xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_ptp.c (revision d0b73b488c55df905ea8faaad079f8535629ed26)
1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 #include "ixgbe.h"
28 #include <linux/export.h>
29 #include <linux/ptp_classify.h>
30 
31 /*
32  * The 82599 and the X540 do not have true 64bit nanosecond scale
33  * counter registers. Instead, SYSTIME is defined by a fixed point
34  * system which allows the user to define the scale counter increment
35  * value at every level change of the oscillator driving the SYSTIME
36  * value. For both devices the TIMINCA:IV field defines this
37  * increment. On the X540 device, 31 bits are provided. However on the
38  * 82599 only provides 24 bits. The time unit is determined by the
39  * clock frequency of the oscillator in combination with the TIMINCA
40  * register. When these devices link at 10Gb the oscillator has a
41  * period of 6.4ns. In order to convert the scale counter into
42  * nanoseconds the cyclecounter and timecounter structures are
43  * used. The SYSTIME registers need to be converted to ns values by use
44  * of only a right shift (division by power of 2). The following math
45  * determines the largest incvalue that will fit into the available
46  * bits in the TIMINCA register.
47  *
48  * PeriodWidth: Number of bits to store the clock period
49  * MaxWidth: The maximum width value of the TIMINCA register
50  * Period: The clock period for the oscillator
51  * round(): discard the fractional portion of the calculation
52  *
53  * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
54  *
55  * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
56  * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
57  *
58  * The period also changes based on the link speed:
59  * At 10Gb link or no link, the period remains the same.
60  * At 1Gb link, the period is multiplied by 10. (64ns)
61  * At 100Mb link, the period is multiplied by 100. (640ns)
62  *
63  * The calculated value allows us to right shift the SYSTIME register
64  * value in order to quickly convert it into a nanosecond clock,
65  * while allowing for the maximum possible adjustment value.
66  *
67  * These diagrams are only for the 10Gb link period
68  *
69  *           SYSTIMEH            SYSTIMEL
70  *       +--------------+  +--------------+
71  * X540  |      32      |  | 1 | 3 |  28  |
72  *       *--------------+  +--------------+
73  *        \________ 36 bits ______/  fract
74  *
75  *       +--------------+  +--------------+
76  * 82599 |      32      |  | 8 | 3 |  21  |
77  *       *--------------+  +--------------+
78  *        \________ 43 bits ______/  fract
79  *
80  * The 36 bit X540 SYSTIME overflows every
81  *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
82  *
83  * The 43 bit 82599 SYSTIME overflows every
84  *   2^43 * 10^-9 / 3600 = 2.4 hours
85  */
86 #define IXGBE_INCVAL_10GB 0x66666666
87 #define IXGBE_INCVAL_1GB  0x40000000
88 #define IXGBE_INCVAL_100  0x50000000
89 
90 #define IXGBE_INCVAL_SHIFT_10GB  28
91 #define IXGBE_INCVAL_SHIFT_1GB   24
92 #define IXGBE_INCVAL_SHIFT_100   21
93 
94 #define IXGBE_INCVAL_SHIFT_82599 7
95 #define IXGBE_INCPER_SHIFT_82599 24
96 #define IXGBE_MAX_TIMEADJ_VALUE  0x7FFFFFFFFFFFFFFFULL
97 
98 #define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
99 
100 #ifndef NSECS_PER_SEC
101 #define NSECS_PER_SEC 1000000000ULL
102 #endif
103 
104 static struct sock_filter ptp_filter[] = {
105 	PTP_FILTER
106 };
107 
108 /**
109  * ixgbe_ptp_setup_sdp
110  * @hw: the hardware private structure
111  *
112  * this function enables or disables the clock out feature on SDP0 for
113  * the X540 device. It will create a 1second periodic output that can
114  * be used as the PPS (via an interrupt).
