xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_ptp.c (revision add452d09a38c7a7c44aea55c1015392cebf9fa7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #include "ixgbe.h"
5 #include <linux/ptp_classify.h>
6 #include <linux/clocksource.h>
7 
8 /*
9  * The 82599 and the X540 do not have true 64bit nanosecond scale
10  * counter registers. Instead, SYSTIME is defined by a fixed point
11  * system which allows the user to define the scale counter increment
12  * value at every level change of the oscillator driving the SYSTIME
13  * value. For both devices the TIMINCA:IV field defines this
14  * increment. On the X540 device, 31 bits are provided. However on the
15  * 82599 only provides 24 bits. The time unit is determined by the
16  * clock frequency of the oscillator in combination with the TIMINCA
17  * register. When these devices link at 10Gb the oscillator has a
18  * period of 6.4ns. In order to convert the scale counter into
19  * nanoseconds the cyclecounter and timecounter structures are
20  * used. The SYSTIME registers need to be converted to ns values by use
21  * of only a right shift (division by power of 2). The following math
22  * determines the largest incvalue that will fit into the available
23  * bits in the TIMINCA register.
24  *
25  * PeriodWidth: Number of bits to store the clock period
26  * MaxWidth: The maximum width value of the TIMINCA register
27  * Period: The clock period for the oscillator
28  * round(): discard the fractional portion of the calculation
29  *
30  * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
31  *
32  * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
33  * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
34  *
35  * The period also changes based on the link speed:
36  * At 10Gb link or no link, the period remains the same.
37  * At 1Gb link, the period is multiplied by 10. (64ns)
38  * At 100Mb link, the period is multiplied by 100. (640ns)
39  *
40  * The calculated value allows us to right shift the SYSTIME register
41  * value in order to quickly convert it into a nanosecond clock,
42  * while allowing for the maximum possible adjustment value.
43  *
44  * These diagrams are only for the 10Gb link period
45  *
46  *           SYSTIMEH            SYSTIMEL
47  *       +--------------+  +--------------+
48  * X540  |      32      |  | 1 | 3 |  28  |
49  *       *--------------+  +--------------+
50  *        \________ 36 bits ______/  fract
51  *
52  *       +--------------+  +--------------+
53  * 82599 |      32      |  | 8 | 3 |  21  |
54  *       *--------------+  +--------------+
55  *        \________ 43 bits ______/  fract
56  *
57  * The 36 bit X540 SYSTIME overflows every
58  *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
59  *
60  * The 43 bit 82599 SYSTIME overflows every
61  *   2^43 * 10^-9 / 3600 = 2.4 hours
62  */
63 #define IXGBE_INCVAL_10GB 0x66666666
64 #define IXGBE_INCVAL_1GB  0x40000000
65 #define IXGBE_INCVAL_100  0x50000000
66 
67 #define IXGBE_INCVAL_SHIFT_10GB  28
68 #define IXGBE_INCVAL_SHIFT_1GB   24
69 #define IXGBE_INCVAL_SHIFT_100   21
70 
71 #define IXGBE_INCVAL_SHIFT_82599 7
72 #define IXGBE_INCPER_SHIFT_82599 24
73 
74 #define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
75 #define IXGBE_PTP_TX_TIMEOUT     (HZ)
76 
77 /* We use our own definitions instead of NSEC_PER_SEC because we want to mark
78  * the value as a ULL to force precision when bit shifting.
79  */
80 #define NS_PER_SEC      1000000000ULL
81 #define NS_PER_HALF_SEC  500000000ULL
82 
83 /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
84  * which contain measurements of seconds and nanoseconds respectively. This
85  * matches the standard linux representation of time in the kernel. In addition,
86  * the X550 also has a SYSTIMER register which represents residue, or
87  * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
88  * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
89  * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
90  * high bit representing whether the adjustent is positive or negative. Every
91  * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
92  * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
93  * X550's clock for purposes of SYSTIME generation is constant and not dependent
94  * on the link speed.
95  *
96  *           SYSTIMEH           SYSTIMEL        SYSTIMER
97  *       +--------------+  +--------------+  +-------------+
98  * X550  |      32      |  |      32      |  |     32      |
99  *       *--------------+  +--------------+  +-------------+
100  *       \____seconds___/   \_nanoseconds_/  \__2^-32 ns__/
101  *
102  * This results in a full 96 bits to represent the clock, with 32 bits for
103  * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
104  * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
105  * underflow of adjustments.
106  *
107  * The 32 bits of seconds for the X550 overflows every
108  *   2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
109  *
110  * In order to adjust the clock frequency for the X550, the TIMINCA register is
111  * provided. This register represents a + or minus nearly 0.5 ns adjustment to
112  * the base frequency. It is measured in 2^-32 ns units, with the high bit being
113  * the sign bit. This register enables software to calculate frequency
114  * adjustments and apply them directly to the clock rate.
115  *
116  * The math for converting scaled_ppm into TIMINCA values is fairly
117  * straightforward.
118  *
119  *   TIMINCA value = ( Base_Frequency * scaled_ppm ) / 1000000ULL << 16
120  *
121  * To avoid overflow, we simply use mul_u64_u64_div_u64.
122  *
123  * This assumes that scaled_ppm is never high enough to create a value bigger
124  * than TIMINCA's 31 bits can store. This is ensured by the stack, and is
125  * measured in parts per billion. Calculating this value is also simple.
126  *   Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
127  *
128  * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
129  * 12.5 nanoseconds. This means that the Max ppb is 39999999
130  *   Note: We subtract one in order to ensure no overflow, because the TIMINCA
131  *         register can only hold slightly under 0.5 nanoseconds.
132  *
133  * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
134  * into 2^-32 units, which is
135  *
136  *  12.5 * 2^32 = C80000000
137  *
138  * Some revisions of hardware have a faster base frequency than the registers
139  * were defined for. To fix this, we use a timecounter structure with the
140  * proper mult and shift to convert the cycles into nanoseconds of time.
141  */
142 #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
143 #define INCVALUE_MASK	0x7FFFFFFF
144 #define ISGN		0x80000000
145 
146 /**
147  * ixgbe_ptp_setup_sdp_X540
148  * @adapter: private adapter structure
149  *
150  * this function enables or disables the clock out feature on SDP0 for
151  * the X540 device. It will create a 1 second periodic output that can
152  * be used as the PPS (via an interrupt).
153  *
154  * It calculates when the system time will be on an exact second, and then
155  * aligns the start of the PPS signal to that value.
