1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_VLAN; 444 445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 446 vsi = ice_get_vf_vsi(vf); 447 if (!vsi) { 448 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 449 goto err; 450 } 451 452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 453 vf->driver_caps); 454 455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) 456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 457 458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 460 461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 463 464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 465 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 466 467 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 468 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 469 470 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 471 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 472 473 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 474 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 475 476 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 477 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 478 479 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 480 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 481 482 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) 483 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC; 484 485 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 486 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 487 488 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 489 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 490 491 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 492 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 493 494 vfres->num_vsis = 1; 495 /* Tx and Rx queue are equal for VF */ 496 vfres->num_queue_pairs = vsi->num_txq; 497 vfres->max_vectors = vf->num_msix; 498 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 499 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 500 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 501 502 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID; 503 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 504 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 505 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 506 vf->hw_lan_addr); 507 508 /* match guest capabilities */ 509 vf->driver_caps = vfres->vf_cap_flags; 510 511 ice_vc_set_caps_allowlist(vf); 512 ice_vc_set_working_allowlist(vf); 513 514 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 515 516 err: 517 /* send the response back to the VF */ 518 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 519 (u8 *)vfres, len); 520 521 kfree(vfres); 522 return ret; 523 } 524 525 /** 526 * ice_vc_reset_vf_msg 527 * @vf: pointer to the VF info 528 * 529 * called from the VF to reset itself, 530 * unlike other virtchnl messages, PF driver 531 * doesn't send the response back to the VF 532 */ 533 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 534 { 535 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 536 ice_reset_vf(vf, 0); 537 } 538 539 /** 540 * ice_vc_isvalid_vsi_id 541 * @vf: pointer to the VF info 542 * @vsi_id: VF relative VSI ID 543 * 544 * check for the valid VSI ID 545 */ 546 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 547 { 548 return vsi_id == ICE_VF_VSI_ID; 549 } 550 551 /** 552 * ice_vc_isvalid_q_id 553 * @vsi: VSI to check queue ID against 554 * @qid: VSI relative queue ID 555 * 556 * check for the valid queue ID 557 */ 558 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid) 559 { 560 /* allocated Tx and Rx queues should be always equal for VF VSI */ 561 return qid < vsi->alloc_txq; 562 } 563 564 /** 565 * ice_vc_isvalid_ring_len 566 * @ring_len: length of ring 567 * 568 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 569 * or zero 570 */ 571 static bool ice_vc_isvalid_ring_len(u16 ring_len) 572 { 573 return ring_len == 0 || 574 (ring_len >= ICE_MIN_NUM_DESC && 575 ring_len <= ICE_MAX_NUM_DESC && 576 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 577 } 578 579 /** 580 * ice_vc_validate_pattern 581 * @vf: pointer to the VF info 582 * @proto: virtchnl protocol headers 583 * 584 * validate the pattern is supported or not. 585 * 586 * Return: true on success, false on error. 587 */ 588 bool 589 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 590 { 591 bool is_ipv4 = false; 592 bool is_ipv6 = false; 593 bool is_udp = false; 594 u16 ptype = -1; 595 int i = 0; 596 597 while (i < proto->count && 598 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 599 switch (proto->proto_hdr[i].type) { 600 case VIRTCHNL_PROTO_HDR_ETH: 601 ptype = ICE_PTYPE_MAC_PAY; 602 break; 603 case VIRTCHNL_PROTO_HDR_IPV4: 604 ptype = ICE_PTYPE_IPV4_PAY; 605 is_ipv4 = true; 606 break; 607 case VIRTCHNL_PROTO_HDR_IPV6: 608 ptype = ICE_PTYPE_IPV6_PAY; 609 is_ipv6 = true; 610 break; 611 case VIRTCHNL_PROTO_HDR_UDP: 612 if (is_ipv4) 613 ptype = ICE_PTYPE_IPV4_UDP_PAY; 614 else if (is_ipv6) 615 ptype = ICE_PTYPE_IPV6_UDP_PAY; 616 is_udp = true; 617 break; 618 case VIRTCHNL_PROTO_HDR_TCP: 619 if (is_ipv4) 620 ptype = ICE_PTYPE_IPV4_TCP_PAY; 621 else if (is_ipv6) 622 ptype = ICE_PTYPE_IPV6_TCP_PAY; 623 break; 624 case VIRTCHNL_PROTO_HDR_SCTP: 625 if (is_ipv4) 626 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 627 else if (is_ipv6) 628 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 629 break; 630 case VIRTCHNL_PROTO_HDR_GTPU_IP: 631 case VIRTCHNL_PROTO_HDR_GTPU_EH: 632 if (is_ipv4) 633 ptype = ICE_MAC_IPV4_GTPU; 634 else if (is_ipv6) 635 ptype = ICE_MAC_IPV6_GTPU; 636 goto out; 637 case VIRTCHNL_PROTO_HDR_L2TPV3: 638 if (is_ipv4) 639 ptype = ICE_MAC_IPV4_L2TPV3; 640 else if (is_ipv6) 641 ptype = ICE_MAC_IPV6_L2TPV3; 642 goto out; 643 case VIRTCHNL_PROTO_HDR_ESP: 644 if (is_ipv4) 645 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 646 ICE_MAC_IPV4_ESP; 647 else if (is_ipv6) 648 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 649 ICE_MAC_IPV6_ESP; 650 goto out; 651 case VIRTCHNL_PROTO_HDR_AH: 652 if (is_ipv4) 653 ptype = ICE_MAC_IPV4_AH; 654 else if (is_ipv6) 655 ptype = ICE_MAC_IPV6_AH; 656 goto out; 657 case VIRTCHNL_PROTO_HDR_PFCP: 658 if (is_ipv4) 659 ptype = ICE_MAC_IPV4_PFCP_SESSION; 660 else if (is_ipv6) 661 ptype = ICE_MAC_IPV6_PFCP_SESSION; 662 goto out; 663 default: 664 break; 665 } 666 i++; 667 } 668 669 out: 670 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 671 } 672 673 /** 674 * ice_vc_parse_rss_cfg - parses hash fields and headers from 675 * a specific virtchnl RSS cfg 676 * @hw: pointer to the hardware 677 * @rss_cfg: pointer to the virtchnl RSS cfg 678 * @hash_cfg: pointer to the HW hash configuration 679 * 680 * Return true if all the protocol header and hash fields in the RSS cfg could 681 * be parsed, else return false 682 * 683 * This function parses the virtchnl RSS cfg to be the intended 684 * hash fields and the intended header for RSS configuration 685 */ 686 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw, 687 struct virtchnl_rss_cfg *rss_cfg, 688 struct ice_rss_hash_cfg *hash_cfg) 689 { 690 const struct ice_vc_hash_field_match_type *hf_list; 691 const struct ice_vc_hdr_match_type *hdr_list; 692 int i, hf_list_len, hdr_list_len; 693 u32 *addl_hdrs = &hash_cfg->addl_hdrs; 694 u64 *hash_flds = &hash_cfg->hash_flds; 695 696 /* set outer layer RSS as default */ 697 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS; 698 699 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 700 hash_cfg->symm = true; 701 else 702 hash_cfg->symm = false; 703 704 hf_list = ice_vc_hash_field_list; 705 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 706 hdr_list = ice_vc_hdr_list; 707 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 708 709 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 710 struct virtchnl_proto_hdr *proto_hdr = 711 &rss_cfg->proto_hdrs.proto_hdr[i]; 712 bool hdr_found = false; 713 int j; 714 715 /* Find matched ice headers according to virtchnl headers. */ 716 for (j = 0; j < hdr_list_len; j++) { 717 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 718 719 if (proto_hdr->type == hdr_map.vc_hdr) { 720 *addl_hdrs |= hdr_map.ice_hdr; 721 hdr_found = true; 722 } 723 } 724 725 if (!hdr_found) 726 return false; 727 728 /* Find matched ice hash fields according to 729 * virtchnl hash fields. 730 */ 731 for (j = 0; j < hf_list_len; j++) { 732 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 733 734 if (proto_hdr->type == hf_map.vc_hdr && 735 proto_hdr->field_selector == hf_map.vc_hash_field) { 736 *hash_flds |= hf_map.ice_hash_field; 737 break; 738 } 739 } 740 } 741 742 return true; 743 } 744 745 /** 746 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 747 * RSS offloads 748 * @caps: VF driver negotiated capabilities 749 * 750 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 751 * else return false 752 */ 753 static bool ice_vf_adv_rss_offload_ena(u32 caps) 754 { 755 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 756 } 757 758 /** 759 * ice_vc_handle_rss_cfg 760 * @vf: pointer to the VF info 761 * @msg: pointer to the message buffer 762 * @add: add a RSS config if true, otherwise delete a RSS config 763 * 764 * This function adds/deletes a RSS config 765 */ 766 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 767 { 768 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 769 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 770 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 771 struct device *dev = ice_pf_to_dev(vf->pf); 772 struct ice_hw *hw = &vf->pf->hw; 773 struct ice_vsi *vsi; 774 775 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 776 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 777 vf->vf_id); 778 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 779 goto error_param; 780 } 781 782 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 783 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 784 vf->vf_id); 785 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 786 goto error_param; 787 } 788 789 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 790 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 791 goto error_param; 792 } 793 794 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 795 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 796 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 797 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 798 vf->vf_id); 799 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 800 goto error_param; 801 } 802 803 vsi = ice_get_vf_vsi(vf); 804 if (!vsi) { 805 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 806 goto error_param; 807 } 808 809 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 810 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 811 goto error_param; 812 } 813 814 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 815 struct ice_vsi_ctx *ctx; 816 u8 lut_type, hash_type; 817 int status; 818 819 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 820 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR : 821 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 822 823 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 824 if (!ctx) { 825 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 826 goto error_param; 827 } 828 829 ctx->info.q_opt_rss = 830 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 831 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 832 833 /* Preserve existing queueing option setting */ 834 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 835 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 836 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 837 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 838 839 ctx->info.valid_sections = 840 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 841 842 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 843 if (status) { 844 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 845 status, ice_aq_str(hw->adminq.sq_last_status)); 846 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 847 } else { 848 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 849 } 850 851 kfree(ctx); 852 } else { 853 struct ice_rss_hash_cfg cfg; 854 855 /* Only check for none raw pattern case */ 856 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 857 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 858 goto error_param; 859 } 860 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 861 cfg.hash_flds = ICE_HASH_INVALID; 862 cfg.hdr_type = ICE_RSS_ANY_HEADERS; 863 864 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) { 865 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 866 goto error_param; 867 } 868 869 if (add) { 870 if (ice_add_rss_cfg(hw, vsi, &cfg)) { 871 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 872 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 873 vsi->vsi_num, v_ret); 874 } 875 } else { 876 int status; 877 878 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg); 879 /* We just ignore -ENOENT, because if two configurations 880 * share the same profile remove one of them actually 881 * removes both, since the profile is deleted. 