115  *
116  * It calculates when the systime will be on an exact second, and then
117  * aligns the start of the PPS signal to that value. The shift is
118  * necessary because it can change based on the link speed.
119  */
120 static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
121 {
122 	struct ixgbe_hw *hw = &adapter->hw;
123 	int shift = adapter->cc.shift;
124 	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
125 	u64 ns = 0, clock_edge = 0;
126 
127 	if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
128 	    (hw->mac.type == ixgbe_mac_X540)) {
129 
130 		/* disable the pin first */
131 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
132 		IXGBE_WRITE_FLUSH(hw);
133 
134 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
135 
136 		/*
137 		 * enable the SDP0 pin as output, and connected to the
138 		 * native function for Timesync (ClockOut)
139 		 */
140 		esdp |= (IXGBE_ESDP_SDP0_DIR |
141 			 IXGBE_ESDP_SDP0_NATIVE);
142 
143 		/*
144 		 * enable the Clock Out feature on SDP0, and allow
145 		 * interrupts to occur when the pin changes
146 		 */
147 		tsauxc = (IXGBE_TSAUXC_EN_CLK |
148 			  IXGBE_TSAUXC_SYNCLK |
149 			  IXGBE_TSAUXC_SDP0_INT);
150 
151 		/* clock period (or pulse length) */
152 		clktiml = (u32)(NSECS_PER_SEC << shift);
153 		clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);
154 
155 		/*
156 		 * Account for the cyclecounter wrap-around value by
157 		 * using the converted ns value of the current time to
158 		 * check for when the next aligned second would occur.
159 		 */
160 		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
161 		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
162 		ns = timecounter_cyc2time(&adapter->tc, clock_edge);
163 
164 		div_u64_rem(ns, NSECS_PER_SEC, &rem);
165 		clock_edge += ((NSECS_PER_SEC - (u64)rem) << shift);
166 
167 		/* specify the initial clock start time */
168 		trgttiml = (u32)clock_edge;
169 		trgttimh = (u32)(clock_edge >> 32);
170 
171 		IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
172 		IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
173 		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
174 		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
175 
176 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
177 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
178 	} else {
179 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
180 	}
181 
182 	IXGBE_WRITE_FLUSH(hw);
183 }
184 
185 /**
186  * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
187  * @cc: the cyclecounter structure
188  *
189  * this function reads the cyclecounter registers and is called by the
190  * cyclecounter structure used to construct a ns counter from the
191  * arbitrary fixed point registers
192  */
193 static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
194 {
195 	struct ixgbe_adapter *adapter =
196 		container_of(cc, struct ixgbe_adapter, cc);
197 	struct ixgbe_hw *hw = &adapter->hw;
198 	u64 stamp = 0;
199 
200 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
201 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
202 
203 	return stamp;
204 }
205 
206 /**
207  * ixgbe_ptp_adjfreq
208  * @ptp: the ptp clock structure
209  * @ppb: parts per billion adjustment from base
210  *
211  * adjust the frequency of the ptp cycle counter by the
212  * indicated ppb from the base frequency.
213  */
214 static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
215 {
216 	struct ixgbe_adapter *adapter =
217 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
218 	struct ixgbe_hw *hw = &adapter->hw;
219 	u64 freq;
220 	u32 diff, incval;
221 	int neg_adj = 0;
222 
223 	if (ppb < 0) {
224 		neg_adj = 1;
225 		ppb = -ppb;
226 	}
227 
228 	smp_mb();
229 	incval = ACCESS_ONCE(adapter->base_incval);
230 
231 	freq = incval;
232 	freq *= ppb;
233 	diff = div_u64(freq, 1000000000ULL);
234 
235 	incval = neg_adj ? (incval - diff) : (incval + diff);
236 
237 	switch (hw->mac.type) {
238 	case ixgbe_mac_X540:
239 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
240 		break;
241 	case ixgbe_mac_82599EB:
242 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
243 				(1 << IXGBE_INCPER_SHIFT_82599) |
244 				incval);
245 		break;
246 	default:
247 		break;
248 	}
249 
250 	return 0;
251 }
252 
253 /**
254  * ixgbe_ptp_adjtime
255  * @ptp: the ptp clock structure
256  * @delta: offset to adjust the cycle counter by
257  *
258  * adjust the timer by resetting the timecounter structure.
