1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_RSS_REG | 444 VIRTCHNL_VF_OFFLOAD_VLAN; 445 446 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 447 vsi = ice_get_vf_vsi(vf); 448 if (!vsi) { 449 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 450 goto err; 451 } 452 453 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 454 vf->driver_caps); 455 456 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 457 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 458 } else { 459 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) 460 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; 461 else 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; 463 } 464 465 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 485 486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 488 489 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC; 491 492 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 494 495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 497 498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 500 501 vfres->num_vsis = 1; 502 /* Tx and Rx queue are equal for VF */ 503 vfres->num_queue_pairs = vsi->num_txq; 504 vfres->max_vectors = vf->num_msix; 505 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 506 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 507 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 508 509 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; 510 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 511 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 512 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 513 vf->hw_lan_addr); 514 515 /* match guest capabilities */ 516 vf->driver_caps = vfres->vf_cap_flags; 517 518 ice_vc_set_caps_allowlist(vf); 519 ice_vc_set_working_allowlist(vf); 520 521 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 522 523 err: 524 /* send the response back to the VF */ 525 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 526 (u8 *)vfres, len); 527 528 kfree(vfres); 529 return ret; 530 } 531 532 /** 533 * ice_vc_reset_vf_msg 534 * @vf: pointer to the VF info 535 * 536 * called from the VF to reset itself, 537 * unlike other virtchnl messages, PF driver 538 * doesn't send the response back to the VF 539 */ 540 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 541 { 542 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 543 ice_reset_vf(vf, 0); 544 } 545 546 /** 547 * ice_vc_isvalid_vsi_id 548 * @vf: pointer to the VF info 549 * @vsi_id: VF relative VSI ID 550 * 551 * check for the valid VSI ID 552 */ 553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 554 { 555 struct ice_pf *pf = vf->pf; 556 struct ice_vsi *vsi; 557 558 vsi = ice_find_vsi(pf, vsi_id); 559 560 return (vsi && (vsi->vf == vf)); 561 } 562 563 /** 564 * ice_vc_isvalid_q_id 565 * @vf: pointer to the VF info 566 * @vsi_id: VSI ID 567 * @qid: VSI relative queue ID 568 * 569 * check for the valid queue ID 570 */ 571 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) 572 { 573 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id); 574 /* allocated Tx and Rx queues should be always equal for VF VSI */ 575 return (vsi && (qid < vsi->alloc_txq)); 576 } 577 578 /** 579 * ice_vc_isvalid_ring_len 580 * @ring_len: length of ring 581 * 582 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 583 * or zero 584 */ 585 static bool ice_vc_isvalid_ring_len(u16 ring_len) 586 { 587 return ring_len == 0 || 588 (ring_len >= ICE_MIN_NUM_DESC && 589 ring_len <= ICE_MAX_NUM_DESC && 590 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 591 } 592 593 /** 594 * ice_vc_validate_pattern 595 * @vf: pointer to the VF info 596 * @proto: virtchnl protocol headers 597 * 598 * validate the pattern is supported or not. 599 * 600 * Return: true on success, false on error. 601 */ 602 bool 603 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 604 { 605 bool is_ipv4 = false; 606 bool is_ipv6 = false; 607 bool is_udp = false; 608 u16 ptype = -1; 609 int i = 0; 610 611 while (i < proto->count && 612 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 613 switch (proto->proto_hdr[i].type) { 614 case VIRTCHNL_PROTO_HDR_ETH: 615 ptype = ICE_PTYPE_MAC_PAY; 616 break; 617 case VIRTCHNL_PROTO_HDR_IPV4: 618 ptype = ICE_PTYPE_IPV4_PAY; 619 is_ipv4 = true; 620 break; 621 case VIRTCHNL_PROTO_HDR_IPV6: 622 ptype = ICE_PTYPE_IPV6_PAY; 623 is_ipv6 = true; 624 break; 625 case VIRTCHNL_PROTO_HDR_UDP: 626 if (is_ipv4) 627 ptype = ICE_PTYPE_IPV4_UDP_PAY; 628 else if (is_ipv6) 629 ptype = ICE_PTYPE_IPV6_UDP_PAY; 630 is_udp = true; 631 break; 632 case VIRTCHNL_PROTO_HDR_TCP: 633 if (is_ipv4) 634 ptype = ICE_PTYPE_IPV4_TCP_PAY; 635 else if (is_ipv6) 636 ptype = ICE_PTYPE_IPV6_TCP_PAY; 637 break; 638 case VIRTCHNL_PROTO_HDR_SCTP: 639 if (is_ipv4) 640 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 641 else if (is_ipv6) 642 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 643 break; 644 case VIRTCHNL_PROTO_HDR_GTPU_IP: 645 case VIRTCHNL_PROTO_HDR_GTPU_EH: 646 if (is_ipv4) 647 ptype = ICE_MAC_IPV4_GTPU; 648 else if (is_ipv6) 649 ptype = ICE_MAC_IPV6_GTPU; 650 goto out; 651 case VIRTCHNL_PROTO_HDR_L2TPV3: 652 if (is_ipv4) 653 ptype = ICE_MAC_IPV4_L2TPV3; 654 else if (is_ipv6) 655 ptype = ICE_MAC_IPV6_L2TPV3; 656 goto out; 657 case VIRTCHNL_PROTO_HDR_ESP: 658 if (is_ipv4) 659 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 660 ICE_MAC_IPV4_ESP; 661 else if (is_ipv6) 662 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 663 ICE_MAC_IPV6_ESP; 664 goto out; 665 case VIRTCHNL_PROTO_HDR_AH: 666 if (is_ipv4) 667 ptype = ICE_MAC_IPV4_AH; 668 else if (is_ipv6) 669 ptype = ICE_MAC_IPV6_AH; 670 goto out; 671 case VIRTCHNL_PROTO_HDR_PFCP: 672 if (is_ipv4) 673 ptype = ICE_MAC_IPV4_PFCP_SESSION; 674 else if (is_ipv6) 675 ptype = ICE_MAC_IPV6_PFCP_SESSION; 676 goto out; 677 default: 678 break; 679 } 680 i++; 681 } 682 683 out: 684 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 685 } 686 687 /** 688 * ice_vc_parse_rss_cfg - parses hash fields and headers from 689 * a specific virtchnl RSS cfg 690 * @hw: pointer to the hardware 691 * @rss_cfg: pointer to the virtchnl RSS cfg 692 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 693 * to configure 694 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 695 * 696 * Return true if all the protocol header and hash fields in the RSS cfg could 697 * be parsed, else return false 698 * 699 * This function parses the virtchnl RSS cfg to be the intended 700 * hash fields and the intended header for RSS configuration 701 */ 702 static bool 703 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 704 u32 *addl_hdrs, u64 *hash_flds) 705 { 706 const struct ice_vc_hash_field_match_type *hf_list; 707 const struct ice_vc_hdr_match_type *hdr_list; 708 int i, hf_list_len, hdr_list_len; 709 710 hf_list = ice_vc_hash_field_list; 711 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 712 hdr_list = ice_vc_hdr_list; 713 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 714 715 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 716 struct virtchnl_proto_hdr *proto_hdr = 717 &rss_cfg->proto_hdrs.proto_hdr[i]; 718 bool hdr_found = false; 719 int j; 720 721 /* Find matched ice headers according to virtchnl headers. */ 722 for (j = 0; j < hdr_list_len; j++) { 723 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 724 725 if (proto_hdr->type == hdr_map.vc_hdr) { 726 *addl_hdrs |= hdr_map.ice_hdr; 727 hdr_found = true; 728 } 729 } 730 731 if (!hdr_found) 732 return false; 733 734 /* Find matched ice hash fields according to 735 * virtchnl hash fields. 736 */ 737 for (j = 0; j < hf_list_len; j++) { 738 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 739 740 if (proto_hdr->type == hf_map.vc_hdr && 741 proto_hdr->field_selector == hf_map.vc_hash_field) { 742 *hash_flds |= hf_map.ice_hash_field; 743 break; 744 } 745 } 746 } 747 748 return true; 749 } 750 751 /** 752 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 753 * RSS offloads 754 * @caps: VF driver negotiated capabilities 755 * 756 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 757 * else return false 758 */ 759 static bool ice_vf_adv_rss_offload_ena(u32 caps) 760 { 761 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 762 } 763 764 /** 765 * ice_vc_handle_rss_cfg 766 * @vf: pointer to the VF info 767 * @msg: pointer to the message buffer 768 * @add: add a RSS config if true, otherwise delete a RSS config 769 * 770 * This function adds/deletes a RSS config 771 */ 772 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 773 { 774 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 775 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 776 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 777 struct device *dev = ice_pf_to_dev(vf->pf); 778 struct ice_hw *hw = &vf->pf->hw; 779 struct ice_vsi *vsi; 780 781 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 782 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 783 vf->vf_id); 784 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 785 goto error_param; 786 } 787 788 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 789 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 790 vf->vf_id); 791 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 792 goto error_param; 793 } 794 795 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 796 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 797 goto error_param; 798 } 799 800 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 801 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 802 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 803 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 804 vf->vf_id); 805 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 806 goto error_param; 807 } 808 809 vsi = ice_get_vf_vsi(vf); 810 if (!vsi) { 811 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 812 goto error_param; 813 } 814 815 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 816 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 817 goto error_param; 818 } 819 820 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 821 struct ice_vsi_ctx *ctx; 822 u8 lut_type, hash_type; 823 int status; 824 825 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 826 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR : 827 ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 828 829 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 830 if (!ctx) { 831 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 832 goto error_param; 833 } 834 835 ctx->info.q_opt_rss = ((lut_type << 836 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 837 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 838 (hash_type & 839 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 840 841 /* Preserve existing queueing option setting */ 842 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 843 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 844 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 845 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 846 847 ctx->info.valid_sections = 848 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 849 850 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 851 if (status) { 852 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 853 status, ice_aq_str(hw->adminq.sq_last_status)); 854 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 855 } else { 856 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 857 } 858 859 kfree(ctx); 860 } else { 861 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 862 u64 hash_flds = ICE_HASH_INVALID; 863 864 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 865 &hash_flds)) { 866 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 867 goto error_param; 868 } 869 870 if (add) { 871 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 872 addl_hdrs)) { 873 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 874 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 875 vsi->vsi_num, v_ret); 876 } 877 } else { 878 int status; 879 880 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 881 addl_hdrs); 882 /* We just ignore -ENOENT, because if two configurations 883 * share the same profile remove one of them actually 884 * removes both, since the profile is deleted. 