xref: /linux/drivers/net/ethernet/intel/ice/ice_virtchnl.c (revision dfd5e53dd72113f37663f59a6337fe9a0dfbf0f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 		     u32 driver_caps)
374 {
375 	if (ice_is_eswitch_mode_switchdev(vf->pf))
376 		/* In switchdev setting VLAN from VF isn't supported */
377 		return 0;
378 
379 	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 		/* VLAN offloads based on current device configuration */
381 		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 		 * these two conditions, which amounts to guest VLAN filtering
385 		 * and offloads being based on the inner VLAN or the
386 		 * inner/single VLAN respectively and don't allow VF to
387 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 		 */
389 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 			return VIRTCHNL_VF_OFFLOAD_VLAN;
391 		} else if (!ice_is_dvm_ena(hw) &&
392 			   !ice_vf_is_port_vlan_ena(vf)) {
393 			/* configure backward compatible support for VFs that
394 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 			 * configured in SVM, and no port VLAN is configured
396 			 */
397 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 			return VIRTCHNL_VF_OFFLOAD_VLAN;
399 		} else if (ice_is_dvm_ena(hw)) {
400 			/* configure software offloaded VLAN support when DVM
401 			 * is enabled, but no port VLAN is enabled
402 			 */
403 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 		}
405 	}
406 
407 	return 0;
408 }
409 
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 	struct virtchnl_vf_resource *vfres = NULL;
421 	struct ice_hw *hw = &vf->pf->hw;
422 	struct ice_vsi *vsi;
423 	int len = 0;
424 	int ret;
425 
426 	if (ice_check_vf_init(vf)) {
427 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 		goto err;
429 	}
430 
431 	len = sizeof(struct virtchnl_vf_resource);
432 
433 	vfres = kzalloc(len, GFP_KERNEL);
434 	if (!vfres) {
435 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 		len = 0;
437 		goto err;
438 	}
439 	if (VF_IS_V11(&vf->vf_ver))
440 		vf->driver_caps = *(u32 *)msg;
441 	else
442 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
444 				  VIRTCHNL_VF_OFFLOAD_VLAN;
445 
446 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
447 	vsi = ice_get_vf_vsi(vf);
448 	if (!vsi) {
449 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
450 		goto err;
451 	}
452 
453 	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
454 						    vf->driver_caps);
455 
456 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
457 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
458 	} else {
459 		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
460 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
461 		else
462 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
463 	}
464 
465 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
466 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
467 
468 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
469 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
470 
471 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
472 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
473 
474 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
475 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
476 
477 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
478 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
479 
480 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
481 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
482 
483 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
484 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
485 
486 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
487 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
488 
489 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
490 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
491 
492 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
493 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
494 
495 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
496 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
497 
498 	vfres->num_vsis = 1;
499 	/* Tx and Rx queue are equal for VF */
500 	vfres->num_queue_pairs = vsi->num_txq;
501 	vfres->max_vectors = vf->pf->vfs.num_msix_per;
502 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
503 	vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
504 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
505 
506 	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
507 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
508 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
509 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
510 			vf->hw_lan_addr.addr);
511 
512 	/* match guest capabilities */
513 	vf->driver_caps = vfres->vf_cap_flags;
514 
515 	ice_vc_set_caps_allowlist(vf);
516 	ice_vc_set_working_allowlist(vf);
517 
518 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
519 
520 err:
521 	/* send the response back to the VF */
522 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
523 				    (u8 *)vfres, len);
524 
525 	kfree(vfres);
526 	return ret;
527 }
528 
529 /**
530  * ice_vc_reset_vf_msg
531  * @vf: pointer to the VF info
532  *
533  * called from the VF to reset itself,
534  * unlike other virtchnl messages, PF driver
535  * doesn't send the response back to the VF
536  */
537 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
538 {
539 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
540 		ice_reset_vf(vf, 0);
541 }
542 
543 /**
544  * ice_vc_isvalid_vsi_id
545  * @vf: pointer to the VF info
546  * @vsi_id: VF relative VSI ID
547  *
548  * check for the valid VSI ID
549  */
550 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
551 {
552 	struct ice_pf *pf = vf->pf;
553 	struct ice_vsi *vsi;
554 
555 	vsi = ice_find_vsi(pf, vsi_id);
556 
557 	return (vsi && (vsi->vf == vf));
558 }
559 
560 /**
561  * ice_vc_isvalid_q_id
562  * @vf: pointer to the VF info
563  * @vsi_id: VSI ID
564  * @qid: VSI relative queue ID
565  *
566  * check for the valid queue ID
567  */
568 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
569 {
570 	struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
571 	/* allocated Tx and Rx queues should be always equal for VF VSI */
572 	return (vsi && (qid < vsi->alloc_txq));
573 }
574 
575 /**
576  * ice_vc_isvalid_ring_len
577  * @ring_len: length of ring
578  *
579  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
580  * or zero
581  */
582 static bool ice_vc_isvalid_ring_len(u16 ring_len)
583 {
584 	return ring_len == 0 ||
585 	       (ring_len >= ICE_MIN_NUM_DESC &&
586 		ring_len <= ICE_MAX_NUM_DESC &&
587 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
588 }
589 
590 /**
591  * ice_vc_validate_pattern
592  * @vf: pointer to the VF info
593  * @proto: virtchnl protocol headers
594  *
595  * validate the pattern is supported or not.
596  *
597  * Return: true on success, false on error.
598  */
599 bool
600 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
601 {
602 	bool is_ipv4 = false;
603 	bool is_ipv6 = false;
604 	bool is_udp = false;
605 	u16 ptype = -1;
606 	int i = 0;
607 
608 	while (i < proto->count &&
609 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
610 		switch (proto->proto_hdr[i].type) {
611 		case VIRTCHNL_PROTO_HDR_ETH:
612 			ptype = ICE_PTYPE_MAC_PAY;
613 			break;
614 		case VIRTCHNL_PROTO_HDR_IPV4:
615 			ptype = ICE_PTYPE_IPV4_PAY;
616 			is_ipv4 = true;
617 			break;
618 		case VIRTCHNL_PROTO_HDR_IPV6:
619 			ptype = ICE_PTYPE_IPV6_PAY;
620 			is_ipv6 = true;
621 			break;
622 		case VIRTCHNL_PROTO_HDR_UDP:
623 			if (is_ipv4)
624 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
625 			else if (is_ipv6)
626 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
627 			is_udp = true;
628 			break;
629 		case VIRTCHNL_PROTO_HDR_TCP:
630 			if (is_ipv4)
631 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
632 			else if (is_ipv6)
633 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
634 			break;
635 		case VIRTCHNL_PROTO_HDR_SCTP:
636 			if (is_ipv4)
637 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
638 			else if (is_ipv6)
639 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
640 			break;
641 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
642 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
643 			if (is_ipv4)
644 				ptype = ICE_MAC_IPV4_GTPU;
645 			else if (is_ipv6)
646 				ptype = ICE_MAC_IPV6_GTPU;
647 			goto out;
648 		case VIRTCHNL_PROTO_HDR_L2TPV3:
649 			if (is_ipv4)
650 				ptype = ICE_MAC_IPV4_L2TPV3;
651 			else if (is_ipv6)
652 				ptype = ICE_MAC_IPV6_L2TPV3;
653 			goto out;
654 		case VIRTCHNL_PROTO_HDR_ESP:
655 			if (is_ipv4)
656 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
657 						ICE_MAC_IPV4_ESP;
658 			else if (is_ipv6)
659 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
660 						ICE_MAC_IPV6_ESP;
661 			goto out;
662 		case VIRTCHNL_PROTO_HDR_AH:
663 			if (is_ipv4)
664 				ptype = ICE_MAC_IPV4_AH;
665 			else if (is_ipv6)
666 				ptype = ICE_MAC_IPV6_AH;
667 			goto out;
668 		case VIRTCHNL_PROTO_HDR_PFCP:
669 			if (is_ipv4)
670 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
671 			else if (is_ipv6)
672 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
673 			goto out;
674 		default:
675 			break;
676 		}
677 		i++;
678 	}
679 
680 out:
681 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
682 }
683 
684 /**
685  * ice_vc_parse_rss_cfg - parses hash fields and headers from
686  * a specific virtchnl RSS cfg
687  * @hw: pointer to the hardware
688  * @rss_cfg: pointer to the virtchnl RSS cfg
689  * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
690  * to configure
691  * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
692  *
693  * Return true if all the protocol header and hash fields in the RSS cfg could
694  * be parsed, else return false
695  *
696  * This function parses the virtchnl RSS cfg to be the intended
697  * hash fields and the intended header for RSS configuration
698  */
699 static bool
700 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
701 		     u32 *addl_hdrs, u64 *hash_flds)
702 {
703 	const struct ice_vc_hash_field_match_type *hf_list;
704 	const struct ice_vc_hdr_match_type *hdr_list;
705 	int i, hf_list_len, hdr_list_len;
706 
707 	hf_list = ice_vc_hash_field_list;
708 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
709 	hdr_list = ice_vc_hdr_list;
710 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
711 
712 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
713 		struct virtchnl_proto_hdr *proto_hdr =
714 					&rss_cfg->proto_hdrs.proto_hdr[i];
715 		bool hdr_found = false;
716 		int j;
717 
718 		/* Find matched ice headers according to virtchnl headers. */
719 		for (j = 0; j < hdr_list_len; j++) {
720 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
721 
722 			if (proto_hdr->type == hdr_map.vc_hdr) {
723 				*addl_hdrs |= hdr_map.ice_hdr;
724 				hdr_found = true;
725 			}
726 		}
727 
728 		if (!hdr_found)
729 			return false;
730 
731 		/* Find matched ice hash fields according to
732 		 * virtchnl hash fields.
733 		 */
734 		for (j = 0; j < hf_list_len; j++) {
735 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
736 
737 			if (proto_hdr->type == hf_map.vc_hdr &&
738 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
739 				*hash_flds |= hf_map.ice_hash_field;
740 				break;
741 			}
742 		}
743 	}
744 
745 	return true;
746 }
747 
748 /**
749  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
750  * RSS offloads
751  * @caps: VF driver negotiated capabilities
752  *
753  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
754  * else return false
755  */
756 static bool ice_vf_adv_rss_offload_ena(u32 caps)
757 {
758 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
759 }
760 
761 /**
762  * ice_vc_handle_rss_cfg
763  * @vf: pointer to the VF info
764  * @msg: pointer to the message buffer
765  * @add: add a RSS config if true, otherwise delete a RSS config
766  *
767  * This function adds/deletes a RSS config
768  */
769 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
770 {
771 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
772 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
773 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
774 	struct device *dev = ice_pf_to_dev(vf->pf);
775 	struct ice_hw *hw = &vf->pf->hw;
776 	struct ice_vsi *vsi;
777 
778 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
779 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
780 			vf->vf_id);
781 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
782 		goto error_param;
783 	}
784 
785 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
786 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
787 			vf->vf_id);
788 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
789 		goto error_param;
790 	}
791 
792 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
793 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
794 		goto error_param;
795 	}
796 
797 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
798 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
799 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
800 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
801 			vf->vf_id);
802 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
803 		goto error_param;
804 	}
805 
806 	vsi = ice_get_vf_vsi(vf);
807 	if (!vsi) {
808 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
809 		goto error_param;
810 	}
811 
812 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
813 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
814 		goto error_param;
815 	}
816 
817 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
818 		struct ice_vsi_ctx *ctx;
819 		u8 lut_type, hash_type;
820 		int status;
821 
822 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
823 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
824 				ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
825 
826 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
827 		if (!ctx) {
828 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
829 			goto error_param;
830 		}
831 
832 		ctx->info.q_opt_rss = ((lut_type <<
833 					ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
834 				       ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
835 				       (hash_type &
836 					ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
837 
838 		/* Preserve existing queueing option setting */
839 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
840 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
841 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
842 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
843 
844 		ctx->info.valid_sections =
845 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
846 
847 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
848 		if (status) {
849 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
850 				status, ice_aq_str(hw->adminq.sq_last_status));
851 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
852 		} else {
853 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
854 		}
855 
856 		kfree(ctx);
857 	} else {
858 		u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
859 		u64 hash_flds = ICE_HASH_INVALID;
860 
861 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
862 					  &hash_flds)) {
863 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
864 			goto error_param;
865 		}
866 
867 		if (add) {
868 			if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
869 					    addl_hdrs)) {
870 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
871 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
872 					vsi->vsi_num, v_ret);
873 			}
874 		} else {
875 			int status;
876 
877 			status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
878 						 addl_hdrs);
879 			/* We just ignore -ENOENT, because if two configurations
880 			 * share the same profile remove one of them actually
881 			 * removes both, since the profile is deleted.