259  */
260 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
261 {
262 	struct ixgbe_adapter *adapter =
263 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
264 	unsigned long flags;
265 	u64 now;
266 
267 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
268 
269 	now = timecounter_read(&adapter->tc);
270 	now += delta;
271 
272 	/* reset the timecounter */
273 	timecounter_init(&adapter->tc,
274 			 &adapter->cc,
275 			 now);
276 
277 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
278 
279 	ixgbe_ptp_setup_sdp(adapter);
280 
281 	return 0;
282 }
283 
284 /**
285  * ixgbe_ptp_gettime
286  * @ptp: the ptp clock structure
287  * @ts: timespec structure to hold the current time value
288  *
289  * read the timecounter and return the correct value on ns,
290  * after converting it into a struct timespec.
291  */
292 static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
293 {
294 	struct ixgbe_adapter *adapter =
295 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
296 	u64 ns;
297 	u32 remainder;
298 	unsigned long flags;
299 
300 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
301 	ns = timecounter_read(&adapter->tc);
302 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
303 
304 	ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
305 	ts->tv_nsec = remainder;
306 
307 	return 0;
308 }
309 
310 /**
311  * ixgbe_ptp_settime
312  * @ptp: the ptp clock structure
313  * @ts: the timespec containing the new time for the cycle counter
314  *
315  * reset the timecounter to use a new base value instead of the kernel
316  * wall timer value.
317  */
318 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
319 			     const struct timespec *ts)
320 {
321 	struct ixgbe_adapter *adapter =
322 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
323 	u64 ns;
324 	unsigned long flags;
325 
326 	ns = ts->tv_sec * 1000000000ULL;
327 	ns += ts->tv_nsec;
328 
329 	/* reset the timecounter */
330 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
331 	timecounter_init(&adapter->tc, &adapter->cc, ns);
332 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
333 
334 	ixgbe_ptp_setup_sdp(adapter);
335 	return 0;
336 }
337 
338 /**
339  * ixgbe_ptp_enable
340  * @ptp: the ptp clock structure
341  * @rq: the requested feature to change
342  * @on: whether to enable or disable the feature
343  *
344  * enable (or disable) ancillary features of the phc subsystem.
345  * our driver only supports the PPS feature on the X540
346  */
347 static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
348 			    struct ptp_clock_request *rq, int on)
349 {
350 	struct ixgbe_adapter *adapter =
351 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
352 
353 	/**
354 	 * When PPS is enabled, unmask the interrupt for the ClockOut
355 	 * feature, so that the interrupt handler can send the PPS
356 	 * event when the clock SDP triggers. Clear mask when PPS is
357 	 * disabled
358 	 */
359 	if (rq->type == PTP_CLK_REQ_PPS) {
360 		switch (adapter->hw.mac.type) {
361 		case ixgbe_mac_X540:
362 			if (on)
363 				adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
364 			else
365 				adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
366 
367 			ixgbe_ptp_setup_sdp(adapter);
368 			return 0;
369 		default:
370 			break;
371 		}
372 	}
373 
374 	return -ENOTSUPP;
375 }
376 
377 /**
378  * ixgbe_ptp_check_pps_event
379  * @adapter: the private adapter structure
380  * @eicr: the interrupt cause register value
381  *
382  * This function is called by the interrupt routine when checking for
383  * interrupts. It will check and handle a pps event.
