xref: /linux/drivers/net/ethernet/intel/ice/ice_virtchnl.c (revision f12b363887c706c40611fba645265527a8415832)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 		     u32 driver_caps)
374 {
375 	if (ice_is_eswitch_mode_switchdev(vf->pf))
376 		/* In switchdev setting VLAN from VF isn't supported */
377 		return 0;
378 
379 	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 		/* VLAN offloads based on current device configuration */
381 		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 		 * these two conditions, which amounts to guest VLAN filtering
385 		 * and offloads being based on the inner VLAN or the
386 		 * inner/single VLAN respectively and don't allow VF to
387 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 		 */
389 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 			return VIRTCHNL_VF_OFFLOAD_VLAN;
391 		} else if (!ice_is_dvm_ena(hw) &&
392 			   !ice_vf_is_port_vlan_ena(vf)) {
393 			/* configure backward compatible support for VFs that
394 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 			 * configured in SVM, and no port VLAN is configured
396 			 */
397 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 			return VIRTCHNL_VF_OFFLOAD_VLAN;
399 		} else if (ice_is_dvm_ena(hw)) {
400 			/* configure software offloaded VLAN support when DVM
401 			 * is enabled, but no port VLAN is enabled
402 			 */
403 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 		}
405 	}
406 
407 	return 0;
408 }
409 
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 	struct virtchnl_vf_resource *vfres = NULL;
421 	struct ice_hw *hw = &vf->pf->hw;
422 	struct ice_vsi *vsi;
423 	int len = 0;
424 	int ret;
425 
426 	if (ice_check_vf_init(vf)) {
427 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 		goto err;
429 	}
430 
431 	len = virtchnl_struct_size(vfres, vsi_res, 0);
432 
433 	vfres = kzalloc(len, GFP_KERNEL);
434 	if (!vfres) {
435 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 		len = 0;
437 		goto err;
438 	}
439 	if (VF_IS_V11(&vf->vf_ver))
440 		vf->driver_caps = *(u32 *)msg;
441 	else
442 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 				  VIRTCHNL_VF_OFFLOAD_VLAN;
444 
445 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 	vsi = ice_get_vf_vsi(vf);
447 	if (!vsi) {
448 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449 		goto err;
450 	}
451 
452 	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453 						    vf->driver_caps);
454 
455 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457 
458 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460 
461 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463 
464 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 &&
465 	    vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
466 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32;
467 
468 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
469 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
470 
471 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
472 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
473 
474 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
475 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
476 
477 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
478 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
479 
480 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
481 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
482 
483 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
484 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
485 
486 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
487 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
488 
489 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
490 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
491 
492 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
493 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
494 
495 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
496 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
497 
498 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_QOS)
499 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_QOS;
500 
501 	vfres->num_vsis = 1;
502 	/* Tx and Rx queue are equal for VF */
503 	vfres->num_queue_pairs = vsi->num_txq;
504 	vfres->max_vectors = vf->num_msix;
505 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
506 	vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
507 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
508 
509 	vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
510 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
511 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
512 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
513 			vf->hw_lan_addr);
514 
515 	/* match guest capabilities */
516 	vf->driver_caps = vfres->vf_cap_flags;
517 
518 	ice_vc_set_caps_allowlist(vf);
519 	ice_vc_set_working_allowlist(vf);
520 
521 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
522 
523 err:
524 	/* send the response back to the VF */
525 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
526 				    (u8 *)vfres, len);
527 
528 	kfree(vfres);
529 	return ret;
530 }
531 
532 /**
533  * ice_vc_reset_vf_msg
534  * @vf: pointer to the VF info
535  *
536  * called from the VF to reset itself,
537  * unlike other virtchnl messages, PF driver
538  * doesn't send the response back to the VF
539  */
540 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
541 {
542 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
543 		ice_reset_vf(vf, 0);
544 }
545 
546 /**
547  * ice_vc_isvalid_vsi_id
548  * @vf: pointer to the VF info
549  * @vsi_id: VF relative VSI ID
550  *
551  * check for the valid VSI ID
552  */
553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
554 {
555 	return vsi_id == ICE_VF_VSI_ID;
556 }
557 
558 /**
559  * ice_vc_isvalid_q_id
560  * @vsi: VSI to check queue ID against
561  * @qid: VSI relative queue ID
562  *
563  * check for the valid queue ID
564  */
565 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
566 {
567 	/* allocated Tx and Rx queues should be always equal for VF VSI */
568 	return qid < vsi->alloc_txq;
569 }
570 
571 /**
572  * ice_vc_isvalid_ring_len
573  * @ring_len: length of ring
574  *
575  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
576  * or zero
577  */
578 static bool ice_vc_isvalid_ring_len(u16 ring_len)
579 {
580 	return ring_len == 0 ||
581 	       (ring_len >= ICE_MIN_NUM_DESC &&
582 		ring_len <= ICE_MAX_NUM_DESC &&
583 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
584 }
585 
586 /**
587  * ice_vc_validate_pattern
588  * @vf: pointer to the VF info
589  * @proto: virtchnl protocol headers
590  *
591  * validate the pattern is supported or not.
592  *
593  * Return: true on success, false on error.
594  */
595 bool
596 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
597 {
598 	bool is_ipv4 = false;
599 	bool is_ipv6 = false;
600 	bool is_udp = false;
601 	u16 ptype = -1;
602 	int i = 0;
603 
604 	while (i < proto->count &&
605 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
606 		switch (proto->proto_hdr[i].type) {
607 		case VIRTCHNL_PROTO_HDR_ETH:
608 			ptype = ICE_PTYPE_MAC_PAY;
609 			break;
610 		case VIRTCHNL_PROTO_HDR_IPV4:
611 			ptype = ICE_PTYPE_IPV4_PAY;
612 			is_ipv4 = true;
613 			break;
614 		case VIRTCHNL_PROTO_HDR_IPV6:
615 			ptype = ICE_PTYPE_IPV6_PAY;
616 			is_ipv6 = true;
617 			break;
618 		case VIRTCHNL_PROTO_HDR_UDP:
619 			if (is_ipv4)
620 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
621 			else if (is_ipv6)
622 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
623 			is_udp = true;
624 			break;
625 		case VIRTCHNL_PROTO_HDR_TCP:
626 			if (is_ipv4)
627 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
628 			else if (is_ipv6)
629 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
630 			break;
631 		case VIRTCHNL_PROTO_HDR_SCTP:
632 			if (is_ipv4)
633 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
634 			else if (is_ipv6)
635 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
636 			break;
637 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
638 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
639 			if (is_ipv4)
640 				ptype = ICE_MAC_IPV4_GTPU;
641 			else if (is_ipv6)
642 				ptype = ICE_MAC_IPV6_GTPU;
643 			goto out;
644 		case VIRTCHNL_PROTO_HDR_L2TPV3:
645 			if (is_ipv4)
646 				ptype = ICE_MAC_IPV4_L2TPV3;
647 			else if (is_ipv6)
648 				ptype = ICE_MAC_IPV6_L2TPV3;
649 			goto out;
650 		case VIRTCHNL_PROTO_HDR_ESP:
651 			if (is_ipv4)
652 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
653 						ICE_MAC_IPV4_ESP;
654 			else if (is_ipv6)
655 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
656 						ICE_MAC_IPV6_ESP;
657 			goto out;
658 		case VIRTCHNL_PROTO_HDR_AH:
659 			if (is_ipv4)
660 				ptype = ICE_MAC_IPV4_AH;
661 			else if (is_ipv6)
662 				ptype = ICE_MAC_IPV6_AH;
663 			goto out;
664 		case VIRTCHNL_PROTO_HDR_PFCP:
665 			if (is_ipv4)
666 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
667 			else if (is_ipv6)
668 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
669 			goto out;
670 		default:
671 			break;
672 		}
673 		i++;
674 	}
675 
676 out:
677 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
678 }
679 
680 /**
681  * ice_vc_parse_rss_cfg - parses hash fields and headers from
682  * a specific virtchnl RSS cfg
683  * @hw: pointer to the hardware
684  * @rss_cfg: pointer to the virtchnl RSS cfg
685  * @hash_cfg: pointer to the HW hash configuration
686  *
687  * Return true if all the protocol header and hash fields in the RSS cfg could
688  * be parsed, else return false
689  *
690  * This function parses the virtchnl RSS cfg to be the intended
691  * hash fields and the intended header for RSS configuration
692  */
693 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
694 				 struct virtchnl_rss_cfg *rss_cfg,
695 				 struct ice_rss_hash_cfg *hash_cfg)
696 {
697 	const struct ice_vc_hash_field_match_type *hf_list;
698 	const struct ice_vc_hdr_match_type *hdr_list;
699 	int i, hf_list_len, hdr_list_len;
700 	u32 *addl_hdrs = &hash_cfg->addl_hdrs;
701 	u64 *hash_flds = &hash_cfg->hash_flds;
702 
703 	/* set outer layer RSS as default */
704 	hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
705 
706 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
707 		hash_cfg->symm = true;
708 	else
709 		hash_cfg->symm = false;
710 
711 	hf_list = ice_vc_hash_field_list;
712 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
713 	hdr_list = ice_vc_hdr_list;
714 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
715 
716 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
717 		struct virtchnl_proto_hdr *proto_hdr =
718 					&rss_cfg->proto_hdrs.proto_hdr[i];
719 		bool hdr_found = false;
720 		int j;
721 
722 		/* Find matched ice headers according to virtchnl headers. */
723 		for (j = 0; j < hdr_list_len; j++) {
724 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
725 
726 			if (proto_hdr->type == hdr_map.vc_hdr) {
727 				*addl_hdrs |= hdr_map.ice_hdr;
728 				hdr_found = true;
729 			}
730 		}
731 
732 		if (!hdr_found)
733 			return false;
734 
735 		/* Find matched ice hash fields according to
736 		 * virtchnl hash fields.
737 		 */
738 		for (j = 0; j < hf_list_len; j++) {
739 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
740 
741 			if (proto_hdr->type == hf_map.vc_hdr &&
742 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
743 				*hash_flds |= hf_map.ice_hash_field;
744 				break;
745 			}
746 		}
747 	}
748 
749 	return true;
750 }
751 
752 /**
753  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
754  * RSS offloads
755  * @caps: VF driver negotiated capabilities
756  *
757  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
758  * else return false
759  */
760 static bool ice_vf_adv_rss_offload_ena(u32 caps)
761 {
762 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
763 }
764 
765 /**
766  * ice_vc_handle_rss_cfg
767  * @vf: pointer to the VF info
768  * @msg: pointer to the message buffer
769  * @add: add a RSS config if true, otherwise delete a RSS config
770  *
771  * This function adds/deletes a RSS config
772  */
773 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
774 {
775 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
776 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
777 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
778 	struct device *dev = ice_pf_to_dev(vf->pf);
779 	struct ice_hw *hw = &vf->pf->hw;
780 	struct ice_vsi *vsi;
781 
782 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
783 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
784 			vf->vf_id);
785 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
786 		goto error_param;
787 	}
788 
789 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
790 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
791 			vf->vf_id);
792 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
793 		goto error_param;
794 	}
795 
796 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
797 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
798 		goto error_param;
799 	}
800 
801 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
802 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
803 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
804 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
805 			vf->vf_id);
806 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
807 		goto error_param;
808 	}
809 
810 	vsi = ice_get_vf_vsi(vf);
811 	if (!vsi) {
812 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
813 		goto error_param;
814 	}
815 
816 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
817 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
818 		goto error_param;
819 	}
820 
821 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
822 		struct ice_vsi_ctx *ctx;
823 		u8 lut_type, hash_type;
824 		int status;
825 
826 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
827 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
828 				ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
829 
830 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
831 		if (!ctx) {
832 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
833 			goto error_param;
834 		}
835 
836 		ctx->info.q_opt_rss =
837 			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
838 			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
839 
840 		/* Preserve existing queueing option setting */
841 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
842 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
843 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
844 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
845 
846 		ctx->info.valid_sections =
847 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
848 
849 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
850 		if (status) {
851 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
852 				status, ice_aq_str(hw->adminq.sq_last_status));
853 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
854 		} else {
855 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
856 		}
857 
858 		kfree(ctx);
859 	} else {
860 		struct ice_rss_hash_cfg cfg;
861 
862 		/* Only check for none raw pattern case */
863 		if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
864 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
865 			goto error_param;
866 		}
867 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
868 		cfg.hash_flds = ICE_HASH_INVALID;
869 		cfg.hdr_type = ICE_RSS_ANY_HEADERS;
870 
871 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
872 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
873 			goto error_param;
874 		}
875 
876 		if (add) {
877 			if (ice_add_rss_cfg(hw, vsi, &cfg)) {
878 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
879 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
880 					vsi->vsi_num, v_ret);
881 			}
882 		} else {
883 			int status;
884 
885 			status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
886 			/* We just ignore -ENOENT, because if two configurations
887 			 * share the same profile remove one of them actually
888 			 * removes both, since the profile is deleted.