156  *
157  * This works by using the cycle counter shift and mult values in reverse, and
158  * assumes that the values we're shifting will not overflow.
159  */
160 static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter)
161 {
162 	struct cyclecounter *cc = &adapter->hw_cc;
163 	struct ixgbe_hw *hw = &adapter->hw;
164 	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
165 	u64 ns = 0, clock_edge = 0, clock_period;
166 	unsigned long flags;
167 
168 	/* disable the pin first */
169 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
170 	IXGBE_WRITE_FLUSH(hw);
171 
172 	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
173 		return;
174 
175 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
176 
177 	/* enable the SDP0 pin as output, and connected to the
178 	 * native function for Timesync (ClockOut)
179 	 */
180 	esdp |= IXGBE_ESDP_SDP0_DIR |
181 		IXGBE_ESDP_SDP0_NATIVE;
182 
183 	/* enable the Clock Out feature on SDP0, and allow
184 	 * interrupts to occur when the pin changes
185 	 */
186 	tsauxc = (IXGBE_TSAUXC_EN_CLK |
187 		  IXGBE_TSAUXC_SYNCLK |
188 		  IXGBE_TSAUXC_SDP0_INT);
189 
190 	/* Determine the clock time period to use. This assumes that the
191 	 * cycle counter shift is small enough to avoid overflow.
192 	 */
193 	clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult);
194 	clktiml = (u32)(clock_period);
195 	clktimh = (u32)(clock_period >> 32);
196 
197 	/* Read the current clock time, and save the cycle counter value */
198 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
199 	ns = timecounter_read(&adapter->hw_tc);
200 	clock_edge = adapter->hw_tc.cycle_last;
201 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
202 
203 	/* Figure out how many seconds to add in order to round up */
204 	div_u64_rem(ns, NS_PER_SEC, &rem);
205 
206 	/* Figure out how many nanoseconds to add to round the clock edge up
207 	 * to the next full second
208 	 */
209 	rem = (NS_PER_SEC - rem);
210 
211 	/* Adjust the clock edge to align with the next full second. */
212 	clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
213 	trgttiml = (u32)clock_edge;
214 	trgttimh = (u32)(clock_edge >> 32);
215 
216 	IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
217 	IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
218 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
219 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
220 
221 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
222 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
223 
224 	IXGBE_WRITE_FLUSH(hw);
225 }
226 
227 /**
228  * ixgbe_ptp_setup_sdp_X550
229  * @adapter: private adapter structure
230  *
231  * Enable or disable a clock output signal on SDP 0 for X550 hardware.
232  *
233  * Use the target time feature to align the output signal on the next full
234  * second.
235  *
236  * This works by using the cycle counter shift and mult values in reverse, and
237  * assumes that the values we're shifting will not overflow.
238  */
239 static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter)
240 {
241 	u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp;
242 	struct cyclecounter *cc = &adapter->hw_cc;
243 	struct ixgbe_hw *hw = &adapter->hw;
244 	u64 ns = 0, clock_edge = 0;
245 	struct timespec64 ts;
246 	unsigned long flags;
247 
248 	/* disable the pin first */
249 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
250 	IXGBE_WRITE_FLUSH(hw);
251 
252 	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
253 		return;
254 
255 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
256 
257 	/* enable the SDP0 pin as output, and connected to the
258 	 * native function for Timesync (ClockOut)
259 	 */
260 	esdp |= IXGBE_ESDP_SDP0_DIR |
261 		IXGBE_ESDP_SDP0_NATIVE;
262 
263 	/* enable the Clock Out feature on SDP0, and use Target Time 0 to
264 	 * enable generation of interrupts on the clock change.
265 	 */
266 #define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000
267 	tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 |
268 		  IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT |
269 		  IXGBE_TSAUXC_DIS_TS_CLEAR);
270 
271 	tssdp = (IXGBE_TSSDP_TS_SDP0_EN |
272 		 IXGBE_TSSDP_TS_SDP0_CLK0);
273 
274 	/* Determine the clock time period to use. This assumes that the
275 	 * cycle counter shift is small enough to avoid overflowing a 32bit
276 	 * value.
277 	 */
278 	freqout = div_u64(NS_PER_HALF_SEC << cc->shift,  cc->mult);
279 
280 	/* Read the current clock time, and save the cycle counter value */
281 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
282 	ns = timecounter_read(&adapter->hw_tc);
283 	clock_edge = adapter->hw_tc.cycle_last;
284 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
285 
286 	/* Figure out how far past the next second we are */
287 	div_u64_rem(ns, NS_PER_SEC, &rem);
288 
289 	/* Figure out how many nanoseconds to add to round the clock edge up
290 	 * to the next full second
291 	 */
292 	rem = (NS_PER_SEC - rem);
293 
294 	/* Adjust the clock edge to align with the next full second. */
295 	clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
296 
297 	/* X550 hardware stores the time in 32bits of 'billions of cycles' and
298 	 * 32bits of 'cycles'. There's no guarantee that cycles represents
299 	 * nanoseconds. However, we can use the math from a timespec64 to
300 	 * convert into the hardware representation.
301 	 *
302 	 * See ixgbe_ptp_read_X550() for more details.
303 	 */
304 	ts = ns_to_timespec64(clock_edge);
305 	trgttiml = (u32)ts.tv_nsec;
306 	trgttimh = (u32)ts.tv_sec;
307 
308 	IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout);
309 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
310 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
311 
312 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
313 	IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp);
314 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
315 
316 	IXGBE_WRITE_FLUSH(hw);
317 }
318 
319 /**
320  * ixgbe_ptp_read_X550 - read cycle counter value
321  * @cc: cyclecounter structure
322  *
323  * This function reads SYSTIME registers. It is called by the cyclecounter
324  * structure to convert from internal representation into nanoseconds. We need
325  * this for X550 since some skews do not have expected clock frequency and
326  * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
327  * "cycles", rather than seconds and nanoseconds.
328  */
329 static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc)
330 {
331 	struct ixgbe_adapter *adapter =
332 		container_of(cc, struct ixgbe_adapter, hw_cc);
333 	struct ixgbe_hw *hw = &adapter->hw;
334 	struct timespec64 ts;
335 
336 	/* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
337 	 * Some revisions of hardware run at a higher frequency and so the
338 	 * cycles are not guaranteed to be nanoseconds. The timespec64 created
339 	 * here is used for its math/conversions but does not necessarily
340 	 * represent nominal time.
