xref: /linux/drivers/net/ethernet/intel/ice/ice_virtchnl.c (revision d8b45ee43a0562867d4fbe196e7747226c0a3d13)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 		     u32 driver_caps)
374 {
375 	if (ice_is_eswitch_mode_switchdev(vf->pf))
376 		/* In switchdev setting VLAN from VF isn't supported */
377 		return 0;
378 
379 	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 		/* VLAN offloads based on current device configuration */
381 		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 		 * these two conditions, which amounts to guest VLAN filtering
385 		 * and offloads being based on the inner VLAN or the
386 		 * inner/single VLAN respectively and don't allow VF to
387 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 		 */
389 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 			return VIRTCHNL_VF_OFFLOAD_VLAN;
391 		} else if (!ice_is_dvm_ena(hw) &&
392 			   !ice_vf_is_port_vlan_ena(vf)) {
393 			/* configure backward compatible support for VFs that
394 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 			 * configured in SVM, and no port VLAN is configured
396 			 */
397 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 			return VIRTCHNL_VF_OFFLOAD_VLAN;
399 		} else if (ice_is_dvm_ena(hw)) {
400 			/* configure software offloaded VLAN support when DVM
401 			 * is enabled, but no port VLAN is enabled
402 			 */
403 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 		}
405 	}
406 
407 	return 0;
408 }
409 
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 	struct virtchnl_vf_resource *vfres = NULL;
421 	struct ice_hw *hw = &vf->pf->hw;
422 	struct ice_vsi *vsi;
423 	int len = 0;
424 	int ret;
425 
426 	if (ice_check_vf_init(vf)) {
427 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 		goto err;
429 	}
430 
431 	len = virtchnl_struct_size(vfres, vsi_res, 0);
432 
433 	vfres = kzalloc(len, GFP_KERNEL);
434 	if (!vfres) {
435 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 		len = 0;
437 		goto err;
438 	}
439 	if (VF_IS_V11(&vf->vf_ver))
440 		vf->driver_caps = *(u32 *)msg;
441 	else
442 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
444 				  VIRTCHNL_VF_OFFLOAD_VLAN;
445 
446 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
447 	vsi = ice_get_vf_vsi(vf);
448 	if (!vsi) {
449 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
450 		goto err;
451 	}
452 
453 	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
454 						    vf->driver_caps);
455 
456 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
457 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
458 	} else {
459 		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
460 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
461 		else
462 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
463 	}
464 
465 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
466 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
467 
468 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
469 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
470 
471 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
472 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
473 
474 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
475 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
476 
477 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
478 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
479 
480 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
481 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
482 
483 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
484 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
485 
486 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
487 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
488 
489 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
490 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
491 
492 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
493 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
494 
495 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
496 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
497 
498 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
499 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
500 
501 	vfres->num_vsis = 1;
502 	/* Tx and Rx queue are equal for VF */
503 	vfres->num_queue_pairs = vsi->num_txq;
504 	vfres->max_vectors = vf->num_msix;
505 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
506 	vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
507 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
508 
509 	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
510 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
511 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
512 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
513 			vf->hw_lan_addr);
514 
515 	/* match guest capabilities */
516 	vf->driver_caps = vfres->vf_cap_flags;
517 
518 	ice_vc_set_caps_allowlist(vf);
519 	ice_vc_set_working_allowlist(vf);
520 
521 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
522 
523 err:
524 	/* send the response back to the VF */
525 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
526 				    (u8 *)vfres, len);
527 
528 	kfree(vfres);
529 	return ret;
530 }
531 
532 /**
533  * ice_vc_reset_vf_msg
534  * @vf: pointer to the VF info
535  *
536  * called from the VF to reset itself,
537  * unlike other virtchnl messages, PF driver
538  * doesn't send the response back to the VF
539  */
540 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
541 {
542 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
543 		ice_reset_vf(vf, 0);
544 }
545 
546 /**
547  * ice_vc_isvalid_vsi_id
548  * @vf: pointer to the VF info
549  * @vsi_id: VF relative VSI ID
550  *
551  * check for the valid VSI ID
552  */
553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
554 {
555 	struct ice_pf *pf = vf->pf;
556 	struct ice_vsi *vsi;
557 
558 	vsi = ice_find_vsi(pf, vsi_id);
559 
560 	return (vsi && (vsi->vf == vf));
561 }
562 
563 /**
564  * ice_vc_isvalid_q_id
565  * @vf: pointer to the VF info
566  * @vsi_id: VSI ID
567  * @qid: VSI relative queue ID
568  *
569  * check for the valid queue ID
570  */
571 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
572 {
573 	struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
574 	/* allocated Tx and Rx queues should be always equal for VF VSI */
575 	return (vsi && (qid < vsi->alloc_txq));
576 }
577 
578 /**
579  * ice_vc_isvalid_ring_len
580  * @ring_len: length of ring
581  *
582  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
583  * or zero
584  */
585 static bool ice_vc_isvalid_ring_len(u16 ring_len)
586 {
587 	return ring_len == 0 ||
588 	       (ring_len >= ICE_MIN_NUM_DESC &&
589 		ring_len <= ICE_MAX_NUM_DESC &&
590 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
591 }
592 
593 /**
594  * ice_vc_validate_pattern
595  * @vf: pointer to the VF info
596  * @proto: virtchnl protocol headers
597  *
598  * validate the pattern is supported or not.
599  *
600  * Return: true on success, false on error.