384  */
385 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
386 {
387 	struct ixgbe_hw *hw = &adapter->hw;
388 	struct ptp_clock_event event;
389 
390 	event.type = PTP_CLOCK_PPS;
391 
392 	/* this check is necessary in case the interrupt was enabled via some
393 	 * alternative means (ex. debug_fs). Better to check here than
394 	 * everywhere that calls this function.
395 	 */
396 	if (!adapter->ptp_clock)
397 		return;
398 
399 	switch (hw->mac.type) {
400 	case ixgbe_mac_X540:
401 		ptp_clock_event(adapter->ptp_clock, &event);
402 		break;
403 	default:
404 		break;
405 	}
406 }
407 
408 
409 /**
410  * ixgbe_ptp_overflow_check - delayed work to detect SYSTIME overflow
411  * @work: structure containing information about this work task
412  *
413  * this work function is scheduled to continue reading the timecounter
414  * in order to prevent missing when the system time registers wrap
415  * around. This needs to be run approximately twice a minute when no
416  * PTP activity is occurring.
417  */
418 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
419 {
420 	unsigned long elapsed_jiffies = adapter->last_overflow_check - jiffies;
421 	struct timespec ts;
422 
423 	if ((adapter->flags2 & IXGBE_FLAG2_PTP_ENABLED) &&
424 	    (elapsed_jiffies >= IXGBE_OVERFLOW_PERIOD)) {
425 		ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
426 		adapter->last_overflow_check = jiffies;
427 	}
428 }
429 
430 /**
431  * ixgbe_ptp_match - determine if this skb matches a ptp packet
432  * @skb: pointer to the skb
433  * @hwtstamp: pointer to the hwtstamp_config to check
434  *
435  * Determine whether the skb should have been timestamped, assuming the
436  * hwtstamp was set via the hwtstamp ioctl. Returns non-zero when the packet
437  * should have a timestamp waiting in the registers, and 0 otherwise.
438  *
439  * V1 packets have to check the version type to determine whether they are
440  * correct. However, we can't directly access the data because it might be
441  * fragmented in the SKB, in paged memory. In order to work around this, we
442  * use skb_copy_bits which will properly copy the data whether it is in the
443  * paged memory fragments or not. We have to copy the IP header as well as the
444  * message type.
445  */
446 static int ixgbe_ptp_match(struct sk_buff *skb, int rx_filter)
447 {
448 	struct iphdr iph;
449 	u8 msgtype;
450 	unsigned int type, offset;
451 
452 	if (rx_filter == HWTSTAMP_FILTER_NONE)
453 		return 0;
454 
455 	type = sk_run_filter(skb, ptp_filter);
456 
457 	if (likely(rx_filter == HWTSTAMP_FILTER_PTP_V2_EVENT))
458 		return type & PTP_CLASS_V2;
459 
460 	/* For the remaining cases actually check message type */
461 	switch (type) {
462 	case PTP_CLASS_V1_IPV4:
463 		skb_copy_bits(skb, OFF_IHL, &iph, sizeof(iph));
464 		offset = ETH_HLEN + (iph.ihl << 2) + UDP_HLEN + OFF_PTP_CONTROL;
465 		break;
466 	case PTP_CLASS_V1_IPV6:
467 		offset = OFF_PTP6 + OFF_PTP_CONTROL;
468 		break;
469 	default:
470 		/* other cases invalid or handled above */
471 		return 0;
472 	}
473 
474 	/* Make sure our buffer is long enough */
475 	if (skb->len < offset)
476 		return 0;
477 
478 	skb_copy_bits(skb, offset, &msgtype, sizeof(msgtype));
479 
480 	switch (rx_filter) {
481 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
482 		return (msgtype == IXGBE_RXMTRL_V1_SYNC_MSG);
483 		break;
484 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
485 		return (msgtype == IXGBE_RXMTRL_V1_DELAY_REQ_MSG);
486 		break;
487 	default:
488 		return 0;
489 	}
490 }
491 
492 /**
493  * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
494  * @q_vector: structure containing interrupt and ring information
495  * @skb: particular skb to send timestamp with
496  *
497  * if the timestamp is valid, we convert it into the timecounter ns
498  * value, then store that result into the shhwtstamps structure which
499  * is passed up the network stack
500  */
501 void ixgbe_ptp_tx_hwtstamp(struct ixgbe_q_vector *q_vector,
502 			   struct sk_buff *skb)
503 {
504 	struct ixgbe_adapter *adapter;