341 	 *
342 	 * It should be noted that this cyclecounter will overflow at a
343 	 * non-bitmask field since we have to convert our billions of cycles
344 	 * into an actual cycles count. This results in some possible weird
345 	 * situations at high cycle counter stamps. However given that 32 bits
346 	 * of "seconds" is ~138 years this isn't a problem. Even at the
347 	 * increased frequency of some revisions, this is still ~103 years.
348 	 * Since the SYSTIME values start at 0 and we never write them, it is
349 	 * highly unlikely for the cyclecounter to overflow in practice.
350 	 */
351 	IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
352 	ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
353 	ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
354 
355 	return (u64)timespec64_to_ns(&ts);
356 }
357 
358 /**
359  * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
360  * @cc: the cyclecounter structure
361  *
362  * this function reads the cyclecounter registers and is called by the
363  * cyclecounter structure used to construct a ns counter from the
364  * arbitrary fixed point registers
365  */
366 static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc)
367 {
368 	struct ixgbe_adapter *adapter =
369 		container_of(cc, struct ixgbe_adapter, hw_cc);
370 	struct ixgbe_hw *hw = &adapter->hw;
371 	u64 stamp = 0;
372 
373 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
374 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
375 
376 	return stamp;
377 }
378 
379 /**
380  * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
381  * @adapter: private adapter structure
382  * @hwtstamp: stack timestamp structure
383  * @timestamp: unsigned 64bit system time value
384  *
385  * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
386  * which can be used by the stack's ptp functions.
387  *
388  * The lock is used to protect consistency of the cyclecounter and the SYSTIME
389  * registers. However, it does not need to protect against the Rx or Tx
390  * timestamp registers, as there can't be a new timestamp until the old one is
391  * unlatched by reading.
392  *
393  * In addition to the timestamp in hardware, some controllers need a software
394  * overflow cyclecounter, and this function takes this into account as well.
395  **/
396 static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
397 					  struct skb_shared_hwtstamps *hwtstamp,
398 					  u64 timestamp)
399 {
400 	unsigned long flags;
401 	struct timespec64 systime;
402 	u64 ns;
403 
404 	memset(hwtstamp, 0, sizeof(*hwtstamp));
405 
406 	switch (adapter->hw.mac.type) {
407 	/* X550 and later hardware supposedly represent time using a seconds
408 	 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
409 	 * to convert the timestamp into cycles before it can be fed to the
410 	 * cyclecounter. We need an actual cyclecounter because some revisions
411 	 * of hardware run at a higher frequency and thus the counter does
412 	 * not represent seconds/nanoseconds. Instead it can be thought of as
413 	 * cycles and billions of cycles.
414 	 */
415 	case ixgbe_mac_X550:
416 	case ixgbe_mac_X550EM_x:
417 	case ixgbe_mac_x550em_a:
418 		/* Upper 32 bits represent billions of cycles, lower 32 bits
419 		 * represent cycles. However, we use timespec64_to_ns for the
420 		 * correct math even though the units haven't been corrected
421 		 * yet.
422 		 */
423 		systime.tv_sec = timestamp >> 32;
424 		systime.tv_nsec = timestamp & 0xFFFFFFFF;
425 
426 		timestamp = timespec64_to_ns(&systime);
427 		break;
428 	default:
429 		break;
430 	}
431 
432 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
433 	ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
434 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
435 
436 	hwtstamp->hwtstamp = ns_to_ktime(ns);
437 }
438 
439 /**
440  * ixgbe_ptp_adjfine_82599
441  * @ptp: the ptp clock structure
442  * @scaled_ppm: scaled parts per million adjustment from base
443  *
444  * Adjust the frequency of the ptp cycle counter by the
445  * indicated scaled_ppm from the base frequency.
446  *
447  * Scaled parts per million is ppm with a 16-bit binary fractional field.
448  */
449 static int ixgbe_ptp_adjfine_82599(struct ptp_clock_info *ptp, long scaled_ppm)
450 {
451 	struct ixgbe_adapter *adapter =
452 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
453 	struct ixgbe_hw *hw = &adapter->hw;
454 	u64 incval;
455 
456 	smp_mb();
457 	incval = READ_ONCE(adapter->base_incval);
458 	incval = adjust_by_scaled_ppm(incval, scaled_ppm);
459 
460 	switch (hw->mac.type) {
461 	case ixgbe_mac_X540:
462 		if (incval > 0xFFFFFFFFULL)
463 			e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
464 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
465 		break;
466 	case ixgbe_mac_82599EB:
467 		if (incval > 0x00FFFFFFULL)
468 			e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
469 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
470 				BIT(IXGBE_INCPER_SHIFT_82599) |
471 				((u32)incval & 0x00FFFFFFUL));
472 		break;
473 	default:
474 		break;
475 	}
476 
477 	return 0;
478 }
479 
480 /**
481  * ixgbe_ptp_adjfine_X550
482  * @ptp: the ptp clock structure
483  * @scaled_ppm: scaled parts per million adjustment from base
484  *
485  * Adjust the frequency of the SYSTIME registers by the indicated scaled_ppm
486  * from base frequency.
487  *
488  * Scaled parts per million is ppm with a 16-bit binary fractional field.
489  */
490 static int ixgbe_ptp_adjfine_X550(struct ptp_clock_info *ptp, long scaled_ppm)
491 {
492 	struct ixgbe_adapter *adapter =
493 			container_of(ptp, struct ixgbe_adapter, ptp_caps);
494 	struct ixgbe_hw *hw = &adapter->hw;
495 	bool neg_adj;
496 	u64 rate;
497 	u32 inca;
498 
499 	neg_adj = diff_by_scaled_ppm(IXGBE_X550_BASE_PERIOD, scaled_ppm, &rate);
500 
501 	/* warn if rate is too large */
502 	if (rate >= INCVALUE_MASK)
503 		e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
504 
505 	inca = rate & INCVALUE_MASK;
506 	if (neg_adj)
507 		inca |= ISGN;
508 
509 	IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
510 
511 	return 0;
512 }
513 
514 /**
515  * ixgbe_ptp_adjtime
516  * @ptp: the ptp clock structure
517  * @delta: offset to adjust the cycle counter by
518  *
519  * adjust the timer by resetting the timecounter structure.