601  */
602 bool
603 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
604 {
605 	bool is_ipv4 = false;
606 	bool is_ipv6 = false;
607 	bool is_udp = false;
608 	u16 ptype = -1;
609 	int i = 0;
610 
611 	while (i < proto->count &&
612 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
613 		switch (proto->proto_hdr[i].type) {
614 		case VIRTCHNL_PROTO_HDR_ETH:
615 			ptype = ICE_PTYPE_MAC_PAY;
616 			break;
617 		case VIRTCHNL_PROTO_HDR_IPV4:
618 			ptype = ICE_PTYPE_IPV4_PAY;
619 			is_ipv4 = true;
620 			break;
621 		case VIRTCHNL_PROTO_HDR_IPV6:
622 			ptype = ICE_PTYPE_IPV6_PAY;
623 			is_ipv6 = true;
624 			break;
625 		case VIRTCHNL_PROTO_HDR_UDP:
626 			if (is_ipv4)
627 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
628 			else if (is_ipv6)
629 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
630 			is_udp = true;
631 			break;
632 		case VIRTCHNL_PROTO_HDR_TCP:
633 			if (is_ipv4)
634 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
635 			else if (is_ipv6)
636 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
637 			break;
638 		case VIRTCHNL_PROTO_HDR_SCTP:
639 			if (is_ipv4)
640 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
641 			else if (is_ipv6)
642 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
643 			break;
644 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
645 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
646 			if (is_ipv4)
647 				ptype = ICE_MAC_IPV4_GTPU;
648 			else if (is_ipv6)
649 				ptype = ICE_MAC_IPV6_GTPU;
650 			goto out;
651 		case VIRTCHNL_PROTO_HDR_L2TPV3:
652 			if (is_ipv4)
653 				ptype = ICE_MAC_IPV4_L2TPV3;
654 			else if (is_ipv6)
655 				ptype = ICE_MAC_IPV6_L2TPV3;
656 			goto out;
657 		case VIRTCHNL_PROTO_HDR_ESP:
658 			if (is_ipv4)
659 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
660 						ICE_MAC_IPV4_ESP;
661 			else if (is_ipv6)
662 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
663 						ICE_MAC_IPV6_ESP;
664 			goto out;
665 		case VIRTCHNL_PROTO_HDR_AH:
666 			if (is_ipv4)
667 				ptype = ICE_MAC_IPV4_AH;
668 			else if (is_ipv6)
669 				ptype = ICE_MAC_IPV6_AH;
670 			goto out;
671 		case VIRTCHNL_PROTO_HDR_PFCP:
672 			if (is_ipv4)
673 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
674 			else if (is_ipv6)
675 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
676 			goto out;
677 		default:
678 			break;
679 		}
680 		i++;
681 	}
682 
683 out:
684 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
685 }
686 
687 /**
688  * ice_vc_parse_rss_cfg - parses hash fields and headers from
689  * a specific virtchnl RSS cfg
690  * @hw: pointer to the hardware
691  * @rss_cfg: pointer to the virtchnl RSS cfg
692  * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
693  * to configure
694  * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
695  *
696  * Return true if all the protocol header and hash fields in the RSS cfg could
697  * be parsed, else return false
698  *
699  * This function parses the virtchnl RSS cfg to be the intended
700  * hash fields and the intended header for RSS configuration
701  */
702 static bool
703 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
704 		     u32 *addl_hdrs, u64 *hash_flds)
705 {
706 	const struct ice_vc_hash_field_match_type *hf_list;
707 	const struct ice_vc_hdr_match_type *hdr_list;
708 	int i, hf_list_len, hdr_list_len;
709 
710 	hf_list = ice_vc_hash_field_list;
711 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
712 	hdr_list = ice_vc_hdr_list;
713 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
714 
715 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
716 		struct virtchnl_proto_hdr *proto_hdr =
717 					&rss_cfg->proto_hdrs.proto_hdr[i];
718 		bool hdr_found = false;
719 		int j;
720 
721 		/* Find matched ice headers according to virtchnl headers. */
722 		for (j = 0; j < hdr_list_len; j++) {
723 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
724 
725 			if (proto_hdr->type == hdr_map.vc_hdr) {
726 				*addl_hdrs |= hdr_map.ice_hdr;
727 				hdr_found = true;
728 			}
729 		}
730 
731 		if (!hdr_found)
732 			return false;
733 
734 		/* Find matched ice hash fields according to
735 		 * virtchnl hash fields.
736 		 */
737 		for (j = 0; j < hf_list_len; j++) {
738 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
739 
740 			if (proto_hdr->type == hf_map.vc_hdr &&
741 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
742 				*hash_flds |= hf_map.ice_hash_field;
743 				break;
744 			}
745 		}
746 	}
747 
748 	return true;
749 }
750 
751 /**
752  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
753  * RSS offloads
754  * @caps: VF driver negotiated capabilities
755  *
756  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
757  * else return false
758  */
759 static bool ice_vf_adv_rss_offload_ena(u32 caps)
760 {
761 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
762 }
763 
764 /**
765  * ice_vc_handle_rss_cfg
766  * @vf: pointer to the VF info
767  * @msg: pointer to the message buffer
768  * @add: add a RSS config if true, otherwise delete a RSS config
769  *
770  * This function adds/deletes a RSS config
771  */
772 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
773 {
774 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
775 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
776 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
777 	struct device *dev = ice_pf_to_dev(vf->pf);
778 	struct ice_hw *hw = &vf->pf->hw;
779 	struct ice_vsi *vsi;
780 
781 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
782 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
783 			vf->vf_id);
784 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
785 		goto error_param;
786 	}
787 
788 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
789 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
790 			vf->vf_id);
791 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
792 		goto error_param;
793 	}
794 
795 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
796 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
797 		goto error_param;
798 	}
799 
800 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
801 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
802 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
803 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
804 			vf->vf_id);
805 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
806 		goto error_param;
807 	}
808 
809 	vsi = ice_get_vf_vsi(vf);
810 	if (!vsi) {
811 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
812 		goto error_param;
813 	}
814 
815 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
816 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
817 		goto error_param;
818 	}
819 
820 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
821 		struct ice_vsi_ctx *ctx;
822 		u8 lut_type, hash_type;
823 		int status;
824 
825 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
826 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
827 				ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
828 
829 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
830 		if (!ctx) {
831 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
832 			goto error_param;
833 		}
834 
835 		ctx->info.q_opt_rss = ((lut_type <<
836 					ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
837 				       ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
838 				       (hash_type &
839 					ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
840 
841 		/* Preserve existing queueing option setting */
842 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
843 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
844 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
845 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
846 
847 		ctx->info.valid_sections =
848 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
849 
850 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
851 		if (status) {
852 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
853 				status, ice_aq_str(hw->adminq.sq_last_status));
854 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
855 		} else {
856 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
857 		}
858 
859 		kfree(ctx);
860 	} else {
861 		u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
862 		u64 hash_flds = ICE_HASH_INVALID;
863 
864 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
865 					  &hash_flds)) {
866 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
867 			goto error_param;
868 		}
869 
870 		if (add) {
871 			if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
872 					    addl_hdrs)) {
873 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
874 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
875 					vsi->vsi_num, v_ret);
876 			}
877 		} else {
878 			int status;
879 
880 			status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
881 						 addl_hdrs);
882 			/* We just ignore -ENOENT, because if two configurations
883 			 * share the same profile remove one of them actually
884 			 * removes both, since the profile is deleted.
