1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19 struct ice_vc_hdr_match_type {
20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
30 ICE_FLOW_SEG_HDR_IPV_OTHER},
31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
32 ICE_FLOW_SEG_HDR_IPV_OTHER},
33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 ICE_FLOW_SEG_HDR_GTPU_DWN},
41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 ICE_FLOW_SEG_HDR_GTPU_UP},
43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48
49 struct ice_vc_hash_field_match_type {
50 u32 vc_hdr; /* virtchnl headers
51 * (VIRTCHNL_PROTO_HDR_XXX)
52 */
53 u32 vc_hash_field; /* virtchnl hash fields selector
54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 */
56 u64 ice_hash_field; /* ice hash fields
57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 */
59 };
60
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 ICE_FLOW_HASH_ETH},
70 {VIRTCHNL_PROTO_HDR_ETH,
71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 {VIRTCHNL_PROTO_HDR_S_VLAN,
74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 {VIRTCHNL_PROTO_HDR_C_VLAN,
77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 ICE_FLOW_HASH_IPV4},
86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 ICE_FLOW_HASH_IPV6},
107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 {VIRTCHNL_PROTO_HDR_TCP,
122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 {VIRTCHNL_PROTO_HDR_TCP,
125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 {VIRTCHNL_PROTO_HDR_TCP,
128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 ICE_FLOW_HASH_TCP_PORT},
131 {VIRTCHNL_PROTO_HDR_UDP,
132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 {VIRTCHNL_PROTO_HDR_UDP,
135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 {VIRTCHNL_PROTO_HDR_UDP,
138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 ICE_FLOW_HASH_UDP_PORT},
141 {VIRTCHNL_PROTO_HDR_SCTP,
142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 {VIRTCHNL_PROTO_HDR_SCTP,
145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 {VIRTCHNL_PROTO_HDR_SCTP,
148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 ICE_FLOW_HASH_SCTP_PORT},
151 {VIRTCHNL_PROTO_HDR_PPPOE,
152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 {VIRTCHNL_PROTO_HDR_GTPU_IP,
155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 {VIRTCHNL_PROTO_HDR_L2TPV3,
158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167
168 /**
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
175 */
176 static void
ice_vc_vf_broadcast(struct ice_pf * pf,enum virtchnl_ops v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 struct ice_hw *hw = &pf->hw;
181 struct ice_vf *vf;
182 unsigned int bkt;
183
184 mutex_lock(&pf->vfs.table_lock);
185 ice_for_each_vf(pf, bkt, vf) {
186 /* Not all vfs are enabled so skip the ones that are not */
187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 continue;
190
191 /* Ignore return value on purpose - a given VF may fail, but
192 * we need to keep going and send to all of them
193 */
194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 msglen, NULL);
196 }
197 mutex_unlock(&pf->vfs.table_lock);
198 }
199
200 /**
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
206 */
207 static void
ice_set_pfe_link(struct ice_vf * vf,struct virtchnl_pf_event * pfe,int ice_link_speed,bool link_up)208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 int ice_link_speed, bool link_up)
210 {
211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 pfe->event_data.link_event_adv.link_status = link_up;
213 /* Speed in Mbps */
214 pfe->event_data.link_event_adv.link_speed =
215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 } else {
217 pfe->event_data.link_event.link_status = link_up;
218 /* Legacy method for virtchnl link speeds */
219 pfe->event_data.link_event.link_speed =
220 (enum virtchnl_link_speed)
221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 }
223 }
224
225 /**
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
228 *
229 * send a link status message to a single VF
230 */
ice_vc_notify_vf_link_state(struct ice_vf * vf)231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 struct virtchnl_pf_event pfe = { 0 };
234 struct ice_hw *hw = &vf->pf->hw;
235
236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239 if (ice_is_vf_link_up(vf))
240 ice_set_pfe_link(vf, &pfe,
241 hw->port_info->phy.link_info.link_speed, true);
242 else
243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 sizeof(pfe), NULL);
248 }
249
250 /**
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
253 */
ice_vc_notify_link_state(struct ice_pf * pf)254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 struct ice_vf *vf;
257 unsigned int bkt;
258
259 mutex_lock(&pf->vfs.table_lock);
260 ice_for_each_vf(pf, bkt, vf)
261 ice_vc_notify_vf_link_state(vf);
262 mutex_unlock(&pf->vfs.table_lock);
263 }
264
265 /**
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
268 *
269 * indicate a pending reset to all VFs on a given PF
270 */
ice_vc_notify_reset(struct ice_pf * pf)271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 struct virtchnl_pf_event pfe;
274
275 if (!ice_has_vfs(pf))
276 return;
277
278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283
284 /**
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
291 *
292 * send msg to VF
293 */
294 int
ice_vc_send_msg_to_vf(struct ice_vf * vf,u32 v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 struct device *dev;
299 struct ice_pf *pf;
300 int aq_ret;
301
302 pf = vf->pf;
303 dev = ice_pf_to_dev(pf);
304
305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 msg, msglen, NULL);
307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 vf->vf_id, aq_ret,
310 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 return -EIO;
312 }
313
314 return 0;
315 }
316
317 /**
318 * ice_vc_get_ver_msg
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
321 *
322 * called from the VF to request the API version used by the PF
323 */
ice_vc_get_ver_msg(struct ice_vf * vf,u8 * msg)324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 struct virtchnl_version_info info = {
327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 };
329
330 vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 if (VF_IS_V10(&vf->vf_ver))
333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 sizeof(struct virtchnl_version_info));
338 }
339
340 /**
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
343 *
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
348 */
ice_vc_get_max_frame_size(struct ice_vf * vf)349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 u16 max_frame_size;
353
354 max_frame_size = pi->phy.link_info.max_frame_size;
355
356 if (ice_vf_is_port_vlan_ena(vf))
357 max_frame_size -= VLAN_HLEN;
358
359 return max_frame_size;
360 }
361
362 /**
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
368 *
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
370 */
371 static u32
ice_vc_get_vlan_caps(struct ice_hw * hw,struct ice_vf * vf,struct ice_vsi * vsi,u32 driver_caps)372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 u32 driver_caps)
374 {
375 if (ice_is_eswitch_mode_switchdev(vf->pf))
376 /* In switchdev setting VLAN from VF isn't supported */
377 return 0;
378
379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 /* VLAN offloads based on current device configuration */
381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 * these two conditions, which amounts to guest VLAN filtering
385 * and offloads being based on the inner VLAN or the
386 * inner/single VLAN respectively and don't allow VF to
387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 */
389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 return VIRTCHNL_VF_OFFLOAD_VLAN;
391 } else if (!ice_is_dvm_ena(hw) &&
392 !ice_vf_is_port_vlan_ena(vf)) {
393 /* configure backward compatible support for VFs that
394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 * configured in SVM, and no port VLAN is configured
396 */
397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 return VIRTCHNL_VF_OFFLOAD_VLAN;
399 } else if (ice_is_dvm_ena(hw)) {
400 /* configure software offloaded VLAN support when DVM
401 * is enabled, but no port VLAN is enabled
402 */
403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 }
405 }
406
407 return 0;
408 }
409
410 /**
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
414 *
415 * called from the VF to request its resources
416 */
ice_vc_get_vf_res_msg(struct ice_vf * vf,u8 * msg)417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 struct virtchnl_vf_resource *vfres = NULL;
421 struct ice_hw *hw = &vf->pf->hw;
422 struct ice_vsi *vsi;
423 int len = 0;
424 int ret;
425
426 if (ice_check_vf_init(vf)) {
427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 goto err;
429 }
430
431 len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433 vfres = kzalloc(len, GFP_KERNEL);
434 if (!vfres) {
435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 len = 0;
437 goto err;
438 }
439 if (VF_IS_V11(&vf->vf_ver))
440 vf->driver_caps = *(u32 *)msg;
441 else
442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 VIRTCHNL_VF_OFFLOAD_VLAN;
444
445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 vsi = ice_get_vf_vsi(vf);
447 if (!vsi) {
448 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449 goto err;
450 }
451
452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453 vf->driver_caps);
454
455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457
458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460
461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463
464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 &&
465 vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32;
467
468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
470
471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
473
474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
476
477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
479
480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
482
483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
485
486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
488
489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
491
492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
494
495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
497
498 vfres->num_vsis = 1;
499 /* Tx and Rx queue are equal for VF */
500 vfres->num_queue_pairs = vsi->num_txq;
501 vfres->max_vectors = vf->num_msix;
502 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
503 vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
504 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
505
506 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
507 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
508 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
509 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
510 vf->hw_lan_addr);
511
512 /* match guest capabilities */
513 vf->driver_caps = vfres->vf_cap_flags;
514
515 ice_vc_set_caps_allowlist(vf);
516 ice_vc_set_working_allowlist(vf);
517
518 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
519
520 err:
521 /* send the response back to the VF */
522 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
523 (u8 *)vfres, len);
524
525 kfree(vfres);
526 return ret;
527 }
528
529 /**
530 * ice_vc_reset_vf_msg
531 * @vf: pointer to the VF info
532 *
533 * called from the VF to reset itself,
534 * unlike other virtchnl messages, PF driver
535 * doesn't send the response back to the VF
536 */
ice_vc_reset_vf_msg(struct ice_vf * vf)537 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
538 {
539 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
540 ice_reset_vf(vf, 0);
541 }
542
543 /**
544 * ice_vc_isvalid_vsi_id
545 * @vf: pointer to the VF info
546 * @vsi_id: VF relative VSI ID
547 *
548 * check for the valid VSI ID
549 */
ice_vc_isvalid_vsi_id(struct ice_vf * vf,u16 vsi_id)550 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
551 {
552 return vsi_id == ICE_VF_VSI_ID;
553 }
554
555 /**
556 * ice_vc_isvalid_q_id
557 * @vsi: VSI to check queue ID against
558 * @qid: VSI relative queue ID
559 *
560 * check for the valid queue ID
561 */
ice_vc_isvalid_q_id(struct ice_vsi * vsi,u8 qid)562 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
563 {
564 /* allocated Tx and Rx queues should be always equal for VF VSI */
565 return qid < vsi->alloc_txq;
566 }
567
568 /**
569 * ice_vc_isvalid_ring_len
570 * @ring_len: length of ring
571 *
572 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
573 * or zero
574 */
ice_vc_isvalid_ring_len(u16 ring_len)575 static bool ice_vc_isvalid_ring_len(u16 ring_len)
576 {
577 return ring_len == 0 ||
578 (ring_len >= ICE_MIN_NUM_DESC &&
579 ring_len <= ICE_MAX_NUM_DESC &&
580 !(ring_len % ICE_REQ_DESC_MULTIPLE));
581 }
582
583 /**
584 * ice_vc_validate_pattern
585 * @vf: pointer to the VF info
586 * @proto: virtchnl protocol headers
587 *
588 * validate the pattern is supported or not.
589 *
590 * Return: true on success, false on error.
591 */
592 bool
ice_vc_validate_pattern(struct ice_vf * vf,struct virtchnl_proto_hdrs * proto)593 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
594 {
595 bool is_ipv4 = false;
596 bool is_ipv6 = false;
597 bool is_udp = false;
598 u16 ptype = -1;
599 int i = 0;
600
601 while (i < proto->count &&
602 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
603 switch (proto->proto_hdr[i].type) {
604 case VIRTCHNL_PROTO_HDR_ETH:
605 ptype = ICE_PTYPE_MAC_PAY;
606 break;
607 case VIRTCHNL_PROTO_HDR_IPV4:
608 ptype = ICE_PTYPE_IPV4_PAY;
609 is_ipv4 = true;
610 break;
611 case VIRTCHNL_PROTO_HDR_IPV6:
612 ptype = ICE_PTYPE_IPV6_PAY;
613 is_ipv6 = true;
614 break;
615 case VIRTCHNL_PROTO_HDR_UDP:
616 if (is_ipv4)
617 ptype = ICE_PTYPE_IPV4_UDP_PAY;
618 else if (is_ipv6)
619 ptype = ICE_PTYPE_IPV6_UDP_PAY;
620 is_udp = true;
621 break;
622 case VIRTCHNL_PROTO_HDR_TCP:
623 if (is_ipv4)
624 ptype = ICE_PTYPE_IPV4_TCP_PAY;
625 else if (is_ipv6)
626 ptype = ICE_PTYPE_IPV6_TCP_PAY;
627 break;
628 case VIRTCHNL_PROTO_HDR_SCTP:
629 if (is_ipv4)
630 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
631 else if (is_ipv6)
632 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
633 break;
634 case VIRTCHNL_PROTO_HDR_GTPU_IP:
635 case VIRTCHNL_PROTO_HDR_GTPU_EH:
636 if (is_ipv4)
637 ptype = ICE_MAC_IPV4_GTPU;
638 else if (is_ipv6)
639 ptype = ICE_MAC_IPV6_GTPU;
640 goto out;
641 case VIRTCHNL_PROTO_HDR_L2TPV3:
642 if (is_ipv4)
643 ptype = ICE_MAC_IPV4_L2TPV3;
644 else if (is_ipv6)
645 ptype = ICE_MAC_IPV6_L2TPV3;
646 goto out;
647 case VIRTCHNL_PROTO_HDR_ESP:
648 if (is_ipv4)
649 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
650 ICE_MAC_IPV4_ESP;
651 else if (is_ipv6)
652 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
653 ICE_MAC_IPV6_ESP;
654 goto out;
655 case VIRTCHNL_PROTO_HDR_AH:
656 if (is_ipv4)
657 ptype = ICE_MAC_IPV4_AH;
658 else if (is_ipv6)
659 ptype = ICE_MAC_IPV6_AH;
660 goto out;
661 case VIRTCHNL_PROTO_HDR_PFCP:
662 if (is_ipv4)
663 ptype = ICE_MAC_IPV4_PFCP_SESSION;
664 else if (is_ipv6)
665 ptype = ICE_MAC_IPV6_PFCP_SESSION;
666 goto out;
667 default:
668 break;
669 }
670 i++;
671 }
672
673 out:
674 return ice_hw_ptype_ena(&vf->pf->hw, ptype);
675 }
676
677 /**
678 * ice_vc_parse_rss_cfg - parses hash fields and headers from
679 * a specific virtchnl RSS cfg
680 * @hw: pointer to the hardware
681 * @rss_cfg: pointer to the virtchnl RSS cfg
682 * @hash_cfg: pointer to the HW hash configuration
683 *
684 * Return true if all the protocol header and hash fields in the RSS cfg could
685 * be parsed, else return false
686 *
687 * This function parses the virtchnl RSS cfg to be the intended
688 * hash fields and the intended header for RSS configuration
689 */
ice_vc_parse_rss_cfg(struct ice_hw * hw,struct virtchnl_rss_cfg * rss_cfg,struct ice_rss_hash_cfg * hash_cfg)690 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
691 struct virtchnl_rss_cfg *rss_cfg,
692 struct ice_rss_hash_cfg *hash_cfg)
693 {
694 const struct ice_vc_hash_field_match_type *hf_list;
695 const struct ice_vc_hdr_match_type *hdr_list;
696 int i, hf_list_len, hdr_list_len;
697 u32 *addl_hdrs = &hash_cfg->addl_hdrs;
698 u64 *hash_flds = &hash_cfg->hash_flds;
699
700 /* set outer layer RSS as default */
701 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
702
703 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
704 hash_cfg->symm = true;
705 else
706 hash_cfg->symm = false;
707
708 hf_list = ice_vc_hash_field_list;
709 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
710 hdr_list = ice_vc_hdr_list;
711 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
712
713 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
714 struct virtchnl_proto_hdr *proto_hdr =
715 &rss_cfg->proto_hdrs.proto_hdr[i];
716 bool hdr_found = false;
717 int j;
718
719 /* Find matched ice headers according to virtchnl headers. */
720 for (j = 0; j < hdr_list_len; j++) {
721 struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
722
723 if (proto_hdr->type == hdr_map.vc_hdr) {
724 *addl_hdrs |= hdr_map.ice_hdr;
725 hdr_found = true;
726 }
727 }
728
729 if (!hdr_found)
730 return false;
731
732 /* Find matched ice hash fields according to
733 * virtchnl hash fields.
