xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_ptp.c (revision a6cdeeb16bff89c8486324f53577db058cbe81ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #include "ixgbe.h"
5 #include <linux/ptp_classify.h>
6 #include <linux/clocksource.h>
7 
8 /*
9  * The 82599 and the X540 do not have true 64bit nanosecond scale
10  * counter registers. Instead, SYSTIME is defined by a fixed point
11  * system which allows the user to define the scale counter increment
12  * value at every level change of the oscillator driving the SYSTIME
13  * value. For both devices the TIMINCA:IV field defines this
14  * increment. On the X540 device, 31 bits are provided. However on the
15  * 82599 only provides 24 bits. The time unit is determined by the
16  * clock frequency of the oscillator in combination with the TIMINCA
17  * register. When these devices link at 10Gb the oscillator has a
18  * period of 6.4ns. In order to convert the scale counter into
19  * nanoseconds the cyclecounter and timecounter structures are
20  * used. The SYSTIME registers need to be converted to ns values by use
21  * of only a right shift (division by power of 2). The following math
22  * determines the largest incvalue that will fit into the available
23  * bits in the TIMINCA register.
24  *
25  * PeriodWidth: Number of bits to store the clock period
26  * MaxWidth: The maximum width value of the TIMINCA register
27  * Period: The clock period for the oscillator
28  * round(): discard the fractional portion of the calculation
29  *
30  * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
31  *
32  * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
33  * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
34  *
35  * The period also changes based on the link speed:
36  * At 10Gb link or no link, the period remains the same.
37  * At 1Gb link, the period is multiplied by 10. (64ns)
38  * At 100Mb link, the period is multiplied by 100. (640ns)
39  *
40  * The calculated value allows us to right shift the SYSTIME register
41  * value in order to quickly convert it into a nanosecond clock,
42  * while allowing for the maximum possible adjustment value.
43  *
44  * These diagrams are only for the 10Gb link period
45  *
46  *           SYSTIMEH            SYSTIMEL
47  *       +--------------+  +--------------+
48  * X540  |      32      |  | 1 | 3 |  28  |
49  *       *--------------+  +--------------+
50  *        \________ 36 bits ______/  fract
51  *
52  *       +--------------+  +--------------+
53  * 82599 |      32      |  | 8 | 3 |  21  |
54  *       *--------------+  +--------------+
55  *        \________ 43 bits ______/  fract
56  *
57  * The 36 bit X540 SYSTIME overflows every
58  *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
59  *
60  * The 43 bit 82599 SYSTIME overflows every
61  *   2^43 * 10^-9 / 3600 = 2.4 hours
62  */
63 #define IXGBE_INCVAL_10GB 0x66666666
64 #define IXGBE_INCVAL_1GB  0x40000000
65 #define IXGBE_INCVAL_100  0x50000000
66 
67 #define IXGBE_INCVAL_SHIFT_10GB  28
68 #define IXGBE_INCVAL_SHIFT_1GB   24
69 #define IXGBE_INCVAL_SHIFT_100   21
70 
71 #define IXGBE_INCVAL_SHIFT_82599 7
72 #define IXGBE_INCPER_SHIFT_82599 24
73 
74 #define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
75 #define IXGBE_PTP_TX_TIMEOUT     (HZ)
76 
77 /* We use our own definitions instead of NSEC_PER_SEC because we want to mark
78  * the value as a ULL to force precision when bit shifting.
79  */
80 #define NS_PER_SEC      1000000000ULL
81 #define NS_PER_HALF_SEC  500000000ULL
82 
83 /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
84  * which contain measurements of seconds and nanoseconds respectively. This
85  * matches the standard linux representation of time in the kernel. In addition,
86  * the X550 also has a SYSTIMER register which represents residue, or
87  * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
88  * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
89  * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
90  * high bit representing whether the adjustent is positive or negative. Every
91  * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
92  * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
93  * X550's clock for purposes of SYSTIME generation is constant and not dependent
94  * on the link speed.
95  *
96  *           SYSTIMEH           SYSTIMEL        SYSTIMER
97  *       +--------------+  +--------------+  +-------------+
98  * X550  |      32      |  |      32      |  |     32      |
99  *       *--------------+  +--------------+  +-------------+
100  *       \____seconds___/   \_nanoseconds_/  \__2^-32 ns__/
101  *
102  * This results in a full 96 bits to represent the clock, with 32 bits for
103  * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
104  * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
105  * underflow of adjustments.
106  *
107  * The 32 bits of seconds for the X550 overflows every
108  *   2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
109  *
110  * In order to adjust the clock frequency for the X550, the TIMINCA register is
111  * provided. This register represents a + or minus nearly 0.5 ns adjustment to
112  * the base frequency. It is measured in 2^-32 ns units, with the high bit being
113  * the sign bit. This register enables software to calculate frequency
114  * adjustments and apply them directly to the clock rate.
115  *
116  * The math for converting ppb into TIMINCA values is fairly straightforward.
117  *   TIMINCA value = ( Base_Frequency * ppb ) / 1000000000ULL
118  *
119  * This assumes that ppb is never high enough to create a value bigger than
120  * TIMINCA's 31 bits can store. This is ensured by the stack. Calculating this
121  * value is also simple.
122  *   Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
123  *
124  * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
125  * 12.5 nanoseconds. This means that the Max ppb is 39999999
126  *   Note: We subtract one in order to ensure no overflow, because the TIMINCA
127  *         register can only hold slightly under 0.5 nanoseconds.
128  *
129  * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
130  * into 2^-32 units, which is
131  *
132  *  12.5 * 2^32 = C80000000
133  *
134  * Some revisions of hardware have a faster base frequency than the registers
135  * were defined for. To fix this, we use a timecounter structure with the
136  * proper mult and shift to convert the cycles into nanoseconds of time.
137  */
138 #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
139 #define INCVALUE_MASK	0x7FFFFFFF
140 #define ISGN		0x80000000
141 #define MAX_TIMADJ	0x7FFFFFFF
142 
143 /**
144  * ixgbe_ptp_setup_sdp_X540
145  * @adapter: private adapter structure
146  *
147  * this function enables or disables the clock out feature on SDP0 for
148  * the X540 device. It will create a 1 second periodic output that can
149  * be used as the PPS (via an interrupt).
150  *
151  * It calculates when the system time will be on an exact second, and then
152  * aligns the start of the PPS signal to that value.