520  */
521 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
522 {
523 	struct ixgbe_adapter *adapter =
524 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
525 	unsigned long flags;
526 
527 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
528 	timecounter_adjtime(&adapter->hw_tc, delta);
529 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
530 
531 	if (adapter->ptp_setup_sdp)
532 		adapter->ptp_setup_sdp(adapter);
533 
534 	return 0;
535 }
536 
537 /**
538  * ixgbe_ptp_gettimex
539  * @ptp: the ptp clock structure
540  * @ts: timespec to hold the PHC timestamp
541  * @sts: structure to hold the system time before and after reading the PHC
542  *
543  * read the timecounter and return the correct value on ns,
544  * after converting it into a struct timespec.
545  */
546 static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp,
547 			      struct timespec64 *ts,
548 			      struct ptp_system_timestamp *sts)
549 {
550 	struct ixgbe_adapter *adapter =
551 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
552 	struct ixgbe_hw *hw = &adapter->hw;
553 	unsigned long flags;
554 	u64 ns, stamp;
555 
556 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
557 
558 	switch (adapter->hw.mac.type) {
559 	case ixgbe_mac_X550:
560 	case ixgbe_mac_X550EM_x:
561 	case ixgbe_mac_x550em_a:
562 		/* Upper 32 bits represent billions of cycles, lower 32 bits
563 		 * represent cycles. However, we use timespec64_to_ns for the
564 		 * correct math even though the units haven't been corrected
565 		 * yet.
566 		 */
567 		ptp_read_system_prets(sts);
568 		IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
569 		ptp_read_system_postts(sts);
570 		ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
571 		ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
572 		stamp = timespec64_to_ns(ts);
573 		break;
574 	default:
575 		ptp_read_system_prets(sts);
576 		stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
577 		ptp_read_system_postts(sts);
578 		stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
579 		break;
580 	}
581 
582 	ns = timecounter_cyc2time(&adapter->hw_tc, stamp);
583 
584 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
585 
586 	*ts = ns_to_timespec64(ns);
587 
588 	return 0;
589 }
590 
591 /**
592  * ixgbe_ptp_settime
593  * @ptp: the ptp clock structure
594  * @ts: the timespec containing the new time for the cycle counter
595  *
596  * reset the timecounter to use a new base value instead of the kernel
597  * wall timer value.
598  */
599 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
600 			     const struct timespec64 *ts)
601 {
602 	struct ixgbe_adapter *adapter =
603 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
604 	unsigned long flags;
605 	u64 ns = timespec64_to_ns(ts);
606 
607 	/* reset the timecounter */
608 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
609 	timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
610 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
611 
612 	if (adapter->ptp_setup_sdp)
613 		adapter->ptp_setup_sdp(adapter);
614 	return 0;
615 }
616 
617 /**
618  * ixgbe_ptp_feature_enable
619  * @ptp: the ptp clock structure
620  * @rq: the requested feature to change
621  * @on: whether to enable or disable the feature
622  *
623  * enable (or disable) ancillary features of the phc subsystem.
624  * our driver only supports the PPS feature on the X540
625  */
626 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
627 				    struct ptp_clock_request *rq, int on)
628 {
629 	struct ixgbe_adapter *adapter =
630 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
631 
632 	/**
633 	 * When PPS is enabled, unmask the interrupt for the ClockOut
634 	 * feature, so that the interrupt handler can send the PPS
635 	 * event when the clock SDP triggers. Clear mask when PPS is
636 	 * disabled
637 	 */
638 	if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
639 		return -ENOTSUPP;
640 
641 	if (on)
642 		adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
643 	else
644 		adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
645 
646 	adapter->ptp_setup_sdp(adapter);
647 	return 0;
648 }
649 
650 /**
651  * ixgbe_ptp_check_pps_event
652  * @adapter: the private adapter structure
653  *
654  * This function is called by the interrupt routine when checking for
655  * interrupts. It will check and handle a pps event.
656  */
657 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
658 {
659 	struct ixgbe_hw *hw = &adapter->hw;
660 	struct ptp_clock_event event;
661 
662 	event.type = PTP_CLOCK_PPS;
663 
664 	/* this check is necessary in case the interrupt was enabled via some
665 	 * alternative means (ex. debug_fs). Better to check here than
666 	 * everywhere that calls this function.
667 	 */
668 	if (!adapter->ptp_clock)
669 		return;
670 
671 	switch (hw->mac.type) {
672 	case ixgbe_mac_X540:
673 		ptp_clock_event(adapter->ptp_clock, &event);
674 		break;
675 	default:
676 		break;
677 	}
678 }
679 
680 /**
681  * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
682  * @adapter: private adapter struct
683  *
684  * this watchdog task periodically reads the timecounter
685  * in order to prevent missing when the system time registers wrap
686  * around. This needs to be run approximately twice a minute.
687  */
688 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
689 {
690 	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
691 					     IXGBE_OVERFLOW_PERIOD);
692 	unsigned long flags;
693 
694 	if (timeout) {
695 		/* Update the timecounter */
696 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
697 		timecounter_read(&adapter->hw_tc);
698 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
699 
700 		adapter->last_overflow_check = jiffies;
701 	}
702 }
703 
704 /**
705  * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
706  * @adapter: private network adapter structure
707  *
708  * this watchdog task is scheduled to detect error case where hardware has
709  * dropped an Rx packet that was timestamped when the ring is full. The
710  * particular error is rare but leaves the device in a state unable to timestamp
711  * any future packets.
712  */
713 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
714 {
715 	struct ixgbe_hw *hw = &adapter->hw;
716 	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
717 	struct ixgbe_ring *rx_ring;
718 	unsigned long rx_event;
719 	int n;
720 
721 	/* if we don't have a valid timestamp in the registers, just update the
722 	 * timeout counter and exit
723 	 */
724 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
725 		adapter->last_rx_ptp_check = jiffies;
726 		return;
727 	}
728 
729 	/* determine the most recent watchdog or rx_timestamp event */
730 	rx_event = adapter->last_rx_ptp_check;
731 	for (n = 0; n < adapter->num_rx_queues; n++) {
732 		rx_ring = adapter->rx_ring[n];
733 		if (time_after(rx_ring->last_rx_timestamp, rx_event))
734 			rx_event = rx_ring->last_rx_timestamp;
735 	}
736 
737 	/* only need to read the high RXSTMP register to clear the lock */
738 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
739 		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
740 		adapter->last_rx_ptp_check = jiffies;
741 
742 		adapter->rx_hwtstamp_cleared++;
743 		e_warn(drv, "clearing RX Timestamp hang\n");
744 	}
745 }
746 
747 /**
748  * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
749  * @adapter: the private adapter structure
750  *
751  * This function should be called whenever the state related to a Tx timestamp
752  * needs to be cleared. This helps ensure that all related bits are reset for
753  * the next Tx timestamp event.