734 */
735 for (j = 0; j < hf_list_len; j++) {
736 struct ice_vc_hash_field_match_type hf_map = hf_list[j];
737
738 if (proto_hdr->type == hf_map.vc_hdr &&
739 proto_hdr->field_selector == hf_map.vc_hash_field) {
740 *hash_flds |= hf_map.ice_hash_field;
741 break;
742 }
743 }
744 }
745
746 return true;
747 }
748
749 /**
750 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
751 * RSS offloads
752 * @caps: VF driver negotiated capabilities
753 *
754 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
755 * else return false
756 */
ice_vf_adv_rss_offload_ena(u32 caps)757 static bool ice_vf_adv_rss_offload_ena(u32 caps)
758 {
759 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
760 }
761
762 /**
763 * ice_vc_handle_rss_cfg
764 * @vf: pointer to the VF info
765 * @msg: pointer to the message buffer
766 * @add: add a RSS config if true, otherwise delete a RSS config
767 *
768 * This function adds/deletes a RSS config
769 */
ice_vc_handle_rss_cfg(struct ice_vf * vf,u8 * msg,bool add)770 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
771 {
772 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
773 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
774 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
775 struct device *dev = ice_pf_to_dev(vf->pf);
776 struct ice_hw *hw = &vf->pf->hw;
777 struct ice_vsi *vsi;
778
779 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
780 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
781 vf->vf_id);
782 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
783 goto error_param;
784 }
785
786 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
787 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
788 vf->vf_id);
789 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
790 goto error_param;
791 }
792
793 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
794 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
795 goto error_param;
796 }
797
798 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
799 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
800 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
801 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
802 vf->vf_id);
803 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
804 goto error_param;
805 }
806
807 vsi = ice_get_vf_vsi(vf);
808 if (!vsi) {
809 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
810 goto error_param;
811 }
812
813 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
814 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
815 goto error_param;
816 }
817
818 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
819 struct ice_vsi_ctx *ctx;
820 u8 lut_type, hash_type;
821 int status;
822
823 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
824 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
825 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
826
827 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
828 if (!ctx) {
829 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
830 goto error_param;
831 }
832
833 ctx->info.q_opt_rss =
834 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
835 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
836
837 /* Preserve existing queueing option setting */
838 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
839 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
840 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
841 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
842
843 ctx->info.valid_sections =
844 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
845
846 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
847 if (status) {
848 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
849 status, ice_aq_str(hw->adminq.sq_last_status));
850 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
851 } else {
852 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
853 }
854
855 kfree(ctx);
856 } else {
857 struct ice_rss_hash_cfg cfg;
858
859 /* Only check for none raw pattern case */
860 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
861 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
862 goto error_param;
863 }
864 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
865 cfg.hash_flds = ICE_HASH_INVALID;
866 cfg.hdr_type = ICE_RSS_ANY_HEADERS;
867
868 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
869 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
870 goto error_param;
871 }
872
873 if (add) {
874 if (ice_add_rss_cfg(hw, vsi, &cfg)) {
875 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
876 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
877 vsi->vsi_num, v_ret);
878 }
879 } else {
880 int status;
881
882 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
883 /* We just ignore -ENOENT, because if two configurations
884 * share the same profile remove one of them actually
885 * removes both, since the profile is deleted.
886 */
887 if (status && status != -ENOENT) {
888 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
889 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
890 vf->vf_id, status);
891 }
892 }
893 }
894
895 error_param:
896 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
897 }
898
899 /**
900 * ice_vc_config_rss_key
901 * @vf: pointer to the VF info
902 * @msg: pointer to the msg buffer
903 *
904 * Configure the VF's RSS key
905 */
ice_vc_config_rss_key(struct ice_vf * vf,u8 * msg)906 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
907 {
908 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
909 struct virtchnl_rss_key *vrk =
910 (struct virtchnl_rss_key *)msg;
911 struct ice_vsi *vsi;
912
913 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
914 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
915 goto error_param;
916 }
917
918 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
919 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
920 goto error_param;
921 }
922
923 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
924 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
925 goto error_param;
926 }
927
928 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
929 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
930 goto error_param;
931 }
932
933 vsi = ice_get_vf_vsi(vf);
934 if (!vsi) {
935 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
936 goto error_param;
937 }
938
939 if (ice_set_rss_key(vsi, vrk->key))
940 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
941 error_param:
942 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
943 NULL, 0);
944 }
945
946 /**
947 * ice_vc_config_rss_lut
948 * @vf: pointer to the VF info
949 * @msg: pointer to the msg buffer
950 *
951 * Configure the VF's RSS LUT
952 */
ice_vc_config_rss_lut(struct ice_vf * vf,u8 * msg)953 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
954 {
955 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
956 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
957 struct ice_vsi *vsi;
958
959 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
960 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
961 goto error_param;
962 }
963
964 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
965 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
966 goto error_param;
967 }
968
969 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
970 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
971 goto error_param;
972 }
973
974 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
975 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
976 goto error_param;
977 }
978
979 vsi = ice_get_vf_vsi(vf);
980 if (!vsi) {
981 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
982 goto error_param;
983 }
984
985 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
986 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
987 error_param:
988 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
989 NULL, 0);
990 }
991
992 /**
993 * ice_vc_config_rss_hfunc
994 * @vf: pointer to the VF info
995 * @msg: pointer to the msg buffer
996 *
997 * Configure the VF's RSS Hash function
998 */
ice_vc_config_rss_hfunc(struct ice_vf * vf,u8 * msg)999 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1000 {
1001 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1002 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1003 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1004 struct ice_vsi *vsi;
1005
1006 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1007 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1008 goto error_param;
1009 }
1010
1011 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1012 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1013 goto error_param;
1014 }
1015
1016 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1017 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1018 goto error_param;
1019 }
1020
1021 vsi = ice_get_vf_vsi(vf);
1022 if (!vsi) {
1023 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1024 goto error_param;
1025 }
1026
1027 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1028 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1029
1030 if (ice_set_rss_hfunc(vsi, hfunc))
1031 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1032 error_param:
1033 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1034 NULL, 0);
1035 }
1036
1037 /**
1038 * ice_vc_cfg_promiscuous_mode_msg
1039 * @vf: pointer to the VF info
1040 * @msg: pointer to the msg buffer
1041 *
1042 * called from the VF to configure VF VSIs promiscuous mode
1043 */
ice_vc_cfg_promiscuous_mode_msg(struct ice_vf * vf,u8 * msg)1044 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1045 {
1046 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1047 bool rm_promisc, alluni = false, allmulti = false;
1048 struct virtchnl_promisc_info *info =
1049 (struct virtchnl_promisc_info *)msg;
1050 struct ice_vsi_vlan_ops *vlan_ops;
1051 int mcast_err = 0, ucast_err = 0;
1052 struct ice_pf *pf = vf->pf;
1053 struct ice_vsi *vsi;
1054 u8 mcast_m, ucast_m;
1055 struct device *dev;
1056 int ret = 0;
1057
1058 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1059 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1060 goto error_param;
1061 }
1062
1063 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1064 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1065 goto error_param;
1066 }
1067
1068 vsi = ice_get_vf_vsi(vf);
1069 if (!vsi) {
1070 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1071 goto error_param;
1072 }
1073
1074 dev = ice_pf_to_dev(pf);
1075 if (!ice_is_vf_trusted(vf)) {
1076 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1077 vf->vf_id);
1078 /* Leave v_ret alone, lie to the VF on purpose. */
1079 goto error_param;
1080 }
1081
1082 if (info->flags & FLAG_VF_UNICAST_PROMISC)
1083 alluni = true;
1084
1085 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1086 allmulti = true;
1087
1088 rm_promisc = !allmulti && !alluni;
1089
1090 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1091 if (rm_promisc)
1092 ret = vlan_ops->ena_rx_filtering(vsi);
1093 else
1094 ret = vlan_ops->dis_rx_filtering(vsi);
1095 if (ret) {
1096 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1097 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1098 goto error_param;
1099 }
1100
1101 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1102
1103 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1104 if (alluni) {
1105 /* in this case we're turning on promiscuous mode */
1106 ret = ice_set_dflt_vsi(vsi);
1107 } else {
1108 /* in this case we're turning off promiscuous mode */
1109 if (ice_is_dflt_vsi_in_use(vsi->port_info))
1110 ret = ice_clear_dflt_vsi(vsi);
1111 }
1112
1113 /* in this case we're turning on/off only
1114 * allmulticast
1115 */
1116 if (allmulti)
1117 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1118 else
1119 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1120
1121 if (ret) {
1122 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1123 vf->vf_id, ret);
1124 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1125 goto error_param;
1126 }
1127 } else {
1128 if (alluni)
1129 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1130 else
1131 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1132
1133 if (allmulti)
1134 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1135 else
1136 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1137
1138 if (ucast_err || mcast_err)
1139 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1140 }
1141
1142 if (!mcast_err) {
1143 if (allmulti &&
1144 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1145 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1146 vf->vf_id);
1147 else if (!allmulti &&
1148 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1149 vf->vf_states))
1150 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1151 vf->vf_id);
1152 } else {
1153 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1154 vf->vf_id, mcast_err);
1155 }
1156
1157 if (!ucast_err) {
1158 if (alluni &&
1159 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1160 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1161 vf->vf_id);
1162 else if (!alluni &&
1163 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1164 vf->vf_states))
1165 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1166 vf->vf_id);
1167 } else {
1168 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1169 vf->vf_id, ucast_err);
1170 }
1171
1172 error_param:
1173 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1174 v_ret, NULL, 0);
1175 }
1176
1177 /**
1178 * ice_vc_get_stats_msg
1179 * @vf: pointer to the VF info
1180 * @msg: pointer to the msg buffer
1181 *
1182 * called from the VF to get VSI stats
1183 */
ice_vc_get_stats_msg(struct ice_vf * vf,u8 * msg)1184 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1185 {
1186 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1187 struct virtchnl_queue_select *vqs =
1188 (struct virtchnl_queue_select *)msg;
1189 struct ice_eth_stats stats = { 0 };
1190 struct ice_vsi *vsi;
1191
1192 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1193 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1194 goto error_param;
1195 }
1196
1197 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1198 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1199 goto error_param;
1200 }
1201
1202 vsi = ice_get_vf_vsi(vf);
1203 if (!vsi) {
1204 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1205 goto error_param;
1206 }
1207
1208 ice_update_eth_stats(vsi);
1209
1210 stats = vsi->eth_stats;
1211
1212 error_param:
1213 /* send the response to the VF */
1214 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1215 (u8 *)&stats, sizeof(stats));
1216 }
1217
1218 /**
1219 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1220 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1221 *
1222 * Return true on successful validation, else false
1223 */
ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select * vqs)1224 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1225 {
1226 if ((!vqs->rx_queues && !vqs->tx_queues) ||
1227 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1228 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1229 return false;
1230
1231 return true;
1232 }
1233
1234 /**
1235 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1236 * @vsi: VSI of the VF to configure
1237 * @q_idx: VF queue index used to determine the queue in the PF's space
1238 */
ice_vf_ena_txq_interrupt(struct ice_vsi * vsi,u32 q_idx)1239 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1240 {
1241 struct ice_hw *hw = &vsi->back->hw;
1242 u32 pfq = vsi->txq_map[q_idx];
1243 u32 reg;
1244
1245 reg = rd32(hw, QINT_TQCTL(pfq));
1246
1247 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1248 * this is most likely a poll mode VF driver, so don't enable an
1249 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1250 */
1251 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1252 return;
1253
1254 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1255 }
1256
1257 /**
1258 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1259 * @vsi: VSI of the VF to configure
1260 * @q_idx: VF queue index used to determine the queue in the PF's space
1261 */
ice_vf_ena_rxq_interrupt(struct ice_vsi * vsi,u32 q_idx)1262 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1263 {
1264 struct ice_hw *hw = &vsi->back->hw;
1265 u32 pfq = vsi->rxq_map[q_idx];
1266 u32 reg;
1267
1268 reg = rd32(hw, QINT_RQCTL(pfq));
1269
1270 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1271 * this is most likely a poll mode VF driver, so don't enable an
1272 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1273 */
1274 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1275 return;
1276
1277 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1278 }
1279
1280 /**
1281 * ice_vc_ena_qs_msg
1282 * @vf: pointer to the VF info
1283 * @msg: pointer to the msg buffer
1284 *
1285 * called from the VF to enable all or specific queue(s)
1286 */
ice_vc_ena_qs_msg(struct ice_vf * vf,u8 * msg)1287 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1288 {
1289 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1290 struct virtchnl_queue_select *vqs =
1291 (struct virtchnl_queue_select *)msg;
1292 struct ice_vsi *vsi;
1293 unsigned long q_map;
1294 u16 vf_q_id;
1295
1296 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1297 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1298 goto error_param;
1299 }
1300
1301 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1302 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1303 goto error_param;
1304 }
1305
1306 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1307 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1308 goto error_param;
1309 }
1310
1311 vsi = ice_get_vf_vsi(vf);
1312 if (!vsi) {
1313 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1314 goto error_param;
1315 }
1316
1317 /* Enable only Rx rings, Tx rings were enabled by the FW when the
1318 * Tx queue group list was configured and the context bits were
1319 * programmed using ice_vsi_cfg_txqs
1320 */
1321 q_map = vqs->rx_queues;
1322 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1323 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1324 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1325 goto error_param;
1326 }
1327
1328 /* Skip queue if enabled */
1329 if (test_bit(vf_q_id, vf->rxq_ena))
1330 continue;
1331
1332 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1333 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1334 vf_q_id, vsi->vsi_num);
1335 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1336 goto error_param;
1337 }
1338
1339 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1340 set_bit(vf_q_id, vf->rxq_ena);
1341 }
1342
1343 q_map = vqs->tx_queues;
1344 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1345 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1346 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1347 goto error_param;
1348 }
1349
1350 /* Skip queue if enabled */
1351 if (test_bit(vf_q_id, vf->txq_ena))
1352 continue;
1353
1354 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1355 set_bit(vf_q_id, vf->txq_ena);
1356 }
1357
1358 /* Set flag to indicate that queues are enabled */
1359 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1360 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1361
1362 error_param:
1363 /* send the response to the VF */
1364 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1365 NULL, 0);
1366 }
1367
1368 /**
1369 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1370 * @vf: VF to disable queue for
1371 * @vsi: VSI for the VF
1372 * @q_id: VF relative (0-based) queue ID
1373 *
1374 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1375 * disabled then clear q_id bit in the enabled queues bitmap and return
1376 * success. Otherwise return error.
