struct *napi, int budget) 152 { 153 struct ltq_etop_chan *ch = container_of(napi, 154 struct ltq_etop_chan, napi); 155 int work_done = 0; 156 157 while (work_done < budget) { 158 struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc]; 159 160 if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) != LTQ_DMA_C) 161 break; 162 ltq_etop_hw_receive(ch); 163 work_done++; 164 } 165 if (work_done < budget) { 166 napi_complete_done(&ch->napi, work_done); 167 ltq_dma_ack_irq(&ch->dma); 168 } 169 return work_done; 170 } 171 172 static int 173 ltq_etop_poll_tx(struct napi_struct *napi, int budget) 174 { 175 struct ltq_etop_chan *ch = 176 container_of(napi, struct ltq_etop_chan, napi); 177 struct ltq_etop_priv *priv = netdev_priv(ch->netdev); 178 struct netdev_queue *txq = 179 netdev_get_tx_queue(ch->netdev, ch->idx >> 1); 180 unsigned long flags; 181 182 spin_lock_irqsave(&priv->lock, flags); 183 while ((ch->dma.desc_base[ch->tx_free].ctl & 184 (LTQ_DMA_OWN | LTQ_DMA_C)) == LTQ_DMA_C) { 185 dev_kfree_skb_any(ch->skb[ch->tx_free]); 186 ch->skb[ch->tx_free] = NULL; 187 memset(&ch->dma.desc_base[ch->tx_free], 0, 188 sizeof(struct ltq_dma_desc)); 189 ch->tx_free++; 190 ch->tx_free %= LTQ_DESC_NUM; 191 } 192 spin_unlock_irqrestore(&priv->lock, flags); 193 194 if (netif_tx_queue_stopped(txq)) 195 netif_tx_start_queue(txq); 196 napi_complete(&ch->napi); 197 ltq_dma_ack_irq(&ch->dma); 198 return 1; 199 } 200 201 static irqreturn_t 202 ltq_etop_dma_irq(int irq, void *_priv) 203 { 204 struct ltq_etop_priv *priv = _priv; 205 int ch = irq - LTQ_DMA_CH0_INT; 206 207 napi_schedule(&priv->ch[ch].napi); 208 return IRQ_HANDLED; 209 } 210 211 static void 212 ltq_etop_free_channel(struct net_device *dev, struct ltq_etop_chan *ch) 213 { 214 struct ltq_etop_priv *priv = netdev_priv(dev); 215 216 ltq_dma_free(&ch->dma); 217 if (ch->dma.irq) 218 free_irq(ch->dma.irq, priv); 219 if (IS_RX(ch->idx)) { 220 int desc; 221 222 for (desc = 0; desc < LTQ_DESC_NUM; desc++) 223 dev_kfree_skb_any(ch->skb[ch->dma.desc]); 224 } 225 } 226 227 static void 228 ltq_etop_hw_exit(struct net_device *dev) 229 { 230 struct ltq_etop_priv *priv = netdev_priv(dev); 231 int i; 232 233 ltq_pmu_disable(PMU_PPE); 234 for (i = 0; i < MAX_DMA_CHAN; i++) 235 if (IS_TX(i) || IS_RX(i)) 236 ltq_etop_free_channel(dev, &priv->ch[i]); 237 } 238 239 static int 240 ltq_etop_hw_init(struct net_device *dev) 241 { 242 struct ltq_etop_priv *priv = netdev_priv(dev); 243 int i; 244 int err; 245 246 ltq_pmu_enable(PMU_PPE); 247 248 switch (priv->pldata->mii_mode) { 249 case PHY_INTERFACE_MODE_RMII: 250 ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_REVERSE, 251 LTQ_ETOP_CFG); 252 break; 253 254 case PHY_INTERFACE_MODE_MII: 255 ltq_etop_w32_mask(ETOP_MII_MASK, ETOP_MII_NORMAL, 256 LTQ_ETOP_CFG); 257 break; 258 259 default: 260 netdev_err(dev, "unknown mii mode %d\n", 261 priv->pldata->mii_mode); 262 return -ENOTSUPP; 263 } 264 265 /* enable crc generation */ 266 ltq_etop_w32(PPE32_CGEN, LQ_PPE32_ENET_MAC_CFG); 267 268 ltq_dma_init_port(DMA_PORT_ETOP, priv->tx_burst_len, priv->rx_burst_len); 269 270 for (i = 0; i < MAX_DMA_CHAN; i++) { 271 int irq = LTQ_DMA_CH0_INT + i; 272 struct ltq_etop_chan *ch = &priv->ch[i]; 273 274 ch->dma.nr = i; 275 ch->idx = ch->dma.nr; 276 ch->dma.dev = &priv->pdev->dev; 277 278 if (IS_TX(i)) { 279 ltq_dma_alloc_tx(&ch->dma); 280 err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_tx", priv); 281 if (err) { 282 netdev_err(dev, 283 "Unable to get Tx DMA IRQ %d\n", 284 irq); 285 return err; 286 } 287 } else if (IS_RX(i)) { 288 ltq_dma_alloc_rx(&ch->dma); 289 for (ch->dma.desc = 0; ch->dma.desc < LTQ_DESC_NUM; 290 ch->dma.desc++) 291 if (ltq_etop_alloc_skb(ch)) 292 return -ENOMEM; 293 ch->dma.desc = 0; 294 err = request_irq(irq, ltq_etop_dma_irq, 0, "etop_rx", priv); 295 if (err) { 296 netdev_err(dev, 297 "Unable to get Rx DMA IRQ %d\n", 298 irq); 299 return err; 300 } 301 } 302 ch->dma.irq = irq; 303 } 304 return 0; 305 } 306 307 static void 308 ltq_etop_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 309 { 310 strscpy(info->driver, "Lantiq ETOP", sizeof(info->driver)); 311 strscpy(info->bus_info, "internal", sizeof(info->bus_info)); 312 strscpy(info->version, DRV_VERSION, sizeof(info->version)); 313 } 314 315 static const struct ethtool_ops ltq_etop_ethtool_ops = { 316 .get_drvinfo = ltq_etop_get_drvinfo, 317 .nway_reset = phy_ethtool_nway_reset, 318 .get_link_ksettings = phy_ethtool_get_link_ksettings, 319 .set_link_ksettings = phy_ethtool_set_link_ksettings, 320 }; 321 322 static int 323 ltq_etop_mdio_wr(struct mii_bus *bus, int phy_addr, int phy_reg, u16 phy_data) 324 { 325 u32 val = MDIO_REQUEST | 326 ((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) | 327 ((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET) | 328 phy_data; 329 330 while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST) 331 ; 332 ltq_etop_w32(val, LTQ_ETOP_MDIO); 333 return 0; 334 } 335 336 static int 337 ltq_etop_mdio_rd(struct mii_bus *bus, int phy_addr, int phy_reg) 338 { 339 u32 val = MDIO_REQUEST | MDIO_READ | 340 ((phy_addr & MDIO_ADDR_MASK) << MDIO_ADDR_OFFSET) | 341 ((phy_reg & MDIO_REG_MASK) << MDIO_REG_OFFSET); 342 343 while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST) 344 ; 345 ltq_etop_w32(val, LTQ_ETOP_MDIO); 346 while (ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_REQUEST) 347 ; 348 val = ltq_etop_r32(LTQ_ETOP_MDIO) & MDIO_VAL_MASK; 349 return val; 350 } 351 352 static void 353 ltq_etop_mdio_link(struct net_device *dev) 354 { 355 /* nothing to do */ 356 } 357 358 static int 359 ltq_etop_mdio_probe(struct net_device *dev) 360 { 361 struct ltq_etop_priv *priv = netdev_priv(dev); 362 struct phy_device *phydev; 363 364 phydev = phy_find_first(priv->mii_bus); 365 366 if (!phydev) { 367 netdev_err(dev, "no PHY found\n"); 368 return -ENODEV; 369 } 370 371 phydev = phy_connect(dev, phydev_name(phydev), 372 <q_etop_mdio_link, priv->pldata->mii_mode); 373 374 if (IS_ERR(phydev)) { 375 netdev_err(dev, "Could not attach to PHY\n"); 376 return PTR_ERR(phydev); 377 } 378 379 phy_set_max_speed(phydev, SPEED_100); 380 381 phy_attached_info(phydev); 382 383 return 0; 384 } 385 386 static int 387 ltq_etop_mdio_init(struct net_device *dev) 388 { 389 struct ltq_etop_priv *priv = netdev_priv(dev); 390 int err; 391 392 priv->mii_bus = mdiobus_alloc(); 393 if (!priv->mii_bus) { 394 netdev_err(dev, "failed to allocate mii bus\n"); 395 err = -ENOMEM; 396 goto err_out; 397 } 398 399 priv->mii_bus->priv = dev; 400 priv->mii_bus->read = ltq_etop_mdio_rd; 401 priv->mii_bus->write = ltq_etop_mdio_wr; 402 priv->mii_bus->name = "ltq_mii"; 403 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 404 priv->pdev->name, priv->pdev->id); 405 if (mdiobus_register(priv->mii_bus)) { 406 err = -ENXIO; 407 goto err_out_free_mdiobus; 408 } 409 410 if (ltq_etop_mdio_probe(dev)) { 411 err = -ENXIO; 412 goto err_out_unregister_bus; 413 } 414 return 0; 415 416 err_out_unregister_bus: 417 mdiobus_unregister(priv->mii_bus); 418 err_out_free_mdiobus: 419 mdiobus_free(priv->mii_bus); 420 err_out: 421 return err; 422 } 423 424 static void 425 ltq_etop_mdio_cleanup(struct net_device *dev) 426 { 427 struct ltq_etop_priv *priv = netdev_priv(dev); 428 429 phy_disconnect(dev->phydev); 430 mdiobus_unregister(priv->mii_bus); 431 mdiobus_free(priv->mii_bus); 432 } 433 434 static int 435 ltq_etop_open(struct net_device *dev) 436 { 437 struct ltq_etop_priv *priv = netdev_priv(dev); 438 int i; 439 440 for (i = 0; i < MAX_DMA_CHAN; i++) { 441 struct ltq_etop_chan *ch = &priv->ch[i]; 442 443 if (!IS_TX(i) && (!IS_RX(i))) 444 continue; 445 ltq_dma_open(&ch->dma); 446 ltq_dma_enable_irq(&ch->dma); 447 napi_enable(&ch->napi); 448 } 449 phy_start(dev->phydev); 450 netif_tx_start_all_queues(dev); 451 return 0; 452 } 453 454 static int 455 ltq_etop_stop(struct net_device *dev) 456 { 457 struct ltq_etop_priv *priv = netdev_priv(dev); 458 int i; 459 460 netif_tx_stop_all_queues(dev); 461 phy_stop(dev->phydev); 462 for (i = 0; i < MAX_DMA_CHAN; i++) { 463 struct ltq_etop_chan *ch = &priv->ch[i]; 464 465 if (!IS_RX(i) && !IS_TX(i)) 466 continue; 467 napi_disable(&ch->napi); 468 ltq_dma_close(&ch->dma); 469 } 470 return 0; 471 } 472 473 static netdev_tx_t 474 ltq_etop_tx(struct sk_buff *skb, struct net_device *dev) 475 { 476 int queue = skb_get_queue_mapping(skb); 477 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue); 478 struct ltq_etop_priv *priv = netdev_priv(dev); 479 struct ltq_etop_chan *ch = &priv->ch[(queue << 1) | 1]; 480 struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc]; 481 int len; 482 unsigned long flags; 483 u32 byte_offset; 484 485 len = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len; 486 487 if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) || ch->skb[ch->dma.desc]) { 488 netdev_err(dev, "tx ring full\n"); 489 netif_tx_stop_queue(txq); 490 return NETDEV_TX_BUSY; 491 } 492 493 /* dma needs to start on a burst length value aligned address */ 494 byte_offset = CPHYSADDR(skb->data) % (priv->tx_burst_len * 4); 495 ch->skb[ch->dma.desc] = skb; 496 497 netif_trans_update(dev); 498 499 spin_lock_irqsave(&priv->lock, flags); 500 desc->addr = ((unsigned int)dma_map_single(&priv->pdev->dev, skb->data, len, 501 DMA_TO_DEVICE)) - byte_offset; 502 /* Make sure the address is written before we give it to HW */ 503 wmb(); 504 desc->ctl = LTQ_DMA_OWN | LTQ_DMA_SOP | LTQ_DMA_EOP | 505 LTQ_DMA_TX_OFFSET(byte_offset) | (len & LTQ_DMA_SIZE_MASK); 506 ch->dma.desc++; 507 ch->dma.desc %= LTQ_DESC_NUM; 508 spin_unlock_irqrestore(&priv->lock, flags); 509 510 if (ch->dma.desc_base[ch->dma.desc].ctl & LTQ_DMA_OWN) 511 netif_tx_stop_queue(txq); 512 513 return NETDEV_TX_OK; 514 } 515 516 static int 517 