505 	struct ixgbe_hw *hw;
506 	struct skb_shared_hwtstamps shhwtstamps;
507 	u64 regval = 0, ns;
508 	u32 tsynctxctl;
509 	unsigned long flags;
510 
511 	/* we cannot process timestamps on a ring without a q_vector */
512 	if (!q_vector || !q_vector->adapter)
513 		return;
514 
515 	adapter = q_vector->adapter;
516 	hw = &adapter->hw;
517 
518 	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
519 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
520 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
521 
522 	/*
523 	 * if TX timestamp is not valid, exit after clearing the
524 	 * timestamp registers
525 	 */
526 	if (!(tsynctxctl & IXGBE_TSYNCTXCTL_VALID))
527 		return;
528 
529 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
530 	ns = timecounter_cyc2time(&adapter->tc, regval);
531 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
532 
533 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
534 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
535 	skb_tstamp_tx(skb, &shhwtstamps);
536 }
537 
538 /**
539  * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
540  * @q_vector: structure containing interrupt and ring information
541  * @rx_desc: the rx descriptor
542  * @skb: particular skb to send timestamp with
543  *
544  * if the timestamp is valid, we convert it into the timecounter ns
545  * value, then store that result into the shhwtstamps structure which
546  * is passed up the network stack
547  */
548 void ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
549 			   union ixgbe_adv_rx_desc *rx_desc,
550 			   struct sk_buff *skb)
551 {
552 	struct ixgbe_adapter *adapter;
553 	struct ixgbe_hw *hw;
554 	struct skb_shared_hwtstamps *shhwtstamps;
555 	u64 regval = 0, ns;
556 	u32 tsyncrxctl;
557 	unsigned long flags;
558 
559 	/* we cannot process timestamps on a ring without a q_vector */
560 	if (!q_vector || !q_vector->adapter)
561 		return;
562 
563 	adapter = q_vector->adapter;
564 	hw = &adapter->hw;
565 
566 	if (likely(!ixgbe_ptp_match(skb, adapter->rx_hwtstamp_filter)))
567 		return;
568 
569 	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
570 
571 	/* Check if we have a valid timestamp and make sure the skb should
572 	 * have been timestamped */
573 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
574 		return;
575 
576 	/*
577 	 * Always read the registers, in order to clear a possible fault
578 	 * because of stagnant RX timestamp values for a packet that never
579 	 * reached the queue.
580 	 */
581 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
582 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
583 
584 	/*
585 	 * If the timestamp bit is set in the packet's descriptor, we know the
586 	 * timestamp belongs to this packet. No other packet can be
587 	 * timestamped until the registers for timestamping have been read.
588 	 * Therefor only one packet with this bit can be in the queue at a
589 	 * time, and the rx timestamp values that were in the registers belong
590 	 * to this packet.
591 	 *
592 	 * If nothing went wrong, then it should have a skb_shared_tx that we
593 	 * can turn into a skb_shared_hwtstamps.
594 	 */
595 	if (unlikely(!ixgbe_test_staterr(rx_desc, IXGBE_RXDADV_STAT_TS)))
596 		return;
597 
598 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
599 	ns = timecounter_cyc2time(&adapter->tc, regval);
600 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
601 
602 	shhwtstamps = skb_hwtstamps(skb);
603 	shhwtstamps->hwtstamp = ns_to_ktime(ns);
604 }
605 
606 /**
607  * ixgbe_ptp_hwtstamp_ioctl - control hardware time stamping
608  * @adapter: pointer to adapter struct
609  * @ifreq: ioctl data
610  * @cmd: particular ioctl requested
611  *
612  * Outgoing time stamping can be enabled and disabled. Play nice and
613  * disable it when requested, although it shouldn't case any overhead
614  * when no packet needs it. At most one packet in the queue may be
615  * marked for time stamping, otherwise it would be impossible to tell
616  * for sure to which packet the hardware time stamp belongs.