1377 */
1378 static int
ice_vf_vsi_dis_single_txq(struct ice_vf * vf,struct ice_vsi * vsi,u16 q_id)1379 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1380 {
1381 struct ice_txq_meta txq_meta = { 0 };
1382 struct ice_tx_ring *ring;
1383 int err;
1384
1385 if (!test_bit(q_id, vf->txq_ena))
1386 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1387 q_id, vsi->vsi_num);
1388
1389 ring = vsi->tx_rings[q_id];
1390 if (!ring)
1391 return -EINVAL;
1392
1393 ice_fill_txq_meta(vsi, ring, &txq_meta);
1394
1395 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1396 if (err) {
1397 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1398 q_id, vsi->vsi_num);
1399 return err;
1400 }
1401
1402 /* Clear enabled queues flag */
1403 clear_bit(q_id, vf->txq_ena);
1404
1405 return 0;
1406 }
1407
1408 /**
1409 * ice_vc_dis_qs_msg
1410 * @vf: pointer to the VF info
1411 * @msg: pointer to the msg buffer
1412 *
1413 * called from the VF to disable all or specific queue(s)
1414 */
ice_vc_dis_qs_msg(struct ice_vf * vf,u8 * msg)1415 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1416 {
1417 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1418 struct virtchnl_queue_select *vqs =
1419 (struct virtchnl_queue_select *)msg;
1420 struct ice_vsi *vsi;
1421 unsigned long q_map;
1422 u16 vf_q_id;
1423
1424 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1425 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1426 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1427 goto error_param;
1428 }
1429
1430 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1431 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1432 goto error_param;
1433 }
1434
1435 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1436 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1437 goto error_param;
1438 }
1439
1440 vsi = ice_get_vf_vsi(vf);
1441 if (!vsi) {
1442 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1443 goto error_param;
1444 }
1445
1446 if (vqs->tx_queues) {
1447 q_map = vqs->tx_queues;
1448
1449 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1450 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1451 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1452 goto error_param;
1453 }
1454
1455 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1456 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1457 goto error_param;
1458 }
1459 }
1460 }
1461
1462 q_map = vqs->rx_queues;
1463 /* speed up Rx queue disable by batching them if possible */
1464 if (q_map &&
1465 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1466 if (ice_vsi_stop_all_rx_rings(vsi)) {
1467 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1468 vsi->vsi_num);
1469 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1470 goto error_param;
1471 }
1472
1473 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1474 } else if (q_map) {
1475 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1476 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1477 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1478 goto error_param;
1479 }
1480
1481 /* Skip queue if not enabled */
1482 if (!test_bit(vf_q_id, vf->rxq_ena))
1483 continue;
1484
1485 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1486 true)) {
1487 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1488 vf_q_id, vsi->vsi_num);
1489 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1490 goto error_param;
1491 }
1492
1493 /* Clear enabled queues flag */
1494 clear_bit(vf_q_id, vf->rxq_ena);
1495 }
1496 }
1497
1498 /* Clear enabled queues flag */
1499 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1500 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1501
1502 error_param:
1503 /* send the response to the VF */
1504 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1505 NULL, 0);
1506 }
1507
1508 /**
1509 * ice_cfg_interrupt
1510 * @vf: pointer to the VF info
1511 * @vsi: the VSI being configured
1512 * @map: vector map for mapping vectors to queues
1513 * @q_vector: structure for interrupt vector
1514 * configure the IRQ to queue map
1515 */
1516 static enum virtchnl_status_code
ice_cfg_interrupt(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vector_map * map,struct ice_q_vector * q_vector)1517 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi,
1518 struct virtchnl_vector_map *map,
1519 struct ice_q_vector *q_vector)
1520 {
1521 u16 vsi_q_id, vsi_q_id_idx;
1522 unsigned long qmap;
1523
1524 q_vector->num_ring_rx = 0;
1525 q_vector->num_ring_tx = 0;
1526
1527 qmap = map->rxq_map;
1528 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1529 vsi_q_id = vsi_q_id_idx;
1530
1531 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1532 return VIRTCHNL_STATUS_ERR_PARAM;
1533
1534 q_vector->num_ring_rx++;
1535 q_vector->rx.itr_idx = map->rxitr_idx;
1536 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1537 ice_cfg_rxq_interrupt(vsi, vsi_q_id,
1538 q_vector->vf_reg_idx,
1539 q_vector->rx.itr_idx);
1540 }
1541
1542 qmap = map->txq_map;
1543 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1544 vsi_q_id = vsi_q_id_idx;
1545
1546 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1547 return VIRTCHNL_STATUS_ERR_PARAM;
1548
1549 q_vector->num_ring_tx++;
1550 q_vector->tx.itr_idx = map->txitr_idx;
1551 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1552 ice_cfg_txq_interrupt(vsi, vsi_q_id,
1553 q_vector->vf_reg_idx,
1554 q_vector->tx.itr_idx);
1555 }
1556
1557 return VIRTCHNL_STATUS_SUCCESS;
1558 }
1559
1560 /**
1561 * ice_vc_cfg_irq_map_msg
1562 * @vf: pointer to the VF info
1563 * @msg: pointer to the msg buffer
1564 *
1565 * called from the VF to configure the IRQ to queue map
1566 */
ice_vc_cfg_irq_map_msg(struct ice_vf * vf,u8 * msg)1567 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1568 {
1569 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1570 u16 num_q_vectors_mapped, vsi_id, vector_id;
1571 struct virtchnl_irq_map_info *irqmap_info;
1572 struct virtchnl_vector_map *map;
1573 struct ice_vsi *vsi;
1574 int i;
1575
1576 irqmap_info = (struct virtchnl_irq_map_info *)msg;
1577 num_q_vectors_mapped = irqmap_info->num_vectors;
1578
1579 /* Check to make sure number of VF vectors mapped is not greater than
1580 * number of VF vectors originally allocated, and check that
1581 * there is actually at least a single VF queue vector mapped
1582 */
1583 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1584 vf->num_msix < num_q_vectors_mapped ||
1585 !num_q_vectors_mapped) {
1586 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1587 goto error_param;
1588 }
1589
1590 vsi = ice_get_vf_vsi(vf);
1591 if (!vsi) {
1592 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1593 goto error_param;
1594 }
1595
1596 for (i = 0; i < num_q_vectors_mapped; i++) {
1597 struct ice_q_vector *q_vector;
1598
1599 map = &irqmap_info->vecmap[i];
1600
1601 vector_id = map->vector_id;
1602 vsi_id = map->vsi_id;
1603 /* vector_id is always 0-based for each VF, and can never be
1604 * larger than or equal to the max allowed interrupts per VF
1605 */
1606 if (!(vector_id < vf->num_msix) ||
1607 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1608 (!vector_id && (map->rxq_map || map->txq_map))) {
1609 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1610 goto error_param;
1611 }
1612
1613 /* No need to map VF miscellaneous or rogue vector */
1614 if (!vector_id)
1615 continue;
1616
1617 /* Subtract non queue vector from vector_id passed by VF
1618 * to get actual number of VSI queue vector array index
1619 */
1620 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1621 if (!q_vector) {
1622 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1623 goto error_param;
1624 }
1625
1626 /* lookout for the invalid queue index */
1627 v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector);
1628 if (v_ret)
1629 goto error_param;
1630 }
1631
1632 error_param:
1633 /* send the response to the VF */
1634 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1635 NULL, 0);
1636 }
1637
1638 /**
1639 * ice_vc_cfg_qs_msg
1640 * @vf: pointer to the VF info
1641 * @msg: pointer to the msg buffer
1642 *
1643 * called from the VF to configure the Rx/Tx queues
1644 */
ice_vc_cfg_qs_msg(struct ice_vf * vf,u8 * msg)1645 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1646 {
1647 struct virtchnl_vsi_queue_config_info *qci =
1648 (struct virtchnl_vsi_queue_config_info *)msg;
1649 struct virtchnl_queue_pair_info *qpi;
1650 struct ice_pf *pf = vf->pf;
1651 struct ice_lag *lag;
1652 struct ice_vsi *vsi;
1653 u8 act_prt, pri_prt;
1654 int i = -1, q_idx;
1655
1656 lag = pf->lag;
1657 mutex_lock(&pf->lag_mutex);
1658 act_prt = ICE_LAG_INVALID_PORT;
1659 pri_prt = pf->hw.port_info->lport;
1660 if (lag && lag->bonded && lag->primary) {
1661 act_prt = lag->active_port;
1662 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1663 lag->upper_netdev)
1664 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1665 else
1666 act_prt = ICE_LAG_INVALID_PORT;
1667 }
1668
1669 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1670 goto error_param;
1671
1672 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1673 goto error_param;
1674
1675 vsi = ice_get_vf_vsi(vf);
1676 if (!vsi)
1677 goto error_param;
1678
1679 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1680 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1681 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1682 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1683 goto error_param;
1684 }
1685
1686 for (i = 0; i < qci->num_queue_pairs; i++) {
1687 if (!qci->qpair[i].rxq.crc_disable)
1688 continue;
1689
1690 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1691 vf->vlan_strip_ena)
1692 goto error_param;
1693 }
1694
1695 for (i = 0; i < qci->num_queue_pairs; i++) {
1696 qpi = &qci->qpair[i];
1697 if (qpi->txq.vsi_id != qci->vsi_id ||
1698 qpi->rxq.vsi_id != qci->vsi_id ||
1699 qpi->rxq.queue_id != qpi->txq.queue_id ||
1700 qpi->txq.headwb_enabled ||
1701 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1702 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1703 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
1704 goto error_param;
1705 }
1706
1707 q_idx = qpi->rxq.queue_id;
1708
1709 /* make sure selected "q_idx" is in valid range of queues
1710 * for selected "vsi"
1711 */
1712 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1713 goto error_param;
1714 }
1715
1716 /* copy Tx queue info from VF into VSI */
1717 if (qpi->txq.ring_len > 0) {
1718 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1719 vsi->tx_rings[i]->count = qpi->txq.ring_len;
1720
1721 /* Disable any existing queue first */
1722 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1723 goto error_param;
1724
1725 /* Configure a queue with the requested settings */
1726 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1727 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1728 vf->vf_id, i);
1729 goto error_param;
1730 }
1731 }
1732
1733 /* copy Rx queue info from VF into VSI */
1734 if (qpi->rxq.ring_len > 0) {
1735 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1736 u32 rxdid;
1737
1738 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1739 vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1740
1741 if (qpi->rxq.crc_disable)
1742 vsi->rx_rings[q_idx]->flags |=
1743 ICE_RX_FLAGS_CRC_STRIP_DIS;
1744 else
1745 vsi->rx_rings[q_idx]->flags &=
1746 ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1747
1748 if (qpi->rxq.databuffer_size != 0 &&
1749 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1750 qpi->rxq.databuffer_size < 1024))
1751 goto error_param;
1752 vsi->rx_buf_len = qpi->rxq.databuffer_size;
1753 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1754 if (qpi->rxq.max_pkt_size > max_frame_size ||
1755 qpi->rxq.max_pkt_size < 64)
1756 goto error_param;
1757
1758 vsi->max_frame = qpi->rxq.max_pkt_size;
1759 /* add space for the port VLAN since the VF driver is
1760 * not expected to account for it in the MTU
1761 * calculation
1762 */
1763 if (ice_vf_is_port_vlan_ena(vf))
1764 vsi->max_frame += VLAN_HLEN;
1765
1766 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1767 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1768 vf->vf_id, i);
1769 goto error_param;
1770 }
1771
1772 /* If Rx flex desc is supported, select RXDID for Rx
1773 * queues. Otherwise, use legacy 32byte descriptor
1774 * format. Legacy 16byte descriptor is not supported.