882 */ 883 if (status && status != -ENOENT) { 884 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 885 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 886 vf->vf_id, status); 887 } 888 } 889 } 890 891 error_param: 892 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 893 } 894 895 /** 896 * ice_vc_config_rss_key 897 * @vf: pointer to the VF info 898 * @msg: pointer to the msg buffer 899 * 900 * Configure the VF's RSS key 901 */ 902 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 903 { 904 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 905 struct virtchnl_rss_key *vrk = 906 (struct virtchnl_rss_key *)msg; 907 struct ice_vsi *vsi; 908 909 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 910 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 911 goto error_param; 912 } 913 914 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 915 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 916 goto error_param; 917 } 918 919 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 920 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 921 goto error_param; 922 } 923 924 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 925 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 926 goto error_param; 927 } 928 929 vsi = ice_get_vf_vsi(vf); 930 if (!vsi) { 931 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 932 goto error_param; 933 } 934 935 if (ice_set_rss_key(vsi, vrk->key)) 936 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 937 error_param: 938 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 939 NULL, 0); 940 } 941 942 /** 943 * ice_vc_config_rss_lut 944 * @vf: pointer to the VF info 945 * @msg: pointer to the msg buffer 946 * 947 * Configure the VF's RSS LUT 948 */ 949 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 950 { 951 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 952 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 953 struct ice_vsi *vsi; 954 955 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 956 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 957 goto error_param; 958 } 959 960 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 961 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 962 goto error_param; 963 } 964 965 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 966 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 967 goto error_param; 968 } 969 970 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 971 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 972 goto error_param; 973 } 974 975 vsi = ice_get_vf_vsi(vf); 976 if (!vsi) { 977 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 978 goto error_param; 979 } 980 981 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 982 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 983 error_param: 984 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 985 NULL, 0); 986 } 987 988 /** 989 * ice_vc_config_rss_hfunc 990 * @vf: pointer to the VF info 991 * @msg: pointer to the msg buffer 992 * 993 * Configure the VF's RSS Hash function 994 */ 995 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg) 996 { 997 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg; 998 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 999 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1000 struct ice_vsi *vsi; 1001 1002 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1003 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1004 goto error_param; 1005 } 1006 1007 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) { 1008 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1009 goto error_param; 1010 } 1011 1012 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 1013 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1014 goto error_param; 1015 } 1016 1017 vsi = ice_get_vf_vsi(vf); 1018 if (!vsi) { 1019 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1020 goto error_param; 1021 } 1022 1023 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 1024 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ; 1025 1026 if (ice_set_rss_hfunc(vsi, hfunc)) 1027 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1028 error_param: 1029 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret, 1030 NULL, 0); 1031 } 1032 1033 /** 1034 * ice_vc_cfg_promiscuous_mode_msg 1035 * @vf: pointer to the VF info 1036 * @msg: pointer to the msg buffer 1037 * 1038 * called from the VF to configure VF VSIs promiscuous mode 1039 */ 1040 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 1041 { 1042 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1043 bool rm_promisc, alluni = false, allmulti = false; 1044 struct virtchnl_promisc_info *info = 1045 (struct virtchnl_promisc_info *)msg; 1046 struct ice_vsi_vlan_ops *vlan_ops; 1047 int mcast_err = 0, ucast_err = 0; 1048 struct ice_pf *pf = vf->pf; 1049 struct ice_vsi *vsi; 1050 u8 mcast_m, ucast_m; 1051 struct device *dev; 1052 int ret = 0; 1053 1054 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1055 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1056 goto error_param; 1057 } 1058 1059 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1060 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1061 goto error_param; 1062 } 1063 1064 vsi = ice_get_vf_vsi(vf); 1065 if (!vsi) { 1066 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1067 goto error_param; 1068 } 1069 1070 dev = ice_pf_to_dev(pf); 1071 if (!ice_is_vf_trusted(vf)) { 1072 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1073 vf->vf_id); 1074 /* Leave v_ret alone, lie to the VF on purpose. */ 1075 goto error_param; 1076 } 1077 1078 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1079 alluni = true; 1080 1081 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1082 allmulti = true; 1083 1084 rm_promisc = !allmulti && !alluni; 1085 1086 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1087 if (rm_promisc) 1088 ret = vlan_ops->ena_rx_filtering(vsi); 1089 else 1090 ret = vlan_ops->dis_rx_filtering(vsi); 1091 if (ret) { 1092 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1093 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1094 goto error_param; 1095 } 1096 1097 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1098 1099 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1100 if (alluni) { 1101 /* in this case we're turning on promiscuous mode */ 1102 ret = ice_set_dflt_vsi(vsi); 1103 } else { 1104 /* in this case we're turning off promiscuous mode */ 1105 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1106 ret = ice_clear_dflt_vsi(vsi); 1107 } 1108 1109 /* in this case we're turning on/off only 1110 * allmulticast 1111 */ 1112 if (allmulti) 1113 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1114 else 1115 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1116 1117 if (ret) { 1118 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1119 vf->vf_id, ret); 1120 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1121 goto error_param; 1122 } 1123 } else { 1124 if (alluni) 1125 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1126 else 1127 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1128 1129 if (allmulti) 1130 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1131 else 1132 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1133 1134 if (ucast_err || mcast_err) 1135 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1136 } 1137 1138 if (!mcast_err) { 1139 if (allmulti && 1140 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1141 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1142 vf->vf_id); 1143 else if (!allmulti && 1144 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1145 vf->vf_states)) 1146 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1147 vf->vf_id); 1148 } else { 1149 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1150 vf->vf_id, mcast_err); 1151 } 1152 1153 if (!ucast_err) { 1154 if (alluni && 1155 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1156 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1157 vf->vf_id); 1158 else if (!alluni && 1159 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1160 vf->vf_states)) 1161 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1162 vf->vf_id); 1163 } else { 1164 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1165 vf->vf_id, ucast_err); 1166 } 1167 1168 error_param: 1169 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1170 v_ret, NULL, 0); 1171 } 1172 1173 /** 1174 * ice_vc_get_stats_msg 1175 * @vf: pointer to the VF info 1176 * @msg: pointer to the msg buffer 1177 * 1178 * called from the VF to get VSI stats 1179 */ 1180 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1181 { 1182 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1183 struct virtchnl_queue_select *vqs = 1184 (struct virtchnl_queue_select *)msg; 1185 struct ice_eth_stats stats = { 0 }; 1186 struct ice_vsi *vsi; 1187 1188 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1189 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1190 goto error_param; 1191 } 1192 1193 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1194 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1195 goto error_param; 1196 } 1197 1198 vsi = ice_get_vf_vsi(vf); 1199 if (!vsi) { 1200 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1201 goto error_param; 1202 } 1203 1204 ice_update_eth_stats(vsi); 1205 1206 stats = vsi->eth_stats; 1207 1208 error_param: 1209 /* send the response to the VF */ 1210 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1211 (u8 *)&stats, sizeof(stats)); 1212 } 1213 1214 /** 1215 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1216 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1217 * 1218 * Return true on successful validation, else false 1219 */ 1220 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1221 { 1222 if ((!vqs->rx_queues && !vqs->tx_queues) || 1223 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1224 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1225 return false; 1226 1227 return true; 1228 } 1229 1230 /** 1231 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1232 * @vsi: VSI of the VF to configure 1233 * @q_idx: VF queue index used to determine the queue in the PF's space 1234 */ 1235 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1236 { 1237 struct ice_hw *hw = &vsi->back->hw; 1238 u32 pfq = vsi->txq_map[q_idx]; 1239 u32 reg; 1240 1241 reg = rd32(hw, QINT_TQCTL(pfq)); 1242 1243 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1244 * this is most likely a poll mode VF driver, so don't enable an 1245 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1246 */ 1247 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1248 return; 1249 1250 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1251 } 1252 1253 /** 1254 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1255 * @vsi: VSI of the VF to configure 1256 * @q_idx: VF queue index used to determine the queue in the PF's space 1257 */ 1258 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1259 { 1260 struct ice_hw *hw = &vsi->back->hw; 1261 u32 pfq = vsi->rxq_map[q_idx]; 1262 u32 reg; 1263 1264 reg = rd32(hw, QINT_RQCTL(pfq)); 1265 1266 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1267 * this is most likely a poll mode VF driver, so don't enable an 1268 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1269 */ 1270 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1271 return; 1272 1273 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1274 } 1275 1276 /** 1277 * ice_vc_ena_qs_msg 1278 * @vf: pointer to the VF info 1279 * @msg: pointer to the msg buffer 1280 * 1281 * called from the VF to enable all or specific queue(s) 1282 */ 1283 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1284 { 1285 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1286 struct virtchnl_queue_select *vqs = 1287 (struct virtchnl_queue_select *)msg; 1288 struct ice_vsi *vsi; 1289 unsigned long q_map; 1290 u16 vf_q_id; 1291 1292 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1293 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1294 goto error_param; 1295 } 1296 1297 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1298 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1299 goto error_param; 1300 } 1301 1302 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1303 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1304 goto error_param; 1305 } 1306 1307 vsi = ice_get_vf_vsi(vf); 1308 if (!vsi) { 1309 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1310 goto error_param; 1311 } 1312 1313 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1314 * Tx queue group list was configured and the context bits were 1315 * programmed using ice_vsi_cfg_txqs 1316 */ 1317 q_map = vqs->rx_queues; 1318 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1319 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1320 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1321 goto error_param; 1322 } 1323 1324 /* Skip queue if enabled */ 1325 if (test_bit(vf_q_id, vf->rxq_ena)) 1326 continue; 1327 1328 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1329 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1330 vf_q_id, vsi->vsi_num); 1331 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1332 goto error_param; 1333 } 1334 1335 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1336 set_bit(vf_q_id, vf->rxq_ena); 1337 } 1338 1339 q_map = vqs->tx_queues; 1340 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1341 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1342 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1343 goto error_param; 1344 } 1345 1346 /* Skip queue if enabled */ 1347 if (test_bit(vf_q_id, vf->txq_ena)) 1348 continue; 1349 1350 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1351 set_bit(vf_q_id, vf->txq_ena); 1352 } 1353 1354 /* Set flag to indicate that queues are enabled */ 1355 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1356 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1357 1358 error_param: 1359 /* send the response to the VF */ 1360 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1361 NULL, 0); 1362 } 1363 1364 /** 1365 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1366 * @vf: VF to disable queue for 1367 * @vsi: VSI for the VF 1368 * @q_id: VF relative (0-based) queue ID 1369 * 1370 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1371 * disabled then clear q_id bit in the enabled queues bitmap and return 1372 * success. Otherwise return error. 