153  *
154  * This works by using the cycle counter shift and mult values in reverse, and
155  * assumes that the values we're shifting will not overflow.
156  */
157 static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter)
158 {
159 	struct cyclecounter *cc = &adapter->hw_cc;
160 	struct ixgbe_hw *hw = &adapter->hw;
161 	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
162 	u64 ns = 0, clock_edge = 0, clock_period;
163 	unsigned long flags;
164 
165 	/* disable the pin first */
166 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
167 	IXGBE_WRITE_FLUSH(hw);
168 
169 	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
170 		return;
171 
172 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
173 
174 	/* enable the SDP0 pin as output, and connected to the
175 	 * native function for Timesync (ClockOut)
176 	 */
177 	esdp |= IXGBE_ESDP_SDP0_DIR |
178 		IXGBE_ESDP_SDP0_NATIVE;
179 
180 	/* enable the Clock Out feature on SDP0, and allow
181 	 * interrupts to occur when the pin changes
182 	 */
183 	tsauxc = (IXGBE_TSAUXC_EN_CLK |
184 		  IXGBE_TSAUXC_SYNCLK |
185 		  IXGBE_TSAUXC_SDP0_INT);
186 
187 	/* Determine the clock time period to use. This assumes that the
188 	 * cycle counter shift is small enough to avoid overflow.
189 	 */
190 	clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult);
191 	clktiml = (u32)(clock_period);
192 	clktimh = (u32)(clock_period >> 32);
193 
194 	/* Read the current clock time, and save the cycle counter value */
195 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
196 	ns = timecounter_read(&adapter->hw_tc);
197 	clock_edge = adapter->hw_tc.cycle_last;
198 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
199 
200 	/* Figure out how many seconds to add in order to round up */
201 	div_u64_rem(ns, NS_PER_SEC, &rem);
202 
203 	/* Figure out how many nanoseconds to add to round the clock edge up
204 	 * to the next full second
205 	 */
206 	rem = (NS_PER_SEC - rem);
207 
208 	/* Adjust the clock edge to align with the next full second. This
209 	 * assumes that the cycle counter shift is small enough to avoid
210 	 * overflowing when shifting the remainder.
211 	 */
212 	clock_edge += div_u64((rem << cc->shift), cc->mult);
213 	trgttiml = (u32)clock_edge;
214 	trgttimh = (u32)(clock_edge >> 32);
215 
216 	IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
217 	IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
218 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
219 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
220 
221 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
222 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
223 
224 	IXGBE_WRITE_FLUSH(hw);
225 }
226 
227 /**
228  * ixgbe_ptp_setup_sdp_X550
229  * @adapter: private adapter structure
230  *
231  * Enable or disable a clock output signal on SDP 0 for X550 hardware.
232  *
233  * Use the target time feature to align the output signal on the next full
234  * second.
235  *
236  * This works by using the cycle counter shift and mult values in reverse, and
237  * assumes that the values we're shifting will not overflow.
238  */
239 static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter)
240 {
241 	u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp;
242 	struct cyclecounter *cc = &adapter->hw_cc;
243 	struct ixgbe_hw *hw = &adapter->hw;
244 	u64 ns = 0, clock_edge = 0;
245 	struct timespec64 ts;
246 	unsigned long flags;
247 
248 	/* disable the pin first */
249 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
250 	IXGBE_WRITE_FLUSH(hw);
251 
252 	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
253 		return;
254 
255 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
256 
257 	/* enable the SDP0 pin as output, and connected to the
258 	 * native function for Timesync (ClockOut)
259 	 */
260 	esdp |= IXGBE_ESDP_SDP0_DIR |
261 		IXGBE_ESDP_SDP0_NATIVE;
262 
263 	/* enable the Clock Out feature on SDP0, and use Target Time 0 to
264 	 * enable generation of interrupts on the clock change.
265 	 */
266 #define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000
267 	tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 |
268 		  IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT |
269 		  IXGBE_TSAUXC_DIS_TS_CLEAR);
270 
271 	tssdp = (IXGBE_TSSDP_TS_SDP0_EN |
272 		 IXGBE_TSSDP_TS_SDP0_CLK0);
273 
274 	/* Determine the clock time period to use. This assumes that the
275 	 * cycle counter shift is small enough to avoid overflowing a 32bit
276 	 * value.
277 	 */
278 	freqout = div_u64(NS_PER_HALF_SEC << cc->shift,  cc->mult);
279 
280 	/* Read the current clock time, and save the cycle counter value */
281 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
282 	ns = timecounter_read(&adapter->hw_tc);
283 	clock_edge = adapter->hw_tc.cycle_last;
284 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
285 
286 	/* Figure out how far past the next second we are */
287 	div_u64_rem(ns, NS_PER_SEC, &rem);
288 
289 	/* Figure out how many nanoseconds to add to round the clock edge up
290 	 * to the next full second
291 	 */
292 	rem = (NS_PER_SEC - rem);
293 
294 	/* Adjust the clock edge to align with the next full second. This
295 	 * assumes that the cycle counter shift is small enough to avoid
296 	 * overflowing when shifting the remainder.
297 	 */
298 	clock_edge += div_u64((rem << cc->shift), cc->mult);
299 
300 	/* X550 hardware stores the time in 32bits of 'billions of cycles' and
301 	 * 32bits of 'cycles'. There's no guarantee that cycles represents
302 	 * nanoseconds. However, we can use the math from a timespec64 to
303 	 * convert into the hardware representation.
304 	 *
305 	 * See ixgbe_ptp_read_X550() for more details.
306 	 */
307 	ts = ns_to_timespec64(clock_edge);
308 	trgttiml = (u32)ts.tv_nsec;
309 	trgttimh = (u32)ts.tv_sec;
310 
311 	IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout);
312 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
313 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
314 
315 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
316 	IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp);
317 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
318 
319 	IXGBE_WRITE_FLUSH(hw);
320 }
321 
322 /**
323  * ixgbe_ptp_read_X550 - read cycle counter value
324  * @cc: cyclecounter structure
325  *
326  * This function reads SYSTIME registers. It is called by the cyclecounter
327  * structure to convert from internal representation into nanoseconds. We need
328  * this for X550 since some skews do not have expected clock frequency and
329  * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
330  * "cycles", rather than seconds and nanoseconds.