889 			 */
890 			if (status && status != -ENOENT) {
891 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
892 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
893 					vf->vf_id, status);
894 			}
895 		}
896 	}
897 
898 error_param:
899 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
900 }
901 
902 /**
903  * ice_vc_config_rss_key
904  * @vf: pointer to the VF info
905  * @msg: pointer to the msg buffer
906  *
907  * Configure the VF's RSS key
908  */
909 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
910 {
911 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
912 	struct virtchnl_rss_key *vrk =
913 		(struct virtchnl_rss_key *)msg;
914 	struct ice_vsi *vsi;
915 
916 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
917 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
918 		goto error_param;
919 	}
920 
921 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
922 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
923 		goto error_param;
924 	}
925 
926 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
927 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
928 		goto error_param;
929 	}
930 
931 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
932 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
933 		goto error_param;
934 	}
935 
936 	vsi = ice_get_vf_vsi(vf);
937 	if (!vsi) {
938 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
939 		goto error_param;
940 	}
941 
942 	if (ice_set_rss_key(vsi, vrk->key))
943 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
944 error_param:
945 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
946 				     NULL, 0);
947 }
948 
949 /**
950  * ice_vc_config_rss_lut
951  * @vf: pointer to the VF info
952  * @msg: pointer to the msg buffer
953  *
954  * Configure the VF's RSS LUT
955  */
956 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
957 {
958 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
959 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
960 	struct ice_vsi *vsi;
961 
962 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
963 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
964 		goto error_param;
965 	}
966 
967 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
968 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
969 		goto error_param;
970 	}
971 
972 	if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
973 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
974 		goto error_param;
975 	}
976 
977 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
978 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
979 		goto error_param;
980 	}
981 
982 	vsi = ice_get_vf_vsi(vf);
983 	if (!vsi) {
984 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
985 		goto error_param;
986 	}
987 
988 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
989 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
990 error_param:
991 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
992 				     NULL, 0);
993 }
994 
995 /**
996  * ice_vc_config_rss_hfunc
997  * @vf: pointer to the VF info
998  * @msg: pointer to the msg buffer
999  *
1000  * Configure the VF's RSS Hash function
1001  */
1002 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1003 {
1004 	struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1005 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1006 	u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1007 	struct ice_vsi *vsi;
1008 
1009 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1010 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1011 		goto error_param;
1012 	}
1013 
1014 	if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1015 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1016 		goto error_param;
1017 	}
1018 
1019 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1020 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1021 		goto error_param;
1022 	}
1023 
1024 	vsi = ice_get_vf_vsi(vf);
1025 	if (!vsi) {
1026 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1027 		goto error_param;
1028 	}
1029 
1030 	if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1031 		hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1032 
1033 	if (ice_set_rss_hfunc(vsi, hfunc))
1034 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1035 error_param:
1036 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1037 				     NULL, 0);
1038 }
1039 
1040 /**
1041  * ice_vc_get_qos_caps - Get current QoS caps from PF
1042  * @vf: pointer to the VF info
1043  *
1044  * Get VF's QoS capabilities, such as TC number, arbiter and
1045  * bandwidth from PF.
1046  *
1047  * Return: 0 on success or negative error value.
1048  */
1049 static int ice_vc_get_qos_caps(struct ice_vf *vf)
1050 {
1051 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1052 	struct virtchnl_qos_cap_list *cap_list = NULL;
1053 	u8 tc_prio[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1054 	struct virtchnl_qos_cap_elem *cfg = NULL;
1055 	struct ice_vsi_ctx *vsi_ctx;
1056 	struct ice_pf *pf = vf->pf;
1057 	struct ice_port_info *pi;
1058 	struct ice_vsi *vsi;
1059 	u8 numtc, tc;
1060 	u16 len = 0;
1061 	int ret, i;
1062 
1063 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1064 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1065 		goto err;
1066 	}
1067 
1068 	vsi = ice_get_vf_vsi(vf);
1069 	if (!vsi) {
1070 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1071 		goto err;
1072 	}
1073 
1074 	pi = pf->hw.port_info;
1075 	numtc = vsi->tc_cfg.numtc;
1076 
1077 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vf->lan_vsi_idx);
1078 	if (!vsi_ctx) {
1079 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1080 		goto err;
1081 	}
1082 
1083 	len = struct_size(cap_list, cap, numtc);
1084 	cap_list = kzalloc(len, GFP_KERNEL);
1085 	if (!cap_list) {
1086 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
1087 		len = 0;
1088 		goto err;
1089 	}
1090 
1091 	cap_list->vsi_id = vsi->vsi_num;
1092 	cap_list->num_elem = numtc;
1093 
1094 	/* Store the UP2TC configuration from DCB to a user priority bitmap
1095 	 * of each TC. Each element of prio_of_tc represents one TC. Each
1096 	 * bitmap indicates the user priorities belong to this TC.
1097 	 */
1098 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1099 		tc = pi->qos_cfg.local_dcbx_cfg.etscfg.prio_table[i];
1100 		tc_prio[tc] |= BIT(i);
1101 	}
1102 
1103 	for (i = 0; i < numtc; i++) {
1104 		cfg = &cap_list->cap[i];
1105 		cfg->tc_num = i;
1106 		cfg->tc_prio = tc_prio[i];
1107 		cfg->arbiter = pi->qos_cfg.local_dcbx_cfg.etscfg.tsatable[i];
1108 		cfg->weight = VIRTCHNL_STRICT_WEIGHT;
1109 		cfg->type = VIRTCHNL_BW_SHAPER;
1110 		cfg->shaper.committed = vsi_ctx->sched.bw_t_info[i].cir_bw.bw;
1111 		cfg->shaper.peak = vsi_ctx->sched.bw_t_info[i].eir_bw.bw;
1112 	}
1113 
1114 err:
1115 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_QOS_CAPS, v_ret,
1116 				    (u8 *)cap_list, len);
1117 	kfree(cap_list);
1118 	return ret;
1119 }
1120 
1121 /**
1122  * ice_vf_cfg_qs_bw - Configure per queue bandwidth
1123  * @vf: pointer to the VF info
1124  * @num_queues: number of queues to be configured
1125  *
1126  * Configure per queue bandwidth.
1127  *
1128  * Return: 0 on success or negative error value.
1129  */
1130 static int ice_vf_cfg_qs_bw(struct ice_vf *vf, u16 num_queues)
1131 {
1132 	struct ice_hw *hw = &vf->pf->hw;
1133 	struct ice_vsi *vsi;
1134 	int ret;
1135 	u16 i;
1136 
1137 	vsi = ice_get_vf_vsi(vf);
1138 	if (!vsi)
1139 		return -EINVAL;
1140 
1141 	for (i = 0; i < num_queues; i++) {
1142 		u32 p_rate, min_rate;
1143 		u8 tc;
1144 
1145 		p_rate = vf->qs_bw[i].peak;
1146 		min_rate = vf->qs_bw[i].committed;
1147 		tc = vf->qs_bw[i].tc;
1148 		if (p_rate)
1149 			ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1150 					       vf->qs_bw[i].queue_id,
1151 					       ICE_MAX_BW, p_rate);
1152 		else
1153 			ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1154 						    vf->qs_bw[i].queue_id,
1155 						    ICE_MAX_BW);
1156 		if (ret)
1157 			return ret;
1158 
1159 		if (min_rate)
1160 			ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1161 					       vf->qs_bw[i].queue_id,
1162 					       ICE_MIN_BW, min_rate);
1163 		else
1164 			ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1165 						    vf->qs_bw[i].queue_id,
1166 						    ICE_MIN_BW);
1167 
1168 		if (ret)
1169 			return ret;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 /**
1176  * ice_vf_cfg_q_quanta_profile - Configure quanta profile
1177  * @vf: pointer to the VF info
1178  * @quanta_prof_idx: pointer to the quanta profile index
1179  * @quanta_size: quanta size to be set
1180  *
1181  * This function chooses available quanta profile and configures the register.
1182  * The quanta profile is evenly divided by the number of device ports, and then
1183  * available to the specific PF and VFs. The first profile for each PF is a
1184  * reserved default profile. Only quanta size of the rest unused profile can be
1185  * modified.
1186  *
1187  * Return: 0 on success or negative error value.
1188  */
1189 static int ice_vf_cfg_q_quanta_profile(struct ice_vf *vf, u16 quanta_size,
1190 				       u16 *quanta_prof_idx)
1191 {
1192 	const u16 n_desc = calc_quanta_desc(quanta_size);
1193 	struct ice_hw *hw = &vf->pf->hw;
1194 	const u16 n_cmd = 2 * n_desc;
1195 	struct ice_pf *pf = vf->pf;
1196 	u16 per_pf, begin_id;
1197 	u8 n_used;
1198 	u32 reg;
1199 
1200 	begin_id = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / hw->dev_caps.num_funcs *
1201 		   hw->logical_pf_id;
1202 
1203 	if (quanta_size == ICE_DFLT_QUANTA) {
1204 		*quanta_prof_idx = begin_id;
1205 	} else {
1206 		per_pf = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) /
1207 			 hw->dev_caps.num_funcs;
1208 		n_used = pf->num_quanta_prof_used;
1209 		if (n_used < per_pf) {
1210 			*quanta_prof_idx = begin_id + 1 + n_used;
1211 			pf->num_quanta_prof_used++;
1212 		} else {
1213 			return -EINVAL;
1214 		}
1215 	}
1216 
1217 	reg = FIELD_PREP(GLCOMM_QUANTA_PROF_QUANTA_SIZE_M, quanta_size) |
1218 	      FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_CMD_M, n_cmd) |
1219 	      FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_DESC_M, n_desc);
1220 	wr32(hw, GLCOMM_QUANTA_PROF(*quanta_prof_idx), reg);
1221 
1222 	return 0;
1223 }
1224 
1225 /**
1226  * ice_vc_cfg_promiscuous_mode_msg
1227  * @vf: pointer to the VF info
1228  * @msg: pointer to the msg buffer
1229  *
1230  * called from the VF to configure VF VSIs promiscuous mode
1231  */
1232 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1233 {
1234 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1235 	bool rm_promisc, alluni = false, allmulti = false;
1236 	struct virtchnl_promisc_info *info =
1237 	    (struct virtchnl_promisc_info *)msg;
1238 	struct ice_vsi_vlan_ops *vlan_ops;
1239 	int mcast_err = 0, ucast_err = 0;
1240 	struct ice_pf *pf = vf->pf;
1241 	struct ice_vsi *vsi;
1242 	u8 mcast_m, ucast_m;
1243 	struct device *dev;
1244 	int ret = 0;
1245 
1246 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1247 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1248 		goto error_param;
1249 	}
1250 
1251 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1252 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1253 		goto error_param;
1254 	}
1255 
1256 	vsi = ice_get_vf_vsi(vf);
1257 	if (!vsi) {
1258 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1259 		goto error_param;
1260 	}
1261 
1262 	dev = ice_pf_to_dev(pf);
1263 	if (!ice_is_vf_trusted(vf)) {
1264 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1265 			vf->vf_id);
1266 		/* Leave v_ret alone, lie to the VF on purpose. */
1267 		goto error_param;
1268 	}
1269 
1270 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1271 		alluni = true;
1272 
1273 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1274 		allmulti = true;
1275 
1276 	rm_promisc = !allmulti && !alluni;
1277 
1278 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1279 	if (rm_promisc)
1280 		ret = vlan_ops->ena_rx_filtering(vsi);
1281 	else
1282 		ret = vlan_ops->dis_rx_filtering(vsi);
1283 	if (ret) {
1284 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1285 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1286 		goto error_param;
1287 	}
1288 
1289 	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1290 
1291 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1292 		if (alluni) {
1293 			/* in this case we're turning on promiscuous mode */
1294 			ret = ice_set_dflt_vsi(vsi);
1295 		} else {
1296 			/* in this case we're turning off promiscuous mode */
1297 			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1298 				ret = ice_clear_dflt_vsi(vsi);
1299 		}
1300 
1301 		/* in this case we're turning on/off only
1302 		 * allmulticast
1303 		 */
1304 		if (allmulti)
1305 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1306 		else
1307 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1308 
1309 		if (ret) {
1310 			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1311 				vf->vf_id, ret);
1312 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1313 			goto error_param;
1314 		}
1315 	} else {
1316 		if (alluni)
1317 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1318 		else
1319 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1320 
1321 		if (allmulti)
1322 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1323 		else
1324 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1325 
1326 		if (ucast_err || mcast_err)
1327 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1328 	}
1329 
1330 	if (!mcast_err) {
1331 		if (allmulti &&
1332 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1333 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1334 				 vf->vf_id);
1335 		else if (!allmulti &&
1336 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1337 					    vf->vf_states))
1338 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1339 				 vf->vf_id);
1340 	} else {
1341 		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1342 			vf->vf_id, mcast_err);
1343 	}
1344 
1345 	if (!ucast_err) {
1346 		if (alluni &&
1347 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1348 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1349 				 vf->vf_id);
1350 		else if (!alluni &&
1351 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1352 					    vf->vf_states))
1353 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1354 				 vf->vf_id);
1355 	} else {
1356 		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1357 			vf->vf_id, ucast_err);
1358 	}
1359 
1360 error_param:
1361 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1362 				     v_ret, NULL, 0);
1363 }
1364 
1365 /**
1366  * ice_vc_get_stats_msg
1367  * @vf: pointer to the VF info
1368  * @msg: pointer to the msg buffer
1369  *
1370  * called from the VF to get VSI stats
1371  */
1372 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1373 {
1374 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1375 	struct virtchnl_queue_select *vqs =
1376 		(struct virtchnl_queue_select *)msg;
1377 	struct ice_eth_stats stats = { 0 };
1378 	struct ice_vsi *vsi;
1379 
1380 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1381 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1382 		goto error_param;
1383 	}
1384 
1385 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1386 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1387 		goto error_param;
1388 	}
1389 
1390 	vsi = ice_get_vf_vsi(vf);
1391 	if (!vsi) {
1392 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1393 		goto error_param;
1394 	}
1395 
1396 	ice_update_eth_stats(vsi);
1397 
1398 	stats = vsi->eth_stats;
1399 
1400 error_param:
1401 	/* send the response to the VF */
1402 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1403 				     (u8 *)&stats, sizeof(stats));
1404 }
1405 
1406 /**
1407  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1408  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1409  *
1410  * Return true on successful validation, else false
1411  */
1412 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1413 {
1414 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1415 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1416 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1417 		return false;
1418 
1419 	return true;
1420 }
1421 
1422 /**
1423  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1424  * @vsi: VSI of the VF to configure
1425  * @q_idx: VF queue index used to determine the queue in the PF's space
1426  */
1427 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1428 {
1429 	struct ice_hw *hw = &vsi->back->hw;
1430 	u32 pfq = vsi->txq_map[q_idx];
1431 	u32 reg;
1432 
1433 	reg = rd32(hw, QINT_TQCTL(pfq));
1434 
1435 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1436 	 * this is most likely a poll mode VF driver, so don't enable an
1437 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1438 	 */
1439 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1440 		return;
1441 
1442 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1443 }
1444 
1445 /**
1446  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1447  * @vsi: VSI of the VF to configure
1448  * @q_idx: VF queue index used to determine the queue in the PF's space
1449  */
1450 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1451 {
1452 	struct ice_hw *hw = &vsi->back->hw;
1453 	u32 pfq = vsi->rxq_map[q_idx];
1454 	u32 reg;
1455 
1456 	reg = rd32(hw, QINT_RQCTL(pfq));
1457 
1458 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1459 	 * this is most likely a poll mode VF driver, so don't enable an
1460 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1461 	 */
1462 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1463 		return;
1464 
1465 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1466 }
1467 
1468 /**
1469  * ice_vc_ena_qs_msg
1470  * @vf: pointer to the VF info
1471  * @msg: pointer to the msg buffer
1472  *
1473  * called from the VF to enable all or specific queue(s)
1474  */
1475 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1476 {
1477 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1478 	struct virtchnl_queue_select *vqs =
1479 	    (struct virtchnl_queue_select *)msg;
1480 	struct ice_vsi *vsi;
1481 	unsigned long q_map;
1482 	u16 vf_q_id;
1483 
1484 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1485 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1486 		goto error_param;
1487 	}
1488 
1489 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1490 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1491 		goto error_param;
1492 	}
1493 
1494 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1495 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1496 		goto error_param;
1497 	}
1498 
1499 	vsi = ice_get_vf_vsi(vf);
1500 	if (!vsi) {
1501 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1502 		goto error_param;
1503 	}
1504 
1505 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1506 	 * Tx queue group list was configured and the context bits were
1507 	 * programmed using ice_vsi_cfg_txqs
1508 	 */
1509 	q_map = vqs->rx_queues;
1510 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1511 		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1512 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1513 			goto error_param;
1514 		}
1515 
1516 		/* Skip queue if enabled */
1517 		if (test_bit(vf_q_id, vf->rxq_ena))
1518 			continue;
1519 
1520 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1521 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1522 				vf_q_id, vsi->vsi_num);
1523 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1524 			goto error_param;
1525 		}
1526 
1527 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1528 		set_bit(vf_q_id, vf->rxq_ena);
1529 	}
1530 
1531 	q_map = vqs->tx_queues;
1532 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1533 		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1534 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1535 			goto error_param;
1536 		}
1537 
1538 		/* Skip queue if enabled */
1539 		if (test_bit(vf_q_id, vf->txq_ena))
1540 			continue;
1541 
1542 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1543 		set_bit(vf_q_id, vf->txq_ena);
1544 	}
1545 
1546 	/* Set flag to indicate that queues are enabled */
1547 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1548 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1549 
1550 error_param:
1551 	/* send the response to the VF */
1552 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1553 				     NULL, 0);
1554 }
1555 
1556 /**
1557  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1558  * @vf: VF to disable queue for
1559  * @vsi: VSI for the VF
1560  * @q_id: VF relative (0-based) queue ID
1561  *
1562  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1563  * disabled then clear q_id bit in the enabled queues bitmap and return
1564  * success. Otherwise return error.