1373 */ 1374 static int 1375 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1376 { 1377 struct ice_txq_meta txq_meta = { 0 }; 1378 struct ice_tx_ring *ring; 1379 int err; 1380 1381 if (!test_bit(q_id, vf->txq_ena)) 1382 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1383 q_id, vsi->vsi_num); 1384 1385 ring = vsi->tx_rings[q_id]; 1386 if (!ring) 1387 return -EINVAL; 1388 1389 ice_fill_txq_meta(vsi, ring, &txq_meta); 1390 1391 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1392 if (err) { 1393 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1394 q_id, vsi->vsi_num); 1395 return err; 1396 } 1397 1398 /* Clear enabled queues flag */ 1399 clear_bit(q_id, vf->txq_ena); 1400 1401 return 0; 1402 } 1403 1404 /** 1405 * ice_vc_dis_qs_msg 1406 * @vf: pointer to the VF info 1407 * @msg: pointer to the msg buffer 1408 * 1409 * called from the VF to disable all or specific queue(s) 1410 */ 1411 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1412 { 1413 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1414 struct virtchnl_queue_select *vqs = 1415 (struct virtchnl_queue_select *)msg; 1416 struct ice_vsi *vsi; 1417 unsigned long q_map; 1418 u16 vf_q_id; 1419 1420 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1421 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1422 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1423 goto error_param; 1424 } 1425 1426 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1428 goto error_param; 1429 } 1430 1431 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1432 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1433 goto error_param; 1434 } 1435 1436 vsi = ice_get_vf_vsi(vf); 1437 if (!vsi) { 1438 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1439 goto error_param; 1440 } 1441 1442 if (vqs->tx_queues) { 1443 q_map = vqs->tx_queues; 1444 1445 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1446 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1447 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1448 goto error_param; 1449 } 1450 1451 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1452 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1453 goto error_param; 1454 } 1455 } 1456 } 1457 1458 q_map = vqs->rx_queues; 1459 /* speed up Rx queue disable by batching them if possible */ 1460 if (q_map && 1461 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1462 if (ice_vsi_stop_all_rx_rings(vsi)) { 1463 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1464 vsi->vsi_num); 1465 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1466 goto error_param; 1467 } 1468 1469 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1470 } else if (q_map) { 1471 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1472 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1473 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1474 goto error_param; 1475 } 1476 1477 /* Skip queue if not enabled */ 1478 if (!test_bit(vf_q_id, vf->rxq_ena)) 1479 continue; 1480 1481 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1482 true)) { 1483 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1484 vf_q_id, vsi->vsi_num); 1485 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1486 goto error_param; 1487 } 1488 1489 /* Clear enabled queues flag */ 1490 clear_bit(vf_q_id, vf->rxq_ena); 1491 } 1492 } 1493 1494 /* Clear enabled queues flag */ 1495 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1496 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1497 1498 error_param: 1499 /* send the response to the VF */ 1500 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1501 NULL, 0); 1502 } 1503 1504 /** 1505 * ice_cfg_interrupt 1506 * @vf: pointer to the VF info 1507 * @vsi: the VSI being configured 1508 * @map: vector map for mapping vectors to queues 1509 * @q_vector: structure for interrupt vector 1510 * configure the IRQ to queue map 1511 */ 1512 static enum virtchnl_status_code 1513 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, 1514 struct virtchnl_vector_map *map, 1515 struct ice_q_vector *q_vector) 1516 { 1517 u16 vsi_q_id, vsi_q_id_idx; 1518 unsigned long qmap; 1519 1520 q_vector->num_ring_rx = 0; 1521 q_vector->num_ring_tx = 0; 1522 1523 qmap = map->rxq_map; 1524 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1525 vsi_q_id = vsi_q_id_idx; 1526 1527 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1528 return VIRTCHNL_STATUS_ERR_PARAM; 1529 1530 q_vector->num_ring_rx++; 1531 q_vector->rx.itr_idx = map->rxitr_idx; 1532 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1533 ice_cfg_rxq_interrupt(vsi, vsi_q_id, 1534 q_vector->vf_reg_idx, 1535 q_vector->rx.itr_idx); 1536 } 1537 1538 qmap = map->txq_map; 1539 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1540 vsi_q_id = vsi_q_id_idx; 1541 1542 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1543 return VIRTCHNL_STATUS_ERR_PARAM; 1544 1545 q_vector->num_ring_tx++; 1546 q_vector->tx.itr_idx = map->txitr_idx; 1547 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1548 ice_cfg_txq_interrupt(vsi, vsi_q_id, 1549 q_vector->vf_reg_idx, 1550 q_vector->tx.itr_idx); 1551 } 1552 1553 return VIRTCHNL_STATUS_SUCCESS; 1554 } 1555 1556 /** 1557 * ice_vc_cfg_irq_map_msg 1558 * @vf: pointer to the VF info 1559 * @msg: pointer to the msg buffer 1560 * 1561 * called from the VF to configure the IRQ to queue map 1562 */ 1563 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1564 { 1565 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1566 u16 num_q_vectors_mapped, vsi_id, vector_id; 1567 struct virtchnl_irq_map_info *irqmap_info; 1568 struct virtchnl_vector_map *map; 1569 struct ice_vsi *vsi; 1570 int i; 1571 1572 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1573 num_q_vectors_mapped = irqmap_info->num_vectors; 1574 1575 /* Check to make sure number of VF vectors mapped is not greater than 1576 * number of VF vectors originally allocated, and check that 1577 * there is actually at least a single VF queue vector mapped 1578 */ 1579 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1580 vf->num_msix < num_q_vectors_mapped || 1581 !num_q_vectors_mapped) { 1582 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1583 goto error_param; 1584 } 1585 1586 vsi = ice_get_vf_vsi(vf); 1587 if (!vsi) { 1588 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1589 goto error_param; 1590 } 1591 1592 for (i = 0; i < num_q_vectors_mapped; i++) { 1593 struct ice_q_vector *q_vector; 1594 1595 map = &irqmap_info->vecmap[i]; 1596 1597 vector_id = map->vector_id; 1598 vsi_id = map->vsi_id; 1599 /* vector_id is always 0-based for each VF, and can never be 1600 * larger than or equal to the max allowed interrupts per VF 1601 */ 1602 if (!(vector_id < vf->num_msix) || 1603 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1604 (!vector_id && (map->rxq_map || map->txq_map))) { 1605 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1606 goto error_param; 1607 } 1608 1609 /* No need to map VF miscellaneous or rogue vector */ 1610 if (!vector_id) 1611 continue; 1612 1613 /* Subtract non queue vector from vector_id passed by VF 1614 * to get actual number of VSI queue vector array index 1615 */ 1616 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1617 if (!q_vector) { 1618 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1619 goto error_param; 1620 } 1621 1622 /* lookout for the invalid queue index */ 1623 v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector); 1624 if (v_ret) 1625 goto error_param; 1626 } 1627 1628 error_param: 1629 /* send the response to the VF */ 1630 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1631 NULL, 0); 1632 } 1633 1634 /** 1635 * ice_vc_cfg_qs_msg 1636 * @vf: pointer to the VF info 1637 * @msg: pointer to the msg buffer 1638 * 1639 * called from the VF to configure the Rx/Tx queues 1640 */ 1641 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1642 { 1643 struct virtchnl_vsi_queue_config_info *qci = 1644 (struct virtchnl_vsi_queue_config_info *)msg; 1645 struct virtchnl_queue_pair_info *qpi; 1646 struct ice_pf *pf = vf->pf; 1647 struct ice_lag *lag; 1648 struct ice_vsi *vsi; 1649 u8 act_prt, pri_prt; 1650 int i = -1, q_idx; 1651 1652 lag = pf->lag; 1653 mutex_lock(&pf->lag_mutex); 1654 act_prt = ICE_LAG_INVALID_PORT; 1655 pri_prt = pf->hw.port_info->lport; 1656 if (lag && lag->bonded && lag->primary) { 1657 act_prt = lag->active_port; 1658 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && 1659 lag->upper_netdev) 1660 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); 1661 else 1662 act_prt = ICE_LAG_INVALID_PORT; 1663 } 1664 1665 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1666 goto error_param; 1667 1668 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1669 goto error_param; 1670 1671 vsi = ice_get_vf_vsi(vf); 1672 if (!vsi) 1673 goto error_param; 1674 1675 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1676 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1677 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1678 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1679 goto error_param; 1680 } 1681 1682 for (i = 0; i < qci->num_queue_pairs; i++) { 1683 if (!qci->qpair[i].rxq.crc_disable) 1684 continue; 1685 1686 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) || 1687 vf->vlan_strip_ena) 1688 goto error_param; 1689 } 1690 1691 for (i = 0; i < qci->num_queue_pairs; i++) { 1692 qpi = &qci->qpair[i]; 1693 if (qpi->txq.vsi_id != qci->vsi_id || 1694 qpi->rxq.vsi_id != qci->vsi_id || 1695 qpi->rxq.queue_id != qpi->txq.queue_id || 1696 qpi->txq.headwb_enabled || 1697 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1698 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1699 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) { 1700 goto error_param; 1701 } 1702 1703 q_idx = qpi->rxq.queue_id; 1704 1705 /* make sure selected "q_idx" is in valid range of queues 1706 * for selected "vsi" 1707 */ 1708 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1709 goto error_param; 1710 } 1711 1712 /* copy Tx queue info from VF into VSI */ 1713 if (qpi->txq.ring_len > 0) { 1714 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1715 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1716 1717 /* Disable any existing queue first */ 1718 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1719 goto error_param; 1720 1721 /* Configure a queue with the requested settings */ 1722 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1723 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1724 vf->vf_id, i); 1725 goto error_param; 1726 } 1727 } 1728 1729 /* copy Rx queue info from VF into VSI */ 1730 if (qpi->rxq.ring_len > 0) { 1731 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1732 u32 rxdid; 1733 1734 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1735 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1736 1737 if (qpi->rxq.crc_disable) 1738 vsi->rx_rings[q_idx]->flags |= 1739 ICE_RX_FLAGS_CRC_STRIP_DIS; 1740 else 1741 vsi->rx_rings[q_idx]->flags &= 1742 ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1743 1744 if (qpi->rxq.databuffer_size != 0 && 1745 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1746 qpi->rxq.databuffer_size < 1024)) 1747 goto error_param; 1748 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1749 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1750 if (qpi->rxq.max_pkt_size > max_frame_size || 1751 qpi->rxq.max_pkt_size < 64) 1752 goto error_param; 1753 1754 vsi->max_frame = qpi->rxq.max_pkt_size; 1755 /* add space for the port VLAN since the VF driver is 1756 * not expected to account for it in the MTU 1757 * calculation 1758 */ 1759 if (ice_vf_is_port_vlan_ena(vf)) 1760 vsi->max_frame += VLAN_HLEN; 1761 1762 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1763 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1764 vf->vf_id, i); 1765 goto error_param; 1766 } 1767 1768 /* If Rx flex desc is supported, select RXDID for Rx 1769 * queues. Otherwise, use legacy 32byte descriptor 1770 * format. Legacy 16byte descriptor is not supported. 1771 * If this RXDID is selected, return error. 1772 */ 1773 if (vf->driver_caps & 1774 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 1775 rxdid = qpi->rxq.rxdid; 1776 if (!(BIT(rxdid) & pf->supported_rxdids)) 1777 goto error_param; 1778 } else { 1779 rxdid = ICE_RXDID_LEGACY_1; 1780 } 1781 1782 ice_write_qrxflxp_cntxt(&vsi->back->hw, 1783 vsi->rxq_map[q_idx], 1784 rxdid, 0x03, false); 1785 } 1786 } 1787 1788 if (lag && lag->bonded && lag->primary && 1789 act_prt != ICE_LAG_INVALID_PORT) 1790 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1791 mutex_unlock(&pf->lag_mutex); 1792 1793 /* send the response to the VF */ 1794 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1795 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1796 error_param: 1797 /* disable whatever we can */ 1798 for (; i >= 0; i--) { 1799 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1800 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1801 vf->vf_id, i); 1802 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1803 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1804 vf->vf_id, i); 1805 } 1806 1807 if (lag && lag->bonded && lag->primary && 1808 act_prt != ICE_LAG_INVALID_PORT) 1809 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1810 mutex_unlock(&pf->lag_mutex); 1811 1812 ice_lag_move_new_vf_nodes(vf); 1813 1814 /* send the response to the VF */ 1815 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1816 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1817 } 1818 1819 /** 1820 * ice_can_vf_change_mac 1821 * @vf: pointer to the VF info 1822 * 1823 * Return true if the VF is allowed to change its MAC filters, false otherwise 1824 */ 1825 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1826 { 1827 /* If the VF MAC address has been set administratively (via the 1828 * ndo_set_vf_mac command), then deny permission to the VF to 1829 * add/delete unicast MAC addresses, unless the VF is trusted 1830 */ 1831 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1832 return false; 1833 1834 return true; 1835 } 1836 1837 /** 1838 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1839 * @vc_ether_addr: used to extract the type 1840 */ 1841 static u8 1842 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1843 { 1844 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1845 } 1846 1847 /** 1848 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1849 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1850 */ 1851 static bool 1852 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1853 { 1854 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1855 1856 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1857 } 1858 1859 /** 1860 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1861 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1862 * 1863 * This function should only be called when the MAC address in 1864 * virtchnl_ether_addr is a valid unicast MAC 1865 */ 1866 static bool 1867 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1868 { 1869 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1870 1871 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1872 } 1873 1874 /** 1875 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1876 * @vf: VF to update 1877 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1878 */ 1879 static void 1880 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1881 { 1882 u8 *mac_addr = vc_ether_addr->addr; 1883 1884 if (!is_valid_ether_addr(mac_addr)) 1885 return; 1886 1887 /* only allow legacy VF drivers to set the device and hardware MAC if it 1888 * is zero and allow new VF drivers to set the hardware MAC if the type 1889 * was correctly specified