885 			 */
886 			if (status && status != -ENOENT) {
887 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
888 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
889 					vf->vf_id, status);
890 			}
891 		}
892 	}
893 
894 error_param:
895 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
896 }
897 
898 /**
899  * ice_vc_config_rss_key
900  * @vf: pointer to the VF info
901  * @msg: pointer to the msg buffer
902  *
903  * Configure the VF's RSS key
904  */
905 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
906 {
907 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
908 	struct virtchnl_rss_key *vrk =
909 		(struct virtchnl_rss_key *)msg;
910 	struct ice_vsi *vsi;
911 
912 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
913 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
914 		goto error_param;
915 	}
916 
917 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
918 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
919 		goto error_param;
920 	}
921 
922 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
923 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
924 		goto error_param;
925 	}
926 
927 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
928 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
929 		goto error_param;
930 	}
931 
932 	vsi = ice_get_vf_vsi(vf);
933 	if (!vsi) {
934 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
935 		goto error_param;
936 	}
937 
938 	if (ice_set_rss_key(vsi, vrk->key))
939 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
940 error_param:
941 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
942 				     NULL, 0);
943 }
944 
945 /**
946  * ice_vc_config_rss_lut
947  * @vf: pointer to the VF info
948  * @msg: pointer to the msg buffer
949  *
950  * Configure the VF's RSS LUT
951  */
952 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
953 {
954 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
955 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
956 	struct ice_vsi *vsi;
957 
958 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
959 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
960 		goto error_param;
961 	}
962 
963 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
964 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
965 		goto error_param;
966 	}
967 
968 	if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
969 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
970 		goto error_param;
971 	}
972 
973 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
974 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
975 		goto error_param;
976 	}
977 
978 	vsi = ice_get_vf_vsi(vf);
979 	if (!vsi) {
980 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
981 		goto error_param;
982 	}
983 
984 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
985 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
986 error_param:
987 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
988 				     NULL, 0);
989 }
990 
991 /**
992  * ice_vc_cfg_promiscuous_mode_msg
993  * @vf: pointer to the VF info
994  * @msg: pointer to the msg buffer
995  *
996  * called from the VF to configure VF VSIs promiscuous mode
997  */
998 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
999 {
1000 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1001 	bool rm_promisc, alluni = false, allmulti = false;
1002 	struct virtchnl_promisc_info *info =
1003 	    (struct virtchnl_promisc_info *)msg;
1004 	struct ice_vsi_vlan_ops *vlan_ops;
1005 	int mcast_err = 0, ucast_err = 0;
1006 	struct ice_pf *pf = vf->pf;
1007 	struct ice_vsi *vsi;
1008 	u8 mcast_m, ucast_m;
1009 	struct device *dev;
1010 	int ret = 0;
1011 
1012 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1013 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1014 		goto error_param;
1015 	}
1016 
1017 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1018 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1019 		goto error_param;
1020 	}
1021 
1022 	vsi = ice_get_vf_vsi(vf);
1023 	if (!vsi) {
1024 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1025 		goto error_param;
1026 	}
1027 
1028 	dev = ice_pf_to_dev(pf);
1029 	if (!ice_is_vf_trusted(vf)) {
1030 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1031 			vf->vf_id);
1032 		/* Leave v_ret alone, lie to the VF on purpose. */
1033 		goto error_param;
1034 	}
1035 
1036 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1037 		alluni = true;
1038 
1039 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1040 		allmulti = true;
1041 
1042 	rm_promisc = !allmulti && !alluni;
1043 
1044 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1045 	if (rm_promisc)
1046 		ret = vlan_ops->ena_rx_filtering(vsi);
1047 	else
1048 		ret = vlan_ops->dis_rx_filtering(vsi);
1049 	if (ret) {
1050 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1051 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1052 		goto error_param;
1053 	}
1054 
1055 	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1056 
1057 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1058 		if (alluni) {
1059 			/* in this case we're turning on promiscuous mode */
1060 			ret = ice_set_dflt_vsi(vsi);
1061 		} else {
1062 			/* in this case we're turning off promiscuous mode */
1063 			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1064 				ret = ice_clear_dflt_vsi(vsi);
1065 		}
1066 
1067 		/* in this case we're turning on/off only
1068 		 * allmulticast
1069 		 */
1070 		if (allmulti)
1071 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1072 		else
1073 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1074 
1075 		if (ret) {
1076 			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1077 				vf->vf_id, ret);
1078 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1079 			goto error_param;
1080 		}
1081 	} else {
1082 		if (alluni)
1083 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1084 		else
1085 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1086 
1087 		if (allmulti)
1088 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1089 		else
1090 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1091 
1092 		if (ucast_err || mcast_err)
1093 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1094 	}
1095 
1096 	if (!mcast_err) {
1097 		if (allmulti &&
1098 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1099 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1100 				 vf->vf_id);
1101 		else if (!allmulti &&
1102 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1103 					    vf->vf_states))
1104 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1105 				 vf->vf_id);
1106 	} else {
1107 		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1108 			vf->vf_id, mcast_err);
1109 	}
1110 
1111 	if (!ucast_err) {
1112 		if (alluni &&
1113 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1114 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1115 				 vf->vf_id);
1116 		else if (!alluni &&
1117 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1118 					    vf->vf_states))
1119 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1120 				 vf->vf_id);
1121 	} else {
1122 		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1123 			vf->vf_id, ucast_err);
1124 	}
1125 
1126 error_param:
1127 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1128 				     v_ret, NULL, 0);
1129 }
1130 
1131 /**
1132  * ice_vc_get_stats_msg
1133  * @vf: pointer to the VF info
1134  * @msg: pointer to the msg buffer
1135  *
1136  * called from the VF to get VSI stats
1137  */
1138 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1139 {
1140 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1141 	struct virtchnl_queue_select *vqs =
1142 		(struct virtchnl_queue_select *)msg;