331  */
332 static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc)
333 {
334 	struct ixgbe_adapter *adapter =
335 		container_of(cc, struct ixgbe_adapter, hw_cc);
336 	struct ixgbe_hw *hw = &adapter->hw;
337 	struct timespec64 ts;
338 
339 	/* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
340 	 * Some revisions of hardware run at a higher frequency and so the
341 	 * cycles are not guaranteed to be nanoseconds. The timespec64 created
342 	 * here is used for its math/conversions but does not necessarily
343 	 * represent nominal time.
344 	 *
345 	 * It should be noted that this cyclecounter will overflow at a
346 	 * non-bitmask field since we have to convert our billions of cycles
347 	 * into an actual cycles count. This results in some possible weird
348 	 * situations at high cycle counter stamps. However given that 32 bits
349 	 * of "seconds" is ~138 years this isn't a problem. Even at the
350 	 * increased frequency of some revisions, this is still ~103 years.
351 	 * Since the SYSTIME values start at 0 and we never write them, it is
352 	 * highly unlikely for the cyclecounter to overflow in practice.
353 	 */
354 	IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
355 	ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
356 	ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
357 
358 	return (u64)timespec64_to_ns(&ts);
359 }
360 
361 /**
362  * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
363  * @cc: the cyclecounter structure
364  *
365  * this function reads the cyclecounter registers and is called by the
366  * cyclecounter structure used to construct a ns counter from the
367  * arbitrary fixed point registers
368  */
369 static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc)
370 {
371 	struct ixgbe_adapter *adapter =
372 		container_of(cc, struct ixgbe_adapter, hw_cc);
373 	struct ixgbe_hw *hw = &adapter->hw;
374 	u64 stamp = 0;
375 
376 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
377 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
378 
379 	return stamp;
380 }
381 
382 /**
383  * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
384  * @adapter: private adapter structure
385  * @hwtstamp: stack timestamp structure
386  * @timestamp: unsigned 64bit system time value
387  *
388  * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
389  * which can be used by the stack's ptp functions.
390  *
391  * The lock is used to protect consistency of the cyclecounter and the SYSTIME
392  * registers. However, it does not need to protect against the Rx or Tx
393  * timestamp registers, as there can't be a new timestamp until the old one is
394  * unlatched by reading.
395  *
396  * In addition to the timestamp in hardware, some controllers need a software
397  * overflow cyclecounter, and this function takes this into account as well.
398  **/
399 static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
400 					  struct skb_shared_hwtstamps *hwtstamp,
401 					  u64 timestamp)
402 {
403 	unsigned long flags;
404 	struct timespec64 systime;
405 	u64 ns;
406 
407 	memset(hwtstamp, 0, sizeof(*hwtstamp));
408 
409 	switch (adapter->hw.mac.type) {
410 	/* X550 and later hardware supposedly represent time using a seconds
411 	 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
412 	 * to convert the timestamp into cycles before it can be fed to the
413 	 * cyclecounter. We need an actual cyclecounter because some revisions
414 	 * of hardware run at a higher frequency and thus the counter does
415 	 * not represent seconds/nanoseconds. Instead it can be thought of as
416 	 * cycles and billions of cycles.
417 	 */
418 	case ixgbe_mac_X550:
419 	case ixgbe_mac_X550EM_x:
420 	case ixgbe_mac_x550em_a:
421 		/* Upper 32 bits represent billions of cycles, lower 32 bits
422 		 * represent cycles. However, we use timespec64_to_ns for the
423 		 * correct math even though the units haven't been corrected
424 		 * yet.
425 		 */
426 		systime.tv_sec = timestamp >> 32;
427 		systime.tv_nsec = timestamp & 0xFFFFFFFF;
428 
429 		timestamp = timespec64_to_ns(&systime);
430 		break;
431 	default:
432 		break;
433 	}
434 
435 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
436 	ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
437 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
438 
439 	hwtstamp->hwtstamp = ns_to_ktime(ns);
440 }
441 
442 /**
443  * ixgbe_ptp_adjfreq_82599
444  * @ptp: the ptp clock structure
445  * @ppb: parts per billion adjustment from base
446  *
447  * adjust the frequency of the ptp cycle counter by the
448  * indicated ppb from the base frequency.
449  */
450 static int ixgbe_ptp_adjfreq_82599(struct ptp_clock_info *ptp, s32 ppb)
451 {
452 	struct ixgbe_adapter *adapter =
453 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
454 	struct ixgbe_hw *hw = &adapter->hw;
455 	u64 freq, incval;
456 	u32 diff;
457 	int neg_adj = 0;
458 
459 	if (ppb < 0) {
460 		neg_adj = 1;
461 		ppb = -ppb;
462 	}
463 
464 	smp_mb();
465 	incval = READ_ONCE(adapter->base_incval);
466 
467 	freq = incval;
468 	freq *= ppb;
469 	diff = div_u64(freq, 1000000000ULL);
470 
471 	incval = neg_adj ? (incval - diff) : (incval + diff);
472 
473 	switch (hw->mac.type) {
474 	case ixgbe_mac_X540:
475 		if (incval > 0xFFFFFFFFULL)
476 			e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
477 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
478 		break;
479 	case ixgbe_mac_82599EB:
480 		if (incval > 0x00FFFFFFULL)
481 			e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
482 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
483 				BIT(IXGBE_INCPER_SHIFT_82599) |
484 				((u32)incval & 0x00FFFFFFUL));
485 		break;
486 	default:
487 		break;
488 	}
489 
490 	return 0;
491 }
492 
493 /**
494  * ixgbe_ptp_adjfreq_X550
495  * @ptp: the ptp clock structure
496  * @ppb: parts per billion adjustment from base
497  *
498  * adjust the frequency of the SYSTIME registers by the indicated ppb from base
499  * frequency
500  */
501 static int ixgbe_ptp_adjfreq_X550(struct ptp_clock_info *ptp, s32 ppb)
502 {
503 	struct ixgbe_adapter *adapter =
504 			container_of(ptp, struct ixgbe_adapter, ptp_caps);
505 	struct ixgbe_hw *hw = &adapter->hw;
506 	int neg_adj = 0;
507 	u64 rate = IXGBE_X550_BASE_PERIOD;
508 	u32 inca;
509 
510 	if (ppb < 0) {
511 		neg_adj = 1;
512 		ppb = -ppb;
513 	}
514 	rate *= ppb;
515 	rate = div_u64(rate, 1000000000ULL);
516 
517 	/* warn if rate is too large */
518 	if (rate >= INCVALUE_MASK)
519 		e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
520 
521 	inca = rate & INCVALUE_MASK;
522 	if (neg_adj)
523 		inca |= ISGN;
524 
525 	IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
526 
527 	return 0;
528 }
529 
530 /**
531  * ixgbe_ptp_adjtime
532  * @ptp: the ptp clock structure
533  * @delta: offset to adjust the cycle counter by
534  *
535  * adjust the timer by resetting the timecounter structure.