over VIRTCHNL 1890 */ 1891 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1892 is_zero_ether_addr(vf->hw_lan_addr)) || 1893 ice_is_vc_addr_primary(vc_ether_addr)) { 1894 ether_addr_copy(vf->dev_lan_addr, mac_addr); 1895 ether_addr_copy(vf->hw_lan_addr, mac_addr); 1896 } 1897 1898 /* hardware and device MACs are already set, but its possible that the 1899 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1900 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1901 * away for the legacy VF driver case as it will be updated in the 1902 * delete flow for this case 1903 */ 1904 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1905 ether_addr_copy(vf->legacy_last_added_umac.addr, 1906 mac_addr); 1907 vf->legacy_last_added_umac.time_modified = jiffies; 1908 } 1909 } 1910 1911 /** 1912 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1913 * @vf: pointer to the VF info 1914 * @vsi: pointer to the VF's VSI 1915 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1916 */ 1917 static int 1918 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1919 struct virtchnl_ether_addr *vc_ether_addr) 1920 { 1921 struct device *dev = ice_pf_to_dev(vf->pf); 1922 u8 *mac_addr = vc_ether_addr->addr; 1923 int ret; 1924 1925 /* device MAC already added */ 1926 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 1927 return 0; 1928 1929 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1930 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1931 return -EPERM; 1932 } 1933 1934 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1935 if (ret == -EEXIST) { 1936 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1937 vf->vf_id); 1938 /* don't return since we might need to update 1939 * the primary MAC in ice_vfhw_mac_add() below 1940 */ 1941 } else if (ret) { 1942 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1943 mac_addr, vf->vf_id, ret); 1944 return ret; 1945 } else { 1946 vf->num_mac++; 1947 } 1948 1949 ice_vfhw_mac_add(vf, vc_ether_addr); 1950 1951 return ret; 1952 } 1953 1954 /** 1955 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1956 * @last_added_umac: structure used to check expiration 1957 */ 1958 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1959 { 1960 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1961 return time_is_before_jiffies(last_added_umac->time_modified + 1962 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1963 } 1964 1965 /** 1966 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1967 * @vf: VF to update 1968 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1969 * 1970 * only update cached hardware MAC for legacy VF drivers on delete 1971 * because we cannot guarantee order/type of MAC from the VF driver 1972 */ 1973 static void 1974 ice_update_legacy_cached_mac(struct ice_vf *vf, 1975 struct virtchnl_ether_addr *vc_ether_addr) 1976 { 1977 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1978 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1979 return; 1980 1981 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 1982 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 1983 } 1984 1985 /** 1986 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1987 * @vf: VF to update 1988 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1989 */ 1990 static void 1991 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1992 { 1993 u8 *mac_addr = vc_ether_addr->addr; 1994 1995 if (!is_valid_ether_addr(mac_addr) || 1996 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1997 return; 1998 1999 /* allow the device MAC to be repopulated in the add flow and don't 2000 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 2001 * to be persistent on VM reboot and across driver unload/load, which 2002 * won't work if we clear the hardware MAC here 2003 */ 2004 eth_zero_addr(vf->dev_lan_addr); 2005 2006 ice_update_legacy_cached_mac(vf, vc_ether_addr); 2007 } 2008 2009 /** 2010 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 2011 * @vf: pointer to the VF info 2012 * @vsi: pointer to the VF's VSI 2013 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 2014 */ 2015 static int 2016 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 2017 struct virtchnl_ether_addr *vc_ether_addr) 2018 { 2019 struct device *dev = ice_pf_to_dev(vf->pf); 2020 u8 *mac_addr = vc_ether_addr->addr; 2021 int status; 2022 2023 if (!ice_can_vf_change_mac(vf) && 2024 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2025 return 0; 2026 2027 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 2028 if (status == -ENOENT) { 2029 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 2030 vf->vf_id); 2031 return -ENOENT; 2032 } else if (status) { 2033 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 2034 mac_addr, vf->vf_id, status); 2035 return -EIO; 2036 } 2037 2038 ice_vfhw_mac_del(vf, vc_ether_addr); 2039 2040 vf->num_mac--; 2041 2042 return 0; 2043 } 2044 2045 /** 2046 * ice_vc_handle_mac_addr_msg 2047 * @vf: pointer to the VF info 2048 * @msg: pointer to the msg buffer 2049 * @set: true if MAC filters are being set, false otherwise 2050 * 2051 * add guest MAC address filter 2052 */ 2053 static int 2054 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 2055 { 2056 int (*ice_vc_cfg_mac) 2057 (struct ice_vf *vf, struct ice_vsi *vsi, 2058 struct virtchnl_ether_addr *virtchnl_ether_addr); 2059 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2060 struct virtchnl_ether_addr_list *al = 2061 (struct virtchnl_ether_addr_list *)msg; 2062 struct ice_pf *pf = vf->pf; 2063 enum virtchnl_ops vc_op; 2064 struct ice_vsi *vsi; 2065 int i; 2066 2067 if (set) { 2068 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 2069 ice_vc_cfg_mac = ice_vc_add_mac_addr; 2070 } else { 2071 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 2072 ice_vc_cfg_mac = ice_vc_del_mac_addr; 2073 } 2074 2075 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2076 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2077 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2078 goto handle_mac_exit; 2079 } 2080 2081 /* If this VF is not privileged, then we can't add more than a 2082 * limited number of addresses. Check to make sure that the 2083 * additions do not push us over the limit. 2084 */ 2085 if (set && !ice_is_vf_trusted(vf) && 2086 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2087 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2088 vf->vf_id); 2089 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2090 goto handle_mac_exit; 2091 } 2092 2093 vsi = ice_get_vf_vsi(vf); 2094 if (!vsi) { 2095 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2096 goto handle_mac_exit; 2097 } 2098 2099 for (i = 0; i < al->num_elements; i++) { 2100 u8 *mac_addr = al->list[i].addr; 2101 int result; 2102 2103 if (is_broadcast_ether_addr(mac_addr) || 2104 is_zero_ether_addr(mac_addr)) 2105 continue; 2106 2107 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2108 if (result == -EEXIST || result == -ENOENT) { 2109 continue; 2110 } else if (result) { 2111 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2112 goto handle_mac_exit; 2113 } 2114 } 2115 2116 handle_mac_exit: 2117 /* send the response to the VF */ 2118 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2119 } 2120 2121 /** 2122 * ice_vc_add_mac_addr_msg 2123 * @vf: pointer to the VF info 2124 * @msg: pointer to the msg buffer 2125 * 2126 * add guest MAC address filter 2127 */ 2128 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2129 { 2130 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2131 } 2132 2133 /** 2134 * ice_vc_del_mac_addr_msg 2135 * @vf: pointer to the VF info 2136 * @msg: pointer to the msg buffer 2137 * 2138 * remove guest MAC address filter 2139 */ 2140 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2141 { 2142 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2143 } 2144 2145 /** 2146 * ice_vc_request_qs_msg 2147 * @vf: pointer to the VF info 2148 * @msg: pointer to the msg buffer 2149 * 2150 * VFs get a default number of queues but can use this message to request a 2151 * different number. If the request is successful, PF will reset the VF and 2152 * return 0. If unsuccessful, PF will send message informing VF of number of 2153 * available queue pairs via virtchnl message response to VF. 2154 */ 2155 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2156 { 2157 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2158 struct virtchnl_vf_res_request *vfres = 2159 (struct virtchnl_vf_res_request *)msg; 2160 u16 req_queues = vfres->num_queue_pairs; 2161 struct ice_pf *pf = vf->pf; 2162 u16 max_allowed_vf_queues; 2163 u16 tx_rx_queue_left; 2164 struct device *dev; 2165 u16 cur_queues; 2166 2167 dev = ice_pf_to_dev(pf); 2168 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2169 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2170 goto error_param; 2171 } 2172 2173 cur_queues = vf->num_vf_qs; 2174 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2175 ice_get_avail_rxq_count(pf)); 2176 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2177 if (!req_queues) { 2178 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2179 vf->vf_id); 2180 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2181 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2182 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2183 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2184 } else if (req_queues > cur_queues && 2185 req_queues - cur_queues > tx_rx_queue_left) { 2186 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2187 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2188 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2189 ICE_MAX_RSS_QS_PER_VF); 2190 } else { 2191 /* request is successful, then reset VF */ 2192 vf->num_req_qs = req_queues; 2193 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2194 dev_info(dev, "VF %d granted request of %u queues.\n", 2195 vf->vf_id, req_queues); 2196 return 0; 2197 } 2198 2199 error_param: 2200 /* send the response to the VF */ 2201 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2202 v_ret, (u8 *)vfres, sizeof(*vfres)); 2203 } 2204 2205 /** 2206 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2207 * @caps: VF driver negotiated capabilities 2208 * 2209 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2210 */ 2211 static bool ice_vf_vlan_offload_ena(u32 caps) 2212 { 2213 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2214 } 2215 2216 /** 2217 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2218 * @vf: VF used to determine if VLAN promiscuous config is allowed 2219 */ 2220 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2221 { 2222 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2223 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2224 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2225 return true; 2226 2227 return false; 2228 } 2229 2230 /** 2231 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2232 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2233 * @vlan: VLAN used to enable VLAN promiscuous 2234 * 2235 * This function should only be called if VLAN promiscuous mode is allowed, 2236 * which can be determined via ice_is_vlan_promisc_allowed(). 2237 */ 2238 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2239 { 2240 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2241 int status; 2242 2243 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2244 vlan->vid); 2245 if (status && status != -EEXIST) 2246 return status; 2247 2248 return 0; 2249 } 2250 2251 /** 2252 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2253 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2254 * @vlan: VLAN used to disable VLAN promiscuous 2255 * 2256 * This function should only be called if VLAN promiscuous mode is allowed, 2257 * which can be determined via ice_is_vlan_promisc_allowed(). 2258 */ 2259 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2260 { 2261 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2262 int status; 2263 2264 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2265 vlan->vid); 2266 if (status && status != -ENOENT) 2267 return status; 2268 2269 return 0; 2270 } 2271 2272 /** 2273 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2274 * @vf: VF to check against 2275 * @vsi: VF's VSI 2276 * 2277 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2278 * wants to, so return false. 