882 			 */
883 			if (status && status != -ENOENT) {
884 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
885 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
886 					vf->vf_id, status);
887 			}
888 		}
889 	}
890 
891 error_param:
892 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
893 }
894 
895 /**
896  * ice_vc_config_rss_key
897  * @vf: pointer to the VF info
898  * @msg: pointer to the msg buffer
899  *
900  * Configure the VF's RSS key
901  */
902 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
903 {
904 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
905 	struct virtchnl_rss_key *vrk =
906 		(struct virtchnl_rss_key *)msg;
907 	struct ice_vsi *vsi;
908 
909 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
910 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
911 		goto error_param;
912 	}
913 
914 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
915 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
916 		goto error_param;
917 	}
918 
919 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
920 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
921 		goto error_param;
922 	}
923 
924 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
925 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
926 		goto error_param;
927 	}
928 
929 	vsi = ice_get_vf_vsi(vf);
930 	if (!vsi) {
931 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
932 		goto error_param;
933 	}
934 
935 	if (ice_set_rss_key(vsi, vrk->key))
936 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
937 error_param:
938 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
939 				     NULL, 0);
940 }
941 
942 /**
943  * ice_vc_config_rss_lut
944  * @vf: pointer to the VF info
945  * @msg: pointer to the msg buffer
946  *
947  * Configure the VF's RSS LUT
948  */
949 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
950 {
951 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
952 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
953 	struct ice_vsi *vsi;
954 
955 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
956 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
957 		goto error_param;
958 	}
959 
960 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
961 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
962 		goto error_param;
963 	}
964 
965 	if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
966 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
967 		goto error_param;
968 	}
969 
970 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
971 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
972 		goto error_param;
973 	}
974 
975 	vsi = ice_get_vf_vsi(vf);
976 	if (!vsi) {
977 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
978 		goto error_param;
979 	}
980 
981 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
982 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
983 error_param:
984 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
985 				     NULL, 0);
986 }
987 
988 /**
989  * ice_vc_cfg_promiscuous_mode_msg
990  * @vf: pointer to the VF info
991  * @msg: pointer to the msg buffer
992  *
993  * called from the VF to configure VF VSIs promiscuous mode
994  */
995 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
996 {
997 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
998 	bool rm_promisc, alluni = false, allmulti = false;
999 	struct virtchnl_promisc_info *info =
1000 	    (struct virtchnl_promisc_info *)msg;
1001 	struct ice_vsi_vlan_ops *vlan_ops;
1002 	int mcast_err = 0, ucast_err = 0;
1003 	struct ice_pf *pf = vf->pf;
1004 	struct ice_vsi *vsi;
1005 	u8 mcast_m, ucast_m;
1006 	struct device *dev;
1007 	int ret = 0;
1008 
1009 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1010 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1011 		goto error_param;
1012 	}
1013 
1014 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1015 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1016 		goto error_param;
1017 	}
1018 
1019 	vsi = ice_get_vf_vsi(vf);
1020 	if (!vsi) {
1021 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1022 		goto error_param;
1023 	}
1024 
1025 	dev = ice_pf_to_dev(pf);
1026 	if (!ice_is_vf_trusted(vf)) {
1027 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1028 			vf->vf_id);
1029 		/* Leave v_ret alone, lie to the VF on purpose. */
1030 		goto error_param;
1031 	}
1032 
1033 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1034 		alluni = true;
1035 
1036 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1037 		allmulti = true;
1038 
1039 	rm_promisc = !allmulti && !alluni;
1040 
1041 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1042 	if (rm_promisc)
1043 		ret = vlan_ops->ena_rx_filtering(vsi);
1044 	else
1045 		ret = vlan_ops->dis_rx_filtering(vsi);
1046 	if (ret) {
1047 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1048 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1049 		goto error_param;
1050 	}
1051 
1052 	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1053 
1054 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1055 		if (alluni) {
1056 			/* in this case we're turning on promiscuous mode */
1057 			ret = ice_set_dflt_vsi(vsi);
1058 		} else {
1059 			/* in this case we're turning off promiscuous mode */
1060 			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1061 				ret = ice_clear_dflt_vsi(vsi);
1062 		}
1063 
1064 		/* in this case we're turning on/off only
1065 		 * allmulticast
1066 		 */
1067 		if (allmulti)
1068 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1069 		else
1070 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1071 
1072 		if (ret) {
1073 			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1074 				vf->vf_id, ret);
1075 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1076 			goto error_param;
1077 		}
1078 	} else {
1079 		if (alluni)
1080 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1081 		else
1082 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1083 
1084 		if (allmulti)
1085 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1086 		else
1087 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1088 
1089 		if (ucast_err || mcast_err)
1090 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1091 	}
1092 
1093 	if (!mcast_err) {
1094 		if (allmulti &&
1095 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1096 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1097 				 vf->vf_id);
1098 		else if (!allmulti &&
1099 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1100 					    vf->vf_states))
1101 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1102 				 vf->vf_id);
1103 	} else {
1104 		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1105 			vf->vf_id, mcast_err);
1106 	}
1107 
1108 	if (!ucast_err) {
1109 		if (alluni &&
1110 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1111 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1112 				 vf->vf_id);
1113 		else if (!alluni &&
1114 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1115 					    vf->vf_states))
1116 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1117 				 vf->vf_id);
1118 	} else {
1119 		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1120 			vf->vf_id, ucast_err);
1121 	}
1122 
1123 error_param:
1124 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1125 				     v_ret, NULL, 0);
1126 }
1127 
1128 /**
1129  * ice_vc_get_stats_msg
1130  * @vf: pointer to the VF info
1131  * @msg: pointer to the msg buffer
1132  *
1133  * called from the VF to get VSI stats
1134  */
1135 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1136 {
1137 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1138 	struct virtchnl_queue_select *vqs =
1139 		(struct virtchnl_queue_select *)msg;
1140 	struct ice_eth_stats stats = { 0 };
1141 	struct ice_vsi *vsi;
1142 
1143 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1144 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1145 		goto error_param;
1146 	}
1147 
1148 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1149 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1150 		goto error_param;
1151 	}
1152 
1153 	vsi = ice_get_vf_vsi(vf);
1154 	if (!vsi) {
1155 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1156 		goto error_param;
1157 	}
1158 
1159 	ice_update_eth_stats(vsi);
1160 
1161 	stats = vsi->eth_stats;
1162 
1163 error_param:
1164 	/* send the response to the VF */
1165 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1166 				     (u8 *)&stats, sizeof(stats));
1167 }
1168 
1169 /**
1170  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1171  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1172  *
1173  * Return true on successful validation, else false
1174  */
1175 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1176 {
1177 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1178 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1179 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1180 		return false;
1181 
1182 	return true;
1183 }
1184 
1185 /**
1186  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1187  * @vsi: VSI of the VF to configure
1188  * @q_idx: VF queue index used to determine the queue in the PF's space
1189  */
1190 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1191 {
1192 	struct ice_hw *hw = &vsi->back->hw;
1193 	u32 pfq = vsi->txq_map[q_idx];
1194 	u32 reg;
1195 
1196 	reg = rd32(hw, QINT_TQCTL(pfq));
1197 
1198 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1199 	 * this is most likely a poll mode VF driver, so don't enable an
1200 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1201 	 */
1202 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1203 		return;
1204 
1205 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1206 }
1207 
1208 /**
1209  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1210  * @vsi: VSI of the VF to configure
1211  * @q_idx: VF queue index used to determine the queue in the PF's space
1212  */
1213 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1214 {
1215 	struct ice_hw *hw = &vsi->back->hw;
1216 	u32 pfq = vsi->rxq_map[q_idx];
1217 	u32 reg;
1218 
1219 	reg = rd32(hw, QINT_RQCTL(pfq));
1220 
1221 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1222 	 * this is most likely a poll mode VF driver, so don't enable an
1223 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1224 	 */
1225 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1226 		return;
1227 
1228 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1229 }
1230 
1231 /**
1232  * ice_vc_ena_qs_msg
1233  * @vf: pointer to the VF info
1234  * @msg: pointer to the msg buffer
1235  *
1236  * called from the VF to enable all or specific queue(s)
1237  */
1238 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1239 {
1240 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1241 	struct virtchnl_queue_select *vqs =
1242 	    (struct virtchnl_queue_select *)msg;
1243 	struct ice_vsi *vsi;
1244 	unsigned long q_map;
1245 	u16 vf_q_id;
1246 
1247 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1248 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1249 		goto error_param;
1250 	}
1251 
1252 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1253 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1254 		goto error_param;
1255 	}
1256 
1257 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1258 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1259 		goto error_param;
1260 	}
1261 
1262 	vsi = ice_get_vf_vsi(vf);
1263 	if (!vsi) {
1264 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1265 		goto error_param;
1266 	}
1267 
1268 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1269 	 * Tx queue group list was configured and the context bits were
1270 	 * programmed using ice_vsi_cfg_txqs
1271 	 */
1272 	q_map = vqs->rx_queues;
1273 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1274 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1275 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1276 			goto error_param;
1277 		}
1278 
1279 		/* Skip queue if enabled */
1280 		if (test_bit(vf_q_id, vf->rxq_ena))
1281 			continue;
1282 
1283 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1284 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1285 				vf_q_id, vsi->vsi_num);
1286 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1287 			goto error_param;
1288 		}
1289 
1290 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1291 		set_bit(vf_q_id, vf->rxq_ena);
1292 	}
1293 
1294 	q_map = vqs->tx_queues;
1295 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1296 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1297 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1298 			goto error_param;
1299 		}
1300 
1301 		/* Skip queue if enabled */
1302 		if (test_bit(vf_q_id, vf->txq_ena))
1303 			continue;
1304 
1305 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1306 		set_bit(vf_q_id, vf->txq_ena);
1307 	}
1308 
1309 	/* Set flag to indicate that queues are enabled */
1310 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1311 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1312 
1313 error_param:
1314 	/* send the response to the VF */
1315 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1316 				     NULL, 0);
1317 }
1318 
1319 /**
1320  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1321  * @vf: VF to disable queue for
1322  * @vsi: VSI for the VF
1323  * @q_id: VF relative (0-based) queue ID
1324  *
1325  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1326  * disabled then clear q_id bit in the enabled queues bitmap and return
1327  * success. Otherwise return error.