536  */
537 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
538 {
539 	struct ixgbe_adapter *adapter =
540 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
541 	unsigned long flags;
542 
543 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
544 	timecounter_adjtime(&adapter->hw_tc, delta);
545 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
546 
547 	if (adapter->ptp_setup_sdp)
548 		adapter->ptp_setup_sdp(adapter);
549 
550 	return 0;
551 }
552 
553 /**
554  * ixgbe_ptp_gettimex
555  * @ptp: the ptp clock structure
556  * @ts: timespec to hold the PHC timestamp
557  * @sts: structure to hold the system time before and after reading the PHC
558  *
559  * read the timecounter and return the correct value on ns,
560  * after converting it into a struct timespec.
561  */
562 static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp,
563 			      struct timespec64 *ts,
564 			      struct ptp_system_timestamp *sts)
565 {
566 	struct ixgbe_adapter *adapter =
567 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
568 	struct ixgbe_hw *hw = &adapter->hw;
569 	unsigned long flags;
570 	u64 ns, stamp;
571 
572 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
573 
574 	switch (adapter->hw.mac.type) {
575 	case ixgbe_mac_X550:
576 	case ixgbe_mac_X550EM_x:
577 	case ixgbe_mac_x550em_a:
578 		/* Upper 32 bits represent billions of cycles, lower 32 bits
579 		 * represent cycles. However, we use timespec64_to_ns for the
580 		 * correct math even though the units haven't been corrected
581 		 * yet.
582 		 */
583 		ptp_read_system_prets(sts);
584 		IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
585 		ptp_read_system_postts(sts);
586 		ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
587 		ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
588 		stamp = timespec64_to_ns(ts);
589 		break;
590 	default:
591 		ptp_read_system_prets(sts);
592 		stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
593 		ptp_read_system_postts(sts);
594 		stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
595 		break;
596 	}
597 
598 	ns = timecounter_cyc2time(&adapter->hw_tc, stamp);
599 
600 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
601 
602 	*ts = ns_to_timespec64(ns);
603 
604 	return 0;
605 }
606 
607 /**
608  * ixgbe_ptp_settime
609  * @ptp: the ptp clock structure
610  * @ts: the timespec containing the new time for the cycle counter
611  *
612  * reset the timecounter to use a new base value instead of the kernel
613  * wall timer value.
614  */
615 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
616 			     const struct timespec64 *ts)
617 {
618 	struct ixgbe_adapter *adapter =
619 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
620 	unsigned long flags;
621 	u64 ns = timespec64_to_ns(ts);
622 
623 	/* reset the timecounter */
624 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
625 	timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
626 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
627 
628 	if (adapter->ptp_setup_sdp)
629 		adapter->ptp_setup_sdp(adapter);
630 	return 0;
631 }
632 
633 /**
634  * ixgbe_ptp_feature_enable
635  * @ptp: the ptp clock structure
636  * @rq: the requested feature to change
637  * @on: whether to enable or disable the feature
638  *
639  * enable (or disable) ancillary features of the phc subsystem.
640  * our driver only supports the PPS feature on the X540
641  */
642 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
643 				    struct ptp_clock_request *rq, int on)
644 {
645 	struct ixgbe_adapter *adapter =
646 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
647 
648 	/**
649 	 * When PPS is enabled, unmask the interrupt for the ClockOut
650 	 * feature, so that the interrupt handler can send the PPS
651 	 * event when the clock SDP triggers. Clear mask when PPS is
652 	 * disabled
653 	 */
654 	if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
655 		return -ENOTSUPP;
656 
657 	if (on)
658 		adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
659 	else
660 		adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
661 
662 	adapter->ptp_setup_sdp(adapter);
663 	return 0;
664 }
665 
666 /**
667  * ixgbe_ptp_check_pps_event
668  * @adapter: the private adapter structure
669  *
670  * This function is called by the interrupt routine when checking for
671  * interrupts. It will check and handle a pps event.
672  */
673 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
674 {
675 	struct ixgbe_hw *hw = &adapter->hw;
676 	struct ptp_clock_event event;
677 
678 	event.type = PTP_CLOCK_PPS;
679 
680 	/* this check is necessary in case the interrupt was enabled via some
681 	 * alternative means (ex. debug_fs). Better to check here than
682 	 * everywhere that calls this function.
683 	 */
684 	if (!adapter->ptp_clock)
685 		return;
686 
687 	switch (hw->mac.type) {
688 	case ixgbe_mac_X540:
689 		ptp_clock_event(adapter->ptp_clock, &event);
690 		break;
691 	default:
692 		break;
693 	}
694 }
695 
696 /**
697  * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
698  * @adapter: private adapter struct
699  *
700  * this watchdog task periodically reads the timecounter
701  * in order to prevent missing when the system time registers wrap
702  * around. This needs to be run approximately twice a minute.
703  */
704 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
705 {
706 	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
707 					     IXGBE_OVERFLOW_PERIOD);
708 	unsigned long flags;
709 
710 	if (timeout) {
711 		/* Update the timecounter */
712 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
713 		timecounter_read(&adapter->hw_tc);
714 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
715 
716 		adapter->last_overflow_check = jiffies;
717 	}
718 }
719 
720 /**
721  * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
722  * @adapter: private network adapter structure
723  *
724  * this watchdog task is scheduled to detect error case where hardware has
725  * dropped an Rx packet that was timestamped when the ring is full. The
726  * particular error is rare but leaves the device in a state unable to timestamp
727  * any future packets.