1143 	struct ice_eth_stats stats = { 0 };
1144 	struct ice_vsi *vsi;
1145 
1146 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1147 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1148 		goto error_param;
1149 	}
1150 
1151 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1152 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1153 		goto error_param;
1154 	}
1155 
1156 	vsi = ice_get_vf_vsi(vf);
1157 	if (!vsi) {
1158 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1159 		goto error_param;
1160 	}
1161 
1162 	ice_update_eth_stats(vsi);
1163 
1164 	stats = vsi->eth_stats;
1165 
1166 error_param:
1167 	/* send the response to the VF */
1168 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1169 				     (u8 *)&stats, sizeof(stats));
1170 }
1171 
1172 /**
1173  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1174  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1175  *
1176  * Return true on successful validation, else false
1177  */
1178 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1179 {
1180 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1181 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1182 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1183 		return false;
1184 
1185 	return true;
1186 }
1187 
1188 /**
1189  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1190  * @vsi: VSI of the VF to configure
1191  * @q_idx: VF queue index used to determine the queue in the PF's space
1192  */
1193 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1194 {
1195 	struct ice_hw *hw = &vsi->back->hw;
1196 	u32 pfq = vsi->txq_map[q_idx];
1197 	u32 reg;
1198 
1199 	reg = rd32(hw, QINT_TQCTL(pfq));
1200 
1201 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1202 	 * this is most likely a poll mode VF driver, so don't enable an
1203 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1204 	 */
1205 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1206 		return;
1207 
1208 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1209 }
1210 
1211 /**
1212  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1213  * @vsi: VSI of the VF to configure
1214  * @q_idx: VF queue index used to determine the queue in the PF's space
1215  */
1216 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1217 {
1218 	struct ice_hw *hw = &vsi->back->hw;
1219 	u32 pfq = vsi->rxq_map[q_idx];
1220 	u32 reg;
1221 
1222 	reg = rd32(hw, QINT_RQCTL(pfq));
1223 
1224 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1225 	 * this is most likely a poll mode VF driver, so don't enable an
1226 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1227 	 */
1228 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1229 		return;
1230 
1231 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1232 }
1233 
1234 /**
1235  * ice_vc_ena_qs_msg
1236  * @vf: pointer to the VF info
1237  * @msg: pointer to the msg buffer
1238  *
1239  * called from the VF to enable all or specific queue(s)
1240  */
1241 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1242 {
1243 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1244 	struct virtchnl_queue_select *vqs =
1245 	    (struct virtchnl_queue_select *)msg;
1246 	struct ice_vsi *vsi;
1247 	unsigned long q_map;
1248 	u16 vf_q_id;
1249 
1250 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1251 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1252 		goto error_param;
1253 	}
1254 
1255 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1256 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1257 		goto error_param;
1258 	}
1259 
1260 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1261 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1262 		goto error_param;
1263 	}
1264 
1265 	vsi = ice_get_vf_vsi(vf);
1266 	if (!vsi) {
1267 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1268 		goto error_param;
1269 	}
1270 
1271 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1272 	 * Tx queue group list was configured and the context bits were
1273 	 * programmed using ice_vsi_cfg_txqs
1274 	 */
1275 	q_map = vqs->rx_queues;
1276 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1277 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1278 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1279 			goto error_param;
1280 		}
1281 
1282 		/* Skip queue if enabled */
1283 		if (test_bit(vf_q_id, vf->rxq_ena))
1284 			continue;
1285 
1286 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1287 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1288 				vf_q_id, vsi->vsi_num);
1289 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1290 			goto error_param;
1291 		}
1292 
1293 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1294 		set_bit(vf_q_id, vf->rxq_ena);
1295 	}
1296 
1297 	q_map = vqs->tx_queues;
1298 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1299 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1300 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1301 			goto error_param;
1302 		}
1303 
1304 		/* Skip queue if enabled */
1305 		if (test_bit(vf_q_id, vf->txq_ena))
1306 			continue;
1307 
1308 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1309 		set_bit(vf_q_id, vf->txq_ena);
1310 	}
1311 
1312 	/* Set flag to indicate that queues are enabled */
1313 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1314 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1315 
1316 error_param:
1317 	/* send the response to the VF */
1318 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1319 				     NULL, 0);
1320 }
1321 
1322 /**
1323  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1324  * @vf: VF to disable queue for
1325  * @vsi: VSI for the VF
1326  * @q_id: VF relative (0-based) queue ID
1327  *
1328  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1329  * disabled then clear q_id bit in the enabled queues bitmap and return
1330  * success. Otherwise return error.
1331  */
1332 static int
1333 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1334 {
1335 	struct ice_txq_meta txq_meta = { 0 };
1336 	struct ice_tx_ring *ring;
1337 	int err;
1338 
1339 	if (!test_bit(q_id, vf->txq_ena))
1340 		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1341 			q_id, vsi->vsi_num);
1342 
1343 	ring = vsi->tx_rings[q_id];
1344 	if (!ring)
1345 		return -EINVAL;
1346 
1347 	ice_fill_txq_meta(vsi, ring, &txq_meta);
1348 
1349 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1350 	if (err) {
1351 		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1352 			q_id, vsi->vsi_num);
1353 		return err;
1354 	}
1355 
1356 	/* Clear enabled queues flag */
1357 	clear_bit(q_id, vf->txq_ena);
1358 
1359 	return 0;
1360 }
1361 
1362 /**
1363  * ice_vc_dis_qs_msg
1364  * @vf: pointer to the VF info
1365  * @msg: pointer to the msg buffer
1366  *
1367  * called from the VF to disable all or specific queue(s)
1368  */
1369 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1370 {
1371 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1372 	struct virtchnl_queue_select *vqs =
1373 	    (struct virtchnl_queue_select *)msg;
1374 	struct ice_vsi *vsi;
1375 	unsigned long q_map;
1376 	u16 vf_q_id;
1377 
1378 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1379 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1380 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1381 		goto error_param;
1382 	}
1383 
1384 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1385 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1386 		goto error_param;
1387 	}
1388 
1389 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1390 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1391 		goto error_param;
1392 	}
1393 
1394 	vsi = ice_get_vf_vsi(vf);
1395 	if (!vsi) {
1396 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1397 		goto error_param;