754  */
755 static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
756 {
757 	struct ixgbe_hw *hw = &adapter->hw;
758 
759 	IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
760 	if (adapter->ptp_tx_skb) {
761 		dev_kfree_skb_any(adapter->ptp_tx_skb);
762 		adapter->ptp_tx_skb = NULL;
763 	}
764 	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
765 }
766 
767 /**
768  * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
769  * @adapter: private network adapter structure
770  */
771 void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter)
772 {
773 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
774 					      IXGBE_PTP_TX_TIMEOUT);
775 
776 	if (!adapter->ptp_tx_skb)
777 		return;
778 
779 	if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state))
780 		return;
781 
782 	/* If we haven't received a timestamp within the timeout, it is
783 	 * reasonable to assume that it will never occur, so we can unlock the
784 	 * timestamp bit when this occurs.
785 	 */
786 	if (timeout) {
787 		cancel_work_sync(&adapter->ptp_tx_work);
788 		ixgbe_ptp_clear_tx_timestamp(adapter);
789 		adapter->tx_hwtstamp_timeouts++;
790 		e_warn(drv, "clearing Tx timestamp hang\n");
791 	}
792 }
793 
794 /**
795  * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
796  * @adapter: the private adapter struct
797  *
798  * if the timestamp is valid, we convert it into the timecounter ns
799  * value, then store that result into the shhwtstamps structure which
800  * is passed up the network stack
801  */
802 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
803 {
804 	struct sk_buff *skb = adapter->ptp_tx_skb;
805 	struct ixgbe_hw *hw = &adapter->hw;
806 	struct skb_shared_hwtstamps shhwtstamps;
807 	u64 regval = 0;
808 
809 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
810 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
811 	ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
812 
813 	/* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
814 	 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents
815 	 * well behaved applications from attempting to timestamp again prior
816 	 * to the lock bit being clear.
817 	 */
818 	adapter->ptp_tx_skb = NULL;
819 	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
820 
821 	/* Notify the stack and then free the skb after we've unlocked */
822 	skb_tstamp_tx(skb, &shhwtstamps);
823 	dev_kfree_skb_any(skb);
824 }
825 
826 /**
827  * ixgbe_ptp_tx_hwtstamp_work
828  * @work: pointer to the work struct
829  *
830  * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
831  * timestamp has been taken for the current skb. It is necessary, because the
832  * descriptor's "done" bit does not correlate with the timestamp event.
833  */
834 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
835 {
836 	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
837 						     ptp_tx_work);
838 	struct ixgbe_hw *hw = &adapter->hw;
839 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
840 					      IXGBE_PTP_TX_TIMEOUT);
841 	u32 tsynctxctl;
842 
843 	/* we have to have a valid skb to poll for a timestamp */
844 	if (!adapter->ptp_tx_skb) {
845 		ixgbe_ptp_clear_tx_timestamp(adapter);
846 		return;
847 	}
848 
849 	/* stop polling once we have a valid timestamp */
850 	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
851 	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
852 		ixgbe_ptp_tx_hwtstamp(adapter);
853 		return;
854 	}
855 
856 	if (timeout) {
857 		ixgbe_ptp_clear_tx_timestamp(adapter);
858 		adapter->tx_hwtstamp_timeouts++;
859 		e_warn(drv, "clearing Tx Timestamp hang\n");
860 	} else {
861 		/* reschedule to keep checking if it's not available yet */
862 		schedule_work(&adapter->ptp_tx_work);
863 	}
864 }
865 
866 /**
867  * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
868  * @q_vector: structure containing interrupt and ring information
869  * @skb: the packet
870  *
871  * This function will be called by the Rx routine of the timestamp for this
872  * packet is stored in the buffer. The value is stored in little endian format
873  * starting at the end of the packet data.
874  */
875 void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
876 			   struct sk_buff *skb)
877 {
878 	__le64 regval;
879 
880 	/* copy the bits out of the skb, and then trim the skb length */
881 	skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, &regval,
882 		      IXGBE_TS_HDR_LEN);
883 	__pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
884 
885 	/* The timestamp is recorded in little endian format, and is stored at
886 	 * the end of the packet.
887 	 *
888 	 * DWORD: N              N + 1      N + 2
889 	 * Field: End of Packet  SYSTIMH    SYSTIML
890 	 */
891 	ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
892 				      le64_to_cpu(regval));
893 }
894 
895 /**
896  * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
897  * @q_vector: structure containing interrupt and ring information
898  * @skb: particular skb to send timestamp with
899  *
900  * if the timestamp is valid, we convert it into the timecounter ns
901  * value, then store that result into the shhwtstamps structure which
902  * is passed up the network stack
903  */
904 void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
905 			   struct sk_buff *skb)
906 {
907 	struct ixgbe_adapter *adapter;
908 	struct ixgbe_hw *hw;
909 	u64 regval = 0;
910 	u32 tsyncrxctl;
911 
912 	/* we cannot process timestamps on a ring without a q_vector */
913 	if (!q_vector || !q_vector->adapter)
914 		return;
915 
916 	adapter = q_vector->adapter;
917 	hw = &adapter->hw;
918 
919 	/* Read the tsyncrxctl register afterwards in order to prevent taking an
920 	 * I/O hit on every packet.
921 	 */
922 
923 	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
924 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
925 		return;
926 
927 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
928 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
929 
930 	ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
931 }
932 
933 /**
934  * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration
935  * @adapter: pointer to adapter structure
936  * @ifr: ioctl data
937  *
938  * This function returns the current timestamping settings. Rather than
939  * attempt to deconstruct registers to fill in the values, simply keep a copy
940  * of the old settings around, and return a copy when requested.
941  */
942 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
943 {
944 	struct hwtstamp_config *config = &adapter->tstamp_config;
945 
946 	return copy_to_user(ifr->ifr_data, config,
947 			    sizeof(*config)) ? -EFAULT : 0;
948 }
949 
950 /**
951  * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
952  * @adapter: the private ixgbe adapter structure
953  * @config: the hwtstamp configuration requested
954  *
955  * Outgoing time stamping can be enabled and disabled. Play nice and
956  * disable it when requested, although it shouldn't cause any overhead
957  * when no packet needs it. At most one packet in the queue may be
958  * marked for time stamping, otherwise it would be impossible to tell
959  * for sure to which packet the hardware time stamp belongs.