728  */
729 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
730 {
731 	struct ixgbe_hw *hw = &adapter->hw;
732 	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
733 	struct ixgbe_ring *rx_ring;
734 	unsigned long rx_event;
735 	int n;
736 
737 	/* if we don't have a valid timestamp in the registers, just update the
738 	 * timeout counter and exit
739 	 */
740 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
741 		adapter->last_rx_ptp_check = jiffies;
742 		return;
743 	}
744 
745 	/* determine the most recent watchdog or rx_timestamp event */
746 	rx_event = adapter->last_rx_ptp_check;
747 	for (n = 0; n < adapter->num_rx_queues; n++) {
748 		rx_ring = adapter->rx_ring[n];
749 		if (time_after(rx_ring->last_rx_timestamp, rx_event))
750 			rx_event = rx_ring->last_rx_timestamp;
751 	}
752 
753 	/* only need to read the high RXSTMP register to clear the lock */
754 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
755 		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
756 		adapter->last_rx_ptp_check = jiffies;
757 
758 		adapter->rx_hwtstamp_cleared++;
759 		e_warn(drv, "clearing RX Timestamp hang\n");
760 	}
761 }
762 
763 /**
764  * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
765  * @adapter: the private adapter structure
766  *
767  * This function should be called whenever the state related to a Tx timestamp
768  * needs to be cleared. This helps ensure that all related bits are reset for
769  * the next Tx timestamp event.
770  */
771 static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
772 {
773 	struct ixgbe_hw *hw = &adapter->hw;
774 
775 	IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
776 	if (adapter->ptp_tx_skb) {
777 		dev_kfree_skb_any(adapter->ptp_tx_skb);
778 		adapter->ptp_tx_skb = NULL;
779 	}
780 	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
781 }
782 
783 /**
784  * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
785  * @adapter: private network adapter structure
786  */
787 void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter)
788 {
789 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
790 					      IXGBE_PTP_TX_TIMEOUT);
791 
792 	if (!adapter->ptp_tx_skb)
793 		return;
794 
795 	if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state))
796 		return;
797 
798 	/* If we haven't received a timestamp within the timeout, it is
799 	 * reasonable to assume that it will never occur, so we can unlock the
800 	 * timestamp bit when this occurs.
801 	 */
802 	if (timeout) {
803 		cancel_work_sync(&adapter->ptp_tx_work);
804 		ixgbe_ptp_clear_tx_timestamp(adapter);
805 		adapter->tx_hwtstamp_timeouts++;
806 		e_warn(drv, "clearing Tx timestamp hang\n");
807 	}
808 }
809 
810 /**
811  * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
812  * @adapter: the private adapter struct
813  *
814  * if the timestamp is valid, we convert it into the timecounter ns
815  * value, then store that result into the shhwtstamps structure which
816  * is passed up the network stack
817  */
818 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
819 {
820 	struct sk_buff *skb = adapter->ptp_tx_skb;
821 	struct ixgbe_hw *hw = &adapter->hw;
822 	struct skb_shared_hwtstamps shhwtstamps;
823 	u64 regval = 0;
824 
825 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
826 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
827 	ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
828 
829 	/* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
830 	 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents
831 	 * well behaved applications from attempting to timestamp again prior
832 	 * to the lock bit being clear.
833 	 */
834 	adapter->ptp_tx_skb = NULL;
835 	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
836 
837 	/* Notify the stack and then free the skb after we've unlocked */
838 	skb_tstamp_tx(skb, &shhwtstamps);
839 	dev_kfree_skb_any(skb);
840 }
841 
842 /**
843  * ixgbe_ptp_tx_hwtstamp_work
844  * @work: pointer to the work struct
845  *
846  * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
847  * timestamp has been taken for the current skb. It is necessary, because the
848  * descriptor's "done" bit does not correlate with the timestamp event.
849  */
850 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
851 {
852 	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
853 						     ptp_tx_work);
854 	struct ixgbe_hw *hw = &adapter->hw;
855 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
856 					      IXGBE_PTP_TX_TIMEOUT);
857 	u32 tsynctxctl;
858 
859 	/* we have to have a valid skb to poll for a timestamp */
860 	if (!adapter->ptp_tx_skb) {
861 		ixgbe_ptp_clear_tx_timestamp(adapter);
862 		return;
863 	}
864 
865 	/* stop polling once we have a valid timestamp */
866 	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
867 	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
868 		ixgbe_ptp_tx_hwtstamp(adapter);
869 		return;
870 	}
871 
872 	if (timeout) {
873 		ixgbe_ptp_clear_tx_timestamp(adapter);
874 		adapter->tx_hwtstamp_timeouts++;
875 		e_warn(drv, "clearing Tx Timestamp hang\n");
876 	} else {
877 		/* reschedule to keep checking if it's not available yet */
878 		schedule_work(&adapter->ptp_tx_work);
879 	}
880 }
881 
882 /**
883  * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
884  * @q_vector: structure containing interrupt and ring information
885  * @skb: the packet
886  *
887  * This function will be called by the Rx routine of the timestamp for this
888  * packet is stored in the buffer. The value is stored in little endian format
889  * starting at the end of the packet data.
890  */
891 void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
892 			   struct sk_buff *skb)
893 {
894 	__le64 regval;
895 
896 	/* copy the bits out of the skb, and then trim the skb length */
897 	skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, &regval,
898 		      IXGBE_TS_HDR_LEN);
899 	__pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
900 
901 	/* The timestamp is recorded in little endian format, and is stored at
902 	 * the end of the packet.
903 	 *
904 	 * DWORD: N              N + 1      N + 2
905 	 * Field: End of Packet  SYSTIMH    SYSTIML
906 	 */
907 	ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
908 				      le64_to_cpu(regval));
909 }
910 
911 /**
912  * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
913  * @q_vector: structure containing interrupt and ring information
914  * @skb: particular skb to send timestamp with
915  *
916  * if the timestamp is valid, we convert it into the timecounter ns
917  * value, then store that result into the shhwtstamps structure which
918  * is passed up the network stack
919  */
920 void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
921 			   struct sk_buff *skb)
922 {
923 	struct ixgbe_adapter *adapter;
924 	struct ixgbe_hw *hw;
925 	u64 regval = 0;
926 	u32 tsyncrxctl;
927 
928 	/* we cannot process timestamps on a ring without a q_vector */
929 	if (!q_vector || !q_vector->adapter)
930 		return;
931 
932 	adapter = q_vector->adapter;
933 	hw = &adapter->hw;
934 
935 	/* Read the tsyncrxctl register afterwards in order to prevent taking an
936 	 * I/O hit on every packet.