885 */ 886 if (status && status != -ENOENT) { 887 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 888 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 889 vf->vf_id, status); 890 } 891 } 892 } 893 894 error_param: 895 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 896 } 897 898 /** 899 * ice_vc_config_rss_key 900 * @vf: pointer to the VF info 901 * @msg: pointer to the msg buffer 902 * 903 * Configure the VF's RSS key 904 */ 905 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 906 { 907 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 908 struct virtchnl_rss_key *vrk = 909 (struct virtchnl_rss_key *)msg; 910 struct ice_vsi *vsi; 911 912 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 913 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 914 goto error_param; 915 } 916 917 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 918 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 919 goto error_param; 920 } 921 922 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 923 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 924 goto error_param; 925 } 926 927 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 928 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 929 goto error_param; 930 } 931 932 vsi = ice_get_vf_vsi(vf); 933 if (!vsi) { 934 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 935 goto error_param; 936 } 937 938 if (ice_set_rss_key(vsi, vrk->key)) 939 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 940 error_param: 941 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 942 NULL, 0); 943 } 944 945 /** 946 * ice_vc_config_rss_lut 947 * @vf: pointer to the VF info 948 * @msg: pointer to the msg buffer 949 * 950 * Configure the VF's RSS LUT 951 */ 952 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 953 { 954 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 955 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 956 struct ice_vsi *vsi; 957 958 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 959 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 960 goto error_param; 961 } 962 963 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 964 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 965 goto error_param; 966 } 967 968 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 969 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 970 goto error_param; 971 } 972 973 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 974 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 975 goto error_param; 976 } 977 978 vsi = ice_get_vf_vsi(vf); 979 if (!vsi) { 980 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 981 goto error_param; 982 } 983 984 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 985 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 986 error_param: 987 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 988 NULL, 0); 989 } 990 991 /** 992 * ice_vc_cfg_promiscuous_mode_msg 993 * @vf: pointer to the VF info 994 * @msg: pointer to the msg buffer 995 * 996 * called from the VF to configure VF VSIs promiscuous mode 997 */ 998 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 999 { 1000 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1001 bool rm_promisc, alluni = false, allmulti = false; 1002 struct virtchnl_promisc_info *info = 1003 (struct virtchnl_promisc_info *)msg; 1004 struct ice_vsi_vlan_ops *vlan_ops; 1005 int mcast_err = 0, ucast_err = 0; 1006 struct ice_pf *pf = vf->pf; 1007 struct ice_vsi *vsi; 1008 u8 mcast_m, ucast_m; 1009 struct device *dev; 1010 int ret = 0; 1011 1012 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1013 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1014 goto error_param; 1015 } 1016 1017 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1018 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1019 goto error_param; 1020 } 1021 1022 vsi = ice_get_vf_vsi(vf); 1023 if (!vsi) { 1024 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1025 goto error_param; 1026 } 1027 1028 dev = ice_pf_to_dev(pf); 1029 if (!ice_is_vf_trusted(vf)) { 1030 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1031 vf->vf_id); 1032 /* Leave v_ret alone, lie to the VF on purpose. */ 1033 goto error_param; 1034 } 1035 1036 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1037 alluni = true; 1038 1039 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1040 allmulti = true; 1041 1042 rm_promisc = !allmulti && !alluni; 1043 1044 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1045 if (rm_promisc) 1046 ret = vlan_ops->ena_rx_filtering(vsi); 1047 else 1048 ret = vlan_ops->dis_rx_filtering(vsi); 1049 if (ret) { 1050 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1051 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1052 goto error_param; 1053 } 1054 1055 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1056 1057 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1058 if (alluni) { 1059 /* in this case we're turning on promiscuous mode */ 1060 ret = ice_set_dflt_vsi(vsi); 1061 } else { 1062 /* in this case we're turning off promiscuous mode */ 1063 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1064 ret = ice_clear_dflt_vsi(vsi); 1065 } 1066 1067 /* in this case we're turning on/off only 1068 * allmulticast 1069 */ 1070 if (allmulti) 1071 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1072 else 1073 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1074 1075 if (ret) { 1076 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1077 vf->vf_id, ret); 1078 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1079 goto error_param; 1080 } 1081 } else { 1082 if (alluni) 1083 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1084 else 1085 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1086 1087 if (allmulti) 1088 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1089 else 1090 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1091 1092 if (ucast_err || mcast_err) 1093 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1094 } 1095 1096 if (!mcast_err) { 1097 if (allmulti && 1098 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1099 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1100 vf->vf_id); 1101 else if (!allmulti && 1102 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1103 vf->vf_states)) 1104 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1105 vf->vf_id); 1106 } else { 1107 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1108 vf->vf_id, mcast_err); 1109 } 1110 1111 if (!ucast_err) { 1112 if (alluni && 1113 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1114 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1115 vf->vf_id); 1116 else if (!alluni && 1117 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1118 vf->vf_states)) 1119 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1120 vf->vf_id); 1121 } else { 1122 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1123 vf->vf_id, ucast_err); 1124 } 1125 1126 error_param: 1127 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1128 v_ret, NULL, 0); 1129 } 1130 1131 /** 1132 * ice_vc_get_stats_msg 1133 * @vf: pointer to the VF info 1134 * @msg: pointer to the msg buffer 1135 * 1136 * called from the VF to get VSI stats 1137 */ 1138 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1139 { 1140 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1141 struct virtchnl_queue_select *vqs = 1142 (struct virtchnl_queue_select *)msg; 1143 struct ice_eth_stats stats = { 0 }; 1144 struct ice_vsi *vsi; 1145 1146 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1147 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1148 goto error_param; 1149 } 1150 1151 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1152 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1153 goto error_param; 1154 } 1155 1156 vsi = ice_get_vf_vsi(vf); 1157 if (!vsi) { 1158 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1159 goto error_param; 1160 } 1161 1162 ice_update_eth_stats(vsi); 1163 1164 stats = vsi->eth_stats; 1165 1166 error_param: 1167 /* send the response to the VF */ 1168 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1169 (u8 *)&stats, sizeof(stats)); 1170 } 1171 1172 /** 1173 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1174 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1175 * 1176 * Return true on successful validation, else false 1177 */ 1178 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1179 { 1180 if ((!vqs->rx_queues && !vqs->tx_queues) || 1181 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1182 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1183 return false; 1184 1185 return true; 1186 } 1187 1188 /** 1189 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1190 * @vsi: VSI of the VF to configure 1191 * @q_idx: VF queue index used to determine the queue in the PF's space 1192 */ 1193 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1194 { 1195 struct ice_hw *hw = &vsi->back->hw; 1196 u32 pfq = vsi->txq_map[q_idx]; 1197 u32 reg; 1198 1199 reg = rd32(hw, QINT_TQCTL(pfq)); 1200 1201 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1202 * this is most likely a poll mode VF driver, so don't enable an 1203 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1204 */ 1205 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1206 return; 1207 1208 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1209 } 1210 1211 /** 1212 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1213 * @vsi: VSI of the VF to configure 1214 * @q_idx: VF queue index used to determine the queue in the PF's space 1215 */ 1216 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1217 { 1218 struct ice_hw *hw = &vsi->back->hw; 1219 u32 pfq = vsi->rxq_map[q_idx]; 1220 u32 reg; 1221 1222 reg = rd32(hw, QINT_RQCTL(pfq)); 1223 1224 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1225 * this is most likely a poll mode VF driver, so don't enable an 1226 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1227 */ 1228 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1229 return; 1230 1231 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1232 } 1233 1234 /** 1235 * ice_vc_ena_qs_msg 1236 * @vf: pointer to the VF info 1237 * @msg: pointer to the msg buffer 1238 * 1239 * called from the VF to enable all or specific queue(s) 1240 */ 1241 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1242 { 1243 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1244 struct virtchnl_queue_select *vqs = 1245 (struct virtchnl_queue_select *)msg; 1246 struct ice_vsi *vsi; 1247 unsigned long q_map; 1248 u16 vf_q_id; 1249 1250 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1251 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1252 goto error_param; 1253 } 1254 1255 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1256 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1257 goto error_param; 1258 } 1259 1260 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1261 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1262 goto error_param; 1263 } 1264 1265 vsi = ice_get_vf_vsi(vf); 1266 if (!vsi) { 1267 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1268 goto error_param; 1269 } 1270 1271 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1272 * Tx queue group list was configured and the context bits were 1273 * programmed using ice_vsi_cfg_txqs 1274 */ 1275 q_map = vqs->rx_queues; 1276 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1277 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1278 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1279 goto error_param; 1280 } 1281 1282 /* Skip queue if enabled */ 1283 if (test_bit(vf_q_id, vf->rxq_ena)) 1284 continue; 1285 1286 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1287 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1288 vf_q_id, vsi->vsi_num); 1289 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1290 goto error_param; 1291 } 1292 1293 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1294 set_bit(vf_q_id, vf->rxq_ena); 1295 } 1296 1297 q_map = vqs->tx_queues; 1298 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1299 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1300 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1301 goto error_param; 1302 } 1303 1304 /* Skip queue if enabled */ 1305 if (test_bit(vf_q_id, vf->txq_ena)) 1306 continue; 1307 1308 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1309 set_bit(vf_q_id, vf->txq_ena); 1310 } 1311 1312 /* Set flag to indicate that queues are enabled */ 1313 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1314 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1315 1316 error_param: 1317 /* send the response to the VF */ 1318 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1319 NULL, 0); 1320 } 1321 1322 /** 1323 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1324 * @vf: VF to disable queue for 1325 * @vsi: VSI for the VF 1326 * @q_id: VF relative (0-based) queue ID 1327 * 1328 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1329 * disabled then clear q_id bit in the enabled queues bitmap and return 1330 * success. Otherwise return error. 1331 */ 1332 static int 1333 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1334 { 1335 struct ice_txq_meta txq_meta = { 0 }; 1336 struct ice_tx_ring *ring; 1337 int err; 1338 1339 if (!test_bit(q_id, vf->txq_ena)) 1340 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1341 q_id, vsi->vsi_num); 1342 1343 ring = vsi->tx_rings[q_id]; 1344 if (!ring) 1345 return -EINVAL; 1346 1347 ice_fill_txq_meta(vsi, ring, &txq_meta); 1348 1349 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1350 if (err) { 1351 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1352 q_id, vsi->vsi_num); 1353 return err; 1354 } 1355 1356 /* Clear enabled queues flag */ 1357 clear_bit(q_id, vf->txq_ena); 1358 1359 return 0; 1360 } 1361 1362 /** 1363 * ice_vc_dis_qs_msg 1364 * @vf: pointer to the VF info 1365 * @msg: pointer to the msg buffer 1366 * 1367 * called from the VF to disable all or specific queue(s) 1368 */ 1369 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1370 { 1371 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1372 struct virtchnl_queue_select *vqs = 1373 (struct virtchnl_queue_select *)msg; 1374 struct ice_vsi *vsi; 1375 unsigned long q_map; 1376 u16 vf_q_id; 1377 1378 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1379 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1380 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1381 goto error_param; 1382 } 1383 1384 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1385 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1386 goto error_param; 1387 } 1388 1389 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1390 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1391 goto error_param; 1392 } 1393 1394 vsi = ice_get_vf_vsi(vf); 1395 if (!vsi) { 1396 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1397 goto error_param; 1398 } 1399 1400 if (vqs->tx_queues) { 1401 q_map = vqs->tx_queues; 1402 1403 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1404 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1405 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1406 goto error_param; 1407 } 1408 1409 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1410 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1411 goto error_param; 1412 } 1413 } 1414 } 1415 1416 q_map = vqs->rx_queues; 1417 /* speed up Rx queue disable by batching them if possible */ 1418 if (q_map && 1419 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1420 if (ice_vsi_stop_all_rx_rings(vsi)) { 1421 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1422 vsi->vsi_num); 1423 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1424 goto error_param; 1425 } 1426 1427 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1428 } else if (q_map) { 1429 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1430 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1431 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1432 goto