1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_VLAN; 444 445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 446 vsi = ice_get_vf_vsi(vf); 447 if (!vsi) { 448 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 449 goto err; 450 } 451 452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 453 vf->driver_caps); 454 455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) 456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 457 458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 460 461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 463 464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 && 465 vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 485 486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC; 488 489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 491 492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 494 495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 497 498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_QOS) 499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_QOS; 500 501 vfres->num_vsis = 1; 502 /* Tx and Rx queue are equal for VF */ 503 vfres->num_queue_pairs = vsi->num_txq; 504 vfres->max_vectors = vf->num_msix; 505 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 506 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 507 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 508 509 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID; 510 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 511 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 512 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 513 vf->hw_lan_addr); 514 515 /* match guest capabilities */ 516 vf->driver_caps = vfres->vf_cap_flags; 517 518 ice_vc_set_caps_allowlist(vf); 519 ice_vc_set_working_allowlist(vf); 520 521 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 522 523 err: 524 /* send the response back to the VF */ 525 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 526 (u8 *)vfres, len); 527 528 kfree(vfres); 529 return ret; 530 } 531 532 /** 533 * ice_vc_reset_vf_msg 534 * @vf: pointer to the VF info 535 * 536 * called from the VF to reset itself, 537 * unlike other virtchnl messages, PF driver 538 * doesn't send the response back to the VF 539 */ 540 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 541 { 542 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 543 ice_reset_vf(vf, 0); 544 } 545 546 /** 547 * ice_vc_isvalid_vsi_id 548 * @vf: pointer to the VF info 549 * @vsi_id: VF relative VSI ID 550 * 551 * check for the valid VSI ID 552 */ 553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 554 { 555 return vsi_id == ICE_VF_VSI_ID; 556 } 557 558 /** 559 * ice_vc_isvalid_q_id 560 * @vsi: VSI to check queue ID against 561 * @qid: VSI relative queue ID 562 * 563 * check for the valid queue ID 564 */ 565 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid) 566 { 567 /* allocated Tx and Rx queues should be always equal for VF VSI */ 568 return qid < vsi->alloc_txq; 569 } 570 571 /** 572 * ice_vc_isvalid_ring_len 573 * @ring_len: length of ring 574 * 575 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 576 * or zero 577 */ 578 static bool ice_vc_isvalid_ring_len(u16 ring_len) 579 { 580 return ring_len == 0 || 581 (ring_len >= ICE_MIN_NUM_DESC && 582 ring_len <= ICE_MAX_NUM_DESC && 583 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 584 } 585 586 /** 587 * ice_vc_validate_pattern 588 * @vf: pointer to the VF info 589 * @proto: virtchnl protocol headers 590 * 591 * validate the pattern is supported or not. 592 * 593 * Return: true on success, false on error. 594 */ 595 bool 596 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 597 { 598 bool is_ipv4 = false; 599 bool is_ipv6 = false; 600 bool is_udp = false; 601 u16 ptype = -1; 602 int i = 0; 603 604 while (i < proto->count && 605 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 606 switch (proto->proto_hdr[i].type) { 607 case VIRTCHNL_PROTO_HDR_ETH: 608 ptype = ICE_PTYPE_MAC_PAY; 609 break; 610 case VIRTCHNL_PROTO_HDR_IPV4: 611 ptype = ICE_PTYPE_IPV4_PAY; 612 is_ipv4 = true; 613 break; 614 case VIRTCHNL_PROTO_HDR_IPV6: 615 ptype = ICE_PTYPE_IPV6_PAY; 616 is_ipv6 = true; 617 break; 618 case VIRTCHNL_PROTO_HDR_UDP: 619 if (is_ipv4) 620 ptype = ICE_PTYPE_IPV4_UDP_PAY; 621 else if (is_ipv6) 622 ptype = ICE_PTYPE_IPV6_UDP_PAY; 623 is_udp = true; 624 break; 625 case VIRTCHNL_PROTO_HDR_TCP: 626 if (is_ipv4) 627 ptype = ICE_PTYPE_IPV4_TCP_PAY; 628 else if (is_ipv6) 629 ptype = ICE_PTYPE_IPV6_TCP_PAY; 630 break; 631 case VIRTCHNL_PROTO_HDR_SCTP: 632 if (is_ipv4) 633 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 634 else if (is_ipv6) 635 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 636 break; 637 case VIRTCHNL_PROTO_HDR_GTPU_IP: 638 case VIRTCHNL_PROTO_HDR_GTPU_EH: 639 if (is_ipv4) 640 ptype = ICE_MAC_IPV4_GTPU; 641 else if (is_ipv6) 642 ptype = ICE_MAC_IPV6_GTPU; 643 goto out; 644 case VIRTCHNL_PROTO_HDR_L2TPV3: 645 if (is_ipv4) 646 ptype = ICE_MAC_IPV4_L2TPV3; 647 else if (is_ipv6) 648 ptype = ICE_MAC_IPV6_L2TPV3; 649 goto out; 650 case VIRTCHNL_PROTO_HDR_ESP: 651 if (is_ipv4) 652 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 653 ICE_MAC_IPV4_ESP; 654 else if (is_ipv6) 655 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 656 ICE_MAC_IPV6_ESP; 657 goto out; 658 case VIRTCHNL_PROTO_HDR_AH: 659 if (is_ipv4) 660 ptype = ICE_MAC_IPV4_AH; 661 else if (is_ipv6) 662 ptype = ICE_MAC_IPV6_AH; 663 goto out; 664 case VIRTCHNL_PROTO_HDR_PFCP: 665 if (is_ipv4) 666 ptype = ICE_MAC_IPV4_PFCP_SESSION; 667 else if (is_ipv6) 668 ptype = ICE_MAC_IPV6_PFCP_SESSION; 669 goto out; 670 default: 671 break; 672 } 673 i++; 674 } 675 676 out: 677 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 678 } 679 680 /** 681 * ice_vc_parse_rss_cfg - parses hash fields and headers from 682 * a specific virtchnl RSS cfg 683 * @hw: pointer to the hardware 684 * @rss_cfg: pointer to the virtchnl RSS cfg 685 * @hash_cfg: pointer to the HW hash configuration 686 * 687 * Return true if all the protocol header and hash fields in the RSS cfg could 688 * be parsed, else return false 689 * 690 * This function parses the virtchnl RSS cfg to be the intended 691 * hash fields and the intended header for RSS configuration 692 */ 693 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw, 694 struct virtchnl_rss_cfg *rss_cfg, 695 struct ice_rss_hash_cfg *hash_cfg) 696 { 697 const struct ice_vc_hash_field_match_type *hf_list; 698 const struct ice_vc_hdr_match_type *hdr_list; 699 int i, hf_list_len, hdr_list_len; 700 u32 *addl_hdrs = &hash_cfg->addl_hdrs; 701 u64 *hash_flds = &hash_cfg->hash_flds; 702 703 /* set outer layer RSS as default */ 704 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS; 705 706 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 707 hash_cfg->symm = true; 708 else 709 hash_cfg->symm = false; 710 711 hf_list = ice_vc_hash_field_list; 712 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 713 hdr_list = ice_vc_hdr_list; 714 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 715 716 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 717 struct virtchnl_proto_hdr *proto_hdr = 718 &rss_cfg->proto_hdrs.proto_hdr[i]; 719 bool hdr_found = false; 720 int j; 721 722 /* Find matched ice headers according to virtchnl headers. */ 723 for (j = 0; j < hdr_list_len; j++) { 724 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 725 726 if (proto_hdr->type == hdr_map.vc_hdr) { 727 *addl_hdrs |= hdr_map.ice_hdr; 728 hdr_found = true; 729 } 730 } 731 732 if (!hdr_found) 733 return false; 734 735 /* Find matched ice hash fields according to 736 * virtchnl hash fields. 737 */ 738 for (j = 0; j < hf_list_len; j++) { 739 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 740 741 if (proto_hdr->type == hf_map.vc_hdr && 742 proto_hdr->field_selector == hf_map.vc_hash_field) { 743 *hash_flds |= hf_map.ice_hash_field; 744 break; 745 } 746 } 747 } 748 749 return true; 750 } 751 752 /** 753 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 754 * RSS offloads 755 * @caps: VF driver negotiated capabilities 756 * 757 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 758 * else return false 759 */ 760 static bool ice_vf_adv_rss_offload_ena(u32 caps) 761 { 762 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 763 } 764 765 /** 766 * ice_vc_handle_rss_cfg 767 * @vf: pointer to the VF info 768 * @msg: pointer to the message buffer 769 * @add: add a RSS config if true, otherwise delete a RSS config 770 * 771 * This function adds/deletes a RSS config 772 */ 773 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 774 { 775 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 776 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 777 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 778 struct device *dev = ice_pf_to_dev(vf->pf); 779 struct ice_hw *hw = &vf->pf->hw; 780 struct ice_vsi *vsi; 781 782 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 783 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 784 vf->vf_id); 785 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 786 goto error_param; 787 } 788 789 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 790 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 791 vf->vf_id); 792 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 793 goto error_param; 794 } 795 796 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 797 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 798 goto error_param; 799 } 800 801 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 802 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 803 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 804 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 805 vf->vf_id); 806 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 807 goto error_param; 808 } 809 810 vsi = ice_get_vf_vsi(vf); 811 if (!vsi) { 812 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 813 goto error_param; 814 } 815 816 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 817 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 818 goto error_param; 819 } 820 821 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 822 struct ice_vsi_ctx *ctx; 823 u8 lut_type, hash_type; 824 int status; 825 826 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 827 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR : 828 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 829 830 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 831 if (!ctx) { 832 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 833 goto error_param; 834 } 835 836 ctx->info.q_opt_rss = 837 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 838 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 839 840 /* Preserve existing queueing option setting */ 841 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 842 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 843 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 844 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 845 846 ctx->info.valid_sections = 847 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 848 849 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 850 if (status) { 851 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 852 status, ice_aq_str(hw->adminq.sq_last_status)); 853 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 854 } else { 855 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 856 } 857 858 kfree(ctx); 859 } else { 860 struct ice_rss_hash_cfg cfg; 861 862 /* Only check for none raw pattern case */ 863 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 864 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 865 goto error_param; 866 } 867 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 868 cfg.hash_flds = ICE_HASH_INVALID; 869 cfg.hdr_type = ICE_RSS_ANY_HEADERS; 870 871 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) { 872 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 873 goto error_param; 874 } 875 876 if (add) { 877 if (ice_add_rss_cfg(hw, vsi, &cfg)) { 878 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 879 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 880 vsi->vsi_num, v_ret); 881 } 882 } else { 883 int status; 884 885 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg); 886 /* We just ignore -ENOENT, because if two configurations 887 * share the same profile remove one of them actually 888 * removes both, since the profile is deleted. 889 */ 890 if (status && status != -ENOENT) { 891 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 892 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 893 vf->vf_id, status); 894 } 895 } 896 } 897 898 error_param: 899 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 900 } 901 902 /** 903 * ice_vc_config_rss_key 904 * @vf: pointer to the VF info 905 * @msg: pointer to the msg buffer 906 * 907 * Configure the VF's RSS key 908 */ 909 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 910 { 911 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 912 struct virtchnl_rss_key *vrk = 913 (struct virtchnl_rss_key *)msg; 914 struct ice_vsi *vsi; 915 916 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 917 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 918 goto error_param; 919 } 920 921 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 922 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 923 goto error_param; 924 } 925 926 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 927 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 928 goto error_param; 929 } 930 931 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 932 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 933 goto error_param; 934 } 935 936 vsi = ice_get_vf_vsi(vf); 937 if (!vsi) { 938 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 939 goto error_param; 940 } 941 942 if (ice_set_rss_key(vsi, vrk->key)) 943 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 944 error_param: 945 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 946 NULL, 0); 947 } 948 949 /** 950 * ice_vc_config_rss_lut 951 * @vf: pointer to the VF info 952 * @msg: pointer to the msg buffer 953 * 954 * Configure the VF's RSS LUT 955 */ 956 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 957 { 958 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 959 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 960 struct ice_vsi *vsi; 961 962 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 963 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 964 goto error_param; 965 } 966 967 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 968 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 969 goto error_param; 970 } 971 972 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 973 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 974 goto error_param; 975 } 976 977 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 978 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 979 goto error_param; 980 } 981 982 vsi = ice_get_vf_vsi(vf); 983 if (!vsi) { 984 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 985 goto error_param; 986 } 987 988 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 989 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 990 error_param: 991 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 992 NULL, 0); 993 } 994 995 /** 996 * ice_vc_config_rss_hfunc 997 * @vf: pointer to the VF info 998 * @msg: pointer to the msg buffer 999 * 1000 * Configure the VF's RSS Hash function 1001 */ 1002 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg) 1003 { 1004 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg; 1005 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1006 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1007 struct ice_vsi *vsi; 1008 1009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1010 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1011 goto error_param; 1012 } 1013 1014 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) { 1015 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1016 goto error_param; 1017 } 1018 1019 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 1020 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1021 goto error_param; 1022 } 1023 1024 vsi = ice_get_vf_vsi(vf); 1025 if (!vsi) { 1026 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1027 goto error_param; 1028 } 1029 1030 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 1031 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ; 1032 1033 if (ice_set_rss_hfunc(vsi, hfunc)) 1034 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1035 error_param: 1036 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret, 1037 NULL, 0); 1038 } 1039 1040 /** 1041 * ice_vc_get_qos_caps - Get current QoS caps from PF 1042 * @vf: pointer to the VF info 1043 * 1044 * Get VF's QoS capabilities, such as TC number, arbiter and 1045 * bandwidth from PF. 1046 * 1047 * Return: 0 on success or negative error value. 