1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 #include "ixgbe.h" 5 #include <linux/ptp_classify.h> 6 #include <linux/clocksource.h> 7 8 /* 9 * The 82599 and the X540 do not have true 64bit nanosecond scale 10 * counter registers. Instead, SYSTIME is defined by a fixed point 11 * system which allows the user to define the scale counter increment 12 * value at every level change of the oscillator driving the SYSTIME 13 * value. For both devices the TIMINCA:IV field defines this 14 * increment. On the X540 device, 31 bits are provided. However on the 15 * 82599 only provides 24 bits. The time unit is determined by the 16 * clock frequency of the oscillator in combination with the TIMINCA 17 * register. When these devices link at 10Gb the oscillator has a 18 * period of 6.4ns. In order to convert the scale counter into 19 * nanoseconds the cyclecounter and timecounter structures are 20 * used. The SYSTIME registers need to be converted to ns values by use 21 * of only a right shift (division by power of 2). The following math 22 * determines the largest incvalue that will fit into the available 23 * bits in the TIMINCA register. 24 * 25 * PeriodWidth: Number of bits to store the clock period 26 * MaxWidth: The maximum width value of the TIMINCA register 27 * Period: The clock period for the oscillator 28 * round(): discard the fractional portion of the calculation 29 * 30 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ] 31 * 32 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns 33 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns 34 * 35 * The period also changes based on the link speed: 36 * At 10Gb link or no link, the period remains the same. 37 * At 1Gb link, the period is multiplied by 10. (64ns) 38 * At 100Mb link, the period is multiplied by 100. (640ns) 39 * 40 * The calculated value allows us to right shift the SYSTIME register 41 * value in order to quickly convert it into a nanosecond clock, 42 * while allowing for the maximum possible adjustment value. 43 * 44 * These diagrams are only for the 10Gb link period 45 * 46 * SYSTIMEH SYSTIMEL 47 * +--------------+ +--------------+ 48 * X540 | 32 | | 1 | 3 | 28 | 49 * *--------------+ +--------------+ 50 * \________ 36 bits ______/ fract 51 * 52 * +--------------+ +--------------+ 53 * 82599 | 32 | | 8 | 3 | 21 | 54 * *--------------+ +--------------+ 55 * \________ 43 bits ______/ fract 56 * 57 * The 36 bit X540 SYSTIME overflows every 58 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds 59 * 60 * The 43 bit 82599 SYSTIME overflows every 61 * 2^43 * 10^-9 / 3600 = 2.4 hours 62 */ 63 #define IXGBE_INCVAL_10GB 0x66666666 64 #define IXGBE_INCVAL_1GB 0x40000000 65 #define IXGBE_INCVAL_100 0x50000000 66 67 #define IXGBE_INCVAL_SHIFT_10GB 28 68 #define IXGBE_INCVAL_SHIFT_1GB 24 69 #define IXGBE_INCVAL_SHIFT_100 21 70 71 #define IXGBE_INCVAL_SHIFT_82599 7 72 #define IXGBE_INCPER_SHIFT_82599 24 73 74 #define IXGBE_OVERFLOW_PERIOD (HZ * 30) 75 #define IXGBE_PTP_TX_TIMEOUT (HZ) 76 77 /* We use our own definitions instead of NSEC_PER_SEC because we want to mark 78 * the value as a ULL to force precision when bit shifting. 79 */ 80 #define NS_PER_SEC 1000000000ULL 81 #define NS_PER_HALF_SEC 500000000ULL 82 83 /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL 84 * which contain measurements of seconds and nanoseconds respectively. This 85 * matches the standard linux representation of time in the kernel. In addition, 86 * the X550 also has a SYSTIMER register which represents residue, or 87 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA 88 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA 89 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the 90 * high bit representing whether the adjustent is positive or negative. Every 91 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range 92 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the 93 * X550's clock for purposes of SYSTIME generation is constant and not dependent 94 * on the link speed. 95 * 96 * SYSTIMEH SYSTIMEL SYSTIMER 97 * +--------------+ +--------------+ +-------------+ 98 * X550 | 32 | | 32 | | 32 | 99 * *--------------+ +--------------+ +-------------+ 100 * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/ 101 * 102 * This results in a full 96 bits to represent the clock, with 32 bits for 103 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under 104 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for 105 * underflow of adjustments. 106 * 107 * The 32 bits of seconds for the X550 overflows every 108 * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years. 109 * 110 * In order to adjust the clock frequency for the X550, the TIMINCA register is 111 * provided. This register represents a + or minus nearly 0.5 ns adjustment to 112 * the base frequency. It is measured in 2^-32 ns units, with the high bit being 113 * the sign bit. This register enables software to calculate frequency 114 * adjustments and apply them directly to the clock rate. 115 * 116 * The math for converting scaled_ppm into TIMINCA values is fairly 117 * straightforward. 118 * 119 * TIMINCA value = ( Base_Frequency * scaled_ppm ) / 1000000ULL << 16 120 * 121 * To avoid overflow, we simply use mul_u64_u64_div_u64. 122 * 123 * This assumes that scaled_ppm is never high enough to create a value bigger 124 * than TIMINCA's 31 bits can store. This is ensured by the stack, and is 125 * measured in parts per billion. Calculating this value is also simple. 126 * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL 127 * 128 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is 129 * 12.5 nanoseconds. This means that the Max ppb is 39999999 130 * Note: We subtract one in order to ensure no overflow, because the TIMINCA 131 * register can only hold slightly under 0.5 nanoseconds. 132 * 133 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns 134 * into 2^-32 units, which is 135 * 136 * 12.5 * 2^32 = C80000000 137 * 138 * Some revisions of hardware have a faster base frequency than the registers 139 * were defined for. To fix this, we use a timecounter structure with the 140 * proper mult and shift to convert the cycles into nanoseconds of time. 141 */ 142 #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL 143 #define INCVALUE_MASK 0x7FFFFFFF 144 #define ISGN 0x80000000 145 146 /** 147 * ixgbe_ptp_setup_sdp_X540 148 * @adapter: private adapter structure 149 * 150 * this function enables or disables the clock out feature on SDP0 for 151 * the X540 device. It will create a 1 second periodic output that can 152 * be used as the PPS (via an interrupt). 153 * 154 * It calculates when the system time will be on an exact second, and then 155 * aligns the start of the PPS signal to that value. 