960  *
961  * Incoming time stamping has to be configured via the hardware
962  * filters. Not all combinations are supported, in particular event
963  * type has to be specified. Matching the kind of event packet is
964  * not supported, with the exception of "all V2 events regardless of
965  * level 2 or 4".
966  *
967  * Since hardware always timestamps Path delay packets when timestamping V2
968  * packets, regardless of the type specified in the register, only use V2
969  * Event mode. This more accurately tells the user what the hardware is going
970  * to do anyways.
971  *
972  * Note: this may modify the hwtstamp configuration towards a more general
973  * mode, if required to support the specifically requested mode.
974  */
975 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
976 				 struct hwtstamp_config *config)
977 {
978 	struct ixgbe_hw *hw = &adapter->hw;
979 	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
980 	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
981 	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
982 	u32 aflags = adapter->flags;
983 	bool is_l2 = false;
984 	u32 regval;
985 
986 	switch (config->tx_type) {
987 	case HWTSTAMP_TX_OFF:
988 		tsync_tx_ctl = 0;
989 		break;
990 	case HWTSTAMP_TX_ON:
991 		break;
992 	default:
993 		return -ERANGE;
994 	}
995 
996 	switch (config->rx_filter) {
997 	case HWTSTAMP_FILTER_NONE:
998 		tsync_rx_ctl = 0;
999 		tsync_rx_mtrl = 0;
1000 		aflags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1001 			    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1002 		break;
1003 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1004 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1005 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
1006 		aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1007 			   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1008 		break;
1009 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1010 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1011 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
1012 		aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1013 			   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1014 		break;
1015 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1016 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1017 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1018 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1019 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1020 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1021 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1022 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1023 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1024 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
1025 		is_l2 = true;
1026 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1027 		aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1028 			   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1029 		break;
1030 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1031 	case HWTSTAMP_FILTER_NTP_ALL:
1032 	case HWTSTAMP_FILTER_ALL:
1033 		/* The X550 controller is capable of timestamping all packets,
1034 		 * which allows it to accept any filter.
1035 		 */
1036 		if (hw->mac.type >= ixgbe_mac_X550) {
1037 			tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
1038 			config->rx_filter = HWTSTAMP_FILTER_ALL;
1039 			aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1040 			break;
1041 		}
1042 		fallthrough;
1043 	default:
1044 		/*
1045 		 * register RXMTRL must be set in order to do V1 packets,
1046 		 * therefore it is not possible to time stamp both V1 Sync and
1047 		 * Delay_Req messages and hardware does not support
1048 		 * timestamping all packets => return error
1049 		 */
1050 		config->rx_filter = HWTSTAMP_FILTER_NONE;
1051 		return -ERANGE;
1052 	}
1053 
1054 	if (hw->mac.type == ixgbe_mac_82598EB) {
1055 		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1056 				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1057 		if (tsync_rx_ctl | tsync_tx_ctl)
1058 			return -ERANGE;
1059 		return 0;
1060 	}
1061 
1062 	/* Per-packet timestamping only works if the filter is set to all
1063 	 * packets. Since this is desired, always timestamp all packets as long
1064 	 * as any Rx filter was configured.
1065 	 */
1066 	switch (hw->mac.type) {
1067 	case ixgbe_mac_X550:
1068 	case ixgbe_mac_X550EM_x:
1069 	case ixgbe_mac_x550em_a:
1070 		/* enable timestamping all packets only if at least some
1071 		 * packets were requested. Otherwise, play nice and disable
1072 		 * timestamping
1073 		 */
1074 		if (config->rx_filter == HWTSTAMP_FILTER_NONE)
1075 			break;
1076 
1077 		tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
1078 			       IXGBE_TSYNCRXCTL_TYPE_ALL |
1079 			       IXGBE_TSYNCRXCTL_TSIP_UT_EN;
1080 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1081 		aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1082 		aflags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
1083 		is_l2 = true;
1084 		break;
1085 	default:
1086 		break;
1087 	}
1088 
1089 	/* define ethertype filter for timestamping L2 packets */
1090 	if (is_l2)
1091 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
1092 				(IXGBE_ETQF_FILTER_EN | /* enable filter */
1093 				 IXGBE_ETQF_1588 | /* enable timestamping */
1094 				 ETH_P_1588));     /* 1588 eth protocol type */
1095 	else
1096 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
1097 
1098 	/* enable/disable TX */
1099 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
1100 	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
1101 	regval |= tsync_tx_ctl;
1102 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
1103 
1104 	/* enable/disable RX */
1105 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
1106 	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
1107 	regval |= tsync_rx_ctl;
1108 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
1109 
1110 	/* define which PTP packets are time stamped */
1111 	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
1112 
1113 	IXGBE_WRITE_FLUSH(hw);
1114 
1115 	/* configure adapter flags only when HW is actually configured */
1116 	adapter->flags = aflags;
1117 
1118 	/* clear TX/RX time stamp registers, just to be sure */
1119 	ixgbe_ptp_clear_tx_timestamp(adapter);
1120 	IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
1121 
1122 	return 0;
1123 }
1124 
1125 /**
1126  * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
1127  * @adapter: pointer to adapter struct
1128  * @ifr: ioctl data
1129  *
1130  * Set hardware to requested mode. If unsupported, return an error with no
1131  * changes. Otherwise, store the mode for future reference.