1048 */ 1049 static int ice_vc_get_qos_caps(struct ice_vf *vf) 1050 { 1051 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1052 struct virtchnl_qos_cap_list *cap_list = NULL; 1053 u8 tc_prio[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1054 struct virtchnl_qos_cap_elem *cfg = NULL; 1055 struct ice_vsi_ctx *vsi_ctx; 1056 struct ice_pf *pf = vf->pf; 1057 struct ice_port_info *pi; 1058 struct ice_vsi *vsi; 1059 u8 numtc, tc; 1060 u16 len = 0; 1061 int ret, i; 1062 1063 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1064 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1065 goto err; 1066 } 1067 1068 vsi = ice_get_vf_vsi(vf); 1069 if (!vsi) { 1070 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1071 goto err; 1072 } 1073 1074 pi = pf->hw.port_info; 1075 numtc = vsi->tc_cfg.numtc; 1076 1077 vsi_ctx = ice_get_vsi_ctx(pi->hw, vf->lan_vsi_idx); 1078 if (!vsi_ctx) { 1079 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1080 goto err; 1081 } 1082 1083 len = struct_size(cap_list, cap, numtc); 1084 cap_list = kzalloc(len, GFP_KERNEL); 1085 if (!cap_list) { 1086 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 1087 len = 0; 1088 goto err; 1089 } 1090 1091 cap_list->vsi_id = vsi->vsi_num; 1092 cap_list->num_elem = numtc; 1093 1094 /* Store the UP2TC configuration from DCB to a user priority bitmap 1095 * of each TC. Each element of prio_of_tc represents one TC. Each 1096 * bitmap indicates the user priorities belong to this TC. 1097 */ 1098 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 1099 tc = pi->qos_cfg.local_dcbx_cfg.etscfg.prio_table[i]; 1100 tc_prio[tc] |= BIT(i); 1101 } 1102 1103 for (i = 0; i < numtc; i++) { 1104 cfg = &cap_list->cap[i]; 1105 cfg->tc_num = i; 1106 cfg->tc_prio = tc_prio[i]; 1107 cfg->arbiter = pi->qos_cfg.local_dcbx_cfg.etscfg.tsatable[i]; 1108 cfg->weight = VIRTCHNL_STRICT_WEIGHT; 1109 cfg->type = VIRTCHNL_BW_SHAPER; 1110 cfg->shaper.committed = vsi_ctx->sched.bw_t_info[i].cir_bw.bw; 1111 cfg->shaper.peak = vsi_ctx->sched.bw_t_info[i].eir_bw.bw; 1112 } 1113 1114 err: 1115 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_QOS_CAPS, v_ret, 1116 (u8 *)cap_list, len); 1117 kfree(cap_list); 1118 return ret; 1119 } 1120 1121 /** 1122 * ice_vf_cfg_qs_bw - Configure per queue bandwidth 1123 * @vf: pointer to the VF info 1124 * @num_queues: number of queues to be configured 1125 * 1126 * Configure per queue bandwidth. 1127 * 1128 * Return: 0 on success or negative error value. 1129 */ 1130 static int ice_vf_cfg_qs_bw(struct ice_vf *vf, u16 num_queues) 1131 { 1132 struct ice_hw *hw = &vf->pf->hw; 1133 struct ice_vsi *vsi; 1134 int ret; 1135 u16 i; 1136 1137 vsi = ice_get_vf_vsi(vf); 1138 if (!vsi) 1139 return -EINVAL; 1140 1141 for (i = 0; i < num_queues; i++) { 1142 u32 p_rate, min_rate; 1143 u8 tc; 1144 1145 p_rate = vf->qs_bw[i].peak; 1146 min_rate = vf->qs_bw[i].committed; 1147 tc = vf->qs_bw[i].tc; 1148 if (p_rate) 1149 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc, 1150 vf->qs_bw[i].queue_id, 1151 ICE_MAX_BW, p_rate); 1152 else 1153 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc, 1154 vf->qs_bw[i].queue_id, 1155 ICE_MAX_BW); 1156 if (ret) 1157 return ret; 1158 1159 if (min_rate) 1160 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc, 1161 vf->qs_bw[i].queue_id, 1162 ICE_MIN_BW, min_rate); 1163 else 1164 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc, 1165 vf->qs_bw[i].queue_id, 1166 ICE_MIN_BW); 1167 1168 if (ret) 1169 return ret; 1170 } 1171 1172 return 0; 1173 } 1174 1175 /** 1176 * ice_vf_cfg_q_quanta_profile - Configure quanta profile 1177 * @vf: pointer to the VF info 1178 * @quanta_prof_idx: pointer to the quanta profile index 1179 * @quanta_size: quanta size to be set 1180 * 1181 * This function chooses available quanta profile and configures the register. 1182 * The quanta profile is evenly divided by the number of device ports, and then 1183 * available to the specific PF and VFs. The first profile for each PF is a 1184 * reserved default profile. Only quanta size of the rest unused profile can be 1185 * modified. 1186 * 1187 * Return: 0 on success or negative error value. 1188 */ 1189 static int ice_vf_cfg_q_quanta_profile(struct ice_vf *vf, u16 quanta_size, 1190 u16 *quanta_prof_idx) 1191 { 1192 const u16 n_desc = calc_quanta_desc(quanta_size); 1193 struct ice_hw *hw = &vf->pf->hw; 1194 const u16 n_cmd = 2 * n_desc; 1195 struct ice_pf *pf = vf->pf; 1196 u16 per_pf, begin_id; 1197 u8 n_used; 1198 u32 reg; 1199 1200 begin_id = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / hw->dev_caps.num_funcs * 1201 hw->logical_pf_id; 1202 1203 if (quanta_size == ICE_DFLT_QUANTA) { 1204 *quanta_prof_idx = begin_id; 1205 } else { 1206 per_pf = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / 1207 hw->dev_caps.num_funcs; 1208 n_used = pf->num_quanta_prof_used; 1209 if (n_used < per_pf) { 1210 *quanta_prof_idx = begin_id + 1 + n_used; 1211 pf->num_quanta_prof_used++; 1212 } else { 1213 return -EINVAL; 1214 } 1215 } 1216 1217 reg = FIELD_PREP(GLCOMM_QUANTA_PROF_QUANTA_SIZE_M, quanta_size) | 1218 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_CMD_M, n_cmd) | 1219 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_DESC_M, n_desc); 1220 wr32(hw, GLCOMM_QUANTA_PROF(*quanta_prof_idx), reg); 1221 1222 return 0; 1223 } 1224 1225 /** 1226 * ice_vc_cfg_promiscuous_mode_msg 1227 * @vf: pointer to the VF info 1228 * @msg: pointer to the msg buffer 1229 * 1230 * called from the VF to configure VF VSIs promiscuous mode 1231 */ 1232 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 1233 { 1234 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1235 bool rm_promisc, alluni = false, allmulti = false; 1236 struct virtchnl_promisc_info *info = 1237 (struct virtchnl_promisc_info *)msg; 1238 struct ice_vsi_vlan_ops *vlan_ops; 1239 int mcast_err = 0, ucast_err = 0; 1240 struct ice_pf *pf = vf->pf; 1241 struct ice_vsi *vsi; 1242 u8 mcast_m, ucast_m; 1243 struct device *dev; 1244 int ret = 0; 1245 1246 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1247 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1248 goto error_param; 1249 } 1250 1251 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1252 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1253 goto error_param; 1254 } 1255 1256 vsi = ice_get_vf_vsi(vf); 1257 if (!vsi) { 1258 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1259 goto error_param; 1260 } 1261 1262 dev = ice_pf_to_dev(pf); 1263 if (!ice_is_vf_trusted(vf)) { 1264 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1265 vf->vf_id); 1266 /* Leave v_ret alone, lie to the VF on purpose. */ 1267 goto error_param; 1268 } 1269 1270 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1271 alluni = true; 1272 1273 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1274 allmulti = true; 1275 1276 rm_promisc = !allmulti && !alluni; 1277 1278 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1279 if (rm_promisc) 1280 ret = vlan_ops->ena_rx_filtering(vsi); 1281 else 1282 ret = vlan_ops->dis_rx_filtering(vsi); 1283 if (ret) { 1284 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1285 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1286 goto error_param; 1287 } 1288 1289 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1290 1291 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1292 if (alluni) { 1293 /* in this case we're turning on promiscuous mode */ 1294 ret = ice_set_dflt_vsi(vsi); 1295 } else { 1296 /* in this case we're turning off promiscuous mode */ 1297 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1298 ret = ice_clear_dflt_vsi(vsi); 1299 } 1300 1301 /* in this case we're turning on/off only 1302 * allmulticast 1303 */ 1304 if (allmulti) 1305 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1306 else 1307 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1308 1309 if (ret) { 1310 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1311 vf->vf_id, ret); 1312 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1313 goto error_param; 1314 } 1315 } else { 1316 if (alluni) 1317 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1318 else 1319 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1320 1321 if (allmulti) 1322 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1323 else 1324 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1325 1326 if (ucast_err || mcast_err) 1327 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1328 } 1329 1330 if (!mcast_err) { 1331 if (allmulti && 1332 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1333 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1334 vf->vf_id); 1335 else if (!allmulti && 1336 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1337 vf->vf_states)) 1338 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1339 vf->vf_id); 1340 } else { 1341 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1342 vf->vf_id, mcast_err); 1343 } 1344 1345 if (!ucast_err) { 1346 if (alluni && 1347 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1348 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1349 vf->vf_id); 1350 else if (!alluni && 1351 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1352 vf->vf_states)) 1353 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1354 vf->vf_id); 1355 } else { 1356 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1357 vf->vf_id, ucast_err); 1358 } 1359 1360 error_param: 1361 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1362 v_ret, NULL, 0); 1363 } 1364 1365 /** 1366 * ice_vc_get_stats_msg 1367 * @vf: pointer to the VF info 1368 * @msg: pointer to the msg buffer 1369 * 1370 * called from the VF to get VSI stats 1371 */ 1372 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1373 { 1374 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1375 struct virtchnl_queue_select *vqs = 1376 (struct virtchnl_queue_select *)msg; 1377 struct ice_eth_stats stats = { 0 }; 1378 struct ice_vsi *vsi; 1379 1380 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1381 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1382 goto error_param; 1383 } 1384 1385 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1386 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1387 goto error_param; 1388 } 1389 1390 vsi = ice_get_vf_vsi(vf); 1391 if (!vsi) { 1392 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1393 goto error_param; 1394 } 1395 1396 ice_update_eth_stats(vsi); 1397 1398 stats = vsi->eth_stats; 1399 1400 error_param: 1401 /* send the response to the VF */ 1402 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1403 (u8 *)&stats, sizeof(stats)); 1404 } 1405 1406 /** 1407 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1408 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1409 * 1410 * Return true on successful validation, else false 1411 */ 1412 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1413 { 1414 if ((!vqs->rx_queues && !vqs->tx_queues) || 1415 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1416 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1417 return false; 1418 1419 return true; 1420 } 1421 1422 /** 1423 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1424 * @vsi: VSI of the VF to configure 1425 * @q_idx: VF queue index used to determine the queue in the PF's space 1426 */ 1427 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1428 { 1429 struct ice_hw *hw = &vsi->back->hw; 1430 u32 pfq = vsi->txq_map[q_idx]; 1431 u32 reg; 1432 1433 reg = rd32(hw, QINT_TQCTL(pfq)); 1434 1435 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1436 * this is most likely a poll mode VF driver, so don't enable an 1437 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1438 */ 1439 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1440 return; 1441 1442 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1443 } 1444 1445 /** 1446 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1447 * @vsi: VSI of the VF to configure 1448 * @q_idx: VF queue index used to determine the queue in the PF's space 1449 */ 1450 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1451 { 1452 struct ice_hw *hw = &vsi->back->hw; 1453 u32 pfq = vsi->rxq_map[q_idx]; 1454 u32 reg; 1455 1456 reg = rd32(hw, QINT_RQCTL(pfq)); 1457 1458 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1459 * this is most likely a poll mode VF driver, so don't enable an 1460 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1461 */ 1462 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1463 return; 1464 1465 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1466 } 1467 1468 /** 1469 * ice_vc_ena_qs_msg 1470 * @vf: pointer to the VF info 1471 * @msg: pointer to the msg buffer 1472 * 1473 * called from the VF to enable all or specific queue(s) 1474 */ 1475 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1476 { 1477 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1478 struct virtchnl_queue_select *vqs = 1479 (struct virtchnl_queue_select *)msg; 1480 struct ice_vsi *vsi; 1481 unsigned long q_map; 1482 u16 vf_q_id; 1483 1484 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1485 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1486 goto error_param; 1487 } 1488 1489 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1490 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1491 goto error_param; 1492 } 1493 1494 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1495 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1496 goto error_param; 1497 } 1498 1499 vsi = ice_get_vf_vsi(vf); 1500 if (!vsi) { 1501 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1502 goto error_param; 1503 } 1504 1505 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1506 * Tx queue group list was configured and the context bits were 1507 * programmed using ice_vsi_cfg_txqs 1508 */ 1509 q_map = vqs->rx_queues; 1510 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1511 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1512 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1513 goto error_param; 1514 } 1515 1516 /* Skip queue if enabled */ 1517 if (test_bit(vf_q_id, vf->rxq_ena)) 1518 continue; 1519 1520 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1521 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1522 vf_q_id, vsi->vsi_num); 1523 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1524 goto error_param; 1525 } 1526 1527 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1528 set_bit(vf_q_id, vf->rxq_ena); 1529 } 1530 1531 q_map = vqs->tx_queues; 1532 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1533 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1534 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1535 goto error_param; 1536 } 1537 1538 /* Skip queue if enabled */ 1539 if (test_bit(vf_q_id, vf->txq_ena)) 1540 continue; 1541 1542 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1543 set_bit(vf_q_id, vf->txq_ena); 1544 } 1545 1546 /* Set flag to indicate that queues are enabled */ 1547 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1548 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1549 1550 error_param: 1551 /* send the response to the VF */ 1552 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1553 NULL, 0); 1554 } 1555 1556 /** 1557 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1558 * @vf: VF to disable queue for 1559 * @vsi: VSI for the VF 1560 * @q_id: VF relative (0-based) queue ID 1561 * 1562 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1563 * disabled then clear q_id bit in the enabled queues bitmap and return 1564 * success. Otherwise return error. 