156 * 157 * This works by using the cycle counter shift and mult values in reverse, and 158 * assumes that the values we're shifting will not overflow. 159 */ 160 static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter) 161 { 162 struct cyclecounter *cc = &adapter->hw_cc; 163 struct ixgbe_hw *hw = &adapter->hw; 164 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem; 165 u64 ns = 0, clock_edge = 0, clock_period; 166 unsigned long flags; 167 168 /* disable the pin first */ 169 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0); 170 IXGBE_WRITE_FLUSH(hw); 171 172 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED)) 173 return; 174 175 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 176 177 /* enable the SDP0 pin as output, and connected to the 178 * native function for Timesync (ClockOut) 179 */ 180 esdp |= IXGBE_ESDP_SDP0_DIR | 181 IXGBE_ESDP_SDP0_NATIVE; 182 183 /* enable the Clock Out feature on SDP0, and allow 184 * interrupts to occur when the pin changes 185 */ 186 tsauxc = (IXGBE_TSAUXC_EN_CLK | 187 IXGBE_TSAUXC_SYNCLK | 188 IXGBE_TSAUXC_SDP0_INT); 189 190 /* Determine the clock time period to use. This assumes that the 191 * cycle counter shift is small enough to avoid overflow. 192 */ 193 clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult); 194 clktiml = (u32)(clock_period); 195 clktimh = (u32)(clock_period >> 32); 196 197 /* Read the current clock time, and save the cycle counter value */ 198 spin_lock_irqsave(&adapter->tmreg_lock, flags); 199 ns = timecounter_read(&adapter->hw_tc); 200 clock_edge = adapter->hw_tc.cycle_last; 201 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 202 203 /* Figure out how many seconds to add in order to round up */ 204 div_u64_rem(ns, NS_PER_SEC, &rem); 205 206 /* Figure out how many nanoseconds to add to round the clock edge up 207 * to the next full second 208 */ 209 rem = (NS_PER_SEC - rem); 210 211 /* Adjust the clock edge to align with the next full second. */ 212 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult); 213 trgttiml = (u32)clock_edge; 214 trgttimh = (u32)(clock_edge >> 32); 215 216 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml); 217 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh); 218 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml); 219 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh); 220 221 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 222 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc); 223 224 IXGBE_WRITE_FLUSH(hw); 225 } 226 227 /** 228 * ixgbe_ptp_setup_sdp_X550 229 * @adapter: private adapter structure 230 * 231 * Enable or disable a clock output signal on SDP 0 for X550 hardware. 232 * 233 * Use the target time feature to align the output signal on the next full 234 * second. 235 * 236 * This works by using the cycle counter shift and mult values in reverse, and 237 * assumes that the values we're shifting will not overflow. 238 */ 239 static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter) 240 { 241 u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp; 242 struct cyclecounter *cc = &adapter->hw_cc; 243 struct ixgbe_hw *hw = &adapter->hw; 244 u64 ns = 0, clock_edge = 0; 245 struct timespec64 ts; 246 unsigned long flags; 247 248 /* disable the pin first */ 249 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0); 250 IXGBE_WRITE_FLUSH(hw); 251 252 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED)) 253 return; 254 255 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 256 257 /* enable the SDP0 pin as output, and connected to the 258 * native function for Timesync (ClockOut) 259 */ 260 esdp |= IXGBE_ESDP_SDP0_DIR | 261 IXGBE_ESDP_SDP0_NATIVE; 262 263 /* enable the Clock Out feature on SDP0, and use Target Time 0 to 264 * enable generation of interrupts on the clock change. 265 */ 266 #define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000 267 tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 | 268 IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT | 269 IXGBE_TSAUXC_DIS_TS_CLEAR); 270 271 tssdp = (IXGBE_TSSDP_TS_SDP0_EN | 272 IXGBE_TSSDP_TS_SDP0_CLK0); 273 274 /* Determine the clock time period to use. This assumes that the 275 * cycle counter shift is small enough to avoid overflowing a 32bit 276 * value. 277 */ 278 freqout = div_u64(NS_PER_HALF_SEC << cc->shift, cc->mult); 279 280 /* Read the current clock time, and save the cycle counter value */ 281 spin_lock_irqsave(&adapter->tmreg_lock, flags); 282 ns = timecounter_read(&adapter->hw_tc); 283 clock_edge = adapter->hw_tc.cycle_last; 284 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 285 286 /* Figure out how far past the next second we are */ 287 div_u64_rem(ns, NS_PER_SEC, &rem); 288 289 /* Figure out how many nanoseconds to add to round the clock edge up 290 * to the next full second 291 */ 292 rem = (NS_PER_SEC - rem); 293 294 /* Adjust the clock edge to align with the next full second. */ 295 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult); 296 297 /* X550 hardware stores the time in 32bits of 'billions of cycles' and 298 * 32bits of 'cycles'. There's no guarantee that cycles represents 299 * nanoseconds. However, we can use the math from a timespec64 to 300 * convert into the hardware representation. 301 * 302 * See ixgbe_ptp_read_X550() for more details. 303 */ 304 ts = ns_to_timespec64(clock_edge); 305 trgttiml = (u32)ts.tv_nsec; 306 trgttimh = (u32)ts.tv_sec; 307 308 IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout); 309 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml); 310 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh); 311 312 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 313 IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp); 314 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc); 315 316 IXGBE_WRITE_FLUSH(hw); 317 } 318 319 /** 320 * ixgbe_ptp_read_X550 - read cycle counter value 321 * @cc: cyclecounter structure 322 * 323 * This function reads SYSTIME registers. It is called by the cyclecounter 324 * structure to convert from internal representation into nanoseconds. We need 325 * this for X550 since some skews do not have expected clock frequency and 326 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of 327 * "cycles", rather than seconds and nanoseconds. 328 */ 329 static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc) 330 { 331 struct ixgbe_adapter *adapter = 332 container_of(cc, struct ixgbe_adapter, hw_cc); 333 struct ixgbe_hw *hw = &adapter->hw; 334 struct timespec64 ts; 335 336 /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'. 