1132  */
1133 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
1134 {
1135 	struct hwtstamp_config config;
1136 	int err;
1137 
1138 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1139 		return -EFAULT;
1140 
1141 	err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
1142 	if (err)
1143 		return err;
1144 
1145 	/* save these settings for future reference */
1146 	memcpy(&adapter->tstamp_config, &config,
1147 	       sizeof(adapter->tstamp_config));
1148 
1149 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1150 		-EFAULT : 0;
1151 }
1152 
1153 static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1154 					u32 *shift, u32 *incval)
1155 {
1156 	/**
1157 	 * Scale the NIC cycle counter by a large factor so that
1158 	 * relatively small corrections to the frequency can be added
1159 	 * or subtracted. The drawbacks of a large factor include
1160 	 * (a) the clock register overflows more quickly, (b) the cycle
1161 	 * counter structure must be able to convert the systime value
1162 	 * to nanoseconds using only a multiplier and a right-shift,
1163 	 * and (c) the value must fit within the timinca register space
1164 	 * => math based on internal DMA clock rate and available bits
1165 	 *
1166 	 * Note that when there is no link, internal DMA clock is same as when
1167 	 * link speed is 10Gb. Set the registers correctly even when link is
1168 	 * down to preserve the clock setting
1169 	 */
1170 	switch (adapter->link_speed) {
1171 	case IXGBE_LINK_SPEED_100_FULL:
1172 		*shift = IXGBE_INCVAL_SHIFT_100;
1173 		*incval = IXGBE_INCVAL_100;
1174 		break;
1175 	case IXGBE_LINK_SPEED_1GB_FULL:
1176 		*shift = IXGBE_INCVAL_SHIFT_1GB;
1177 		*incval = IXGBE_INCVAL_1GB;
1178 		break;
1179 	case IXGBE_LINK_SPEED_10GB_FULL:
1180 	default:
1181 		*shift = IXGBE_INCVAL_SHIFT_10GB;
1182 		*incval = IXGBE_INCVAL_10GB;
1183 		break;
1184 	}
1185 }
1186 
1187 /**
1188  * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1189  * @adapter: pointer to the adapter structure
1190  *
1191  * This function should be called to set the proper values for the TIMINCA
1192  * register and tell the cyclecounter structure what the tick rate of SYSTIME
1193  * is. It does not directly modify SYSTIME registers or the timecounter
1194  * structure. It should be called whenever a new TIMINCA value is necessary,
1195  * such as during initialization or when the link speed changes.
1196  */
1197 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1198 {
1199 	struct ixgbe_hw *hw = &adapter->hw;
1200 	struct cyclecounter cc;
1201 	unsigned long flags;
1202 	u32 incval = 0;
1203 	u32 fuse0 = 0;
1204 
1205 	/* For some of the boards below this mask is technically incorrect.
1206 	 * The timestamp mask overflows at approximately 61bits. However the
1207 	 * particular hardware does not overflow on an even bitmask value.
1208 	 * Instead, it overflows due to conversion of upper 32bits billions of
1209 	 * cycles. Timecounters are not really intended for this purpose so
1210 	 * they do not properly function if the overflow point isn't 2^N-1.
1211 	 * However, the actual SYSTIME values in question take ~138 years to
1212 	 * overflow. In practice this means they won't actually overflow. A
1213 	 * proper fix to this problem would require modification of the
1214 	 * timecounter delta calculations.
1215 	 */
1216 	cc.mask = CLOCKSOURCE_MASK(64);
1217 	cc.mult = 1;
1218 	cc.shift = 0;
1219 
1220 	switch (hw->mac.type) {
1221 	case ixgbe_mac_X550EM_x:
1222 		/* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1223 		 * designed to represent seconds and nanoseconds when this is
1224 		 * the case. However, some revisions of hardware have a 400Mhz
1225 		 * clock and we have to compensate for this frequency
1226 		 * variation using corrected mult and shift values.
1227 		 */
1228 		fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1229 		if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1230 			cc.mult = 3;
1231 			cc.shift = 2;
1232 		}
1233 		fallthrough;
1234 	case ixgbe_mac_x550em_a:
1235 	case ixgbe_mac_X550:
1236 		cc.read = ixgbe_ptp_read_X550;
1237 		break;
1238 	case ixgbe_mac_X540:
1239 		cc.read = ixgbe_ptp_read_82599;
1240 
1241 		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1242 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1243 		break;
1244 	case ixgbe_mac_82599EB:
1245 		cc.read = ixgbe_ptp_read_82599;
1246 
1247 		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1248 		incval >>= IXGBE_INCVAL_SHIFT_82599;
1249 		cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1250 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1251 				BIT(IXGBE_INCPER_SHIFT_82599) | incval);
1252 		break;
1253 	default:
1254 		/* other devices aren't supported */
1255 		return;
1256 	}
1257 
1258 	/* update the base incval used to calculate frequency adjustment */
1259 	WRITE_ONCE(adapter->base_incval, incval);
1260 	smp_mb();
1261 
1262 	/* need lock to prevent incorrect read while modifying cyclecounter */
1263 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1264 	memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1265 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1266 }
1267 
1268 /**
1269  * ixgbe_ptp_init_systime - Initialize SYSTIME registers
1270  * @adapter: the ixgbe private board structure
1271  *
1272  * Initialize and start the SYSTIME registers.
1273  */
1274 static void ixgbe_ptp_init_systime(struct ixgbe_adapter *adapter)
1275 {
1276 	struct ixgbe_hw *hw = &adapter->hw;
1277 	u32 tsauxc;
1278 
1279 	switch (hw->mac.type) {
1280 	case ixgbe_mac_X550EM_x:
1281 	case ixgbe_mac_x550em_a:
1282 	case ixgbe_mac_X550:
1283 		tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1284 
1285 		/* Reset SYSTIME registers to 0 */
1286 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1287 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1288 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1289 
1290 		/* Reset interrupt settings */
1291 		IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1292 		IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1293 
1294 		/* Activate the SYSTIME counter */
1295 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1296 				tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1297 		break;
1298 	case ixgbe_mac_X540:
1299 	case ixgbe_mac_82599EB:
1300 		/* Reset SYSTIME registers to 0 */
1301 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1302 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1303 		break;
1304 	default:
1305 		/* Other devices aren't supported */
1306 		return;
1307 	}
1308 
1309 	IXGBE_WRITE_FLUSH(hw);
1310 }
1311 
1312 /**
1313  * ixgbe_ptp_reset
1314  * @adapter: the ixgbe private board structure
1315  *
1316  * When the MAC resets, all the hardware bits for timesync are reset. This
1317  * function is used to re-enable the device for PTP based on current settings.
1318  * We do lose the current clock time, so just reset the cyclecounter to the
1319  * system real clock time.
1320  *
1321  * This function will maintain hwtstamp_config settings, and resets the SDP
1322  * output if it was enabled.