1565 */ 1566 static int 1567 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1568 { 1569 struct ice_txq_meta txq_meta = { 0 }; 1570 struct ice_tx_ring *ring; 1571 int err; 1572 1573 if (!test_bit(q_id, vf->txq_ena)) 1574 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1575 q_id, vsi->vsi_num); 1576 1577 ring = vsi->tx_rings[q_id]; 1578 if (!ring) 1579 return -EINVAL; 1580 1581 ice_fill_txq_meta(vsi, ring, &txq_meta); 1582 1583 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1584 if (err) { 1585 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1586 q_id, vsi->vsi_num); 1587 return err; 1588 } 1589 1590 /* Clear enabled queues flag */ 1591 clear_bit(q_id, vf->txq_ena); 1592 1593 return 0; 1594 } 1595 1596 /** 1597 * ice_vc_dis_qs_msg 1598 * @vf: pointer to the VF info 1599 * @msg: pointer to the msg buffer 1600 * 1601 * called from the VF to disable all or specific queue(s) 1602 */ 1603 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1604 { 1605 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1606 struct virtchnl_queue_select *vqs = 1607 (struct virtchnl_queue_select *)msg; 1608 struct ice_vsi *vsi; 1609 unsigned long q_map; 1610 u16 vf_q_id; 1611 1612 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1613 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1614 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1615 goto error_param; 1616 } 1617 1618 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1619 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1620 goto error_param; 1621 } 1622 1623 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1624 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1625 goto error_param; 1626 } 1627 1628 vsi = ice_get_vf_vsi(vf); 1629 if (!vsi) { 1630 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1631 goto error_param; 1632 } 1633 1634 if (vqs->tx_queues) { 1635 q_map = vqs->tx_queues; 1636 1637 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1638 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1639 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1640 goto error_param; 1641 } 1642 1643 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1644 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1645 goto error_param; 1646 } 1647 } 1648 } 1649 1650 q_map = vqs->rx_queues; 1651 /* speed up Rx queue disable by batching them if possible */ 1652 if (q_map && 1653 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1654 if (ice_vsi_stop_all_rx_rings(vsi)) { 1655 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1656 vsi->vsi_num); 1657 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1658 goto error_param; 1659 } 1660 1661 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1662 } else if (q_map) { 1663 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1664 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1665 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1666 goto error_param; 1667 } 1668 1669 /* Skip queue if not enabled */ 1670 if (!test_bit(vf_q_id, vf->rxq_ena)) 1671 continue; 1672 1673 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1674 true)) { 1675 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1676 vf_q_id, vsi->vsi_num); 1677 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1678 goto error_param; 1679 } 1680 1681 /* Clear enabled queues flag */ 1682 clear_bit(vf_q_id, vf->rxq_ena); 1683 } 1684 } 1685 1686 /* Clear enabled queues flag */ 1687 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1688 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1689 1690 error_param: 1691 /* send the response to the VF */ 1692 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1693 NULL, 0); 1694 } 1695 1696 /** 1697 * ice_cfg_interrupt 1698 * @vf: pointer to the VF info 1699 * @vsi: the VSI being configured 1700 * @map: vector map for mapping vectors to queues 1701 * @q_vector: structure for interrupt vector 1702 * configure the IRQ to queue map 1703 */ 1704 static enum virtchnl_status_code 1705 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, 1706 struct virtchnl_vector_map *map, 1707 struct ice_q_vector *q_vector) 1708 { 1709 u16 vsi_q_id, vsi_q_id_idx; 1710 unsigned long qmap; 1711 1712 q_vector->num_ring_rx = 0; 1713 q_vector->num_ring_tx = 0; 1714 1715 qmap = map->rxq_map; 1716 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1717 vsi_q_id = vsi_q_id_idx; 1718 1719 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1720 return VIRTCHNL_STATUS_ERR_PARAM; 1721 1722 q_vector->num_ring_rx++; 1723 q_vector->rx.itr_idx = map->rxitr_idx; 1724 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1725 ice_cfg_rxq_interrupt(vsi, vsi_q_id, 1726 q_vector->vf_reg_idx, 1727 q_vector->rx.itr_idx); 1728 } 1729 1730 qmap = map->txq_map; 1731 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1732 vsi_q_id = vsi_q_id_idx; 1733 1734 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1735 return VIRTCHNL_STATUS_ERR_PARAM; 1736 1737 q_vector->num_ring_tx++; 1738 q_vector->tx.itr_idx = map->txitr_idx; 1739 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1740 ice_cfg_txq_interrupt(vsi, vsi_q_id, 1741 q_vector->vf_reg_idx, 1742 q_vector->tx.itr_idx); 1743 } 1744 1745 return VIRTCHNL_STATUS_SUCCESS; 1746 } 1747 1748 /** 1749 * ice_vc_cfg_irq_map_msg 1750 * @vf: pointer to the VF info 1751 * @msg: pointer to the msg buffer 1752 * 1753 * called from the VF to configure the IRQ to queue map 1754 */ 1755 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1756 { 1757 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1758 u16 num_q_vectors_mapped, vsi_id, vector_id; 1759 struct virtchnl_irq_map_info *irqmap_info; 1760 struct virtchnl_vector_map *map; 1761 struct ice_vsi *vsi; 1762 int i; 1763 1764 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1765 num_q_vectors_mapped = irqmap_info->num_vectors; 1766 1767 /* Check to make sure number of VF vectors mapped is not greater than 1768 * number of VF vectors originally allocated, and check that 1769 * there is actually at least a single VF queue vector mapped 1770 */ 1771 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1772 vf->num_msix < num_q_vectors_mapped || 1773 !num_q_vectors_mapped) { 1774 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1775 goto error_param; 1776 } 1777 1778 vsi = ice_get_vf_vsi(vf); 1779 if (!vsi) { 1780 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1781 goto error_param; 1782 } 1783 1784 for (i = 0; i < num_q_vectors_mapped; i++) { 1785 struct ice_q_vector *q_vector; 1786 1787 map = &irqmap_info->vecmap[i]; 1788 1789 vector_id = map->vector_id; 1790 vsi_id = map->vsi_id; 1791 /* vector_id is always 0-based for each VF, and can never be 1792 * larger than or equal to the max allowed interrupts per VF 1793 */ 1794 if (!(vector_id < vf->num_msix) || 1795 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1796 (!vector_id && (map->rxq_map || map->txq_map))) { 1797 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1798 goto error_param; 1799 } 1800 1801 /* No need to map VF miscellaneous or rogue vector */ 1802 if (!vector_id) 1803 continue; 1804 1805 /* Subtract non queue vector from vector_id passed by VF 1806 * to get actual number of VSI queue vector array index 1807 */ 1808 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1809 if (!q_vector) { 1810 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1811 goto error_param; 1812 } 1813 1814 /* lookout for the invalid queue index */ 1815 v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector); 1816 if (v_ret) 1817 goto error_param; 1818 } 1819 1820 error_param: 1821 /* send the response to the VF */ 1822 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1823 NULL, 0); 1824 } 1825 1826 /** 1827 * ice_vc_cfg_q_bw - Configure per queue bandwidth 1828 * @vf: pointer to the VF info 1829 * @msg: pointer to the msg buffer which holds the command descriptor 1830 * 1831 * Configure VF queues bandwidth. 1832 * 1833 * Return: 0 on success or negative error value. 1834 */ 1835 static int ice_vc_cfg_q_bw(struct ice_vf *vf, u8 *msg) 1836 { 1837 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1838 struct virtchnl_queues_bw_cfg *qbw = 1839 (struct virtchnl_queues_bw_cfg *)msg; 1840 struct ice_vsi *vsi; 1841 u16 i; 1842 1843 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1844 !ice_vc_isvalid_vsi_id(vf, qbw->vsi_id)) { 1845 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1846 goto err; 1847 } 1848 1849 vsi = ice_get_vf_vsi(vf); 1850 if (!vsi) { 1851 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1852 goto err; 1853 } 1854 1855 if (qbw->num_queues > ICE_MAX_RSS_QS_PER_VF || 1856 qbw->num_queues > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1857 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n", 1858 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1859 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1860 goto err; 1861 } 1862 1863 for (i = 0; i < qbw->num_queues; i++) { 1864 if (qbw->cfg[i].shaper.peak != 0 && vf->max_tx_rate != 0 && 1865 qbw->cfg[i].shaper.peak > vf->max_tx_rate) 1866 dev_warn(ice_pf_to_dev(vf->pf), "The maximum queue %d rate limit configuration may not take effect because the maximum TX rate for VF-%d is %d\n", 1867 qbw->cfg[i].queue_id, vf->vf_id, 1868 vf->max_tx_rate); 1869 if (qbw->cfg[i].shaper.committed != 0 && vf->min_tx_rate != 0 && 1870 qbw->cfg[i].shaper.committed < vf->min_tx_rate) 1871 dev_warn(ice_pf_to_dev(vf->pf), "The minimum queue %d rate limit configuration may not take effect because the minimum TX rate for VF-%d is %d\n", 1872 qbw->cfg[i].queue_id, vf->vf_id, 1873 vf->max_tx_rate); 1874 } 1875 1876 for (i = 0; i < qbw->num_queues; i++) { 1877 vf->qs_bw[i].queue_id = qbw->cfg[i].queue_id; 1878 vf->qs_bw[i].peak = qbw->cfg[i].shaper.peak; 1879 vf->qs_bw[i].committed = qbw->cfg[i].shaper.committed; 1880 vf->qs_bw[i].tc = qbw->cfg[i].tc; 1881 } 1882 1883 if (ice_vf_cfg_qs_bw(vf, qbw->num_queues)) 1884 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1885 1886 err: 1887 /* send the response to the VF */ 1888 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUEUE_BW, 1889 v_ret, NULL, 0); 1890 } 1891 1892 /** 1893 * ice_vc_cfg_q_quanta - Configure per queue quanta 1894 * @vf: pointer to the VF info 1895 * @msg: pointer to the msg buffer which holds the command descriptor 1896 * 1897 * Configure VF queues quanta. 1898 * 1899 * Return: 0 on success or negative error value. 1900 */ 1901 static int ice_vc_cfg_q_quanta(struct ice_vf *vf, u8 *msg) 1902 { 1903 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1904 u16 quanta_prof_id, quanta_size, start_qid, end_qid, i; 1905 struct virtchnl_quanta_cfg *qquanta = 1906 (struct virtchnl_quanta_cfg *)msg; 1907 struct ice_vsi *vsi; 1908 int ret; 1909 1910 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1911 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1912 goto err; 1913 } 1914 1915 vsi = ice_get_vf_vsi(vf); 1916 if (!vsi) { 1917 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1918 goto err; 1919 } 1920 1921 end_qid = qquanta->queue_select.start_queue_id + 1922 qquanta->queue_select.num_queues; 1923 if (end_qid > ICE_MAX_RSS_QS_PER_VF || 1924 end_qid > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1925 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n", 1926 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1927 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1928 goto err; 1929 } 1930 1931 quanta_size = qquanta->quanta_size; 1932 if (quanta_size > ICE_MAX_QUANTA_SIZE || 1933 quanta_size < ICE_MIN_QUANTA_SIZE) { 1934 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1935 goto err; 1936 } 1937 1938 if (quanta_size % 64) { 1939 dev_err(ice_pf_to_dev(vf->pf), "quanta size should be the product of 64\n"); 1940 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1941 goto err; 1942 } 1943 1944 ret = ice_vf_cfg_q_quanta_profile(vf, quanta_size, 1945 &quanta_prof_id); 1946 if (ret) { 1947 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 1948 goto err; 1949 } 1950 1951 start_qid = qquanta->queue_select.start_queue_id; 1952 for (i = start_qid; i < end_qid; i++) 1953 vsi->tx_rings[i]->quanta_prof_id = quanta_prof_id; 1954 1955 err: 1956 /* send the response to the VF */ 1957 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUANTA, 1958 v_ret, NULL, 0); 1959 } 1960 1961 /** 1962 * ice_vc_cfg_qs_msg 1963 * @vf: pointer to the VF info 1964 * @msg: pointer to the msg buffer 1965 * 1966 * called from the VF to configure the Rx/Tx queues 1967 */ 1968 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1969 { 1970 struct virtchnl_vsi_queue_config_info *qci = 1971 (struct virtchnl_vsi_queue_config_info *)msg; 1972 struct virtchnl_queue_pair_info *qpi; 1973 struct ice_pf *pf = vf->pf; 1974 struct ice_lag *lag; 1975 struct ice_vsi *vsi; 1976 u8 act_prt, pri_prt; 1977 int i = -1, q_idx; 1978 1979 lag = pf->lag; 1980 mutex_lock(&pf->lag_mutex); 1981 act_prt = ICE_LAG_INVALID_PORT; 1982 pri_prt = pf->hw.port_info->lport; 1983 if (lag && lag->bonded && lag->primary) { 1984 act_prt = lag->active_port; 1985 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && 1986 lag->upper_netdev) 1987 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); 1988 else 1989 act_prt = ICE_LAG_INVALID_PORT; 1990 } 1991 1992 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1993 goto error_param; 1994 1995 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1996 goto error_param; 1997 1998 vsi = ice_get_vf_vsi(vf); 1999 if (!vsi) 2000 goto error_param; 2001 2002 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 2003 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 2004 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 2005 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 2006 goto error_param; 2007 } 2008 2009 for (i = 0; i < qci->num_queue_pairs; i++) { 2010 if (!qci->qpair[i].rxq.crc_disable) 2011 continue; 2012 2013 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) || 2014 vf->vlan_strip_ena) 2015 goto error_param; 2016 } 2017 2018 for (i = 0; i < qci->num_queue_pairs; i++) { 2019 qpi = &qci->qpair[i]; 2020 if (qpi->txq.vsi_id != qci->vsi_id || 2021 qpi->rxq.vsi_id != qci->vsi_id || 2022 qpi->rxq.queue_id != qpi->txq.queue_id || 2023 qpi->txq.headwb_enabled || 2024 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 2025 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 2026 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) { 2027 goto error_param; 2028 } 2029 2030 q_idx = qpi->rxq.queue_id; 2031 2032 /* make sure selected "q_idx" is in valid range of queues 2033 * for selected "vsi" 2034 */ 2035 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 2036 goto error_param; 2037 } 2038 2039 /* copy Tx queue info from VF into VSI */ 2040 if (qpi->txq.ring_len > 0) { 2041 vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr; 2042 vsi->tx_rings[q_idx]->count = qpi->txq.ring_len; 2043 2044 /* Disable any existing queue first */ 2045 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 2046 goto error_param; 2047 2048 /* Configure a queue with the requested settings */ 2049 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 2050 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 2051 vf->vf_id, q_idx); 2052 goto error_param; 2053 } 2054 } 2055 2056 /* copy Rx queue info from VF into VSI */ 2057 if (qpi->rxq.ring_len > 0) { 2058 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 2059 struct ice_rx_ring *ring = vsi->rx_rings[q_idx]; 2060 u32 rxdid; 2061 2062 ring->dma = qpi->rxq.dma_ring_addr; 2063 ring->count = qpi->rxq.ring_len; 2064 2065 if (qpi->rxq.crc_disable) 2066 ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 2067 else 2068 ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 2069 2070 if (qpi->rxq.databuffer_size != 0 && 2071 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 2072 qpi->rxq.databuffer_size < 1024)) 2073 goto error_param; 2074 ring->rx_buf_len = qpi->rxq.databuffer_size; 2075 if (qpi->rxq.max_pkt_size > max_frame_size || 2076 qpi->rxq.max_pkt_size < 64) 2077 goto error_param; 2078 2079 ring->max_frame = qpi->rxq.max_pkt_size; 2080 /* add space for the port VLAN since the VF driver is 2081 * not expected to account for it in the MTU 2082 * calculation 2083 */ 2084 if (ice_vf_is_port_vlan_ena(vf)) 2085 ring->max_frame += VLAN_HLEN; 2086 2087 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 2088 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 2089 vf->vf_id, q_idx); 2090 goto error_param; 2091 } 2092 2093 /* If Rx flex desc is supported, select RXDID for Rx 2094 * queues. Otherwise, use legacy 32byte descriptor 2095 * format. Legacy 16byte descriptor is not supported. 