937 	 */
938 
939 	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
940 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
941 		return;
942 
943 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
944 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
945 
946 	ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
947 }
948 
949 /**
950  * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration
951  * @adapter: pointer to adapter structure
952  * @ifr: ioctl data
953  *
954  * This function returns the current timestamping settings. Rather than
955  * attempt to deconstruct registers to fill in the values, simply keep a copy
956  * of the old settings around, and return a copy when requested.
957  */
958 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
959 {
960 	struct hwtstamp_config *config = &adapter->tstamp_config;
961 
962 	return copy_to_user(ifr->ifr_data, config,
963 			    sizeof(*config)) ? -EFAULT : 0;
964 }
965 
966 /**
967  * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
968  * @adapter: the private ixgbe adapter structure
969  * @config: the hwtstamp configuration requested
970  *
971  * Outgoing time stamping can be enabled and disabled. Play nice and
972  * disable it when requested, although it shouldn't cause any overhead
973  * when no packet needs it. At most one packet in the queue may be
974  * marked for time stamping, otherwise it would be impossible to tell
975  * for sure to which packet the hardware time stamp belongs.
976  *
977  * Incoming time stamping has to be configured via the hardware
978  * filters. Not all combinations are supported, in particular event
979  * type has to be specified. Matching the kind of event packet is
980  * not supported, with the exception of "all V2 events regardless of
981  * level 2 or 4".
982  *
983  * Since hardware always timestamps Path delay packets when timestamping V2
984  * packets, regardless of the type specified in the register, only use V2
985  * Event mode. This more accurately tells the user what the hardware is going
986  * to do anyways.
987  *
988  * Note: this may modify the hwtstamp configuration towards a more general
989  * mode, if required to support the specifically requested mode.
990  */
991 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
992 				 struct hwtstamp_config *config)
993 {
994 	struct ixgbe_hw *hw = &adapter->hw;
995 	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
996 	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
997 	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
998 	bool is_l2 = false;
999 	u32 regval;
1000 
1001 	/* reserved for future extensions */
1002 	if (config->flags)
1003 		return -EINVAL;
1004 
1005 	switch (config->tx_type) {
1006 	case HWTSTAMP_TX_OFF:
1007 		tsync_tx_ctl = 0;
1008 	case HWTSTAMP_TX_ON:
1009 		break;
1010 	default:
1011 		return -ERANGE;
1012 	}
1013 
1014 	switch (config->rx_filter) {
1015 	case HWTSTAMP_FILTER_NONE:
1016 		tsync_rx_ctl = 0;
1017 		tsync_rx_mtrl = 0;
1018 		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1019 				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1020 		break;
1021 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1022 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1023 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
1024 		adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1025 				   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1026 		break;
1027 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1028 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1029 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
1030 		adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1031 				   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1032 		break;
1033 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1034 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1035 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1036 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1037 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1038 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1039 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1040 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1041 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1042 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
1043 		is_l2 = true;
1044 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1045 		adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1046 				   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1047 		break;
1048 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1049 	case HWTSTAMP_FILTER_NTP_ALL:
1050 	case HWTSTAMP_FILTER_ALL:
1051 		/* The X550 controller is capable of timestamping all packets,
1052 		 * which allows it to accept any filter.
1053 		 */
1054 		if (hw->mac.type >= ixgbe_mac_X550) {
1055 			tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
1056 			config->rx_filter = HWTSTAMP_FILTER_ALL;
1057 			adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1058 			break;
1059 		}
1060 		/* fall through */
1061 	default:
1062 		/*
1063 		 * register RXMTRL must be set in order to do V1 packets,
1064 		 * therefore it is not possible to time stamp both V1 Sync and
1065 		 * Delay_Req messages and hardware does not support
1066 		 * timestamping all packets => return error
1067 		 */
1068 		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1069 				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1070 		config->rx_filter = HWTSTAMP_FILTER_NONE;
1071 		return -ERANGE;
1072 	}
1073 
1074 	if (hw->mac.type == ixgbe_mac_82598EB) {
1075 		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1076 				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1077 		if (tsync_rx_ctl | tsync_tx_ctl)
1078 			return -ERANGE;
1079 		return 0;
1080 	}
1081 
1082 	/* Per-packet timestamping only works if the filter is set to all
1083 	 * packets. Since this is desired, always timestamp all packets as long
1084 	 * as any Rx filter was configured.
1085 	 */
1086 	switch (hw->mac.type) {
1087 	case ixgbe_mac_X550:
1088 	case ixgbe_mac_X550EM_x:
1089 	case ixgbe_mac_x550em_a:
1090 		/* enable timestamping all packets only if at least some
1091 		 * packets were requested. Otherwise, play nice and disable
1092 		 * timestamping
1093 		 */
1094 		if (config->rx_filter == HWTSTAMP_FILTER_NONE)
1095 			break;
1096 
1097 		tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
1098 			       IXGBE_TSYNCRXCTL_TYPE_ALL |
1099 			       IXGBE_TSYNCRXCTL_TSIP_UT_EN;
1100 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1101 		adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1102 		adapter->flags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
1103 		is_l2 = true;
1104 		break;
1105 	default:
1106 		break;
1107 	}
1108 
1109 	/* define ethertype filter for timestamping L2 packets */
1110 	if (is_l2)
1111 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
1112 				(IXGBE_ETQF_FILTER_EN | /* enable filter */
1113 				 IXGBE_ETQF_1588 | /* enable timestamping */
1114 				 ETH_P_1588));     /* 1588 eth protocol type */
1115 	else
1116 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
1117 
1118 	/* enable/disable TX */
1119 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
1120 	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
1121 	regval |= tsync_tx_ctl;
1122 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
1123 
1124 	/* enable/disable RX */
1125 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
1126 	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
1127 	regval |= tsync_rx_ctl;
1128 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
1129 
1130 	/* define which PTP packets are time stamped */
1131 	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
1132 
1133 	IXGBE_WRITE_FLUSH(hw);
1134 
1135 	/* clear TX/RX time stamp registers, just to be sure */
1136 	ixgbe_ptp_clear_tx_timestamp(adapter);
1137 	IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
1138 
1139 	return 0;
1140 }
1141 
1142 /**
1143  * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
1144  * @adapter: pointer to adapter struct
1145  * @ifr: ioctl data
1146  *
1147  * Set hardware to requested mode. If unsupported, return an error with no
1148  * changes. Otherwise, store the mode for future reference.