1775 * If this RXDID is selected, return error.
1776 */
1777 if (vf->driver_caps &
1778 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1779 rxdid = qpi->rxq.rxdid;
1780 if (!(BIT(rxdid) & pf->supported_rxdids))
1781 goto error_param;
1782 } else {
1783 rxdid = ICE_RXDID_LEGACY_1;
1784 }
1785
1786 ice_write_qrxflxp_cntxt(&vsi->back->hw,
1787 vsi->rxq_map[q_idx],
1788 rxdid, 0x03, false);
1789 }
1790 }
1791
1792 if (lag && lag->bonded && lag->primary &&
1793 act_prt != ICE_LAG_INVALID_PORT)
1794 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1795 mutex_unlock(&pf->lag_mutex);
1796
1797 /* send the response to the VF */
1798 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1799 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1800 error_param:
1801 /* disable whatever we can */
1802 for (; i >= 0; i--) {
1803 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1804 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1805 vf->vf_id, i);
1806 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1807 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1808 vf->vf_id, i);
1809 }
1810
1811 if (lag && lag->bonded && lag->primary &&
1812 act_prt != ICE_LAG_INVALID_PORT)
1813 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1814 mutex_unlock(&pf->lag_mutex);
1815
1816 ice_lag_move_new_vf_nodes(vf);
1817
1818 /* send the response to the VF */
1819 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1820 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1821 }
1822
1823 /**
1824 * ice_can_vf_change_mac
1825 * @vf: pointer to the VF info
1826 *
1827 * Return true if the VF is allowed to change its MAC filters, false otherwise
1828 */
ice_can_vf_change_mac(struct ice_vf * vf)1829 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1830 {
1831 /* If the VF MAC address has been set administratively (via the
1832 * ndo_set_vf_mac command), then deny permission to the VF to
1833 * add/delete unicast MAC addresses, unless the VF is trusted
1834 */
1835 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1836 return false;
1837
1838 return true;
1839 }
1840
1841 /**
1842 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1843 * @vc_ether_addr: used to extract the type
1844 */
1845 static u8
ice_vc_ether_addr_type(struct virtchnl_ether_addr * vc_ether_addr)1846 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1847 {
1848 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1849 }
1850
1851 /**
1852 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1853 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1854 */
1855 static bool
ice_is_vc_addr_legacy(struct virtchnl_ether_addr * vc_ether_addr)1856 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1857 {
1858 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1859
1860 return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1861 }
1862
1863 /**
1864 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1865 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1866 *
1867 * This function should only be called when the MAC address in
1868 * virtchnl_ether_addr is a valid unicast MAC
1869 */
1870 static bool
ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused * vc_ether_addr)1871 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1872 {
1873 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1874
1875 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1876 }
1877
1878 /**
1879 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1880 * @vf: VF to update
1881 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1882 */
1883 static void
ice_vfhw_mac_add(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)1884 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1885 {
1886 u8 *mac_addr = vc_ether_addr->addr;
1887
1888 if (!is_valid_ether_addr(mac_addr))
1889 return;
1890
1891 /* only allow legacy VF drivers to set the device and hardware MAC if it
1892 * is zero and allow new VF drivers to set the hardware MAC if the type
1893 * was correctly specified over VIRTCHNL
1894 */
1895 if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1896 is_zero_ether_addr(vf->hw_lan_addr)) ||
1897 ice_is_vc_addr_primary(vc_ether_addr)) {
1898 ether_addr_copy(vf->dev_lan_addr, mac_addr);
1899 ether_addr_copy(vf->hw_lan_addr, mac_addr);
1900 }
1901
1902 /* hardware and device MACs are already set, but its possible that the
1903 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1904 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1905 * away for the legacy VF driver case as it will be updated in the
1906 * delete flow for this case
1907 */
1908 if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1909 ether_addr_copy(vf->legacy_last_added_umac.addr,
1910 mac_addr);
1911 vf->legacy_last_added_umac.time_modified = jiffies;
1912 }
1913 }
1914
1915 /**
1916 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1917 * @vf: pointer to the VF info
1918 * @vsi: pointer to the VF's VSI
1919 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1920 */
1921 static int
ice_vc_add_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_ether_addr * vc_ether_addr)1922 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1923 struct virtchnl_ether_addr *vc_ether_addr)
1924 {
1925 struct device *dev = ice_pf_to_dev(vf->pf);
1926 u8 *mac_addr = vc_ether_addr->addr;
1927 int ret;
1928
1929 /* device MAC already added */
1930 if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1931 return 0;
1932
1933 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1934 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1935 return -EPERM;
1936 }
1937
1938 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1939 if (ret == -EEXIST) {
1940 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1941 vf->vf_id);
1942 /* don't return since we might need to update
1943 * the primary MAC in ice_vfhw_mac_add() below
1944 */
1945 } else if (ret) {
1946 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1947 mac_addr, vf->vf_id, ret);
1948 return ret;
1949 } else {
1950 vf->num_mac++;
1951 }
1952
1953 ice_vfhw_mac_add(vf, vc_ether_addr);
1954
1955 return ret;
1956 }
1957
1958 /**
1959 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1960 * @last_added_umac: structure used to check expiration
1961 */
ice_is_legacy_umac_expired(struct ice_time_mac * last_added_umac)1962 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1963 {
1964 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
1965 return time_is_before_jiffies(last_added_umac->time_modified +
1966 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1967 }
1968
1969 /**
1970 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1971 * @vf: VF to update
1972 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1973 *
1974 * only update cached hardware MAC for legacy VF drivers on delete
1975 * because we cannot guarantee order/type of MAC from the VF driver
1976 */
1977 static void
ice_update_legacy_cached_mac(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)1978 ice_update_legacy_cached_mac(struct ice_vf *vf,
1979 struct virtchnl_ether_addr *vc_ether_addr)
1980 {
1981 if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1982 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1983 return;
1984
1985 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1986 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1987 }
1988
1989 /**
1990 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1991 * @vf: VF to update
1992 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1993 */
1994 static void
ice_vfhw_mac_del(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)1995 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1996 {
1997 u8 *mac_addr = vc_ether_addr->addr;
1998
1999 if (!is_valid_ether_addr(mac_addr) ||
2000 !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2001 return;
2002
2003 /* allow the device MAC to be repopulated in the add flow and don't
2004 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2005 * to be persistent on VM reboot and across driver unload/load, which
2006 * won't work if we clear the hardware MAC here
2007 */
2008 eth_zero_addr(vf->dev_lan_addr);
2009
2010 ice_update_legacy_cached_mac(vf, vc_ether_addr);
2011 }
2012
2013 /**
2014 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2015 * @vf: pointer to the VF info
2016 * @vsi: pointer to the VF's VSI
2017 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2018 */
2019 static int
ice_vc_del_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_ether_addr * vc_ether_addr)2020 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2021 struct virtchnl_ether_addr *vc_ether_addr)
2022 {
2023 struct device *dev = ice_pf_to_dev(vf->pf);
2024 u8 *mac_addr = vc_ether_addr->addr;
2025 int status;
2026
2027 if (!ice_can_vf_change_mac(vf) &&
2028 ether_addr_equal(vf->dev_lan_addr, mac_addr))
2029 return 0;
2030
2031 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2032 if (status == -ENOENT) {
2033 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2034 vf->vf_id);
2035 return -ENOENT;
2036 } else if (status) {
2037 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2038 mac_addr, vf->vf_id, status);
2039 return -EIO;
2040 }
2041
2042 ice_vfhw_mac_del(vf, vc_ether_addr);
2043
2044 vf->num_mac--;
2045
2046 return 0;
2047 }
2048
2049 /**
2050 * ice_vc_handle_mac_addr_msg
2051 * @vf: pointer to the VF info
2052 * @msg: pointer to the msg buffer
2053 * @set: true if MAC filters are being set, false otherwise
2054 *
2055 * add guest MAC address filter
2056 */
2057 static int
ice_vc_handle_mac_addr_msg(struct ice_vf * vf,u8 * msg,bool set)2058 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2059 {
2060 int (*ice_vc_cfg_mac)
2061 (struct ice_vf *vf, struct ice_vsi *vsi,
2062 struct virtchnl_ether_addr *virtchnl_ether_addr);
2063 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2064 struct virtchnl_ether_addr_list *al =
2065 (struct virtchnl_ether_addr_list *)msg;
2066 struct ice_pf *pf = vf->pf;
2067 enum virtchnl_ops vc_op;
2068 struct ice_vsi *vsi;
2069 int i;
2070
2071 if (set) {
2072 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2073 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2074 } else {
2075 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2076 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2077 }
2078
2079 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2080 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2081 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2082 goto handle_mac_exit;
2083 }
2084
2085 /* If this VF is not privileged, then we can't add more than a
2086 * limited number of addresses. Check to make sure that the
2087 * additions do not push us over the limit.
2088 */
2089 if (set && !ice_is_vf_trusted(vf) &&
2090 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2091 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2092 vf->vf_id);
2093 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2094 goto handle_mac_exit;
2095 }
2096
2097 vsi = ice_get_vf_vsi(vf);
2098 if (!vsi) {
2099 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2100 goto handle_mac_exit;
2101 }
2102
2103 for (i = 0; i < al->num_elements; i++) {
2104 u8 *mac_addr = al->list[i].addr;
2105 int result;
2106
2107 if (is_broadcast_ether_addr(mac_addr) ||
2108 is_zero_ether_addr(mac_addr))
2109 continue;
2110
2111 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2112 if (result == -EEXIST || result == -ENOENT) {
2113 continue;
2114 } else if (result) {
2115 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2116 goto handle_mac_exit;
2117 }
2118 }
2119
2120 handle_mac_exit:
2121 /* send the response to the VF */
2122 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2123 }
2124
2125 /**
2126 * ice_vc_add_mac_addr_msg
2127 * @vf: pointer to the VF info
2128 * @msg: pointer to the msg buffer
2129 *
2130 * add guest MAC address filter
2131 */
ice_vc_add_mac_addr_msg(struct ice_vf * vf,u8 * msg)2132 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2133 {
2134 return ice_vc_handle_mac_addr_msg(vf, msg, true);
2135 }
2136
2137 /**
2138 * ice_vc_del_mac_addr_msg
2139 * @vf: pointer to the VF info
2140 * @msg: pointer to the msg buffer
2141 *
2142 * remove guest MAC address filter
2143 */
ice_vc_del_mac_addr_msg(struct ice_vf * vf,u8 * msg)2144 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2145 {
2146 return ice_vc_handle_mac_addr_msg(vf, msg, false);
2147 }
2148
2149 /**
2150 * ice_vc_request_qs_msg
2151 * @vf: pointer to the VF info
2152 * @msg: pointer to the msg buffer
2153 *
2154 * VFs get a default number of queues but can use this message to request a
2155 * different number. If the request is successful, PF will reset the VF and
2156 * return 0. If unsuccessful, PF will send message informing VF of number of
2157 * available queue pairs via virtchnl message response to VF.
2158 */
ice_vc_request_qs_msg(struct ice_vf * vf,u8 * msg)2159 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2160 {
2161 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2162 struct virtchnl_vf_res_request *vfres =
2163 (struct virtchnl_vf_res_request *)msg;
2164 u16 req_queues = vfres->num_queue_pairs;
2165 struct ice_pf *pf = vf->pf;
2166 u16 max_allowed_vf_queues;
2167 u16 tx_rx_queue_left;
2168 struct device *dev;
2169 u16 cur_queues;
2170
2171 dev = ice_pf_to_dev(pf);
2172 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2173 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2174 goto error_param;
2175 }
2176
2177 cur_queues = vf->num_vf_qs;
2178 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2179 ice_get_avail_rxq_count(pf));
2180 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2181 if (!req_queues) {
2182 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2183 vf->vf_id);
2184 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2185 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2186 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2187 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2188 } else if (req_queues > cur_queues &&
2189 req_queues - cur_queues > tx_rx_queue_left) {
2190 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2191 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2192 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2193 ICE_MAX_RSS_QS_PER_VF);
2194 } else {
2195 /* request is successful, then reset VF */
2196 vf->num_req_qs = req_queues;
2197 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2198 dev_info(dev, "VF %d granted request of %u queues.\n",
2199 vf->vf_id, req_queues);
2200 return 0;
2201 }
2202
2203 error_param:
2204 /* send the response to the VF */
2205 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2206 v_ret, (u8 *)vfres, sizeof(*vfres));
2207 }
2208
2209 /**
2210 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2211 * @caps: VF driver negotiated capabilities
2212 *
2213 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2214 */
ice_vf_vlan_offload_ena(u32 caps)2215 static bool ice_vf_vlan_offload_ena(u32 caps)
2216 {
2217 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2218 }
2219
2220 /**
2221 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2222 * @vf: VF used to determine if VLAN promiscuous config is allowed
2223 */
ice_is_vlan_promisc_allowed(struct ice_vf * vf)2224 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2225 {
2226 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2227 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2228 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2229 return true;
2230
2231 return false;
2232 }
2233
2234 /**
2235 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2236 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2237 * @vlan: VLAN used to enable VLAN promiscuous
2238 *
2239 * This function should only be called if VLAN promiscuous mode is allowed,
2240 * which can be determined via ice_is_vlan_promisc_allowed().