337 * Some revisions of hardware run at a higher frequency and so the 338 * cycles are not guaranteed to be nanoseconds. The timespec64 created 339 * here is used for its math/conversions but does not necessarily 340 * represent nominal time. 341 * 342 * It should be noted that this cyclecounter will overflow at a 343 * non-bitmask field since we have to convert our billions of cycles 344 * into an actual cycles count. This results in some possible weird 345 * situations at high cycle counter stamps. However given that 32 bits 346 * of "seconds" is ~138 years this isn't a problem. Even at the 347 * increased frequency of some revisions, this is still ~103 years. 348 * Since the SYSTIME values start at 0 and we never write them, it is 349 * highly unlikely for the cyclecounter to overflow in practice. 350 */ 351 IXGBE_READ_REG(hw, IXGBE_SYSTIMR); 352 ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML); 353 ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH); 354 355 return (u64)timespec64_to_ns(&ts); 356 } 357 358 /** 359 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter) 360 * @cc: the cyclecounter structure 361 * 362 * this function reads the cyclecounter registers and is called by the 363 * cyclecounter structure used to construct a ns counter from the 364 * arbitrary fixed point registers 365 */ 366 static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc) 367 { 368 struct ixgbe_adapter *adapter = 369 container_of(cc, struct ixgbe_adapter, hw_cc); 370 struct ixgbe_hw *hw = &adapter->hw; 371 u64 stamp = 0; 372 373 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML); 374 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; 375 376 return stamp; 377 } 378 379 /** 380 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp 381 * @adapter: private adapter structure 382 * @hwtstamp: stack timestamp structure 383 * @timestamp: unsigned 64bit system time value 384 * 385 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value 386 * which can be used by the stack's ptp functions. 387 * 388 * The lock is used to protect consistency of the cyclecounter and the SYSTIME 389 * registers. However, it does not need to protect against the Rx or Tx 390 * timestamp registers, as there can't be a new timestamp until the old one is 391 * unlatched by reading. 392 * 393 * In addition to the timestamp in hardware, some controllers need a software 394 * overflow cyclecounter, and this function takes this into account as well. 395 **/ 396 static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter, 397 struct skb_shared_hwtstamps *hwtstamp, 398 u64 timestamp) 399 { 400 unsigned long flags; 401 struct timespec64 systime; 402 u64 ns; 403 404 memset(hwtstamp, 0, sizeof(*hwtstamp)); 405 406 switch (adapter->hw.mac.type) { 407 /* X550 and later hardware supposedly represent time using a seconds 408 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need 409 * to convert the timestamp into cycles before it can be fed to the 410 * cyclecounter. We need an actual cyclecounter because some revisions 411 * of hardware run at a higher frequency and thus the counter does 412 * not represent seconds/nanoseconds. Instead it can be thought of as 413 * cycles and billions of cycles. 414 */ 415 case ixgbe_mac_X550: 416 case ixgbe_mac_X550EM_x: 417 case ixgbe_mac_x550em_a: 418 /* Upper 32 bits represent billions of cycles, lower 32 bits 419 * represent cycles. However, we use timespec64_to_ns for the 420 * correct math even though the units haven't been corrected 421 * yet. 422 */ 423 systime.tv_sec = timestamp >> 32; 424 systime.tv_nsec = timestamp & 0xFFFFFFFF; 425 426 timestamp = timespec64_to_ns(&systime); 427 break; 428 default: 429 break; 430 } 431 432 spin_lock_irqsave(&adapter->tmreg_lock, flags); 433 ns = timecounter_cyc2time(&adapter->hw_tc, timestamp); 434 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 435 436 hwtstamp->hwtstamp = ns_to_ktime(ns); 437 } 438 439 /** 440 * ixgbe_ptp_adjfine_82599 441 * @ptp: the ptp clock structure 442 * @scaled_ppm: scaled parts per million adjustment from base 443 * 444 * Adjust the frequency of the ptp cycle counter by the 445 * indicated scaled_ppm from the base frequency. 446 * 447 * Scaled parts per million is ppm with a 16-bit binary fractional field. 448 */ 449 static int ixgbe_ptp_adjfine_82599(struct ptp_clock_info *ptp, long scaled_ppm) 450 { 451 struct ixgbe_adapter *adapter = 452 container_of(ptp, struct ixgbe_adapter, ptp_caps); 453 struct ixgbe_hw *hw = &adapter->hw; 454 u64 incval; 455 456 smp_mb(); 457 incval = READ_ONCE(adapter->base_incval); 458 incval = adjust_by_scaled_ppm(incval, scaled_ppm); 459 460 switch (hw->mac.type) { 461 case ixgbe_mac_X540: 462 if (incval > 0xFFFFFFFFULL) 463 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n"); 464 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval); 465 break; 466 case ixgbe_mac_82599EB: 467 if (incval > 0x00FFFFFFULL) 468 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n"); 469 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, 470 BIT(IXGBE_INCPER_SHIFT_82599) | 471 ((u32)incval & 0x00FFFFFFUL)); 472 break; 473 default: 474 break; 475 } 476 477 return 0; 478 } 479 480 /** 481 * ixgbe_ptp_adjfine_X550 482 * @ptp: the ptp clock structure 483 * @scaled_ppm: scaled parts per million adjustment from base 484 * 485 * Adjust the frequency of the SYSTIME registers by the indicated scaled_ppm 486 * from base frequency. 487 * 488 * Scaled parts per million is ppm with a 16-bit binary fractional field. 489 */ 490 static int ixgbe_ptp_adjfine_X550(struct ptp_clock_info *ptp, long scaled_ppm) 491 { 492 struct ixgbe_adapter *adapter = 493 container_of(ptp, struct ixgbe_adapter, ptp_caps); 494 struct ixgbe_hw *hw = &adapter->hw; 495 bool neg_adj; 496 u64 rate; 497 u32 inca; 498 499 neg_adj = diff_by_scaled_ppm(IXGBE_X550_BASE_PERIOD, scaled_ppm, &rate); 500 501 /* warn if rate is too large */ 502 if (rate >= INCVALUE_MASK) 503 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n"); 504 505 inca = rate & INCVALUE_MASK; 506 if (neg_adj) 507 inca |= ISGN; 508 509 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca); 510 511 return 0; 512 } 513 514 /** 515 * ixgbe_ptp_adjtime 516 * @ptp: the ptp clock structure 517 * @delta: offset to adjust the cycle counter by 518 * 519 * adjust the timer by resetting the timecounter structure. 520 */ 521 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 522 { 523 struct ixgbe_adapter *adapter = 524 container_of(ptp, struct ixgbe_adapter, ptp_caps); 525 unsigned long flags; 526 527 spin_lock_irqsave(&adapter->tmreg_lock, flags); 528 timecounter_adjtime(&adapter->hw_tc, delta); 529 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 530 531 if (adapter->ptp_setup_sdp) 532 adapter->ptp_setup_sdp(adapter); 533 534 return 0; 535 } 536 537 /** 538 * ixgbe_ptp_gettimex 539 * @ptp: the ptp clock structure 540 * @ts: timespec to hold the PHC timestamp 541 * @sts: structure to hold the system time before and after reading the PHC 542 * 543 * read the timecounter and return the correct value on ns, 544 * after converting it into a struct timespec. 