2096 * If this RXDID is selected, return error. 2097 */ 2098 if (vf->driver_caps & 2099 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 2100 rxdid = qpi->rxq.rxdid; 2101 if (!(BIT(rxdid) & pf->supported_rxdids)) 2102 goto error_param; 2103 } else { 2104 rxdid = ICE_RXDID_LEGACY_1; 2105 } 2106 2107 ice_write_qrxflxp_cntxt(&vsi->back->hw, 2108 vsi->rxq_map[q_idx], 2109 rxdid, 0x03, false); 2110 } 2111 } 2112 2113 if (lag && lag->bonded && lag->primary && 2114 act_prt != ICE_LAG_INVALID_PORT) 2115 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 2116 mutex_unlock(&pf->lag_mutex); 2117 2118 /* send the response to the VF */ 2119 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 2120 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 2121 error_param: 2122 /* disable whatever we can */ 2123 for (; i >= 0; i--) { 2124 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 2125 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 2126 vf->vf_id, i); 2127 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 2128 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 2129 vf->vf_id, i); 2130 } 2131 2132 if (lag && lag->bonded && lag->primary && 2133 act_prt != ICE_LAG_INVALID_PORT) 2134 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 2135 mutex_unlock(&pf->lag_mutex); 2136 2137 ice_lag_move_new_vf_nodes(vf); 2138 2139 /* send the response to the VF */ 2140 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 2141 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 2142 } 2143 2144 /** 2145 * ice_can_vf_change_mac 2146 * @vf: pointer to the VF info 2147 * 2148 * Return true if the VF is allowed to change its MAC filters, false otherwise 2149 */ 2150 static bool ice_can_vf_change_mac(struct ice_vf *vf) 2151 { 2152 /* If the VF MAC address has been set administratively (via the 2153 * ndo_set_vf_mac command), then deny permission to the VF to 2154 * add/delete unicast MAC addresses, unless the VF is trusted 2155 */ 2156 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 2157 return false; 2158 2159 return true; 2160 } 2161 2162 /** 2163 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 2164 * @vc_ether_addr: used to extract the type 2165 */ 2166 static u8 2167 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 2168 { 2169 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 2170 } 2171 2172 /** 2173 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 2174 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 2175 */ 2176 static bool 2177 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 2178 { 2179 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 2180 2181 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 2182 } 2183 2184 /** 2185 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 2186 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 2187 * 2188 * This function should only be called when the MAC address in 2189 * virtchnl_ether_addr is a valid unicast MAC 2190 */ 2191 static bool 2192 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 2193 { 2194 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 2195 2196 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 2197 } 2198 2199 /** 2200 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 2201 * @vf: VF to update 2202 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 2203 */ 2204 static void 2205 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 2206 { 2207 u8 *mac_addr = vc_ether_addr->addr; 2208 2209 if (!is_valid_ether_addr(mac_addr)) 2210 return; 2211 2212 /* only allow legacy VF drivers to set the device and hardware MAC if it 2213 * is zero and allow new VF drivers to set the hardware MAC if the type 2214 * was correctly specified over VIRTCHNL 2215 */ 2216 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 2217 is_zero_ether_addr(vf->hw_lan_addr)) || 2218 ice_is_vc_addr_primary(vc_ether_addr)) { 2219 ether_addr_copy(vf->dev_lan_addr, mac_addr); 2220 ether_addr_copy(vf->hw_lan_addr, mac_addr); 2221 } 2222 2223 /* hardware and device MACs are already set, but its possible that the 2224 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 2225 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 2226 * away for the legacy VF driver case as it will be updated in the 2227 * delete flow for this case 2228 */ 2229 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 2230 ether_addr_copy(vf->legacy_last_added_umac.addr, 2231 mac_addr); 2232 vf->legacy_last_added_umac.time_modified = jiffies; 2233 } 2234 } 2235 2236 /** 2237 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 2238 * @vf: pointer to the VF info 2239 * @vsi: pointer to the VF's VSI 2240 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 2241 */ 2242 static int 2243 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 2244 struct virtchnl_ether_addr *vc_ether_addr) 2245 { 2246 struct device *dev = ice_pf_to_dev(vf->pf); 2247 u8 *mac_addr = vc_ether_addr->addr; 2248 int ret; 2249 2250 /* device MAC already added */ 2251 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 2252 return 0; 2253 2254 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 2255 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 2256 return -EPERM; 2257 } 2258 2259 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 2260 if (ret == -EEXIST) { 2261 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 2262 vf->vf_id); 2263 /* don't return since we might need to update 2264 * the primary MAC in ice_vfhw_mac_add() below 2265 */ 2266 } else if (ret) { 2267 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 2268 mac_addr, vf->vf_id, ret); 2269 return ret; 2270 } else { 2271 vf->num_mac++; 2272 } 2273 2274 ice_vfhw_mac_add(vf, vc_ether_addr); 2275 2276 return ret; 2277 } 2278 2279 /** 2280 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 2281 * @last_added_umac: structure used to check expiration 2282 */ 2283 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 2284 { 2285 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 2286 return time_is_before_jiffies(last_added_umac->time_modified + 2287 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 2288 } 2289 2290 /** 2291 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 2292 * @vf: VF to update 2293 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 2294 * 2295 * only update cached hardware MAC for legacy VF drivers on delete 2296 * because we cannot guarantee order/type of MAC from the VF driver 2297 */ 2298 static void 2299 ice_update_legacy_cached_mac(struct ice_vf *vf, 2300 struct virtchnl_ether_addr *vc_ether_addr) 2301 { 2302 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 2303 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 2304 return; 2305 2306 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 2307 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 2308 } 2309 2310 /** 2311 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 2312 * @vf: VF to update 2313 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 2314 */ 2315 static void 2316 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 2317 { 2318 u8 *mac_addr = vc_ether_addr->addr; 2319 2320 if (!is_valid_ether_addr(mac_addr) || 2321 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2322 return; 2323 2324 /* allow the device MAC to be repopulated in the add flow and don't 2325 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 2326 * to be persistent on VM reboot and across driver unload/load, which 2327 * won't work if we clear the hardware MAC here 2328 */ 2329 eth_zero_addr(vf->dev_lan_addr); 2330 2331 ice_update_legacy_cached_mac(vf, vc_ether_addr); 2332 } 2333 2334 /** 2335 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 2336 * @vf: pointer to the VF info 2337 * @vsi: pointer to the VF's VSI 2338 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 2339 */ 2340 static int 2341 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 2342 struct virtchnl_ether_addr *vc_ether_addr) 2343 { 2344 struct device *dev = ice_pf_to_dev(vf->pf); 2345 u8 *mac_addr = vc_ether_addr->addr; 2346 int status; 2347 2348 if (!ice_can_vf_change_mac(vf) && 2349 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2350 return 0; 2351 2352 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 2353 if (status == -ENOENT) { 2354 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 2355 vf->vf_id); 2356 return -ENOENT; 2357 } else if (status) { 2358 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 2359 mac_addr, vf->vf_id, status); 2360 return -EIO; 2361 } 2362 2363 ice_vfhw_mac_del(vf, vc_ether_addr); 2364 2365 vf->num_mac--; 2366 2367 return 0; 2368 } 2369 2370 /** 2371 * ice_vc_handle_mac_addr_msg 2372 * @vf: pointer to the VF info 2373 * @msg: pointer to the msg buffer 2374 * @set: true if MAC filters are being set, false otherwise 2375 * 2376 * add guest MAC address filter 2377 */ 2378 static int 2379 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 2380 { 2381 int (*ice_vc_cfg_mac) 2382 (struct ice_vf *vf, struct ice_vsi *vsi, 2383 struct virtchnl_ether_addr *virtchnl_ether_addr); 2384 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2385 struct virtchnl_ether_addr_list *al = 2386 (struct virtchnl_ether_addr_list *)msg; 2387 struct ice_pf *pf = vf->pf; 2388 enum virtchnl_ops vc_op; 2389 struct ice_vsi *vsi; 2390 int i; 2391 2392 if (set) { 2393 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 2394 ice_vc_cfg_mac = ice_vc_add_mac_addr; 2395 } else { 2396 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 2397 ice_vc_cfg_mac = ice_vc_del_mac_addr; 2398 } 2399 2400 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2401 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2402 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2403 goto handle_mac_exit; 2404 } 2405 2406 /* If this VF is not privileged, then we can't add more than a 2407 * limited number of addresses. Check to make sure that the 2408 * additions do not push us over the limit. 2409 */ 2410 if (set && !ice_is_vf_trusted(vf) && 2411 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2412 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2413 vf->vf_id); 2414 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2415 goto handle_mac_exit; 2416 } 2417 2418 vsi = ice_get_vf_vsi(vf); 2419 if (!vsi) { 2420 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2421 goto handle_mac_exit; 2422 } 2423 2424 for (i = 0; i < al->num_elements; i++) { 2425 u8 *mac_addr = al->list[i].addr; 2426 int result; 2427 2428 if (is_broadcast_ether_addr(mac_addr) || 2429 is_zero_ether_addr(mac_addr)) 2430 continue; 2431 2432 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2433 if (result == -EEXIST || result == -ENOENT) { 2434 continue; 2435 } else if (result) { 2436 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2437 goto handle_mac_exit; 2438 } 2439 } 2440 2441 handle_mac_exit: 2442 /* send the response to the VF */ 2443 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2444 } 2445 2446 /** 2447 * ice_vc_add_mac_addr_msg 2448 * @vf: pointer to the VF info 2449 * @msg: pointer to the msg buffer 2450 * 2451 * add guest MAC address filter 2452 */ 2453 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2454 { 2455 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2456 } 2457 2458 /** 2459 * ice_vc_del_mac_addr_msg 2460 * @vf: pointer to the VF info 2461 * @msg: pointer to the msg buffer 2462 * 2463 * remove guest MAC address filter 2464 */ 2465 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2466 { 2467 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2468 } 2469 2470 /** 2471 * ice_vc_request_qs_msg 2472 * @vf: pointer to the VF info 2473 * @msg: pointer to the msg buffer 2474 * 2475 * VFs get a default number of queues but can use this message to request a 2476 * different number. If the request is successful, PF will reset the VF and 2477 * return 0. If unsuccessful, PF will send message informing VF of number of 2478 * available queue pairs via virtchnl message response to VF. 2479 */ 2480 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2481 { 2482 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2483 struct virtchnl_vf_res_request *vfres = 2484 (struct virtchnl_vf_res_request *)msg; 2485 u16 req_queues = vfres->num_queue_pairs; 2486 struct ice_pf *pf = vf->pf; 2487 u16 max_allowed_vf_queues; 2488 u16 tx_rx_queue_left; 2489 struct device *dev; 2490 u16 cur_queues; 2491 2492 dev = ice_pf_to_dev(pf); 2493 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2494 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2495 goto error_param; 2496 } 2497 2498 cur_queues = vf->num_vf_qs; 2499 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2500 ice_get_avail_rxq_count(pf)); 2501 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2502 if (!req_queues) { 2503 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2504 vf->vf_id); 2505 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2506 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2507 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2508 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2509 } else if (req_queues > cur_queues && 2510 req_queues - cur_queues > tx_rx_queue_left) { 2511 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2512 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2513 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2514 ICE_MAX_RSS_QS_PER_VF); 2515 } else { 2516 /* request is successful, then reset VF */ 2517 vf->num_req_qs = req_queues; 2518 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2519 dev_info(dev, "VF %d granted request of %u queues.