1565  */
1566 static int
1567 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1568 {
1569 	struct ice_txq_meta txq_meta = { 0 };
1570 	struct ice_tx_ring *ring;
1571 	int err;
1572 
1573 	if (!test_bit(q_id, vf->txq_ena))
1574 		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1575 			q_id, vsi->vsi_num);
1576 
1577 	ring = vsi->tx_rings[q_id];
1578 	if (!ring)
1579 		return -EINVAL;
1580 
1581 	ice_fill_txq_meta(vsi, ring, &txq_meta);
1582 
1583 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1584 	if (err) {
1585 		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1586 			q_id, vsi->vsi_num);
1587 		return err;
1588 	}
1589 
1590 	/* Clear enabled queues flag */
1591 	clear_bit(q_id, vf->txq_ena);
1592 
1593 	return 0;
1594 }
1595 
1596 /**
1597  * ice_vc_dis_qs_msg
1598  * @vf: pointer to the VF info
1599  * @msg: pointer to the msg buffer
1600  *
1601  * called from the VF to disable all or specific queue(s)
1602  */
1603 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1604 {
1605 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1606 	struct virtchnl_queue_select *vqs =
1607 	    (struct virtchnl_queue_select *)msg;
1608 	struct ice_vsi *vsi;
1609 	unsigned long q_map;
1610 	u16 vf_q_id;
1611 
1612 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1613 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1614 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1615 		goto error_param;
1616 	}
1617 
1618 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1619 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1620 		goto error_param;
1621 	}
1622 
1623 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1624 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1625 		goto error_param;
1626 	}
1627 
1628 	vsi = ice_get_vf_vsi(vf);
1629 	if (!vsi) {
1630 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1631 		goto error_param;
1632 	}
1633 
1634 	if (vqs->tx_queues) {
1635 		q_map = vqs->tx_queues;
1636 
1637 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1638 			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1639 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1640 				goto error_param;
1641 			}
1642 
1643 			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1644 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1645 				goto error_param;
1646 			}
1647 		}
1648 	}
1649 
1650 	q_map = vqs->rx_queues;
1651 	/* speed up Rx queue disable by batching them if possible */
1652 	if (q_map &&
1653 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1654 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1655 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1656 				vsi->vsi_num);
1657 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1658 			goto error_param;
1659 		}
1660 
1661 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1662 	} else if (q_map) {
1663 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1664 			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1665 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1666 				goto error_param;
1667 			}
1668 
1669 			/* Skip queue if not enabled */
1670 			if (!test_bit(vf_q_id, vf->rxq_ena))
1671 				continue;
1672 
1673 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1674 						     true)) {
1675 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1676 					vf_q_id, vsi->vsi_num);
1677 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1678 				goto error_param;
1679 			}
1680 
1681 			/* Clear enabled queues flag */
1682 			clear_bit(vf_q_id, vf->rxq_ena);
1683 		}
1684 	}
1685 
1686 	/* Clear enabled queues flag */
1687 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1688 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1689 
1690 error_param:
1691 	/* send the response to the VF */
1692 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1693 				     NULL, 0);
1694 }
1695 
1696 /**
1697  * ice_cfg_interrupt
1698  * @vf: pointer to the VF info
1699  * @vsi: the VSI being configured
1700  * @map: vector map for mapping vectors to queues
1701  * @q_vector: structure for interrupt vector
1702  * configure the IRQ to queue map
1703  */
1704 static enum virtchnl_status_code
1705 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi,
1706 		  struct virtchnl_vector_map *map,
1707 		  struct ice_q_vector *q_vector)
1708 {
1709 	u16 vsi_q_id, vsi_q_id_idx;
1710 	unsigned long qmap;
1711 
1712 	q_vector->num_ring_rx = 0;
1713 	q_vector->num_ring_tx = 0;
1714 
1715 	qmap = map->rxq_map;
1716 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1717 		vsi_q_id = vsi_q_id_idx;
1718 
1719 		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1720 			return VIRTCHNL_STATUS_ERR_PARAM;
1721 
1722 		q_vector->num_ring_rx++;
1723 		q_vector->rx.itr_idx = map->rxitr_idx;
1724 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1725 		ice_cfg_rxq_interrupt(vsi, vsi_q_id,
1726 				      q_vector->vf_reg_idx,
1727 				      q_vector->rx.itr_idx);
1728 	}
1729 
1730 	qmap = map->txq_map;
1731 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1732 		vsi_q_id = vsi_q_id_idx;
1733 
1734 		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1735 			return VIRTCHNL_STATUS_ERR_PARAM;
1736 
1737 		q_vector->num_ring_tx++;
1738 		q_vector->tx.itr_idx = map->txitr_idx;
1739 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1740 		ice_cfg_txq_interrupt(vsi, vsi_q_id,
1741 				      q_vector->vf_reg_idx,
1742 				      q_vector->tx.itr_idx);
1743 	}
1744 
1745 	return VIRTCHNL_STATUS_SUCCESS;
1746 }
1747 
1748 /**
1749  * ice_vc_cfg_irq_map_msg
1750  * @vf: pointer to the VF info
1751  * @msg: pointer to the msg buffer
1752  *
1753  * called from the VF to configure the IRQ to queue map
1754  */
1755 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1756 {
1757 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1758 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1759 	struct virtchnl_irq_map_info *irqmap_info;
1760 	struct virtchnl_vector_map *map;
1761 	struct ice_vsi *vsi;
1762 	int i;
1763 
1764 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1765 	num_q_vectors_mapped = irqmap_info->num_vectors;
1766 
1767 	/* Check to make sure number of VF vectors mapped is not greater than
1768 	 * number of VF vectors originally allocated, and check that
1769 	 * there is actually at least a single VF queue vector mapped
1770 	 */
1771 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1772 	    vf->num_msix < num_q_vectors_mapped ||
1773 	    !num_q_vectors_mapped) {
1774 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1775 		goto error_param;
1776 	}
1777 
1778 	vsi = ice_get_vf_vsi(vf);
1779 	if (!vsi) {
1780 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1781 		goto error_param;
1782 	}
1783 
1784 	for (i = 0; i < num_q_vectors_mapped; i++) {
1785 		struct ice_q_vector *q_vector;
1786 
1787 		map = &irqmap_info->vecmap[i];
1788 
1789 		vector_id = map->vector_id;
1790 		vsi_id = map->vsi_id;
1791 		/* vector_id is always 0-based for each VF, and can never be
1792 		 * larger than or equal to the max allowed interrupts per VF
1793 		 */
1794 		if (!(vector_id < vf->num_msix) ||
1795 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1796 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1797 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1798 			goto error_param;
1799 		}
1800 
1801 		/* No need to map VF miscellaneous or rogue vector */
1802 		if (!vector_id)
1803 			continue;
1804 
1805 		/* Subtract non queue vector from vector_id passed by VF
1806 		 * to get actual number of VSI queue vector array index
1807 		 */
1808 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1809 		if (!q_vector) {
1810 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1811 			goto error_param;
1812 		}
1813 
1814 		/* lookout for the invalid queue index */
1815 		v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector);
1816 		if (v_ret)
1817 			goto error_param;
1818 	}
1819 
1820 error_param:
1821 	/* send the response to the VF */
1822 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1823 				     NULL, 0);
1824 }
1825 
1826 /**
1827  * ice_vc_cfg_q_bw - Configure per queue bandwidth
1828  * @vf: pointer to the VF info
1829  * @msg: pointer to the msg buffer which holds the command descriptor
1830  *
1831  * Configure VF queues bandwidth.
1832  *
1833  * Return: 0 on success or negative error value.
1834  */
1835 static int ice_vc_cfg_q_bw(struct ice_vf *vf, u8 *msg)
1836 {
1837 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1838 	struct virtchnl_queues_bw_cfg *qbw =
1839 		(struct virtchnl_queues_bw_cfg *)msg;
1840 	struct ice_vsi *vsi;
1841 	u16 i;
1842 
1843 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1844 	    !ice_vc_isvalid_vsi_id(vf, qbw->vsi_id)) {
1845 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1846 		goto err;
1847 	}
1848 
1849 	vsi = ice_get_vf_vsi(vf);
1850 	if (!vsi) {
1851 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1852 		goto err;
1853 	}
1854 
1855 	if (qbw->num_queues > ICE_MAX_RSS_QS_PER_VF ||
1856 	    qbw->num_queues > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1857 		dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1858 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1859 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1860 		goto err;
1861 	}
1862 
1863 	for (i = 0; i < qbw->num_queues; i++) {
1864 		if (qbw->cfg[i].shaper.peak != 0 && vf->max_tx_rate != 0 &&
1865 		    qbw->cfg[i].shaper.peak > vf->max_tx_rate)
1866 			dev_warn(ice_pf_to_dev(vf->pf), "The maximum queue %d rate limit configuration may not take effect because the maximum TX rate for VF-%d is %d\n",
1867 				 qbw->cfg[i].queue_id, vf->vf_id,
1868 				 vf->max_tx_rate);
1869 		if (qbw->cfg[i].shaper.committed != 0 && vf->min_tx_rate != 0 &&
1870 		    qbw->cfg[i].shaper.committed < vf->min_tx_rate)
1871 			dev_warn(ice_pf_to_dev(vf->pf), "The minimum queue %d rate limit configuration may not take effect because the minimum TX rate for VF-%d is %d\n",
1872 				 qbw->cfg[i].queue_id, vf->vf_id,
1873 				 vf->max_tx_rate);
1874 	}
1875 
1876 	for (i = 0; i < qbw->num_queues; i++) {
1877 		vf->qs_bw[i].queue_id = qbw->cfg[i].queue_id;
1878 		vf->qs_bw[i].peak = qbw->cfg[i].shaper.peak;
1879 		vf->qs_bw[i].committed = qbw->cfg[i].shaper.committed;
1880 		vf->qs_bw[i].tc = qbw->cfg[i].tc;
1881 	}
1882 
1883 	if (ice_vf_cfg_qs_bw(vf, qbw->num_queues))
1884 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1885 
1886 err:
1887 	/* send the response to the VF */
1888 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUEUE_BW,
1889 				    v_ret, NULL, 0);
1890 }
1891 
1892 /**
1893  * ice_vc_cfg_q_quanta - Configure per queue quanta
1894  * @vf: pointer to the VF info
1895  * @msg: pointer to the msg buffer which holds the command descriptor
1896  *
1897  * Configure VF queues quanta.
1898  *
1899  * Return: 0 on success or negative error value.