1328  */
1329 static int
1330 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1331 {
1332 	struct ice_txq_meta txq_meta = { 0 };
1333 	struct ice_tx_ring *ring;
1334 	int err;
1335 
1336 	if (!test_bit(q_id, vf->txq_ena))
1337 		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1338 			q_id, vsi->vsi_num);
1339 
1340 	ring = vsi->tx_rings[q_id];
1341 	if (!ring)
1342 		return -EINVAL;
1343 
1344 	ice_fill_txq_meta(vsi, ring, &txq_meta);
1345 
1346 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1347 	if (err) {
1348 		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1349 			q_id, vsi->vsi_num);
1350 		return err;
1351 	}
1352 
1353 	/* Clear enabled queues flag */
1354 	clear_bit(q_id, vf->txq_ena);
1355 
1356 	return 0;
1357 }
1358 
1359 /**
1360  * ice_vc_dis_qs_msg
1361  * @vf: pointer to the VF info
1362  * @msg: pointer to the msg buffer
1363  *
1364  * called from the VF to disable all or specific queue(s)
1365  */
1366 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1367 {
1368 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1369 	struct virtchnl_queue_select *vqs =
1370 	    (struct virtchnl_queue_select *)msg;
1371 	struct ice_vsi *vsi;
1372 	unsigned long q_map;
1373 	u16 vf_q_id;
1374 
1375 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1376 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1377 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1378 		goto error_param;
1379 	}
1380 
1381 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1382 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1383 		goto error_param;
1384 	}
1385 
1386 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1387 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1388 		goto error_param;
1389 	}
1390 
1391 	vsi = ice_get_vf_vsi(vf);
1392 	if (!vsi) {
1393 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1394 		goto error_param;
1395 	}
1396 
1397 	if (vqs->tx_queues) {
1398 		q_map = vqs->tx_queues;
1399 
1400 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1401 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1402 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1403 				goto error_param;
1404 			}
1405 
1406 			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1407 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1408 				goto error_param;
1409 			}
1410 		}
1411 	}
1412 
1413 	q_map = vqs->rx_queues;
1414 	/* speed up Rx queue disable by batching them if possible */
1415 	if (q_map &&
1416 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1417 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1418 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1419 				vsi->vsi_num);
1420 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1421 			goto error_param;
1422 		}
1423 
1424 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1425 	} else if (q_map) {
1426 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1427 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1428 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1429 				goto error_param;
1430 			}
1431 
1432 			/* Skip queue if not enabled */
1433 			if (!test_bit(vf_q_id, vf->rxq_ena))
1434 				continue;
1435 
1436 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1437 						     true)) {
1438 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1439 					vf_q_id, vsi->vsi_num);
1440 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1441 				goto error_param;
1442 			}
1443 
1444 			/* Clear enabled queues flag */
1445 			clear_bit(vf_q_id, vf->rxq_ena);
1446 		}
1447 	}
1448 
1449 	/* Clear enabled queues flag */
1450 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1451 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1452 
1453 error_param:
1454 	/* send the response to the VF */
1455 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1456 				     NULL, 0);
1457 }
1458 
1459 /**
1460  * ice_cfg_interrupt
1461  * @vf: pointer to the VF info
1462  * @vsi: the VSI being configured
1463  * @vector_id: vector ID
1464  * @map: vector map for mapping vectors to queues
1465  * @q_vector: structure for interrupt vector
1466  * configure the IRQ to queue map
1467  */
1468 static int
1469 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1470 		  struct virtchnl_vector_map *map,
1471 		  struct ice_q_vector *q_vector)
1472 {
1473 	u16 vsi_q_id, vsi_q_id_idx;
1474 	unsigned long qmap;
1475 
1476 	q_vector->num_ring_rx = 0;
1477 	q_vector->num_ring_tx = 0;
1478 
1479 	qmap = map->rxq_map;
1480 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1481 		vsi_q_id = vsi_q_id_idx;
1482 
1483 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1484 			return VIRTCHNL_STATUS_ERR_PARAM;
1485 
1486 		q_vector->num_ring_rx++;
1487 		q_vector->rx.itr_idx = map->rxitr_idx;
1488 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1489 		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1490 				      q_vector->rx.itr_idx);
1491 	}
1492 
1493 	qmap = map->txq_map;
1494 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1495 		vsi_q_id = vsi_q_id_idx;
1496 
1497 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1498 			return VIRTCHNL_STATUS_ERR_PARAM;
1499 
1500 		q_vector->num_ring_tx++;
1501 		q_vector->tx.itr_idx = map->txitr_idx;
1502 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1503 		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1504 				      q_vector->tx.itr_idx);
1505 	}
1506 
1507 	return VIRTCHNL_STATUS_SUCCESS;
1508 }
1509 
1510 /**
1511  * ice_vc_cfg_irq_map_msg
1512  * @vf: pointer to the VF info
1513  * @msg: pointer to the msg buffer
1514  *
1515  * called from the VF to configure the IRQ to queue map
1516  */
1517 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1518 {
1519 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1520 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1521 	struct virtchnl_irq_map_info *irqmap_info;
1522 	struct virtchnl_vector_map *map;
1523 	struct ice_pf *pf = vf->pf;
1524 	struct ice_vsi *vsi;
1525 	int i;
1526 
1527 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1528 	num_q_vectors_mapped = irqmap_info->num_vectors;
1529 
1530 	/* Check to make sure number of VF vectors mapped is not greater than
1531 	 * number of VF vectors originally allocated, and check that
1532 	 * there is actually at least a single VF queue vector mapped
1533 	 */
1534 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1535 	    pf->vfs.num_msix_per < num_q_vectors_mapped ||
1536 	    !num_q_vectors_mapped) {
1537 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1538 		goto error_param;
1539 	}
1540 
1541 	vsi = ice_get_vf_vsi(vf);
1542 	if (!vsi) {
1543 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1544 		goto error_param;
1545 	}
1546 
1547 	for (i = 0; i < num_q_vectors_mapped; i++) {
1548 		struct ice_q_vector *q_vector;
1549 
1550 		map = &irqmap_info->vecmap[i];
1551 
1552 		vector_id = map->vector_id;
1553 		vsi_id = map->vsi_id;
1554 		/* vector_id is always 0-based for each VF, and can never be
1555 		 * larger than or equal to the max allowed interrupts per VF
1556 		 */
1557 		if (!(vector_id < pf->vfs.num_msix_per) ||
1558 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1559 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1560 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1561 			goto error_param;
1562 		}
1563 
1564 		/* No need to map VF miscellaneous or rogue vector */
1565 		if (!vector_id)
1566 			continue;
1567 
1568 		/* Subtract non queue vector from vector_id passed by VF
1569 		 * to get actual number of VSI queue vector array index
1570 		 */
1571 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1572 		if (!q_vector) {
1573 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1574 			goto error_param;
1575 		}
1576 
1577 		/* lookout for the invalid queue index */
1578 		v_ret = (enum virtchnl_status_code)
1579 			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1580 		if (v_ret)
1581 			goto error_param;
1582 	}
1583 
1584 error_param:
1585 	/* send the response to the VF */
1586 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1587 				     NULL, 0);
1588 }
1589 
1590 /**
1591  * ice_vc_cfg_qs_msg
1592  * @vf: pointer to the VF info
1593  * @msg: pointer to the msg buffer
1594  *
1595  * called from the VF to configure the Rx/Tx queues
1596  */
1597 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1598 {
1599 	struct virtchnl_vsi_queue_config_info *qci =
1600 	    (struct virtchnl_vsi_queue_config_info *)msg;
1601 	struct virtchnl_queue_pair_info *qpi;
1602 	struct ice_pf *pf = vf->pf;
1603 	struct ice_vsi *vsi;
1604 	int i = -1, q_idx;
1605 
1606 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1607 		goto error_param;
1608 
1609 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1610 		goto error_param;
1611 
1612 	vsi = ice_get_vf_vsi(vf);
1613 	if (!vsi)
1614 		goto error_param;
1615 
1616 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1617 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1618 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1619 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1620 		goto error_param;
1621 	}
1622 
1623 	for (i = 0; i < qci->num_queue_pairs; i++) {
1624 		struct ice_hw *hw;
1625 		u32 rxdid;
1626 		u16 pf_q;
1627 		qpi = &qci->qpair[i];
1628 		if (qpi->txq.vsi_id != qci->vsi_id ||
1629 		    qpi->rxq.vsi_id != qci->vsi_id ||
1630 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1631 		    qpi->txq.headwb_enabled ||
1632 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1633 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1634 		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1635 			goto error_param;
1636 		}
1637 
1638 		q_idx = qpi->rxq.queue_id;
1639 
1640 		/* make sure selected "q_idx" is in valid range of queues
1641 		 * for selected "vsi"
1642 		 */
1643 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1644 			goto error_param;
1645 		}
1646 
1647 		/* copy Tx queue info from VF into VSI */
1648 		if (qpi->txq.ring_len > 0) {
1649 			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1650 			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1651 
1652 			/* Disable any existing queue first */
1653 			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1654 				goto error_param;
1655 
1656 			/* Configure a queue with the requested settings */
1657 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1658 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1659 					 vf->vf_id, i);
1660 				goto error_param;
1661 			}
1662 		}
1663 
1664 		/* copy Rx queue info from VF into VSI */
1665 		if (qpi->rxq.ring_len > 0) {
1666 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1667 
1668 			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1669 			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1670 
1671 			if (qpi->rxq.databuffer_size != 0 &&
1672 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1673 			     qpi->rxq.databuffer_size < 1024))
1674 				goto error_param;
1675 			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1676 			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1677 			if (qpi->rxq.max_pkt_size > max_frame_size ||
1678 			    qpi->rxq.max_pkt_size < 64)
1679 				goto error_param;
1680 
1681 			vsi->max_frame = qpi->rxq.max_pkt_size;
1682 			/* add space for the port VLAN since the VF driver is
1683 			 * not expected to account for it in the MTU
1684 			 * calculation
1685 			 */
1686 			if (ice_vf_is_port_vlan_ena(vf))
1687 				vsi->max_frame += VLAN_HLEN;
1688 
1689 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1690 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1691 					 vf->vf_id, i);
1692 				goto error_param;
1693 			}
1694 		}
1695 
1696 		/* VF Rx queue RXDID configuration */
1697 		pf_q = vsi->rxq_map[qpi->rxq.queue_id];
1698 		rxdid = qpi->rxq.rxdid;
1699 		hw = &vsi->back->hw;
1700 
1701 		/* If Rx flex desc is supported, select RXDID for Rx queues.
1702 		 * Otherwise, use legacy 32byte descriptor format.
1703 		 * Legacy 16byte descriptor is not supported. If this RXDID
1704 		 * is selected, return error.