\n", 2520 vf->vf_id, req_queues); 2521 return 0; 2522 } 2523 2524 error_param: 2525 /* send the response to the VF */ 2526 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2527 v_ret, (u8 *)vfres, sizeof(*vfres)); 2528 } 2529 2530 /** 2531 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2532 * @caps: VF driver negotiated capabilities 2533 * 2534 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2535 */ 2536 static bool ice_vf_vlan_offload_ena(u32 caps) 2537 { 2538 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2539 } 2540 2541 /** 2542 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2543 * @vf: VF used to determine if VLAN promiscuous config is allowed 2544 */ 2545 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2546 { 2547 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2548 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2549 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2550 return true; 2551 2552 return false; 2553 } 2554 2555 /** 2556 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2557 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2558 * @vlan: VLAN used to enable VLAN promiscuous 2559 * 2560 * This function should only be called if VLAN promiscuous mode is allowed, 2561 * which can be determined via ice_is_vlan_promisc_allowed(). 2562 */ 2563 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2564 { 2565 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2566 int status; 2567 2568 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2569 vlan->vid); 2570 if (status && status != -EEXIST) 2571 return status; 2572 2573 return 0; 2574 } 2575 2576 /** 2577 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2578 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2579 * @vlan: VLAN used to disable VLAN promiscuous 2580 * 2581 * This function should only be called if VLAN promiscuous mode is allowed, 2582 * which can be determined via ice_is_vlan_promisc_allowed(). 2583 */ 2584 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2585 { 2586 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2587 int status; 2588 2589 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2590 vlan->vid); 2591 if (status && status != -ENOENT) 2592 return status; 2593 2594 return 0; 2595 } 2596 2597 /** 2598 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2599 * @vf: VF to check against 2600 * @vsi: VF's VSI 2601 * 2602 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2603 * wants to, so return false. 2604 * 2605 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2606 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2607 */ 2608 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2609 { 2610 if (ice_is_vf_trusted(vf)) 2611 return false; 2612 2613 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2614 return ((ice_vsi_num_non_zero_vlans(vsi) + 2615 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2616 } 2617 2618 /** 2619 * ice_vc_process_vlan_msg 2620 * @vf: pointer to the VF info 2621 * @msg: pointer to the msg buffer 2622 * @add_v: Add VLAN if true, otherwise delete VLAN 2623 * 2624 * Process virtchnl op to add or remove programmed guest VLAN ID 2625 */ 2626 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2627 { 2628 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2629 struct virtchnl_vlan_filter_list *vfl = 2630 (struct virtchnl_vlan_filter_list *)msg; 2631 struct ice_pf *pf = vf->pf; 2632 bool vlan_promisc = false; 2633 struct ice_vsi *vsi; 2634 struct device *dev; 2635 int status = 0; 2636 int i; 2637 2638 dev = ice_pf_to_dev(pf); 2639 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2640 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2641 goto error_param; 2642 } 2643 2644 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2645 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2646 goto error_param; 2647 } 2648 2649 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2650 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2651 goto error_param; 2652 } 2653 2654 for (i = 0; i < vfl->num_elements; i++) { 2655 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2656 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2657 dev_err(dev, "invalid VF VLAN id %d\n", 2658 vfl->vlan_id[i]); 2659 goto error_param; 2660 } 2661 } 2662 2663 vsi = ice_get_vf_vsi(vf); 2664 if (!vsi) { 2665 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2666 goto error_param; 2667 } 2668 2669 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2670 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2671 vf->vf_id); 2672 /* There is no need to let VF know about being not trusted, 2673 * so we can just return success message here 2674 */ 2675 goto error_param; 2676 } 2677 2678 /* in DVM a VF can add/delete inner VLAN filters when 2679 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2680 */ 2681 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2682 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2683 goto error_param; 2684 } 2685 2686 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2687 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2688 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2689 */ 2690 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2691 !ice_is_dvm_ena(&pf->hw) && 2692 !ice_vf_is_port_vlan_ena(vf); 2693 2694 if (add_v) { 2695 for (i = 0; i < vfl->num_elements; i++) { 2696 u16 vid = vfl->vlan_id[i]; 2697 struct ice_vlan vlan; 2698 2699 if (ice_vf_has_max_vlans(vf, vsi)) { 2700 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2701 vf->vf_id); 2702 /* There is no need to let VF know about being 2703 * not trusted, so we can just return success 2704 * message here as well. 2705 */ 2706 goto error_param; 2707 } 2708 2709 /* we add VLAN 0 by default for each VF so we can enable 2710 * Tx VLAN anti-spoof without triggering MDD events so 2711 * we don't need to add it again here 2712 */ 2713 if (!vid) 2714 continue; 2715 2716 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2717 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2718 if (status) { 2719 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2720 goto error_param; 2721 } 2722 2723 /* Enable VLAN filtering on first non-zero VLAN */ 2724 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2725 if (vf->spoofchk) { 2726 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2727 if (status) { 2728 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2729 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2730 vid, status); 2731 goto error_param; 2732 } 2733 } 2734 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2735 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2736 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2737 vid, status); 2738 goto error_param; 2739 } 2740 } else if (vlan_promisc) { 2741 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2742 if (status) { 2743 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2744 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2745 vid, status); 2746 } 2747 } 2748 } 2749 } else { 2750 /* In case of non_trusted VF, number of VLAN elements passed 2751 * to PF for removal might be greater than number of VLANs 2752 * filter programmed for that VF - So, use actual number of 2753 * VLANS added earlier with add VLAN opcode. In order to avoid 2754 * removing VLAN that doesn't exist, which result to sending 2755 * erroneous failed message back to the VF 2756 */ 2757 int num_vf_vlan; 2758 2759 num_vf_vlan = vsi->num_vlan; 2760 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2761 u16 vid = vfl->vlan_id[i]; 2762 struct ice_vlan vlan; 2763 2764 /* we add VLAN 0 by default for each VF so we can enable 2765 * Tx VLAN anti-spoof without triggering MDD events so 2766 * we don't want a VIRTCHNL request to remove it 2767 */ 2768 if (!vid) 2769 continue; 2770 2771 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2772 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2773 if (status) { 2774 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2775 goto error_param; 2776 } 2777 2778 /* Disable VLAN filtering when only VLAN 0 is left */ 2779 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2780 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2781 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2782 } 2783 2784 if (vlan_promisc) 2785 ice_vf_dis_vlan_promisc(vsi, &vlan); 2786 } 2787 } 2788 2789 error_param: 2790 /* send the response to the VF */ 2791 if (add_v) 2792 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2793 NULL, 0); 2794 else 2795 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2796 NULL, 0); 2797 } 2798 2799 /** 2800 * ice_vc_add_vlan_msg 2801 * @vf: pointer to the VF info 2802 * @msg: pointer to the msg buffer 2803 * 2804 * Add and program guest VLAN ID 2805 */ 2806 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2807 { 2808 return ice_vc_process_vlan_msg(vf, msg, true); 2809 } 2810 2811 /** 2812 * ice_vc_remove_vlan_msg 2813 * @vf: pointer to the VF info 2814 * @msg: pointer to the msg buffer 2815 * 2816 * remove programmed guest VLAN ID 2817 */ 2818 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2819 { 2820 return ice_vc_process_vlan_msg(vf, msg, false); 2821 } 2822 2823 /** 2824 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not 2825 * @vsi: pointer to the VF VSI info 2826 */ 2827 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi) 2828 { 2829 unsigned int i; 2830 2831 ice_for_each_alloc_rxq(vsi, i) 2832 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS) 2833 return true; 2834 2835 return false; 2836 } 2837 2838 /** 2839 * ice_vc_ena_vlan_stripping 2840 * @vf: pointer to the VF info 2841 * 2842 * Enable VLAN header stripping for a given VF 2843 */ 2844 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2845 { 2846 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2847 struct ice_vsi *vsi; 2848 2849 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2850 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2851 goto error_param; 2852 } 2853 2854 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2855 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2856 goto error_param; 2857 } 2858 2859 vsi = ice_get_vf_vsi(vf); 2860 if (!vsi) { 2861 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2862 goto error_param; 2863 } 2864 2865 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2866 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2867 else 2868 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2869 2870 error_param: 2871 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2872 v_ret, NULL, 0); 2873 } 2874 2875 /** 2876 * ice_vc_dis_vlan_stripping 2877 * @vf: pointer to the VF info 2878 * 2879 * Disable VLAN header stripping for a given VF 2880 */ 2881 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2882 { 2883 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2884 struct ice_vsi *vsi; 2885 2886 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2887 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2888 goto error_param; 2889 } 2890 2891 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2892 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2893 goto error_param; 2894 } 2895 2896 vsi = ice_get_vf_vsi(vf); 2897 if (!vsi) { 2898 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2899 goto error_param; 2900 } 2901 2902 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2903 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2904 else 2905 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 2906 2907 error_param: 2908 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2909 v_ret, NULL, 0); 2910 } 2911 2912 /** 2913 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2914 * @vf: pointer to the VF info 2915 */ 2916 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2917 { 2918 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2919 struct virtchnl_rss_hena *vrh = NULL; 2920 int len = 0, ret; 2921 2922 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2923 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2924 goto err; 2925 } 2926 2927 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2928 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2929 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2930 goto err; 2931 } 2932 2933 len = sizeof(struct virtchnl_rss_hena); 2934 vrh = kzalloc(len, GFP_KERNEL); 2935 if (!vrh) { 2936 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2937 len = 0; 2938 goto err; 2939 } 2940 2941 vrh->hena = ICE_DEFAULT_RSS_HENA; 2942 err: 2943 /* send the response back to the VF */ 2944 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2945 (u8 *)vrh, len); 2946 kfree(vrh); 2947 return ret; 2948 } 2949 2950 /** 2951 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2952 * @vf: pointer to the VF info 2953 * @msg: pointer to the msg buffer 2954 */ 2955 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2956 { 2957 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2958 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2959 struct ice_pf *pf = vf->pf; 2960 struct ice_vsi *vsi; 2961 struct device *dev; 2962 int status; 2963 2964 dev = ice_pf_to_dev(pf); 2965 2966 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2967 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2968 goto err; 2969 } 2970 2971 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2972 dev_err(dev, "RSS not supported by PF\n"); 2973 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2974 goto err; 2975 } 2976 2977 vsi = ice_get_vf_vsi(vf); 2978 if (!vsi) { 2979 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2980 goto err; 2981 } 2982 2983 /* clear all previously programmed RSS configuration to allow VF drivers 2984 * the ability to customize the RSS configuration and/or completely 2985 * disable RSS 2986 */ 2987 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2988 if (status && !vrh->hena) { 2989 /* only report failure to clear the current RSS configuration if 2990 * that was clearly the VF's intention (i.e. vrh->hena = 0) 2991 */ 2992 v_ret = ice_err_to_virt_err(status); 2993 goto err; 2994 } else if (status) { 2995 /* allow the VF to update the RSS configuration even on failure 2996 * to clear the current RSS confguration in an attempt to keep 2997 * RSS in a working state 2998 */ 2999 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 3000 vf->vf_id); 3001 } 3002 3003 if (vrh->hena) { 3004 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena); 3005 v_ret = ice_err_to_virt_err(status); 3006 } 3007 3008 /* send the response to the VF */ 3009 err: 3010 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 3011 NULL, 0); 3012 } 3013 3014 /** 3015 * ice_vc_query_rxdid - query RXDID supported by DDP package 3016 * @vf: pointer to VF info 3017 * 3018 * Called from VF to query a bitmap of supported flexible 3019 * descriptor RXDIDs of a DDP package. 3020 */ 3021 static int ice_vc_query_rxdid(struct ice_vf *vf) 3022 { 3023 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3024 struct virtchnl_supported_rxdids *rxdid = NULL; 3025 struct ice_hw *hw = &vf->pf->hw; 3026 struct ice_pf *pf = vf->pf; 3027 int len = 0; 3028 int ret, i; 3029 u32 regval; 3030 3031 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3032 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3033 goto err; 3034 } 3035 3036 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 3037 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3038 goto err; 3039 } 3040 3041 len = sizeof(struct virtchnl_supported_rxdids); 3042 rxdid = kzalloc(len, GFP_KERNEL); 3043 if (!rxdid) { 3044 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 3045 len = 0; 3046 goto err; 3047 } 3048 3049 /* RXDIDs supported by DDP package can be read from the register 3050 * to get the supported RXDID bitmap. But the legacy 32byte RXDID 3051 * is not listed in DDP package, add it in the bitmap manually. 