1900  */
1901 static int ice_vc_cfg_q_quanta(struct ice_vf *vf, u8 *msg)
1902 {
1903 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1904 	u16 quanta_prof_id, quanta_size, start_qid, end_qid, i;
1905 	struct virtchnl_quanta_cfg *qquanta =
1906 		(struct virtchnl_quanta_cfg *)msg;
1907 	struct ice_vsi *vsi;
1908 	int ret;
1909 
1910 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1911 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1912 		goto err;
1913 	}
1914 
1915 	vsi = ice_get_vf_vsi(vf);
1916 	if (!vsi) {
1917 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1918 		goto err;
1919 	}
1920 
1921 	end_qid = qquanta->queue_select.start_queue_id +
1922 		  qquanta->queue_select.num_queues;
1923 	if (end_qid > ICE_MAX_RSS_QS_PER_VF ||
1924 	    end_qid > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1925 		dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1926 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1927 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1928 		goto err;
1929 	}
1930 
1931 	quanta_size = qquanta->quanta_size;
1932 	if (quanta_size > ICE_MAX_QUANTA_SIZE ||
1933 	    quanta_size < ICE_MIN_QUANTA_SIZE) {
1934 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1935 		goto err;
1936 	}
1937 
1938 	if (quanta_size % 64) {
1939 		dev_err(ice_pf_to_dev(vf->pf), "quanta size should be the product of 64\n");
1940 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1941 		goto err;
1942 	}
1943 
1944 	ret = ice_vf_cfg_q_quanta_profile(vf, quanta_size,
1945 					  &quanta_prof_id);
1946 	if (ret) {
1947 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
1948 		goto err;
1949 	}
1950 
1951 	start_qid = qquanta->queue_select.start_queue_id;
1952 	for (i = start_qid; i < end_qid; i++)
1953 		vsi->tx_rings[i]->quanta_prof_id = quanta_prof_id;
1954 
1955 err:
1956 	/* send the response to the VF */
1957 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUANTA,
1958 				     v_ret, NULL, 0);
1959 }
1960 
1961 /**
1962  * ice_vc_cfg_qs_msg
1963  * @vf: pointer to the VF info
1964  * @msg: pointer to the msg buffer
1965  *
1966  * called from the VF to configure the Rx/Tx queues
1967  */
1968 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1969 {
1970 	struct virtchnl_vsi_queue_config_info *qci =
1971 	    (struct virtchnl_vsi_queue_config_info *)msg;
1972 	struct virtchnl_queue_pair_info *qpi;
1973 	struct ice_pf *pf = vf->pf;
1974 	struct ice_lag *lag;
1975 	struct ice_vsi *vsi;
1976 	u8 act_prt, pri_prt;
1977 	int i = -1, q_idx;
1978 
1979 	lag = pf->lag;
1980 	mutex_lock(&pf->lag_mutex);
1981 	act_prt = ICE_LAG_INVALID_PORT;
1982 	pri_prt = pf->hw.port_info->lport;
1983 	if (lag && lag->bonded && lag->primary) {
1984 		act_prt = lag->active_port;
1985 		if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1986 		    lag->upper_netdev)
1987 			ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1988 		else
1989 			act_prt = ICE_LAG_INVALID_PORT;
1990 	}
1991 
1992 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1993 		goto error_param;
1994 
1995 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1996 		goto error_param;
1997 
1998 	vsi = ice_get_vf_vsi(vf);
1999 	if (!vsi)
2000 		goto error_param;
2001 
2002 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
2003 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
2004 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
2005 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
2006 		goto error_param;
2007 	}
2008 
2009 	for (i = 0; i < qci->num_queue_pairs; i++) {
2010 		if (!qci->qpair[i].rxq.crc_disable)
2011 			continue;
2012 
2013 		if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
2014 		    vf->vlan_strip_ena)
2015 			goto error_param;
2016 	}
2017 
2018 	for (i = 0; i < qci->num_queue_pairs; i++) {
2019 		qpi = &qci->qpair[i];
2020 		if (qpi->txq.vsi_id != qci->vsi_id ||
2021 		    qpi->rxq.vsi_id != qci->vsi_id ||
2022 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
2023 		    qpi->txq.headwb_enabled ||
2024 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
2025 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
2026 		    !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
2027 			goto error_param;
2028 		}
2029 
2030 		q_idx = qpi->rxq.queue_id;
2031 
2032 		/* make sure selected "q_idx" is in valid range of queues
2033 		 * for selected "vsi"
2034 		 */
2035 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
2036 			goto error_param;
2037 		}
2038 
2039 		/* copy Tx queue info from VF into VSI */
2040 		if (qpi->txq.ring_len > 0) {
2041 			vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr;
2042 			vsi->tx_rings[q_idx]->count = qpi->txq.ring_len;
2043 
2044 			/* Disable any existing queue first */
2045 			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
2046 				goto error_param;
2047 
2048 			/* Configure a queue with the requested settings */
2049 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
2050 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
2051 					 vf->vf_id, q_idx);
2052 				goto error_param;
2053 			}
2054 		}
2055 
2056 		/* copy Rx queue info from VF into VSI */
2057 		if (qpi->rxq.ring_len > 0) {
2058 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
2059 			struct ice_rx_ring *ring = vsi->rx_rings[q_idx];
2060 			u32 rxdid;
2061 
2062 			ring->dma = qpi->rxq.dma_ring_addr;
2063 			ring->count = qpi->rxq.ring_len;
2064 
2065 			if (qpi->rxq.crc_disable)
2066 				ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
2067 			else
2068 				ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
2069 
2070 			if (qpi->rxq.databuffer_size != 0 &&
2071 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
2072 			     qpi->rxq.databuffer_size < 1024))
2073 				goto error_param;
2074 			ring->rx_buf_len = qpi->rxq.databuffer_size;
2075 			if (qpi->rxq.max_pkt_size > max_frame_size ||
2076 			    qpi->rxq.max_pkt_size < 64)
2077 				goto error_param;
2078 
2079 			ring->max_frame = qpi->rxq.max_pkt_size;
2080 			/* add space for the port VLAN since the VF driver is
2081 			 * not expected to account for it in the MTU
2082 			 * calculation
2083 			 */
2084 			if (ice_vf_is_port_vlan_ena(vf))
2085 				ring->max_frame += VLAN_HLEN;
2086 
2087 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
2088 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
2089 					 vf->vf_id, q_idx);
2090 				goto error_param;
2091 			}
2092 
2093 			/* If Rx flex desc is supported, select RXDID for Rx
2094 			 * queues. Otherwise, use legacy 32byte descriptor
2095 			 * format. Legacy 16byte descriptor is not supported.
2096 			 * If this RXDID is selected, return error.
2097 			 */
2098 			if (vf->driver_caps &
2099 			    VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2100 				rxdid = qpi->rxq.rxdid;
2101 				if (!(BIT(rxdid) & pf->supported_rxdids))
2102 					goto error_param;
2103 			} else {
2104 				rxdid = ICE_RXDID_LEGACY_1;
2105 			}
2106 
2107 			ice_write_qrxflxp_cntxt(&vsi->back->hw,
2108 						vsi->rxq_map[q_idx],
2109 						rxdid, 0x03, false);
2110 		}
2111 	}
2112 
2113 	if (lag && lag->bonded && lag->primary &&
2114 	    act_prt != ICE_LAG_INVALID_PORT)
2115 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2116 	mutex_unlock(&pf->lag_mutex);
2117 
2118 	/* send the response to the VF */
2119 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2120 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
2121 error_param:
2122 	/* disable whatever we can */
2123 	for (; i >= 0; i--) {
2124 		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
2125 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
2126 				vf->vf_id, i);
2127 		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
2128 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
2129 				vf->vf_id, i);
2130 	}
2131 
2132 	if (lag && lag->bonded && lag->primary &&
2133 	    act_prt != ICE_LAG_INVALID_PORT)
2134 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2135 	mutex_unlock(&pf->lag_mutex);
2136 
2137 	ice_lag_move_new_vf_nodes(vf);
2138 
2139 	/* send the response to the VF */
2140 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2141 				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
2142 }
2143 
2144 /**
2145  * ice_can_vf_change_mac
2146  * @vf: pointer to the VF info
2147  *
2148  * Return true if the VF is allowed to change its MAC filters, false otherwise
2149  */
2150 static bool ice_can_vf_change_mac(struct ice_vf *vf)
2151 {
2152 	/* If the VF MAC address has been set administratively (via the
2153 	 * ndo_set_vf_mac command), then deny permission to the VF to
2154 	 * add/delete unicast MAC addresses, unless the VF is trusted
2155 	 */
2156 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
2157 		return false;
2158 
2159 	return true;
2160 }
2161 
2162 /**
2163  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
2164  * @vc_ether_addr: used to extract the type
2165  */
2166 static u8
2167 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
2168 {
2169 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
2170 }
2171 
2172 /**
2173  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
2174  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2175  */
2176 static bool
2177 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
2178 {
2179 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2180 
2181 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
2182 }
2183 
2184 /**
2185  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
2186  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2187  *
2188  * This function should only be called when the MAC address in
2189  * virtchnl_ether_addr is a valid unicast MAC
2190  */
2191 static bool
2192 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
2193 {
2194 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2195 
2196 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
2197 }
2198 
2199 /**
2200  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
2201  * @vf: VF to update
2202  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
2203  */
2204 static void
2205 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2206 {
2207 	u8 *mac_addr = vc_ether_addr->addr;
2208 
2209 	if (!is_valid_ether_addr(mac_addr))
2210 		return;
2211 
2212 	/* only allow legacy VF drivers to set the device and hardware MAC if it
2213 	 * is zero and allow new VF drivers to set the hardware MAC if the type
2214 	 * was correctly specified over VIRTCHNL
2215 	 */
2216 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
2217 	     is_zero_ether_addr(vf->hw_lan_addr)) ||
2218 	    ice_is_vc_addr_primary(vc_ether_addr)) {
2219 		ether_addr_copy(vf->dev_lan_addr, mac_addr);
2220 		ether_addr_copy(vf->hw_lan_addr, mac_addr);
2221 	}
2222 
2223 	/* hardware and device MACs are already set, but its possible that the
2224 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
2225 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
2226 	 * away for the legacy VF driver case as it will be updated in the
2227 	 * delete flow for this case
2228 	 */
2229 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
2230 		ether_addr_copy(vf->legacy_last_added_umac.addr,
2231 				mac_addr);
2232 		vf->legacy_last_added_umac.time_modified = jiffies;
2233 	}
2234 }
2235 
2236 /**
2237  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
2238  * @vf: pointer to the VF info
2239  * @vsi: pointer to the VF's VSI
2240  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
2241  */
2242 static int
2243 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2244 		    struct virtchnl_ether_addr *vc_ether_addr)
2245 {
2246 	struct device *dev = ice_pf_to_dev(vf->pf);
2247 	u8 *mac_addr = vc_ether_addr->addr;
2248 	int ret;
2249 
2250 	/* device MAC already added */
2251 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
2252 		return 0;
2253 
2254 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
2255 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
2256 		return -EPERM;
2257 	}
2258 
2259 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2260 	if (ret == -EEXIST) {
2261 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
2262 			vf->vf_id);
2263 		/* don't return since we might need to update
2264 		 * the primary MAC in ice_vfhw_mac_add() below
2265 		 */
2266 	} else if (ret) {
2267 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
2268 			mac_addr, vf->vf_id, ret);
2269 		return ret;
2270 	} else {
2271 		vf->num_mac++;
2272 	}
2273 
2274 	ice_vfhw_mac_add(vf, vc_ether_addr);
2275 
2276 	return ret;
2277 }
2278 
2279 /**
2280  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
2281  * @last_added_umac: structure used to check expiration
2282  */
2283 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
2284 {
2285 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
2286 	return time_is_before_jiffies(last_added_umac->time_modified +
2287 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
2288 }
2289 
2290 /**
2291  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
2292  * @vf: VF to update
2293  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
2294  *
2295  * only update cached hardware MAC for legacy VF drivers on delete
2296  * because we cannot guarantee order/type of MAC from the VF driver
2297  */
2298 static void
2299 ice_update_legacy_cached_mac(struct ice_vf *vf,
2300 			     struct virtchnl_ether_addr *vc_ether_addr)
2301 {
2302 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
2303 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
2304 		return;
2305 
2306 	ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
2307 	ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
2308 }
2309 
2310 /**
2311  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
2312  * @vf: VF to update
2313  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
2314  */
2315 static void
2316 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2317 {
2318 	u8 *mac_addr = vc_ether_addr->addr;
2319 
2320 	if (!is_valid_ether_addr(mac_addr) ||
2321 	    !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2322 		return;
2323 
2324 	/* allow the device MAC to be repopulated in the add flow and don't
2325 	 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2326 	 * to be persistent on VM reboot and across driver unload/load, which
2327 	 * won't work if we clear the hardware MAC here
2328 	 */
2329 	eth_zero_addr(vf->dev_lan_addr);
2330 
2331 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
2332 }
2333 
2334 /**
2335  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2336  * @vf: pointer to the VF info
2337  * @vsi: pointer to the VF's VSI
2338  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2339  */
2340 static int
2341 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2342 		    struct virtchnl_ether_addr *vc_ether_addr)
2343 {
2344 	struct device *dev = ice_pf_to_dev(vf->pf);
2345 	u8 *mac_addr = vc_ether_addr->addr;
2346 	int status;
2347 
2348 	if (!ice_can_vf_change_mac(vf) &&
2349 	    ether_addr_equal(vf->dev_lan_addr, mac_addr))
2350 		return 0;
2351 
2352 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2353 	if (status == -ENOENT) {
2354 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2355 			vf->vf_id);
2356 		return -ENOENT;
2357 	} else if (status) {
2358 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2359 			mac_addr, vf->vf_id, status);
2360 		return -EIO;
2361 	}
2362 
2363 	ice_vfhw_mac_del(vf, vc_ether_addr);
2364 
2365 	vf->num_mac--;
2366 
2367 	return 0;
2368 }
2369 
2370 /**
2371  * ice_vc_handle_mac_addr_msg
2372  * @vf: pointer to the VF info
2373  * @msg: pointer to the msg buffer
2374  * @set: true if MAC filters are being set, false otherwise
2375  *
2376  * add guest MAC address filter
2377  */
2378 static int
2379 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2380 {
2381 	int (*ice_vc_cfg_mac)
2382 		(struct ice_vf *vf, struct ice_vsi *vsi,
2383 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
2384 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2385 	struct virtchnl_ether_addr_list *al =
2386 	    (struct virtchnl_ether_addr_list *)msg;
2387 	struct ice_pf *pf = vf->pf;
2388 	enum virtchnl_ops vc_op;
2389 	struct ice_vsi *vsi;
2390 	int i;
2391 
2392 	if (set) {
2393 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2394 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
2395 	} else {
2396 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2397 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
2398 	}
2399 
2400 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2401 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2402 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2403 		goto handle_mac_exit;
2404 	}
2405 
2406 	/* If this VF is not privileged, then we can't add more than a
2407 	 * limited number of addresses. Check to make sure that the
2408 	 * additions do not push us over the limit.