error_param; 1433 } 1434 1435 /* Skip queue if not enabled */ 1436 if (!test_bit(vf_q_id, vf->rxq_ena)) 1437 continue; 1438 1439 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1440 true)) { 1441 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1442 vf_q_id, vsi->vsi_num); 1443 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1444 goto error_param; 1445 } 1446 1447 /* Clear enabled queues flag */ 1448 clear_bit(vf_q_id, vf->rxq_ena); 1449 } 1450 } 1451 1452 /* Clear enabled queues flag */ 1453 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1454 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1455 1456 error_param: 1457 /* send the response to the VF */ 1458 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1459 NULL, 0); 1460 } 1461 1462 /** 1463 * ice_cfg_interrupt 1464 * @vf: pointer to the VF info 1465 * @vsi: the VSI being configured 1466 * @vector_id: vector ID 1467 * @map: vector map for mapping vectors to queues 1468 * @q_vector: structure for interrupt vector 1469 * configure the IRQ to queue map 1470 */ 1471 static int 1472 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1473 struct virtchnl_vector_map *map, 1474 struct ice_q_vector *q_vector) 1475 { 1476 u16 vsi_q_id, vsi_q_id_idx; 1477 unsigned long qmap; 1478 1479 q_vector->num_ring_rx = 0; 1480 q_vector->num_ring_tx = 0; 1481 1482 qmap = map->rxq_map; 1483 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1484 vsi_q_id = vsi_q_id_idx; 1485 1486 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1487 return VIRTCHNL_STATUS_ERR_PARAM; 1488 1489 q_vector->num_ring_rx++; 1490 q_vector->rx.itr_idx = map->rxitr_idx; 1491 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1492 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1493 q_vector->rx.itr_idx); 1494 } 1495 1496 qmap = map->txq_map; 1497 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1498 vsi_q_id = vsi_q_id_idx; 1499 1500 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1501 return VIRTCHNL_STATUS_ERR_PARAM; 1502 1503 q_vector->num_ring_tx++; 1504 q_vector->tx.itr_idx = map->txitr_idx; 1505 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1506 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1507 q_vector->tx.itr_idx); 1508 } 1509 1510 return VIRTCHNL_STATUS_SUCCESS; 1511 } 1512 1513 /** 1514 * ice_vc_cfg_irq_map_msg 1515 * @vf: pointer to the VF info 1516 * @msg: pointer to the msg buffer 1517 * 1518 * called from the VF to configure the IRQ to queue map 1519 */ 1520 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1521 { 1522 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1523 u16 num_q_vectors_mapped, vsi_id, vector_id; 1524 struct virtchnl_irq_map_info *irqmap_info; 1525 struct virtchnl_vector_map *map; 1526 struct ice_vsi *vsi; 1527 int i; 1528 1529 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1530 num_q_vectors_mapped = irqmap_info->num_vectors; 1531 1532 /* Check to make sure number of VF vectors mapped is not greater than 1533 * number of VF vectors originally allocated, and check that 1534 * there is actually at least a single VF queue vector mapped 1535 */ 1536 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1537 vf->num_msix < num_q_vectors_mapped || 1538 !num_q_vectors_mapped) { 1539 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1540 goto error_param; 1541 } 1542 1543 vsi = ice_get_vf_vsi(vf); 1544 if (!vsi) { 1545 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1546 goto error_param; 1547 } 1548 1549 for (i = 0; i < num_q_vectors_mapped; i++) { 1550 struct ice_q_vector *q_vector; 1551 1552 map = &irqmap_info->vecmap[i]; 1553 1554 vector_id = map->vector_id; 1555 vsi_id = map->vsi_id; 1556 /* vector_id is always 0-based for each VF, and can never be 1557 * larger than or equal to the max allowed interrupts per VF 1558 */ 1559 if (!(vector_id < vf->num_msix) || 1560 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1561 (!vector_id && (map->rxq_map || map->txq_map))) { 1562 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1563 goto error_param; 1564 } 1565 1566 /* No need to map VF miscellaneous or rogue vector */ 1567 if (!vector_id) 1568 continue; 1569 1570 /* Subtract non queue vector from vector_id passed by VF 1571 * to get actual number of VSI queue vector array index 1572 */ 1573 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1574 if (!q_vector) { 1575 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1576 goto error_param; 1577 } 1578 1579 /* lookout for the invalid queue index */ 1580 v_ret = (enum virtchnl_status_code) 1581 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1582 if (v_ret) 1583 goto error_param; 1584 } 1585 1586 error_param: 1587 /* send the response to the VF */ 1588 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1589 NULL, 0); 1590 } 1591 1592 /** 1593 * ice_vc_cfg_qs_msg 1594 * @vf: pointer to the VF info 1595 * @msg: pointer to the msg buffer 1596 * 1597 * called from the VF to configure the Rx/Tx queues 1598 */ 1599 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1600 { 1601 struct virtchnl_vsi_queue_config_info *qci = 1602 (struct virtchnl_vsi_queue_config_info *)msg; 1603 struct virtchnl_queue_pair_info *qpi; 1604 struct ice_pf *pf = vf->pf; 1605 struct ice_lag *lag; 1606 struct ice_vsi *vsi; 1607 u8 act_prt, pri_prt; 1608 int i = -1, q_idx; 1609 1610 lag = pf->lag; 1611 mutex_lock(&pf->lag_mutex); 1612 act_prt = ICE_LAG_INVALID_PORT; 1613 pri_prt = pf->hw.port_info->lport; 1614 if (lag && lag->bonded && lag->primary) { 1615 act_prt = lag->active_port; 1616 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && 1617 lag->upper_netdev) 1618 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); 1619 else 1620 act_prt = ICE_LAG_INVALID_PORT; 1621 } 1622 1623 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1624 goto error_param; 1625 1626 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1627 goto error_param; 1628 1629 vsi = ice_get_vf_vsi(vf); 1630 if (!vsi) 1631 goto error_param; 1632 1633 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1634 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1635 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1636 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1637 goto error_param; 1638 } 1639 1640 for (i = 0; i < qci->num_queue_pairs; i++) { 1641 if (!qci->qpair[i].rxq.crc_disable) 1642 continue; 1643 1644 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) || 1645 vf->vlan_strip_ena) 1646 goto error_param; 1647 } 1648 1649 for (i = 0; i < qci->num_queue_pairs; i++) { 1650 qpi = &qci->qpair[i]; 1651 if (qpi->txq.vsi_id != qci->vsi_id || 1652 qpi->rxq.vsi_id != qci->vsi_id || 1653 qpi->rxq.queue_id != qpi->txq.queue_id || 1654 qpi->txq.headwb_enabled || 1655 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1656 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1657 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { 1658 goto error_param; 1659 } 1660 1661 q_idx = qpi->rxq.queue_id; 1662 1663 /* make sure selected "q_idx" is in valid range of queues 1664 * for selected "vsi" 1665 */ 1666 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1667 goto error_param; 1668 } 1669 1670 /* copy Tx queue info from VF into VSI */ 1671 if (qpi->txq.ring_len > 0) { 1672 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1673 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1674 1675 /* Disable any existing queue first */ 1676 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1677 goto error_param; 1678 1679 /* Configure a queue with the requested settings */ 1680 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1681 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1682 vf->vf_id, i); 1683 goto error_param; 1684 } 1685 } 1686 1687 /* copy Rx queue info from VF into VSI */ 1688 if (qpi->rxq.ring_len > 0) { 1689 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1690 u32 rxdid; 1691 1692 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1693 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1694 1695 if (qpi->rxq.crc_disable) 1696 vsi->rx_rings[q_idx]->flags |= 1697 ICE_RX_FLAGS_CRC_STRIP_DIS; 1698 else 1699 vsi->rx_rings[q_idx]->flags &= 1700 ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1701 1702 if (qpi->rxq.databuffer_size != 0 && 1703 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1704 qpi->rxq.databuffer_size < 1024)) 1705 goto error_param; 1706 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1707 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1708 if (qpi->rxq.max_pkt_size > max_frame_size || 1709 qpi->rxq.max_pkt_size < 64) 1710 goto error_param; 1711 1712 vsi->max_frame = qpi->rxq.max_pkt_size; 1713 /* add space for the port VLAN since the VF driver is 1714 * not expected to account for it in the MTU 1715 * calculation 1716 */ 1717 if (ice_vf_is_port_vlan_ena(vf)) 1718 vsi->max_frame += VLAN_HLEN; 1719 1720 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1721 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1722 vf->vf_id, i); 1723 goto error_param; 1724 } 1725 1726 /* If Rx flex desc is supported, select RXDID for Rx 1727 * queues. Otherwise, use legacy 32byte descriptor 1728 * format. Legacy 16byte descriptor is not supported. 1729 * If this RXDID is selected, return error. 1730 */ 1731 if (vf->driver_caps & 1732 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 1733 rxdid = qpi->rxq.rxdid; 1734 if (!(BIT(rxdid) & pf->supported_rxdids)) 1735 goto error_param; 1736 } else { 1737 rxdid = ICE_RXDID_LEGACY_1; 1738 } 1739 1740 ice_write_qrxflxp_cntxt(&vsi->back->hw, 1741 vsi->rxq_map[q_idx], 1742 rxdid, 0x03, false); 1743 } 1744 } 1745 1746 if (lag && lag->bonded && lag->primary && 1747 act_prt != ICE_LAG_INVALID_PORT) 1748 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1749 mutex_unlock(&pf->lag_mutex); 1750 1751 /* send the response to the VF */ 1752 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1753 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1754 error_param: 1755 /* disable whatever we can */ 1756 for (; i >= 0; i--) { 1757 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1758 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1759 vf->vf_id, i); 1760 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1761 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1762 vf->vf_id, i); 1763 } 1764 1765 if (lag && lag->bonded && lag->primary && 1766 act_prt != ICE_LAG_INVALID_PORT) 1767 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1768 mutex_unlock(&pf->lag_mutex); 1769 1770 ice_lag_move_new_vf_nodes(vf); 1771 1772 /* send the response to the VF */ 1773 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1774 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1775 } 1776 1777 /** 1778 * ice_can_vf_change_mac 1779 * @vf: pointer to the VF info 1780 * 1781 * Return true if the VF is allowed to change its MAC filters, false otherwise 1782 */ 1783 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1784 { 1785 /* If the VF MAC address has been set administratively (via the 1786 * ndo_set_vf_mac command), then deny permission to the VF to 1787 * add/delete unicast MAC addresses, unless the VF is trusted 1788 */ 1789 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1790 return false; 1791 1792 return true; 1793 } 1794 1795 /** 1796 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1797 * @vc_ether_addr: used to extract the type 1798 */ 1799 static u8 1800 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1801 { 1802 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1803 } 1804 1805 /** 1806 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1807 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1808 */ 1809 static bool 1810 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1811 { 1812 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1813 1814 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1815 } 1816 1817 /** 1818 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1819 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1820 * 1821 * This function should only be called when the MAC address in 1822 * virtchnl_ether_addr is a valid unicast MAC 1823 */ 1824 static bool 1825 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1826 { 1827 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1828 1829 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1830 } 1831 1832 /** 1833 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1834 * @vf: VF to update 1835 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1836 */ 1837 static void 1838 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1839 { 1840 u8 *mac_addr = vc_ether_addr->addr; 1841 1842 if (!is_valid_ether_addr(mac_addr)) 1843 return; 1844 1845 /* only allow legacy VF drivers to set the device and hardware MAC if it 1846 * is zero and allow new VF drivers to set the hardware MAC if the type 1847 * was correctly specified over VIRTCHNL 1848 */ 1849 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1850 is_zero_ether_addr(vf->hw_lan_addr)) || 1851 ice_is_vc_addr_primary(vc_ether_addr)) { 1852 ether_addr_copy(vf->dev_lan_addr, mac_addr); 1853 ether_addr_copy(vf->hw_lan_addr, mac_addr); 1854 } 1855 1856 /* hardware and device MACs are already set, but its possible that the 1857 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1858 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1859 * away for the legacy VF driver case as it will be updated in the 1860 * delete flow for this case 1861 */ 1862 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1863 ether_addr_copy(vf->legacy_last_added_umac.addr, 1864 mac_addr); 1865 vf->legacy_last_added_umac.time_modified = jiffies; 1866 } 1867 } 1868 1869 /** 1870 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1871 * @vf: pointer to the VF info 1872 * @vsi: pointer to the VF's VSI 1873 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1874 */ 1875 static int 1876 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1877 struct virtchnl_ether_addr *vc_ether_addr) 1878 { 1879 struct device *dev = ice_pf_to_dev(vf->pf); 1880 u8 *mac_addr = vc_ether_addr->addr; 1881 int ret; 1882 1883 /* device MAC already added */ 1884 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 