1398 	}
1399 
1400 	if (vqs->tx_queues) {
1401 		q_map = vqs->tx_queues;
1402 
1403 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1404 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1405 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1406 				goto error_param;
1407 			}
1408 
1409 			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1410 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1411 				goto error_param;
1412 			}
1413 		}
1414 	}
1415 
1416 	q_map = vqs->rx_queues;
1417 	/* speed up Rx queue disable by batching them if possible */
1418 	if (q_map &&
1419 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1420 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1421 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1422 				vsi->vsi_num);
1423 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1424 			goto error_param;
1425 		}
1426 
1427 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1428 	} else if (q_map) {
1429 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1430 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1431 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1432 				goto error_param;
1433 			}
1434 
1435 			/* Skip queue if not enabled */
1436 			if (!test_bit(vf_q_id, vf->rxq_ena))
1437 				continue;
1438 
1439 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1440 						     true)) {
1441 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1442 					vf_q_id, vsi->vsi_num);
1443 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1444 				goto error_param;
1445 			}
1446 
1447 			/* Clear enabled queues flag */
1448 			clear_bit(vf_q_id, vf->rxq_ena);
1449 		}
1450 	}
1451 
1452 	/* Clear enabled queues flag */
1453 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1454 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1455 
1456 error_param:
1457 	/* send the response to the VF */
1458 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1459 				     NULL, 0);
1460 }
1461 
1462 /**
1463  * ice_cfg_interrupt
1464  * @vf: pointer to the VF info
1465  * @vsi: the VSI being configured
1466  * @vector_id: vector ID
1467  * @map: vector map for mapping vectors to queues
1468  * @q_vector: structure for interrupt vector
1469  * configure the IRQ to queue map
1470  */
1471 static int
1472 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1473 		  struct virtchnl_vector_map *map,
1474 		  struct ice_q_vector *q_vector)
1475 {
1476 	u16 vsi_q_id, vsi_q_id_idx;
1477 	unsigned long qmap;
1478 
1479 	q_vector->num_ring_rx = 0;
1480 	q_vector->num_ring_tx = 0;
1481 
1482 	qmap = map->rxq_map;
1483 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1484 		vsi_q_id = vsi_q_id_idx;
1485 
1486 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1487 			return VIRTCHNL_STATUS_ERR_PARAM;
1488 
1489 		q_vector->num_ring_rx++;
1490 		q_vector->rx.itr_idx = map->rxitr_idx;
1491 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1492 		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1493 				      q_vector->rx.itr_idx);
1494 	}
1495 
1496 	qmap = map->txq_map;
1497 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1498 		vsi_q_id = vsi_q_id_idx;
1499 
1500 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1501 			return VIRTCHNL_STATUS_ERR_PARAM;
1502 
1503 		q_vector->num_ring_tx++;
1504 		q_vector->tx.itr_idx = map->txitr_idx;
1505 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1506 		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1507 				      q_vector->tx.itr_idx);
1508 	}
1509 
1510 	return VIRTCHNL_STATUS_SUCCESS;
1511 }
1512 
1513 /**
1514  * ice_vc_cfg_irq_map_msg
1515  * @vf: pointer to the VF info
1516  * @msg: pointer to the msg buffer
1517  *
1518  * called from the VF to configure the IRQ to queue map
1519  */
1520 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1521 {
1522 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1523 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1524 	struct virtchnl_irq_map_info *irqmap_info;
1525 	struct virtchnl_vector_map *map;
1526 	struct ice_pf *pf = vf->pf;
1527 	struct ice_vsi *vsi;
1528 	int i;
1529 
1530 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1531 	num_q_vectors_mapped = irqmap_info->num_vectors;
1532 
1533 	/* Check to make sure number of VF vectors mapped is not greater than
1534 	 * number of VF vectors originally allocated, and check that
1535 	 * there is actually at least a single VF queue vector mapped
1536 	 */
1537 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1538 	    pf->vfs.num_msix_per < num_q_vectors_mapped ||
1539 	    !num_q_vectors_mapped) {
1540 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1541 		goto error_param;
1542 	}
1543 
1544 	vsi = ice_get_vf_vsi(vf);
1545 	if (!vsi) {
1546 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1547 		goto error_param;
1548 	}
1549 
1550 	for (i = 0; i < num_q_vectors_mapped; i++) {
1551 		struct ice_q_vector *q_vector;
1552 
1553 		map = &irqmap_info->vecmap[i];
1554 
1555 		vector_id = map->vector_id;
1556 		vsi_id = map->vsi_id;
1557 		/* vector_id is always 0-based for each VF, and can never be
1558 		 * larger than or equal to the max allowed interrupts per VF
1559 		 */
1560 		if (!(vector_id < pf->vfs.num_msix_per) ||
1561 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1562 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1563 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1564 			goto error_param;
1565 		}
1566 
1567 		/* No need to map VF miscellaneous or rogue vector */
1568 		if (!vector_id)
1569 			continue;
1570 
1571 		/* Subtract non queue vector from vector_id passed by VF
1572 		 * to get actual number of VSI queue vector array index
1573 		 */
1574 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1575 		if (!q_vector) {
1576 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1577 			goto error_param;
1578 		}
1579 
1580 		/* lookout for the invalid queue index */
1581 		v_ret = (enum virtchnl_status_code)
1582 			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1583 		if (v_ret)
1584 			goto error_param;
1585 	}
1586 
1587 error_param:
1588 	/* send the response to the VF */
1589 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1590 				     NULL, 0);
1591 }
1592 
1593 /**
1594  * ice_vc_cfg_qs_msg
1595  * @vf: pointer to the VF info
1596  * @msg: pointer to the msg buffer
1597  *
1598  * called from the VF to configure the Rx/Tx queues
1599  */
1600 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1601 {
1602 	struct virtchnl_vsi_queue_config_info *qci =
1603 	    (struct virtchnl_vsi_queue_config_info *)msg;
1604 	struct virtchnl_queue_pair_info *qpi;
1605 	struct ice_pf *pf = vf->pf;
1606 	struct ice_lag *lag;
1607 	struct ice_vsi *vsi;
1608 	u8 act_prt, pri_prt;
1609 	int i = -1, q_idx;
1610 
1611 	lag = pf->lag;
1612 	mutex_lock(&pf->lag_mutex);
1613 	act_prt = ICE_LAG_INVALID_PORT;
1614 	pri_prt = pf->hw.port_info->lport;
1615 	if (lag && lag->bonded && lag->primary) {
1616 		act_prt = lag->active_port;
1617 		if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1618 		    lag->upper_netdev)
1619 			ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1620 		else
1621 			act_prt = ICE_LAG_INVALID_PORT;
1622 	}
1623 
1624 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1625 		goto error_param;
1626 
1627 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1628 		goto error_param;
1629 
1630 	vsi = ice_get_vf_vsi(vf);
1631 	if (!vsi)
1632 		goto error_param;
1633 
1634 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1635 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1636 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1637 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1638 		goto error_param;
1639 	}
1640 