2409 	 */
2410 	if (set && !ice_is_vf_trusted(vf) &&
2411 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2412 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2413 			vf->vf_id);
2414 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2415 		goto handle_mac_exit;
2416 	}
2417 
2418 	vsi = ice_get_vf_vsi(vf);
2419 	if (!vsi) {
2420 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2421 		goto handle_mac_exit;
2422 	}
2423 
2424 	for (i = 0; i < al->num_elements; i++) {
2425 		u8 *mac_addr = al->list[i].addr;
2426 		int result;
2427 
2428 		if (is_broadcast_ether_addr(mac_addr) ||
2429 		    is_zero_ether_addr(mac_addr))
2430 			continue;
2431 
2432 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2433 		if (result == -EEXIST || result == -ENOENT) {
2434 			continue;
2435 		} else if (result) {
2436 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2437 			goto handle_mac_exit;
2438 		}
2439 	}
2440 
2441 handle_mac_exit:
2442 	/* send the response to the VF */
2443 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2444 }
2445 
2446 /**
2447  * ice_vc_add_mac_addr_msg
2448  * @vf: pointer to the VF info
2449  * @msg: pointer to the msg buffer
2450  *
2451  * add guest MAC address filter
2452  */
2453 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2454 {
2455 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2456 }
2457 
2458 /**
2459  * ice_vc_del_mac_addr_msg
2460  * @vf: pointer to the VF info
2461  * @msg: pointer to the msg buffer
2462  *
2463  * remove guest MAC address filter
2464  */
2465 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2466 {
2467 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2468 }
2469 
2470 /**
2471  * ice_vc_request_qs_msg
2472  * @vf: pointer to the VF info
2473  * @msg: pointer to the msg buffer
2474  *
2475  * VFs get a default number of queues but can use this message to request a
2476  * different number. If the request is successful, PF will reset the VF and
2477  * return 0. If unsuccessful, PF will send message informing VF of number of
2478  * available queue pairs via virtchnl message response to VF.
2479  */
2480 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2481 {
2482 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2483 	struct virtchnl_vf_res_request *vfres =
2484 		(struct virtchnl_vf_res_request *)msg;
2485 	u16 req_queues = vfres->num_queue_pairs;
2486 	struct ice_pf *pf = vf->pf;
2487 	u16 max_allowed_vf_queues;
2488 	u16 tx_rx_queue_left;
2489 	struct device *dev;
2490 	u16 cur_queues;
2491 
2492 	dev = ice_pf_to_dev(pf);
2493 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2494 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2495 		goto error_param;
2496 	}
2497 
2498 	cur_queues = vf->num_vf_qs;
2499 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2500 				 ice_get_avail_rxq_count(pf));
2501 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2502 	if (!req_queues) {
2503 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2504 			vf->vf_id);
2505 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2506 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2507 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2508 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2509 	} else if (req_queues > cur_queues &&
2510 		   req_queues - cur_queues > tx_rx_queue_left) {
2511 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2512 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2513 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2514 					       ICE_MAX_RSS_QS_PER_VF);
2515 	} else {
2516 		/* request is successful, then reset VF */
2517 		vf->num_req_qs = req_queues;
2518 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2519 		dev_info(dev, "VF %d granted request of %u queues.\n",
2520 			 vf->vf_id, req_queues);
2521 		return 0;
2522 	}
2523 
2524 error_param:
2525 	/* send the response to the VF */
2526 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2527 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2528 }
2529 
2530 /**
2531  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2532  * @caps: VF driver negotiated capabilities
2533  *
2534  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2535  */
2536 static bool ice_vf_vlan_offload_ena(u32 caps)
2537 {
2538 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2539 }
2540 
2541 /**
2542  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2543  * @vf: VF used to determine if VLAN promiscuous config is allowed
2544  */
2545 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2546 {
2547 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2548 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2549 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2550 		return true;
2551 
2552 	return false;
2553 }
2554 
2555 /**
2556  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2557  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2558  * @vlan: VLAN used to enable VLAN promiscuous
2559  *
2560  * This function should only be called if VLAN promiscuous mode is allowed,
2561  * which can be determined via ice_is_vlan_promisc_allowed().
2562  */
2563 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2564 {
2565 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2566 	int status;
2567 
2568 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2569 					  vlan->vid);
2570 	if (status && status != -EEXIST)
2571 		return status;
2572 
2573 	return 0;
2574 }
2575 
2576 /**
2577  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2578  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2579  * @vlan: VLAN used to disable VLAN promiscuous
2580  *
2581  * This function should only be called if VLAN promiscuous mode is allowed,
2582  * which can be determined via ice_is_vlan_promisc_allowed().
2583  */
2584 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2585 {
2586 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2587 	int status;
2588 
2589 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2590 					    vlan->vid);
2591 	if (status && status != -ENOENT)
2592 		return status;
2593 
2594 	return 0;
2595 }
2596 
2597 /**
2598  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2599  * @vf: VF to check against
2600  * @vsi: VF's VSI
2601  *
2602  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2603  * wants to, so return false.
2604  *
2605  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2606  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2607  */
2608 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2609 {
2610 	if (ice_is_vf_trusted(vf))
2611 		return false;
2612 
2613 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2614 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2615 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2616 }
2617 
2618 /**
2619  * ice_vc_process_vlan_msg
2620  * @vf: pointer to the VF info
2621  * @msg: pointer to the msg buffer
2622  * @add_v: Add VLAN if true, otherwise delete VLAN
2623  *
2624  * Process virtchnl op to add or remove programmed guest VLAN ID
2625  */
2626 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2627 {
2628 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2629 	struct virtchnl_vlan_filter_list *vfl =
2630 	    (struct virtchnl_vlan_filter_list *)msg;
2631 	struct ice_pf *pf = vf->pf;
2632 	bool vlan_promisc = false;
2633 	struct ice_vsi *vsi;
2634 	struct device *dev;
2635 	int status = 0;
2636 	int i;
2637 
2638 	dev = ice_pf_to_dev(pf);
2639 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2640 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2641 		goto error_param;
2642 	}
2643 
2644 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2645 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2646 		goto error_param;
2647 	}
2648 
2649 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2650 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2651 		goto error_param;
2652 	}
2653 
2654 	for (i = 0; i < vfl->num_elements; i++) {
2655 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2656 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2657 			dev_err(dev, "invalid VF VLAN id %d\n",
2658 				vfl->vlan_id[i]);
2659 			goto error_param;
2660 		}
2661 	}
2662 
2663 	vsi = ice_get_vf_vsi(vf);
2664 	if (!vsi) {
2665 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2666 		goto error_param;
2667 	}
2668 
2669 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2670 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2671 			 vf->vf_id);
2672 		/* There is no need to let VF know about being not trusted,
2673 		 * so we can just return success message here
2674 		 */
2675 		goto error_param;
2676 	}
2677 
2678 	/* in DVM a VF can add/delete inner VLAN filters when
2679 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2680 	 */
2681 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2682 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2683 		goto error_param;
2684 	}
2685 
2686 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2687 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2688 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2689 	 */
2690 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2691 		!ice_is_dvm_ena(&pf->hw) &&
2692 		!ice_vf_is_port_vlan_ena(vf);
2693 
2694 	if (add_v) {
2695 		for (i = 0; i < vfl->num_elements; i++) {
2696 			u16 vid = vfl->vlan_id[i];
2697 			struct ice_vlan vlan;
2698 
2699 			if (ice_vf_has_max_vlans(vf, vsi)) {
2700 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2701 					 vf->vf_id);
2702 				/* There is no need to let VF know about being
2703 				 * not trusted, so we can just return success
2704 				 * message here as well.
2705 				 */
2706 				goto error_param;
2707 			}
2708 
2709 			/* we add VLAN 0 by default for each VF so we can enable
2710 			 * Tx VLAN anti-spoof without triggering MDD events so
2711 			 * we don't need to add it again here
2712 			 */
2713 			if (!vid)
2714 				continue;
2715 
2716 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2717 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2718 			if (status) {
2719 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2720 				goto error_param;
2721 			}
2722 
2723 			/* Enable VLAN filtering on first non-zero VLAN */
2724 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2725 				if (vf->spoofchk) {
2726 					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2727 					if (status) {
2728 						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2729 						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2730 							vid, status);
2731 						goto error_param;
2732 					}
2733 				}
2734 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2735 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2736 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2737 						vid, status);
2738 					goto error_param;
2739 				}
2740 			} else if (vlan_promisc) {
2741 				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2742 				if (status) {
2743 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2744 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2745 						vid, status);
2746 				}
2747 			}
2748 		}
2749 	} else {
2750 		/* In case of non_trusted VF, number of VLAN elements passed
2751 		 * to PF for removal might be greater than number of VLANs
2752 		 * filter programmed for that VF - So, use actual number of
2753 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2754 		 * removing VLAN that doesn't exist, which result to sending
2755 		 * erroneous failed message back to the VF
2756 		 */
2757 		int num_vf_vlan;
2758 
2759 		num_vf_vlan = vsi->num_vlan;
2760 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2761 			u16 vid = vfl->vlan_id[i];
2762 			struct ice_vlan vlan;
2763 
2764 			/* we add VLAN 0 by default for each VF so we can enable
2765 			 * Tx VLAN anti-spoof without triggering MDD events so
2766 			 * we don't want a VIRTCHNL request to remove it
2767 			 */
2768 			if (!vid)
2769 				continue;
2770 
2771 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2772 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2773 			if (status) {
2774 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2775 				goto error_param;
2776 			}
2777 
2778 			/* Disable VLAN filtering when only VLAN 0 is left */
2779 			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2780 				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2781 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2782 			}
2783 
2784 			if (vlan_promisc)
2785 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2786 		}
2787 	}
2788 
2789 error_param:
2790 	/* send the response to the VF */
2791 	if (add_v)
2792 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2793 					     NULL, 0);
2794 	else
2795 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2796 					     NULL, 0);
2797 }
2798 
2799 /**
2800  * ice_vc_add_vlan_msg
2801  * @vf: pointer to the VF info
2802  * @msg: pointer to the msg buffer
2803  *
2804  * Add and program guest VLAN ID
2805  */
2806 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2807 {
2808 	return ice_vc_process_vlan_msg(vf, msg, true);
2809 }
2810 
2811 /**
2812  * ice_vc_remove_vlan_msg
2813  * @vf: pointer to the VF info
2814  * @msg: pointer to the msg buffer
2815  *
2816  * remove programmed guest VLAN ID
2817  */
2818 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2819 {
2820 	return ice_vc_process_vlan_msg(vf, msg, false);
2821 }
2822 
2823 /**
2824  * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2825  * @vsi: pointer to the VF VSI info
2826  */
2827 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2828 {
2829 	unsigned int i;
2830 
2831 	ice_for_each_alloc_rxq(vsi, i)
2832 		if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2833 			return true;
2834 
2835 	return false;
2836 }
2837 
2838 /**
2839  * ice_vc_ena_vlan_stripping
2840  * @vf: pointer to the VF info
2841  *
2842  * Enable VLAN header stripping for a given VF
2843  */
2844 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2845 {
2846 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2847 	struct ice_vsi *vsi;
2848 
2849 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2850 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2851 		goto error_param;
2852 	}
2853 
2854 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2855 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2856 		goto error_param;
2857 	}
2858 
2859 	vsi = ice_get_vf_vsi(vf);
2860 	if (!vsi) {
2861 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2862 		goto error_param;
2863 	}
2864 
2865 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2866 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2867 	else
2868 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2869 
2870 error_param:
2871 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2872 				     v_ret, NULL, 0);
2873 }
2874 
2875 /**
2876  * ice_vc_dis_vlan_stripping
2877  * @vf: pointer to the VF info
2878  *
2879  * Disable VLAN header stripping for a given VF
2880  */
2881 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2882 {
2883 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2884 	struct ice_vsi *vsi;
2885 
2886 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2887 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2888 		goto error_param;
2889 	}
2890 
2891 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2892 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2893 		goto error_param;
2894 	}
2895 
2896 	vsi = ice_get_vf_vsi(vf);
2897 	if (!vsi) {
2898 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2899 		goto error_param;
2900 	}
2901 
2902 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2903 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2904 	else
2905 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2906 
2907 error_param:
2908 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2909 				     v_ret, NULL, 0);
2910 }
2911 
2912 /**
2913  * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2914  * @vf: pointer to the VF info
2915  */
2916 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2917 {
2918 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2919 	struct virtchnl_rss_hena *vrh = NULL;
2920 	int len = 0, ret;
2921 
2922 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2923 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2924 		goto err;
2925 	}
2926 
2927 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2928 		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2929 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2930 		goto err;
2931 	}
2932 
2933 	len = sizeof(struct virtchnl_rss_hena);
2934 	vrh = kzalloc(len, GFP_KERNEL);
2935 	if (!vrh) {
2936 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2937 		len = 0;
2938 		goto err;
2939 	}
2940 
2941 	vrh->hena = ICE_DEFAULT_RSS_HENA;
2942 err:
2943 	/* send the response back to the VF */
2944 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2945 				    (u8 *)vrh, len);
2946 	kfree(vrh);
2947 	return ret;
2948 }
2949 
2950 /**
2951  * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2952  * @vf: pointer to the VF info
2953  * @msg: pointer to the msg buffer
2954  */
2955 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2956 {
2957 	struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2958 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2959 	struct ice_pf *pf = vf->pf;
2960 	struct ice_vsi *vsi;
2961 	struct device *dev;
2962 	int status;
2963 
2964 	dev = ice_pf_to_dev(pf);
2965 
2966 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2967 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2968 		goto err;
2969 	}
2970 
2971 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2972 		dev_err(dev, "RSS not supported by PF\n");
2973 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2974 		goto err;
2975 	}
2976 
2977 	vsi = ice_get_vf_vsi(vf);
2978 	if (!vsi) {
2979 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2980 		goto err;
2981 	}
2982 
2983 	/* clear all previously programmed RSS configuration to allow VF drivers
2984 	 * the ability to customize the RSS configuration and/or completely
2985 	 * disable RSS
2986 	 */
2987 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2988 	if (status && !vrh->hena) {
2989 		/* only report failure to clear the current RSS configuration if
2990 		 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2991 		 */
2992 		v_ret = ice_err_to_virt_err(status);
2993 		goto err;
2994 	} else if (status) {
2995 		/* allow the VF to update the RSS configuration even on failure
2996 		 * to clear the current RSS confguration in an attempt to keep
2997 		 * RSS in a working state
2998 		 */
2999 		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
3000 			 vf->vf_id);
3001 	}
3002 
3003 	if (vrh->hena) {
3004 		status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
3005 		v_ret = ice_err_to_virt_err(status);
3006 	}
3007 
3008 	/* send the response to the VF */
3009 err:
3010 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
3011 				     NULL, 0);
3012 }
3013 
3014 /**
3015  * ice_vc_query_rxdid - query RXDID supported by DDP package
3016  * @vf: pointer to VF info
3017  *
3018  * Called from VF to query a bitmap of supported flexible
3019  * descriptor RXDIDs of a DDP package.