1705 		 */
1706 		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1707 			if (!(BIT(rxdid) & pf->supported_rxdids))
1708 				goto error_param;
1709 		} else {
1710 			rxdid = ICE_RXDID_LEGACY_1;
1711 		}
1712 
1713 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x03, false);
1714 	}
1715 
1716 	/* send the response to the VF */
1717 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1718 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1719 error_param:
1720 	/* disable whatever we can */
1721 	for (; i >= 0; i--) {
1722 		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1723 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1724 				vf->vf_id, i);
1725 		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1726 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1727 				vf->vf_id, i);
1728 	}
1729 
1730 	/* send the response to the VF */
1731 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1732 				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1733 }
1734 
1735 /**
1736  * ice_can_vf_change_mac
1737  * @vf: pointer to the VF info
1738  *
1739  * Return true if the VF is allowed to change its MAC filters, false otherwise
1740  */
1741 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1742 {
1743 	/* If the VF MAC address has been set administratively (via the
1744 	 * ndo_set_vf_mac command), then deny permission to the VF to
1745 	 * add/delete unicast MAC addresses, unless the VF is trusted
1746 	 */
1747 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1748 		return false;
1749 
1750 	return true;
1751 }
1752 
1753 /**
1754  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1755  * @vc_ether_addr: used to extract the type
1756  */
1757 static u8
1758 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1759 {
1760 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1761 }
1762 
1763 /**
1764  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1765  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1766  */
1767 static bool
1768 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1769 {
1770 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1771 
1772 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1773 }
1774 
1775 /**
1776  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1777  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1778  *
1779  * This function should only be called when the MAC address in
1780  * virtchnl_ether_addr is a valid unicast MAC
1781  */
1782 static bool
1783 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1784 {
1785 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1786 
1787 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1788 }
1789 
1790 /**
1791  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1792  * @vf: VF to update
1793  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1794  */
1795 static void
1796 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1797 {
1798 	u8 *mac_addr = vc_ether_addr->addr;
1799 
1800 	if (!is_valid_ether_addr(mac_addr))
1801 		return;
1802 
1803 	/* only allow legacy VF drivers to set the device and hardware MAC if it
1804 	 * is zero and allow new VF drivers to set the hardware MAC if the type
1805 	 * was correctly specified over VIRTCHNL
1806 	 */
1807 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1808 	     is_zero_ether_addr(vf->hw_lan_addr.addr)) ||
1809 	    ice_is_vc_addr_primary(vc_ether_addr)) {
1810 		ether_addr_copy(vf->dev_lan_addr.addr, mac_addr);
1811 		ether_addr_copy(vf->hw_lan_addr.addr, mac_addr);
1812 	}
1813 
1814 	/* hardware and device MACs are already set, but its possible that the
1815 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1816 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1817 	 * away for the legacy VF driver case as it will be updated in the
1818 	 * delete flow for this case
1819 	 */
1820 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1821 		ether_addr_copy(vf->legacy_last_added_umac.addr,
1822 				mac_addr);
1823 		vf->legacy_last_added_umac.time_modified = jiffies;
1824 	}
1825 }
1826 
1827 /**
1828  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1829  * @vf: pointer to the VF info
1830  * @vsi: pointer to the VF's VSI
1831  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1832  */
1833 static int
1834 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1835 		    struct virtchnl_ether_addr *vc_ether_addr)
1836 {
1837 	struct device *dev = ice_pf_to_dev(vf->pf);
1838 	u8 *mac_addr = vc_ether_addr->addr;
1839 	int ret;
1840 
1841 	/* device MAC already added */
1842 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr))
1843 		return 0;
1844 
1845 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1846 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1847 		return -EPERM;
1848 	}
1849 
1850 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1851 	if (ret == -EEXIST) {
1852 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1853 			vf->vf_id);
1854 		/* don't return since we might need to update
1855 		 * the primary MAC in ice_vfhw_mac_add() below
1856 		 */
1857 	} else if (ret) {
1858 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1859 			mac_addr, vf->vf_id, ret);
1860 		return ret;
1861 	} else {
1862 		vf->num_mac++;
1863 	}
1864 
1865 	ice_vfhw_mac_add(vf, vc_ether_addr);
1866 
1867 	return ret;
1868 }
1869 
1870 /**
1871  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1872  * @last_added_umac: structure used to check expiration
1873  */
1874 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1875 {
1876 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1877 	return time_is_before_jiffies(last_added_umac->time_modified +
1878 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1879 }
1880 
1881 /**
1882  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1883  * @vf: VF to update
1884  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1885  *
1886  * only update cached hardware MAC for legacy VF drivers on delete
1887  * because we cannot guarantee order/type of MAC from the VF driver
1888  */
1889 static void
1890 ice_update_legacy_cached_mac(struct ice_vf *vf,
1891 			     struct virtchnl_ether_addr *vc_ether_addr)
1892 {
1893 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1894 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1895 		return;
1896 
1897 	ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr);
1898 	ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr);
1899 }
1900 
1901 /**
1902  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1903  * @vf: VF to update
1904  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1905  */
1906 static void
1907 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1908 {
1909 	u8 *mac_addr = vc_ether_addr->addr;
1910 
1911 	if (!is_valid_ether_addr(mac_addr) ||
1912 	    !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
1913 		return;
1914 
1915 	/* allow the device MAC to be repopulated in the add flow and don't
1916 	 * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant
1917 	 * to be persistent on VM reboot and across driver unload/load, which
1918 	 * won't work if we clear the hardware MAC here
1919 	 */
1920 	eth_zero_addr(vf->dev_lan_addr.addr);
1921 
1922 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
1923 }
1924 
1925 /**
1926  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1927  * @vf: pointer to the VF info
1928  * @vsi: pointer to the VF's VSI
1929  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1930  */
1931 static int
1932 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1933 		    struct virtchnl_ether_addr *vc_ether_addr)
1934 {
1935 	struct device *dev = ice_pf_to_dev(vf->pf);
1936 	u8 *mac_addr = vc_ether_addr->addr;
1937 	int status;
1938 
1939 	if (!ice_can_vf_change_mac(vf) &&
1940 	    ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
1941 		return 0;
1942 
1943 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1944 	if (status == -ENOENT) {
1945 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1946 			vf->vf_id);
1947 		return -ENOENT;
1948 	} else if (status) {
1949 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1950 			mac_addr, vf->vf_id, status);
1951 		return -EIO;
1952 	}
1953 
1954 	ice_vfhw_mac_del(vf, vc_ether_addr);
1955 
1956 	vf->num_mac--;
1957 
1958 	return 0;
1959 }
1960 
1961 /**
1962  * ice_vc_handle_mac_addr_msg
1963  * @vf: pointer to the VF info
1964  * @msg: pointer to the msg buffer
1965  * @set: true if MAC filters are being set, false otherwise
1966  *
1967  * add guest MAC address filter
1968  */
1969 static int
1970 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
1971 {
1972 	int (*ice_vc_cfg_mac)
1973 		(struct ice_vf *vf, struct ice_vsi *vsi,
1974 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
1975 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1976 	struct virtchnl_ether_addr_list *al =
1977 	    (struct virtchnl_ether_addr_list *)msg;
1978 	struct ice_pf *pf = vf->pf;
1979 	enum virtchnl_ops vc_op;
1980 	struct ice_vsi *vsi;
1981 	int i;
1982 
1983 	if (set) {
1984 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
1985 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
1986 	} else {
1987 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
1988 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
1989 	}
1990 
1991 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1992 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
1993 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1994 		goto handle_mac_exit;
1995 	}
1996 
1997 	/* If this VF is not privileged, then we can't add more than a
1998 	 * limited number of addresses. Check to make sure that the
1999 	 * additions do not push us over the limit.
2000 	 */
2001 	if (set && !ice_is_vf_trusted(vf) &&
2002 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2003 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2004 			vf->vf_id);
2005 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2006 		goto handle_mac_exit;
2007 	}
2008 
2009 	vsi = ice_get_vf_vsi(vf);
2010 	if (!vsi) {
2011 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2012 		goto handle_mac_exit;
2013 	}
2014 
2015 	for (i = 0; i < al->num_elements; i++) {
2016 		u8 *mac_addr = al->list[i].addr;
2017 		int result;
2018 
2019 		if (is_broadcast_ether_addr(mac_addr) ||
2020 		    is_zero_ether_addr(mac_addr))
2021 			continue;
2022 
2023 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2024 		if (result == -EEXIST || result == -ENOENT) {
2025 			continue;
2026 		} else if (result) {
2027 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2028 			goto handle_mac_exit;
2029 		}
2030 	}
2031 
2032 handle_mac_exit:
2033 	/* send the response to the VF */
2034 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2035 }
2036 
2037 /**
2038  * ice_vc_add_mac_addr_msg
2039  * @vf: pointer to the VF info
2040  * @msg: pointer to the msg buffer
2041  *
2042  * add guest MAC address filter
2043  */
2044 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2045 {
2046 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2047 }
2048 
2049 /**
2050  * ice_vc_del_mac_addr_msg
2051  * @vf: pointer to the VF info
2052  * @msg: pointer to the msg buffer
2053  *
2054  * remove guest MAC address filter
2055  */
2056 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2057 {
2058 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2059 }
2060 
2061 /**
2062  * ice_vc_request_qs_msg
2063  * @vf: pointer to the VF info
2064  * @msg: pointer to the msg buffer
2065  *
2066  * VFs get a default number of queues but can use this message to request a
2067  * different number. If the request is successful, PF will reset the VF and
2068  * return 0. If unsuccessful, PF will send message informing VF of number of
2069  * available queue pairs via virtchnl message response to VF.
2070  */
2071 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2072 {
2073 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2074 	struct virtchnl_vf_res_request *vfres =
2075 		(struct virtchnl_vf_res_request *)msg;
2076 	u16 req_queues = vfres->num_queue_pairs;
2077 	struct ice_pf *pf = vf->pf;
2078 	u16 max_allowed_vf_queues;
2079 	u16 tx_rx_queue_left;
2080 	struct device *dev;
2081 	u16 cur_queues;
2082 
2083 	dev = ice_pf_to_dev(pf);
2084 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2085 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2086 		goto error_param;
2087 	}
2088 
2089 	cur_queues = vf->num_vf_qs;
2090 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2091 				 ice_get_avail_rxq_count(pf));
2092 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2093 	if (!req_queues) {
2094 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2095 			vf->vf_id);
2096 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2097 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2098 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2099 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2100 	} else if (req_queues > cur_queues &&
2101 		   req_queues - cur_queues > tx_rx_queue_left) {
2102 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2103 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2104 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2105 					       ICE_MAX_RSS_QS_PER_VF);
2106 	} else {
2107 		/* request is successful, then reset VF */
2108 		vf->num_req_qs = req_queues;
2109 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2110 		dev_info(dev, "VF %d granted request of %u queues.\n",
2111 			 vf->vf_id, req_queues);
2112 		return 0;
2113 	}
2114 
2115 error_param:
2116 	/* send the response to the VF */
2117 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2118 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2119 }
2120 
2121 /**
2122  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2123  * @caps: VF driver negotiated capabilities
2124  *
2125  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2126  */
2127 static bool ice_vf_vlan_offload_ena(u32 caps)
2128 {
2129 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2130 }
2131 
2132 /**
2133  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2134  * @vf: VF used to determine if VLAN promiscuous config is allowed
2135  */
2136 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2137 {
2138 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2139 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2140 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2141 		return true;
2142 
2143 	return false;
2144 }
2145 
2146 /**
2147  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2148  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2149  * @vlan: VLAN used to enable VLAN promiscuous
2150  *
2151  * This function should only be called if VLAN promiscuous mode is allowed,
2152  * which can be determined via ice_is_vlan_promisc_allowed().
2153  */
2154 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2155 {
2156 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2157 	int status;
2158 
2159 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2160 					  vlan->vid);
2161 	if (status && status != -EEXIST)
2162 		return status;
2163 
2164 	return 0;
2165 }
2166 
2167 /**
2168  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2169  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2170  * @vlan: VLAN used to disable VLAN promiscuous
2171  *
2172  * This function should only be called if VLAN promiscuous mode is allowed,
2173  * which can be determined via ice_is_vlan_promisc_allowed().
2174  */
2175 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2176 {
2177 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2178 	int status;
2179 
2180 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2181 					    vlan->vid);
2182 	if (status && status != -ENOENT)
2183 		return status;
2184 
2185 	return 0;
2186 }
2187 
2188 /**
2189  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2190  * @vf: VF to check against
2191  * @vsi: VF's VSI
2192  *
2193  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2194  * wants to, so return false.