3052 * Legacy 16byte descriptor is not supported. 3053 */ 3054 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1); 3055 3056 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 3057 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 3058 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 3059 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 3060 rxdid->supported_rxdids |= BIT(i); 3061 } 3062 3063 pf->supported_rxdids = rxdid->supported_rxdids; 3064 3065 err: 3066 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 3067 v_ret, (u8 *)rxdid, len); 3068 kfree(rxdid); 3069 return ret; 3070 } 3071 3072 /** 3073 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 3074 * @vf: VF to enable/disable VLAN stripping for on initialization 3075 * 3076 * Set the default for VLAN stripping based on whether a port VLAN is configured 3077 * and the current VLAN mode of the device. 3078 */ 3079 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 3080 { 3081 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 3082 3083 vf->vlan_strip_ena = 0; 3084 3085 if (!vsi) 3086 return -EINVAL; 3087 3088 /* don't modify stripping if port VLAN is configured in SVM since the 3089 * port VLAN is based on the inner/single VLAN in SVM 3090 */ 3091 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 3092 return 0; 3093 3094 if (ice_vf_vlan_offload_ena(vf->driver_caps)) { 3095 int err; 3096 3097 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 3098 if (!err) 3099 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3100 return err; 3101 } 3102 3103 return vsi->inner_vlan_ops.dis_stripping(vsi); 3104 } 3105 3106 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 3107 { 3108 if (vf->trusted) 3109 return VLAN_N_VID; 3110 else 3111 return ICE_MAX_VLAN_PER_VF; 3112 } 3113 3114 /** 3115 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 3116 * @vf: VF that being checked for 3117 * 3118 * When the device is in double VLAN mode, check whether or not the outer VLAN 3119 * is allowed. 3120 */ 3121 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 3122 { 3123 if (ice_vf_is_port_vlan_ena(vf)) 3124 return true; 3125 3126 return false; 3127 } 3128 3129 /** 3130 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 3131 * @vf: VF that capabilities are being set for 3132 * @caps: VLAN capabilities to populate 3133 * 3134 * Determine VLAN capabilities support based on whether a port VLAN is 3135 * configured. If a port VLAN is configured then the VF should use the inner 3136 * filtering/offload capabilities since the port VLAN is using the outer VLAN 3137 * capabilies. 3138 */ 3139 static void 3140 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 3141 { 3142 struct virtchnl_vlan_supported_caps *supported_caps; 3143 3144 if (ice_vf_outer_vlan_not_allowed(vf)) { 3145 /* until support for inner VLAN filtering is added when a port 3146 * VLAN is configured, only support software offloaded inner 3147 * VLANs when a port VLAN is confgured in DVM 3148 */ 3149 supported_caps = &caps->filtering.filtering_support; 3150 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3151 3152 supported_caps = &caps->offloads.stripping_support; 3153 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3154 VIRTCHNL_VLAN_TOGGLE | 3155 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3156 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3157 3158 supported_caps = &caps->offloads.insertion_support; 3159 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3160 VIRTCHNL_VLAN_TOGGLE | 3161 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3162 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3163 3164 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3165 caps->offloads.ethertype_match = 3166 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3167 } else { 3168 supported_caps = &caps->filtering.filtering_support; 3169 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3170 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3171 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3172 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3173 VIRTCHNL_VLAN_ETHERTYPE_AND; 3174 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3175 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3176 VIRTCHNL_VLAN_ETHERTYPE_9100; 3177 3178 supported_caps = &caps->offloads.stripping_support; 3179 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 3180 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3181 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3182 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 3183 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3184 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3185 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3186 VIRTCHNL_VLAN_ETHERTYPE_XOR | 3187 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 3188 3189 supported_caps = &caps->offloads.insertion_support; 3190 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 3191 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3192 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3193 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 3194 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3195 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3196 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3197 VIRTCHNL_VLAN_ETHERTYPE_XOR | 3198 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 3199 3200 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3201 3202 caps->offloads.ethertype_match = 3203 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3204 } 3205 3206 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 3207 } 3208 3209 /** 3210 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 3211 * @vf: VF that capabilities are being set for 3212 * @caps: VLAN capabilities to populate 3213 * 3214 * Determine VLAN capabilities support based on whether a port VLAN is 3215 * configured. If a port VLAN is configured then the VF does not have any VLAN 3216 * filtering or offload capabilities since the port VLAN is using the inner VLAN 3217 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 3218 * VLAN fitlering and offload capabilities. 3219 */ 3220 static void 3221 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 3222 { 3223 struct virtchnl_vlan_supported_caps *supported_caps; 3224 3225 if (ice_vf_is_port_vlan_ena(vf)) { 3226 supported_caps = &caps->filtering.filtering_support; 3227 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3228 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3229 3230 supported_caps = &caps->offloads.stripping_support; 3231 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3232 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3233 3234 supported_caps = &caps->offloads.insertion_support; 3235 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3236 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3237 3238 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 3239 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 3240 caps->filtering.max_filters = 0; 3241 } else { 3242 supported_caps = &caps->filtering.filtering_support; 3243 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 3244 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3245 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3246 3247 supported_caps = &caps->offloads.stripping_support; 3248 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3249 VIRTCHNL_VLAN_TOGGLE | 3250 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3251 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3252 3253 supported_caps = &caps->offloads.insertion_support; 3254 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3255 VIRTCHNL_VLAN_TOGGLE | 3256 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3257 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3258 3259 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3260 caps->offloads.ethertype_match = 3261 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3262 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 3263 } 3264 } 3265 3266 /** 3267 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 3268 * @vf: VF to determine VLAN capabilities for 3269 * 3270 * This will only be called if the VF and PF successfully negotiated 3271 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 3272 * 3273 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 3274 * is configured or not. 3275 */ 3276 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 3277 { 3278 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3279 struct virtchnl_vlan_caps *caps = NULL; 3280 int err, len = 0; 3281 3282 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3283 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3284 goto out; 3285 } 3286 3287 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 3288 if (!caps) { 3289 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 3290 goto out; 3291 } 3292 len = sizeof(*caps); 3293 3294 if (ice_is_dvm_ena(&vf->pf->hw)) 3295 ice_vc_set_dvm_caps(vf, caps); 3296 else 3297 ice_vc_set_svm_caps(vf, caps); 3298 3299 /* store negotiated caps to prevent invalid VF messages */ 3300 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 3301 3302 out: 3303 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 3304 v_ret, (u8 *)caps, len); 3305 kfree(caps); 3306 return err; 3307 } 3308 3309 /** 3310 * ice_vc_validate_vlan_tpid - validate VLAN TPID 3311 * @filtering_caps: negotiated/supported VLAN filtering capabilities 3312 * @tpid: VLAN TPID used for validation 3313 * 3314 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 3315 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 3316 */ 3317 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 3318 { 3319 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 3320 3321 switch (tpid) { 3322 case ETH_P_8021Q: 3323 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 3324 break; 3325 case ETH_P_8021AD: 3326 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 3327 break; 3328 case ETH_P_QINQ1: 3329 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 3330 break; 3331 } 3332 3333 if (!(filtering_caps & vlan_ethertype)) 3334 return false; 3335 3336 return true; 3337 } 3338 3339 /** 3340 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 3341 * @vc_vlan: virtchnl_vlan to validate 3342 * 3343 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 3344 * false. Otherwise return true. 3345 */ 3346 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 3347 { 3348 if (!vc_vlan->tci || !vc_vlan->tpid) 3349 return false; 3350 3351 return true; 3352 } 3353 3354 /** 3355 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 3356 * @vfc: negotiated/supported VLAN filtering capabilities 3357 * @vfl: VLAN filter list from VF to validate 3358 * 3359 * Validate all of the filters in the VLAN filter list from the VF. If any of 3360 * the checks fail then return false. Otherwise return true. 3361 */ 3362 static bool 3363 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 3364 struct virtchnl_vlan_filter_list_v2 *vfl) 3365 { 3366 u16 i; 3367 3368 if (!vfl->num_elements) 3369 return false; 3370 3371 for (i = 0; i < vfl->num_elements; i++) { 3372 struct virtchnl_vlan_supported_caps *filtering_support = 3373 &vfc->filtering_support; 3374 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3375 struct virtchnl_vlan *outer = &vlan_fltr->outer; 3376 struct virtchnl_vlan *inner = &vlan_fltr->inner; 3377 3378 if ((ice_vc_is_valid_vlan(outer) && 3379 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 3380 (ice_vc_is_valid_vlan(inner) && 3381 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 3382 return false; 3383 3384 if ((outer->tci_mask && 3385 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 3386 (inner->tci_mask && 3387 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 3388 return false; 3389 3390 if (((outer->tci & VLAN_PRIO_MASK) && 3391 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 3392 ((inner->tci & VLAN_PRIO_MASK) && 3393 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 3394 return false; 3395 3396 if ((ice_vc_is_valid_vlan(outer) && 3397 !ice_vc_validate_vlan_tpid(filtering_support->outer, 3398 outer->tpid)) || 3399 (ice_vc_is_valid_vlan(inner) && 3400 !ice_vc_validate_vlan_tpid(filtering_support->inner, 3401 inner->tpid))) 3402 return false; 3403 } 3404 3405 return true; 3406 } 3407 3408 /** 3409 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 3410 * @vc_vlan: struct virtchnl_vlan to transform 3411 */ 3412 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 3413 { 3414 struct ice_vlan vlan = { 0 }; 3415 3416 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci); 3417 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 3418 vlan.tpid = vc_vlan->tpid; 3419 3420 return vlan; 3421 } 3422 3423 /** 3424 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 3425 * @vsi: VF's VSI used to perform the action 3426 * @vlan_action: function to perform the action with (i.e. add/del) 3427 * @vlan: VLAN filter to perform the action with 3428 */ 3429 static int 3430 ice_vc_vlan_action(struct ice_vsi *vsi, 3431 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3432 struct ice_vlan *vlan) 3433 { 3434 int err; 3435 3436 err = vlan_action(vsi, vlan); 3437 if (err) 3438 return err; 3439 3440 return 0; 3441 } 3442 3443 /** 3444 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3445 * @vf: VF used to delete the VLAN(s) 3446 * @vsi: VF's VSI used to delete the VLAN(s) 3447 * @vfl: virthchnl filter list used to delete the filters 3448 */ 3449 static int 3450 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3451 struct virtchnl_vlan_filter_list_v2 *vfl) 3452 { 3453 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3454 int err; 3455 u16 i; 3456 3457 for (i = 0; i < vfl->num_elements; i++) { 3458 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3459 struct virtchnl_vlan *vc_vlan; 3460 3461 vc_vlan = &vlan_fltr->outer; 3462 if (ice_vc_is_valid_vlan(vc_vlan)) { 3463 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3464 3465 err = ice_vc_vlan_action(vsi, 3466 vsi->outer_vlan_ops.del_vlan, 3467 &vlan); 3468 if (err) 3469 return err; 3470 3471 if (vlan_promisc) 3472 ice_vf_dis_vlan_promisc(vsi, &vlan); 3473 3474 /* Disable VLAN filtering when only VLAN 0 is left */ 3475 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3476 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3477 if (err) 3478 return err; 3479 } 3480 } 3481 3482 vc_vlan = &vlan_fltr->inner; 3483 if (ice_vc_is_valid_vlan(vc_vlan)) { 3484 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3485 3486 err = ice_vc_vlan_action(vsi, 3487 vsi->inner_vlan_ops.del_vlan, 3488 &vlan); 3489 if (err) 3490 return err; 3491 3492 /* no support for VLAN promiscuous on inner VLAN unless 3493 * we are in Single VLAN Mode (SVM) 3494 */ 3495 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3496 if (vlan_promisc) 3497 ice_vf_dis_vlan_promisc(vsi, &vlan); 3498 3499 /* Disable VLAN filtering when only VLAN 0 is left */ 3500 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3501 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3502 if (err) 3503 return err; 3504 } 3505 } 3506 } 3507 } 3508 3509 return 0; 3510 } 3511 3512 /** 3513 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3514 * @vf: VF the message was received from 3515 * @msg: message received from the VF 3516 */ 3517 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3518 { 3519 struct virtchnl_vlan_filter_list_v2 *vfl = 3520 (struct virtchnl_vlan_filter_list_v2 *)msg; 3521 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3522 struct ice_vsi *vsi; 3523 3524 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3525 vfl)) { 3526 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3527 