1885 return 0; 1886 1887 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1888 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1889 return -EPERM; 1890 } 1891 1892 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1893 if (ret == -EEXIST) { 1894 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1895 vf->vf_id); 1896 /* don't return since we might need to update 1897 * the primary MAC in ice_vfhw_mac_add() below 1898 */ 1899 } else if (ret) { 1900 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1901 mac_addr, vf->vf_id, ret); 1902 return ret; 1903 } else { 1904 vf->num_mac++; 1905 } 1906 1907 ice_vfhw_mac_add(vf, vc_ether_addr); 1908 1909 return ret; 1910 } 1911 1912 /** 1913 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1914 * @last_added_umac: structure used to check expiration 1915 */ 1916 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1917 { 1918 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1919 return time_is_before_jiffies(last_added_umac->time_modified + 1920 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1921 } 1922 1923 /** 1924 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1925 * @vf: VF to update 1926 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1927 * 1928 * only update cached hardware MAC for legacy VF drivers on delete 1929 * because we cannot guarantee order/type of MAC from the VF driver 1930 */ 1931 static void 1932 ice_update_legacy_cached_mac(struct ice_vf *vf, 1933 struct virtchnl_ether_addr *vc_ether_addr) 1934 { 1935 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1936 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1937 return; 1938 1939 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 1940 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 1941 } 1942 1943 /** 1944 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1945 * @vf: VF to update 1946 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1947 */ 1948 static void 1949 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1950 { 1951 u8 *mac_addr = vc_ether_addr->addr; 1952 1953 if (!is_valid_ether_addr(mac_addr) || 1954 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1955 return; 1956 1957 /* allow the device MAC to be repopulated in the add flow and don't 1958 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 1959 * to be persistent on VM reboot and across driver unload/load, which 1960 * won't work if we clear the hardware MAC here 1961 */ 1962 eth_zero_addr(vf->dev_lan_addr); 1963 1964 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1965 } 1966 1967 /** 1968 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1969 * @vf: pointer to the VF info 1970 * @vsi: pointer to the VF's VSI 1971 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1972 */ 1973 static int 1974 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1975 struct virtchnl_ether_addr *vc_ether_addr) 1976 { 1977 struct device *dev = ice_pf_to_dev(vf->pf); 1978 u8 *mac_addr = vc_ether_addr->addr; 1979 int status; 1980 1981 if (!ice_can_vf_change_mac(vf) && 1982 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1983 return 0; 1984 1985 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1986 if (status == -ENOENT) { 1987 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1988 vf->vf_id); 1989 return -ENOENT; 1990 } else if (status) { 1991 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1992 mac_addr, vf->vf_id, status); 1993 return -EIO; 1994 } 1995 1996 ice_vfhw_mac_del(vf, vc_ether_addr); 1997 1998 vf->num_mac--; 1999 2000 return 0; 2001 } 2002 2003 /** 2004 * ice_vc_handle_mac_addr_msg 2005 * @vf: pointer to the VF info 2006 * @msg: pointer to the msg buffer 2007 * @set: true if MAC filters are being set, false otherwise 2008 * 2009 * add guest MAC address filter 2010 */ 2011 static int 2012 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 2013 { 2014 int (*ice_vc_cfg_mac) 2015 (struct ice_vf *vf, struct ice_vsi *vsi, 2016 struct virtchnl_ether_addr *virtchnl_ether_addr); 2017 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2018 struct virtchnl_ether_addr_list *al = 2019 (struct virtchnl_ether_addr_list *)msg; 2020 struct ice_pf *pf = vf->pf; 2021 enum virtchnl_ops vc_op; 2022 struct ice_vsi *vsi; 2023 int i; 2024 2025 if (set) { 2026 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 2027 ice_vc_cfg_mac = ice_vc_add_mac_addr; 2028 } else { 2029 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 2030 ice_vc_cfg_mac = ice_vc_del_mac_addr; 2031 } 2032 2033 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2034 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2035 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2036 goto handle_mac_exit; 2037 } 2038 2039 /* If this VF is not privileged, then we can't add more than a 2040 * limited number of addresses. Check to make sure that the 2041 * additions do not push us over the limit. 2042 */ 2043 if (set && !ice_is_vf_trusted(vf) && 2044 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2045 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2046 vf->vf_id); 2047 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2048 goto handle_mac_exit; 2049 } 2050 2051 vsi = ice_get_vf_vsi(vf); 2052 if (!vsi) { 2053 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2054 goto handle_mac_exit; 2055 } 2056 2057 for (i = 0; i < al->num_elements; i++) { 2058 u8 *mac_addr = al->list[i].addr; 2059 int result; 2060 2061 if (is_broadcast_ether_addr(mac_addr) || 2062 is_zero_ether_addr(mac_addr)) 2063 continue; 2064 2065 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2066 if (result == -EEXIST || result == -ENOENT) { 2067 continue; 2068 } else if (result) { 2069 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2070 goto handle_mac_exit; 2071 } 2072 } 2073 2074 handle_mac_exit: 2075 /* send the response to the VF */ 2076 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2077 } 2078 2079 /** 2080 * ice_vc_add_mac_addr_msg 2081 * @vf: pointer to the VF info 2082 * @msg: pointer to the msg buffer 2083 * 2084 * add guest MAC address filter 2085 */ 2086 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2087 { 2088 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2089 } 2090 2091 /** 2092 * ice_vc_del_mac_addr_msg 2093 * @vf: pointer to the VF info 2094 * @msg: pointer to the msg buffer 2095 * 2096 * remove guest MAC address filter 2097 */ 2098 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2099 { 2100 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2101 } 2102 2103 /** 2104 * ice_vc_request_qs_msg 2105 * @vf: pointer to the VF info 2106 * @msg: pointer to the msg buffer 2107 * 2108 * VFs get a default number of queues but can use this message to request a 2109 * different number. If the request is successful, PF will reset the VF and 2110 * return 0. If unsuccessful, PF will send message informing VF of number of 2111 * available queue pairs via virtchnl message response to VF. 2112 */ 2113 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2114 { 2115 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2116 struct virtchnl_vf_res_request *vfres = 2117 (struct virtchnl_vf_res_request *)msg; 2118 u16 req_queues = vfres->num_queue_pairs; 2119 struct ice_pf *pf = vf->pf; 2120 u16 max_allowed_vf_queues; 2121 u16 tx_rx_queue_left; 2122 struct device *dev; 2123 u16 cur_queues; 2124 2125 dev = ice_pf_to_dev(pf); 2126 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2127 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2128 goto error_param; 2129 } 2130 2131 cur_queues = vf->num_vf_qs; 2132 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2133 ice_get_avail_rxq_count(pf)); 2134 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2135 if (!req_queues) { 2136 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2137 vf->vf_id); 2138 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2139 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2140 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2141 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2142 } else if (req_queues > cur_queues && 2143 req_queues - cur_queues > tx_rx_queue_left) { 2144 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2145 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2146 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2147 ICE_MAX_RSS_QS_PER_VF); 2148 } else { 2149 /* request is successful, then reset VF */ 2150 vf->num_req_qs = req_queues; 2151 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2152 dev_info(dev, "VF %d granted request of %u queues.\n", 2153 vf->vf_id, req_queues); 2154 return 0; 2155 } 2156 2157 error_param: 2158 /* send the response to the VF */ 2159 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2160 v_ret, (u8 *)vfres, sizeof(*vfres)); 2161 } 2162 2163 /** 2164 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2165 * @caps: VF driver negotiated capabilities 2166 * 2167 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2168 */ 2169 static bool ice_vf_vlan_offload_ena(u32 caps) 2170 { 2171 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2172 } 2173 2174 /** 2175 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2176 * @vf: VF used to determine if VLAN promiscuous config is allowed 2177 */ 2178 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2179 { 2180 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2181 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2182 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2183 return true; 2184 2185 return false; 2186 } 2187 2188 /** 2189 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2190 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2191 * @vlan: VLAN used to enable VLAN promiscuous 2192 * 2193 * This function should only be called if VLAN promiscuous mode is allowed, 2194 * which can be determined via ice_is_vlan_promisc_allowed(). 2195 */ 2196 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2197 { 2198 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2199 int status; 2200 2201 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2202 vlan->vid); 2203 if (status && status != -EEXIST) 2204 return status; 2205 2206 return 0; 2207 } 2208 2209 /** 2210 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2211 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2212 * @vlan: VLAN used to disable VLAN promiscuous 2213 * 2214 * This function should only be called if VLAN promiscuous mode is allowed, 2215 * which can be determined via ice_is_vlan_promisc_allowed(). 2216 */ 2217 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2218 { 2219 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2220 int status; 2221 2222 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2223 vlan->vid); 2224 if (status && status != -ENOENT) 2225 return status; 2226 2227 return 0; 2228 } 2229 2230 /** 2231 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2232 * @vf: VF to check against 2233 * @vsi: VF's VSI 2234 * 2235 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2236 * wants to, so return false. 2237 * 2238 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2239 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2240 */ 2241 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2242 { 2243 if (ice_is_vf_trusted(vf)) 2244 return false; 2245 2246 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2247 return ((ice_vsi_num_non_zero_vlans(vsi) + 2248 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2249 } 2250 2251 /** 2252 * ice_vc_process_vlan_msg 2253 * @vf: pointer to the VF info 2254 * @msg: pointer to the msg buffer 2255 * @add_v: Add VLAN if true, otherwise delete VLAN 2256 * 2257 * Process virtchnl op to add or remove programmed guest VLAN ID 2258 */ 2259 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2260 { 2261 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2262 struct virtchnl_vlan_filter_list *vfl = 2263 (struct virtchnl_vlan_filter_list *)msg; 2264 struct ice_pf *pf = vf->pf; 2265 bool vlan_promisc = false; 2266 struct ice_vsi *vsi; 2267 struct device *dev; 2268 int status = 0; 2269 int i; 2270 2271 dev = ice_pf_to_dev(pf); 2272 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2273 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2274 goto error_param; 2275 } 2276 2277 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2278 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2279 goto error_param; 2280 } 2281 2282 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2283 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2284 goto error_param; 2285 } 2286 2287 for (i = 0; i < vfl->num_elements; i++) { 2288 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2289 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2290 dev_err(dev, "invalid VF VLAN id %d\n", 2291 vfl->vlan_id[i]); 2292 goto error_param; 2293 } 2294 } 2295 2296 vsi = ice_get_vf_vsi(vf); 2297 if (!vsi) { 2298 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2299 goto error_param; 2300 } 2301 2302 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2303 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2304 vf->vf_id); 2305 /* There is no need to let VF know about being not trusted, 2306 * so we can just return success message here 2307 */ 2308 goto error_param; 2309 } 2310 2311 /* in DVM a VF can add/delete inner VLAN filters when 2312 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2313 */ 2314 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2315 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2316 goto error_param; 2317 } 2318 2319 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2320 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2321 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2322 */ 2323 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2324 !ice_is_dvm_ena(&pf->hw) && 2325 !ice_vf_is_port_vlan_ena(vf); 2326 2327 if (add_v) { 2328 for (i = 0; i < vfl->num_elements; i++) { 2329 u16 vid = vfl->vlan_id[i]; 2330 struct ice_vlan vlan; 2331 2332 if (ice_vf_has_max_vlans(vf, vsi)) { 2333 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2334 vf->vf_id); 2335 /* There is no need to let VF know about being 