1641 	for (i = 0; i < qci->num_queue_pairs; i++) {
1642 		if (!qci->qpair[i].rxq.crc_disable)
1643 			continue;
1644 
1645 		if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1646 		    vf->vlan_strip_ena)
1647 			goto error_param;
1648 	}
1649 
1650 	for (i = 0; i < qci->num_queue_pairs; i++) {
1651 		qpi = &qci->qpair[i];
1652 		if (qpi->txq.vsi_id != qci->vsi_id ||
1653 		    qpi->rxq.vsi_id != qci->vsi_id ||
1654 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1655 		    qpi->txq.headwb_enabled ||
1656 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1657 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1658 		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1659 			goto error_param;
1660 		}
1661 
1662 		q_idx = qpi->rxq.queue_id;
1663 
1664 		/* make sure selected "q_idx" is in valid range of queues
1665 		 * for selected "vsi"
1666 		 */
1667 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1668 			goto error_param;
1669 		}
1670 
1671 		/* copy Tx queue info from VF into VSI */
1672 		if (qpi->txq.ring_len > 0) {
1673 			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1674 			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1675 
1676 			/* Disable any existing queue first */
1677 			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1678 				goto error_param;
1679 
1680 			/* Configure a queue with the requested settings */
1681 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1682 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1683 					 vf->vf_id, i);
1684 				goto error_param;
1685 			}
1686 		}
1687 
1688 		/* copy Rx queue info from VF into VSI */
1689 		if (qpi->rxq.ring_len > 0) {
1690 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1691 			u32 rxdid;
1692 
1693 			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1694 			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1695 
1696 			if (qpi->rxq.crc_disable)
1697 				vsi->rx_rings[q_idx]->flags |=
1698 					ICE_RX_FLAGS_CRC_STRIP_DIS;
1699 			else
1700 				vsi->rx_rings[q_idx]->flags &=
1701 					~ICE_RX_FLAGS_CRC_STRIP_DIS;
1702 
1703 			if (qpi->rxq.databuffer_size != 0 &&
1704 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1705 			     qpi->rxq.databuffer_size < 1024))
1706 				goto error_param;
1707 			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1708 			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1709 			if (qpi->rxq.max_pkt_size > max_frame_size ||
1710 			    qpi->rxq.max_pkt_size < 64)
1711 				goto error_param;
1712 
1713 			vsi->max_frame = qpi->rxq.max_pkt_size;
1714 			/* add space for the port VLAN since the VF driver is
1715 			 * not expected to account for it in the MTU
1716 			 * calculation
1717 			 */
1718 			if (ice_vf_is_port_vlan_ena(vf))
1719 				vsi->max_frame += VLAN_HLEN;
1720 
1721 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1722 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1723 					 vf->vf_id, i);
1724 				goto error_param;
1725 			}
1726 
1727 			/* If Rx flex desc is supported, select RXDID for Rx
1728 			 * queues. Otherwise, use legacy 32byte descriptor
1729 			 * format. Legacy 16byte descriptor is not supported.
1730 			 * If this RXDID is selected, return error.
1731 			 */
1732 			if (vf->driver_caps &
1733 			    VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1734 				rxdid = qpi->rxq.rxdid;
1735 				if (!(BIT(rxdid) & pf->supported_rxdids))
1736 					goto error_param;
1737 			} else {
1738 				rxdid = ICE_RXDID_LEGACY_1;
1739 			}
1740 
1741 			ice_write_qrxflxp_cntxt(&vsi->back->hw,
1742 						vsi->rxq_map[q_idx],
1743 						rxdid, 0x03, false);
1744 		}
1745 	}
1746 
1747 	if (lag && lag->bonded && lag->primary &&
1748 	    act_prt != ICE_LAG_INVALID_PORT)
1749 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1750 	mutex_unlock(&pf->lag_mutex);
1751 
1752 	/* send the response to the VF */
1753 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1754 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1755 error_param:
1756 	/* disable whatever we can */
1757 	for (; i >= 0; i--) {
1758 		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1759 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1760 				vf->vf_id, i);
1761 		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1762 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1763 				vf->vf_id, i);
1764 	}
1765 
1766 	if (lag && lag->bonded && lag->primary &&
1767 	    act_prt != ICE_LAG_INVALID_PORT)
1768 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1769 	mutex_unlock(&pf->lag_mutex);
1770 
1771 	ice_lag_move_new_vf_nodes(vf);
1772 
1773 	/* send the response to the VF */
1774 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1775 				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1776 }
1777 
1778 /**
1779  * ice_can_vf_change_mac
1780  * @vf: pointer to the VF info
1781  *
1782  * Return true if the VF is allowed to change its MAC filters, false otherwise
1783  */
1784 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1785 {
1786 	/* If the VF MAC address has been set administratively (via the
1787 	 * ndo_set_vf_mac command), then deny permission to the VF to
1788 	 * add/delete unicast MAC addresses, unless the VF is trusted
1789 	 */
1790 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1791 		return false;
1792 
1793 	return true;
1794 }
1795 
1796 /**
1797  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1798  * @vc_ether_addr: used to extract the type
1799  */
1800 static u8
1801 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1802 {
1803 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1804 }
1805 
1806 /**
1807  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1808  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1809  */
1810 static bool
1811 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1812 {
1813 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1814 
1815 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1816 }
1817 
1818 /**
1819  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1820  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1821  *
1822  * This function should only be called when the MAC address in
1823  * virtchnl_ether_addr is a valid unicast MAC
1824  */
1825 static bool
1826 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1827 {
1828 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1829 
1830 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1831 }
1832 
1833 /**
1834  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1835  * @vf: VF to update
1836  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1837  */
1838 static void
1839 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1840 {
1841 	u8 *mac_addr = vc_ether_addr->addr;
1842 
1843 	if (!is_valid_ether_addr(mac_addr))
1844 		return;
1845 
1846 	/* only allow legacy VF drivers to set the device and hardware MAC if it
1847 	 * is zero and allow new VF drivers to set the hardware MAC if the type
1848 	 * was correctly specified over VIRTCHNL
1849 	 */
1850 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1851 	     is_zero_ether_addr(vf->hw_lan_addr)) ||
1852 	    ice_is_vc_addr_primary(vc_ether_addr)) {
1853 		ether_addr_copy(vf->dev_lan_addr, mac_addr);
1854 		ether_addr_copy(vf->hw_lan_addr, mac_addr);
1855 	}
1856 
1857 	/* hardware and device MACs are already set, but its possible that the
1858 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1859 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1860 	 * away for the legacy VF driver case as it will be updated in the
1861 	 * delete flow for this case
1862 	 */
1863 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1864 		ether_addr_copy(vf->legacy_last_added_umac.addr,
1865 				mac_addr);
1866 		vf->legacy_last_added_umac.time_modified = jiffies;