545 */ 546 static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp, 547 struct timespec64 *ts, 548 struct ptp_system_timestamp *sts) 549 { 550 struct ixgbe_adapter *adapter = 551 container_of(ptp, struct ixgbe_adapter, ptp_caps); 552 struct ixgbe_hw *hw = &adapter->hw; 553 unsigned long flags; 554 u64 ns, stamp; 555 556 spin_lock_irqsave(&adapter->tmreg_lock, flags); 557 558 switch (adapter->hw.mac.type) { 559 case ixgbe_mac_X550: 560 case ixgbe_mac_X550EM_x: 561 case ixgbe_mac_x550em_a: 562 /* Upper 32 bits represent billions of cycles, lower 32 bits 563 * represent cycles. However, we use timespec64_to_ns for the 564 * correct math even though the units haven't been corrected 565 * yet. 566 */ 567 ptp_read_system_prets(sts); 568 IXGBE_READ_REG(hw, IXGBE_SYSTIMR); 569 ptp_read_system_postts(sts); 570 ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML); 571 ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH); 572 stamp = timespec64_to_ns(ts); 573 break; 574 default: 575 ptp_read_system_prets(sts); 576 stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML); 577 ptp_read_system_postts(sts); 578 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; 579 break; 580 } 581 582 ns = timecounter_cyc2time(&adapter->hw_tc, stamp); 583 584 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 585 586 *ts = ns_to_timespec64(ns); 587 588 return 0; 589 } 590 591 /** 592 * ixgbe_ptp_settime 593 * @ptp: the ptp clock structure 594 * @ts: the timespec containing the new time for the cycle counter 595 * 596 * reset the timecounter to use a new base value instead of the kernel 597 * wall timer value. 598 */ 599 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp, 600 const struct timespec64 *ts) 601 { 602 struct ixgbe_adapter *adapter = 603 container_of(ptp, struct ixgbe_adapter, ptp_caps); 604 unsigned long flags; 605 u64 ns = timespec64_to_ns(ts); 606 607 /* reset the timecounter */ 608 spin_lock_irqsave(&adapter->tmreg_lock, flags); 609 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns); 610 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 611 612 if (adapter->ptp_setup_sdp) 613 adapter->ptp_setup_sdp(adapter); 614 return 0; 615 } 616 617 /** 618 * ixgbe_ptp_feature_enable 619 * @ptp: the ptp clock structure 620 * @rq: the requested feature to change 621 * @on: whether to enable or disable the feature 622 * 623 * enable (or disable) ancillary features of the phc subsystem. 624 * our driver only supports the PPS feature on the X540 625 */ 626 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp, 627 struct ptp_clock_request *rq, int on) 628 { 629 struct ixgbe_adapter *adapter = 630 container_of(ptp, struct ixgbe_adapter, ptp_caps); 631 632 /** 633 * When PPS is enabled, unmask the interrupt for the ClockOut 634 * feature, so that the interrupt handler can send the PPS 635 * event when the clock SDP triggers. Clear mask when PPS is 636 * disabled 637 */ 638 if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp) 639 return -ENOTSUPP; 640 641 if (on) 642 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED; 643 else 644 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED; 645 646 adapter->ptp_setup_sdp(adapter); 647 return 0; 648 } 649 650 /** 651 * ixgbe_ptp_check_pps_event 652 * @adapter: the private adapter structure 653 * 654 * This function is called by the interrupt routine when checking for 655 * interrupts. It will check and handle a pps event. 656 */ 657 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter) 658 { 659 struct ixgbe_hw *hw = &adapter->hw; 660 struct ptp_clock_event event; 661 662 event.type = PTP_CLOCK_PPS; 663 664 /* this check is necessary in case the interrupt was enabled via some 665 * alternative means (ex. debug_fs). Better to check here than 666 * everywhere that calls this function. 667 */ 668 if (!adapter->ptp_clock) 669 return; 670 671 switch (hw->mac.type) { 672 case ixgbe_mac_X540: 673 ptp_clock_event(adapter->ptp_clock, &event); 674 break; 675 default: 676 break; 677 } 678 } 679 680 /** 681 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow 682 * @adapter: private adapter struct 683 * 684 * this watchdog task periodically reads the timecounter 685 * in order to prevent missing when the system time registers wrap 686 * around. This needs to be run approximately twice a minute. 687 */ 688 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter) 689 { 690 bool timeout = time_is_before_jiffies(adapter->last_overflow_check + 691 IXGBE_OVERFLOW_PERIOD); 692 unsigned long flags; 693 694 if (timeout) { 695 /* Update the timecounter */ 696 spin_lock_irqsave(&adapter->tmreg_lock, flags); 697 timecounter_read(&adapter->hw_tc); 698 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 699 700 adapter->last_overflow_check = jiffies; 701 } 702 } 703 704 /** 705 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched 706 * @adapter: private network adapter structure 707 * 708 * this watchdog task is scheduled to detect error case where hardware has 709 * dropped an Rx packet that was timestamped when the ring is full. The 710 * particular error is rare but leaves the device in a state unable to timestamp 711 * any future packets. 712 */ 713 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter) 714 { 715 struct ixgbe_hw *hw = &adapter->hw; 716 u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 717 struct ixgbe_ring *rx_ring; 718 unsigned long rx_event; 719 int n; 720 721 /* if we don't have a valid timestamp in the registers, just update the 722 * timeout counter and exit 723 */ 724 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) { 725 adapter->last_rx_ptp_check = jiffies; 726 return; 727 } 728 729 /* determine the most recent watchdog or rx_timestamp event */ 730 rx_event = adapter->last_rx_ptp_check; 731 for (n = 0; n < adapter->num_rx_queues; n++) { 732 rx_ring = adapter->rx_ring[n]; 733 if (time_after(rx_ring->last_rx_timestamp, rx_event)) 734 rx_event = rx_ring->last_rx_timestamp; 735 } 736 737 /* only need to read the high RXSTMP register to clear the lock */ 738 if (time_is_before_jiffies(rx_event + 5 * HZ)) { 739 IXGBE_READ_REG(hw, IXGBE_RXSTMPH); 740 adapter->last_rx_ptp_check = jiffies; 741 742 adapter->rx_hwtstamp_cleared++; 743 e_warn(drv, "clearing RX Timestamp hang\n"); 744 } 745 } 746 747 /** 748 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state 749 * @adapter: the private adapter structure 750 * 751 * This function should be called whenever the state related to a Tx timestamp 752 * needs to be cleared. This helps ensure that all related bits are reset for 753 * the next Tx timestamp event. 