goto out; 3528 } 3529 3530 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3531 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3532 goto out; 3533 } 3534 3535 vsi = ice_get_vf_vsi(vf); 3536 if (!vsi) { 3537 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3538 goto out; 3539 } 3540 3541 if (ice_vc_del_vlans(vf, vsi, vfl)) 3542 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3543 3544 out: 3545 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3546 0); 3547 } 3548 3549 /** 3550 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3551 * @vf: VF used to add the VLAN(s) 3552 * @vsi: VF's VSI used to add the VLAN(s) 3553 * @vfl: virthchnl filter list used to add the filters 3554 */ 3555 static int 3556 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3557 struct virtchnl_vlan_filter_list_v2 *vfl) 3558 { 3559 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3560 int err; 3561 u16 i; 3562 3563 for (i = 0; i < vfl->num_elements; i++) { 3564 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3565 struct virtchnl_vlan *vc_vlan; 3566 3567 vc_vlan = &vlan_fltr->outer; 3568 if (ice_vc_is_valid_vlan(vc_vlan)) { 3569 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3570 3571 err = ice_vc_vlan_action(vsi, 3572 vsi->outer_vlan_ops.add_vlan, 3573 &vlan); 3574 if (err) 3575 return err; 3576 3577 if (vlan_promisc) { 3578 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3579 if (err) 3580 return err; 3581 } 3582 3583 /* Enable VLAN filtering on first non-zero VLAN */ 3584 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3585 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3586 if (err) 3587 return err; 3588 } 3589 } 3590 3591 vc_vlan = &vlan_fltr->inner; 3592 if (ice_vc_is_valid_vlan(vc_vlan)) { 3593 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3594 3595 err = ice_vc_vlan_action(vsi, 3596 vsi->inner_vlan_ops.add_vlan, 3597 &vlan); 3598 if (err) 3599 return err; 3600 3601 /* no support for VLAN promiscuous on inner VLAN unless 3602 * we are in Single VLAN Mode (SVM) 3603 */ 3604 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3605 if (vlan_promisc) { 3606 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3607 if (err) 3608 return err; 3609 } 3610 3611 /* Enable VLAN filtering on first non-zero VLAN */ 3612 if (vf->spoofchk && vlan.vid) { 3613 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3614 if (err) 3615 return err; 3616 } 3617 } 3618 } 3619 } 3620 3621 return 0; 3622 } 3623 3624 /** 3625 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3626 * @vsi: VF VSI used to get number of existing VLAN filters 3627 * @vfc: negotiated/supported VLAN filtering capabilities 3628 * @vfl: VLAN filter list from VF to validate 3629 * 3630 * Validate all of the filters in the VLAN filter list from the VF during the 3631 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3632 * Otherwise return true. 3633 */ 3634 static bool 3635 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3636 struct virtchnl_vlan_filtering_caps *vfc, 3637 struct virtchnl_vlan_filter_list_v2 *vfl) 3638 { 3639 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3640 vfl->num_elements; 3641 3642 if (num_requested_filters > vfc->max_filters) 3643 return false; 3644 3645 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3646 } 3647 3648 /** 3649 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3650 * @vf: VF the message was received from 3651 * @msg: message received from the VF 3652 */ 3653 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3654 { 3655 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3656 struct virtchnl_vlan_filter_list_v2 *vfl = 3657 (struct virtchnl_vlan_filter_list_v2 *)msg; 3658 struct ice_vsi *vsi; 3659 3660 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3661 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3662 goto out; 3663 } 3664 3665 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3666 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3667 goto out; 3668 } 3669 3670 vsi = ice_get_vf_vsi(vf); 3671 if (!vsi) { 3672 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3673 goto out; 3674 } 3675 3676 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3677 &vf->vlan_v2_caps.filtering, 3678 vfl)) { 3679 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3680 goto out; 3681 } 3682 3683 if (ice_vc_add_vlans(vf, vsi, vfl)) 3684 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3685 3686 out: 3687 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3688 0); 3689 } 3690 3691 /** 3692 * ice_vc_valid_vlan_setting - validate VLAN setting 3693 * @negotiated_settings: negotiated VLAN settings during VF init 3694 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3695 */ 3696 static bool 3697 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3698 { 3699 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3700 return false; 3701 3702 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3703 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3704 */ 3705 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3706 hweight32(ethertype_setting) > 1) 3707 return false; 3708 3709 /* ability to modify the VLAN setting was not negotiated */ 3710 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3711 return false; 3712 3713 return true; 3714 } 3715 3716 /** 3717 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3718 * @caps: negotiated VLAN settings during VF init 3719 * @msg: message to validate 3720 * 3721 * Used to validate any VLAN virtchnl message sent as a 3722 * virtchnl_vlan_setting structure. Validates the message against the 3723 * negotiated/supported caps during VF driver init. 3724 */ 3725 static bool 3726 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3727 struct virtchnl_vlan_setting *msg) 3728 { 3729 if ((!msg->outer_ethertype_setting && 3730 !msg->inner_ethertype_setting) || 3731 (!caps->outer && !caps->inner)) 3732 return false; 3733 3734 if (msg->outer_ethertype_setting && 3735 !ice_vc_valid_vlan_setting(caps->outer, 3736 msg->outer_ethertype_setting)) 3737 return false; 3738 3739 if (msg->inner_ethertype_setting && 3740 !ice_vc_valid_vlan_setting(caps->inner, 3741 msg->inner_ethertype_setting)) 3742 return false; 3743 3744 return true; 3745 } 3746 3747 /** 3748 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3749 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3750 * @tpid: VLAN TPID to populate 3751 */ 3752 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3753 { 3754 switch (ethertype_setting) { 3755 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3756 *tpid = ETH_P_8021Q; 3757 break; 3758 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3759 *tpid = ETH_P_8021AD; 3760 break; 3761 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3762 *tpid = ETH_P_QINQ1; 3763 break; 3764 default: 3765 *tpid = 0; 3766 return -EINVAL; 3767 } 3768 3769 return 0; 3770 } 3771 3772 /** 3773 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3774 * @vsi: VF's VSI used to enable the VLAN offload 3775 * @ena_offload: function used to enable the VLAN offload 3776 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3777 */ 3778 static int 3779 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3780 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3781 u32 ethertype_setting) 3782 { 3783 u16 tpid; 3784 int err; 3785 3786 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3787 if (err) 3788 return err; 3789 3790 err = ena_offload(vsi, tpid); 3791 if (err) 3792 return err; 3793 3794 return 0; 3795 } 3796 3797 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3798 #define ICE_L2TSEL_BIT_OFFSET 23 3799 enum ice_l2tsel { 3800 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3801 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3802 }; 3803 3804 /** 3805 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3806 * @vsi: VSI used to update l2tsel on 3807 * @l2tsel: l2tsel setting requested 3808 * 3809 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3810 * This will modify which descriptor field the first offloaded VLAN will be 3811 * stripped into. 3812 */ 3813 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3814 { 3815 struct ice_hw *hw = &vsi->back->hw; 3816 u32 l2tsel_bit; 3817 int i; 3818 3819 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3820 l2tsel_bit = 0; 3821 else 3822 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3823 3824 for (i = 0; i < vsi->alloc_rxq; i++) { 3825 u16 pfq = vsi->rxq_map[i]; 3826 u32 qrx_context_offset; 3827 u32 regval; 3828 3829 qrx_context_offset = 3830 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3831 3832 regval = rd32(hw, qrx_context_offset); 3833 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3834 regval |= l2tsel_bit; 3835 wr32(hw, qrx_context_offset, regval); 3836 } 3837 } 3838 3839 /** 3840 * ice_vc_ena_vlan_stripping_v2_msg 3841 * @vf: VF the message was received from 3842 * @msg: message received from the VF 3843 * 3844 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3845 */ 3846 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3847 { 3848 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3849 struct virtchnl_vlan_supported_caps *stripping_support; 3850 struct virtchnl_vlan_setting *strip_msg = 3851 (struct virtchnl_vlan_setting *)msg; 3852 u32 ethertype_setting; 3853 struct ice_vsi *vsi; 3854 3855 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3856 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3857 goto out; 3858 } 3859 3860 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3861 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3862 goto out; 3863 } 3864 3865 vsi = ice_get_vf_vsi(vf); 3866 if (!vsi) { 3867 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3868 goto out; 3869 } 3870 3871 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3872 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3873 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3874 goto out; 3875 } 3876 3877 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) { 3878 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3879 goto out; 3880 } 3881 3882 ethertype_setting = strip_msg->outer_ethertype_setting; 3883 if (ethertype_setting) { 3884 if (ice_vc_ena_vlan_offload(vsi, 3885 vsi->outer_vlan_ops.ena_stripping, 3886 ethertype_setting)) { 3887 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3888 goto out; 3889 } else { 3890 enum ice_l2tsel l2tsel = 3891 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3892 3893 /* PF tells the VF that the outer VLAN tag is always 3894 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3895 * inner is always extracted to 3896 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3897 * support outer stripping so the first tag always ends 3898 * up in L2TAG2_2ND and the second/inner tag, if 3899 * enabled, is extracted in L2TAG1. 3900 */ 3901 ice_vsi_update_l2tsel(vsi, l2tsel); 3902 3903 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA; 3904 } 3905 } 3906 3907 ethertype_setting = strip_msg->inner_ethertype_setting; 3908 if (ethertype_setting && 3909 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3910 ethertype_setting)) { 3911 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3912 goto out; 3913 } 3914 3915 if (ethertype_setting) 3916 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3917 3918 out: 3919 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3920 v_ret, NULL, 0); 3921 } 3922 3923 /** 3924 * ice_vc_dis_vlan_stripping_v2_msg 3925 * @vf: VF the message was received from 3926 * @msg: message received from the VF 3927 * 3928 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3929 */ 3930 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3931 { 3932 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3933 struct virtchnl_vlan_supported_caps *stripping_support; 3934 struct virtchnl_vlan_setting *strip_msg = 3935 (struct virtchnl_vlan_setting *)msg; 3936 u32 ethertype_setting; 3937 struct ice_vsi *vsi; 3938 3939 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3940 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3941 goto out; 3942 } 3943 3944 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3945 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3946 goto out; 3947 } 3948 3949 vsi = ice_get_vf_vsi(vf); 3950 if (!vsi) { 3951 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3952 goto out; 3953 } 3954 3955 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3956 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3957 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3958 goto out; 3959 } 3960 3961 ethertype_setting = strip_msg->outer_ethertype_setting; 3962 if (ethertype_setting) { 3963 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3964 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3965 goto out; 3966 } else { 3967 enum ice_l2tsel l2tsel = 3968 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3969 3970 /* PF tells the VF that the outer VLAN tag is always 3971 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3972 * inner is always extracted to 3973 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3974 * support inner stripping while outer stripping is 3975 * disabled so that the first and only tag is extracted 3976 * in L2TAG1. 3977 */ 3978 ice_vsi_update_l2tsel(vsi, l2tsel); 3979 3980 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA; 3981 } 3982 } 3983 3984 ethertype_setting = strip_msg->inner_ethertype_setting; 3985 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3986 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3987 goto out; 3988 } 3989 3990 if (ethertype_setting) 3991 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 3992 3993 out: 3994 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3995 v_ret, NULL, 0); 3996 } 3997 3998 /** 3999 * ice_vc_ena_vlan_insertion_v2_msg 4000 * @vf: VF the message was received from 4001 * @msg: message received from the VF 4002 * 4003 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 4004 */ 4005 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 4006 { 4007 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4008 struct virtchnl_vlan_supported_caps *insertion_support; 4009 struct virtchnl_vlan_setting *insertion_msg = 4010 (struct virtchnl_vlan_setting *)msg; 4011 u32 ethertype_setting; 4012 struct ice_vsi *vsi; 4013 4014 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 4015 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4016 goto out; 4017 } 4018 4019 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 4020 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4021 goto out; 4022 } 4023 4024 vsi = ice_get_vf_vsi(vf); 4025 if (!vsi) { 4026 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4027 goto out; 4028 } 4029 4030 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 4031 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 4032 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4033 goto out; 4034 } 4035 4036 ethertype_setting = insertion_msg->outer_ethertype_setting; 4037 if (ethertype_setting && 4038 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 4039 ethertype_setting)) { 4040 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4041 goto out; 4042 } 4043 4044 ethertype_setting = insertion_msg->inner_ethertype_setting; 4045 if (ethertype_setting && 4046 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 4047 ethertype_setting)) { 4048 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4049 goto out; 4050 } 4051 4052 out: 4053 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 4054 v_ret, NULL, 0); 4055 } 4056 4057 /** 4058 * ice_vc_dis_vlan_insertion_v2_msg 4059 * @vf: VF the message was received from 4060 * @msg: message received