2195  *
2196  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2197  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2198  */
2199 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2200 {
2201 	if (ice_is_vf_trusted(vf))
2202 		return false;
2203 
2204 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2205 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2206 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2207 }
2208 
2209 /**
2210  * ice_vc_process_vlan_msg
2211  * @vf: pointer to the VF info
2212  * @msg: pointer to the msg buffer
2213  * @add_v: Add VLAN if true, otherwise delete VLAN
2214  *
2215  * Process virtchnl op to add or remove programmed guest VLAN ID
2216  */
2217 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2218 {
2219 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2220 	struct virtchnl_vlan_filter_list *vfl =
2221 	    (struct virtchnl_vlan_filter_list *)msg;
2222 	struct ice_pf *pf = vf->pf;
2223 	bool vlan_promisc = false;
2224 	struct ice_vsi *vsi;
2225 	struct device *dev;
2226 	int status = 0;
2227 	int i;
2228 
2229 	dev = ice_pf_to_dev(pf);
2230 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2231 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2232 		goto error_param;
2233 	}
2234 
2235 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2236 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2237 		goto error_param;
2238 	}
2239 
2240 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2241 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2242 		goto error_param;
2243 	}
2244 
2245 	for (i = 0; i < vfl->num_elements; i++) {
2246 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2247 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2248 			dev_err(dev, "invalid VF VLAN id %d\n",
2249 				vfl->vlan_id[i]);
2250 			goto error_param;
2251 		}
2252 	}
2253 
2254 	vsi = ice_get_vf_vsi(vf);
2255 	if (!vsi) {
2256 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2257 		goto error_param;
2258 	}
2259 
2260 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2261 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2262 			 vf->vf_id);
2263 		/* There is no need to let VF know about being not trusted,
2264 		 * so we can just return success message here
2265 		 */
2266 		goto error_param;
2267 	}
2268 
2269 	/* in DVM a VF can add/delete inner VLAN filters when
2270 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2271 	 */
2272 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2273 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2274 		goto error_param;
2275 	}
2276 
2277 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2278 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2279 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2280 	 */
2281 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2282 		!ice_is_dvm_ena(&pf->hw) &&
2283 		!ice_vf_is_port_vlan_ena(vf);
2284 
2285 	if (add_v) {
2286 		for (i = 0; i < vfl->num_elements; i++) {
2287 			u16 vid = vfl->vlan_id[i];
2288 			struct ice_vlan vlan;
2289 
2290 			if (ice_vf_has_max_vlans(vf, vsi)) {
2291 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2292 					 vf->vf_id);
2293 				/* There is no need to let VF know about being
2294 				 * not trusted, so we can just return success
2295 				 * message here as well.
2296 				 */
2297 				goto error_param;
2298 			}
2299 
2300 			/* we add VLAN 0 by default for each VF so we can enable
2301 			 * Tx VLAN anti-spoof without triggering MDD events so
2302 			 * we don't need to add it again here
2303 			 */
2304 			if (!vid)
2305 				continue;
2306 
2307 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2308 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2309 			if (status) {
2310 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2311 				goto error_param;
2312 			}
2313 
2314 			/* Enable VLAN filtering on first non-zero VLAN */
2315 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2316 				if (vf->spoofchk) {
2317 					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2318 					if (status) {
2319 						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2320 						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2321 							vid, status);
2322 						goto error_param;
2323 					}
2324 				}
2325 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2326 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2327 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2328 						vid, status);
2329 					goto error_param;
2330 				}
2331 			} else if (vlan_promisc) {
2332 				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2333 				if (status) {
2334 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2335 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2336 						vid, status);
2337 				}
2338 			}
2339 		}
2340 	} else {
2341 		/* In case of non_trusted VF, number of VLAN elements passed
2342 		 * to PF for removal might be greater than number of VLANs
2343 		 * filter programmed for that VF - So, use actual number of
2344 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2345 		 * removing VLAN that doesn't exist, which result to sending
2346 		 * erroneous failed message back to the VF
2347 		 */
2348 		int num_vf_vlan;
2349 
2350 		num_vf_vlan = vsi->num_vlan;
2351 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2352 			u16 vid = vfl->vlan_id[i];
2353 			struct ice_vlan vlan;
2354 
2355 			/* we add VLAN 0 by default for each VF so we can enable
2356 			 * Tx VLAN anti-spoof without triggering MDD events so
2357 			 * we don't want a VIRTCHNL request to remove it
2358 			 */
2359 			if (!vid)
2360 				continue;
2361 
2362 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2363 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2364 			if (status) {
2365 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2366 				goto error_param;
2367 			}
2368 
2369 			/* Disable VLAN filtering when only VLAN 0 is left */
2370 			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2371 				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2372 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2373 			}
2374 
2375 			if (vlan_promisc)
2376 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2377 		}
2378 	}
2379 
2380 error_param:
2381 	/* send the response to the VF */
2382 	if (add_v)
2383 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2384 					     NULL, 0);
2385 	else
2386 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2387 					     NULL, 0);
2388 }
2389 
2390 /**
2391  * ice_vc_add_vlan_msg
2392  * @vf: pointer to the VF info
2393  * @msg: pointer to the msg buffer
2394  *
2395  * Add and program guest VLAN ID
2396  */
2397 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2398 {
2399 	return ice_vc_process_vlan_msg(vf, msg, true);
2400 }
2401 
2402 /**
2403  * ice_vc_remove_vlan_msg
2404  * @vf: pointer to the VF info
2405  * @msg: pointer to the msg buffer
2406  *
2407  * remove programmed guest VLAN ID
2408  */
2409 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2410 {
2411 	return ice_vc_process_vlan_msg(vf, msg, false);
2412 }
2413 
2414 /**
2415  * ice_vc_ena_vlan_stripping
2416  * @vf: pointer to the VF info
2417  *
2418  * Enable VLAN header stripping for a given VF
2419  */
2420 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2421 {
2422 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2423 	struct ice_vsi *vsi;
2424 
2425 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2426 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2427 		goto error_param;
2428 	}
2429 
2430 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2431 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2432 		goto error_param;
2433 	}
2434 
2435 	vsi = ice_get_vf_vsi(vf);
2436 	if (!vsi) {
2437 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2438 		goto error_param;
2439 	}
2440 
2441 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2442 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2443 
2444 error_param:
2445 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2446 				     v_ret, NULL, 0);
2447 }
2448 
2449 /**
2450  * ice_vc_dis_vlan_stripping
2451  * @vf: pointer to the VF info
2452  *
2453  * Disable VLAN header stripping for a given VF
2454  */
2455 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2456 {
2457 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2458 	struct ice_vsi *vsi;
2459 
2460 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2461 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2462 		goto error_param;
2463 	}
2464 
2465 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2466 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2467 		goto error_param;
2468 	}
2469 
2470 	vsi = ice_get_vf_vsi(vf);
2471 	if (!vsi) {
2472 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2473 		goto error_param;
2474 	}
2475 
2476 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2477 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2478 
2479 error_param:
2480 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2481 				     v_ret, NULL, 0);
2482 }
2483 
2484 /**
2485  * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2486  * @vf: pointer to the VF info
2487  */
2488 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2489 {
2490 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2491 	struct virtchnl_rss_hena *vrh = NULL;
2492 	int len = 0, ret;
2493 
2494 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2495 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2496 		goto err;
2497 	}
2498 
2499 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2500 		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2501 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2502 		goto err;
2503 	}
2504 
2505 	len = sizeof(struct virtchnl_rss_hena);
2506 	vrh = kzalloc(len, GFP_KERNEL);
2507 	if (!vrh) {
2508 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2509 		len = 0;
2510 		goto err;
2511 	}
2512 
2513 	vrh->hena = ICE_DEFAULT_RSS_HENA;
2514 err:
2515 	/* send the response back to the VF */
2516 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2517 				    (u8 *)vrh, len);
2518 	kfree(vrh);
2519 	return ret;
2520 }
2521 
2522 /**
2523  * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2524  * @vf: pointer to the VF info
2525  * @msg: pointer to the msg buffer
2526  */
2527 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2528 {
2529 	struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2530 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2531 	struct ice_pf *pf = vf->pf;
2532 	struct ice_vsi *vsi;
2533 	struct device *dev;
2534 	int status;
2535 
2536 	dev = ice_pf_to_dev(pf);
2537 
2538 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2539 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2540 		goto err;
2541 	}
2542 
2543 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2544 		dev_err(dev, "RSS not supported by PF\n");
2545 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2546 		goto err;
2547 	}
2548 
2549 	vsi = ice_get_vf_vsi(vf);
2550 	if (!vsi) {
2551 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2552 		goto err;
2553 	}
2554 
2555 	/* clear all previously programmed RSS configuration to allow VF drivers
2556 	 * the ability to customize the RSS configuration and/or completely
2557 	 * disable RSS
2558 	 */
2559 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2560 	if (status && !vrh->hena) {
2561 		/* only report failure to clear the current RSS configuration if
2562 		 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2563 		 */
2564 		v_ret = ice_err_to_virt_err(status);
2565 		goto err;
2566 	} else if (status) {
2567 		/* allow the VF to update the RSS configuration even on failure
2568 		 * to clear the current RSS confguration in an attempt to keep
2569 		 * RSS in a working state
2570 		 */
2571 		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2572 			 vf->vf_id);
2573 	}
2574 
2575 	if (vrh->hena) {
2576 		status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena);
2577 		v_ret = ice_err_to_virt_err(status);
2578 	}
2579 
2580 	/* send the response to the VF */
2581 err:
2582 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2583 				     NULL, 0);
2584 }
2585 
2586 /**
2587  * ice_vc_query_rxdid - query RXDID supported by DDP package
2588  * @vf: pointer to VF info
2589  *
2590  * Called from VF to query a bitmap of supported flexible
2591  * descriptor RXDIDs of a DDP package.
2592  */
2593 static int ice_vc_query_rxdid(struct ice_vf *vf)
2594 {
2595 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2596 	struct virtchnl_supported_rxdids *rxdid = NULL;
2597 	struct ice_hw *hw = &vf->pf->hw;
2598 	struct ice_pf *pf = vf->pf;
2599 	int len = 0;
2600 	int ret, i;
2601 	u32 regval;
2602 
2603 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2604 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2605 		goto err;
2606 	}
2607 
2608 	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2609 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2610 		goto err;
2611 	}
2612 
2613 	len = sizeof(struct virtchnl_supported_rxdids);
2614 	rxdid = kzalloc(len, GFP_KERNEL);
2615 	if (!rxdid) {
2616 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2617 		len = 0;
2618 		goto err;
2619 	}
2620 
2621 	/* Read flexiflag registers to determine whether the
2622 	 * corresponding RXDID is configured and supported or not.
2623 	 * Since Legacy 16byte descriptor format is not supported,
2624 	 * start from Legacy 32byte descriptor.
2625 	 */
2626 	for (i = ICE_RXDID_LEGACY_1; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2627 		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2628 		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2629 			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2630 			rxdid->supported_rxdids |= BIT(i);
2631 	}
2632 
2633 	pf->supported_rxdids = rxdid->supported_rxdids;
2634 
2635 err:
2636 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2637 				    v_ret, (u8 *)rxdid, len);
2638 	kfree(rxdid);
2639 	return ret;
2640 }
2641 
2642 /**
2643  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2644  * @vf: VF to enable/disable VLAN stripping for on initialization
2645  *
2646  * Set the default for VLAN stripping based on whether a port VLAN is configured
2647  * and the current VLAN mode of the device.
2648  */
2649 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2650 {
2651 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2652 
2653 	if (!vsi)
2654 		return -EINVAL;
2655 
2656 	/* don't modify stripping if port VLAN is configured in SVM since the
2657 	 * port VLAN is based on the inner/single VLAN in SVM
2658 	 */
2659 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2660 		return 0;
2661 
2662 	if (ice_vf_vlan_offload_ena(vf->driver_caps))
2663 		return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2664 	else
2665 		return vsi->inner_vlan_ops.dis_stripping(vsi);
2666 }
2667 
2668 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2669 {
2670 	if (vf->trusted)
2671 		return VLAN_N_VID;
2672 	else
2673 		return ICE_MAX_VLAN_PER_VF;
2674 }
2675 
2676 /**
2677  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2678  * @vf: VF that being checked for
2679  *
2680  * When the device is in double VLAN mode, check whether or not the outer VLAN
2681  * is allowed.