754 */ 755 static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter) 756 { 757 struct ixgbe_hw *hw = &adapter->hw; 758 759 IXGBE_READ_REG(hw, IXGBE_TXSTMPH); 760 if (adapter->ptp_tx_skb) { 761 dev_kfree_skb_any(adapter->ptp_tx_skb); 762 adapter->ptp_tx_skb = NULL; 763 } 764 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 765 } 766 767 /** 768 * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes 769 * @adapter: private network adapter structure 770 */ 771 void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter) 772 { 773 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + 774 IXGBE_PTP_TX_TIMEOUT); 775 776 if (!adapter->ptp_tx_skb) 777 return; 778 779 if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state)) 780 return; 781 782 /* If we haven't received a timestamp within the timeout, it is 783 * reasonable to assume that it will never occur, so we can unlock the 784 * timestamp bit when this occurs. 785 */ 786 if (timeout) { 787 cancel_work_sync(&adapter->ptp_tx_work); 788 ixgbe_ptp_clear_tx_timestamp(adapter); 789 adapter->tx_hwtstamp_timeouts++; 790 e_warn(drv, "clearing Tx timestamp hang\n"); 791 } 792 } 793 794 /** 795 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp 796 * @adapter: the private adapter struct 797 * 798 * if the timestamp is valid, we convert it into the timecounter ns 799 * value, then store that result into the shhwtstamps structure which 800 * is passed up the network stack 801 */ 802 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter) 803 { 804 struct sk_buff *skb = adapter->ptp_tx_skb; 805 struct ixgbe_hw *hw = &adapter->hw; 806 struct skb_shared_hwtstamps shhwtstamps; 807 u64 regval = 0; 808 809 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL); 810 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32; 811 ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval); 812 813 /* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state 814 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents 815 * well behaved applications from attempting to timestamp again prior 816 * to the lock bit being clear. 817 */ 818 adapter->ptp_tx_skb = NULL; 819 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 820 821 /* Notify the stack and then free the skb after we've unlocked */ 822 skb_tstamp_tx(skb, &shhwtstamps); 823 dev_kfree_skb_any(skb); 824 } 825 826 /** 827 * ixgbe_ptp_tx_hwtstamp_work 828 * @work: pointer to the work struct 829 * 830 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware 831 * timestamp has been taken for the current skb. It is necessary, because the 832 * descriptor's "done" bit does not correlate with the timestamp event. 833 */ 834 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work) 835 { 836 struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter, 837 ptp_tx_work); 838 struct ixgbe_hw *hw = &adapter->hw; 839 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + 840 IXGBE_PTP_TX_TIMEOUT); 841 u32 tsynctxctl; 842 843 /* we have to have a valid skb to poll for a timestamp */ 844 if (!adapter->ptp_tx_skb) { 845 ixgbe_ptp_clear_tx_timestamp(adapter); 846 return; 847 } 848 849 /* stop polling once we have a valid timestamp */ 850 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); 851 if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) { 852 ixgbe_ptp_tx_hwtstamp(adapter); 853 return; 854 } 855 856 if (timeout) { 857 ixgbe_ptp_clear_tx_timestamp(adapter); 858 adapter->tx_hwtstamp_timeouts++; 859 e_warn(drv, "clearing Tx Timestamp hang\n"); 860 } else { 861 /* reschedule to keep checking if it's not available yet */ 862 schedule_work(&adapter->ptp_tx_work); 863 } 864 } 865 866 /** 867 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer 868 * @q_vector: structure containing interrupt and ring information 869 * @skb: the packet 870 * 871 * This function will be called by the Rx routine of the timestamp for this 872 * packet is stored in the buffer. The value is stored in little endian format 873 * starting at the end of the packet data. 874 */ 875 void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector, 876 struct sk_buff *skb) 877 { 878 __le64 regval; 879 880 /* copy the bits out of the skb, and then trim the skb length */ 881 skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, ®val, 882 IXGBE_TS_HDR_LEN); 883 __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN); 884 885 /* The timestamp is recorded in little endian format, and is stored at 886 * the end of the packet. 887 * 888 * DWORD: N N + 1 N + 2 889 * Field: End of Packet SYSTIMH SYSTIML 890 */ 891 ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb), 892 le64_to_cpu(regval)); 893 } 894 895 /** 896 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp 897 * @q_vector: structure containing interrupt and ring information 898 * @skb: particular skb to send timestamp with 899 * 900 * if the timestamp is valid, we convert it into the timecounter ns 901 * value, then store that result into the shhwtstamps structure which 902 * is passed up the network stack 903 */ 904 void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector, 905 struct sk_buff *skb) 906 { 907 struct ixgbe_adapter *adapter; 908 struct ixgbe_hw *hw; 909 u64 regval = 0; 910 u32 tsyncrxctl; 911 912 /* we cannot process timestamps on a ring without a q_vector */ 913 if (!q_vector || !q_vector->adapter) 914 return; 915 916 adapter = q_vector->adapter; 917 hw = &adapter->hw; 918 919 /* Read the tsyncrxctl register afterwards in order to prevent taking an 920 * I/O hit on every packet. 921 */ 922 923 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 924 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) 925 return; 926 927 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL); 928 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32; 929 930 ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); 931 } 932 933 /** 934 * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration 935 * @adapter: pointer to adapter structure 936 * @ifr: ioctl data 937 * 938 * This function returns the current timestamping settings. Rather than 939 * attempt to deconstruct registers to fill in the values, simply keep a copy 940 * of the old settings around, and return a copy when requested. 941 */ 942 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) 943 { 944 struct hwtstamp_config *config = &adapter->tstamp_config; 945 946 return copy_to_user(ifr->ifr_data, config, 947 sizeof(*config)) ? -EFAULT : 0; 948 } 949 950 /** 951 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode 952 * @adapter: the private ixgbe adapter structure 953 * @config: the hwtstamp configuration requested 954 * 955 * Outgoing time stamping can be enabled and disabled. Play nice and 956 * disable it when requested, although it shouldn't cause any overhead 957 * when no packet needs it. At most one packet in the queue may be 958 * marked for time stamping, otherwise it would be impossible to tell 959 * for sure to which packet the hardware time stamp belongs. 