2241 */
ice_vf_ena_vlan_promisc(struct ice_vsi * vsi,struct ice_vlan * vlan)2242 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2243 {
2244 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2245 int status;
2246
2247 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2248 vlan->vid);
2249 if (status && status != -EEXIST)
2250 return status;
2251
2252 return 0;
2253 }
2254
2255 /**
2256 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2257 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2258 * @vlan: VLAN used to disable VLAN promiscuous
2259 *
2260 * This function should only be called if VLAN promiscuous mode is allowed,
2261 * which can be determined via ice_is_vlan_promisc_allowed().
2262 */
ice_vf_dis_vlan_promisc(struct ice_vsi * vsi,struct ice_vlan * vlan)2263 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2264 {
2265 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2266 int status;
2267
2268 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2269 vlan->vid);
2270 if (status && status != -ENOENT)
2271 return status;
2272
2273 return 0;
2274 }
2275
2276 /**
2277 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2278 * @vf: VF to check against
2279 * @vsi: VF's VSI
2280 *
2281 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2282 * wants to, so return false.
2283 *
2284 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2285 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2286 */
ice_vf_has_max_vlans(struct ice_vf * vf,struct ice_vsi * vsi)2287 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2288 {
2289 if (ice_is_vf_trusted(vf))
2290 return false;
2291
2292 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
2293 return ((ice_vsi_num_non_zero_vlans(vsi) +
2294 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2295 }
2296
2297 /**
2298 * ice_vc_process_vlan_msg
2299 * @vf: pointer to the VF info
2300 * @msg: pointer to the msg buffer
2301 * @add_v: Add VLAN if true, otherwise delete VLAN
2302 *
2303 * Process virtchnl op to add or remove programmed guest VLAN ID
2304 */
ice_vc_process_vlan_msg(struct ice_vf * vf,u8 * msg,bool add_v)2305 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2306 {
2307 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2308 struct virtchnl_vlan_filter_list *vfl =
2309 (struct virtchnl_vlan_filter_list *)msg;
2310 struct ice_pf *pf = vf->pf;
2311 bool vlan_promisc = false;
2312 struct ice_vsi *vsi;
2313 struct device *dev;
2314 int status = 0;
2315 int i;
2316
2317 dev = ice_pf_to_dev(pf);
2318 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2319 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2320 goto error_param;
2321 }
2322
2323 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2324 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2325 goto error_param;
2326 }
2327
2328 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2329 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2330 goto error_param;
2331 }
2332
2333 for (i = 0; i < vfl->num_elements; i++) {
2334 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2335 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2336 dev_err(dev, "invalid VF VLAN id %d\n",
2337 vfl->vlan_id[i]);
2338 goto error_param;
2339 }
2340 }
2341
2342 vsi = ice_get_vf_vsi(vf);
2343 if (!vsi) {
2344 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2345 goto error_param;
2346 }
2347
2348 if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2349 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2350 vf->vf_id);
2351 /* There is no need to let VF know about being not trusted,
2352 * so we can just return success message here
2353 */
2354 goto error_param;
2355 }
2356
2357 /* in DVM a VF can add/delete inner VLAN filters when
2358 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2359 */
2360 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2361 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2362 goto error_param;
2363 }
2364
2365 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2366 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2367 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2368 */
2369 vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2370 !ice_is_dvm_ena(&pf->hw) &&
2371 !ice_vf_is_port_vlan_ena(vf);
2372
2373 if (add_v) {
2374 for (i = 0; i < vfl->num_elements; i++) {
2375 u16 vid = vfl->vlan_id[i];
2376 struct ice_vlan vlan;
2377
2378 if (ice_vf_has_max_vlans(vf, vsi)) {
2379 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2380 vf->vf_id);
2381 /* There is no need to let VF know about being
2382 * not trusted, so we can just return success
2383 * message here as well.
2384 */
2385 goto error_param;
2386 }
2387
2388 /* we add VLAN 0 by default for each VF so we can enable
2389 * Tx VLAN anti-spoof without triggering MDD events so
2390 * we don't need to add it again here
2391 */
2392 if (!vid)
2393 continue;
2394
2395 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2396 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2397 if (status) {
2398 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2399 goto error_param;
2400 }
2401
2402 /* Enable VLAN filtering on first non-zero VLAN */
2403 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2404 if (vf->spoofchk) {
2405 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2406 if (status) {
2407 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2408 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2409 vid, status);
2410 goto error_param;
2411 }
2412 }
2413 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2414 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2415 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2416 vid, status);
2417 goto error_param;
2418 }
2419 } else if (vlan_promisc) {
2420 status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2421 if (status) {
2422 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2423 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2424 vid, status);
2425 }
2426 }
2427 }
2428 } else {
2429 /* In case of non_trusted VF, number of VLAN elements passed
2430 * to PF for removal might be greater than number of VLANs
2431 * filter programmed for that VF - So, use actual number of
2432 * VLANS added earlier with add VLAN opcode. In order to avoid
2433 * removing VLAN that doesn't exist, which result to sending
2434 * erroneous failed message back to the VF
2435 */
2436 int num_vf_vlan;
2437
2438 num_vf_vlan = vsi->num_vlan;
2439 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2440 u16 vid = vfl->vlan_id[i];
2441 struct ice_vlan vlan;
2442
2443 /* we add VLAN 0 by default for each VF so we can enable
2444 * Tx VLAN anti-spoof without triggering MDD events so
2445 * we don't want a VIRTCHNL request to remove it
2446 */
2447 if (!vid)
2448 continue;
2449
2450 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2451 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2452 if (status) {
2453 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2454 goto error_param;
2455 }
2456
2457 /* Disable VLAN filtering when only VLAN 0 is left */
2458 if (!ice_vsi_has_non_zero_vlans(vsi)) {
2459 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2460 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2461 }
2462
2463 if (vlan_promisc)
2464 ice_vf_dis_vlan_promisc(vsi, &vlan);
2465 }
2466 }
2467
2468 error_param:
2469 /* send the response to the VF */
2470 if (add_v)
2471 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2472 NULL, 0);
2473 else
2474 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2475 NULL, 0);
2476 }
2477
2478 /**
2479 * ice_vc_add_vlan_msg
2480 * @vf: pointer to the VF info
2481 * @msg: pointer to the msg buffer
2482 *
2483 * Add and program guest VLAN ID
2484 */
ice_vc_add_vlan_msg(struct ice_vf * vf,u8 * msg)2485 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2486 {
2487 return ice_vc_process_vlan_msg(vf, msg, true);
2488 }
2489
2490 /**
2491 * ice_vc_remove_vlan_msg
2492 * @vf: pointer to the VF info
2493 * @msg: pointer to the msg buffer
2494 *
2495 * remove programmed guest VLAN ID
2496 */
ice_vc_remove_vlan_msg(struct ice_vf * vf,u8 * msg)2497 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2498 {
2499 return ice_vc_process_vlan_msg(vf, msg, false);
2500 }
2501
2502 /**
2503 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2504 * @vsi: pointer to the VF VSI info
2505 */
ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi * vsi)2506 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2507 {
2508 unsigned int i;
2509
2510 ice_for_each_alloc_rxq(vsi, i)
2511 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2512 return true;
2513
2514 return false;
2515 }
2516
2517 /**
2518 * ice_vc_ena_vlan_stripping
2519 * @vf: pointer to the VF info
2520 *
2521 * Enable VLAN header stripping for a given VF
2522 */
ice_vc_ena_vlan_stripping(struct ice_vf * vf)2523 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2524 {
2525 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2526 struct ice_vsi *vsi;
2527
2528 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2529 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2530 goto error_param;
2531 }
2532
2533 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2534 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2535 goto error_param;
2536 }
2537
2538 vsi = ice_get_vf_vsi(vf);
2539 if (!vsi) {
2540 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2541 goto error_param;
2542 }
2543
2544 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2545 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2546 else
2547 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2548
2549 error_param:
2550 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2551 v_ret, NULL, 0);
2552 }
2553
2554 /**
2555 * ice_vc_dis_vlan_stripping
2556 * @vf: pointer to the VF info
2557 *
2558 * Disable VLAN header stripping for a given VF
2559 */
ice_vc_dis_vlan_stripping(struct ice_vf * vf)2560 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2561 {
2562 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2563 struct ice_vsi *vsi;
2564
2565 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2566 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2567 goto error_param;
2568 }
2569
2570 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2571 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2572 goto error_param;
2573 }
2574
2575 vsi = ice_get_vf_vsi(vf);
2576 if (!vsi) {
2577 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2578 goto error_param;
2579 }
2580
2581 if (vsi->inner_vlan_ops.dis_stripping(vsi))
2582 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2583 else
2584 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2585
2586 error_param:
2587 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2588 v_ret, NULL, 0);
2589 }
2590
2591 /**
2592 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2593 * @vf: pointer to the VF info
2594 */
ice_vc_get_rss_hena(struct ice_vf * vf)2595 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2596 {
2597 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2598 struct virtchnl_rss_hena *vrh = NULL;
2599 int len = 0, ret;
2600
2601 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2602 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2603 goto err;
2604 }
2605
2606 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2607 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2608 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2609 goto err;
2610 }
2611
2612 len = sizeof(struct virtchnl_rss_hena);
2613 vrh = kzalloc(len, GFP_KERNEL);
2614 if (!vrh) {
2615 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2616 len = 0;
2617 goto err;
2618 }
2619
2620 vrh->hena = ICE_DEFAULT_RSS_HENA;
2621 err:
2622 /* send the response back to the VF */
2623 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2624 (u8 *)vrh, len);
2625 kfree(vrh);
2626 return ret;
2627 }
2628
2629 /**
2630 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2631 * @vf: pointer to the VF info
2632 * @msg: pointer to the msg buffer
2633 */
ice_vc_set_rss_hena(struct ice_vf * vf,u8 * msg)2634 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2635 {
2636 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2637 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2638 struct ice_pf *pf = vf->pf;
2639 struct ice_vsi *vsi;
2640 struct device *dev;
2641 int status;
2642
2643 dev = ice_pf_to_dev(pf);
2644
2645 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2646 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2647 goto err;
2648 }
2649
2650 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2651 dev_err(dev, "RSS not supported by PF\n");
2652 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2653 goto err;
2654 }
2655
2656 vsi = ice_get_vf_vsi(vf);
2657 if (!vsi) {
2658 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2659 goto err;
2660 }
2661
2662 /* clear all previously programmed RSS configuration to allow VF drivers
2663 * the ability to customize the RSS configuration and/or completely
2664 * disable RSS
2665 */
2666 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2667 if (status && !vrh->hena) {
2668 /* only report failure to clear the current RSS configuration if
2669 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2670 */
2671 v_ret = ice_err_to_virt_err(status);
2672 goto err;
2673 } else if (status) {
2674 /* allow the VF to update the RSS configuration even on failure
2675 * to clear the current RSS confguration in an attempt to keep
2676 * RSS in a working state
2677 */
2678 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2679 vf->vf_id);
2680 }
2681
2682 if (vrh->hena) {
2683 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
2684 v_ret = ice_err_to_virt_err(status);
2685 }
2686
2687 /* send the response to the VF */
2688 err:
2689 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2690 NULL, 0);
2691 }
2692
2693 /**
2694 * ice_vc_query_rxdid - query RXDID supported by DDP package
2695 * @vf: pointer to VF info
2696 *
2697 * Called from VF to query a bitmap of supported flexible
2698 * descriptor RXDIDs of a DDP package.
2699 */
ice_vc_query_rxdid(struct ice_vf * vf)2700 static int ice_vc_query_rxdid(struct ice_vf *vf)
2701 {
2702 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2703 struct virtchnl_supported_rxdids *rxdid = NULL;
2704 struct ice_hw *hw = &vf->pf->hw;
2705 struct ice_pf *pf = vf->pf;
2706 int len = 0;
2707 int ret, i;
2708 u32 regval;
2709
2710 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2711 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2712 goto err;
2713 }
2714
2715 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2716 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2717 goto err;
2718 }
2719
2720 len = sizeof(struct virtchnl_supported_rxdids);
2721 rxdid = kzalloc(len, GFP_KERNEL);
2722 if (!rxdid) {
2723 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2724 len = 0;
2725 goto err;
2726 }
2727
2728 /* RXDIDs supported by DDP package can be read from the register
2729 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2730 * is not listed in DDP package, add it in the bitmap manually.
2731 * Legacy 16byte descriptor is not supported.