2682  */
2683 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2684 {
2685 	if (ice_vf_is_port_vlan_ena(vf))
2686 		return true;
2687 
2688 	return false;
2689 }
2690 
2691 /**
2692  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2693  * @vf: VF that capabilities are being set for
2694  * @caps: VLAN capabilities to populate
2695  *
2696  * Determine VLAN capabilities support based on whether a port VLAN is
2697  * configured. If a port VLAN is configured then the VF should use the inner
2698  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2699  * capabilies.
2700  */
2701 static void
2702 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2703 {
2704 	struct virtchnl_vlan_supported_caps *supported_caps;
2705 
2706 	if (ice_vf_outer_vlan_not_allowed(vf)) {
2707 		/* until support for inner VLAN filtering is added when a port
2708 		 * VLAN is configured, only support software offloaded inner
2709 		 * VLANs when a port VLAN is confgured in DVM
2710 		 */
2711 		supported_caps = &caps->filtering.filtering_support;
2712 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2713 
2714 		supported_caps = &caps->offloads.stripping_support;
2715 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2716 					VIRTCHNL_VLAN_TOGGLE |
2717 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2718 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2719 
2720 		supported_caps = &caps->offloads.insertion_support;
2721 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2722 					VIRTCHNL_VLAN_TOGGLE |
2723 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2724 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2725 
2726 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2727 		caps->offloads.ethertype_match =
2728 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2729 	} else {
2730 		supported_caps = &caps->filtering.filtering_support;
2731 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2732 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2733 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2734 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2735 					VIRTCHNL_VLAN_ETHERTYPE_AND;
2736 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2737 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2738 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2739 
2740 		supported_caps = &caps->offloads.stripping_support;
2741 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2742 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2743 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2744 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2745 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2746 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2747 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2748 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2749 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2750 
2751 		supported_caps = &caps->offloads.insertion_support;
2752 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2753 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2754 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2755 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2756 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2757 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2758 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2759 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2760 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2761 
2762 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2763 
2764 		caps->offloads.ethertype_match =
2765 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2766 	}
2767 
2768 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2769 }
2770 
2771 /**
2772  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2773  * @vf: VF that capabilities are being set for
2774  * @caps: VLAN capabilities to populate
2775  *
2776  * Determine VLAN capabilities support based on whether a port VLAN is
2777  * configured. If a port VLAN is configured then the VF does not have any VLAN
2778  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2779  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2780  * VLAN fitlering and offload capabilities.
2781  */
2782 static void
2783 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2784 {
2785 	struct virtchnl_vlan_supported_caps *supported_caps;
2786 
2787 	if (ice_vf_is_port_vlan_ena(vf)) {
2788 		supported_caps = &caps->filtering.filtering_support;
2789 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2790 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2791 
2792 		supported_caps = &caps->offloads.stripping_support;
2793 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2794 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2795 
2796 		supported_caps = &caps->offloads.insertion_support;
2797 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2798 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2799 
2800 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2801 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2802 		caps->filtering.max_filters = 0;
2803 	} else {
2804 		supported_caps = &caps->filtering.filtering_support;
2805 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2806 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2807 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2808 
2809 		supported_caps = &caps->offloads.stripping_support;
2810 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2811 					VIRTCHNL_VLAN_TOGGLE |
2812 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2813 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2814 
2815 		supported_caps = &caps->offloads.insertion_support;
2816 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2817 					VIRTCHNL_VLAN_TOGGLE |
2818 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2819 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2820 
2821 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2822 		caps->offloads.ethertype_match =
2823 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2824 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2825 	}
2826 }
2827 
2828 /**
2829  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2830  * @vf: VF to determine VLAN capabilities for
2831  *
2832  * This will only be called if the VF and PF successfully negotiated
2833  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2834  *
2835  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2836  * is configured or not.
2837  */
2838 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2839 {
2840 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2841 	struct virtchnl_vlan_caps *caps = NULL;
2842 	int err, len = 0;
2843 
2844 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2845 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2846 		goto out;
2847 	}
2848 
2849 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2850 	if (!caps) {
2851 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2852 		goto out;
2853 	}
2854 	len = sizeof(*caps);
2855 
2856 	if (ice_is_dvm_ena(&vf->pf->hw))
2857 		ice_vc_set_dvm_caps(vf, caps);
2858 	else
2859 		ice_vc_set_svm_caps(vf, caps);
2860 
2861 	/* store negotiated caps to prevent invalid VF messages */
2862 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2863 
2864 out:
2865 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2866 				    v_ret, (u8 *)caps, len);
2867 	kfree(caps);
2868 	return err;
2869 }
2870 
2871 /**
2872  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2873  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2874  * @tpid: VLAN TPID used for validation
2875  *
2876  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2877  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2878  */
2879 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2880 {
2881 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2882 
2883 	switch (tpid) {
2884 	case ETH_P_8021Q:
2885 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2886 		break;
2887 	case ETH_P_8021AD:
2888 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2889 		break;
2890 	case ETH_P_QINQ1:
2891 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2892 		break;
2893 	}
2894 
2895 	if (!(filtering_caps & vlan_ethertype))
2896 		return false;
2897 
2898 	return true;
2899 }
2900 
2901 /**
2902  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2903  * @vc_vlan: virtchnl_vlan to validate
2904  *
2905  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2906  * false. Otherwise return true.
2907  */
2908 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2909 {
2910 	if (!vc_vlan->tci || !vc_vlan->tpid)
2911 		return false;
2912 
2913 	return true;
2914 }
2915 
2916 /**
2917  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2918  * @vfc: negotiated/supported VLAN filtering capabilities
2919  * @vfl: VLAN filter list from VF to validate
2920  *
2921  * Validate all of the filters in the VLAN filter list from the VF. If any of
2922  * the checks fail then return false. Otherwise return true.
2923  */
2924 static bool
2925 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2926 				 struct virtchnl_vlan_filter_list_v2 *vfl)
2927 {
2928 	u16 i;
2929 
2930 	if (!vfl->num_elements)
2931 		return false;
2932 
2933 	for (i = 0; i < vfl->num_elements; i++) {
2934 		struct virtchnl_vlan_supported_caps *filtering_support =
2935 			&vfc->filtering_support;
2936 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2937 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
2938 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
2939 
2940 		if ((ice_vc_is_valid_vlan(outer) &&
2941 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
2942 		    (ice_vc_is_valid_vlan(inner) &&
2943 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
2944 			return false;
2945 
2946 		if ((outer->tci_mask &&
2947 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
2948 		    (inner->tci_mask &&
2949 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
2950 			return false;
2951 
2952 		if (((outer->tci & VLAN_PRIO_MASK) &&
2953 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
2954 		    ((inner->tci & VLAN_PRIO_MASK) &&
2955 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
2956 			return false;
2957 
2958 		if ((ice_vc_is_valid_vlan(outer) &&
2959 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
2960 						outer->tpid)) ||
2961 		    (ice_vc_is_valid_vlan(inner) &&
2962 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
2963 						inner->tpid)))
2964 			return false;
2965 	}
2966 
2967 	return true;
2968 }
2969 
2970 /**
2971  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
2972  * @vc_vlan: struct virtchnl_vlan to transform
2973  */
2974 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
2975 {
2976 	struct ice_vlan vlan = { 0 };
2977 
2978 	vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2979 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
2980 	vlan.tpid = vc_vlan->tpid;
2981 
2982 	return vlan;
2983 }
2984 
2985 /**
2986  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
2987  * @vsi: VF's VSI used to perform the action
2988  * @vlan_action: function to perform the action with (i.e. add/del)
2989  * @vlan: VLAN filter to perform the action with
2990  */
2991 static int
2992 ice_vc_vlan_action(struct ice_vsi *vsi,
2993 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
2994 		   struct ice_vlan *vlan)
2995 {
2996 	int err;
2997 
2998 	err = vlan_action(vsi, vlan);
2999 	if (err)
3000 		return err;
3001 
3002 	return 0;
3003 }
3004 
3005 /**
3006  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3007  * @vf: VF used to delete the VLAN(s)
3008  * @vsi: VF's VSI used to delete the VLAN(s)
3009  * @vfl: virthchnl filter list used to delete the filters
3010  */
3011 static int
3012 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3013 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3014 {
3015 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3016 	int err;
3017 	u16 i;
3018 
3019 	for (i = 0; i < vfl->num_elements; i++) {
3020 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3021 		struct virtchnl_vlan *vc_vlan;
3022 
3023 		vc_vlan = &vlan_fltr->outer;
3024 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3025 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3026 
3027 			err = ice_vc_vlan_action(vsi,
3028 						 vsi->outer_vlan_ops.del_vlan,
3029 						 &vlan);
3030 			if (err)
3031 				return err;
3032 
3033 			if (vlan_promisc)
3034 				ice_vf_dis_vlan_promisc(vsi, &vlan);
3035 
3036 			/* Disable VLAN filtering when only VLAN 0 is left */
3037 			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3038 				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3039 				if (err)
3040 					return err;
3041 			}
3042 		}
3043 
3044 		vc_vlan = &vlan_fltr->inner;
3045 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3046 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3047 
3048 			err = ice_vc_vlan_action(vsi,
3049 						 vsi->inner_vlan_ops.del_vlan,
3050 						 &vlan);
3051 			if (err)
3052 				return err;
3053 
3054 			/* no support for VLAN promiscuous on inner VLAN unless
3055 			 * we are in Single VLAN Mode (SVM)
3056 			 */
3057 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3058 				if (vlan_promisc)
3059 					ice_vf_dis_vlan_promisc(vsi, &vlan);
3060 
3061 				/* Disable VLAN filtering when only VLAN 0 is left */
3062 				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3063 					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3064 					if (err)
3065 						return err;
3066 				}
3067 			}
3068 		}
3069 	}
3070 
3071 	return 0;
3072 }
3073 
3074 /**
3075  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3076  * @vf: VF the message was received from
3077  * @msg: message received from the VF
3078  */
3079 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3080 {
3081 	struct virtchnl_vlan_filter_list_v2 *vfl =
3082 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3083 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3084 	struct ice_vsi *vsi;
3085 
3086 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3087 					      vfl)) {
3088 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3089 		goto out;
3090 	}
3091 
3092 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3093 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3094 		goto out;
3095 	}
3096 
3097 	vsi = ice_get_vf_vsi(vf);
3098 	if (!vsi) {
3099 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3100 		goto out;
3101 	}
3102 
3103 	if (ice_vc_del_vlans(vf, vsi, vfl))
3104 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3105 
3106 out:
3107 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3108 				     0);
3109 }
3110 
3111 /**
3112  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3113  * @vf: VF used to add the VLAN(s)
3114  * @vsi: VF's VSI used to add the VLAN(s)
3115  * @vfl: virthchnl filter list used to add the filters
3116  */
3117 static int
3118 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3119 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3120 {
3121 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3122 	int err;
3123 	u16 i;
3124 
3125 	for (i = 0; i < vfl->num_elements; i++) {
3126 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3127 		struct virtchnl_vlan *vc_vlan;
3128 
3129 		vc_vlan = &vlan_fltr->outer;
3130 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3131 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3132 
3133 			err = ice_vc_vlan_action(vsi,
3134 						 vsi->outer_vlan_ops.add_vlan,
3135 						 &vlan);
3136 			if (err)
3137 				return err;
3138 
3139 			if (vlan_promisc) {
3140 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3141 				if (err)
3142 					return err;
3143 			}
3144 
3145 			/* Enable VLAN filtering on first non-zero VLAN */
3146 			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3147 				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3148 				if (err)
3149 					return err;
3150 			}
3151 		}
3152 
3153 		vc_vlan = &vlan_fltr->inner;
3154 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3155 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3156 
3157 			err = ice_vc_vlan_action(vsi,
3158 						 vsi->inner_vlan_ops.add_vlan,
3159 						 &vlan);
3160 			if (err)
3161 				return err;
3162 
3163 			/* no support for VLAN promiscuous on inner VLAN unless
3164 			 * we are in Single VLAN Mode (SVM)
3165 			 */
3166 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3167 				if (vlan_promisc) {
3168 					err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3169 					if (err)
3170 						return err;
3171 				}
3172 
3173 				/* Enable VLAN filtering on first non-zero VLAN */
3174 				if (vf->spoofchk && vlan.vid) {
3175 					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3176 					if (err)
3177 						return err;
3178 				}
3179 			}
3180 		}
3181 	}
3182 
3183 	return 0;
3184 }
3185 
3186 /**
3187  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3188  * @vsi: VF VSI used to get number of existing VLAN filters
3189  * @vfc: negotiated/supported VLAN filtering capabilities
3190  * @vfl: VLAN filter list from VF to validate
3191  *
3192  * Validate all of the filters in the VLAN filter list from the VF during the
3193  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3194  * Otherwise return true.