1149  */
1150 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
1151 {
1152 	struct hwtstamp_config config;
1153 	int err;
1154 
1155 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1156 		return -EFAULT;
1157 
1158 	err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
1159 	if (err)
1160 		return err;
1161 
1162 	/* save these settings for future reference */
1163 	memcpy(&adapter->tstamp_config, &config,
1164 	       sizeof(adapter->tstamp_config));
1165 
1166 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1167 		-EFAULT : 0;
1168 }
1169 
1170 static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1171 					u32 *shift, u32 *incval)
1172 {
1173 	/**
1174 	 * Scale the NIC cycle counter by a large factor so that
1175 	 * relatively small corrections to the frequency can be added
1176 	 * or subtracted. The drawbacks of a large factor include
1177 	 * (a) the clock register overflows more quickly, (b) the cycle
1178 	 * counter structure must be able to convert the systime value
1179 	 * to nanoseconds using only a multiplier and a right-shift,
1180 	 * and (c) the value must fit within the timinca register space
1181 	 * => math based on internal DMA clock rate and available bits
1182 	 *
1183 	 * Note that when there is no link, internal DMA clock is same as when
1184 	 * link speed is 10Gb. Set the registers correctly even when link is
1185 	 * down to preserve the clock setting
1186 	 */
1187 	switch (adapter->link_speed) {
1188 	case IXGBE_LINK_SPEED_100_FULL:
1189 		*shift = IXGBE_INCVAL_SHIFT_100;
1190 		*incval = IXGBE_INCVAL_100;
1191 		break;
1192 	case IXGBE_LINK_SPEED_1GB_FULL:
1193 		*shift = IXGBE_INCVAL_SHIFT_1GB;
1194 		*incval = IXGBE_INCVAL_1GB;
1195 		break;
1196 	case IXGBE_LINK_SPEED_10GB_FULL:
1197 	default:
1198 		*shift = IXGBE_INCVAL_SHIFT_10GB;
1199 		*incval = IXGBE_INCVAL_10GB;
1200 		break;
1201 	}
1202 }
1203 
1204 /**
1205  * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1206  * @adapter: pointer to the adapter structure
1207  *
1208  * This function should be called to set the proper values for the TIMINCA
1209  * register and tell the cyclecounter structure what the tick rate of SYSTIME
1210  * is. It does not directly modify SYSTIME registers or the timecounter
1211  * structure. It should be called whenever a new TIMINCA value is necessary,
1212  * such as during initialization or when the link speed changes.
1213  */
1214 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1215 {
1216 	struct ixgbe_hw *hw = &adapter->hw;
1217 	struct cyclecounter cc;
1218 	unsigned long flags;
1219 	u32 incval = 0;
1220 	u32 tsauxc = 0;
1221 	u32 fuse0 = 0;
1222 
1223 	/* For some of the boards below this mask is technically incorrect.
1224 	 * The timestamp mask overflows at approximately 61bits. However the
1225 	 * particular hardware does not overflow on an even bitmask value.
1226 	 * Instead, it overflows due to conversion of upper 32bits billions of
1227 	 * cycles. Timecounters are not really intended for this purpose so
1228 	 * they do not properly function if the overflow point isn't 2^N-1.
1229 	 * However, the actual SYSTIME values in question take ~138 years to
1230 	 * overflow. In practice this means they won't actually overflow. A
1231 	 * proper fix to this problem would require modification of the
1232 	 * timecounter delta calculations.
1233 	 */
1234 	cc.mask = CLOCKSOURCE_MASK(64);
1235 	cc.mult = 1;
1236 	cc.shift = 0;
1237 
1238 	switch (hw->mac.type) {
1239 	case ixgbe_mac_X550EM_x:
1240 		/* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1241 		 * designed to represent seconds and nanoseconds when this is
1242 		 * the case. However, some revisions of hardware have a 400Mhz
1243 		 * clock and we have to compensate for this frequency
1244 		 * variation using corrected mult and shift values.
1245 		 */
1246 		fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1247 		if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1248 			cc.mult = 3;
1249 			cc.shift = 2;
1250 		}
1251 		/* fallthrough */
1252 	case ixgbe_mac_x550em_a:
1253 	case ixgbe_mac_X550:
1254 		cc.read = ixgbe_ptp_read_X550;
1255 
1256 		/* enable SYSTIME counter */
1257 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1258 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1259 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1260 		tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1261 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1262 				tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1263 		IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1264 		IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1265 
1266 		IXGBE_WRITE_FLUSH(hw);
1267 		break;
1268 	case ixgbe_mac_X540:
1269 		cc.read = ixgbe_ptp_read_82599;
1270 
1271 		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1272 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1273 		break;
1274 	case ixgbe_mac_82599EB:
1275 		cc.read = ixgbe_ptp_read_82599;
1276 
1277 		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1278 		incval >>= IXGBE_INCVAL_SHIFT_82599;
1279 		cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1280 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1281 				BIT(IXGBE_INCPER_SHIFT_82599) | incval);
1282 		break;
1283 	default:
1284 		/* other devices aren't supported */
1285 		return;
1286 	}
1287 
1288 	/* update the base incval used to calculate frequency adjustment */
1289 	WRITE_ONCE(adapter->base_incval, incval);
1290 	smp_mb();
1291 
1292 	/* need lock to prevent incorrect read while modifying cyclecounter */
1293 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1294 	memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1295 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1296 }
1297 
1298 /**
1299  * ixgbe_ptp_reset
1300  * @adapter: the ixgbe private board structure
1301  *
1302  * When the MAC resets, all the hardware bits for timesync are reset. This
1303  * function is used to re-enable the device for PTP based on current settings.
1304  * We do lose the current clock time, so just reset the cyclecounter to the
1305  * system real clock time.
1306  *
1307  * This function will maintain hwtstamp_config settings, and resets the SDP
1308  * output if it was enabled.