960 * 961 * Incoming time stamping has to be configured via the hardware 962 * filters. Not all combinations are supported, in particular event 963 * type has to be specified. Matching the kind of event packet is 964 * not supported, with the exception of "all V2 events regardless of 965 * level 2 or 4". 966 * 967 * Since hardware always timestamps Path delay packets when timestamping V2 968 * packets, regardless of the type specified in the register, only use V2 969 * Event mode. This more accurately tells the user what the hardware is going 970 * to do anyways. 971 * 972 * Note: this may modify the hwtstamp configuration towards a more general 973 * mode, if required to support the specifically requested mode. 974 */ 975 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter, 976 struct hwtstamp_config *config) 977 { 978 struct ixgbe_hw *hw = &adapter->hw; 979 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED; 980 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED; 981 u32 tsync_rx_mtrl = PTP_EV_PORT << 16; 982 u32 aflags = adapter->flags; 983 bool is_l2 = false; 984 u32 regval; 985 986 switch (config->tx_type) { 987 case HWTSTAMP_TX_OFF: 988 tsync_tx_ctl = 0; 989 break; 990 case HWTSTAMP_TX_ON: 991 break; 992 default: 993 return -ERANGE; 994 } 995 996 switch (config->rx_filter) { 997 case HWTSTAMP_FILTER_NONE: 998 tsync_rx_ctl = 0; 999 tsync_rx_mtrl = 0; 1000 aflags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1001 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1002 break; 1003 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1004 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; 1005 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG; 1006 aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1007 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1008 break; 1009 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1010 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; 1011 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG; 1012 aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1013 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1014 break; 1015 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1016 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1017 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1018 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1019 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1020 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1021 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1022 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1023 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1024 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2; 1025 is_l2 = true; 1026 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1027 aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1028 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1029 break; 1030 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1031 case HWTSTAMP_FILTER_NTP_ALL: 1032 case HWTSTAMP_FILTER_ALL: 1033 /* The X550 controller is capable of timestamping all packets, 1034 * which allows it to accept any filter. 1035 */ 1036 if (hw->mac.type >= ixgbe_mac_X550) { 1037 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL; 1038 config->rx_filter = HWTSTAMP_FILTER_ALL; 1039 aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED; 1040 break; 1041 } 1042 fallthrough; 1043 default: 1044 /* 1045 * register RXMTRL must be set in order to do V1 packets, 1046 * therefore it is not possible to time stamp both V1 Sync and 1047 * Delay_Req messages and hardware does not support 1048 * timestamping all packets => return error 1049 */ 1050 config->rx_filter = HWTSTAMP_FILTER_NONE; 1051 return -ERANGE; 1052 } 1053 1054 if (hw->mac.type == ixgbe_mac_82598EB) { 1055 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1056 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1057 if (tsync_rx_ctl | tsync_tx_ctl) 1058 return -ERANGE; 1059 return 0; 1060 } 1061 1062 /* Per-packet timestamping only works if the filter is set to all 1063 * packets. Since this is desired, always timestamp all packets as long 1064 * as any Rx filter was configured. 1065 */ 1066 switch (hw->mac.type) { 1067 case ixgbe_mac_X550: 1068 case ixgbe_mac_X550EM_x: 1069 case ixgbe_mac_x550em_a: 1070 /* enable timestamping all packets only if at least some 1071 * packets were requested. Otherwise, play nice and disable 1072 * timestamping 1073 */ 1074 if (config->rx_filter == HWTSTAMP_FILTER_NONE) 1075 break; 1076 1077 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED | 1078 IXGBE_TSYNCRXCTL_TYPE_ALL | 1079 IXGBE_TSYNCRXCTL_TSIP_UT_EN; 1080 config->rx_filter = HWTSTAMP_FILTER_ALL; 1081 aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED; 1082 aflags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER; 1083 is_l2 = true; 1084 break; 1085 default: 1086 break; 1087 } 1088 1089 /* define ethertype filter for timestamping L2 packets */ 1090 if (is_l2) 1091 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 1092 (IXGBE_ETQF_FILTER_EN | /* enable filter */ 1093 IXGBE_ETQF_1588 | /* enable timestamping */ 1094 ETH_P_1588)); /* 1588 eth protocol type */ 1095 else 1096 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0); 1097 1098 /* enable/disable TX */ 1099 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); 1100 regval &= ~IXGBE_TSYNCTXCTL_ENABLED; 1101 regval |= tsync_tx_ctl; 1102 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval); 1103 1104 /* enable/disable RX */ 1105 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 1106 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK); 1107 regval |= tsync_rx_ctl; 1108 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval); 1109 1110 /* define which PTP packets are time stamped */ 1111 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl); 1112 1113 IXGBE_WRITE_FLUSH(hw); 1114 1115 /* configure adapter flags only when HW is actually configured */ 1116 adapter->flags = aflags; 1117 1118 /* clear TX/RX time stamp registers, just to be sure */ 1119 ixgbe_ptp_clear_tx_timestamp(adapter); 1120 IXGBE_READ_REG(hw, IXGBE_RXSTMPH); 1121 1122 return 0; 1123 } 1124 1125 /** 1126 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode 1127 * @adapter: pointer to adapter struct 1128 * @ifr: ioctl data 1129 * 1130 * Set hardware to requested mode. If unsupported, return an error with no 1131 * changes. Otherwise, store the mode for future reference. 