3195  */
3196 static bool
3197 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3198 				     struct virtchnl_vlan_filtering_caps *vfc,
3199 				     struct virtchnl_vlan_filter_list_v2 *vfl)
3200 {
3201 	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3202 		vfl->num_elements;
3203 
3204 	if (num_requested_filters > vfc->max_filters)
3205 		return false;
3206 
3207 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3208 }
3209 
3210 /**
3211  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3212  * @vf: VF the message was received from
3213  * @msg: message received from the VF
3214  */
3215 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3216 {
3217 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3218 	struct virtchnl_vlan_filter_list_v2 *vfl =
3219 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3220 	struct ice_vsi *vsi;
3221 
3222 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3223 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3224 		goto out;
3225 	}
3226 
3227 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3228 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3229 		goto out;
3230 	}
3231 
3232 	vsi = ice_get_vf_vsi(vf);
3233 	if (!vsi) {
3234 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3235 		goto out;
3236 	}
3237 
3238 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3239 						  &vf->vlan_v2_caps.filtering,
3240 						  vfl)) {
3241 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3242 		goto out;
3243 	}
3244 
3245 	if (ice_vc_add_vlans(vf, vsi, vfl))
3246 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3247 
3248 out:
3249 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3250 				     0);
3251 }
3252 
3253 /**
3254  * ice_vc_valid_vlan_setting - validate VLAN setting
3255  * @negotiated_settings: negotiated VLAN settings during VF init
3256  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3257  */
3258 static bool
3259 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3260 {
3261 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3262 		return false;
3263 
3264 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3265 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3266 	 */
3267 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3268 	    hweight32(ethertype_setting) > 1)
3269 		return false;
3270 
3271 	/* ability to modify the VLAN setting was not negotiated */
3272 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3273 		return false;
3274 
3275 	return true;
3276 }
3277 
3278 /**
3279  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3280  * @caps: negotiated VLAN settings during VF init
3281  * @msg: message to validate
3282  *
3283  * Used to validate any VLAN virtchnl message sent as a
3284  * virtchnl_vlan_setting structure. Validates the message against the
3285  * negotiated/supported caps during VF driver init.
3286  */
3287 static bool
3288 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3289 			      struct virtchnl_vlan_setting *msg)
3290 {
3291 	if ((!msg->outer_ethertype_setting &&
3292 	     !msg->inner_ethertype_setting) ||
3293 	    (!caps->outer && !caps->inner))
3294 		return false;
3295 
3296 	if (msg->outer_ethertype_setting &&
3297 	    !ice_vc_valid_vlan_setting(caps->outer,
3298 				       msg->outer_ethertype_setting))
3299 		return false;
3300 
3301 	if (msg->inner_ethertype_setting &&
3302 	    !ice_vc_valid_vlan_setting(caps->inner,
3303 				       msg->inner_ethertype_setting))
3304 		return false;
3305 
3306 	return true;
3307 }
3308 
3309 /**
3310  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3311  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3312  * @tpid: VLAN TPID to populate
3313  */
3314 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3315 {
3316 	switch (ethertype_setting) {
3317 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3318 		*tpid = ETH_P_8021Q;
3319 		break;
3320 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3321 		*tpid = ETH_P_8021AD;
3322 		break;
3323 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3324 		*tpid = ETH_P_QINQ1;
3325 		break;
3326 	default:
3327 		*tpid = 0;
3328 		return -EINVAL;
3329 	}
3330 
3331 	return 0;
3332 }
3333 
3334 /**
3335  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3336  * @vsi: VF's VSI used to enable the VLAN offload
3337  * @ena_offload: function used to enable the VLAN offload
3338  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3339  */
3340 static int
3341 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3342 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3343 			u32 ethertype_setting)
3344 {
3345 	u16 tpid;
3346 	int err;
3347 
3348 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3349 	if (err)
3350 		return err;
3351 
3352 	err = ena_offload(vsi, tpid);
3353 	if (err)
3354 		return err;
3355 
3356 	return 0;
3357 }
3358 
3359 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3360 #define ICE_L2TSEL_BIT_OFFSET		23
3361 enum ice_l2tsel {
3362 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3363 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3364 };
3365 
3366 /**
3367  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3368  * @vsi: VSI used to update l2tsel on
3369  * @l2tsel: l2tsel setting requested
3370  *
3371  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3372  * This will modify which descriptor field the first offloaded VLAN will be
3373  * stripped into.
3374  */
3375 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3376 {
3377 	struct ice_hw *hw = &vsi->back->hw;
3378 	u32 l2tsel_bit;
3379 	int i;
3380 
3381 	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3382 		l2tsel_bit = 0;
3383 	else
3384 		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3385 
3386 	for (i = 0; i < vsi->alloc_rxq; i++) {
3387 		u16 pfq = vsi->rxq_map[i];
3388 		u32 qrx_context_offset;
3389 		u32 regval;
3390 
3391 		qrx_context_offset =
3392 			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3393 
3394 		regval = rd32(hw, qrx_context_offset);
3395 		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3396 		regval |= l2tsel_bit;
3397 		wr32(hw, qrx_context_offset, regval);
3398 	}
3399 }
3400 
3401 /**
3402  * ice_vc_ena_vlan_stripping_v2_msg
3403  * @vf: VF the message was received from
3404  * @msg: message received from the VF
3405  *
3406  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3407  */
3408 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3409 {
3410 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3411 	struct virtchnl_vlan_supported_caps *stripping_support;
3412 	struct virtchnl_vlan_setting *strip_msg =
3413 		(struct virtchnl_vlan_setting *)msg;
3414 	u32 ethertype_setting;
3415 	struct ice_vsi *vsi;
3416 
3417 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3418 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3419 		goto out;
3420 	}
3421 
3422 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3423 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3424 		goto out;
3425 	}
3426 
3427 	vsi = ice_get_vf_vsi(vf);
3428 	if (!vsi) {
3429 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3430 		goto out;
3431 	}
3432 
3433 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3434 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3435 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3436 		goto out;
3437 	}
3438 
3439 	ethertype_setting = strip_msg->outer_ethertype_setting;
3440 	if (ethertype_setting) {
3441 		if (ice_vc_ena_vlan_offload(vsi,
3442 					    vsi->outer_vlan_ops.ena_stripping,
3443 					    ethertype_setting)) {
3444 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3445 			goto out;
3446 		} else {
3447 			enum ice_l2tsel l2tsel =
3448 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3449 
3450 			/* PF tells the VF that the outer VLAN tag is always
3451 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3452 			 * inner is always extracted to
3453 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3454 			 * support outer stripping so the first tag always ends
3455 			 * up in L2TAG2_2ND and the second/inner tag, if
3456 			 * enabled, is extracted in L2TAG1.
3457 			 */
3458 			ice_vsi_update_l2tsel(vsi, l2tsel);
3459 		}
3460 	}
3461 
3462 	ethertype_setting = strip_msg->inner_ethertype_setting;
3463 	if (ethertype_setting &&
3464 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3465 				    ethertype_setting)) {
3466 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3467 		goto out;
3468 	}
3469 
3470 out:
3471 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3472 				     v_ret, NULL, 0);
3473 }
3474 
3475 /**
3476  * ice_vc_dis_vlan_stripping_v2_msg
3477  * @vf: VF the message was received from
3478  * @msg: message received from the VF
3479  *
3480  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3481  */
3482 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3483 {
3484 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3485 	struct virtchnl_vlan_supported_caps *stripping_support;
3486 	struct virtchnl_vlan_setting *strip_msg =
3487 		(struct virtchnl_vlan_setting *)msg;
3488 	u32 ethertype_setting;
3489 	struct ice_vsi *vsi;
3490 
3491 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3492 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3493 		goto out;
3494 	}
3495 
3496 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3497 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3498 		goto out;
3499 	}
3500 
3501 	vsi = ice_get_vf_vsi(vf);
3502 	if (!vsi) {
3503 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3504 		goto out;
3505 	}
3506 
3507 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3508 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3509 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3510 		goto out;
3511 	}
3512 
3513 	ethertype_setting = strip_msg->outer_ethertype_setting;
3514 	if (ethertype_setting) {
3515 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3516 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3517 			goto out;
3518 		} else {
3519 			enum ice_l2tsel l2tsel =
3520 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3521 
3522 			/* PF tells the VF that the outer VLAN tag is always
3523 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3524 			 * inner is always extracted to
3525 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3526 			 * support inner stripping while outer stripping is
3527 			 * disabled so that the first and only tag is extracted
3528 			 * in L2TAG1.
3529 			 */
3530 			ice_vsi_update_l2tsel(vsi, l2tsel);
3531 		}
3532 	}
3533 
3534 	ethertype_setting = strip_msg->inner_ethertype_setting;
3535 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3536 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3537 		goto out;
3538 	}
3539 
3540 out:
3541 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3542 				     v_ret, NULL, 0);
3543 }
3544 
3545 /**
3546  * ice_vc_ena_vlan_insertion_v2_msg
3547  * @vf: VF the message was received from
3548  * @msg: message received from the VF
3549  *
3550  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3551  */
3552 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3553 {
3554 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3555 	struct virtchnl_vlan_supported_caps *insertion_support;
3556 	struct virtchnl_vlan_setting *insertion_msg =
3557 		(struct virtchnl_vlan_setting *)msg;
3558 	u32 ethertype_setting;
3559 	struct ice_vsi *vsi;
3560 
3561 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3562 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3563 		goto out;
3564 	}
3565 
3566 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3567 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3568 		goto out;
3569 	}
3570 
3571 	vsi = ice_get_vf_vsi(vf);
3572 	if (!vsi) {
3573 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3574 		goto out;
3575 	}
3576 
3577 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3578 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3579 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3580 		goto out;
3581 	}
3582 
3583 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3584 	if (ethertype_setting &&
3585 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3586 				    ethertype_setting)) {
3587 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3588 		goto out;
3589 	}
3590 
3591 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3592 	if (ethertype_setting &&
3593 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3594 				    ethertype_setting)) {
3595 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3596 		goto out;
3597 	}
3598 
3599 out:
3600 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3601 				     v_ret, NULL, 0);
3602 }
3603 
3604 /**
3605  * ice_vc_dis_vlan_insertion_v2_msg
3606  * @vf: VF the message was received from
3607  * @msg: message received from the VF
3608  *
3609  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3610  */
3611 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3612 {
3613 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3614 	struct virtchnl_vlan_supported_caps *insertion_support;
3615 	struct virtchnl_vlan_setting *insertion_msg =
3616 		(struct virtchnl_vlan_setting *)msg;
3617 	u32 ethertype_setting;
3618 	struct ice_vsi *vsi;
3619 
3620 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3621 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3622 		goto out;
3623 	}
3624 
3625 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3626 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3627 		goto out;
3628 	}
3629 
3630 	vsi = ice_get_vf_vsi(vf);
3631 	if (!vsi) {
3632 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3633 		goto out;
3634 	}
3635 
3636 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3637 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3638 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3639 		goto out;
3640 	}
3641 
3642 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3643 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3644 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3645 		goto out;
3646 	}
3647 
3648 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3649 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3650 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3651 		goto out;
3652 	}
3653 
3654 out:
3655 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3656 				     v_ret, NULL, 0);
3657 }
3658 
3659 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3660 	.get_ver_msg = ice_vc_get_ver_msg,
3661 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3662 	.reset_vf = ice_vc_reset_vf_msg,
3663 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3664 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3665 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3666 	.ena_qs_msg = ice_vc_ena_qs_msg,
3667 	.dis_qs_msg = ice_vc_dis_qs_msg,
3668 	.request_qs_msg = ice_vc_request_qs_msg,
3669 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3670 	.config_rss_key = ice_vc_config_rss_key,
3671 	.config_rss_lut = ice_vc_config_rss_lut,
3672 	.get_stats_msg = ice_vc_get_stats_msg,
3673 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3674 	.add_vlan_msg = ice_vc_add_vlan_msg,
3675 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3676 	.query_rxdid = ice_vc_query_rxdid,
3677 	.get_rss_hena = ice_vc_get_rss_hena,
3678 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3679 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3680 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3681 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3682 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3683 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3684 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3685 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3686 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3687 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3688 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3689 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3690 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3691 };
3692 
3693 /**
3694  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3695  * @vf: the VF to switch ops
3696  */
3697 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3698 {
3699 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3700 }
3701 
3702 /**
3703  * ice_vc_repr_add_mac
3704  * @vf: pointer to VF
3705  * @msg: virtchannel message
3706  *
3707  * When port representors are created, we do not add MAC rule
3708  * to firmware, we store it so that PF could report same
3709  * MAC as VF.