3020  */
3021 static int ice_vc_query_rxdid(struct ice_vf *vf)
3022 {
3023 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3024 	struct virtchnl_supported_rxdids *rxdid = NULL;
3025 	struct ice_hw *hw = &vf->pf->hw;
3026 	struct ice_pf *pf = vf->pf;
3027 	int len = 0;
3028 	int ret, i;
3029 	u32 regval;
3030 
3031 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3032 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3033 		goto err;
3034 	}
3035 
3036 	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
3037 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3038 		goto err;
3039 	}
3040 
3041 	len = sizeof(struct virtchnl_supported_rxdids);
3042 	rxdid = kzalloc(len, GFP_KERNEL);
3043 	if (!rxdid) {
3044 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
3045 		len = 0;
3046 		goto err;
3047 	}
3048 
3049 	/* RXDIDs supported by DDP package can be read from the register
3050 	 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
3051 	 * is not listed in DDP package, add it in the bitmap manually.
3052 	 * Legacy 16byte descriptor is not supported.
3053 	 */
3054 	rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
3055 
3056 	for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
3057 		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
3058 		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
3059 			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
3060 			rxdid->supported_rxdids |= BIT(i);
3061 	}
3062 
3063 	pf->supported_rxdids = rxdid->supported_rxdids;
3064 
3065 err:
3066 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
3067 				    v_ret, (u8 *)rxdid, len);
3068 	kfree(rxdid);
3069 	return ret;
3070 }
3071 
3072 /**
3073  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
3074  * @vf: VF to enable/disable VLAN stripping for on initialization
3075  *
3076  * Set the default for VLAN stripping based on whether a port VLAN is configured
3077  * and the current VLAN mode of the device.
3078  */
3079 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
3080 {
3081 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
3082 
3083 	vf->vlan_strip_ena = 0;
3084 
3085 	if (!vsi)
3086 		return -EINVAL;
3087 
3088 	/* don't modify stripping if port VLAN is configured in SVM since the
3089 	 * port VLAN is based on the inner/single VLAN in SVM
3090 	 */
3091 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
3092 		return 0;
3093 
3094 	if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
3095 		int err;
3096 
3097 		err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
3098 		if (!err)
3099 			vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3100 		return err;
3101 	}
3102 
3103 	return vsi->inner_vlan_ops.dis_stripping(vsi);
3104 }
3105 
3106 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
3107 {
3108 	if (vf->trusted)
3109 		return VLAN_N_VID;
3110 	else
3111 		return ICE_MAX_VLAN_PER_VF;
3112 }
3113 
3114 /**
3115  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
3116  * @vf: VF that being checked for
3117  *
3118  * When the device is in double VLAN mode, check whether or not the outer VLAN
3119  * is allowed.
3120  */
3121 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
3122 {
3123 	if (ice_vf_is_port_vlan_ena(vf))
3124 		return true;
3125 
3126 	return false;
3127 }
3128 
3129 /**
3130  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
3131  * @vf: VF that capabilities are being set for
3132  * @caps: VLAN capabilities to populate
3133  *
3134  * Determine VLAN capabilities support based on whether a port VLAN is
3135  * configured. If a port VLAN is configured then the VF should use the inner
3136  * filtering/offload capabilities since the port VLAN is using the outer VLAN
3137  * capabilies.
3138  */
3139 static void
3140 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3141 {
3142 	struct virtchnl_vlan_supported_caps *supported_caps;
3143 
3144 	if (ice_vf_outer_vlan_not_allowed(vf)) {
3145 		/* until support for inner VLAN filtering is added when a port
3146 		 * VLAN is configured, only support software offloaded inner
3147 		 * VLANs when a port VLAN is confgured in DVM
3148 		 */
3149 		supported_caps = &caps->filtering.filtering_support;
3150 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3151 
3152 		supported_caps = &caps->offloads.stripping_support;
3153 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3154 					VIRTCHNL_VLAN_TOGGLE |
3155 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3156 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3157 
3158 		supported_caps = &caps->offloads.insertion_support;
3159 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3160 					VIRTCHNL_VLAN_TOGGLE |
3161 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3162 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3163 
3164 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3165 		caps->offloads.ethertype_match =
3166 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3167 	} else {
3168 		supported_caps = &caps->filtering.filtering_support;
3169 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3170 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3171 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3172 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
3173 					VIRTCHNL_VLAN_ETHERTYPE_AND;
3174 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3175 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3176 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
3177 
3178 		supported_caps = &caps->offloads.stripping_support;
3179 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3180 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
3181 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3182 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3183 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
3184 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3185 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
3186 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
3187 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
3188 
3189 		supported_caps = &caps->offloads.insertion_support;
3190 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3191 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
3192 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3193 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3194 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
3195 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3196 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
3197 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
3198 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
3199 
3200 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3201 
3202 		caps->offloads.ethertype_match =
3203 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3204 	}
3205 
3206 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3207 }
3208 
3209 /**
3210  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
3211  * @vf: VF that capabilities are being set for
3212  * @caps: VLAN capabilities to populate
3213  *
3214  * Determine VLAN capabilities support based on whether a port VLAN is
3215  * configured. If a port VLAN is configured then the VF does not have any VLAN
3216  * filtering or offload capabilities since the port VLAN is using the inner VLAN
3217  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
3218  * VLAN fitlering and offload capabilities.
3219  */
3220 static void
3221 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3222 {
3223 	struct virtchnl_vlan_supported_caps *supported_caps;
3224 
3225 	if (ice_vf_is_port_vlan_ena(vf)) {
3226 		supported_caps = &caps->filtering.filtering_support;
3227 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3228 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3229 
3230 		supported_caps = &caps->offloads.stripping_support;
3231 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3232 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3233 
3234 		supported_caps = &caps->offloads.insertion_support;
3235 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3236 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3237 
3238 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
3239 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
3240 		caps->filtering.max_filters = 0;
3241 	} else {
3242 		supported_caps = &caps->filtering.filtering_support;
3243 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
3244 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3245 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3246 
3247 		supported_caps = &caps->offloads.stripping_support;
3248 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3249 					VIRTCHNL_VLAN_TOGGLE |
3250 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3251 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3252 
3253 		supported_caps = &caps->offloads.insertion_support;
3254 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3255 					VIRTCHNL_VLAN_TOGGLE |
3256 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3257 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3258 
3259 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3260 		caps->offloads.ethertype_match =
3261 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3262 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3263 	}
3264 }
3265 
3266 /**
3267  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
3268  * @vf: VF to determine VLAN capabilities for
3269  *
3270  * This will only be called if the VF and PF successfully negotiated
3271  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
3272  *
3273  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
3274  * is configured or not.
3275  */
3276 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
3277 {
3278 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3279 	struct virtchnl_vlan_caps *caps = NULL;
3280 	int err, len = 0;
3281 
3282 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3283 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3284 		goto out;
3285 	}
3286 
3287 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
3288 	if (!caps) {
3289 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
3290 		goto out;
3291 	}
3292 	len = sizeof(*caps);
3293 
3294 	if (ice_is_dvm_ena(&vf->pf->hw))
3295 		ice_vc_set_dvm_caps(vf, caps);
3296 	else
3297 		ice_vc_set_svm_caps(vf, caps);
3298 
3299 	/* store negotiated caps to prevent invalid VF messages */
3300 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
3301 
3302 out:
3303 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
3304 				    v_ret, (u8 *)caps, len);
3305 	kfree(caps);
3306 	return err;
3307 }
3308 
3309 /**
3310  * ice_vc_validate_vlan_tpid - validate VLAN TPID
3311  * @filtering_caps: negotiated/supported VLAN filtering capabilities
3312  * @tpid: VLAN TPID used for validation
3313  *
3314  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
3315  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
3316  */
3317 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
3318 {
3319 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
3320 
3321 	switch (tpid) {
3322 	case ETH_P_8021Q:
3323 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3324 		break;
3325 	case ETH_P_8021AD:
3326 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3327 		break;
3328 	case ETH_P_QINQ1:
3329 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3330 		break;
3331 	}
3332 
3333 	if (!(filtering_caps & vlan_ethertype))
3334 		return false;
3335 
3336 	return true;
3337 }
3338 
3339 /**
3340  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3341  * @vc_vlan: virtchnl_vlan to validate
3342  *
3343  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3344  * false. Otherwise return true.
3345  */
3346 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3347 {
3348 	if (!vc_vlan->tci || !vc_vlan->tpid)
3349 		return false;
3350 
3351 	return true;
3352 }
3353 
3354 /**
3355  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3356  * @vfc: negotiated/supported VLAN filtering capabilities
3357  * @vfl: VLAN filter list from VF to validate
3358  *
3359  * Validate all of the filters in the VLAN filter list from the VF. If any of
3360  * the checks fail then return false. Otherwise return true.
3361  */
3362 static bool
3363 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3364 				 struct virtchnl_vlan_filter_list_v2 *vfl)
3365 {
3366 	u16 i;
3367 
3368 	if (!vfl->num_elements)
3369 		return false;
3370 
3371 	for (i = 0; i < vfl->num_elements; i++) {
3372 		struct virtchnl_vlan_supported_caps *filtering_support =
3373 			&vfc->filtering_support;
3374 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3375 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
3376 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
3377 
3378 		if ((ice_vc_is_valid_vlan(outer) &&
3379 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3380 		    (ice_vc_is_valid_vlan(inner) &&
3381 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3382 			return false;
3383 
3384 		if ((outer->tci_mask &&
3385 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3386 		    (inner->tci_mask &&
3387 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3388 			return false;
3389 
3390 		if (((outer->tci & VLAN_PRIO_MASK) &&
3391 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3392 		    ((inner->tci & VLAN_PRIO_MASK) &&
3393 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3394 			return false;
3395 
3396 		if ((ice_vc_is_valid_vlan(outer) &&
3397 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
3398 						outer->tpid)) ||
3399 		    (ice_vc_is_valid_vlan(inner) &&
3400 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
3401 						inner->tpid)))
3402 			return false;
3403 	}
3404 
3405 	return true;
3406 }
3407 
3408 /**
3409  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3410  * @vc_vlan: struct virtchnl_vlan to transform
3411  */
3412 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3413 {
3414 	struct ice_vlan vlan = { 0 };
3415 
3416 	vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3417 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3418 	vlan.tpid = vc_vlan->tpid;
3419 
3420 	return vlan;
3421 }
3422 
3423 /**
3424  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3425  * @vsi: VF's VSI used to perform the action
3426  * @vlan_action: function to perform the action with (i.e. add/del)
3427  * @vlan: VLAN filter to perform the action with
3428  */
3429 static int
3430 ice_vc_vlan_action(struct ice_vsi *vsi,
3431 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3432 		   struct ice_vlan *vlan)
3433 {
3434 	int err;
3435 
3436 	err = vlan_action(vsi, vlan);
3437 	if (err)
3438 		return err;
3439 
3440 	return 0;
3441 }
3442 
3443 /**
3444  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3445  * @vf: VF used to delete the VLAN(s)
3446  * @vsi: VF's VSI used to delete the VLAN(s)
3447  * @vfl: virthchnl filter list used to delete the filters
3448  */
3449 static int
3450 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3451 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3452 {
3453 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3454 	int err;
3455 	u16 i;
3456 
3457 	for (i = 0; i < vfl->num_elements; i++) {
3458 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3459 		struct virtchnl_vlan *vc_vlan;
3460 
3461 		vc_vlan = &vlan_fltr->outer;
3462 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3463 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3464 
3465 			err = ice_vc_vlan_action(vsi,
3466 						 vsi->outer_vlan_ops.del_vlan,
3467 						 &vlan);
3468 			if (err)
3469 				return err;
3470 
3471 			if (vlan_promisc)
3472 				ice_vf_dis_vlan_promisc(vsi, &vlan);
3473 
3474 			/* Disable VLAN filtering when only VLAN 0 is left */
3475 			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3476 				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3477 				if (err)
3478 					return err;
3479 			}
3480 		}
3481 
3482 		vc_vlan = &vlan_fltr->inner;
3483 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3484 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3485 
3486 			err = ice_vc_vlan_action(vsi,
3487 						 vsi->inner_vlan_ops.del_vlan,
3488 						 &vlan);
3489 			if (err)
3490 				return err;
3491 
3492 			/* no support for VLAN promiscuous on inner VLAN unless
3493 			 * we are in Single VLAN Mode (SVM)
3494 			 */
3495 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3496 				if (vlan_promisc)
3497 					ice_vf_dis_vlan_promisc(vsi, &vlan);
3498 
3499 				/* Disable VLAN filtering when only VLAN 0 is left */
3500 				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3501 					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3502 					if (err)
3503 						return err;
3504 				}
3505 			}
3506 		}
3507 	}
3508 
3509 	return 0;
3510 }
3511 
3512 /**
3513  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3514  * @vf: VF the message was received from
3515  * @msg: message received from the VF
3516  */
3517 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3518 {
3519 	struct virtchnl_vlan_filter_list_v2 *vfl =
3520 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3521 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3522 	struct ice_vsi *vsi;
3523 
3524 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3525 					      vfl)) {
3526 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3527 		goto out;
3528 	}
3529 
3530 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3531 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3532 		goto out;
3533 	}
3534 
3535 	vsi = ice_get_vf_vsi(vf);
3536 	if (!vsi) {
3537 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3538 		goto out;
3539 	}
3540 
3541 	if (ice_vc_del_vlans(vf, vsi, vfl))
3542 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3543 
3544 out:
3545 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3546 				     0);
3547 }
3548 
3549 /**
3550  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3551  * @vf: VF used to add the VLAN(s)
3552  * @vsi: VF's VSI used to add the VLAN(s)
3553  * @vfl: virthchnl filter list used to add the filters
3554  */
3555 static int
3556 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3557 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3558 {
3559 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3560 	int err;
3561 	u16 i;
3562 
3563 	for (i = 0; i < vfl->num_elements; i++) {
3564 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3565 		struct virtchnl_vlan *vc_vlan;
3566 
3567 		vc_vlan = &vlan_fltr->outer;
3568 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3569 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3570 
3571 			err = ice_vc_vlan_action(vsi,
3572 						 vsi->outer_vlan_ops.add_vlan,
3573 						 &vlan);
3574 			if (err)
3575 				return err;
3576 
3577 			if (vlan_promisc) {
3578 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3579 				if (err)
3580 					return err;
3581 			}
3582 
3583 			/* Enable VLAN filtering on first non-zero VLAN */
3584 			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3585 				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3586 				if (err)
3587 					return err;
3588 			}
3589 		}
3590 
3591 		vc_vlan = &vlan_fltr->inner;
3592 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3593 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3594 
3595 			err = ice_vc_vlan_action(vsi,
3596 						 vsi->inner_vlan_ops.add_vlan,
3597 						 &vlan);
3598 			if (err)
3599 				return err;
3600 
3601 			/* no support for VLAN promiscuous on inner VLAN unless
3602 			 * we are in Single VLAN Mode (SVM)
3603 			 */
3604 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3605 				if (vlan_promisc) {
3606 					err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3607 					if (err)
3608 						return err;
3609 				}
3610 
3611 				/* Enable VLAN filtering on first non-zero VLAN */
3612 				if (vf->spoofchk && vlan.vid) {
3613 					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3614 					if (err)
3615 						return err;
3616 				}
3617 			}
3618 		}
3619 	}
3620 
3621 	return 0;
3622 }
3623 
3624 /**
3625  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3626  * @vsi: VF VSI used to get number of existing VLAN filters
3627  * @vfc: negotiated/supported VLAN filtering capabilities
3628  * @vfl: VLAN filter list from VF to validate
3629  *
3630  * Validate all of the filters in the VLAN filter list from the VF during the
3631  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3632  * Otherwise return true.