1867 	}
1868 }
1869 
1870 /**
1871  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1872  * @vf: pointer to the VF info
1873  * @vsi: pointer to the VF's VSI
1874  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1875  */
1876 static int
1877 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1878 		    struct virtchnl_ether_addr *vc_ether_addr)
1879 {
1880 	struct device *dev = ice_pf_to_dev(vf->pf);
1881 	u8 *mac_addr = vc_ether_addr->addr;
1882 	int ret;
1883 
1884 	/* device MAC already added */
1885 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1886 		return 0;
1887 
1888 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1889 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1890 		return -EPERM;
1891 	}
1892 
1893 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1894 	if (ret == -EEXIST) {
1895 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1896 			vf->vf_id);
1897 		/* don't return since we might need to update
1898 		 * the primary MAC in ice_vfhw_mac_add() below
1899 		 */
1900 	} else if (ret) {
1901 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1902 			mac_addr, vf->vf_id, ret);
1903 		return ret;
1904 	} else {
1905 		vf->num_mac++;
1906 	}
1907 
1908 	ice_vfhw_mac_add(vf, vc_ether_addr);
1909 
1910 	return ret;
1911 }
1912 
1913 /**
1914  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1915  * @last_added_umac: structure used to check expiration
1916  */
1917 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1918 {
1919 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1920 	return time_is_before_jiffies(last_added_umac->time_modified +
1921 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1922 }
1923 
1924 /**
1925  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1926  * @vf: VF to update
1927  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1928  *
1929  * only update cached hardware MAC for legacy VF drivers on delete
1930  * because we cannot guarantee order/type of MAC from the VF driver
1931  */
1932 static void
1933 ice_update_legacy_cached_mac(struct ice_vf *vf,
1934 			     struct virtchnl_ether_addr *vc_ether_addr)
1935 {
1936 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1937 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1938 		return;
1939 
1940 	ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1941 	ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1942 }
1943 
1944 /**
1945  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1946  * @vf: VF to update
1947  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1948  */
1949 static void
1950 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1951 {
1952 	u8 *mac_addr = vc_ether_addr->addr;
1953 
1954 	if (!is_valid_ether_addr(mac_addr) ||
1955 	    !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1956 		return;
1957 
1958 	/* allow the device MAC to be repopulated in the add flow and don't
1959 	 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
1960 	 * to be persistent on VM reboot and across driver unload/load, which
1961 	 * won't work if we clear the hardware MAC here
1962 	 */
1963 	eth_zero_addr(vf->dev_lan_addr);
1964 
1965 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
1966 }
1967 
1968 /**
1969  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1970  * @vf: pointer to the VF info
1971  * @vsi: pointer to the VF's VSI
1972  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1973  */
1974 static int
1975 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1976 		    struct virtchnl_ether_addr *vc_ether_addr)
1977 {
1978 	struct device *dev = ice_pf_to_dev(vf->pf);
1979 	u8 *mac_addr = vc_ether_addr->addr;
1980 	int status;
1981 
1982 	if (!ice_can_vf_change_mac(vf) &&
1983 	    ether_addr_equal(vf->dev_lan_addr, mac_addr))
1984 		return 0;
1985 
1986 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1987 	if (status == -ENOENT) {
1988 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1989 			vf->vf_id);
1990 		return -ENOENT;
1991 	} else if (status) {
1992 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1993 			mac_addr, vf->vf_id, status);
1994 		return -EIO;
1995 	}
1996 
1997 	ice_vfhw_mac_del(vf, vc_ether_addr);
1998 
1999 	vf->num_mac--;
2000 
2001 	return 0;
2002 }
2003 
2004 /**
2005  * ice_vc_handle_mac_addr_msg
2006  * @vf: pointer to the VF info
2007  * @msg: pointer to the msg buffer
2008  * @set: true if MAC filters are being set, false otherwise
2009  *
2010  * add guest MAC address filter
2011  */
2012 static int
2013 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2014 {
2015 	int (*ice_vc_cfg_mac)
2016 		(struct ice_vf *vf, struct ice_vsi *vsi,
2017 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
2018 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2019 	struct virtchnl_ether_addr_list *al =
2020 	    (struct virtchnl_ether_addr_list *)msg;
2021 	struct ice_pf *pf = vf->pf;
2022 	enum virtchnl_ops vc_op;
2023 	struct ice_vsi *vsi;
2024 	int i;
2025 
2026 	if (set) {
2027 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2028 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
2029 	} else {
2030 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2031 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
2032 	}
2033 
2034 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2035 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2036 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2037 		goto handle_mac_exit;
2038 	}
2039 
2040 	/* If this VF is not privileged, then we can't add more than a
2041 	 * limited number of addresses. Check to make sure that the
2042 	 * additions do not push us over the limit.
2043 	 */
2044 	if (set && !ice_is_vf_trusted(vf) &&
2045 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2046 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2047 			vf->vf_id);
2048 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2049 		goto handle_mac_exit;
2050 	}
2051 
2052 	vsi = ice_get_vf_vsi(vf);
2053 	if (!vsi) {
2054 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2055 		goto handle_mac_exit;
2056 	}
2057 
2058 	for (i = 0; i < al->num_elements; i++) {
2059 		u8 *mac_addr = al->list[i].addr;
2060 		int result;
2061 
2062 		if (is_broadcast_ether_addr(mac_addr) ||
2063 		    is_zero_ether_addr(mac_addr))
2064 			continue;
2065 
2066 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2067 		if (result == -EEXIST || result == -ENOENT) {
2068 			continue;
2069 		} else if (result) {
2070 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2071 			goto handle_mac_exit;
2072 		}
2073 	}
2074 
2075 handle_mac_exit:
2076 	/* send the response to the VF */
2077 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2078 }
2079 
2080 /**
2081  * ice_vc_add_mac_addr_msg
2082  * @vf: pointer to the VF info
2083  * @msg: pointer to the msg buffer
2084  *
2085  * add guest MAC address filter
2086  */
2087 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2088 {
2089 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2090 }
2091 
2092 /**
2093  * ice_vc_del_mac_addr_msg
2094  * @vf: pointer to the VF info
2095  * @msg: pointer to the msg buffer
2096  *
2097  * remove guest MAC address filter
2098  */
2099 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2100 {
2101 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2102 }
2103 
2104 /**
2105  * ice_vc_request_qs_msg
2106  * @vf: pointer to the VF info
2107  * @msg: pointer to the msg buffer
2108  *
2109  * VFs get a default number of queues but can use this message to request a
2110  * different number. If the request is successful, PF will reset the VF and
2111  * return 0. If unsuccessful, PF will send message informing VF of number of
2112  * available queue pairs via virtchnl message response to VF.