3710  */
3711 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3712 {
3713 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3714 	struct virtchnl_ether_addr_list *al =
3715 	    (struct virtchnl_ether_addr_list *)msg;
3716 	struct ice_vsi *vsi;
3717 	struct ice_pf *pf;
3718 	int i;
3719 
3720 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3721 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3722 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3723 		goto handle_mac_exit;
3724 	}
3725 
3726 	pf = vf->pf;
3727 
3728 	vsi = ice_get_vf_vsi(vf);
3729 	if (!vsi) {
3730 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3731 		goto handle_mac_exit;
3732 	}
3733 
3734 	for (i = 0; i < al->num_elements; i++) {
3735 		u8 *mac_addr = al->list[i].addr;
3736 		int result;
3737 
3738 		if (!is_unicast_ether_addr(mac_addr) ||
3739 		    ether_addr_equal(mac_addr, vf->hw_lan_addr.addr))
3740 			continue;
3741 
3742 		if (vf->pf_set_mac) {
3743 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3744 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3745 			goto handle_mac_exit;
3746 		}
3747 
3748 		result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr);
3749 		if (result) {
3750 			dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n",
3751 				mac_addr, vf->vf_id, result);
3752 			goto handle_mac_exit;
3753 		}
3754 
3755 		ice_vfhw_mac_add(vf, &al->list[i]);
3756 		vf->num_mac++;
3757 		break;
3758 	}
3759 
3760 handle_mac_exit:
3761 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3762 				     v_ret, NULL, 0);
3763 }
3764 
3765 /**
3766  * ice_vc_repr_del_mac - response with success for deleting MAC
3767  * @vf: pointer to VF
3768  * @msg: virtchannel message
3769  *
3770  * Respond with success to not break normal VF flow.
3771  * For legacy VF driver try to update cached MAC address.
3772  */
3773 static int
3774 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3775 {
3776 	struct virtchnl_ether_addr_list *al =
3777 		(struct virtchnl_ether_addr_list *)msg;
3778 
3779 	ice_update_legacy_cached_mac(vf, &al->list[0]);
3780 
3781 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3782 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3783 }
3784 
3785 static int
3786 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3787 {
3788 	dev_dbg(ice_pf_to_dev(vf->pf),
3789 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3790 		vf->vf_id);
3791 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3792 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3793 				     NULL, 0);
3794 }
3795 
3796 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3797 	.get_ver_msg = ice_vc_get_ver_msg,
3798 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3799 	.reset_vf = ice_vc_reset_vf_msg,
3800 	.add_mac_addr_msg = ice_vc_repr_add_mac,
3801 	.del_mac_addr_msg = ice_vc_repr_del_mac,
3802 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3803 	.ena_qs_msg = ice_vc_ena_qs_msg,
3804 	.dis_qs_msg = ice_vc_dis_qs_msg,
3805 	.request_qs_msg = ice_vc_request_qs_msg,
3806 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3807 	.config_rss_key = ice_vc_config_rss_key,
3808 	.config_rss_lut = ice_vc_config_rss_lut,
3809 	.get_stats_msg = ice_vc_get_stats_msg,
3810 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3811 	.add_vlan_msg = ice_vc_add_vlan_msg,
3812 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3813 	.query_rxdid = ice_vc_query_rxdid,
3814 	.get_rss_hena = ice_vc_get_rss_hena,
3815 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3816 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3817 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3818 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3819 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3820 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3821 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3822 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3823 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3824 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3825 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3826 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3827 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3828 };
3829 
3830 /**
3831  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3832  * @vf: the VF to switch ops
3833  */
3834 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3835 {
3836 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3837 }
3838 
3839 /**
3840  * ice_vc_process_vf_msg - Process request from VF
3841  * @pf: pointer to the PF structure
3842  * @event: pointer to the AQ event
3843  *
3844  * called from the common asq/arq handler to
3845  * process request from VF
3846  */
3847 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
3848 {
3849 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3850 	s16 vf_id = le16_to_cpu(event->desc.retval);
3851 	const struct ice_virtchnl_ops *ops;
3852 	u16 msglen = event->msg_len;
3853 	u8 *msg = event->msg_buf;
3854 	struct ice_vf *vf = NULL;
3855 	struct device *dev;
3856 	int err = 0;
3857 
3858 	dev = ice_pf_to_dev(pf);
3859 
3860 	vf = ice_get_vf_by_id(pf, vf_id);
3861 	if (!vf) {
3862 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3863 			vf_id, v_opcode, msglen);
3864 		return;
3865 	}
3866 
3867 	mutex_lock(&vf->cfg_lock);
3868 
3869 	/* Check if VF is disabled. */
3870 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3871 		err = -EPERM;
3872 		goto error_handler;
3873 	}
3874 
3875 	ops = vf->virtchnl_ops;
3876 
3877 	/* Perform basic checks on the msg */
3878 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3879 	if (err) {
3880 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
3881 			err = -EPERM;
3882 		else
3883 			err = -EINVAL;
3884 	}
3885 
3886 error_handler:
3887 	if (err) {
3888 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3889 				      NULL, 0);
3890 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3891 			vf_id, v_opcode, msglen, err);
3892 		goto finish;
3893 	}
3894 
3895 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
3896 		ice_vc_send_msg_to_vf(vf, v_opcode,
3897 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
3898 				      0);
3899 		goto finish;
3900 	}
3901 
3902 	switch (v_opcode) {
3903 	case VIRTCHNL_OP_VERSION:
3904 		err = ops->get_ver_msg(vf, msg);
3905 		break;
3906 	case VIRTCHNL_OP_GET_VF_RESOURCES:
3907 		err = ops->get_vf_res_msg(vf, msg);
3908 		if (ice_vf_init_vlan_stripping(vf))
3909 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
3910 				vf->vf_id);
3911 		ice_vc_notify_vf_link_state(vf);
3912 		break;
3913 	case VIRTCHNL_OP_RESET_VF:
3914 		ops->reset_vf(vf);
3915 		break;
3916 	case VIRTCHNL_OP_ADD_ETH_ADDR:
3917 		err = ops->add_mac_addr_msg(vf, msg);
3918 		break;
3919 	case VIRTCHNL_OP_DEL_ETH_ADDR:
3920 		err = ops->del_mac_addr_msg(vf, msg);
3921 		break;
3922 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
3923 		err = ops->cfg_qs_msg(vf, msg);
3924 		break;
3925 	case VIRTCHNL_OP_ENABLE_QUEUES:
3926 		err = ops->ena_qs_msg(vf, msg);
3927 		ice_vc_notify_vf_link_state(vf);
3928 		break;
3929 	case VIRTCHNL_OP_DISABLE_QUEUES:
3930 		err = ops->dis_qs_msg(vf, msg);
3931 		break;
3932 	case VIRTCHNL_OP_REQUEST_QUEUES:
3933 		err = ops->request_qs_msg(vf, msg);
3934 		break;
3935 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
3936 		err = ops->cfg_irq_map_msg(vf, msg);
3937 		break;
3938 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
3939 		err = ops->config_rss_key(vf, msg);
3940 		break;
3941 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
3942 		err = ops->config_rss_lut(vf, msg);
3943 		break;
3944 	case VIRTCHNL_OP_GET_STATS:
3945 		err = ops->get_stats_msg(vf, msg);
3946 		break;
3947 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
3948 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
3949 		break;
3950 	case VIRTCHNL_OP_ADD_VLAN:
3951 		err = ops->add_vlan_msg(vf, msg);
3952 		break;
3953 	case VIRTCHNL_OP_DEL_VLAN:
3954 		err = ops->remove_vlan_msg(vf, msg);
3955 		break;
3956 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
3957 		err = ops->query_rxdid(vf);
3958 		break;
3959 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
3960 		err = ops->get_rss_hena(vf);
3961 		break;
3962 	case VIRTCHNL_OP_SET_RSS_HENA:
3963 		err = ops->set_rss_hena_msg(vf, msg);
3964 		break;
3965 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
3966 		err = ops->ena_vlan_stripping(vf);
3967 		break;
3968 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
3969 		err = ops->dis_vlan_stripping(vf);
3970 		break;
3971 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
3972 		err = ops->add_fdir_fltr_msg(vf, msg);
3973 		break;
3974 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
3975 		err = ops->del_fdir_fltr_msg(vf, msg);
3976 		break;
3977 	case VIRTCHNL_OP_ADD_RSS_CFG:
3978 		err = ops->handle_rss_cfg_msg(vf, msg, true);
3979 		break;
3980 	case VIRTCHNL_OP_DEL_RSS_CFG:
3981 		err = ops->handle_rss_cfg_msg(vf, msg, false);
3982 		break;
3983 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
3984 		err = ops->get_offload_vlan_v2_caps(vf);
3985 		break;
3986 	case VIRTCHNL_OP_ADD_VLAN_V2:
3987 		err = ops->add_vlan_v2_msg(vf, msg);
3988 		break;
3989 	case VIRTCHNL_OP_DEL_VLAN_V2:
3990 		err = ops->remove_vlan_v2_msg(vf, msg);
3991 		break;
3992 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
3993 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
3994 		break;
3995 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
3996 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
3997 		break;
3998 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
3999 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4000 		break;
4001 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4002 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4003 		break;
4004 	case VIRTCHNL_OP_UNKNOWN:
4005 	default:
4006 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4007 			vf_id);
4008 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4009 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4010 					    NULL, 0);
4011 		break;
4012 	}
4013 	if (err) {
4014 		/* Helper function cares less about error return values here
4015 		 * as it is busy with pending work.
4016 		 */
4017 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4018 			 vf_id, v_opcode, err);
4019 	}
4020 
4021 finish:
4022 	mutex_unlock(&vf->cfg_lock);
4023 	ice_put_vf(vf);
4024 }
4025