2336 * not trusted, so we can just return success 2337 * message here as well. 2338 */ 2339 goto error_param; 2340 } 2341 2342 /* we add VLAN 0 by default for each VF so we can enable 2343 * Tx VLAN anti-spoof without triggering MDD events so 2344 * we don't need to add it again here 2345 */ 2346 if (!vid) 2347 continue; 2348 2349 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2350 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2351 if (status) { 2352 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2353 goto error_param; 2354 } 2355 2356 /* Enable VLAN filtering on first non-zero VLAN */ 2357 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2358 if (vf->spoofchk) { 2359 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2360 if (status) { 2361 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2362 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2363 vid, status); 2364 goto error_param; 2365 } 2366 } 2367 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2368 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2369 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2370 vid, status); 2371 goto error_param; 2372 } 2373 } else if (vlan_promisc) { 2374 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2375 if (status) { 2376 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2377 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2378 vid, status); 2379 } 2380 } 2381 } 2382 } else { 2383 /* In case of non_trusted VF, number of VLAN elements passed 2384 * to PF for removal might be greater than number of VLANs 2385 * filter programmed for that VF - So, use actual number of 2386 * VLANS added earlier with add VLAN opcode. In order to avoid 2387 * removing VLAN that doesn't exist, which result to sending 2388 * erroneous failed message back to the VF 2389 */ 2390 int num_vf_vlan; 2391 2392 num_vf_vlan = vsi->num_vlan; 2393 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2394 u16 vid = vfl->vlan_id[i]; 2395 struct ice_vlan vlan; 2396 2397 /* we add VLAN 0 by default for each VF so we can enable 2398 * Tx VLAN anti-spoof without triggering MDD events so 2399 * we don't want a VIRTCHNL request to remove it 2400 */ 2401 if (!vid) 2402 continue; 2403 2404 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2405 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2406 if (status) { 2407 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2408 goto error_param; 2409 } 2410 2411 /* Disable VLAN filtering when only VLAN 0 is left */ 2412 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2413 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2414 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2415 } 2416 2417 if (vlan_promisc) 2418 ice_vf_dis_vlan_promisc(vsi, &vlan); 2419 } 2420 } 2421 2422 error_param: 2423 /* send the response to the VF */ 2424 if (add_v) 2425 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2426 NULL, 0); 2427 else 2428 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2429 NULL, 0); 2430 } 2431 2432 /** 2433 * ice_vc_add_vlan_msg 2434 * @vf: pointer to the VF info 2435 * @msg: pointer to the msg buffer 2436 * 2437 * Add and program guest VLAN ID 2438 */ 2439 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2440 { 2441 return ice_vc_process_vlan_msg(vf, msg, true); 2442 } 2443 2444 /** 2445 * ice_vc_remove_vlan_msg 2446 * @vf: pointer to the VF info 2447 * @msg: pointer to the msg buffer 2448 * 2449 * remove programmed guest VLAN ID 2450 */ 2451 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2452 { 2453 return ice_vc_process_vlan_msg(vf, msg, false); 2454 } 2455 2456 /** 2457 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not 2458 * @vsi: pointer to the VF VSI info 2459 */ 2460 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi) 2461 { 2462 unsigned int i; 2463 2464 ice_for_each_alloc_rxq(vsi, i) 2465 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS) 2466 return true; 2467 2468 return false; 2469 } 2470 2471 /** 2472 * ice_vc_ena_vlan_stripping 2473 * @vf: pointer to the VF info 2474 * 2475 * Enable VLAN header stripping for a given VF 2476 */ 2477 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2478 { 2479 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2480 struct ice_vsi *vsi; 2481 2482 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2483 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2484 goto error_param; 2485 } 2486 2487 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2488 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2489 goto error_param; 2490 } 2491 2492 vsi = ice_get_vf_vsi(vf); 2493 if (!vsi) { 2494 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2495 goto error_param; 2496 } 2497 2498 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2499 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2500 else 2501 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2502 2503 error_param: 2504 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2505 v_ret, NULL, 0); 2506 } 2507 2508 /** 2509 * ice_vc_dis_vlan_stripping 2510 * @vf: pointer to the VF info 2511 * 2512 * Disable VLAN header stripping for a given VF 2513 */ 2514 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2515 { 2516 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2517 struct ice_vsi *vsi; 2518 2519 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2520 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2521 goto error_param; 2522 } 2523 2524 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2525 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2526 goto error_param; 2527 } 2528 2529 vsi = ice_get_vf_vsi(vf); 2530 if (!vsi) { 2531 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2532 goto error_param; 2533 } 2534 2535 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2536 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2537 else 2538 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 2539 2540 error_param: 2541 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2542 v_ret, NULL, 0); 2543 } 2544 2545 /** 2546 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2547 * @vf: pointer to the VF info 2548 */ 2549 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2550 { 2551 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2552 struct virtchnl_rss_hena *vrh = NULL; 2553 int len = 0, ret; 2554 2555 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2556 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2557 goto err; 2558 } 2559 2560 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2561 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2562 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2563 goto err; 2564 } 2565 2566 len = sizeof(struct virtchnl_rss_hena); 2567 vrh = kzalloc(len, GFP_KERNEL); 2568 if (!vrh) { 2569 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2570 len = 0; 2571 goto err; 2572 } 2573 2574 vrh->hena = ICE_DEFAULT_RSS_HENA; 2575 err: 2576 /* send the response back to the VF */ 2577 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2578 (u8 *)vrh, len); 2579 kfree(vrh); 2580 return ret; 2581 } 2582 2583 /** 2584 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2585 * @vf: pointer to the VF info 2586 * @msg: pointer to the msg buffer 2587 */ 2588 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2589 { 2590 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2591 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2592 struct ice_pf *pf = vf->pf; 2593 struct ice_vsi *vsi; 2594 struct device *dev; 2595 int status; 2596 2597 dev = ice_pf_to_dev(pf); 2598 2599 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2600 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2601 goto err; 2602 } 2603 2604 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2605 dev_err(dev, "RSS not supported by PF\n"); 2606 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2607 goto err; 2608 } 2609 2610 vsi = ice_get_vf_vsi(vf); 2611 if (!vsi) { 2612 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2613 goto err; 2614 } 2615 2616 /* clear all previously programmed RSS configuration to allow VF drivers 2617 * the ability to customize the RSS configuration and/or completely 2618 * disable RSS 2619 */ 2620 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2621 if (status && !vrh->hena) { 2622 /* only report failure to clear the current RSS configuration if 2623 * that was clearly the VF's intention (i.e. vrh->hena = 0) 2624 */ 2625 v_ret = ice_err_to_virt_err(status); 2626 goto err; 2627 } else if (status) { 2628 /* allow the VF to update the RSS configuration even on failure 2629 * to clear the current RSS confguration in an attempt to keep 2630 * RSS in a working state 2631 */ 2632 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 2633 vf->vf_id); 2634 } 2635 2636 if (vrh->hena) { 2637 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena); 2638 v_ret = ice_err_to_virt_err(status); 2639 } 2640 2641 /* send the response to the VF */ 2642 err: 2643 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 2644 NULL, 0); 2645 } 2646 2647 /** 2648 * ice_vc_query_rxdid - query RXDID supported by DDP package 2649 * @vf: pointer to VF info 2650 * 2651 * Called from VF to query a bitmap of supported flexible 2652 * descriptor RXDIDs of a DDP package. 2653 */ 2654 static int ice_vc_query_rxdid(struct ice_vf *vf) 2655 { 2656 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2657 struct virtchnl_supported_rxdids *rxdid = NULL; 2658 struct ice_hw *hw = &vf->pf->hw; 2659 struct ice_pf *pf = vf->pf; 2660 int len = 0; 2661 int ret, i; 2662 u32 regval; 2663 2664 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2665 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2666 goto err; 2667 } 2668 2669 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 2670 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2671 goto err; 2672 } 2673 2674 len = sizeof(struct virtchnl_supported_rxdids); 2675 rxdid = kzalloc(len, GFP_KERNEL); 2676 if (!rxdid) { 2677 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2678 len = 0; 2679 goto err; 2680 } 2681 2682 /* RXDIDs supported by DDP package can be read from the register 2683 * to get the supported RXDID bitmap. But the legacy 32byte RXDID 2684 * is not listed in DDP package, add it in the bitmap manually. 2685 * Legacy 16byte descriptor is not supported. 2686 */ 2687 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1); 2688 2689 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 2690 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 2691 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 2692 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 2693 rxdid->supported_rxdids |= BIT(i); 2694 } 2695 2696 pf->supported_rxdids = rxdid->supported_rxdids; 2697 2698 err: 2699 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 2700 v_ret, (u8 *)rxdid, len); 2701 kfree(rxdid); 2702 return ret; 2703 } 2704 2705 /** 2706 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2707 * @vf: VF to enable/disable VLAN stripping for on initialization 2708 * 2709 * Set the default for VLAN stripping based on whether a port VLAN is configured 2710 * and the current VLAN mode of the device. 2711 */ 2712 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2713 { 2714 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2715 2716 vf->vlan_strip_ena = 0; 2717 2718 if (!vsi) 2719 return -EINVAL; 2720 2721 /* don't modify stripping if port VLAN is configured in SVM since the 2722 * port VLAN is based on the inner/single VLAN in SVM 2723 */ 2724 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2725 return 0; 2726 2727 if (ice_vf_vlan_offload_ena(vf->driver_caps)) { 2728 int err; 2729 2730 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2731 if (!err) 2732 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2733 return err; 2734 } 2735 2736 return vsi->inner_vlan_ops.dis_stripping(vsi); 2737 } 2738 2739 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2740 { 2741 if (vf->trusted) 2742 return VLAN_N_VID; 2743 else 2744 return ICE_MAX_VLAN_PER_VF; 2745 } 2746 2747 /** 2748 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2749 * @vf: VF that being checked for 2750 * 2751 * When the device is in double VLAN mode, check whether or not the outer VLAN 2752 * is allowed. 2753 */ 2754 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2755 { 2756 if (ice_vf_is_port_vlan_ena(vf)) 2757 return true; 2758 2759 return false; 2760 } 2761 2762 /** 2763 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2764 * @vf: VF that capabilities are being set for 2765 * @caps: VLAN capabilities to populate 2766 * 2767 * Determine VLAN capabilities support based on whether a port VLAN is 2768 * configured. If a port VLAN is configured then the VF should use the inner 2769 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2770 * capabilies. 