1309  */
1310 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1311 {
1312 	struct ixgbe_hw *hw = &adapter->hw;
1313 	unsigned long flags;
1314 
1315 	/* reset the hardware timestamping mode */
1316 	ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1317 
1318 	/* 82598 does not support PTP */
1319 	if (hw->mac.type == ixgbe_mac_82598EB)
1320 		return;
1321 
1322 	ixgbe_ptp_start_cyclecounter(adapter);
1323 
1324 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1325 	timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1326 			 ktime_to_ns(ktime_get_real()));
1327 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1328 
1329 	adapter->last_overflow_check = jiffies;
1330 
1331 	/* Now that the shift has been calculated and the systime
1332 	 * registers reset, (re-)enable the Clock out feature
1333 	 */
1334 	if (adapter->ptp_setup_sdp)
1335 		adapter->ptp_setup_sdp(adapter);
1336 }
1337 
1338 /**
1339  * ixgbe_ptp_create_clock
1340  * @adapter: the ixgbe private adapter structure
1341  *
1342  * This function performs setup of the user entry point function table and
1343  * initializes the PTP clock device, which is used to access the clock-like
1344  * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1345  * reuse a previously initialized clock (such as during a suspend/resume
1346  * cycle).
1347  */
1348 static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1349 {
1350 	struct net_device *netdev = adapter->netdev;
1351 	long err;
1352 
1353 	/* do nothing if we already have a clock device */
1354 	if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1355 		return 0;
1356 
1357 	switch (adapter->hw.mac.type) {
1358 	case ixgbe_mac_X540:
1359 		snprintf(adapter->ptp_caps.name,
1360 			 sizeof(adapter->ptp_caps.name),
1361 			 "%s", netdev->name);
1362 		adapter->ptp_caps.owner = THIS_MODULE;
1363 		adapter->ptp_caps.max_adj = 250000000;
1364 		adapter->ptp_caps.n_alarm = 0;
1365 		adapter->ptp_caps.n_ext_ts = 0;
1366 		adapter->ptp_caps.n_per_out = 0;
1367 		adapter->ptp_caps.pps = 1;
1368 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1369 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1370 		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1371 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1372 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1373 		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540;
1374 		break;
1375 	case ixgbe_mac_82599EB:
1376 		snprintf(adapter->ptp_caps.name,
1377 			 sizeof(adapter->ptp_caps.name),
1378 			 "%s", netdev->name);
1379 		adapter->ptp_caps.owner = THIS_MODULE;
1380 		adapter->ptp_caps.max_adj = 250000000;
1381 		adapter->ptp_caps.n_alarm = 0;
1382 		adapter->ptp_caps.n_ext_ts = 0;
1383 		adapter->ptp_caps.n_per_out = 0;
1384 		adapter->ptp_caps.pps = 0;
1385 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1386 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1387 		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1388 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1389 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1390 		break;
1391 	case ixgbe_mac_X550:
1392 	case ixgbe_mac_X550EM_x:
1393 	case ixgbe_mac_x550em_a:
1394 		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1395 		adapter->ptp_caps.owner = THIS_MODULE;
1396 		adapter->ptp_caps.max_adj = 30000000;
1397 		adapter->ptp_caps.n_alarm = 0;
1398 		adapter->ptp_caps.n_ext_ts = 0;
1399 		adapter->ptp_caps.n_per_out = 0;
1400 		adapter->ptp_caps.pps = 1;
1401 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_X550;
1402 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1403 		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1404 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1405 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1406 		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550;
1407 		break;
1408 	default:
1409 		adapter->ptp_clock = NULL;
1410 		adapter->ptp_setup_sdp = NULL;
1411 		return -EOPNOTSUPP;
1412 	}
1413 
1414 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1415 						&adapter->pdev->dev);
1416 	if (IS_ERR(adapter->ptp_clock)) {
1417 		err = PTR_ERR(adapter->ptp_clock);
1418 		adapter->ptp_clock = NULL;
1419 		e_dev_err("ptp_clock_register failed\n");
1420 		return err;
1421 	} else if (adapter->ptp_clock)
1422 		e_dev_info("registered PHC device on %s\n", netdev->name);
1423 
1424 	/* set default timestamp mode to disabled here. We do this in
1425 	 * create_clock instead of init, because we don't want to override the
1426 	 * previous settings during a resume cycle.
1427 	 */
1428 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1429 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1430 
1431 	return 0;
1432 }
1433 
1434 /**
1435  * ixgbe_ptp_init
1436  * @adapter: the ixgbe private adapter structure
1437  *
1438  * This function performs the required steps for enabling PTP
1439  * support. If PTP support has already been loaded it simply calls the
1440  * cyclecounter init routine and exits.
1441  */
1442 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1443 {
1444 	/* initialize the spin lock first since we can't control when a user
1445 	 * will call the entry functions once we have initialized the clock
1446 	 * device
1447 	 */
1448 	spin_lock_init(&adapter->tmreg_lock);
1449 
1450 	/* obtain a PTP device, or re-use an existing device */
1451 	if (ixgbe_ptp_create_clock(adapter))
1452 		return;
1453 
1454 	/* we have a clock so we can initialize work now */
1455 	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1456 
1457 	/* reset the PTP related hardware bits */
1458 	ixgbe_ptp_reset(adapter);
1459 
1460 	/* enter the IXGBE_PTP_RUNNING state */
1461 	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1462 
1463 	return;
1464 }
1465 
1466 /**
1467  * ixgbe_ptp_suspend - stop PTP work items
1468  * @adapter: pointer to adapter struct
1469  *
1470  * this function suspends PTP activity, and prevents more PTP work from being
1471  * generated, but does not destroy the PTP clock device.
1472  */
1473 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1474 {
1475 	/* Leave the IXGBE_PTP_RUNNING state. */
1476 	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1477 		return;
1478 
1479 	adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1480 	if (adapter->ptp_setup_sdp)
1481 		adapter->ptp_setup_sdp(adapter);
1482 
1483 	/* ensure that we cancel any pending PTP Tx work item in progress */
1484 	cancel_work_sync(&adapter->ptp_tx_work);
1485 	ixgbe_ptp_clear_tx_timestamp(adapter);
1486 }
1487 
1488 /**
1489  * ixgbe_ptp_stop - close the PTP device
1490  * @adapter: pointer to adapter struct
1491  *
1492  * completely destroy the PTP device, should only be called when the device is
1493  * being fully closed.
1494  */
1495 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1496 {
1497 	/* first, suspend PTP activity */
1498 	ixgbe_ptp_suspend(adapter);
1499 
1500 	/* disable the PTP clock device */
1501 	if (adapter->ptp_clock) {
1502 		ptp_clock_unregister(adapter->ptp_clock);
1503 		adapter->ptp_clock = NULL;
1504 		e_dev_info("removed PHC on %s\n",
1505 			   adapter->netdev->name);
1506 	}
1507 }
1508