2732 */
2733 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2734
2735 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2736 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2737 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2738 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2739 rxdid->supported_rxdids |= BIT(i);
2740 }
2741
2742 pf->supported_rxdids = rxdid->supported_rxdids;
2743
2744 err:
2745 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2746 v_ret, (u8 *)rxdid, len);
2747 kfree(rxdid);
2748 return ret;
2749 }
2750
2751 /**
2752 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2753 * @vf: VF to enable/disable VLAN stripping for on initialization
2754 *
2755 * Set the default for VLAN stripping based on whether a port VLAN is configured
2756 * and the current VLAN mode of the device.
2757 */
ice_vf_init_vlan_stripping(struct ice_vf * vf)2758 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2759 {
2760 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2761
2762 vf->vlan_strip_ena = 0;
2763
2764 if (!vsi)
2765 return -EINVAL;
2766
2767 /* don't modify stripping if port VLAN is configured in SVM since the
2768 * port VLAN is based on the inner/single VLAN in SVM
2769 */
2770 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2771 return 0;
2772
2773 if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2774 int err;
2775
2776 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2777 if (!err)
2778 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2779 return err;
2780 }
2781
2782 return vsi->inner_vlan_ops.dis_stripping(vsi);
2783 }
2784
ice_vc_get_max_vlan_fltrs(struct ice_vf * vf)2785 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2786 {
2787 if (vf->trusted)
2788 return VLAN_N_VID;
2789 else
2790 return ICE_MAX_VLAN_PER_VF;
2791 }
2792
2793 /**
2794 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2795 * @vf: VF that being checked for
2796 *
2797 * When the device is in double VLAN mode, check whether or not the outer VLAN
2798 * is allowed.
2799 */
ice_vf_outer_vlan_not_allowed(struct ice_vf * vf)2800 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2801 {
2802 if (ice_vf_is_port_vlan_ena(vf))
2803 return true;
2804
2805 return false;
2806 }
2807
2808 /**
2809 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2810 * @vf: VF that capabilities are being set for
2811 * @caps: VLAN capabilities to populate
2812 *
2813 * Determine VLAN capabilities support based on whether a port VLAN is
2814 * configured. If a port VLAN is configured then the VF should use the inner
2815 * filtering/offload capabilities since the port VLAN is using the outer VLAN
2816 * capabilies.
2817 */
2818 static void
ice_vc_set_dvm_caps(struct ice_vf * vf,struct virtchnl_vlan_caps * caps)2819 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2820 {
2821 struct virtchnl_vlan_supported_caps *supported_caps;
2822
2823 if (ice_vf_outer_vlan_not_allowed(vf)) {
2824 /* until support for inner VLAN filtering is added when a port
2825 * VLAN is configured, only support software offloaded inner
2826 * VLANs when a port VLAN is confgured in DVM
2827 */
2828 supported_caps = &caps->filtering.filtering_support;
2829 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2830
2831 supported_caps = &caps->offloads.stripping_support;
2832 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2833 VIRTCHNL_VLAN_TOGGLE |
2834 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2835 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2836
2837 supported_caps = &caps->offloads.insertion_support;
2838 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2839 VIRTCHNL_VLAN_TOGGLE |
2840 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2841 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2842
2843 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2844 caps->offloads.ethertype_match =
2845 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2846 } else {
2847 supported_caps = &caps->filtering.filtering_support;
2848 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2849 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2850 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2851 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2852 VIRTCHNL_VLAN_ETHERTYPE_AND;
2853 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2854 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2855 VIRTCHNL_VLAN_ETHERTYPE_9100;
2856
2857 supported_caps = &caps->offloads.stripping_support;
2858 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2859 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2860 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2861 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2862 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2863 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2864 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2865 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2866 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2867
2868 supported_caps = &caps->offloads.insertion_support;
2869 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2870 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2871 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2872 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2873 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2874 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2875 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2876 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2877 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2878
2879 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2880
2881 caps->offloads.ethertype_match =
2882 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2883 }
2884
2885 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2886 }
2887
2888 /**
2889 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2890 * @vf: VF that capabilities are being set for
2891 * @caps: VLAN capabilities to populate
2892 *
2893 * Determine VLAN capabilities support based on whether a port VLAN is
2894 * configured. If a port VLAN is configured then the VF does not have any VLAN
2895 * filtering or offload capabilities since the port VLAN is using the inner VLAN
2896 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2897 * VLAN fitlering and offload capabilities.
2898 */
2899 static void
ice_vc_set_svm_caps(struct ice_vf * vf,struct virtchnl_vlan_caps * caps)2900 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2901 {
2902 struct virtchnl_vlan_supported_caps *supported_caps;
2903
2904 if (ice_vf_is_port_vlan_ena(vf)) {
2905 supported_caps = &caps->filtering.filtering_support;
2906 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2907 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2908
2909 supported_caps = &caps->offloads.stripping_support;
2910 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2911 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2912
2913 supported_caps = &caps->offloads.insertion_support;
2914 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2915 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2916
2917 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2918 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2919 caps->filtering.max_filters = 0;
2920 } else {
2921 supported_caps = &caps->filtering.filtering_support;
2922 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2923 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2924 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2925
2926 supported_caps = &caps->offloads.stripping_support;
2927 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2928 VIRTCHNL_VLAN_TOGGLE |
2929 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2930 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2931
2932 supported_caps = &caps->offloads.insertion_support;
2933 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2934 VIRTCHNL_VLAN_TOGGLE |
2935 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2936 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2937
2938 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2939 caps->offloads.ethertype_match =
2940 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2941 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2942 }
2943 }
2944
2945 /**
2946 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2947 * @vf: VF to determine VLAN capabilities for
2948 *
2949 * This will only be called if the VF and PF successfully negotiated
2950 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2951 *
2952 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2953 * is configured or not.
2954 */
ice_vc_get_offload_vlan_v2_caps(struct ice_vf * vf)2955 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2956 {
2957 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2958 struct virtchnl_vlan_caps *caps = NULL;
2959 int err, len = 0;
2960
2961 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2962 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2963 goto out;
2964 }
2965
2966 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2967 if (!caps) {
2968 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2969 goto out;
2970 }
2971 len = sizeof(*caps);
2972
2973 if (ice_is_dvm_ena(&vf->pf->hw))
2974 ice_vc_set_dvm_caps(vf, caps);
2975 else
2976 ice_vc_set_svm_caps(vf, caps);
2977
2978 /* store negotiated caps to prevent invalid VF messages */
2979 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2980
2981 out:
2982 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2983 v_ret, (u8 *)caps, len);
2984 kfree(caps);
2985 return err;
2986 }
2987
2988 /**
2989 * ice_vc_validate_vlan_tpid - validate VLAN TPID
2990 * @filtering_caps: negotiated/supported VLAN filtering capabilities
2991 * @tpid: VLAN TPID used for validation
2992 *
2993 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2994 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2995 */
ice_vc_validate_vlan_tpid(u16 filtering_caps,u16 tpid)2996 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2997 {
2998 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2999
3000 switch (tpid) {
3001 case ETH_P_8021Q:
3002 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3003 break;
3004 case ETH_P_8021AD:
3005 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3006 break;
3007 case ETH_P_QINQ1:
3008 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3009 break;
3010 }
3011
3012 if (!(filtering_caps & vlan_ethertype))
3013 return false;
3014
3015 return true;
3016 }
3017
3018 /**
3019 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3020 * @vc_vlan: virtchnl_vlan to validate
3021 *
3022 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3023 * false. Otherwise return true.
3024 */
ice_vc_is_valid_vlan(struct virtchnl_vlan * vc_vlan)3025 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3026 {
3027 if (!vc_vlan->tci || !vc_vlan->tpid)
3028 return false;
3029
3030 return true;
3031 }
3032
3033 /**
3034 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3035 * @vfc: negotiated/supported VLAN filtering capabilities
3036 * @vfl: VLAN filter list from VF to validate
3037 *
3038 * Validate all of the filters in the VLAN filter list from the VF. If any of
3039 * the checks fail then return false. Otherwise return true.
3040 */
3041 static bool
ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps * vfc,struct virtchnl_vlan_filter_list_v2 * vfl)3042 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3043 struct virtchnl_vlan_filter_list_v2 *vfl)
3044 {
3045 u16 i;
3046
3047 if (!vfl->num_elements)
3048 return false;
3049
3050 for (i = 0; i < vfl->num_elements; i++) {
3051 struct virtchnl_vlan_supported_caps *filtering_support =
3052 &vfc->filtering_support;
3053 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3054 struct virtchnl_vlan *outer = &vlan_fltr->outer;
3055 struct virtchnl_vlan *inner = &vlan_fltr->inner;
3056
3057 if ((ice_vc_is_valid_vlan(outer) &&
3058 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3059 (ice_vc_is_valid_vlan(inner) &&
3060 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3061 return false;
3062
3063 if ((outer->tci_mask &&
3064 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3065 (inner->tci_mask &&
3066 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3067 return false;
3068
3069 if (((outer->tci & VLAN_PRIO_MASK) &&
3070 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3071 ((inner->tci & VLAN_PRIO_MASK) &&
3072 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3073 return false;
3074
3075 if ((ice_vc_is_valid_vlan(outer) &&
3076 !ice_vc_validate_vlan_tpid(filtering_support->outer,
3077 outer->tpid)) ||
3078 (ice_vc_is_valid_vlan(inner) &&
3079 !ice_vc_validate_vlan_tpid(filtering_support->inner,
3080 inner->tpid)))
3081 return false;
3082 }
3083
3084 return true;
3085 }
3086
3087 /**
3088 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3089 * @vc_vlan: struct virtchnl_vlan to transform
3090 */
ice_vc_to_vlan(struct virtchnl_vlan * vc_vlan)3091 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3092 {
3093 struct ice_vlan vlan = { 0 };
3094
3095 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3096 vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3097 vlan.tpid = vc_vlan->tpid;
3098
3099 return vlan;
3100 }
3101
3102 /**
3103 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3104 * @vsi: VF's VSI used to perform the action
3105 * @vlan_action: function to perform the action with (i.e. add/del)
3106 * @vlan: VLAN filter to perform the action with
3107 */
3108 static int
ice_vc_vlan_action(struct ice_vsi * vsi,int (* vlan_action)(struct ice_vsi *,struct ice_vlan *),struct ice_vlan * vlan)3109 ice_vc_vlan_action(struct ice_vsi *vsi,
3110 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3111 struct ice_vlan *vlan)
3112 {
3113 int err;
3114
3115 err = vlan_action(vsi, vlan);
3116 if (err)
3117 return err;
3118
3119 return 0;
3120 }
3121
3122 /**
3123 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3124 * @vf: VF used to delete the VLAN(s)
3125 * @vsi: VF's VSI used to delete the VLAN(s)
3126 * @vfl: virthchnl filter list used to delete the filters
3127 */
3128 static int
ice_vc_del_vlans(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vlan_filter_list_v2 * vfl)3129 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3130 struct virtchnl_vlan_filter_list_v2 *vfl)
3131 {
3132 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3133 int err;
3134 u16 i;
3135
3136 for (i = 0; i < vfl->num_elements; i++) {
3137 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3138 struct virtchnl_vlan *vc_vlan;
3139
3140 vc_vlan = &vlan_fltr->outer;
3141 if (ice_vc_is_valid_vlan(vc_vlan)) {
3142 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3143
3144 err = ice_vc_vlan_action(vsi,
3145 vsi->outer_vlan_ops.del_vlan,
3146 &vlan);
3147 if (err)
3148 return err;
3149
3150 if (vlan_promisc)
3151 ice_vf_dis_vlan_promisc(vsi, &vlan);
3152
3153 /* Disable VLAN filtering when only VLAN 0 is left */
3154 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3155 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3156 if (err)
3157 return err;
3158 }
3159 }
3160
3161 vc_vlan = &vlan_fltr->inner;
3162 if (ice_vc_is_valid_vlan(vc_vlan)) {
3163 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3164
3165 err = ice_vc_vlan_action(vsi,
3166 vsi->inner_vlan_ops.del_vlan,
3167 &vlan);
3168 if (err)
3169 return err;
3170
3171 /* no support for VLAN promiscuous on inner VLAN unless
3172 * we are in Single VLAN Mode (SVM)
3173 */
3174 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3175 if (vlan_promisc)
3176 ice_vf_dis_vlan_promisc(vsi, &vlan);
3177
3178 /* Disable VLAN filtering when only VLAN 0 is left */
3179 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3180 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3181 if (err)
3182 return err;
3183 }
3184 }
3185 }
3186 }
3187
3188 return 0;
3189 }
3190
3191 /**
3192 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3193 * @vf: VF the message was received from
3194 * @msg: message received from the VF
3195 */
ice_vc_remove_vlan_v2_msg(struct ice_vf * vf,u8 * msg)3196 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3197 {
3198 struct virtchnl_vlan_filter_list_v2 *vfl =
3199 (struct virtchnl_vlan_filter_list_v2 *)msg;
3200 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3201 struct ice_vsi *vsi;
3202
3203 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3204 vfl)) {
3205 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3206 goto out;
3207 }
3208
3209 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3210 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3211 goto out;
3212 }
3213
3214 vsi = ice_get_vf_vsi(vf);
3215 if (!vsi) {
3216 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3217 goto out;
3218 }
3219
3220 if (ice_vc_del_vlans(vf, vsi, vfl))
3221 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3222
3223 out:
3224 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3225 0);
3226 }
3227
3228 /**
3229 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3230 * @vf: VF used to add the VLAN(s)
3231 * @vsi: VF's VSI used to add the VLAN(s)
3232 * @vfl: virthchnl filter list used to add the filters
3233 */
3234 static int
ice_vc_add_vlans(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vlan_filter_list_v2 * vfl)3235 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3236 struct virtchnl_vlan_filter_list_v2 *vfl)
3237 {
3238 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3239 int err;
3240 u16 i;
3241
3242 for (i = 0; i < vfl->num_elements; i++) {
3243 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3244 struct virtchnl_vlan *vc_vlan;
3245
3246 vc_vlan = &vlan_fltr->outer;
3247 if (ice_vc_is_valid_vlan(vc_vlan)) {
3248 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3249
3250 err = ice_vc_vlan_action(vsi,
3251 vsi->outer_vlan_ops.add_vlan,
3252 &vlan);
3253 if (err)
3254 return err;
3255
3256 if (vlan_promisc) {
3257 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3258 if (err)
3259 return err;
3260 }
3261
3262 /* Enable VLAN filtering on first non-zero VLAN */
3263 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3264 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3265 if (err)
3266 return err;
3267 }
3268 }
3269
3270 vc_vlan = &vlan_fltr->inner;
3271 if (ice_vc_is_valid_vlan(vc_vlan)) {
3272 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3273
3274 err = ice_vc_vlan_action(vsi,
3275 vsi->inner_vlan_ops.add_vlan,
3276 &vlan);
3277 if (err)
3278 return err;
3279
3280 /* no support for VLAN promiscuous on inner VLAN unless
3281 * we are in Single VLAN Mode (SVM)
3282 */
3283 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3284 if (vlan_promisc) {
3285 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3286 if (err)
3287 return err;
3288 }
3289
3290 /* Enable VLAN filtering on first non-zero VLAN */
3291 if (vf->spoofchk && vlan.vid) {
3292 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3293 if (err)
3294 return err;
3295 }
3296 }
3297 }
3298 }
3299
3300 return 0;
3301 }
3302
3303 /**
3304 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3305 * @vsi: VF VSI used to get number of existing VLAN filters
3306 * @vfc: negotiated/supported VLAN filtering capabilities
3307 * @vfl: VLAN filter list from VF to validate
3308 *
3309 * Validate all of the filters in the VLAN filter list from the VF during the
3310 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3311 * Otherwise return true.