2771 */ 2772 static void 2773 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2774 { 2775 struct virtchnl_vlan_supported_caps *supported_caps; 2776 2777 if (ice_vf_outer_vlan_not_allowed(vf)) { 2778 /* until support for inner VLAN filtering is added when a port 2779 * VLAN is configured, only support software offloaded inner 2780 * VLANs when a port VLAN is confgured in DVM 2781 */ 2782 supported_caps = &caps->filtering.filtering_support; 2783 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2784 2785 supported_caps = &caps->offloads.stripping_support; 2786 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2787 VIRTCHNL_VLAN_TOGGLE | 2788 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2789 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2790 2791 supported_caps = &caps->offloads.insertion_support; 2792 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2793 VIRTCHNL_VLAN_TOGGLE | 2794 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2795 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2796 2797 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2798 caps->offloads.ethertype_match = 2799 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2800 } else { 2801 supported_caps = &caps->filtering.filtering_support; 2802 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2803 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2804 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2805 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2806 VIRTCHNL_VLAN_ETHERTYPE_AND; 2807 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2808 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2809 VIRTCHNL_VLAN_ETHERTYPE_9100; 2810 2811 supported_caps = &caps->offloads.stripping_support; 2812 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2813 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2814 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2815 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2816 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2817 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2818 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2819 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2820 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2821 2822 supported_caps = &caps->offloads.insertion_support; 2823 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2824 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2825 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2826 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2827 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2828 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2829 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2830 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2831 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2832 2833 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2834 2835 caps->offloads.ethertype_match = 2836 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2837 } 2838 2839 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2840 } 2841 2842 /** 2843 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2844 * @vf: VF that capabilities are being set for 2845 * @caps: VLAN capabilities to populate 2846 * 2847 * Determine VLAN capabilities support based on whether a port VLAN is 2848 * configured. If a port VLAN is configured then the VF does not have any VLAN 2849 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2850 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2851 * VLAN fitlering and offload capabilities. 2852 */ 2853 static void 2854 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2855 { 2856 struct virtchnl_vlan_supported_caps *supported_caps; 2857 2858 if (ice_vf_is_port_vlan_ena(vf)) { 2859 supported_caps = &caps->filtering.filtering_support; 2860 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2861 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2862 2863 supported_caps = &caps->offloads.stripping_support; 2864 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2865 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2866 2867 supported_caps = &caps->offloads.insertion_support; 2868 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2869 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2870 2871 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2872 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2873 caps->filtering.max_filters = 0; 2874 } else { 2875 supported_caps = &caps->filtering.filtering_support; 2876 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2877 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2878 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2879 2880 supported_caps = &caps->offloads.stripping_support; 2881 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2882 VIRTCHNL_VLAN_TOGGLE | 2883 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2884 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2885 2886 supported_caps = &caps->offloads.insertion_support; 2887 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2888 VIRTCHNL_VLAN_TOGGLE | 2889 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2890 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2891 2892 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2893 caps->offloads.ethertype_match = 2894 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2895 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2896 } 2897 } 2898 2899 /** 2900 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2901 * @vf: VF to determine VLAN capabilities for 2902 * 2903 * This will only be called if the VF and PF successfully negotiated 2904 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2905 * 2906 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2907 * is configured or not. 2908 */ 2909 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2910 { 2911 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2912 struct virtchnl_vlan_caps *caps = NULL; 2913 int err, len = 0; 2914 2915 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2916 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2917 goto out; 2918 } 2919 2920 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2921 if (!caps) { 2922 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2923 goto out; 2924 } 2925 len = sizeof(*caps); 2926 2927 if (ice_is_dvm_ena(&vf->pf->hw)) 2928 ice_vc_set_dvm_caps(vf, caps); 2929 else 2930 ice_vc_set_svm_caps(vf, caps); 2931 2932 /* store negotiated caps to prevent invalid VF messages */ 2933 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2934 2935 out: 2936 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2937 v_ret, (u8 *)caps, len); 2938 kfree(caps); 2939 return err; 2940 } 2941 2942 /** 2943 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2944 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2945 * @tpid: VLAN TPID used for validation 2946 * 2947 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2948 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2949 */ 2950 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2951 { 2952 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2953 2954 switch (tpid) { 2955 case ETH_P_8021Q: 2956 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2957 break; 2958 case ETH_P_8021AD: 2959 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2960 break; 2961 case ETH_P_QINQ1: 2962 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2963 break; 2964 } 2965 2966 if (!(filtering_caps & vlan_ethertype)) 2967 return false; 2968 2969 return true; 2970 } 2971 2972 /** 2973 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2974 * @vc_vlan: virtchnl_vlan to validate 2975 * 2976 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2977 * false. Otherwise return true. 2978 */ 2979 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2980 { 2981 if (!vc_vlan->tci || !vc_vlan->tpid) 2982 return false; 2983 2984 return true; 2985 } 2986 2987 /** 2988 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2989 * @vfc: negotiated/supported VLAN filtering capabilities 2990 * @vfl: VLAN filter list from VF to validate 2991 * 2992 * Validate all of the filters in the VLAN filter list from the VF. If any of 2993 * the checks fail then return false. Otherwise return true. 2994 */ 2995 static bool 2996 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2997 struct virtchnl_vlan_filter_list_v2 *vfl) 2998 { 2999 u16 i; 3000 3001 if (!vfl->num_elements) 3002 return false; 3003 3004 for (i = 0; i < vfl->num_elements; i++) { 3005 struct virtchnl_vlan_supported_caps *filtering_support = 3006 &vfc->filtering_support; 3007 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3008 struct virtchnl_vlan *outer = &vlan_fltr->outer; 3009 struct virtchnl_vlan *inner = &vlan_fltr->inner; 3010 3011 if ((ice_vc_is_valid_vlan(outer) && 3012 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 3013 (ice_vc_is_valid_vlan(inner) && 3014 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 3015 return false; 3016 3017 if ((outer->tci_mask && 3018 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 3019 (inner->tci_mask && 3020 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 3021 return false; 3022 3023 if (((outer->tci & VLAN_PRIO_MASK) && 3024 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 3025 ((inner->tci & VLAN_PRIO_MASK) && 3026 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 3027 return false; 3028 3029 if ((ice_vc_is_valid_vlan(outer) && 3030 !ice_vc_validate_vlan_tpid(filtering_support->outer, 3031 outer->tpid)) || 3032 (ice_vc_is_valid_vlan(inner) && 3033 !ice_vc_validate_vlan_tpid(filtering_support->inner, 3034 inner->tpid))) 3035 return false; 3036 } 3037 3038 return true; 3039 } 3040 3041 /** 3042 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 3043 * @vc_vlan: struct virtchnl_vlan to transform 3044 */ 3045 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 3046 { 3047 struct ice_vlan vlan = { 0 }; 3048 3049 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3050 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 3051 vlan.tpid = vc_vlan->tpid; 3052 3053 return vlan; 3054 } 3055 3056 /** 3057 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 3058 * @vsi: VF's VSI used to perform the action 3059 * @vlan_action: function to perform the action with (i.e. add/del) 3060 * @vlan: VLAN filter to perform the action with 3061 */ 3062 static int 3063 ice_vc_vlan_action(struct ice_vsi *vsi, 3064 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3065 struct ice_vlan *vlan) 3066 { 3067 int err; 3068 3069 err = vlan_action(vsi, vlan); 3070 if (err) 3071 return err; 3072 3073 return 0; 3074 } 3075 3076 /** 3077 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3078 * @vf: VF used to delete the VLAN(s) 3079 * @vsi: VF's VSI used to delete the VLAN(s) 3080 * @vfl: virthchnl filter list used to delete the filters 3081 */ 3082 static int 3083 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3084 struct virtchnl_vlan_filter_list_v2 *vfl) 3085 { 3086 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3087 int err; 3088 u16 i; 3089 3090 for (i = 0; i < vfl->num_elements; i++) { 3091 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3092 struct virtchnl_vlan *vc_vlan; 3093 3094 vc_vlan = &vlan_fltr->outer; 3095 if (ice_vc_is_valid_vlan(vc_vlan)) { 3096 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3097 3098 err = ice_vc_vlan_action(vsi, 3099 vsi->outer_vlan_ops.del_vlan, 3100 &vlan); 3101 if (err) 3102 return err; 3103 3104 if (vlan_promisc) 3105 ice_vf_dis_vlan_promisc(vsi, &vlan); 3106 3107 /* Disable VLAN filtering when only VLAN 0 is left */ 3108 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3109 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3110 if (err) 3111 return err; 3112 } 3113 } 3114 3115 vc_vlan = &vlan_fltr->inner; 3116 if (ice_vc_is_valid_vlan(vc_vlan)) { 3117 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3118 3119 err = ice_vc_vlan_action(vsi, 3120 vsi->inner_vlan_ops.del_vlan, 3121 &vlan); 3122 if (err) 3123 return err; 3124 3125 /* no support for VLAN promiscuous on inner VLAN unless 3126 * we are in Single VLAN Mode (SVM) 3127 */ 3128 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3129 if (vlan_promisc) 3130 ice_vf_dis_vlan_promisc(vsi, &vlan); 3131 3132 /* Disable VLAN filtering when only VLAN 0 is left */ 3133 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3134 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3135 if (err) 3136 return err; 3137 } 3138 } 3139 } 3140 } 3141 3142 return 0; 3143 } 3144 3145 /** 3146 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3147 * @vf: VF the message was received from 3148 * @msg: message received from the VF 3149 */ 3150 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3151 { 3152 struct virtchnl_vlan_filter_list_v2 *vfl = 3153 (struct virtchnl_vlan_filter_list_v2 *)msg; 3154 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3155 struct ice_vsi *vsi; 3156 3157 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3158 vfl)) { 3159 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3160 goto out; 3161 } 3162 3163 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3164 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3165 goto out; 3166 } 3167 3168 vsi = ice_get_vf_vsi(vf); 3169 if (!vsi) { 3170 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3171 goto out; 3172 } 3173 3174 if (ice_vc_del_vlans(vf, vsi, vfl)) 3175 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3176 3177 out: 3178 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3179 0); 3180 } 3181 3182 /** 3183 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3184 * @vf: VF used to add the VLAN(s) 3185 * @vsi: VF's VSI used to add the VLAN(s) 3186 * @vfl: virthchnl filter list used to add the filters 3187 */ 3188 static int 3189 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3190 struct virtchnl_vlan_filter_list_v2 *vfl) 3191 { 3192 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3193 int err; 3194 u16 i; 3195 3196 for (i = 0; i < vfl->num_elements; i++) { 3197 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3198 struct virtchnl_vlan *vc_vlan; 3199 3200 vc_vlan = &vlan_fltr->outer; 3201 if (ice_vc_is_valid_vlan(vc_vlan)) { 3202 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3203 3204 err = ice_vc_vlan_action(vsi, 3205 vsi->outer_vlan_ops.add_vlan, 3206 &vlan); 3207 if (err) 3208 return err; 3209 3210 if (vlan_promisc) { 3211 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3212 if (err) 3213 return err; 3214 } 3215 3216 /* Enable VLAN filtering on first non-zero VLAN */ 3217 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3218 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3219 if (err) 3220 return err; 3221 } 3222 } 3223 3224 vc_vlan = &vlan_fltr->inner; 3225 if (ice_vc_is_valid_vlan(vc_vlan)) { 3226 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3227 3228 err = ice_vc_vlan_action(vsi, 3229 vsi->inner_vlan_ops.add_vlan, 3230 &vlan); 3231 if (err) 3232 return err; 3233 3234 /* no support for VLAN promiscuous on inner VLAN unless 3235 * we are in Single VLAN Mode (SVM) 3236 */ 3237 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3238 if (vlan_promisc) { 3239 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3240 if (err) 3241 return err; 3242 } 3243 3244 /* Enable VLAN filtering on first non-zero VLAN */ 3245 if (vf->spoofchk && vlan.vid) { 3246 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3247 