617  *
618  * Incoming time stamping has to be configured via the hardware
619  * filters. Not all combinations are supported, in particular event
620  * type has to be specified. Matching the kind of event packet is
621  * not supported, with the exception of "all V2 events regardless of
622  * level 2 or 4".
623  *
624  * Since hardware always timestamps Path delay packets when timestamping V2
625  * packets, regardless of the type specified in the register, only use V2
626  * Event mode. This more accurately tells the user what the hardware is going
627  * to do anyways.
628  */
629 int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
630 			     struct ifreq *ifr, int cmd)
631 {
632 	struct ixgbe_hw *hw = &adapter->hw;
633 	struct hwtstamp_config config;
634 	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
635 	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
636 	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
637 	bool is_l2 = false;
638 	u32 regval;
639 
640 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
641 		return -EFAULT;
642 
643 	/* reserved for future extensions */
644 	if (config.flags)
645 		return -EINVAL;
646 
647 	switch (config.tx_type) {
648 	case HWTSTAMP_TX_OFF:
649 		tsync_tx_ctl = 0;
650 	case HWTSTAMP_TX_ON:
651 		break;
652 	default:
653 		return -ERANGE;
654 	}
655 
656 	switch (config.rx_filter) {
657 	case HWTSTAMP_FILTER_NONE:
658 		tsync_rx_ctl = 0;
659 		tsync_rx_mtrl = 0;
660 		break;
661 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
662 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
663 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
664 		break;
665 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
666 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
667 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
668 		break;
669 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
670 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
671 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
672 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
673 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
674 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
675 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
676 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
677 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
678 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
679 		is_l2 = true;
680 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
681 		break;
682 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
683 	case HWTSTAMP_FILTER_ALL:
684 	default:
685 		/*
686 		 * register RXMTRL must be set in order to do V1 packets,
687 		 * therefore it is not possible to time stamp both V1 Sync and
688 		 * Delay_Req messages and hardware does not support
689 		 * timestamping all packets => return error
690 		 */
691 		config.rx_filter = HWTSTAMP_FILTER_NONE;
692 		return -ERANGE;
693 	}
694 
695 	if (hw->mac.type == ixgbe_mac_82598EB) {
696 		if (tsync_rx_ctl | tsync_tx_ctl)
697 			return -ERANGE;
698 		return 0;
699 	}
700 
701 	/* Store filter value for later use */
702 	adapter->rx_hwtstamp_filter = config.rx_filter;
703 
704 	/* define ethertype filter for timestamping L2 packets */
705 	if (is_l2)
706 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
707 				(IXGBE_ETQF_FILTER_EN | /* enable filter */
708 				 IXGBE_ETQF_1588 | /* enable timestamping */
709 				 ETH_P_1588));     /* 1588 eth protocol type */
710 	else
711 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
712 
713 
714 	/* enable/disable TX */
715 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
716 	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
717 	regval |= tsync_tx_ctl;
718 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
719 
720 	/* enable/disable RX */
721 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
722 	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
723 	regval |= tsync_rx_ctl;
724 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
725 
726 	/* define which PTP packets are time stamped */
727 	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
728 
729 	IXGBE_WRITE_FLUSH(hw);
730 
731 	/* clear TX/RX time stamp registers, just to be sure */
732 	regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
733 	regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
734 
735 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
736 		-EFAULT : 0;
737 }
738 
739 /**
740  * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
741  * @adapter: pointer to the adapter structure
742  *
743  * This function should be called to set the proper values for the TIMINCA
744  * register and tell the cyclecounter structure what the tick rate of SYSTIME
745  * is. It does not directly modify SYSTIME registers or the timecounter
746  * structure. It should be called whenever a new TIMINCA value is necessary,
747  * such as during initialization or when the link speed changes.