from the VF 4061 * 4062 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 4063 */ 4064 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 4065 { 4066 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4067 struct virtchnl_vlan_supported_caps *insertion_support; 4068 struct virtchnl_vlan_setting *insertion_msg = 4069 (struct virtchnl_vlan_setting *)msg; 4070 u32 ethertype_setting; 4071 struct ice_vsi *vsi; 4072 4073 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 4074 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4075 goto out; 4076 } 4077 4078 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 4079 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4080 goto out; 4081 } 4082 4083 vsi = ice_get_vf_vsi(vf); 4084 if (!vsi) { 4085 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4086 goto out; 4087 } 4088 4089 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 4090 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 4091 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4092 goto out; 4093 } 4094 4095 ethertype_setting = insertion_msg->outer_ethertype_setting; 4096 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 4097 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4098 goto out; 4099 } 4100 4101 ethertype_setting = insertion_msg->inner_ethertype_setting; 4102 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 4103 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4104 goto out; 4105 } 4106 4107 out: 4108 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 4109 v_ret, NULL, 0); 4110 } 4111 4112 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 4113 .get_ver_msg = ice_vc_get_ver_msg, 4114 .get_vf_res_msg = ice_vc_get_vf_res_msg, 4115 .reset_vf = ice_vc_reset_vf_msg, 4116 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 4117 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 4118 .cfg_qs_msg = ice_vc_cfg_qs_msg, 4119 .ena_qs_msg = ice_vc_ena_qs_msg, 4120 .dis_qs_msg = ice_vc_dis_qs_msg, 4121 .request_qs_msg = ice_vc_request_qs_msg, 4122 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 4123 .config_rss_key = ice_vc_config_rss_key, 4124 .config_rss_lut = ice_vc_config_rss_lut, 4125 .config_rss_hfunc = ice_vc_config_rss_hfunc, 4126 .get_stats_msg = ice_vc_get_stats_msg, 4127 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 4128 .add_vlan_msg = ice_vc_add_vlan_msg, 4129 .remove_vlan_msg = ice_vc_remove_vlan_msg, 4130 .query_rxdid = ice_vc_query_rxdid, 4131 .get_rss_hena = ice_vc_get_rss_hena, 4132 .set_rss_hena_msg = ice_vc_set_rss_hena, 4133 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 4134 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 4135 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 4136 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 4137 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 4138 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 4139 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 4140 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 4141 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 4142 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 4143 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 4144 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 4145 .get_qos_caps = ice_vc_get_qos_caps, 4146 .cfg_q_bw = ice_vc_cfg_q_bw, 4147 .cfg_q_quanta = ice_vc_cfg_q_quanta, 4148 }; 4149 4150 /** 4151 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 4152 * @vf: the VF to switch ops 4153 */ 4154 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 4155 { 4156 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 4157 } 4158 4159 /** 4160 * ice_vc_repr_add_mac 4161 * @vf: pointer to VF 4162 * @msg: virtchannel message 4163 * 4164 * When port representors are created, we do not add MAC rule 4165 * to firmware, we store it so that PF could report same 4166 * MAC as VF. 4167 */ 4168 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 4169 { 4170 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4171 struct virtchnl_ether_addr_list *al = 4172 (struct virtchnl_ether_addr_list *)msg; 4173 struct ice_vsi *vsi; 4174 struct ice_pf *pf; 4175 int i; 4176 4177 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 4178 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 4179 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4180 goto handle_mac_exit; 4181 } 4182 4183 pf = vf->pf; 4184 4185 vsi = ice_get_vf_vsi(vf); 4186 if (!vsi) { 4187 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4188 goto handle_mac_exit; 4189 } 4190 4191 for (i = 0; i < al->num_elements; i++) { 4192 u8 *mac_addr = al->list[i].addr; 4193 4194 if (!is_unicast_ether_addr(mac_addr) || 4195 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 4196 continue; 4197 4198 if (vf->pf_set_mac) { 4199 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 4200 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 4201 goto handle_mac_exit; 4202 } 4203 4204 ice_vfhw_mac_add(vf, &al->list[i]); 4205 vf->num_mac++; 4206 break; 4207 } 4208 4209 handle_mac_exit: 4210 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 4211 v_ret, NULL, 0); 4212 } 4213 4214 /** 4215 * ice_vc_repr_del_mac - response with success for deleting MAC 4216 * @vf: pointer to VF 4217 * @msg: virtchannel message 4218 * 4219 * Respond with success to not break normal VF flow. 4220 * For legacy VF driver try to update cached MAC address. 4221 */ 4222 static int 4223 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 4224 { 4225 struct virtchnl_ether_addr_list *al = 4226 (struct virtchnl_ether_addr_list *)msg; 4227 4228 ice_update_legacy_cached_mac(vf, &al->list[0]); 4229 4230 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 4231 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 4232 } 4233 4234 static int 4235 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 4236 { 4237 dev_dbg(ice_pf_to_dev(vf->pf), 4238 "Can't config promiscuous mode in switchdev mode for VF %d\n", 4239 vf->vf_id); 4240 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 4241 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4242 NULL, 0); 4243 } 4244 4245 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 4246 .get_ver_msg = ice_vc_get_ver_msg, 4247 .get_vf_res_msg = ice_vc_get_vf_res_msg, 4248 .reset_vf = ice_vc_reset_vf_msg, 4249 .add_mac_addr_msg = ice_vc_repr_add_mac, 4250 .del_mac_addr_msg = ice_vc_repr_del_mac, 4251 .cfg_qs_msg = ice_vc_cfg_qs_msg, 4252 .ena_qs_msg = ice_vc_ena_qs_msg, 4253 .dis_qs_msg = ice_vc_dis_qs_msg, 4254 .request_qs_msg = ice_vc_request_qs_msg, 4255 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 4256 .config_rss_key = ice_vc_config_rss_key, 4257 .config_rss_lut = ice_vc_config_rss_lut, 4258 .config_rss_hfunc = ice_vc_config_rss_hfunc, 4259 .get_stats_msg = ice_vc_get_stats_msg, 4260 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 4261 .add_vlan_msg = ice_vc_add_vlan_msg, 4262 .remove_vlan_msg = ice_vc_remove_vlan_msg, 4263 .query_rxdid = ice_vc_query_rxdid, 4264 .get_rss_hena = ice_vc_get_rss_hena, 4265 .set_rss_hena_msg = ice_vc_set_rss_hena, 4266 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 4267 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 4268 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 4269 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 4270 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 4271 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 4272 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 4273 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 4274 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 4275 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 4276 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 4277 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 4278 }; 4279 4280 /** 4281 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 4282 * @vf: the VF to switch ops 4283 */ 4284 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 4285 { 4286 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 4287 } 4288 4289 /** 4290 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 4291 * @vf: the VF to check 4292 * @mbxdata: data about the state of the mailbox 4293 * 4294 * Detect if a given VF might be malicious and attempting to overflow the PF 4295 * mailbox. If so, log a warning message and ignore this event. 4296 */ 4297 static bool 4298 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 4299 { 4300 bool report_malvf = false; 4301 struct device *dev; 4302 struct ice_pf *pf; 4303 int status; 4304 4305 pf = vf->pf; 4306 dev = ice_pf_to_dev(pf); 4307 4308 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 4309 return vf->mbx_info.malicious; 4310 4311 /* check to see if we have a newly malicious VF */ 4312 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 4313 &report_malvf); 4314 if (status) 4315 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 4316 vf->vf_id, vf->dev_lan_addr, status); 4317 4318 if (report_malvf) { 4319 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 4320 u8 zero_addr[ETH_ALEN] = {}; 4321 4322 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 4323 vf->dev_lan_addr, 4324 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 4325 } 4326 4327 return vf->mbx_info.malicious; 4328 } 4329 4330 /** 4331 * ice_vc_process_vf_msg - Process request from VF 4332 * @pf: pointer to the PF structure 4333 * @event: pointer to the AQ event 4334 * @mbxdata: information used to detect VF attempting mailbox overflow 4335 * 4336 * Called from the common asq/arq handler to process request from VF. When this 4337 * flow is used for devices with hardware VF to PF message queue overflow 4338 * support (ICE_F_MBX_LIMIT) mbxdata is set to NULL and ice_is_malicious_vf 4339 * check is skipped. 4340 */ 4341 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 4342 struct ice_mbx_data *mbxdata) 4343 { 4344 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 4345 s16 vf_id = le16_to_cpu(event->desc.retval); 4346 const struct ice_virtchnl_ops *ops; 4347 u16 msglen = event->msg_len; 4348 u8 *msg = event->msg_buf; 4349 struct ice_vf *vf = NULL; 4350 struct device *dev; 4351 int err = 0; 4352 4353 dev = ice_pf_to_dev(pf); 4354 4355 vf = ice_get_vf_by_id(pf, vf_id); 4356 if (!vf) { 4357 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 4358 vf_id, v_opcode, msglen); 4359 return; 4360 } 4361 4362 mutex_lock(&vf->cfg_lock); 4363 4364 /* Check if the VF is trying to overflow the mailbox */ 4365 if (mbxdata && ice_is_malicious_vf(vf, mbxdata)) 4366 goto finish; 4367 4368 /* Check if VF is disabled. */ 4369 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 4370 err = -EPERM; 4371 goto error_handler; 4372 } 4373 4374 ops = vf->virtchnl_ops; 4375 4376 /* Perform basic checks on the msg */ 4377 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 4378 if (err) { 4379 if (err == VIRTCHNL_STATUS_ERR_PARAM) 4380 err = -EPERM; 4381 else 4382 err = -EINVAL; 4383 } 4384 4385 error_handler: 4386 if (err) { 4387 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 4388 NULL, 0); 4389 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 4390 vf_id, v_opcode, msglen, err); 4391 goto finish; 4392 } 4393 4394 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 4395 ice_vc_send_msg_to_vf(vf, v_opcode, 4396 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 4397 0); 4398 goto finish; 4399 } 4400 4401 switch (v_opcode) { 4402 case VIRTCHNL_OP_VERSION: 4403 err = ops->get_ver_msg(vf, msg); 4404 break; 4405 case VIRTCHNL_OP_GET_VF_RESOURCES: 4406 err = ops->get_vf_res_msg(vf, msg); 4407 if (ice_vf_init_vlan_stripping(vf)) 4408 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 4409 vf->vf_id); 4410 ice_vc_notify_vf_link_state(vf); 4411 break; 4412 case VIRTCHNL_OP_RESET_VF: 4413 ops->reset_vf(vf); 4414 break; 4415 case VIRTCHNL_OP_ADD_ETH_ADDR: 4416 err = ops->add_mac_addr_msg(vf, msg); 4417 break; 4418 case VIRTCHNL_OP_DEL_ETH_ADDR: 4419 err = ops->del_mac_addr_msg(vf, msg); 4420 break; 4421 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 4422 err = ops->cfg_qs_msg(vf, msg); 4423 break; 4424 case VIRTCHNL_OP_ENABLE_QUEUES: 4425 err = ops->ena_qs_msg(vf, msg); 4426 ice_vc_notify_vf_link_state(vf); 4427 break; 4428 case VIRTCHNL_OP_DISABLE_QUEUES: 4429 err = ops->dis_qs_msg(vf, msg); 4430 break; 4431 case VIRTCHNL_OP_REQUEST_QUEUES: 4432 err = ops->request_qs_msg(vf, msg); 4433 break; 4434 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 4435 err = ops->cfg_irq_map_msg(vf, msg); 4436 break; 4437 case VIRTCHNL_OP_CONFIG_RSS_KEY: 4438 err = ops->config_rss_key(vf, msg); 4439 break; 4440 case VIRTCHNL_OP_CONFIG_RSS_LUT: 4441 err = ops->config_rss_lut(vf, msg); 4442 break; 4443 case VIRTCHNL_OP_CONFIG_RSS_HFUNC: 4444 err = ops->config_rss_hfunc(vf, msg); 4445 break; 4446 case VIRTCHNL_OP_GET_STATS: 4447 err = ops->get_stats_msg(vf, msg); 4448 break; 4449 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 4450 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4451 break; 4452 case VIRTCHNL_OP_ADD_VLAN: 4453 err = ops->add_vlan_msg(vf, msg); 4454 break; 4455 case VIRTCHNL_OP_DEL_VLAN: 4456 err = ops->remove_vlan_msg(vf, msg); 4457 break; 4458 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4459 err = ops->query_rxdid(vf); 4460 break; 4461 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4462 err = ops->get_rss_hena(vf); 4463 break; 4464 case VIRTCHNL_OP_SET_RSS_HENA: 4465 err = ops->set_rss_hena_msg(vf, msg); 4466 break; 4467 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4468 err = ops->ena_vlan_stripping(vf); 4469 break; 4470 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4471 err = ops->dis_vlan_stripping(vf); 4472 break; 4473 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4474 err = ops->add_fdir_fltr_msg(vf, msg); 4475 break; 4476 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4477 err = ops->del_fdir_fltr_msg(vf, msg); 4478 break; 4479 case VIRTCHNL_OP_ADD_RSS_CFG: 4480 err = ops->handle_rss_cfg_msg(vf, msg, true); 4481 break; 4482 case VIRTCHNL_OP_DEL_RSS_CFG: 4483 err = ops->handle_rss_cfg_msg(vf, msg, false); 4484 break; 4485 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4486 err = ops->get_offload_vlan_v2_caps(vf); 4487 break; 4488 case VIRTCHNL_OP_ADD_VLAN_V2: 4489 err = ops->add_vlan_v2_msg(vf, msg); 4490 break; 4491 case VIRTCHNL_OP_DEL_VLAN_V2: 4492 err = ops->remove_vlan_v2_msg(vf, msg); 4493 break; 4494 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4495 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4496 break; 4497 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4498 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4499 break; 4500 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4501 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4502 break; 4503 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4504 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4505 break; 4506 case VIRTCHNL_OP_GET_QOS_CAPS: 4507 err = ops->get_qos_caps(vf); 4508 break; 4509 case VIRTCHNL_OP_CONFIG_QUEUE_BW: 4510 err = ops->cfg_q_bw(vf, msg); 4511 break; 4512 case VIRTCHNL_OP_CONFIG_QUANTA: 4513 err = ops->cfg_q_quanta(vf, msg); 4514 break; 4515 case VIRTCHNL_OP_UNKNOWN: 4516 default: 4517 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4518 vf_id); 4519 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4520 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4521 NULL, 0); 4522 break; 4523 } 4524 if (err) { 4525 /* Helper function cares less about error return values here 4526 * as it is busy with pending work. 4527 */ 4528 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4529 vf_id, v_opcode, err); 4530 } 4531 4532 finish: 4533 mutex_unlock(&vf->cfg_lock); 4534 ice_put_vf(vf); 4535 } 4536