2279 * 2280 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2281 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2282 */ 2283 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2284 { 2285 if (ice_is_vf_trusted(vf)) 2286 return false; 2287 2288 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2289 return ((ice_vsi_num_non_zero_vlans(vsi) + 2290 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2291 } 2292 2293 /** 2294 * ice_vc_process_vlan_msg 2295 * @vf: pointer to the VF info 2296 * @msg: pointer to the msg buffer 2297 * @add_v: Add VLAN if true, otherwise delete VLAN 2298 * 2299 * Process virtchnl op to add or remove programmed guest VLAN ID 2300 */ 2301 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2302 { 2303 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2304 struct virtchnl_vlan_filter_list *vfl = 2305 (struct virtchnl_vlan_filter_list *)msg; 2306 struct ice_pf *pf = vf->pf; 2307 bool vlan_promisc = false; 2308 struct ice_vsi *vsi; 2309 struct device *dev; 2310 int status = 0; 2311 int i; 2312 2313 dev = ice_pf_to_dev(pf); 2314 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2315 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2316 goto error_param; 2317 } 2318 2319 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2320 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2321 goto error_param; 2322 } 2323 2324 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2325 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2326 goto error_param; 2327 } 2328 2329 for (i = 0; i < vfl->num_elements; i++) { 2330 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2331 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2332 dev_err(dev, "invalid VF VLAN id %d\n", 2333 vfl->vlan_id[i]); 2334 goto error_param; 2335 } 2336 } 2337 2338 vsi = ice_get_vf_vsi(vf); 2339 if (!vsi) { 2340 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2341 goto error_param; 2342 } 2343 2344 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2345 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2346 vf->vf_id); 2347 /* There is no need to let VF know about being not trusted, 2348 * so we can just return success message here 2349 */ 2350 goto error_param; 2351 } 2352 2353 /* in DVM a VF can add/delete inner VLAN filters when 2354 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2355 */ 2356 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2357 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2358 goto error_param; 2359 } 2360 2361 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2362 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2363 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2364 */ 2365 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2366 !ice_is_dvm_ena(&pf->hw) && 2367 !ice_vf_is_port_vlan_ena(vf); 2368 2369 if (add_v) { 2370 for (i = 0; i < vfl->num_elements; i++) { 2371 u16 vid = vfl->vlan_id[i]; 2372 struct ice_vlan vlan; 2373 2374 if (ice_vf_has_max_vlans(vf, vsi)) { 2375 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2376 vf->vf_id); 2377 /* There is no need to let VF know about being 2378 * not trusted, so we can just return success 2379 * message here as well. 2380 */ 2381 goto error_param; 2382 } 2383 2384 /* we add VLAN 0 by default for each VF so we can enable 2385 * Tx VLAN anti-spoof without triggering MDD events so 2386 * we don't need to add it again here 2387 */ 2388 if (!vid) 2389 continue; 2390 2391 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2392 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2393 if (status) { 2394 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2395 goto error_param; 2396 } 2397 2398 /* Enable VLAN filtering on first non-zero VLAN */ 2399 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2400 if (vf->spoofchk) { 2401 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2402 if (status) { 2403 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2404 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2405 vid, status); 2406 goto error_param; 2407 } 2408 } 2409 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2410 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2411 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2412 vid, status); 2413 goto error_param; 2414 } 2415 } else if (vlan_promisc) { 2416 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2417 if (status) { 2418 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2419 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2420 vid, status); 2421 } 2422 } 2423 } 2424 } else { 2425 /* In case of non_trusted VF, number of VLAN elements passed 2426 * to PF for removal might be greater than number of VLANs 2427 * filter programmed for that VF - So, use actual number of 2428 * VLANS added earlier with add VLAN opcode. In order to avoid 2429 * removing VLAN that doesn't exist, which result to sending 2430 * erroneous failed message back to the VF 2431 */ 2432 int num_vf_vlan; 2433 2434 num_vf_vlan = vsi->num_vlan; 2435 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2436 u16 vid = vfl->vlan_id[i]; 2437 struct ice_vlan vlan; 2438 2439 /* we add VLAN 0 by default for each VF so we can enable 2440 * Tx VLAN anti-spoof without triggering MDD events so 2441 * we don't want a VIRTCHNL request to remove it 2442 */ 2443 if (!vid) 2444 continue; 2445 2446 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2447 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2448 if (status) { 2449 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2450 goto error_param; 2451 } 2452 2453 /* Disable VLAN filtering when only VLAN 0 is left */ 2454 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2455 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2456 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2457 } 2458 2459 if (vlan_promisc) 2460 ice_vf_dis_vlan_promisc(vsi, &vlan); 2461 } 2462 } 2463 2464 error_param: 2465 /* send the response to the VF */ 2466 if (add_v) 2467 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2468 NULL, 0); 2469 else 2470 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2471 NULL, 0); 2472 } 2473 2474 /** 2475 * ice_vc_add_vlan_msg 2476 * @vf: pointer to the VF info 2477 * @msg: pointer to the msg buffer 2478 * 2479 * Add and program guest VLAN ID 2480 */ 2481 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2482 { 2483 return ice_vc_process_vlan_msg(vf, msg, true); 2484 } 2485 2486 /** 2487 * ice_vc_remove_vlan_msg 2488 * @vf: pointer to the VF info 2489 * @msg: pointer to the msg buffer 2490 * 2491 * remove programmed guest VLAN ID 2492 */ 2493 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2494 { 2495 return ice_vc_process_vlan_msg(vf, msg, false); 2496 } 2497 2498 /** 2499 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not 2500 * @vsi: pointer to the VF VSI info 2501 */ 2502 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi) 2503 { 2504 unsigned int i; 2505 2506 ice_for_each_alloc_rxq(vsi, i) 2507 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS) 2508 return true; 2509 2510 return false; 2511 } 2512 2513 /** 2514 * ice_vc_ena_vlan_stripping 2515 * @vf: pointer to the VF info 2516 * 2517 * Enable VLAN header stripping for a given VF 2518 */ 2519 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2520 { 2521 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2522 struct ice_vsi *vsi; 2523 2524 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2525 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2526 goto error_param; 2527 } 2528 2529 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2530 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2531 goto error_param; 2532 } 2533 2534 vsi = ice_get_vf_vsi(vf); 2535 if (!vsi) { 2536 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2537 goto error_param; 2538 } 2539 2540 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2541 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2542 else 2543 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2544 2545 error_param: 2546 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2547 v_ret, NULL, 0); 2548 } 2549 2550 /** 2551 * ice_vc_dis_vlan_stripping 2552 * @vf: pointer to the VF info 2553 * 2554 * Disable VLAN header stripping for a given VF 2555 */ 2556 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2557 { 2558 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2559 struct ice_vsi *vsi; 2560 2561 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2562 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2563 goto error_param; 2564 } 2565 2566 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2567 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2568 goto error_param; 2569 } 2570 2571 vsi = ice_get_vf_vsi(vf); 2572 if (!vsi) { 2573 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2574 goto error_param; 2575 } 2576 2577 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2578 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2579 else 2580 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 2581 2582 error_param: 2583 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2584 v_ret, NULL, 0); 2585 } 2586 2587 /** 2588 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2589 * @vf: pointer to the VF info 2590 */ 2591 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2592 { 2593 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2594 struct virtchnl_rss_hena *vrh = NULL; 2595 int len = 0, ret; 2596 2597 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2598 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2599 goto err; 2600 } 2601 2602 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2603 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2604 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2605 goto err; 2606 } 2607 2608 len = sizeof(struct virtchnl_rss_hena); 2609 vrh = kzalloc(len, GFP_KERNEL); 2610 if (!vrh) { 2611 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2612 len = 0; 2613 goto err; 2614 } 2615 2616 vrh->hena = ICE_DEFAULT_RSS_HENA; 2617 err: 2618 /* send the response back to the VF */ 2619 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2620 (u8 *)vrh, len); 2621 kfree(vrh); 2622 return ret; 2623 } 2624 2625 /** 2626 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2627 * @vf: pointer to the VF info 2628 * @msg: pointer to the msg buffer 2629 */ 2630 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2631 { 2632 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2633 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2634 struct ice_pf *pf = vf->pf; 2635 struct ice_vsi *vsi; 2636 struct device *dev; 2637 int status; 2638 2639 dev = ice_pf_to_dev(pf); 2640 2641 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2642 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2643 goto err; 2644 } 2645 2646 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2647 dev_err(dev, "RSS not supported by PF\n"); 2648 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2649 goto err; 2650 } 2651 2652 vsi = ice_get_vf_vsi(vf); 2653 if (!vsi) { 2654 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2655 goto err; 2656 } 2657 2658 /* clear all previously programmed RSS configuration to allow VF drivers 2659 * the ability to customize the RSS configuration and/or completely 2660 * disable RSS 2661 */ 2662 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2663 if (status && !vrh->hena) { 2664 /* only report failure to clear the current RSS configuration if 2665 * that was clearly the VF's intention (i.e. vrh->hena = 0) 2666 */ 2667 v_ret = ice_err_to_virt_err(status); 2668 goto err; 2669 } else if (status) { 2670 /* allow the VF to update the RSS configuration even on failure 2671 * to clear the current RSS confguration in an attempt to keep 2672 * RSS in a working state 2673 */ 2674 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 2675 vf->vf_id); 2676 } 2677 2678 if (vrh->hena) { 2679 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena); 2680 v_ret = ice_err_to_virt_err(status); 2681 } 2682 2683 /* send the response to the VF */ 2684 err: 2685 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 2686 NULL, 0); 2687 } 2688 2689 /** 2690 * ice_vc_query_rxdid - query RXDID supported by DDP package 2691 * @vf: pointer to VF info 2692 * 2693 * Called from VF to query a bitmap of supported flexible 2694 * descriptor RXDIDs of a DDP package. 2695 */ 2696 static int ice_vc_query_rxdid(struct ice_vf *vf) 2697 { 2698 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2699 struct virtchnl_supported_rxdids *rxdid = NULL; 2700 struct ice_hw *hw = &vf->pf->hw; 2701 struct ice_pf *pf = vf->pf; 2702 int len = 0; 2703 int ret, i; 2704 u32 regval; 2705 2706 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2707 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2708 goto err; 2709 } 2710 2711 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 2712 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2713 goto err; 2714 } 2715 2716 len = sizeof(struct virtchnl_supported_rxdids); 2717 rxdid = kzalloc(len, GFP_KERNEL); 2718 if (!rxdid) { 2719 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2720 len = 0; 2721 goto err; 2722 } 2723 2724 /* RXDIDs supported by DDP package can be read from the register 2725 * to get the supported RXDID bitmap. But the legacy 32byte RXDID 2726 * is not listed in DDP package, add it in the bitmap manually. 2727 * Legacy 16byte descriptor is not supported. 2728 */ 2729 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1); 2730 2731 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 2732 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 2733 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 2734 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 2735 rxdid->supported_rxdids |= BIT(i); 2736 } 2737 2738 pf->supported_rxdids = rxdid->supported_rxdids; 2739 2740 err: 2741 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 2742 v_ret, (u8 *)rxdid, len); 2743 kfree(rxdid); 2744 return ret; 2745 } 2746 2747 /** 2748 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2749 * @vf: VF to enable/disable VLAN stripping for on initialization 2750 * 2751 * Set the default for VLAN stripping based on whether a port VLAN is configured 2752 * and the current VLAN mode of the device. 2753 */ 2754 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2755 { 2756 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2757 2758 vf->vlan_strip_ena = 0; 2759 2760 if (!vsi) 2761 return -EINVAL; 2762 2763 /* don't modify stripping if port VLAN is configured in SVM since the 2764 * port VLAN is based on the inner/single VLAN in SVM 2765 */ 2766 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2767 return 0; 2768 2769 if (ice_vf_vlan_offload_ena(vf->driver_caps)) { 2770 int err; 2771 2772 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2773 if (!err) 2774 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2775 return err; 2776 } 2777 2778 return vsi->inner_vlan_ops.dis_stripping(vsi); 2779 } 2780 2781 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2782 { 2783 if (vf->trusted) 2784 return VLAN_N_VID; 2785 else 2786 return ICE_MAX_VLAN_PER_VF; 2787 } 2788 2789 /** 2790 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2791 * @vf: VF that being checked for 2792 * 2793 * When the device is in double VLAN mode, check whether or not the outer VLAN 2794 * is allowed. 2795 */ 2796 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2797 { 2798 if (ice_vf_is_port_vlan_ena(vf)) 2799 return true; 2800 2801 return false; 2802 } 2803 2804 /** 2805 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2806 * @vf: VF that capabilities are being set for 2807 * @caps: VLAN capabilities to populate 2808 * 2809 * Determine VLAN capabilities support based on whether a port VLAN is 2810 * configured. If a port VLAN is configured then the VF should use the inner 2811 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2812 * capabilies. 