3312 */
3313 static bool
ice_vc_validate_add_vlan_filter_list(struct ice_vsi * vsi,struct virtchnl_vlan_filtering_caps * vfc,struct virtchnl_vlan_filter_list_v2 * vfl)3314 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3315 struct virtchnl_vlan_filtering_caps *vfc,
3316 struct virtchnl_vlan_filter_list_v2 *vfl)
3317 {
3318 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3319 vfl->num_elements;
3320
3321 if (num_requested_filters > vfc->max_filters)
3322 return false;
3323
3324 return ice_vc_validate_vlan_filter_list(vfc, vfl);
3325 }
3326
3327 /**
3328 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3329 * @vf: VF the message was received from
3330 * @msg: message received from the VF
3331 */
ice_vc_add_vlan_v2_msg(struct ice_vf * vf,u8 * msg)3332 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3333 {
3334 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3335 struct virtchnl_vlan_filter_list_v2 *vfl =
3336 (struct virtchnl_vlan_filter_list_v2 *)msg;
3337 struct ice_vsi *vsi;
3338
3339 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3340 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3341 goto out;
3342 }
3343
3344 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3345 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3346 goto out;
3347 }
3348
3349 vsi = ice_get_vf_vsi(vf);
3350 if (!vsi) {
3351 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3352 goto out;
3353 }
3354
3355 if (!ice_vc_validate_add_vlan_filter_list(vsi,
3356 &vf->vlan_v2_caps.filtering,
3357 vfl)) {
3358 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3359 goto out;
3360 }
3361
3362 if (ice_vc_add_vlans(vf, vsi, vfl))
3363 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3364
3365 out:
3366 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3367 0);
3368 }
3369
3370 /**
3371 * ice_vc_valid_vlan_setting - validate VLAN setting
3372 * @negotiated_settings: negotiated VLAN settings during VF init
3373 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3374 */
3375 static bool
ice_vc_valid_vlan_setting(u32 negotiated_settings,u32 ethertype_setting)3376 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3377 {
3378 if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3379 return false;
3380
3381 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3382 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3383 */
3384 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3385 hweight32(ethertype_setting) > 1)
3386 return false;
3387
3388 /* ability to modify the VLAN setting was not negotiated */
3389 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3390 return false;
3391
3392 return true;
3393 }
3394
3395 /**
3396 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3397 * @caps: negotiated VLAN settings during VF init
3398 * @msg: message to validate
3399 *
3400 * Used to validate any VLAN virtchnl message sent as a
3401 * virtchnl_vlan_setting structure. Validates the message against the
3402 * negotiated/supported caps during VF driver init.
3403 */
3404 static bool
ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps * caps,struct virtchnl_vlan_setting * msg)3405 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3406 struct virtchnl_vlan_setting *msg)
3407 {
3408 if ((!msg->outer_ethertype_setting &&
3409 !msg->inner_ethertype_setting) ||
3410 (!caps->outer && !caps->inner))
3411 return false;
3412
3413 if (msg->outer_ethertype_setting &&
3414 !ice_vc_valid_vlan_setting(caps->outer,
3415 msg->outer_ethertype_setting))
3416 return false;
3417
3418 if (msg->inner_ethertype_setting &&
3419 !ice_vc_valid_vlan_setting(caps->inner,
3420 msg->inner_ethertype_setting))
3421 return false;
3422
3423 return true;
3424 }
3425
3426 /**
3427 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3428 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3429 * @tpid: VLAN TPID to populate
3430 */
ice_vc_get_tpid(u32 ethertype_setting,u16 * tpid)3431 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3432 {
3433 switch (ethertype_setting) {
3434 case VIRTCHNL_VLAN_ETHERTYPE_8100:
3435 *tpid = ETH_P_8021Q;
3436 break;
3437 case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3438 *tpid = ETH_P_8021AD;
3439 break;
3440 case VIRTCHNL_VLAN_ETHERTYPE_9100:
3441 *tpid = ETH_P_QINQ1;
3442 break;
3443 default:
3444 *tpid = 0;
3445 return -EINVAL;
3446 }
3447
3448 return 0;
3449 }
3450
3451 /**
3452 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3453 * @vsi: VF's VSI used to enable the VLAN offload
3454 * @ena_offload: function used to enable the VLAN offload
3455 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3456 */
3457 static int
ice_vc_ena_vlan_offload(struct ice_vsi * vsi,int (* ena_offload)(struct ice_vsi * vsi,u16 tpid),u32 ethertype_setting)3458 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3459 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3460 u32 ethertype_setting)
3461 {
3462 u16 tpid;
3463 int err;
3464
3465 err = ice_vc_get_tpid(ethertype_setting, &tpid);
3466 if (err)
3467 return err;
3468
3469 err = ena_offload(vsi, tpid);
3470 if (err)
3471 return err;
3472
3473 return 0;
3474 }
3475
3476 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
3477 #define ICE_L2TSEL_BIT_OFFSET 23
3478 enum ice_l2tsel {
3479 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3480 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3481 };
3482
3483 /**
3484 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3485 * @vsi: VSI used to update l2tsel on
3486 * @l2tsel: l2tsel setting requested
3487 *
3488 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3489 * This will modify which descriptor field the first offloaded VLAN will be
3490 * stripped into.
3491 */
ice_vsi_update_l2tsel(struct ice_vsi * vsi,enum ice_l2tsel l2tsel)3492 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3493 {
3494 struct ice_hw *hw = &vsi->back->hw;
3495 u32 l2tsel_bit;
3496 int i;
3497
3498 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3499 l2tsel_bit = 0;
3500 else
3501 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3502
3503 for (i = 0; i < vsi->alloc_rxq; i++) {
3504 u16 pfq = vsi->rxq_map[i];
3505 u32 qrx_context_offset;
3506 u32 regval;
3507
3508 qrx_context_offset =
3509 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3510
3511 regval = rd32(hw, qrx_context_offset);
3512 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3513 regval |= l2tsel_bit;
3514 wr32(hw, qrx_context_offset, regval);
3515 }
3516 }
3517
3518 /**
3519 * ice_vc_ena_vlan_stripping_v2_msg
3520 * @vf: VF the message was received from
3521 * @msg: message received from the VF
3522 *
3523 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3524 */
ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf * vf,u8 * msg)3525 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3526 {
3527 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3528 struct virtchnl_vlan_supported_caps *stripping_support;
3529 struct virtchnl_vlan_setting *strip_msg =
3530 (struct virtchnl_vlan_setting *)msg;
3531 u32 ethertype_setting;
3532 struct ice_vsi *vsi;
3533
3534 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3535 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3536 goto out;
3537 }
3538
3539 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3540 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3541 goto out;
3542 }
3543
3544 vsi = ice_get_vf_vsi(vf);
3545 if (!vsi) {
3546 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3547 goto out;
3548 }
3549
3550 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3551 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3552 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3553 goto out;
3554 }
3555
3556 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3557 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3558 goto out;
3559 }
3560
3561 ethertype_setting = strip_msg->outer_ethertype_setting;
3562 if (ethertype_setting) {
3563 if (ice_vc_ena_vlan_offload(vsi,
3564 vsi->outer_vlan_ops.ena_stripping,
3565 ethertype_setting)) {
3566 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3567 goto out;
3568 } else {
3569 enum ice_l2tsel l2tsel =
3570 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3571
3572 /* PF tells the VF that the outer VLAN tag is always
3573 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3574 * inner is always extracted to
3575 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3576 * support outer stripping so the first tag always ends
3577 * up in L2TAG2_2ND and the second/inner tag, if
3578 * enabled, is extracted in L2TAG1.
3579 */
3580 ice_vsi_update_l2tsel(vsi, l2tsel);
3581
3582 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3583 }
3584 }
3585
3586 ethertype_setting = strip_msg->inner_ethertype_setting;
3587 if (ethertype_setting &&
3588 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3589 ethertype_setting)) {
3590 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3591 goto out;
3592 }
3593
3594 if (ethertype_setting)
3595 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3596
3597 out:
3598 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3599 v_ret, NULL, 0);
3600 }
3601
3602 /**
3603 * ice_vc_dis_vlan_stripping_v2_msg
3604 * @vf: VF the message was received from
3605 * @msg: message received from the VF
3606 *
3607 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3608 */
ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf * vf,u8 * msg)3609 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3610 {
3611 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3612 struct virtchnl_vlan_supported_caps *stripping_support;
3613 struct virtchnl_vlan_setting *strip_msg =
3614 (struct virtchnl_vlan_setting *)msg;
3615 u32 ethertype_setting;
3616 struct ice_vsi *vsi;
3617
3618 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3619 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3620 goto out;
3621 }
3622
3623 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3624 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3625 goto out;
3626 }
3627
3628 vsi = ice_get_vf_vsi(vf);
3629 if (!vsi) {
3630 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3631 goto out;
3632 }
3633
3634 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3635 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3636 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3637 goto out;
3638 }
3639
3640 ethertype_setting = strip_msg->outer_ethertype_setting;
3641 if (ethertype_setting) {
3642 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3643 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3644 goto out;
3645 } else {
3646 enum ice_l2tsel l2tsel =
3647 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3648
3649 /* PF tells the VF that the outer VLAN tag is always
3650 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3651 * inner is always extracted to
3652 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3653 * support inner stripping while outer stripping is
3654 * disabled so that the first and only tag is extracted
3655 * in L2TAG1.
3656 */
3657 ice_vsi_update_l2tsel(vsi, l2tsel);
3658
3659 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3660 }
3661 }
3662
3663 ethertype_setting = strip_msg->inner_ethertype_setting;
3664 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3665 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3666 goto out;
3667 }
3668
3669 if (ethertype_setting)
3670 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3671
3672 out:
3673 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3674 v_ret, NULL, 0);
3675 }
3676
3677 /**
3678 * ice_vc_ena_vlan_insertion_v2_msg
3679 * @vf: VF the message was received from
3680 * @msg: message received from the VF
3681 *
3682 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3683 */
ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf * vf,u8 * msg)3684 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3685 {
3686 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3687 struct virtchnl_vlan_supported_caps *insertion_support;
3688 struct virtchnl_vlan_setting *insertion_msg =
3689 (struct virtchnl_vlan_setting *)msg;
3690 u32 ethertype_setting;
3691 struct ice_vsi *vsi;
3692
3693 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3694 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3695 goto out;
3696 }
3697
3698 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3699 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3700 goto out;
3701 }
3702
3703 vsi = ice_get_vf_vsi(vf);
3704 if (!vsi) {
3705 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3706 goto out;
3707 }
3708
3709 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3710 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3711 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3712 goto out;
3713 }
3714
3715 ethertype_setting = insertion_msg->outer_ethertype_setting;
3716 if (ethertype_setting &&
3717 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3718 ethertype_setting)) {
3719 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3720 goto out;
3721 }
3722
3723 ethertype_setting = insertion_msg->inner_ethertype_setting;
3724 if (ethertype_setting &&
3725 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3726 ethertype_setting)) {
3727 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3728 goto out;
3729 }
3730
3731 out:
3732 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3733 v_ret, NULL, 0);
3734 }
3735
3736 /**
3737 * ice_vc_dis_vlan_insertion_v2_msg
3738 * @vf: VF the message was received from
3739 * @msg: message received from the VF
3740 *
3741 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3742 */
ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf * vf,u8 * msg)3743 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3744 {
3745 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3746 struct virtchnl_vlan_supported_caps *insertion_support;
3747 struct virtchnl_vlan_setting *insertion_msg =
3748 (struct virtchnl_vlan_setting *)msg;
3749 u32 ethertype_setting;
3750 struct ice_vsi *vsi;
3751
3752 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3753 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3754 goto out;
3755 }
3756
3757 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3758 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3759 goto out;
3760 }
3761
3762 vsi = ice_get_vf_vsi(vf);
3763 if (!vsi) {
3764 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3765 goto out;
3766 }
3767
3768 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3769 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3770 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3771 goto out;
3772 }
3773
3774 ethertype_setting = insertion_msg->outer_ethertype_setting;
3775 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3776 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3777 goto out;
3778 }
3779
3780 ethertype_setting = insertion_msg->inner_ethertype_setting;
3781 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3782 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3783 goto out;
3784 }
3785
3786 out:
3787 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3788 v_ret, NULL, 0);
3789 }
3790
3791 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3792 .get_ver_msg = ice_vc_get_ver_msg,
3793 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3794 .reset_vf = ice_vc_reset_vf_msg,
3795 .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3796 .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3797 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3798 .ena_qs_msg = ice_vc_ena_qs_msg,
3799 .dis_qs_msg = ice_vc_dis_qs_msg,
3800 .request_qs_msg = ice_vc_request_qs_msg,
3801 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3802 .config_rss_key = ice_vc_config_rss_key,
3803 .config_rss_lut = ice_vc_config_rss_lut,
3804 .config_rss_hfunc = ice_vc_config_rss_hfunc,
3805 .get_stats_msg = ice_vc_get_stats_msg,
3806 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3807 .add_vlan_msg = ice_vc_add_vlan_msg,
3808 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3809 .query_rxdid = ice_vc_query_rxdid,
3810 .get_rss_hena = ice_vc_get_rss_hena,
3811 .set_rss_hena_msg = ice_vc_set_rss_hena,
3812 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3813 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3814 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3815 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3816 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3817 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3818 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3819 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3820 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3821 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3822 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3823 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3824 };
3825
3826 /**
3827 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3828 * @vf: the VF to switch ops
3829 */
ice_virtchnl_set_dflt_ops(struct ice_vf * vf)3830 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3831 {
3832 vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3833 }
3834
3835 /**
3836 * ice_vc_repr_add_mac
3837 * @vf: pointer to VF
3838 * @msg: virtchannel message
3839 *
3840 * When port representors are created, we do not add MAC rule
3841 * to firmware, we store it so that PF could report same
3842 * MAC as VF.