1132 */ 1133 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) 1134 { 1135 struct hwtstamp_config config; 1136 int err; 1137 1138 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1139 return -EFAULT; 1140 1141 err = ixgbe_ptp_set_timestamp_mode(adapter, &config); 1142 if (err) 1143 return err; 1144 1145 /* save these settings for future reference */ 1146 memcpy(&adapter->tstamp_config, &config, 1147 sizeof(adapter->tstamp_config)); 1148 1149 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1150 -EFAULT : 0; 1151 } 1152 1153 static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter, 1154 u32 *shift, u32 *incval) 1155 { 1156 /** 1157 * Scale the NIC cycle counter by a large factor so that 1158 * relatively small corrections to the frequency can be added 1159 * or subtracted. The drawbacks of a large factor include 1160 * (a) the clock register overflows more quickly, (b) the cycle 1161 * counter structure must be able to convert the systime value 1162 * to nanoseconds using only a multiplier and a right-shift, 1163 * and (c) the value must fit within the timinca register space 1164 * => math based on internal DMA clock rate and available bits 1165 * 1166 * Note that when there is no link, internal DMA clock is same as when 1167 * link speed is 10Gb. Set the registers correctly even when link is 1168 * down to preserve the clock setting 1169 */ 1170 switch (adapter->link_speed) { 1171 case IXGBE_LINK_SPEED_100_FULL: 1172 *shift = IXGBE_INCVAL_SHIFT_100; 1173 *incval = IXGBE_INCVAL_100; 1174 break; 1175 case IXGBE_LINK_SPEED_1GB_FULL: 1176 *shift = IXGBE_INCVAL_SHIFT_1GB; 1177 *incval = IXGBE_INCVAL_1GB; 1178 break; 1179 case IXGBE_LINK_SPEED_10GB_FULL: 1180 default: 1181 *shift = IXGBE_INCVAL_SHIFT_10GB; 1182 *incval = IXGBE_INCVAL_10GB; 1183 break; 1184 } 1185 } 1186 1187 /** 1188 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw 1189 * @adapter: pointer to the adapter structure 1190 * 1191 * This function should be called to set the proper values for the TIMINCA 1192 * register and tell the cyclecounter structure what the tick rate of SYSTIME 1193 * is. It does not directly modify SYSTIME registers or the timecounter 1194 * structure. It should be called whenever a new TIMINCA value is necessary, 1195 * such as during initialization or when the link speed changes. 1196 */ 1197 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter) 1198 { 1199 struct ixgbe_hw *hw = &adapter->hw; 1200 struct cyclecounter cc; 1201 unsigned long flags; 1202 u32 incval = 0; 1203 u32 fuse0 = 0; 1204 1205 /* For some of the boards below this mask is technically incorrect. 1206 * The timestamp mask overflows at approximately 61bits. However the 1207 * particular hardware does not overflow on an even bitmask value. 1208 * Instead, it overflows due to conversion of upper 32bits billions of 1209 * cycles. Timecounters are not really intended for this purpose so 1210 * they do not properly function if the overflow point isn't 2^N-1. 1211 * However, the actual SYSTIME values in question take ~138 years to 1212 * overflow. In practice this means they won't actually overflow. A 1213 * proper fix to this problem would require modification of the 1214 * timecounter delta calculations. 1215 */ 1216 cc.mask = CLOCKSOURCE_MASK(64); 1217 cc.mult = 1; 1218 cc.shift = 0; 1219 1220 switch (hw->mac.type) { 1221 case ixgbe_mac_X550EM_x: 1222 /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is 1223 * designed to represent seconds and nanoseconds when this is 1224 * the case. However, some revisions of hardware have a 400Mhz 1225 * clock and we have to compensate for this frequency 1226 * variation using corrected mult and shift values. 1227 */ 1228 fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0)); 1229 if (!(fuse0 & IXGBE_FUSES0_300MHZ)) { 1230 cc.mult = 3; 1231 cc.shift = 2; 1232 } 1233 fallthrough; 1234 case ixgbe_mac_x550em_a: 1235 case ixgbe_mac_X550: 1236 cc.read = ixgbe_ptp_read_X550; 1237 break; 1238 case ixgbe_mac_X540: 1239 cc.read = ixgbe_ptp_read_82599; 1240 1241 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval); 1242 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval); 1243 break; 1244 case ixgbe_mac_82599EB: 1245 cc.read = ixgbe_ptp_read_82599; 1246 1247 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval); 1248 incval >>= IXGBE_INCVAL_SHIFT_82599; 1249 cc.shift -= IXGBE_INCVAL_SHIFT_82599; 1250 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, 1251 BIT(IXGBE_INCPER_SHIFT_82599) | incval); 1252 break; 1253 default: 1254 /* other devices aren't supported */ 1255 return; 1256 } 1257 1258 /* update the base incval used to calculate frequency adjustment */ 1259 WRITE_ONCE(adapter->base_incval, incval); 1260 smp_mb(); 1261 1262 /* need lock to prevent incorrect read while modifying cyclecounter */ 1263 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1264 memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc)); 1265 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1266 } 1267 1268 /** 1269 * ixgbe_ptp_init_systime - Initialize SYSTIME registers 1270 * @adapter: the ixgbe private board structure 1271 * 1272 * Initialize and start the SYSTIME registers. 1273 */ 1274 static void ixgbe_ptp_init_systime(struct ixgbe_adapter *adapter) 1275 { 1276 struct ixgbe_hw *hw = &adapter->hw; 1277 u32 tsauxc; 1278 1279 switch (hw->mac.type) { 1280 case ixgbe_mac_X550EM_x: 1281 case ixgbe_mac_x550em_a: 1282 case ixgbe_mac_X550: 1283 tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC); 1284 1285 /* Reset SYSTIME registers to 0 */ 1286 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0); 1287 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0); 1288 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0); 1289 1290 /* Reset interrupt settings */ 1291 IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS); 1292 IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC); 1293 1294 /* Activate the SYSTIME counter */ 1295 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 1296 tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME); 1297 break; 1298 case ixgbe_mac_X540: 1299 case ixgbe_mac_82599EB: 1300 /* Reset SYSTIME registers to 0 */ 1301 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0); 1302 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0); 1303 break; 1304 default: 1305 /* Other devices aren't supported */ 1306 return; 1307 } 1308 1309 IXGBE_WRITE_FLUSH(hw); 1310 } 1311 1312 /** 1313 * ixgbe_ptp_reset 1314 * @adapter: the ixgbe private board structure 1315 * 1316 * When the MAC resets, all the hardware bits for timesync are reset. This 1317 * function is used to re-enable the device for PTP based on current settings. 1318 * We do lose the current clock time, so just reset the cyclecounter to the 1319 * system real clock time. 1320 * 1321 * This function will maintain hwtstamp_config settings, and resets the SDP 1322 * output if it was enabled. 