2813 */ 2814 static void 2815 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2816 { 2817 struct virtchnl_vlan_supported_caps *supported_caps; 2818 2819 if (ice_vf_outer_vlan_not_allowed(vf)) { 2820 /* until support for inner VLAN filtering is added when a port 2821 * VLAN is configured, only support software offloaded inner 2822 * VLANs when a port VLAN is confgured in DVM 2823 */ 2824 supported_caps = &caps->filtering.filtering_support; 2825 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2826 2827 supported_caps = &caps->offloads.stripping_support; 2828 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2829 VIRTCHNL_VLAN_TOGGLE | 2830 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2831 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2832 2833 supported_caps = &caps->offloads.insertion_support; 2834 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2835 VIRTCHNL_VLAN_TOGGLE | 2836 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2837 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2838 2839 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2840 caps->offloads.ethertype_match = 2841 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2842 } else { 2843 supported_caps = &caps->filtering.filtering_support; 2844 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2845 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2846 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2847 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2848 VIRTCHNL_VLAN_ETHERTYPE_AND; 2849 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2850 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2851 VIRTCHNL_VLAN_ETHERTYPE_9100; 2852 2853 supported_caps = &caps->offloads.stripping_support; 2854 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2855 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2856 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2857 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2858 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2859 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2860 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2861 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2862 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2863 2864 supported_caps = &caps->offloads.insertion_support; 2865 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2866 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2867 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2868 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2869 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2870 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2871 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2872 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2873 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2874 2875 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2876 2877 caps->offloads.ethertype_match = 2878 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2879 } 2880 2881 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2882 } 2883 2884 /** 2885 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2886 * @vf: VF that capabilities are being set for 2887 * @caps: VLAN capabilities to populate 2888 * 2889 * Determine VLAN capabilities support based on whether a port VLAN is 2890 * configured. If a port VLAN is configured then the VF does not have any VLAN 2891 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2892 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2893 * VLAN fitlering and offload capabilities. 2894 */ 2895 static void 2896 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2897 { 2898 struct virtchnl_vlan_supported_caps *supported_caps; 2899 2900 if (ice_vf_is_port_vlan_ena(vf)) { 2901 supported_caps = &caps->filtering.filtering_support; 2902 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2903 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2904 2905 supported_caps = &caps->offloads.stripping_support; 2906 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2907 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2908 2909 supported_caps = &caps->offloads.insertion_support; 2910 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2911 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2912 2913 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2914 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2915 caps->filtering.max_filters = 0; 2916 } else { 2917 supported_caps = &caps->filtering.filtering_support; 2918 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2919 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2920 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2921 2922 supported_caps = &caps->offloads.stripping_support; 2923 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2924 VIRTCHNL_VLAN_TOGGLE | 2925 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2926 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2927 2928 supported_caps = &caps->offloads.insertion_support; 2929 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2930 VIRTCHNL_VLAN_TOGGLE | 2931 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2932 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2933 2934 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2935 caps->offloads.ethertype_match = 2936 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2937 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2938 } 2939 } 2940 2941 /** 2942 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2943 * @vf: VF to determine VLAN capabilities for 2944 * 2945 * This will only be called if the VF and PF successfully negotiated 2946 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2947 * 2948 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2949 * is configured or not. 2950 */ 2951 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2952 { 2953 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2954 struct virtchnl_vlan_caps *caps = NULL; 2955 int err, len = 0; 2956 2957 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2958 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2959 goto out; 2960 } 2961 2962 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2963 if (!caps) { 2964 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2965 goto out; 2966 } 2967 len = sizeof(*caps); 2968 2969 if (ice_is_dvm_ena(&vf->pf->hw)) 2970 ice_vc_set_dvm_caps(vf, caps); 2971 else 2972 ice_vc_set_svm_caps(vf, caps); 2973 2974 /* store negotiated caps to prevent invalid VF messages */ 2975 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2976 2977 out: 2978 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2979 v_ret, (u8 *)caps, len); 2980 kfree(caps); 2981 return err; 2982 } 2983 2984 /** 2985 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2986 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2987 * @tpid: VLAN TPID used for validation 2988 * 2989 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2990 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2991 */ 2992 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2993 { 2994 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2995 2996 switch (tpid) { 2997 case ETH_P_8021Q: 2998 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2999 break; 3000 case ETH_P_8021AD: 3001 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 3002 break; 3003 case ETH_P_QINQ1: 3004 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 3005 break; 3006 } 3007 3008 if (!(filtering_caps & vlan_ethertype)) 3009 return false; 3010 3011 return true; 3012 } 3013 3014 /** 3015 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 3016 * @vc_vlan: virtchnl_vlan to validate 3017 * 3018 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 3019 * false. Otherwise return true. 3020 */ 3021 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 3022 { 3023 if (!vc_vlan->tci || !vc_vlan->tpid) 3024 return false; 3025 3026 return true; 3027 } 3028 3029 /** 3030 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 3031 * @vfc: negotiated/supported VLAN filtering capabilities 3032 * @vfl: VLAN filter list from VF to validate 3033 * 3034 * Validate all of the filters in the VLAN filter list from the VF. If any of 3035 * the checks fail then return false. Otherwise return true. 3036 */ 3037 static bool 3038 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 3039 struct virtchnl_vlan_filter_list_v2 *vfl) 3040 { 3041 u16 i; 3042 3043 if (!vfl->num_elements) 3044 return false; 3045 3046 for (i = 0; i < vfl->num_elements; i++) { 3047 struct virtchnl_vlan_supported_caps *filtering_support = 3048 &vfc->filtering_support; 3049 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3050 struct virtchnl_vlan *outer = &vlan_fltr->outer; 3051 struct virtchnl_vlan *inner = &vlan_fltr->inner; 3052 3053 if ((ice_vc_is_valid_vlan(outer) && 3054 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 3055 (ice_vc_is_valid_vlan(inner) && 3056 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 3057 return false; 3058 3059 if ((outer->tci_mask && 3060 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 3061 (inner->tci_mask && 3062 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 3063 return false; 3064 3065 if (((outer->tci & VLAN_PRIO_MASK) && 3066 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 3067 ((inner->tci & VLAN_PRIO_MASK) && 3068 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 3069 return false; 3070 3071 if ((ice_vc_is_valid_vlan(outer) && 3072 !ice_vc_validate_vlan_tpid(filtering_support->outer, 3073 outer->tpid)) || 3074 (ice_vc_is_valid_vlan(inner) && 3075 !ice_vc_validate_vlan_tpid(filtering_support->inner, 3076 inner->tpid))) 3077 return false; 3078 } 3079 3080 return true; 3081 } 3082 3083 /** 3084 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 3085 * @vc_vlan: struct virtchnl_vlan to transform 3086 */ 3087 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 3088 { 3089 struct ice_vlan vlan = { 0 }; 3090 3091 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci); 3092 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 3093 vlan.tpid = vc_vlan->tpid; 3094 3095 return vlan; 3096 } 3097 3098 /** 3099 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 3100 * @vsi: VF's VSI used to perform the action 3101 * @vlan_action: function to perform the action with (i.e. add/del) 3102 * @vlan: VLAN filter to perform the action with 3103 */ 3104 static int 3105 ice_vc_vlan_action(struct ice_vsi *vsi, 3106 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3107 struct ice_vlan *vlan) 3108 { 3109 int err; 3110 3111 err = vlan_action(vsi, vlan); 3112 if (err) 3113 return err; 3114 3115 return 0; 3116 } 3117 3118 /** 3119 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3120 * @vf: VF used to delete the VLAN(s) 3121 * @vsi: VF's VSI used to delete the VLAN(s) 3122 * @vfl: virthchnl filter list used to delete the filters 3123 */ 3124 static int 3125 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3126 struct virtchnl_vlan_filter_list_v2 *vfl) 3127 { 3128 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3129 int err; 3130 u16 i; 3131 3132 for (i = 0; i < vfl->num_elements; i++) { 3133 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3134 struct virtchnl_vlan *vc_vlan; 3135 3136 vc_vlan = &vlan_fltr->outer; 3137 if (ice_vc_is_valid_vlan(vc_vlan)) { 3138 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3139 3140 err = ice_vc_vlan_action(vsi, 3141 vsi->outer_vlan_ops.del_vlan, 3142 &vlan); 3143 if (err) 3144 return err; 3145 3146 if (vlan_promisc) 3147 ice_vf_dis_vlan_promisc(vsi, &vlan); 3148 3149 /* Disable VLAN filtering when only VLAN 0 is left */ 3150 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3151 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3152 if (err) 3153 return err; 3154 } 3155 } 3156 3157 vc_vlan = &vlan_fltr->inner; 3158 if (ice_vc_is_valid_vlan(vc_vlan)) { 3159 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3160 3161 err = ice_vc_vlan_action(vsi, 3162 vsi->inner_vlan_ops.del_vlan, 3163 &vlan); 3164 if (err) 3165 return err; 3166 3167 /* no support for VLAN promiscuous on inner VLAN unless 3168 * we are in Single VLAN Mode (SVM) 3169 */ 3170 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3171 if (vlan_promisc) 3172 ice_vf_dis_vlan_promisc(vsi, &vlan); 3173 3174 /* Disable VLAN filtering when only VLAN 0 is left */ 3175 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3176 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3177 if (err) 3178 return err; 3179 } 3180 } 3181 } 3182 } 3183 3184 return 0; 3185 } 3186 3187 /** 3188 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3189 * @vf: VF the message was received from 3190 * @msg: message received from the VF 3191 */ 3192 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3193 { 3194 struct virtchnl_vlan_filter_list_v2 *vfl = 3195 (struct virtchnl_vlan_filter_list_v2 *)msg; 3196 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3197 struct ice_vsi *vsi; 3198 3199 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3200 vfl)) { 3201 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3202 goto out; 3203 } 3204 3205 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3206 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3207 goto out; 3208 } 3209 3210 vsi = ice_get_vf_vsi(vf); 3211 if (!vsi) { 3212 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3213 goto out; 3214 } 3215 3216 if (ice_vc_del_vlans(vf, vsi, vfl)) 3217 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3218 3219 out: 3220 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3221 0); 3222 } 3223 3224 /** 3225 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3226 * @vf: VF used to add the VLAN(s) 3227 * @vsi: VF's VSI used to add the VLAN(s) 3228 * @vfl: virthchnl filter list used to add the filters 3229 */ 3230 static int 3231 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3232 struct virtchnl_vlan_filter_list_v2 *vfl) 3233 { 3234 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3235 int err; 3236 u16 i; 3237 3238 for (i = 0; i < vfl->num_elements; i++) { 3239 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3240 struct virtchnl_vlan *vc_vlan; 3241 3242 vc_vlan = &vlan_fltr->outer; 3243 if (ice_vc_is_valid_vlan(vc_vlan)) { 3244 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3245 3246 err = ice_vc_vlan_action(vsi, 3247 vsi->outer_vlan_ops.add_vlan, 3248 &vlan); 3249 if (err) 3250 return err; 3251 3252 if (vlan_promisc) { 3253 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3254 if (err) 3255 return err; 3256 } 3257 3258 /* Enable VLAN filtering on first non-zero VLAN */ 3259 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3260 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3261 if (err) 3262 return err; 3263 } 3264 } 3265 3266 vc_vlan = &vlan_fltr->inner; 3267 if (ice_vc_is_valid_vlan(vc_vlan)) { 3268 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3269 3270 err = ice_vc_vlan_action(vsi, 3271 vsi->inner_vlan_ops.add_vlan, 3272 &vlan); 3273 if (err) 3274 return err; 3275 3276 /* no