3633  */
3634 static bool
3635 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3636 				     struct virtchnl_vlan_filtering_caps *vfc,
3637 				     struct virtchnl_vlan_filter_list_v2 *vfl)
3638 {
3639 	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3640 		vfl->num_elements;
3641 
3642 	if (num_requested_filters > vfc->max_filters)
3643 		return false;
3644 
3645 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3646 }
3647 
3648 /**
3649  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3650  * @vf: VF the message was received from
3651  * @msg: message received from the VF
3652  */
3653 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3654 {
3655 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3656 	struct virtchnl_vlan_filter_list_v2 *vfl =
3657 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3658 	struct ice_vsi *vsi;
3659 
3660 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3661 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3662 		goto out;
3663 	}
3664 
3665 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3666 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3667 		goto out;
3668 	}
3669 
3670 	vsi = ice_get_vf_vsi(vf);
3671 	if (!vsi) {
3672 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3673 		goto out;
3674 	}
3675 
3676 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3677 						  &vf->vlan_v2_caps.filtering,
3678 						  vfl)) {
3679 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3680 		goto out;
3681 	}
3682 
3683 	if (ice_vc_add_vlans(vf, vsi, vfl))
3684 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3685 
3686 out:
3687 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3688 				     0);
3689 }
3690 
3691 /**
3692  * ice_vc_valid_vlan_setting - validate VLAN setting
3693  * @negotiated_settings: negotiated VLAN settings during VF init
3694  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3695  */
3696 static bool
3697 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3698 {
3699 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3700 		return false;
3701 
3702 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3703 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3704 	 */
3705 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3706 	    hweight32(ethertype_setting) > 1)
3707 		return false;
3708 
3709 	/* ability to modify the VLAN setting was not negotiated */
3710 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3711 		return false;
3712 
3713 	return true;
3714 }
3715 
3716 /**
3717  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3718  * @caps: negotiated VLAN settings during VF init
3719  * @msg: message to validate
3720  *
3721  * Used to validate any VLAN virtchnl message sent as a
3722  * virtchnl_vlan_setting structure. Validates the message against the
3723  * negotiated/supported caps during VF driver init.
3724  */
3725 static bool
3726 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3727 			      struct virtchnl_vlan_setting *msg)
3728 {
3729 	if ((!msg->outer_ethertype_setting &&
3730 	     !msg->inner_ethertype_setting) ||
3731 	    (!caps->outer && !caps->inner))
3732 		return false;
3733 
3734 	if (msg->outer_ethertype_setting &&
3735 	    !ice_vc_valid_vlan_setting(caps->outer,
3736 				       msg->outer_ethertype_setting))
3737 		return false;
3738 
3739 	if (msg->inner_ethertype_setting &&
3740 	    !ice_vc_valid_vlan_setting(caps->inner,
3741 				       msg->inner_ethertype_setting))
3742 		return false;
3743 
3744 	return true;
3745 }
3746 
3747 /**
3748  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3749  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3750  * @tpid: VLAN TPID to populate
3751  */
3752 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3753 {
3754 	switch (ethertype_setting) {
3755 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3756 		*tpid = ETH_P_8021Q;
3757 		break;
3758 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3759 		*tpid = ETH_P_8021AD;
3760 		break;
3761 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3762 		*tpid = ETH_P_QINQ1;
3763 		break;
3764 	default:
3765 		*tpid = 0;
3766 		return -EINVAL;
3767 	}
3768 
3769 	return 0;
3770 }
3771 
3772 /**
3773  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3774  * @vsi: VF's VSI used to enable the VLAN offload
3775  * @ena_offload: function used to enable the VLAN offload
3776  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3777  */
3778 static int
3779 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3780 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3781 			u32 ethertype_setting)
3782 {
3783 	u16 tpid;
3784 	int err;
3785 
3786 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3787 	if (err)
3788 		return err;
3789 
3790 	err = ena_offload(vsi, tpid);
3791 	if (err)
3792 		return err;
3793 
3794 	return 0;
3795 }
3796 
3797 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3798 #define ICE_L2TSEL_BIT_OFFSET		23
3799 enum ice_l2tsel {
3800 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3801 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3802 };
3803 
3804 /**
3805  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3806  * @vsi: VSI used to update l2tsel on
3807  * @l2tsel: l2tsel setting requested
3808  *
3809  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3810  * This will modify which descriptor field the first offloaded VLAN will be
3811  * stripped into.
3812  */
3813 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3814 {
3815 	struct ice_hw *hw = &vsi->back->hw;
3816 	u32 l2tsel_bit;
3817 	int i;
3818 
3819 	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3820 		l2tsel_bit = 0;
3821 	else
3822 		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3823 
3824 	for (i = 0; i < vsi->alloc_rxq; i++) {
3825 		u16 pfq = vsi->rxq_map[i];
3826 		u32 qrx_context_offset;
3827 		u32 regval;
3828 
3829 		qrx_context_offset =
3830 			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3831 
3832 		regval = rd32(hw, qrx_context_offset);
3833 		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3834 		regval |= l2tsel_bit;
3835 		wr32(hw, qrx_context_offset, regval);
3836 	}
3837 }
3838 
3839 /**
3840  * ice_vc_ena_vlan_stripping_v2_msg
3841  * @vf: VF the message was received from
3842  * @msg: message received from the VF
3843  *
3844  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3845  */
3846 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3847 {
3848 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3849 	struct virtchnl_vlan_supported_caps *stripping_support;
3850 	struct virtchnl_vlan_setting *strip_msg =
3851 		(struct virtchnl_vlan_setting *)msg;
3852 	u32 ethertype_setting;
3853 	struct ice_vsi *vsi;
3854 
3855 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3856 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3857 		goto out;
3858 	}
3859 
3860 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3861 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3862 		goto out;
3863 	}
3864 
3865 	vsi = ice_get_vf_vsi(vf);
3866 	if (!vsi) {
3867 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3868 		goto out;
3869 	}
3870 
3871 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3872 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3873 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3874 		goto out;
3875 	}
3876 
3877 	if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3878 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3879 		goto out;
3880 	}
3881 
3882 	ethertype_setting = strip_msg->outer_ethertype_setting;
3883 	if (ethertype_setting) {
3884 		if (ice_vc_ena_vlan_offload(vsi,
3885 					    vsi->outer_vlan_ops.ena_stripping,
3886 					    ethertype_setting)) {
3887 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3888 			goto out;
3889 		} else {
3890 			enum ice_l2tsel l2tsel =
3891 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3892 
3893 			/* PF tells the VF that the outer VLAN tag is always
3894 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3895 			 * inner is always extracted to
3896 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3897 			 * support outer stripping so the first tag always ends
3898 			 * up in L2TAG2_2ND and the second/inner tag, if
3899 			 * enabled, is extracted in L2TAG1.
3900 			 */
3901 			ice_vsi_update_l2tsel(vsi, l2tsel);
3902 
3903 			vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3904 		}
3905 	}
3906 
3907 	ethertype_setting = strip_msg->inner_ethertype_setting;
3908 	if (ethertype_setting &&
3909 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3910 				    ethertype_setting)) {
3911 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3912 		goto out;
3913 	}
3914 
3915 	if (ethertype_setting)
3916 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3917 
3918 out:
3919 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3920 				     v_ret, NULL, 0);
3921 }
3922 
3923 /**
3924  * ice_vc_dis_vlan_stripping_v2_msg
3925  * @vf: VF the message was received from
3926  * @msg: message received from the VF
3927  *
3928  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3929  */
3930 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3931 {
3932 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3933 	struct virtchnl_vlan_supported_caps *stripping_support;
3934 	struct virtchnl_vlan_setting *strip_msg =
3935 		(struct virtchnl_vlan_setting *)msg;
3936 	u32 ethertype_setting;
3937 	struct ice_vsi *vsi;
3938 
3939 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3940 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3941 		goto out;
3942 	}
3943 
3944 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3945 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3946 		goto out;
3947 	}
3948 
3949 	vsi = ice_get_vf_vsi(vf);
3950 	if (!vsi) {
3951 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3952 		goto out;
3953 	}
3954 
3955 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3956 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3957 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3958 		goto out;
3959 	}
3960 
3961 	ethertype_setting = strip_msg->outer_ethertype_setting;
3962 	if (ethertype_setting) {
3963 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3964 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3965 			goto out;
3966 		} else {
3967 			enum ice_l2tsel l2tsel =
3968 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3969 
3970 			/* PF tells the VF that the outer VLAN tag is always
3971 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3972 			 * inner is always extracted to
3973 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3974 			 * support inner stripping while outer stripping is
3975 			 * disabled so that the first and only tag is extracted
3976 			 * in L2TAG1.
3977 			 */
3978 			ice_vsi_update_l2tsel(vsi, l2tsel);
3979 
3980 			vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3981 		}
3982 	}
3983 
3984 	ethertype_setting = strip_msg->inner_ethertype_setting;
3985 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3986 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3987 		goto out;
3988 	}
3989 
3990 	if (ethertype_setting)
3991 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3992 
3993 out:
3994 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3995 				     v_ret, NULL, 0);
3996 }
3997 
3998 /**
3999  * ice_vc_ena_vlan_insertion_v2_msg
4000  * @vf: VF the message was received from
4001  * @msg: message received from the VF
4002  *
4003  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
4004  */
4005 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
4006 {
4007 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4008 	struct virtchnl_vlan_supported_caps *insertion_support;
4009 	struct virtchnl_vlan_setting *insertion_msg =
4010 		(struct virtchnl_vlan_setting *)msg;
4011 	u32 ethertype_setting;
4012 	struct ice_vsi *vsi;
4013 
4014 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
4015 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4016 		goto out;
4017 	}
4018 
4019 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4020 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4021 		goto out;
4022 	}
4023 
4024 	vsi = ice_get_vf_vsi(vf);
4025 	if (!vsi) {
4026 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4027 		goto out;
4028 	}
4029 
4030 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4031 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4032 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4033 		goto out;
4034 	}
4035 
4036 	ethertype_setting = insertion_msg->outer_ethertype_setting;
4037 	if (ethertype_setting &&
4038 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
4039 				    ethertype_setting)) {
4040 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4041 		goto out;
4042 	}
4043 
4044 	ethertype_setting = insertion_msg->inner_ethertype_setting;
4045 	if (ethertype_setting &&
4046 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
4047 				    ethertype_setting)) {
4048 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4049 		goto out;
4050 	}
4051 
4052 out:
4053 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
4054 				     v_ret, NULL, 0);
4055 }
4056 
4057 /**
4058  * ice_vc_dis_vlan_insertion_v2_msg
4059  * @vf: VF the message was received from
4060  * @msg: message received from the VF
4061  *
4062  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
4063  */
4064 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
4065 {
4066 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4067 	struct virtchnl_vlan_supported_caps *insertion_support;
4068 	struct virtchnl_vlan_setting *insertion_msg =
4069 		(struct virtchnl_vlan_setting *)msg;
4070 	u32 ethertype_setting;
4071 	struct ice_vsi *vsi;
4072 
4073 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
4074 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4075 		goto out;
4076 	}
4077 
4078 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4079 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4080 		goto out;
4081 	}
4082 
4083 	vsi = ice_get_vf_vsi(vf);
4084 	if (!vsi) {
4085 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4086 		goto out;
4087 	}
4088 
4089 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4090 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4091 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4092 		goto out;
4093 	}
4094 
4095 	ethertype_setting = insertion_msg->outer_ethertype_setting;
4096 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
4097 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4098 		goto out;
4099 	}
4100 
4101 	ethertype_setting = insertion_msg->inner_ethertype_setting;
4102 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
4103 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4104 		goto out;
4105 	}
4106 
4107 out:
4108 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
4109 				     v_ret, NULL, 0);
4110 }
4111 
4112 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
4113 	.get_ver_msg = ice_vc_get_ver_msg,
4114 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
4115 	.reset_vf = ice_vc_reset_vf_msg,
4116 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
4117 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
4118 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
4119 	.ena_qs_msg = ice_vc_ena_qs_msg,
4120 	.dis_qs_msg = ice_vc_dis_qs_msg,
4121 	.request_qs_msg = ice_vc_request_qs_msg,
4122 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4123 	.config_rss_key = ice_vc_config_rss_key,
4124 	.config_rss_lut = ice_vc_config_rss_lut,
4125 	.config_rss_hfunc = ice_vc_config_rss_hfunc,
4126 	.get_stats_msg = ice_vc_get_stats_msg,
4127 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
4128 	.add_vlan_msg = ice_vc_add_vlan_msg,
4129 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
4130 	.query_rxdid = ice_vc_query_rxdid,
4131 	.get_rss_hena = ice_vc_get_rss_hena,
4132 	.set_rss_hena_msg = ice_vc_set_rss_hena,
4133 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4134 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4135 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4136 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4137 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4138 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4139 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4140 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4141 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4142 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4143 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4144 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4145 	.get_qos_caps = ice_vc_get_qos_caps,
4146 	.cfg_q_bw = ice_vc_cfg_q_bw,
4147 	.cfg_q_quanta = ice_vc_cfg_q_quanta,
4148 };
4149 
4150 /**
4151  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
4152  * @vf: the VF to switch ops
4153  */
4154 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
4155 {
4156 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
4157 }
4158 
4159 /**
4160  * ice_vc_repr_add_mac
4161  * @vf: pointer to VF
4162  * @msg: virtchannel message
4163  *
4164  * When port representors are created, we do not add MAC rule
4165  * to firmware, we store it so that PF could report same
4166  * MAC as VF.