ltq_etop_change_mtu(struct net_device *dev, int new_mtu) 518 { 519 struct ltq_etop_priv *priv = netdev_priv(dev); 520 unsigned long flags; 521 522 WRITE_ONCE(dev->mtu, new_mtu); 523 524 spin_lock_irqsave(&priv->lock, flags); 525 ltq_etop_w32((ETOP_PLEN_UNDER << 16) | new_mtu, LTQ_ETOP_IGPLEN); 526 spin_unlock_irqrestore(&priv->lock, flags); 527 528 return 0; 529 } 530 531 static int 532 ltq_etop_set_mac_address(struct net_device *dev, void *p) 533 { 534 int ret = eth_mac_addr(dev, p); 535 536 if (!ret) { 537 struct ltq_etop_priv *priv = netdev_priv(dev); 538 unsigned long flags; 539 540 /* store the mac for the unicast filter */ 541 spin_lock_irqsave(&priv->lock, flags); 542 ltq_etop_w32(*((u32 *)dev->dev_addr), LTQ_ETOP_MAC_DA0); 543 ltq_etop_w32(*((u16 *)&dev->dev_addr[4]) << 16, 544 LTQ_ETOP_MAC_DA1); 545 spin_unlock_irqrestore(&priv->lock, flags); 546 } 547 return ret; 548 } 549 550 static void 551 ltq_etop_set_multicast_list(struct net_device *dev) 552 { 553 struct ltq_etop_priv *priv = netdev_priv(dev); 554 unsigned long flags; 555 556 /* ensure that the unicast filter is not enabled in promiscious mode */ 557 spin_lock_irqsave(&priv->lock, flags); 558 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) 559 ltq_etop_w32_mask(ETOP_FTCU, 0, LTQ_ETOP_ENETS0); 560 else 561 ltq_etop_w32_mask(0, ETOP_FTCU, LTQ_ETOP_ENETS0); 562 spin_unlock_irqrestore(&priv->lock, flags); 563 } 564 565 static int 566 ltq_etop_init(struct net_device *dev) 567 { 568 struct ltq_etop_priv *priv = netdev_priv(dev); 569 struct sockaddr mac; 570 int err; 571 bool random_mac = false; 572 573 dev->watchdog_timeo = 10 * HZ; 574 err = ltq_etop_hw_init(dev); 575 if (err) 576 goto err_hw; 577 ltq_etop_change_mtu(dev, 1500); 578 579 memcpy(&mac, &priv->pldata->mac, sizeof(struct sockaddr)); 580 if (!is_valid_ether_addr(mac.sa_data)) { 581 pr_warn("etop: invalid MAC, using random\n"); 582 eth_random_addr(mac.sa_data); 583 random_mac = true; 584 } 585 586 err = ltq_etop_set_mac_address(dev, &mac); 587 if (err) 588 goto err_netdev; 589 590 /* Set addr_assign_type here, ltq_etop_set_mac_address would reset it. */ 591 if (random_mac) 592 dev->addr_assign_type = NET_ADDR_RANDOM; 593 594 ltq_etop_set_multicast_list(dev); 595 err = ltq_etop_mdio_init(dev); 596 if (err) 597 goto err_netdev; 598 return 0; 599 600 err_netdev: 601 unregister_netdev(dev); 602 free_netdev(dev); 603 err_hw: 604 ltq_etop_hw_exit(dev); 605 return err; 606 } 607 608 static void 609 ltq_etop_tx_timeout(struct net_device *dev, unsigned int txqueue) 610 { 611 int err; 612 613 ltq_etop_hw_exit(dev); 614 err = ltq_etop_hw_init(dev); 615 if (err) 616 goto err_hw; 617 netif_trans_update(dev); 618 netif_wake_queue(dev); 619 return; 620 621 err_hw: 622 ltq_etop_hw_exit(dev); 623 netdev_err(dev, "failed to restart etop after TX timeout\n"); 624 } 625 626 static const struct net_device_ops ltq_eth_netdev_ops = { 627 .ndo_open = ltq_etop_open, 628 .ndo_stop = ltq_etop_stop, 629 .ndo_start_xmit = ltq_etop_tx, 630 .ndo_change_mtu = ltq_etop_change_mtu, 631 .ndo_eth_ioctl = phy_do_ioctl, 632 .ndo_set_mac_address = ltq_etop_set_mac_address, 633 .ndo_validate_addr = eth_validate_addr, 634 .ndo_set_rx_mode = ltq_etop_set_multicast_list, 635 .ndo_select_queue = dev_pick_tx_zero, 