748  */
749 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
750 {
751 	struct ixgbe_hw *hw = &adapter->hw;
752 	u32 incval = 0;
753 	u32 shift = 0;
754 	unsigned long flags;
755 
756 	/**
757 	 * Scale the NIC cycle counter by a large factor so that
758 	 * relatively small corrections to the frequency can be added
759 	 * or subtracted. The drawbacks of a large factor include
760 	 * (a) the clock register overflows more quickly, (b) the cycle
761 	 * counter structure must be able to convert the systime value
762 	 * to nanoseconds using only a multiplier and a right-shift,
763 	 * and (c) the value must fit within the timinca register space
764 	 * => math based on internal DMA clock rate and available bits
765 	 *
766 	 * Note that when there is no link, internal DMA clock is same as when
767 	 * link speed is 10Gb. Set the registers correctly even when link is
768 	 * down to preserve the clock setting
769 	 */
770 	switch (adapter->link_speed) {
771 	case IXGBE_LINK_SPEED_100_FULL:
772 		incval = IXGBE_INCVAL_100;
773 		shift = IXGBE_INCVAL_SHIFT_100;
774 		break;
775 	case IXGBE_LINK_SPEED_1GB_FULL:
776 		incval = IXGBE_INCVAL_1GB;
777 		shift = IXGBE_INCVAL_SHIFT_1GB;
778 		break;
779 	case IXGBE_LINK_SPEED_10GB_FULL:
780 	default:
781 		incval = IXGBE_INCVAL_10GB;
782 		shift = IXGBE_INCVAL_SHIFT_10GB;
783 		break;
784 	}
785 
786 	/**
787 	 * Modify the calculated values to fit within the correct
788 	 * number of bits specified by the hardware. The 82599 doesn't
789 	 * have the same space as the X540, so bitshift the calculated
790 	 * values to fit.
791 	 */
792 	switch (hw->mac.type) {
793 	case ixgbe_mac_X540:
794 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
795 		break;
796 	case ixgbe_mac_82599EB:
797 		incval >>= IXGBE_INCVAL_SHIFT_82599;
798 		shift -= IXGBE_INCVAL_SHIFT_82599;
799 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
800 				(1 << IXGBE_INCPER_SHIFT_82599) |
801 				incval);
802 		break;
803 	default:
804 		/* other devices aren't supported */
805 		return;
806 	}
807 
808 	/* update the base incval used to calculate frequency adjustment */
809 	ACCESS_ONCE(adapter->base_incval) = incval;
810 	smp_mb();
811 
812 	/* need lock to prevent incorrect read while modifying cyclecounter */
813 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
814 
815 	memset(&adapter->cc, 0, sizeof(adapter->cc));
816 	adapter->cc.read = ixgbe_ptp_read;
817 	adapter->cc.mask = CLOCKSOURCE_MASK(64);
818 	adapter->cc.shift = shift;
819 	adapter->cc.mult = 1;
820 
821 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
822 }
823 
824 /**
825  * ixgbe_ptp_reset
826  * @adapter: the ixgbe private board structure
827  *
828  * When the MAC resets, all timesync features are reset. This function should be
829  * called to re-enable the PTP clock structure. It will re-init the timecounter
830  * structure based on the kernel time as well as setup the cycle counter data.