4167  */
4168 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
4169 {
4170 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4171 	struct virtchnl_ether_addr_list *al =
4172 	    (struct virtchnl_ether_addr_list *)msg;
4173 	struct ice_vsi *vsi;
4174 	struct ice_pf *pf;
4175 	int i;
4176 
4177 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
4178 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
4179 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4180 		goto handle_mac_exit;
4181 	}
4182 
4183 	pf = vf->pf;
4184 
4185 	vsi = ice_get_vf_vsi(vf);
4186 	if (!vsi) {
4187 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4188 		goto handle_mac_exit;
4189 	}
4190 
4191 	for (i = 0; i < al->num_elements; i++) {
4192 		u8 *mac_addr = al->list[i].addr;
4193 
4194 		if (!is_unicast_ether_addr(mac_addr) ||
4195 		    ether_addr_equal(mac_addr, vf->hw_lan_addr))
4196 			continue;
4197 
4198 		if (vf->pf_set_mac) {
4199 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
4200 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
4201 			goto handle_mac_exit;
4202 		}
4203 
4204 		ice_vfhw_mac_add(vf, &al->list[i]);
4205 		vf->num_mac++;
4206 		break;
4207 	}
4208 
4209 handle_mac_exit:
4210 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
4211 				     v_ret, NULL, 0);
4212 }
4213 
4214 /**
4215  * ice_vc_repr_del_mac - response with success for deleting MAC
4216  * @vf: pointer to VF
4217  * @msg: virtchannel message
4218  *
4219  * Respond with success to not break normal VF flow.
4220  * For legacy VF driver try to update cached MAC address.
4221  */
4222 static int
4223 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
4224 {
4225 	struct virtchnl_ether_addr_list *al =
4226 		(struct virtchnl_ether_addr_list *)msg;
4227 
4228 	ice_update_legacy_cached_mac(vf, &al->list[0]);
4229 
4230 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
4231 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
4232 }
4233 
4234 static int
4235 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
4236 {
4237 	dev_dbg(ice_pf_to_dev(vf->pf),
4238 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
4239 		vf->vf_id);
4240 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
4241 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4242 				     NULL, 0);
4243 }
4244 
4245 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
4246 	.get_ver_msg = ice_vc_get_ver_msg,
4247 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
4248 	.reset_vf = ice_vc_reset_vf_msg,
4249 	.add_mac_addr_msg = ice_vc_repr_add_mac,
4250 	.del_mac_addr_msg = ice_vc_repr_del_mac,
4251 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
4252 	.ena_qs_msg = ice_vc_ena_qs_msg,
4253 	.dis_qs_msg = ice_vc_dis_qs_msg,
4254 	.request_qs_msg = ice_vc_request_qs_msg,
4255 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4256 	.config_rss_key = ice_vc_config_rss_key,
4257 	.config_rss_lut = ice_vc_config_rss_lut,
4258 	.config_rss_hfunc = ice_vc_config_rss_hfunc,
4259 	.get_stats_msg = ice_vc_get_stats_msg,
4260 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
4261 	.add_vlan_msg = ice_vc_add_vlan_msg,
4262 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
4263 	.query_rxdid = ice_vc_query_rxdid,
4264 	.get_rss_hena = ice_vc_get_rss_hena,
4265 	.set_rss_hena_msg = ice_vc_set_rss_hena,
4266 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4267 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4268 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4269 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4270 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4271 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4272 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4273 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4274 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4275 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4276 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4277 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4278 };
4279 
4280 /**
4281  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
4282  * @vf: the VF to switch ops
4283  */
4284 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
4285 {
4286 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
4287 }
4288 
4289 /**
4290  * ice_is_malicious_vf - check if this vf might be overflowing mailbox
4291  * @vf: the VF to check
4292  * @mbxdata: data about the state of the mailbox
4293  *
4294  * Detect if a given VF might be malicious and attempting to overflow the PF
4295  * mailbox. If so, log a warning message and ignore this event.
4296  */
4297 static bool
4298 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
4299 {
4300 	bool report_malvf = false;
4301 	struct device *dev;
4302 	struct ice_pf *pf;
4303 	int status;
4304 
4305 	pf = vf->pf;
4306 	dev = ice_pf_to_dev(pf);
4307 
4308 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
4309 		return vf->mbx_info.malicious;
4310 
4311 	/* check to see if we have a newly malicious VF */
4312 	status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
4313 					  &report_malvf);
4314 	if (status)
4315 		dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
4316 				     vf->vf_id, vf->dev_lan_addr, status);
4317 
4318 	if (report_malvf) {
4319 		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
4320 		u8 zero_addr[ETH_ALEN] = {};
4321 
4322 		dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
4323 			 vf->dev_lan_addr,
4324 			 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4325 	}
4326 
4327 	return vf->mbx_info.malicious;
4328 }
4329 
4330 /**
4331  * ice_vc_process_vf_msg - Process request from VF
4332  * @pf: pointer to the PF structure
4333  * @event: pointer to the AQ event
4334  * @mbxdata: information used to detect VF attempting mailbox overflow
4335  *
4336  * Called from the common asq/arq handler to process request from VF. When this
4337  * flow is used for devices with hardware VF to PF message queue overflow
4338  * support (ICE_F_MBX_LIMIT) mbxdata is set to NULL and ice_is_malicious_vf
4339  * check is skipped.
4340  */
4341 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4342 			   struct ice_mbx_data *mbxdata)
4343 {
4344 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4345 	s16 vf_id = le16_to_cpu(event->desc.retval);
4346 	const struct ice_virtchnl_ops *ops;
4347 	u16 msglen = event->msg_len;
4348 	u8 *msg = event->msg_buf;
4349 	struct ice_vf *vf = NULL;
4350 	struct device *dev;
4351 	int err = 0;
4352 
4353 	dev = ice_pf_to_dev(pf);
4354 
4355 	vf = ice_get_vf_by_id(pf, vf_id);
4356 	if (!vf) {
4357 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4358 			vf_id, v_opcode, msglen);
4359 		return;
4360 	}
4361 
4362 	mutex_lock(&vf->cfg_lock);
4363 
4364 	/* Check if the VF is trying to overflow the mailbox */
4365 	if (mbxdata && ice_is_malicious_vf(vf, mbxdata))
4366 		goto finish;
4367 
4368 	/* Check if VF is disabled. */
4369 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4370 		err = -EPERM;
4371 		goto error_handler;
4372 	}
4373 
4374 	ops = vf->virtchnl_ops;
4375 
4376 	/* Perform basic checks on the msg */
4377 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4378 	if (err) {
4379 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
4380 			err = -EPERM;
4381 		else
4382 			err = -EINVAL;
4383 	}
4384 
4385 error_handler:
4386 	if (err) {
4387 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4388 				      NULL, 0);
4389 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4390 			vf_id, v_opcode, msglen, err);
4391 		goto finish;
4392 	}
4393 
4394 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4395 		ice_vc_send_msg_to_vf(vf, v_opcode,
4396 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4397 				      0);
4398 		goto finish;
4399 	}
4400 
4401 	switch (v_opcode) {
4402 	case VIRTCHNL_OP_VERSION:
4403 		err = ops->get_ver_msg(vf, msg);
4404 		break;
4405 	case VIRTCHNL_OP_GET_VF_RESOURCES:
4406 		err = ops->get_vf_res_msg(vf, msg);
4407 		if (ice_vf_init_vlan_stripping(vf))
4408 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4409 				vf->vf_id);
4410 		ice_vc_notify_vf_link_state(vf);
4411 		break;
4412 	case VIRTCHNL_OP_RESET_VF:
4413 		ops->reset_vf(vf);
4414 		break;
4415 	case VIRTCHNL_OP_ADD_ETH_ADDR:
4416 		err = ops->add_mac_addr_msg(vf, msg);
4417 		break;
4418 	case VIRTCHNL_OP_DEL_ETH_ADDR:
4419 		err = ops->del_mac_addr_msg(vf, msg);
4420 		break;
4421 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4422 		err = ops->cfg_qs_msg(vf, msg);
4423 		break;
4424 	case VIRTCHNL_OP_ENABLE_QUEUES:
4425 		err = ops->ena_qs_msg(vf, msg);
4426 		ice_vc_notify_vf_link_state(vf);
4427 		break;
4428 	case VIRTCHNL_OP_DISABLE_QUEUES:
4429 		err = ops->dis_qs_msg(vf, msg);
4430 		break;
4431 	case VIRTCHNL_OP_REQUEST_QUEUES:
4432 		err = ops->request_qs_msg(vf, msg);
4433 		break;
4434 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4435 		err = ops->cfg_irq_map_msg(vf, msg);
4436 		break;
4437 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
4438 		err = ops->config_rss_key(vf, msg);
4439 		break;
4440 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
4441 		err = ops->config_rss_lut(vf, msg);
4442 		break;
4443 	case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4444 		err = ops->config_rss_hfunc(vf, msg);
4445 		break;
4446 	case VIRTCHNL_OP_GET_STATS:
4447 		err = ops->get_stats_msg(vf, msg);
4448 		break;
4449 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4450 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
4451 		break;
4452 	case VIRTCHNL_OP_ADD_VLAN:
4453 		err = ops->add_vlan_msg(vf, msg);
4454 		break;
4455 	case VIRTCHNL_OP_DEL_VLAN:
4456 		err = ops->remove_vlan_msg(vf, msg);
4457 		break;
4458 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4459 		err = ops->query_rxdid(vf);
4460 		break;
4461 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4462 		err = ops->get_rss_hena(vf);
4463 		break;
4464 	case VIRTCHNL_OP_SET_RSS_HENA:
4465 		err = ops->set_rss_hena_msg(vf, msg);
4466 		break;
4467 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4468 		err = ops->ena_vlan_stripping(vf);
4469 		break;
4470 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4471 		err = ops->dis_vlan_stripping(vf);
4472 		break;
4473 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4474 		err = ops->add_fdir_fltr_msg(vf, msg);
4475 		break;
4476 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4477 		err = ops->del_fdir_fltr_msg(vf, msg);
4478 		break;
4479 	case VIRTCHNL_OP_ADD_RSS_CFG:
4480 		err = ops->handle_rss_cfg_msg(vf, msg, true);
4481 		break;
4482 	case VIRTCHNL_OP_DEL_RSS_CFG:
4483 		err = ops->handle_rss_cfg_msg(vf, msg, false);
4484 		break;
4485 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4486 		err = ops->get_offload_vlan_v2_caps(vf);
4487 		break;
4488 	case VIRTCHNL_OP_ADD_VLAN_V2:
4489 		err = ops->add_vlan_v2_msg(vf, msg);
4490 		break;
4491 	case VIRTCHNL_OP_DEL_VLAN_V2:
4492 		err = ops->remove_vlan_v2_msg(vf, msg);
4493 		break;
4494 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4495 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4496 		break;
4497 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4498 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4499 		break;
4500 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4501 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4502 		break;
4503 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4504 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4505 		break;
4506 	case VIRTCHNL_OP_GET_QOS_CAPS:
4507 		err = ops->get_qos_caps(vf);
4508 		break;
4509 	case VIRTCHNL_OP_CONFIG_QUEUE_BW:
4510 		err = ops->cfg_q_bw(vf, msg);
4511 		break;
4512 	case VIRTCHNL_OP_CONFIG_QUANTA:
4513 		err = ops->cfg_q_quanta(vf, msg);
4514 		break;
4515 	case VIRTCHNL_OP_UNKNOWN:
4516 	default:
4517 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4518 			vf_id);
4519 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4520 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4521 					    NULL, 0);
4522 		break;
4523 	}
4524 	if (err) {
4525 		/* Helper function cares less about error return values here
4526 		 * as it is busy with pending work.
4527 		 */
4528 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4529 			 vf_id, v_opcode, err);
4530 	}
4531 
4532 finish:
4533 	mutex_unlock(&vf->cfg_lock);
4534 	ice_put_vf(vf);
4535 }
4536