636 .ndo_init = ltq_etop_init, 637 .ndo_tx_timeout = ltq_etop_tx_timeout, 638 }; 639 640 static int __init 641 ltq_etop_probe(struct platform_device *pdev) 642 { 643 struct net_device *dev; 644 struct ltq_etop_priv *priv; 645 struct resource *res; 646 int err; 647 int i; 648 649 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 650 if (!res) { 651 dev_err(&pdev->dev, "failed to get etop resource\n"); 652 err = -ENOENT; 653 goto err_out; 654 } 655 656 res = devm_request_mem_region(&pdev->dev, res->start, 657 resource_size(res), dev_name(&pdev->dev)); 658 if (!res) { 659 dev_err(&pdev->dev, "failed to request etop resource\n"); 660 err = -EBUSY; 661 goto err_out; 662 } 663 664 ltq_etop_membase = devm_ioremap(&pdev->dev, res->start, 665 resource_size(res)); 666 if (!ltq_etop_membase) { 667 dev_err(&pdev->dev, "failed to remap etop engine %d\n", 668 pdev->id); 669 err = -ENOMEM; 670 goto err_out; 671 } 672 673 dev = alloc_etherdev_mq(sizeof(struct ltq_etop_priv), 4); 674 if (!dev) { 675 err = -ENOMEM; 676 goto err_out; 677 } 678 strcpy(dev->name, "eth%d"); 679 dev->netdev_ops = <q_eth_netdev_ops; 680 dev->ethtool_ops = <q_etop_ethtool_ops; 681 priv = netdev_priv(dev); 682 priv->res = res; 683 priv->pdev = pdev; 684 priv->pldata = dev_get_platdata(&pdev->dev); 685 priv->netdev = dev; 686 spin_lock_init(&priv->lock); 687 SET_NETDEV_DEV(dev, &pdev->dev); 688 689 err = device_property_read_u32(&pdev->dev, "lantiq,tx-burst-length", &priv->tx_burst_len); 690 if (err < 0) { 691 dev_err(&pdev->dev, "unable to read tx-burst-length property\n"); 692 goto err_free; 693 } 694 695 err = device_property_read_u32(&pdev->dev, "lantiq,rx-burst-length", &priv->rx_burst_len); 696 if (err < 0) { 697 dev_err(&pdev->dev, "unable to read rx-burst-length property\n"); 698 goto err_free; 699 } 700 701 for (i = 0; i < MAX_DMA_CHAN; i++) { 702 if (IS_TX(i)) 703 netif_napi_add_weight(dev, &priv->ch[i].napi, 704 ltq_etop_poll_tx, 8); 705 else if (IS_RX(i)) 706 netif_napi_add_weight(dev, &priv->ch[i].napi, 707 ltq_etop_poll_rx, 32); 708 priv->ch[i].netdev = dev; 709 } 710 711 err = register_netdev(dev); 712 if (err) 713 goto err_free; 714 715 platform_set_drvdata(pdev, dev); 716 return 0; 717 718 err_free: 719 free_netdev(dev); 720 err_out: 721 return err; 722 } 723 724 static void ltq_etop_remove(struct platform_device *pdev) 725 { 726 struct net_device *dev = platform_get_drvdata(pdev); 727 728 if (dev) { 729 netif_tx_stop_all_queues(dev); 730 ltq_etop_hw_exit(dev); 731 ltq_etop_mdio_cleanup(dev); 732 unregister_netdev(dev); 733 } 734 } 735 736 static struct platform_driver ltq_mii_driver = { 737 .remove_new = ltq_etop_remove, 738 .driver = { 739 .name = "ltq_etop", 740 }, 741 }; 742 743 static int __init 744 init_ltq_etop(void) 745 { 746 int ret = platform_driver_probe(<q_mii_driver, ltq_etop_probe); 747 748 if (ret) 749 pr_err("ltq_etop: Error registering platform driver!"); 750 return ret; 751 } 752 753 static void __exit 754 exit_ltq_etop(void) 755 { 756 platform_driver_unregister(<q_mii_driver); 757 } 758 759 module_init(init_ltq_etop); 760 module_exit(exit_ltq_etop); 761 762 MODULE_AUTHOR("John Crispin <blogic@openwrt.org>"); 763 MODULE_DESCRIPTION("Lantiq SoC ETOP"); 764 MODULE_LICENSE("GPL"); 765