support for VLAN promiscuous on inner VLAN unless 3277 * we are in Single VLAN Mode (SVM) 3278 */ 3279 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3280 if (vlan_promisc) { 3281 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3282 if (err) 3283 return err; 3284 } 3285 3286 /* Enable VLAN filtering on first non-zero VLAN */ 3287 if (vf->spoofchk && vlan.vid) { 3288 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3289 if (err) 3290 return err; 3291 } 3292 } 3293 } 3294 } 3295 3296 return 0; 3297 } 3298 3299 /** 3300 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3301 * @vsi: VF VSI used to get number of existing VLAN filters 3302 * @vfc: negotiated/supported VLAN filtering capabilities 3303 * @vfl: VLAN filter list from VF to validate 3304 * 3305 * Validate all of the filters in the VLAN filter list from the VF during the 3306 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3307 * Otherwise return true. 3308 */ 3309 static bool 3310 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3311 struct virtchnl_vlan_filtering_caps *vfc, 3312 struct virtchnl_vlan_filter_list_v2 *vfl) 3313 { 3314 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3315 vfl->num_elements; 3316 3317 if (num_requested_filters > vfc->max_filters) 3318 return false; 3319 3320 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3321 } 3322 3323 /** 3324 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3325 * @vf: VF the message was received from 3326 * @msg: message received from the VF 3327 */ 3328 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3329 { 3330 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3331 struct virtchnl_vlan_filter_list_v2 *vfl = 3332 (struct virtchnl_vlan_filter_list_v2 *)msg; 3333 struct ice_vsi *vsi; 3334 3335 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3336 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3337 goto out; 3338 } 3339 3340 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3341 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3342 goto out; 3343 } 3344 3345 vsi = ice_get_vf_vsi(vf); 3346 if (!vsi) { 3347 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3348 goto out; 3349 } 3350 3351 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3352 &vf->vlan_v2_caps.filtering, 3353 vfl)) { 3354 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3355 goto out; 3356 } 3357 3358 if (ice_vc_add_vlans(vf, vsi, vfl)) 3359 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3360 3361 out: 3362 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3363 0); 3364 } 3365 3366 /** 3367 * ice_vc_valid_vlan_setting - validate VLAN setting 3368 * @negotiated_settings: negotiated VLAN settings during VF init 3369 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3370 */ 3371 static bool 3372 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3373 { 3374 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3375 return false; 3376 3377 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3378 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3379 */ 3380 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3381 hweight32(ethertype_setting) > 1) 3382 return false; 3383 3384 /* ability to modify the VLAN setting was not negotiated */ 3385 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3386 return false; 3387 3388 return true; 3389 } 3390 3391 /** 3392 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3393 * @caps: negotiated VLAN settings during VF init 3394 * @msg: message to validate 3395 * 3396 * Used to validate any VLAN virtchnl message sent as a 3397 * virtchnl_vlan_setting structure. Validates the message against the 3398 * negotiated/supported caps during VF driver init. 3399 */ 3400 static bool 3401 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3402 struct virtchnl_vlan_setting *msg) 3403 { 3404 if ((!msg->outer_ethertype_setting && 3405 !msg->inner_ethertype_setting) || 3406 (!caps->outer && !caps->inner)) 3407 return false; 3408 3409 if (msg->outer_ethertype_setting && 3410 !ice_vc_valid_vlan_setting(caps->outer, 3411 msg->outer_ethertype_setting)) 3412 return false; 3413 3414 if (msg->inner_ethertype_setting && 3415 !ice_vc_valid_vlan_setting(caps->inner, 3416 msg->inner_ethertype_setting)) 3417 return false; 3418 3419 return true; 3420 } 3421 3422 /** 3423 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3424 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3425 * @tpid: VLAN TPID to populate 3426 */ 3427 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3428 { 3429 switch (ethertype_setting) { 3430 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3431 *tpid = ETH_P_8021Q; 3432 break; 3433 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3434 *tpid = ETH_P_8021AD; 3435 break; 3436 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3437 *tpid = ETH_P_QINQ1; 3438 break; 3439 default: 3440 *tpid = 0; 3441 return -EINVAL; 3442 } 3443 3444 return 0; 3445 } 3446 3447 /** 3448 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3449 * @vsi: VF's VSI used to enable the VLAN offload 3450 * @ena_offload: function used to enable the VLAN offload 3451 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3452 */ 3453 static int 3454 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3455 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3456 u32 ethertype_setting) 3457 { 3458 u16 tpid; 3459 int err; 3460 3461 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3462 if (err) 3463 return err; 3464 3465 err = ena_offload(vsi, tpid); 3466 if (err) 3467 return err; 3468 3469 return 0; 3470 } 3471 3472 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3473 #define ICE_L2TSEL_BIT_OFFSET 23 3474 enum ice_l2tsel { 3475 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3476 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3477 }; 3478 3479 /** 3480 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3481 * @vsi: VSI used to update l2tsel on 3482 * @l2tsel: l2tsel setting requested 3483 * 3484 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3485 * This will modify which descriptor field the first offloaded VLAN will be 3486 * stripped into. 3487 */ 3488 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3489 { 3490 struct ice_hw *hw = &vsi->back->hw; 3491 u32 l2tsel_bit; 3492 int i; 3493 3494 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3495 l2tsel_bit = 0; 3496 else 3497 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3498 3499 for (i = 0; i < vsi->alloc_rxq; i++) { 3500 u16 pfq = vsi->rxq_map[i]; 3501 u32 qrx_context_offset; 3502 u32 regval; 3503 3504 qrx_context_offset = 3505 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3506 3507 regval = rd32(hw, qrx_context_offset); 3508 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3509 regval |= l2tsel_bit; 3510 wr32(hw, qrx_context_offset, regval); 3511 } 3512 } 3513 3514 /** 3515 * ice_vc_ena_vlan_stripping_v2_msg 3516 * @vf: VF the message was received from 3517 * @msg: message received from the VF 3518 * 3519 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3520 */ 3521 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3522 { 3523 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3524 struct virtchnl_vlan_supported_caps *stripping_support; 3525 struct virtchnl_vlan_setting *strip_msg = 3526 (struct virtchnl_vlan_setting *)msg; 3527 u32 ethertype_setting; 3528 struct ice_vsi *vsi; 3529 3530 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3531 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3532 goto out; 3533 } 3534 3535 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3536 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3537 goto out; 3538 } 3539 3540 vsi = ice_get_vf_vsi(vf); 3541 if (!vsi) { 3542 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3543 goto out; 3544 } 3545 3546 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3547 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3548 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3549 goto out; 3550 } 3551 3552 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) { 3553 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3554 goto out; 3555 } 3556 3557 ethertype_setting = strip_msg->outer_ethertype_setting; 3558 if (ethertype_setting) { 3559 if (ice_vc_ena_vlan_offload(vsi, 3560 vsi->outer_vlan_ops.ena_stripping, 3561 ethertype_setting)) { 3562 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3563 goto out; 3564 } else { 3565 enum ice_l2tsel l2tsel = 3566 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3567 3568 /* PF tells the VF that the outer VLAN tag is always 3569 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3570 * inner is always extracted to 3571 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3572 * support outer stripping so the first tag always ends 3573 * up in L2TAG2_2ND and the second/inner tag, if 3574 * enabled, is extracted in L2TAG1. 3575 */ 3576 ice_vsi_update_l2tsel(vsi, l2tsel); 3577 3578 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA; 3579 } 3580 } 3581 3582 ethertype_setting = strip_msg->inner_ethertype_setting; 3583 if (ethertype_setting && 3584 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3585 ethertype_setting)) { 3586 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3587 goto out; 3588 } 3589 3590 if (ethertype_setting) 3591 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3592 3593 out: 3594 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3595 v_ret, NULL, 0); 3596 } 3597 3598 /** 3599 * ice_vc_dis_vlan_stripping_v2_msg 3600 * @vf: VF the message was received from 3601 * @msg: message received from the VF 3602 * 3603 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3604 */ 3605 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3606 { 3607 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3608 struct virtchnl_vlan_supported_caps *stripping_support; 3609 struct virtchnl_vlan_setting *strip_msg = 3610 (struct virtchnl_vlan_setting *)msg; 3611 u32 ethertype_setting; 3612 struct ice_vsi *vsi; 3613 3614 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3615 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3616 goto out; 3617 } 3618 3619 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3620 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3621 goto out; 3622 } 3623 3624 vsi = ice_get_vf_vsi(vf); 3625 if (!vsi) { 3626 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3627 goto out; 3628 } 3629 3630 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3631 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3632 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3633 goto out; 3634 } 3635 3636 ethertype_setting = strip_msg->outer_ethertype_setting; 3637 if (ethertype_setting) { 3638 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3639 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3640 goto out; 3641 } else { 3642 enum ice_l2tsel l2tsel = 3643 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3644 3645 /* PF tells the VF that the outer VLAN tag is always 3646 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3647 * inner is always extracted to 3648 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3649 * support inner stripping while outer stripping is 3650 * disabled so that the first and only tag is extracted 3651 * in L2TAG1. 3652 */ 3653 ice_vsi_update_l2tsel(vsi, l2tsel); 3654 3655 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA; 3656 } 3657 } 3658 3659 ethertype_setting = strip_msg->inner_ethertype_setting; 3660 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3661 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3662 goto out; 3663 } 3664 3665 if (ethertype_setting) 3666 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 3667 3668 out: 3669 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3670 v_ret, NULL, 0); 3671 } 3672 3673 /** 3674 * ice_vc_ena_vlan_insertion_v2_msg 3675 * @vf: VF the message was received from 3676 * @msg: message received from the VF 3677 * 3678 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3679 */ 3680 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3681 { 3682 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3683 struct virtchnl_vlan_supported_caps *insertion_support; 3684 struct virtchnl_vlan_setting *insertion_msg = 3685 (struct virtchnl_vlan_setting *)msg; 3686 u32 ethertype_setting; 3687 struct ice_vsi *vsi; 3688 3689 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3690 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3691 goto out; 3692 } 3693 3694 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3695 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3696 goto out; 3697 } 3698 3699 vsi = ice_get_vf_vsi(vf); 3700 if (!vsi) { 3701 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3702 goto out; 3703 } 3704 3705 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3706 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3707 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3708 goto out; 3709 } 3710 3711 ethertype_setting = insertion_msg->outer_ethertype_setting; 3712 if (ethertype_setting && 3713 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3714 ethertype_setting)) { 3715 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3716 goto out; 3717 } 3718 3719 ethertype_setting = insertion_msg->inner_ethertype_setting; 3720 if (ethertype_setting && 3721 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3722 ethertype_setting)) { 3723 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3724 goto out; 3725 } 3726 3727 out: 3728 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3729 v_ret, NULL, 0); 3730 } 3731 3732 /** 3733 * ice_vc_dis_vlan_insertion_v2_msg 3734 * @vf: VF the message was received from 3735 * @msg: message received from the VF 3736 * 3737 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3738 */ 3739 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3740 { 3741 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3742 struct virtchnl_vlan_supported_caps *insertion_support; 3743 struct virtchnl_vlan_setting *insertion_msg = 3744 (struct virtchnl_vlan_setting *)msg; 3745 u32 ethertype_setting; 3746 struct ice_vsi *vsi; 3747 3748 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3749 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3750 goto out; 3751 } 3752 3753 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3754 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3755 goto out; 3756 } 3757 3758 