1323 */ 1324 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter) 1325 { 1326 struct ixgbe_hw *hw = &adapter->hw; 1327 unsigned long flags; 1328 1329 /* reset the hardware timestamping mode */ 1330 ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); 1331 1332 /* 82598 does not support PTP */ 1333 if (hw->mac.type == ixgbe_mac_82598EB) 1334 return; 1335 1336 ixgbe_ptp_start_cyclecounter(adapter); 1337 1338 ixgbe_ptp_init_systime(adapter); 1339 1340 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1341 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, 1342 ktime_to_ns(ktime_get_real())); 1343 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1344 1345 adapter->last_overflow_check = jiffies; 1346 1347 /* Now that the shift has been calculated and the systime 1348 * registers reset, (re-)enable the Clock out feature 1349 */ 1350 if (adapter->ptp_setup_sdp) 1351 adapter->ptp_setup_sdp(adapter); 1352 } 1353 1354 /** 1355 * ixgbe_ptp_create_clock 1356 * @adapter: the ixgbe private adapter structure 1357 * 1358 * This function performs setup of the user entry point function table and 1359 * initializes the PTP clock device, which is used to access the clock-like 1360 * features of the PTP core. It will be called by ixgbe_ptp_init, and may 1361 * reuse a previously initialized clock (such as during a suspend/resume 1362 * cycle). 1363 */ 1364 static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter) 1365 { 1366 struct net_device *netdev = adapter->netdev; 1367 long err; 1368 1369 /* do nothing if we already have a clock device */ 1370 if (!IS_ERR_OR_NULL(adapter->ptp_clock)) 1371 return 0; 1372 1373 switch (adapter->hw.mac.type) { 1374 case ixgbe_mac_X540: 1375 snprintf(adapter->ptp_caps.name, 1376 sizeof(adapter->ptp_caps.name), 1377 "%s", netdev->name); 1378 adapter->ptp_caps.owner = THIS_MODULE; 1379 adapter->ptp_caps.max_adj = 250000000; 1380 adapter->ptp_caps.n_alarm = 0; 1381 adapter->ptp_caps.n_ext_ts = 0; 1382 adapter->ptp_caps.n_per_out = 0; 1383 adapter->ptp_caps.pps = 1; 1384 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599; 1385 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 1386 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; 1387 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 1388 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 1389 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540; 1390 break; 1391 case ixgbe_mac_82599EB: 1392 snprintf(adapter->ptp_caps.name, 1393 sizeof(adapter->ptp_caps.name), 1394 "%s", netdev->name); 1395 adapter->ptp_caps.owner = THIS_MODULE; 1396 adapter->ptp_caps.max_adj = 250000000; 1397 adapter->ptp_caps.n_alarm = 0; 1398 adapter->ptp_caps.n_ext_ts = 0; 1399 adapter->ptp_caps.n_per_out = 0; 1400 adapter->ptp_caps.pps = 0; 1401 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599; 1402 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 1403 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; 1404 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 1405 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 1406 break; 1407 case ixgbe_mac_X550: 1408 case ixgbe_mac_X550EM_x: 1409 case ixgbe_mac_x550em_a: 1410 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name); 1411 adapter->ptp_caps.owner = THIS_MODULE; 1412 adapter->ptp_caps.max_adj = 30000000; 1413 adapter->ptp_caps.n_alarm = 0; 1414 adapter->ptp_caps.n_ext_ts = 0; 1415 adapter->ptp_caps.n_per_out = 0; 1416 adapter->ptp_caps.pps = 1; 1417 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_X550; 1418 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 1419 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; 1420 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 1421 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 1422 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550; 1423 break; 1424 default: 1425 adapter->ptp_clock = NULL; 1426 adapter->ptp_setup_sdp = NULL; 1427 return -EOPNOTSUPP; 1428 } 1429 1430 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, 1431 &adapter->pdev->dev); 1432 if (IS_ERR(adapter->ptp_clock)) { 1433 err = PTR_ERR(adapter->ptp_clock); 1434 adapter->ptp_clock = NULL; 1435 e_dev_err("ptp_clock_register failed\n"); 1436 return err; 1437 } else if (adapter->ptp_clock) 1438 e_dev_info("registered PHC device on %s\n", netdev->name); 1439 1440 /* set default timestamp mode to disabled here. We do this in 1441 * create_clock instead of init, because we don't want to override the 1442 * previous settings during a resume cycle. 1443 */ 1444 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 1445 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 1446 1447 return 0; 1448 } 1449 1450 /** 1451 * ixgbe_ptp_init 1452 * @adapter: the ixgbe private adapter structure 1453 * 1454 * This function performs the required steps for enabling PTP 1455 * support. If PTP support has already been loaded it simply calls the 1456 * cyclecounter init routine and exits. 1457 */ 1458 void ixgbe_ptp_init(struct ixgbe_adapter *adapter) 1459 { 1460 /* initialize the spin lock first since we can't control when a user 1461 * will call the entry functions once we have initialized the clock 1462 * device 1463 */ 1464 spin_lock_init(&adapter->tmreg_lock); 1465 1466 /* obtain a PTP device, or re-use an existing device */ 1467 if (ixgbe_ptp_create_clock(adapter)) 1468 return; 1469 1470 /* we have a clock so we can initialize work now */ 1471 INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work); 1472 1473 /* reset the PTP related hardware bits */ 1474 ixgbe_ptp_reset(adapter); 1475 1476 /* enter the IXGBE_PTP_RUNNING state */ 1477 set_bit(__IXGBE_PTP_RUNNING, &adapter->state); 1478 1479 return; 1480 } 1481 1482 /** 1483 * ixgbe_ptp_suspend - stop PTP work items 1484 * @adapter: pointer to adapter struct 1485 * 1486 * this function suspends PTP activity, and prevents more PTP work from being 1487 * generated, but does not destroy the PTP clock device. 1488 */ 1489 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter) 1490 { 1491 /* Leave the IXGBE_PTP_RUNNING state. */ 1492 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state)) 1493 return; 1494 1495 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED; 1496 if (adapter->ptp_setup_sdp) 1497 adapter->ptp_setup_sdp(adapter); 1498 1499 /* ensure that we cancel any pending PTP Tx work item in progress */ 1500 cancel_work_sync(&adapter->ptp_tx_work); 1501 ixgbe_ptp_clear_tx_timestamp(adapter); 1502 } 1503 1504 /** 1505 * ixgbe_ptp_stop - close the PTP device 1506 * @adapter: pointer to adapter struct 1507 * 1508 * completely destroy the PTP device, should only be called when the device is 1509 * being fully closed. 1510 */ 1511 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter) 1512 { 1513 /* first, suspend PTP activity */ 1514 ixgbe_ptp_suspend(adapter); 1515 1516 /* disable the PTP clock device */ 1517 if (adapter->ptp_clock) { 1518 ptp_clock_unregister(adapter->ptp_clock); 1519 adapter->ptp_clock = NULL; 1520 e_dev_info("removed PHC on %s\n", 1521 adapter->netdev->name); 1522 } 1523 } 1524