3843 */
ice_vc_repr_add_mac(struct ice_vf * vf,u8 * msg)3844 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3845 {
3846 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3847 struct virtchnl_ether_addr_list *al =
3848 (struct virtchnl_ether_addr_list *)msg;
3849 struct ice_vsi *vsi;
3850 struct ice_pf *pf;
3851 int i;
3852
3853 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3854 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3855 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3856 goto handle_mac_exit;
3857 }
3858
3859 pf = vf->pf;
3860
3861 vsi = ice_get_vf_vsi(vf);
3862 if (!vsi) {
3863 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3864 goto handle_mac_exit;
3865 }
3866
3867 for (i = 0; i < al->num_elements; i++) {
3868 u8 *mac_addr = al->list[i].addr;
3869
3870 if (!is_unicast_ether_addr(mac_addr) ||
3871 ether_addr_equal(mac_addr, vf->hw_lan_addr))
3872 continue;
3873
3874 if (vf->pf_set_mac) {
3875 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3876 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3877 goto handle_mac_exit;
3878 }
3879
3880 ice_vfhw_mac_add(vf, &al->list[i]);
3881 vf->num_mac++;
3882 break;
3883 }
3884
3885 handle_mac_exit:
3886 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3887 v_ret, NULL, 0);
3888 }
3889
3890 /**
3891 * ice_vc_repr_del_mac - response with success for deleting MAC
3892 * @vf: pointer to VF
3893 * @msg: virtchannel message
3894 *
3895 * Respond with success to not break normal VF flow.
3896 * For legacy VF driver try to update cached MAC address.
3897 */
3898 static int
ice_vc_repr_del_mac(struct ice_vf __always_unused * vf,u8 __always_unused * msg)3899 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3900 {
3901 struct virtchnl_ether_addr_list *al =
3902 (struct virtchnl_ether_addr_list *)msg;
3903
3904 ice_update_legacy_cached_mac(vf, &al->list[0]);
3905
3906 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3907 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3908 }
3909
3910 static int
ice_vc_repr_cfg_promiscuous_mode(struct ice_vf * vf,u8 __always_unused * msg)3911 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3912 {
3913 dev_dbg(ice_pf_to_dev(vf->pf),
3914 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3915 vf->vf_id);
3916 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3917 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3918 NULL, 0);
3919 }
3920
3921 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3922 .get_ver_msg = ice_vc_get_ver_msg,
3923 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3924 .reset_vf = ice_vc_reset_vf_msg,
3925 .add_mac_addr_msg = ice_vc_repr_add_mac,
3926 .del_mac_addr_msg = ice_vc_repr_del_mac,
3927 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3928 .ena_qs_msg = ice_vc_ena_qs_msg,
3929 .dis_qs_msg = ice_vc_dis_qs_msg,
3930 .request_qs_msg = ice_vc_request_qs_msg,
3931 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3932 .config_rss_key = ice_vc_config_rss_key,
3933 .config_rss_lut = ice_vc_config_rss_lut,
3934 .config_rss_hfunc = ice_vc_config_rss_hfunc,
3935 .get_stats_msg = ice_vc_get_stats_msg,
3936 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3937 .add_vlan_msg = ice_vc_add_vlan_msg,
3938 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3939 .query_rxdid = ice_vc_query_rxdid,
3940 .get_rss_hena = ice_vc_get_rss_hena,
3941 .set_rss_hena_msg = ice_vc_set_rss_hena,
3942 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3943 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3944 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3945 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3946 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3947 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3948 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3949 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3950 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3951 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3952 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3953 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3954 };
3955
3956 /**
3957 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3958 * @vf: the VF to switch ops
3959 */
ice_virtchnl_set_repr_ops(struct ice_vf * vf)3960 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3961 {
3962 vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3963 }
3964
3965 /**
3966 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3967 * @vf: the VF to check
3968 * @mbxdata: data about the state of the mailbox
3969 *
3970 * Detect if a given VF might be malicious and attempting to overflow the PF
3971 * mailbox. If so, log a warning message and ignore this event.
3972 */
3973 static bool
ice_is_malicious_vf(struct ice_vf * vf,struct ice_mbx_data * mbxdata)3974 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3975 {
3976 bool report_malvf = false;
3977 struct device *dev;
3978 struct ice_pf *pf;
3979 int status;
3980
3981 pf = vf->pf;
3982 dev = ice_pf_to_dev(pf);
3983
3984 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3985 return vf->mbx_info.malicious;
3986
3987 /* check to see if we have a newly malicious VF */
3988 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3989 &report_malvf);
3990 if (status)
3991 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3992 vf->vf_id, vf->dev_lan_addr, status);
3993
3994 if (report_malvf) {
3995 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3996 u8 zero_addr[ETH_ALEN] = {};
3997
3998 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3999 vf->dev_lan_addr,
4000 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4001 }
4002
4003 return vf->mbx_info.malicious;
4004 }
4005
4006 /**
4007 * ice_vc_process_vf_msg - Process request from VF
4008 * @pf: pointer to the PF structure
4009 * @event: pointer to the AQ event
4010 * @mbxdata: information used to detect VF attempting mailbox overflow
4011 *
4012 * called from the common asq/arq handler to
4013 * process request from VF
4014 */
ice_vc_process_vf_msg(struct ice_pf * pf,struct ice_rq_event_info * event,struct ice_mbx_data * mbxdata)4015 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4016 struct ice_mbx_data *mbxdata)
4017 {
4018 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4019 s16 vf_id = le16_to_cpu(event->desc.retval);
4020 const struct ice_virtchnl_ops *ops;
4021 u16 msglen = event->msg_len;
4022 u8 *msg = event->msg_buf;
4023 struct ice_vf *vf = NULL;
4024 struct device *dev;
4025 int err = 0;
4026
4027 dev = ice_pf_to_dev(pf);
4028
4029 vf = ice_get_vf_by_id(pf, vf_id);
4030 if (!vf) {
4031 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4032 vf_id, v_opcode, msglen);
4033 return;
4034 }
4035
4036 mutex_lock(&vf->cfg_lock);
4037
4038 /* Check if the VF is trying to overflow the mailbox */
4039 if (ice_is_malicious_vf(vf, mbxdata))
4040 goto finish;
4041
4042 /* Check if VF is disabled. */
4043 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4044 err = -EPERM;
4045 goto error_handler;
4046 }
4047
4048 ops = vf->virtchnl_ops;
4049
4050 /* Perform basic checks on the msg */
4051 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4052 if (err) {
4053 if (err == VIRTCHNL_STATUS_ERR_PARAM)
4054 err = -EPERM;
4055 else
4056 err = -EINVAL;
4057 }
4058
4059 error_handler:
4060 if (err) {
4061 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4062 NULL, 0);
4063 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4064 vf_id, v_opcode, msglen, err);
4065 goto finish;
4066 }
4067
4068 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4069 ice_vc_send_msg_to_vf(vf, v_opcode,
4070 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4071 0);
4072 goto finish;
4073 }
4074
4075 switch (v_opcode) {
4076 case VIRTCHNL_OP_VERSION:
4077 err = ops->get_ver_msg(vf, msg);
4078 break;
4079 case VIRTCHNL_OP_GET_VF_RESOURCES:
4080 err = ops->get_vf_res_msg(vf, msg);
4081 if (ice_vf_init_vlan_stripping(vf))
4082 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4083 vf->vf_id);
4084 ice_vc_notify_vf_link_state(vf);
4085 break;
4086 case VIRTCHNL_OP_RESET_VF:
4087 ops->reset_vf(vf);
4088 break;
4089 case VIRTCHNL_OP_ADD_ETH_ADDR:
4090 err = ops->add_mac_addr_msg(vf, msg);
4091 break;
4092 case VIRTCHNL_OP_DEL_ETH_ADDR:
4093 err = ops->del_mac_addr_msg(vf, msg);
4094 break;
4095 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4096 err = ops->cfg_qs_msg(vf, msg);
4097 break;
4098 case VIRTCHNL_OP_ENABLE_QUEUES:
4099 err = ops->ena_qs_msg(vf, msg);
4100 ice_vc_notify_vf_link_state(vf);
4101 break;
4102 case VIRTCHNL_OP_DISABLE_QUEUES:
4103 err = ops->dis_qs_msg(vf, msg);
4104 break;
4105 case VIRTCHNL_OP_REQUEST_QUEUES:
4106 err = ops->request_qs_msg(vf, msg);
4107 break;
4108 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4109 err = ops->cfg_irq_map_msg(vf, msg);
4110 break;
4111 case VIRTCHNL_OP_CONFIG_RSS_KEY:
4112 err = ops->config_rss_key(vf, msg);
4113 break;
4114 case VIRTCHNL_OP_CONFIG_RSS_LUT:
4115 err = ops->config_rss_lut(vf, msg);
4116 break;
4117 case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4118 err = ops->config_rss_hfunc(vf, msg);
4119 break;
4120 case VIRTCHNL_OP_GET_STATS:
4121 err = ops->get_stats_msg(vf, msg);
4122 break;
4123 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4124 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4125 break;
4126 case VIRTCHNL_OP_ADD_VLAN:
4127 err = ops->add_vlan_msg(vf, msg);
4128 break;
4129 case VIRTCHNL_OP_DEL_VLAN:
4130 err = ops->remove_vlan_msg(vf, msg);
4131 break;
4132 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4133 err = ops->query_rxdid(vf);
4134 break;
4135 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4136 err = ops->get_rss_hena(vf);
4137 break;
4138 case VIRTCHNL_OP_SET_RSS_HENA:
4139 err = ops->set_rss_hena_msg(vf, msg);
4140 break;
4141 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4142 err = ops->ena_vlan_stripping(vf);
4143 break;
4144 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4145 err = ops->dis_vlan_stripping(vf);
4146 break;
4147 case VIRTCHNL_OP_ADD_FDIR_FILTER:
4148 err = ops->add_fdir_fltr_msg(vf, msg);
4149 break;
4150 case VIRTCHNL_OP_DEL_FDIR_FILTER:
4151 err = ops->del_fdir_fltr_msg(vf, msg);
4152 break;
4153 case VIRTCHNL_OP_ADD_RSS_CFG:
4154 err = ops->handle_rss_cfg_msg(vf, msg, true);
4155 break;
4156 case VIRTCHNL_OP_DEL_RSS_CFG:
4157 err = ops->handle_rss_cfg_msg(vf, msg, false);
4158 break;
4159 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4160 err = ops->get_offload_vlan_v2_caps(vf);
4161 break;
4162 case VIRTCHNL_OP_ADD_VLAN_V2:
4163 err = ops->add_vlan_v2_msg(vf, msg);
4164 break;
4165 case VIRTCHNL_OP_DEL_VLAN_V2:
4166 err = ops->remove_vlan_v2_msg(vf, msg);
4167 break;
4168 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4169 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4170 break;
4171 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4172 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4173 break;
4174 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4175 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4176 break;
4177 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4178 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4179 break;
4180 case VIRTCHNL_OP_UNKNOWN:
4181 default:
4182 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4183 vf_id);
4184 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4185 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4186 NULL, 0);
4187 break;
4188 }
4189 if (err) {
4190 /* Helper function cares less about error return values here
4191 * as it is busy with pending work.
4192 */
4193 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4194 vf_id, v_opcode, err);
4195 }
4196
4197 finish:
4198 mutex_unlock(&vf->cfg_lock);
4199 ice_put_vf(vf);
4200 }
4201