vsi = ice_get_vf_vsi(vf); 3759 if (!vsi) { 3760 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3761 goto out; 3762 } 3763 3764 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3765 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3766 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3767 goto out; 3768 } 3769 3770 ethertype_setting = insertion_msg->outer_ethertype_setting; 3771 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3772 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3773 goto out; 3774 } 3775 3776 ethertype_setting = insertion_msg->inner_ethertype_setting; 3777 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3778 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3779 goto out; 3780 } 3781 3782 out: 3783 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3784 v_ret, NULL, 0); 3785 } 3786 3787 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3788 .get_ver_msg = ice_vc_get_ver_msg, 3789 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3790 .reset_vf = ice_vc_reset_vf_msg, 3791 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3792 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3793 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3794 .ena_qs_msg = ice_vc_ena_qs_msg, 3795 .dis_qs_msg = ice_vc_dis_qs_msg, 3796 .request_qs_msg = ice_vc_request_qs_msg, 3797 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3798 .config_rss_key = ice_vc_config_rss_key, 3799 .config_rss_lut = ice_vc_config_rss_lut, 3800 .config_rss_hfunc = ice_vc_config_rss_hfunc, 3801 .get_stats_msg = ice_vc_get_stats_msg, 3802 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3803 .add_vlan_msg = ice_vc_add_vlan_msg, 3804 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3805 .query_rxdid = ice_vc_query_rxdid, 3806 .get_rss_hena = ice_vc_get_rss_hena, 3807 .set_rss_hena_msg = ice_vc_set_rss_hena, 3808 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3809 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3810 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3811 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3812 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3813 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3814 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3815 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3816 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3817 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3818 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3819 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3820 }; 3821 3822 /** 3823 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3824 * @vf: the VF to switch ops 3825 */ 3826 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3827 { 3828 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3829 } 3830 3831 /** 3832 * ice_vc_repr_add_mac 3833 * @vf: pointer to VF 3834 * @msg: virtchannel message 3835 * 3836 * When port representors are created, we do not add MAC rule 3837 * to firmware, we store it so that PF could report same 3838 * MAC as VF. 3839 */ 3840 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3841 { 3842 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3843 struct virtchnl_ether_addr_list *al = 3844 (struct virtchnl_ether_addr_list *)msg; 3845 struct ice_vsi *vsi; 3846 struct ice_pf *pf; 3847 int i; 3848 3849 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3850 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3851 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3852 goto handle_mac_exit; 3853 } 3854 3855 pf = vf->pf; 3856 3857 vsi = ice_get_vf_vsi(vf); 3858 if (!vsi) { 3859 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3860 goto handle_mac_exit; 3861 } 3862 3863 for (i = 0; i < al->num_elements; i++) { 3864 u8 *mac_addr = al->list[i].addr; 3865 3866 if (!is_unicast_ether_addr(mac_addr) || 3867 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 3868 continue; 3869 3870 if (vf->pf_set_mac) { 3871 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3872 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3873 goto handle_mac_exit; 3874 } 3875 3876 ice_vfhw_mac_add(vf, &al->list[i]); 3877 vf->num_mac++; 3878 break; 3879 } 3880 3881 handle_mac_exit: 3882 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3883 v_ret, NULL, 0); 3884 } 3885 3886 /** 3887 * ice_vc_repr_del_mac - response with success for deleting MAC 3888 * @vf: pointer to VF 3889 * @msg: virtchannel message 3890 * 3891 * Respond with success to not break normal VF flow. 3892 * For legacy VF driver try to update cached MAC address. 3893 */ 3894 static int 3895 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3896 { 3897 struct virtchnl_ether_addr_list *al = 3898 (struct virtchnl_ether_addr_list *)msg; 3899 3900 ice_update_legacy_cached_mac(vf, &al->list[0]); 3901 3902 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3903 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3904 } 3905 3906 static int 3907 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3908 { 3909 dev_dbg(ice_pf_to_dev(vf->pf), 3910 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3911 vf->vf_id); 3912 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3913 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3914 NULL, 0); 3915 } 3916 3917 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3918 .get_ver_msg = ice_vc_get_ver_msg, 3919 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3920 .reset_vf = ice_vc_reset_vf_msg, 3921 .add_mac_addr_msg = ice_vc_repr_add_mac, 3922 .del_mac_addr_msg = ice_vc_repr_del_mac, 3923 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3924 .ena_qs_msg = ice_vc_ena_qs_msg, 3925 .dis_qs_msg = ice_vc_dis_qs_msg, 3926 .request_qs_msg = ice_vc_request_qs_msg, 3927 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3928 .config_rss_key = ice_vc_config_rss_key, 3929 .config_rss_lut = ice_vc_config_rss_lut, 3930 .config_rss_hfunc = ice_vc_config_rss_hfunc, 3931 .get_stats_msg = ice_vc_get_stats_msg, 3932 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3933 .add_vlan_msg = ice_vc_add_vlan_msg, 3934 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3935 .query_rxdid = ice_vc_query_rxdid, 3936 .get_rss_hena = ice_vc_get_rss_hena, 3937 .set_rss_hena_msg = ice_vc_set_rss_hena, 3938 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3939 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3940 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3941 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3942 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3943 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3944 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3945 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3946 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3947 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3948 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3949 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3950 }; 3951 3952 /** 3953 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3954 * @vf: the VF to switch ops 3955 */ 3956 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3957 { 3958 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3959 } 3960 3961 /** 3962 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 3963 * @vf: the VF to check 3964 * @mbxdata: data about the state of the mailbox 3965 * 3966 * Detect if a given VF might be malicious and attempting to overflow the PF 3967 * mailbox. If so, log a warning message and ignore this event. 3968 */ 3969 static bool 3970 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 3971 { 3972 bool report_malvf = false; 3973 struct device *dev; 3974 struct ice_pf *pf; 3975 int status; 3976 3977 pf = vf->pf; 3978 dev = ice_pf_to_dev(pf); 3979 3980 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 3981 return vf->mbx_info.malicious; 3982 3983 /* check to see if we have a newly malicious VF */ 3984 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 3985 &report_malvf); 3986 if (status) 3987 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 3988 vf->vf_id, vf->dev_lan_addr, status); 3989 3990 if (report_malvf) { 3991 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3992 u8 zero_addr[ETH_ALEN] = {}; 3993 3994 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 3995 vf->dev_lan_addr, 3996 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 3997 } 3998 3999 return vf->mbx_info.malicious; 4000 } 4001 4002 /** 4003 * ice_vc_process_vf_msg - Process request from VF 4004 * @pf: pointer to the PF structure 4005 * @event: pointer to the AQ event 4006 * @mbxdata: information used to detect VF attempting mailbox overflow 4007 * 4008 * called from the common asq/arq handler to 4009 * process request from VF 4010 */ 4011 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 4012 struct ice_mbx_data *mbxdata) 4013 { 4014 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 4015 s16 vf_id = le16_to_cpu(event->desc.retval); 4016 const struct ice_virtchnl_ops *ops; 4017 u16 msglen = event->msg_len; 4018 u8 *msg = event->msg_buf; 4019 struct ice_vf *vf = NULL; 4020 struct device *dev; 4021 int err = 0; 4022 4023 dev = ice_pf_to_dev(pf); 4024 4025 vf = ice_get_vf_by_id(pf, vf_id); 4026 if (!vf) { 4027 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 4028 vf_id, v_opcode, msglen); 4029 return; 4030 } 4031 4032 mutex_lock(&vf->cfg_lock); 4033 4034 /* Check if the VF is trying to overflow the mailbox */ 4035 if (ice_is_malicious_vf(vf, mbxdata)) 4036 goto finish; 4037 4038 /* Check if VF is disabled. */ 4039 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 4040 err = -EPERM; 4041 goto error_handler; 4042 } 4043 4044 ops = vf->virtchnl_ops; 4045 4046 /* Perform basic checks on the msg */ 4047 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 4048 if (err) { 4049 if (err == VIRTCHNL_STATUS_ERR_PARAM) 4050 err = -EPERM; 4051 else 4052 err = -EINVAL; 4053 } 4054 4055 error_handler: 4056 if (err) { 4057 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 4058 NULL, 0); 4059 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 4060 vf_id, v_opcode, msglen, err); 4061 goto finish; 4062 } 4063 4064 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 4065 ice_vc_send_msg_to_vf(vf, v_opcode, 4066 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 4067 0); 4068 goto finish; 4069 } 4070 4071 switch (v_opcode) { 4072 case VIRTCHNL_OP_VERSION: 4073 err = ops->get_ver_msg(vf, msg); 4074 break; 4075 case VIRTCHNL_OP_GET_VF_RESOURCES: 4076 err = ops->get_vf_res_msg(vf, msg); 4077 if (ice_vf_init_vlan_stripping(vf)) 4078 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 4079 vf->vf_id); 4080 ice_vc_notify_vf_link_state(vf); 4081 break; 4082 case VIRTCHNL_OP_RESET_VF: 4083 ops->reset_vf(vf); 4084 break; 4085 case VIRTCHNL_OP_ADD_ETH_ADDR: 4086 err = ops->add_mac_addr_msg(vf, msg); 4087 break; 4088 case VIRTCHNL_OP_DEL_ETH_ADDR: 4089 err = ops->del_mac_addr_msg(vf, msg); 4090 break; 4091 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 4092 err = ops->cfg_qs_msg(vf, msg); 4093 break; 4094 case VIRTCHNL_OP_ENABLE_QUEUES: 4095 err = ops->ena_qs_msg(vf, msg); 4096 ice_vc_notify_vf_link_state(vf); 4097 break; 4098 case VIRTCHNL_OP_DISABLE_QUEUES: 4099 err = ops->dis_qs_msg(vf, msg); 4100 break; 4101 case VIRTCHNL_OP_REQUEST_QUEUES: 4102 err = ops->request_qs_msg(vf, msg); 4103 break; 4104 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 4105 err = ops->cfg_irq_map_msg(vf, msg); 4106 break; 4107 case VIRTCHNL_OP_CONFIG_RSS_KEY: 4108 err = ops->config_rss_key(vf, msg); 4109 break; 4110 case VIRTCHNL_OP_CONFIG_RSS_LUT: 4111 err = ops->config_rss_lut(vf, msg); 4112 break; 4113 case VIRTCHNL_OP_CONFIG_RSS_HFUNC: 4114 err = ops->config_rss_hfunc(vf, msg); 4115 break; 4116 case VIRTCHNL_OP_GET_STATS: 4117 err = ops->get_stats_msg(vf, msg); 4118 break; 4119 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 4120 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4121 break; 4122 case VIRTCHNL_OP_ADD_VLAN: 4123 err = ops->add_vlan_msg(vf, msg); 4124 break; 4125 case VIRTCHNL_OP_DEL_VLAN: 4126 err = ops->remove_vlan_msg(vf, msg); 4127 break; 4128 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4129 err = ops->query_rxdid(vf); 4130 break; 4131 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4132 err = ops->get_rss_hena(vf); 4133 break; 4134 case VIRTCHNL_OP_SET_RSS_HENA: 4135 err = ops->set_rss_hena_msg(vf, msg); 4136 break; 4137 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4138 err = ops->ena_vlan_stripping(vf); 4139 break; 4140 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4141 err = ops->dis_vlan_stripping(vf); 4142 break; 4143 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4144 err = ops->add_fdir_fltr_msg(vf, msg); 4145 break; 4146 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4147 err = ops->del_fdir_fltr_msg(vf, msg); 4148 break; 4149 case VIRTCHNL_OP_ADD_RSS_CFG: 4150 err = ops->handle_rss_cfg_msg(vf, msg, true); 4151 break; 4152 case VIRTCHNL_OP_DEL_RSS_CFG: 4153 err = ops->handle_rss_cfg_msg(vf, msg, false); 4154 break; 4155 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4156 err = ops->get_offload_vlan_v2_caps(vf); 4157 break; 4158 case VIRTCHNL_OP_ADD_VLAN_V2: 4159 err = ops->add_vlan_v2_msg(vf, msg); 4160 break; 4161 case VIRTCHNL_OP_DEL_VLAN_V2: 4162 err = ops->remove_vlan_v2_msg(vf, msg); 4163 break; 4164 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4165 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4166 break; 4167 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4168 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4169 break; 4170 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4171 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4172 break; 4173 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4174 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4175 break; 4176 case VIRTCHNL_OP_UNKNOWN: 4177 default: 4178 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4179 vf_id); 4180 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4181 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4182 NULL, 0); 4183 break; 4184 } 4185 if (err) { 4186 /* Helper function cares less about error return values here 4187 * as it is busy with pending work. 4188 */ 4189 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4190 vf_id, v_opcode, err); 4191 } 4192 4193 finish: 4194 mutex_unlock(&vf->cfg_lock); 4195 ice_put_vf(vf); 4196 } 4197