if (err) 3248 return err; 3249 } 3250 } 3251 } 3252 } 3253 3254 return 0; 3255 } 3256 3257 /** 3258 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3259 * @vsi: VF VSI used to get number of existing VLAN filters 3260 * @vfc: negotiated/supported VLAN filtering capabilities 3261 * @vfl: VLAN filter list from VF to validate 3262 * 3263 * Validate all of the filters in the VLAN filter list from the VF during the 3264 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3265 * Otherwise return true. 3266 */ 3267 static bool 3268 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3269 struct virtchnl_vlan_filtering_caps *vfc, 3270 struct virtchnl_vlan_filter_list_v2 *vfl) 3271 { 3272 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3273 vfl->num_elements; 3274 3275 if (num_requested_filters > vfc->max_filters) 3276 return false; 3277 3278 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3279 } 3280 3281 /** 3282 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3283 * @vf: VF the message was received from 3284 * @msg: message received from the VF 3285 */ 3286 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3287 { 3288 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3289 struct virtchnl_vlan_filter_list_v2 *vfl = 3290 (struct virtchnl_vlan_filter_list_v2 *)msg; 3291 struct ice_vsi *vsi; 3292 3293 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3294 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3295 goto out; 3296 } 3297 3298 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3299 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3300 goto out; 3301 } 3302 3303 vsi = ice_get_vf_vsi(vf); 3304 if (!vsi) { 3305 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3306 goto out; 3307 } 3308 3309 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3310 &vf->vlan_v2_caps.filtering, 3311 vfl)) { 3312 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3313 goto out; 3314 } 3315 3316 if (ice_vc_add_vlans(vf, vsi, vfl)) 3317 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3318 3319 out: 3320 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3321 0); 3322 } 3323 3324 /** 3325 * ice_vc_valid_vlan_setting - validate VLAN setting 3326 * @negotiated_settings: negotiated VLAN settings during VF init 3327 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3328 */ 3329 static bool 3330 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3331 { 3332 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3333 return false; 3334 3335 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3336 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3337 */ 3338 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3339 hweight32(ethertype_setting) > 1) 3340 return false; 3341 3342 /* ability to modify the VLAN setting was not negotiated */ 3343 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3344 return false; 3345 3346 return true; 3347 } 3348 3349 /** 3350 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3351 * @caps: negotiated VLAN settings during VF init 3352 * @msg: message to validate 3353 * 3354 * Used to validate any VLAN virtchnl message sent as a 3355 * virtchnl_vlan_setting structure. Validates the message against the 3356 * negotiated/supported caps during VF driver init. 3357 */ 3358 static bool 3359 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3360 struct virtchnl_vlan_setting *msg) 3361 { 3362 if ((!msg->outer_ethertype_setting && 3363 !msg->inner_ethertype_setting) || 3364 (!caps->outer && !caps->inner)) 3365 return false; 3366 3367 if (msg->outer_ethertype_setting && 3368 !ice_vc_valid_vlan_setting(caps->outer, 3369 msg->outer_ethertype_setting)) 3370 return false; 3371 3372 if (msg->inner_ethertype_setting && 3373 !ice_vc_valid_vlan_setting(caps->inner, 3374 msg->inner_ethertype_setting)) 3375 return false; 3376 3377 return true; 3378 } 3379 3380 /** 3381 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3382 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3383 * @tpid: VLAN TPID to populate 3384 */ 3385 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3386 { 3387 switch (ethertype_setting) { 3388 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3389 *tpid = ETH_P_8021Q; 3390 break; 3391 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3392 *tpid = ETH_P_8021AD; 3393 break; 3394 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3395 *tpid = ETH_P_QINQ1; 3396 break; 3397 default: 3398 *tpid = 0; 3399 return -EINVAL; 3400 } 3401 3402 return 0; 3403 } 3404 3405 /** 3406 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3407 * @vsi: VF's VSI used to enable the VLAN offload 3408 * @ena_offload: function used to enable the VLAN offload 3409 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3410 */ 3411 static int 3412 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3413 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3414 u32 ethertype_setting) 3415 { 3416 u16 tpid; 3417 int err; 3418 3419 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3420 if (err) 3421 return err; 3422 3423 err = ena_offload(vsi, tpid); 3424 if (err) 3425 return err; 3426 3427 return 0; 3428 } 3429 3430 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3431 #define ICE_L2TSEL_BIT_OFFSET 23 3432 enum ice_l2tsel { 3433 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3434 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3435 }; 3436 3437 /** 3438 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3439 * @vsi: VSI used to update l2tsel on 3440 * @l2tsel: l2tsel setting requested 3441 * 3442 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3443 * This will modify which descriptor field the first offloaded VLAN will be 3444 * stripped into. 3445 */ 3446 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3447 { 3448 struct ice_hw *hw = &vsi->back->hw; 3449 u32 l2tsel_bit; 3450 int i; 3451 3452 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3453 l2tsel_bit = 0; 3454 else 3455 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3456 3457 for (i = 0; i < vsi->alloc_rxq; i++) { 3458 u16 pfq = vsi->rxq_map[i]; 3459 u32 qrx_context_offset; 3460 u32 regval; 3461 3462 qrx_context_offset = 3463 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3464 3465 regval = rd32(hw, qrx_context_offset); 3466 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3467 regval |= l2tsel_bit; 3468 wr32(hw, qrx_context_offset, regval); 3469 } 3470 } 3471 3472 /** 3473 * ice_vc_ena_vlan_stripping_v2_msg 3474 * @vf: VF the message was received from 3475 * @msg: message received from the VF 3476 * 3477 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3478 */ 3479 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3480 { 3481 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3482 struct virtchnl_vlan_supported_caps *stripping_support; 3483 struct virtchnl_vlan_setting *strip_msg = 3484 (struct virtchnl_vlan_setting *)msg; 3485 u32 ethertype_setting; 3486 struct ice_vsi *vsi; 3487 3488 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3489 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3490 goto out; 3491 } 3492 3493 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3494 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3495 goto out; 3496 } 3497 3498 vsi = ice_get_vf_vsi(vf); 3499 if (!vsi) { 3500 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3501 goto out; 3502 } 3503 3504 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3505 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3506 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3507 goto out; 3508 } 3509 3510 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) { 3511 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3512 goto out; 3513 } 3514 3515 ethertype_setting = strip_msg->outer_ethertype_setting; 3516 if (ethertype_setting) { 3517 if (ice_vc_ena_vlan_offload(vsi, 3518 vsi->outer_vlan_ops.ena_stripping, 3519 ethertype_setting)) { 3520 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3521 goto out; 3522 } else { 3523 enum ice_l2tsel l2tsel = 3524 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3525 3526 /* PF tells the VF that the outer VLAN tag is always 3527 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3528 * inner is always extracted to 3529 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3530 * support outer stripping so the first tag always ends 3531 * up in L2TAG2_2ND and the second/inner tag, if 3532 * enabled, is extracted in L2TAG1. 3533 */ 3534 ice_vsi_update_l2tsel(vsi, l2tsel); 3535 3536 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA; 3537 } 3538 } 3539 3540 ethertype_setting = strip_msg->inner_ethertype_setting; 3541 if (ethertype_setting && 3542 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3543 ethertype_setting)) { 3544 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3545 goto out; 3546 } 3547 3548 if (ethertype_setting) 3549 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3550 3551 out: 3552 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3553 v_ret, NULL, 0); 3554 } 3555 3556 /** 3557 * ice_vc_dis_vlan_stripping_v2_msg 3558 * @vf: VF the message was received from 3559 * @msg: message received from the VF 3560 * 3561 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3562 */ 3563 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3564 { 3565 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3566 struct virtchnl_vlan_supported_caps *stripping_support; 3567 struct virtchnl_vlan_setting *strip_msg = 3568 (struct virtchnl_vlan_setting *)msg; 3569 u32 ethertype_setting; 3570 struct ice_vsi *vsi; 3571 3572 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3573 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3574 goto out; 3575 } 3576 3577 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3578 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3579 goto out; 3580 } 3581 3582 vsi = ice_get_vf_vsi(vf); 3583 if (!vsi) { 3584 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3585 goto out; 3586 } 3587 3588 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3589 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3590 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3591 goto out; 3592 } 3593 3594 ethertype_setting = strip_msg->outer_ethertype_setting; 3595 if (ethertype_setting) { 3596 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3597 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3598 goto out; 3599 } else { 3600 enum ice_l2tsel l2tsel = 3601 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3602 3603 /* PF tells the VF that the outer VLAN tag is always 3604 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3605 * inner is always extracted to 3606 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3607 * support inner stripping while outer stripping is 3608 * disabled so that the first and only tag is extracted 3609 * in L2TAG1. 3610 */ 3611 ice_vsi_update_l2tsel(vsi, l2tsel); 3612 3613 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA; 3614 } 3615 } 3616 3617 ethertype_setting = strip_msg->inner_ethertype_setting; 3618 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3619 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3620 goto out; 3621 } 3622 3623 if (ethertype_setting) 3624 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 3625 3626 out: 3627 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3628 v_ret, NULL, 0); 3629 } 3630 3631 /** 3632 * ice_vc_ena_vlan_insertion_v2_msg 3633 * @vf: VF the message was received from 3634 * @msg: message received from the VF 3635 * 3636 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3637 */ 3638 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3639 { 3640 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3641 struct virtchnl_vlan_supported_caps *insertion_support; 3642 struct virtchnl_vlan_setting *insertion_msg = 3643 (struct virtchnl_vlan_setting *)msg; 3644 u32 ethertype_setting; 3645 struct ice_vsi *vsi; 3646 3647 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3648 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3649 goto out; 3650 } 3651 3652 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3653 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3654 goto out; 3655 } 3656 3657 vsi = ice_get_vf_vsi(vf); 3658 if (!vsi) { 3659 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3660 goto out; 3661 } 3662 3663 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3664 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3665 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3666 goto out; 3667 } 3668 3669 ethertype_setting = insertion_msg->outer_ethertype_setting; 3670 if (ethertype_setting && 3671 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3672 ethertype_setting)) { 3673 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3674 goto out; 3675 } 3676 3677 ethertype_setting = insertion_msg->inner_ethertype_setting; 3678 if (ethertype_setting && 3679 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3680 ethertype_setting)) { 3681 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3682 goto out; 3683 } 3684 3685 out: 3686 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3687 v_ret, NULL, 0); 3688 } 3689 3690 /** 3691 * ice_vc_dis_vlan_insertion_v2_msg 3692 * @vf: VF the message was received from 3693 * @msg: message received from the VF 3694 * 3695 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3696 */ 3697 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3698 { 3699 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3700 struct virtchnl_vlan_supported_caps *insertion_support; 3701 struct virtchnl_vlan_setting *insertion_msg = 3702 (struct virtchnl_vlan_setting *)msg; 3703 u32 ethertype_setting; 3704 struct ice_vsi *vsi; 3705 3706 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3707 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3708 goto out; 3709 } 3710 3711 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3712 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3713 goto out; 3714 } 3715 3716 vsi = ice_get_vf_vsi(vf); 3717 if (!vsi) { 3718 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3719 