831  */
832 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
833 {
834 	struct ixgbe_hw *hw = &adapter->hw;
835 	unsigned long flags;
836 
837 	/* set SYSTIME registers to 0 just in case */
838 	IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
839 	IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
840 	IXGBE_WRITE_FLUSH(hw);
841 
842 	ixgbe_ptp_start_cyclecounter(adapter);
843 
844 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
845 
846 	/* reset the ns time counter */
847 	timecounter_init(&adapter->tc, &adapter->cc,
848 			 ktime_to_ns(ktime_get_real()));
849 
850 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
851 
852 	/*
853 	 * Now that the shift has been calculated and the systime
854 	 * registers reset, (re-)enable the Clock out feature
855 	 */
856 	ixgbe_ptp_setup_sdp(adapter);
857 }
858 
859 /**
860  * ixgbe_ptp_init
861  * @adapter: the ixgbe private adapter structure
862  *
863  * This function performs the required steps for enabling ptp
864  * support. If ptp support has already been loaded it simply calls the
865  * cyclecounter init routine and exits.
866  */
867 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
868 {
869 	struct net_device *netdev = adapter->netdev;
870 
871 	switch (adapter->hw.mac.type) {
872 	case ixgbe_mac_X540:
873 		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
874 		adapter->ptp_caps.owner = THIS_MODULE;
875 		adapter->ptp_caps.max_adj = 250000000;
876 		adapter->ptp_caps.n_alarm = 0;
877 		adapter->ptp_caps.n_ext_ts = 0;
878 		adapter->ptp_caps.n_per_out = 0;
879 		adapter->ptp_caps.pps = 1;
880 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
881 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
882 		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
883 		adapter->ptp_caps.settime = ixgbe_ptp_settime;
884 		adapter->ptp_caps.enable = ixgbe_ptp_enable;
885 		break;
886 	case ixgbe_mac_82599EB:
887 		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
888 		adapter->ptp_caps.owner = THIS_MODULE;
889 		adapter->ptp_caps.max_adj = 250000000;
890 		adapter->ptp_caps.n_alarm = 0;
891 		adapter->ptp_caps.n_ext_ts = 0;
892 		adapter->ptp_caps.n_per_out = 0;
893 		adapter->ptp_caps.pps = 0;
894 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
895 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
896 		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
897 		adapter->ptp_caps.settime = ixgbe_ptp_settime;
898 		adapter->ptp_caps.enable = ixgbe_ptp_enable;
899 		break;
900 	default:
901 		adapter->ptp_clock = NULL;
902 		return;
903 	}
904 
905 	/* initialize the ptp filter */
906 	if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter)))
907 		e_dev_warn("ptp_filter_init failed\n");
908 
909 	spin_lock_init(&adapter->tmreg_lock);
910 
911 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
912 						&adapter->pdev->dev);
913 	if (IS_ERR(adapter->ptp_clock)) {
914 		adapter->ptp_clock = NULL;
915 		e_dev_err("ptp_clock_register failed\n");
916 	} else
917 		e_dev_info("registered PHC device on %s\n", netdev->name);
918 
919 	ixgbe_ptp_reset(adapter);
920 
921 	/* set the flag that PTP has been enabled */
922 	adapter->flags2 |= IXGBE_FLAG2_PTP_ENABLED;
923 
924 	return;
925 }
926 
927 /**
928  * ixgbe_ptp_stop - disable ptp device and stop the overflow check
929  * @adapter: pointer to adapter struct
930  *
931  * this function stops the ptp support, and cancels the delayed work.
932  */
933 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
934 {
935 	/* stop the overflow check task */
936 	adapter->flags2 &= ~(IXGBE_FLAG2_PTP_ENABLED |
937 			     IXGBE_FLAG2_PTP_PPS_ENABLED);
938 
939 	ixgbe_ptp_setup_sdp(adapter);
940 
941 	if (adapter->ptp_clock) {
942 		ptp_clock_unregister(adapter->ptp_clock);
943 		adapter->ptp_clock = NULL;
944 		e_dev_info("removed PHC on %s\n",
945 			   adapter->netdev->name);
946 	}
947 }
948