1323  */
1324 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1325 {
1326 	struct ixgbe_hw *hw = &adapter->hw;
1327 	unsigned long flags;
1328 
1329 	/* reset the hardware timestamping mode */
1330 	ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1331 
1332 	/* 82598 does not support PTP */
1333 	if (hw->mac.type == ixgbe_mac_82598EB)
1334 		return;
1335 
1336 	ixgbe_ptp_start_cyclecounter(adapter);
1337 
1338 	ixgbe_ptp_init_systime(adapter);
1339 
1340 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1341 	timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1342 			 ktime_to_ns(ktime_get_real()));
1343 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1344 
1345 	adapter->last_overflow_check = jiffies;
1346 
1347 	/* Now that the shift has been calculated and the systime
1348 	 * registers reset, (re-)enable the Clock out feature
1349 	 */
1350 	if (adapter->ptp_setup_sdp)
1351 		adapter->ptp_setup_sdp(adapter);
1352 }
1353 
1354 /**
1355  * ixgbe_ptp_create_clock
1356  * @adapter: the ixgbe private adapter structure
1357  *
1358  * This function performs setup of the user entry point function table and
1359  * initializes the PTP clock device, which is used to access the clock-like
1360  * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1361  * reuse a previously initialized clock (such as during a suspend/resume
1362  * cycle).
1363  */
1364 static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1365 {
1366 	struct net_device *netdev = adapter->netdev;
1367 	long err;
1368 
1369 	/* do nothing if we already have a clock device */
1370 	if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1371 		return 0;
1372 
1373 	switch (adapter->hw.mac.type) {
1374 	case ixgbe_mac_X540:
1375 		snprintf(adapter->ptp_caps.name,
1376 			 sizeof(adapter->ptp_caps.name),
1377 			 "%s", netdev->name);
1378 		adapter->ptp_caps.owner = THIS_MODULE;
1379 		adapter->ptp_caps.max_adj = 250000000;
1380 		adapter->ptp_caps.n_alarm = 0;
1381 		adapter->ptp_caps.n_ext_ts = 0;
1382 		adapter->ptp_caps.n_per_out = 0;
1383 		adapter->ptp_caps.pps = 1;
1384 		adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
1385 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1386 		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1387 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1388 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1389 		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540;
1390 		break;
1391 	case ixgbe_mac_82599EB:
1392 		snprintf(adapter->ptp_caps.name,
1393 			 sizeof(adapter->ptp_caps.name),
1394 			 "%s", netdev->name);
1395 		adapter->ptp_caps.owner = THIS_MODULE;
1396 		adapter->ptp_caps.max_adj = 250000000;
1397 		adapter->ptp_caps.n_alarm = 0;
1398 		adapter->ptp_caps.n_ext_ts = 0;
1399 		adapter->ptp_caps.n_per_out = 0;
1400 		adapter->ptp_caps.pps = 0;
1401 		adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
1402 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1403 		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1404 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1405 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1406 		break;
1407 	case ixgbe_mac_X550:
1408 	case ixgbe_mac_X550EM_x:
1409 	case ixgbe_mac_x550em_a:
1410 		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1411 		adapter->ptp_caps.owner = THIS_MODULE;
1412 		adapter->ptp_caps.max_adj = 30000000;
1413 		adapter->ptp_caps.n_alarm = 0;
1414 		adapter->ptp_caps.n_ext_ts = 0;
1415 		adapter->ptp_caps.n_per_out = 0;
1416 		adapter->ptp_caps.pps = 1;
1417 		adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_X550;
1418 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1419 		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1420 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1421 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1422 		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550;
1423 		break;
1424 	default:
1425 		adapter->ptp_clock = NULL;
1426 		adapter->ptp_setup_sdp = NULL;
1427 		return -EOPNOTSUPP;
1428 	}
1429 
1430 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1431 						&adapter->pdev->dev);
1432 	if (IS_ERR(adapter->ptp_clock)) {
1433 		err = PTR_ERR(adapter->ptp_clock);
1434 		adapter->ptp_clock = NULL;
1435 		e_dev_err("ptp_clock_register failed\n");
1436 		return err;
1437 	} else if (adapter->ptp_clock)
1438 		e_dev_info("registered PHC device on %s\n", netdev->name);
1439 
1440 	/* set default timestamp mode to disabled here. We do this in
1441 	 * create_clock instead of init, because we don't want to override the
1442 	 * previous settings during a resume cycle.
1443 	 */
1444 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1445 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1446 
1447 	return 0;
1448 }
1449 
1450 /**
1451  * ixgbe_ptp_init
1452  * @adapter: the ixgbe private adapter structure
1453  *
1454  * This function performs the required steps for enabling PTP
1455  * support. If PTP support has already been loaded it simply calls the
1456  * cyclecounter init routine and exits.
1457  */
1458 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1459 {
1460 	/* initialize the spin lock first since we can't control when a user
1461 	 * will call the entry functions once we have initialized the clock
1462 	 * device
1463 	 */
1464 	spin_lock_init(&adapter->tmreg_lock);
1465 
1466 	/* obtain a PTP device, or re-use an existing device */
1467 	if (ixgbe_ptp_create_clock(adapter))
1468 		return;
1469 
1470 	/* we have a clock so we can initialize work now */
1471 	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1472 
1473 	/* reset the PTP related hardware bits */
1474 	ixgbe_ptp_reset(adapter);
1475 
1476 	/* enter the IXGBE_PTP_RUNNING state */
1477 	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1478 
1479 	return;
1480 }
1481 
1482 /**
1483  * ixgbe_ptp_suspend - stop PTP work items
1484  * @adapter: pointer to adapter struct
1485  *
1486  * this function suspends PTP activity, and prevents more PTP work from being
1487  * generated, but does not destroy the PTP clock device.
1488  */
1489 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1490 {
1491 	/* Leave the IXGBE_PTP_RUNNING state. */
1492 	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1493 		return;
1494 
1495 	adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1496 	if (adapter->ptp_setup_sdp)
1497 		adapter->ptp_setup_sdp(adapter);
1498 
1499 	/* ensure that we cancel any pending PTP Tx work item in progress */
1500 	cancel_work_sync(&adapter->ptp_tx_work);
1501 	ixgbe_ptp_clear_tx_timestamp(adapter);
1502 }
1503 
1504 /**
1505  * ixgbe_ptp_stop - close the PTP device
1506  * @adapter: pointer to adapter struct
1507  *
1508  * completely destroy the PTP device, should only be called when the device is
1509  * being fully closed.
1510  */
1511 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1512 {
1513 	/* first, suspend PTP activity */
1514 	ixgbe_ptp_suspend(adapter);
1515 
1516 	/* disable the PTP clock device */
1517 	if (adapter->ptp_clock) {
1518 		ptp_clock_unregister(adapter->ptp_clock);
1519 		adapter->ptp_clock = NULL;
1520 		e_dev_info("removed PHC on %s\n",
1521 			   adapter->netdev->name);
1522 	}
1523 }
1524