goto out; 3720 } 3721 3722 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3723 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3724 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3725 goto out; 3726 } 3727 3728 ethertype_setting = insertion_msg->outer_ethertype_setting; 3729 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3730 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3731 goto out; 3732 } 3733 3734 ethertype_setting = insertion_msg->inner_ethertype_setting; 3735 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3736 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3737 goto out; 3738 } 3739 3740 out: 3741 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3742 v_ret, NULL, 0); 3743 } 3744 3745 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3746 .get_ver_msg = ice_vc_get_ver_msg, 3747 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3748 .reset_vf = ice_vc_reset_vf_msg, 3749 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3750 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3751 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3752 .ena_qs_msg = ice_vc_ena_qs_msg, 3753 .dis_qs_msg = ice_vc_dis_qs_msg, 3754 .request_qs_msg = ice_vc_request_qs_msg, 3755 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3756 .config_rss_key = ice_vc_config_rss_key, 3757 .config_rss_lut = ice_vc_config_rss_lut, 3758 .get_stats_msg = ice_vc_get_stats_msg, 3759 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3760 .add_vlan_msg = ice_vc_add_vlan_msg, 3761 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3762 .query_rxdid = ice_vc_query_rxdid, 3763 .get_rss_hena = ice_vc_get_rss_hena, 3764 .set_rss_hena_msg = ice_vc_set_rss_hena, 3765 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3766 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3767 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3768 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3769 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3770 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3771 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3772 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3773 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3774 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3775 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3776 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3777 }; 3778 3779 /** 3780 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3781 * @vf: the VF to switch ops 3782 */ 3783 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3784 { 3785 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3786 } 3787 3788 /** 3789 * ice_vc_repr_add_mac 3790 * @vf: pointer to VF 3791 * @msg: virtchannel message 3792 * 3793 * When port representors are created, we do not add MAC rule 3794 * to firmware, we store it so that PF could report same 3795 * MAC as VF. 3796 */ 3797 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3798 { 3799 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3800 struct virtchnl_ether_addr_list *al = 3801 (struct virtchnl_ether_addr_list *)msg; 3802 struct ice_vsi *vsi; 3803 struct ice_pf *pf; 3804 int i; 3805 3806 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3807 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3808 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3809 goto handle_mac_exit; 3810 } 3811 3812 pf = vf->pf; 3813 3814 vsi = ice_get_vf_vsi(vf); 3815 if (!vsi) { 3816 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3817 goto handle_mac_exit; 3818 } 3819 3820 for (i = 0; i < al->num_elements; i++) { 3821 u8 *mac_addr = al->list[i].addr; 3822 3823 if (!is_unicast_ether_addr(mac_addr) || 3824 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 3825 continue; 3826 3827 if (vf->pf_set_mac) { 3828 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3829 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3830 goto handle_mac_exit; 3831 } 3832 3833 ice_vfhw_mac_add(vf, &al->list[i]); 3834 vf->num_mac++; 3835 break; 3836 } 3837 3838 handle_mac_exit: 3839 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3840 v_ret, NULL, 0); 3841 } 3842 3843 /** 3844 * ice_vc_repr_del_mac - response with success for deleting MAC 3845 * @vf: pointer to VF 3846 * @msg: virtchannel message 3847 * 3848 * Respond with success to not break normal VF flow. 3849 * For legacy VF driver try to update cached MAC address. 3850 */ 3851 static int 3852 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3853 { 3854 struct virtchnl_ether_addr_list *al = 3855 (struct virtchnl_ether_addr_list *)msg; 3856 3857 ice_update_legacy_cached_mac(vf, &al->list[0]); 3858 3859 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3860 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3861 } 3862 3863 static int 3864 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3865 { 3866 dev_dbg(ice_pf_to_dev(vf->pf), 3867 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3868 vf->vf_id); 3869 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3870 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3871 NULL, 0); 3872 } 3873 3874 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3875 .get_ver_msg = ice_vc_get_ver_msg, 3876 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3877 .reset_vf = ice_vc_reset_vf_msg, 3878 .add_mac_addr_msg = ice_vc_repr_add_mac, 3879 .del_mac_addr_msg = ice_vc_repr_del_mac, 3880 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3881 .ena_qs_msg = ice_vc_ena_qs_msg, 3882 .dis_qs_msg = ice_vc_dis_qs_msg, 3883 .request_qs_msg = ice_vc_request_qs_msg, 3884 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3885 .config_rss_key = ice_vc_config_rss_key, 3886 .config_rss_lut = ice_vc_config_rss_lut, 3887 .get_stats_msg = ice_vc_get_stats_msg, 3888 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3889 .add_vlan_msg = ice_vc_add_vlan_msg, 3890 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3891 .query_rxdid = ice_vc_query_rxdid, 3892 .get_rss_hena = ice_vc_get_rss_hena, 3893 .set_rss_hena_msg = ice_vc_set_rss_hena, 3894 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3895 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3896 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3897 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3898 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3899 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3900 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3901 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3902 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3903 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3904 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3905 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3906 }; 3907 3908 /** 3909 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3910 * @vf: the VF to switch ops 3911 */ 3912 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3913 { 3914 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3915 } 3916 3917 /** 3918 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 3919 * @vf: the VF to check 3920 * @mbxdata: data about the state of the mailbox 3921 * 3922 * Detect if a given VF might be malicious and attempting to overflow the PF 3923 * mailbox. If so, log a warning message and ignore this event. 3924 */ 3925 static bool 3926 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 3927 { 3928 bool report_malvf = false; 3929 struct device *dev; 3930 struct ice_pf *pf; 3931 int status; 3932 3933 pf = vf->pf; 3934 dev = ice_pf_to_dev(pf); 3935 3936 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 3937 return vf->mbx_info.malicious; 3938 3939 /* check to see if we have a newly malicious VF */ 3940 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 3941 &report_malvf); 3942 if (status) 3943 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 3944 vf->vf_id, vf->dev_lan_addr, status); 3945 3946 if (report_malvf) { 3947 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3948 u8 zero_addr[ETH_ALEN] = {}; 3949 3950 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 3951 vf->dev_lan_addr, 3952 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 3953 } 3954 3955 return vf->mbx_info.malicious; 3956 } 3957 3958 /** 3959 * ice_vc_process_vf_msg - Process request from VF 3960 * @pf: pointer to the PF structure 3961 * @event: pointer to the AQ event 3962 * @mbxdata: information used to detect VF attempting mailbox overflow 3963 * 3964 * called from the common asq/arq handler to 3965 * process request from VF 3966 */ 3967 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 3968 struct ice_mbx_data *mbxdata) 3969 { 3970 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3971 s16 vf_id = le16_to_cpu(event->desc.retval); 3972 const struct ice_virtchnl_ops *ops; 3973 u16 msglen = event->msg_len; 3974 u8 *msg = event->msg_buf; 3975 struct ice_vf *vf = NULL; 3976 struct device *dev; 3977 int err = 0; 3978 3979 dev = ice_pf_to_dev(pf); 3980 3981 vf = ice_get_vf_by_id(pf, vf_id); 3982 if (!vf) { 3983 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3984 vf_id, v_opcode, msglen); 3985 return; 3986 } 3987 3988 mutex_lock(&vf->cfg_lock); 3989 3990 /* Check if the VF is trying to overflow the mailbox */ 3991 if (ice_is_malicious_vf(vf, mbxdata)) 3992 goto finish; 3993 3994 /* Check if VF is disabled. */ 3995 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3996 err = -EPERM; 3997 goto error_handler; 3998 } 3999 4000 ops = vf->virtchnl_ops; 4001 4002 /* Perform basic checks on the msg */ 4003 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 4004 if (err) { 4005 if (err == VIRTCHNL_STATUS_ERR_PARAM) 4006 err = -EPERM; 4007 else 4008 err = -EINVAL; 4009 } 4010 4011 error_handler: 4012 if (err) { 4013 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 4014 NULL, 0); 4015 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 4016 vf_id, v_opcode, msglen, err); 4017 goto finish; 4018 } 4019 4020 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 4021 ice_vc_send_msg_to_vf(vf, v_opcode, 4022 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 4023 0); 4024 goto finish; 4025 } 4026 4027 switch (v_opcode) { 4028 case VIRTCHNL_OP_VERSION: 4029 err = ops->get_ver_msg(vf, msg); 4030 break; 4031 case VIRTCHNL_OP_GET_VF_RESOURCES: 4032 err = ops->get_vf_res_msg(vf, msg); 4033 if (ice_vf_init_vlan_stripping(vf)) 4034 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 4035 vf->vf_id); 4036 ice_vc_notify_vf_link_state(vf); 4037 break; 4038 case VIRTCHNL_OP_RESET_VF: 4039 ops->reset_vf(vf); 4040 break; 4041 case VIRTCHNL_OP_ADD_ETH_ADDR: 4042 err = ops->add_mac_addr_msg(vf, msg); 4043 break; 4044 case VIRTCHNL_OP_DEL_ETH_ADDR: 4045 err = ops->del_mac_addr_msg(vf, msg); 4046 break; 4047 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 4048 err = ops->cfg_qs_msg(vf, msg); 4049 break; 4050 case VIRTCHNL_OP_ENABLE_QUEUES: 4051 err = ops->ena_qs_msg(vf, msg); 4052 ice_vc_notify_vf_link_state(vf); 4053 break; 4054 case VIRTCHNL_OP_DISABLE_QUEUES: 4055 err = ops->dis_qs_msg(vf, msg); 4056 break; 4057 case VIRTCHNL_OP_REQUEST_QUEUES: 4058 err = ops->request_qs_msg(vf, msg); 4059 break; 4060 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 4061 err = ops->cfg_irq_map_msg(vf, msg); 4062 break; 4063 case VIRTCHNL_OP_CONFIG_RSS_KEY: 4064 err = ops->config_rss_key(vf, msg); 4065 break; 4066 case VIRTCHNL_OP_CONFIG_RSS_LUT: 4067 err = ops->config_rss_lut(vf, msg); 4068 break; 4069 case VIRTCHNL_OP_GET_STATS: 4070 err = ops->get_stats_msg(vf, msg); 4071 break; 4072 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 4073 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4074 break; 4075 case VIRTCHNL_OP_ADD_VLAN: 4076 err = ops->add_vlan_msg(vf, msg); 4077 break; 4078 case VIRTCHNL_OP_DEL_VLAN: 4079 err = ops->remove_vlan_msg(vf, msg); 4080 break; 4081 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4082 err = ops->query_rxdid(vf); 4083 break; 4084 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4085 err = ops->get_rss_hena(vf); 4086 break; 4087 case VIRTCHNL_OP_SET_RSS_HENA: 4088 err = ops->set_rss_hena_msg(vf, msg); 4089 break; 4090 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4091 err = ops->ena_vlan_stripping(vf); 4092 break; 4093 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4094 err = ops->dis_vlan_stripping(vf); 4095 break; 4096 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4097 err = ops->add_fdir_fltr_msg(vf, msg); 4098 break; 4099 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4100 err = ops->del_fdir_fltr_msg(vf, msg); 4101 break; 4102 case VIRTCHNL_OP_ADD_RSS_CFG: 4103 err = ops->handle_rss_cfg_msg(vf, msg, true); 4104 break; 4105 case VIRTCHNL_OP_DEL_RSS_CFG: 4106 err = ops->handle_rss_cfg_msg(vf, msg, false); 4107 break; 4108 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4109 err = ops->get_offload_vlan_v2_caps(vf); 4110 break; 4111 case VIRTCHNL_OP_ADD_VLAN_V2: 4112 err = ops->add_vlan_v2_msg(vf, msg); 4113 break; 4114 case VIRTCHNL_OP_DEL_VLAN_V2: 4115 err = ops->remove_vlan_v2_msg(vf, msg); 4116 break; 4117 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4118 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4119 break; 4120 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4121 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4122 break; 4123 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4124 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4125 break; 4126 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4127 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4128 break; 4129 case VIRTCHNL_OP_UNKNOWN: 4130 default: 4131 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4132 vf_id); 4133 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4134 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4135 NULL, 0); 4136 break; 4137 } 4138 if (err) { 4139 /* Helper function cares less about error return values here 4140 * as it is busy with pending work. 4141 */ 4142 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4143 vf_id, v_opcode, err); 4144 } 4145 4146 finish: 4147 mutex_unlock(&vf->cfg_lock); 4148 ice_put_vf(vf); 4149 } 4150