2113  */
2114 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2115 {
2116 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2117 	struct virtchnl_vf_res_request *vfres =
2118 		(struct virtchnl_vf_res_request *)msg;
2119 	u16 req_queues = vfres->num_queue_pairs;
2120 	struct ice_pf *pf = vf->pf;
2121 	u16 max_allowed_vf_queues;
2122 	u16 tx_rx_queue_left;
2123 	struct device *dev;
2124 	u16 cur_queues;
2125 
2126 	dev = ice_pf_to_dev(pf);
2127 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2128 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2129 		goto error_param;
2130 	}
2131 
2132 	cur_queues = vf->num_vf_qs;
2133 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2134 				 ice_get_avail_rxq_count(pf));
2135 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2136 	if (!req_queues) {
2137 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2138 			vf->vf_id);
2139 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2140 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2141 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2142 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2143 	} else if (req_queues > cur_queues &&
2144 		   req_queues - cur_queues > tx_rx_queue_left) {
2145 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2146 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2147 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2148 					       ICE_MAX_RSS_QS_PER_VF);
2149 	} else {
2150 		/* request is successful, then reset VF */
2151 		vf->num_req_qs = req_queues;
2152 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2153 		dev_info(dev, "VF %d granted request of %u queues.\n",
2154 			 vf->vf_id, req_queues);
2155 		return 0;
2156 	}
2157 
2158 error_param:
2159 	/* send the response to the VF */
2160 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2161 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2162 }
2163 
2164 /**
2165  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2166  * @caps: VF driver negotiated capabilities
2167  *
2168  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2169  */
2170 static bool ice_vf_vlan_offload_ena(u32 caps)
2171 {
2172 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2173 }
2174 
2175 /**
2176  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2177  * @vf: VF used to determine if VLAN promiscuous config is allowed
2178  */
2179 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2180 {
2181 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2182 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2183 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2184 		return true;
2185 
2186 	return false;
2187 }
2188 
2189 /**
2190  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2191  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2192  * @vlan: VLAN used to enable VLAN promiscuous
2193  *
2194  * This function should only be called if VLAN promiscuous mode is allowed,
2195  * which can be determined via ice_is_vlan_promisc_allowed().
2196  */
2197 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2198 {
2199 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2200 	int status;
2201 
2202 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2203 					  vlan->vid);
2204 	if (status && status != -EEXIST)
2205 		return status;
2206 
2207 	return 0;
2208 }
2209 
2210 /**
2211  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2212  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2213  * @vlan: VLAN used to disable VLAN promiscuous
2214  *
2215  * This function should only be called if VLAN promiscuous mode is allowed,
2216  * which can be determined via ice_is_vlan_promisc_allowed().
2217  */
2218 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2219 {
2220 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2221 	int status;
2222 
2223 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2224 					    vlan->vid);
2225 	if (status && status != -ENOENT)
2226 		return status;
2227 
2228 	return 0;
2229 }
2230 
2231 /**
2232  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2233  * @vf: VF to check against
2234  * @vsi: VF's VSI
2235  *
2236  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2237  * wants to, so return false.
2238  *
2239  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2240  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2241  */
2242 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2243 {
2244 	if (ice_is_vf_trusted(vf))
2245 		return false;
2246 
2247 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2248 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2249 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2250 }
2251 
2252 /**
2253  * ice_vc_process_vlan_msg
2254  * @vf: pointer to the VF info
2255  * @msg: pointer to the msg buffer
2256  * @add_v: Add VLAN if true, otherwise delete VLAN
2257  *
2258  * Process virtchnl op to add or remove programmed guest VLAN ID
2259  */
2260 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2261 {
2262 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2263 	struct virtchnl_vlan_filter_list *vfl =
2264 	    (struct virtchnl_vlan_filter_list *)msg;
2265 	struct ice_pf *pf = vf->pf;
2266 	bool vlan_promisc = false;
2267 	struct ice_vsi *vsi;
2268 	struct device *dev;
2269 	int status = 0;
2270 	int i;
2271 
2272 	dev = ice_pf_to_dev(pf);
2273 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2274 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2275 		goto error_param;
2276 	}
2277 
2278 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2279 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2280 		goto error_param;
2281 	}
2282 
2283 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2284 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2285 		goto error_param;
2286 	}
2287 
2288 	for (i = 0; i < vfl->num_elements; i++) {
2289 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2290 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2291 			dev_err(dev, "invalid VF VLAN id %d\n",
2292 				vfl->vlan_id[i]);
2293 			goto error_param;
2294 		}
2295 	}
2296 
2297 	vsi = ice_get_vf_vsi(vf);
2298 	if (!vsi) {
2299 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2300 		goto error_param;
2301 	}
2302 
2303 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2304 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2305 			 vf->vf_id);
2306 		/* There is no need to let VF know about being not trusted,
2307 		 * so we can just return success message here
2308 		 */
2309 		goto error_param;
2310 	}
2311 
2312 	/* in DVM a VF can add/delete inner VLAN filters when
2313 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2314 	 */
2315 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2316 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2317 		goto error_param;
2318 	}
2319 
2320 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2321 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2322 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2323 	 */
2324 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2325 		!ice_is_dvm_ena(&pf->hw) &&
2326 		!ice_vf_is_port_vlan_ena(vf);
2327 
2328 	if (add_v) {
2329 		for (i = 0; i < vfl->num_elements; i++) {
2330 			u16 vid = vfl->vlan_id[i];
2331 			struct ice_vlan vlan;
2332 
2333 			if (ice_vf_has_max_vlans(vf, vsi)) {
2334 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2335 					 vf->vf_id);
2336 				/* There is no need to let VF know about being
2337 				 * not trusted, so we can just return success
2338 				 * message here as well.
2339 				 */
2340 				goto error_param;
2341 			}
2342 
2343 			/* we add VLAN 0 by default for each VF so we can enable
2344 			 * Tx VLAN anti-spoof without triggering MDD events so
2345 			 * we don't need to add it again here
2346 			 */
2347 			if (!vid)
2348 				continue;
2349 
2350 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2351 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2352 			if (status) {
2353 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2354 				goto error_param;
2355 			}
2356 
2357 			/* Enable VLAN filtering on first non-zero VLAN */
2358 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2359 				if (vf->spoofchk) {
2360 					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2361 					if (status) {
2362 						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2363 						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2364 							vid, status);
2365 						goto error_param;
2366 					}
2367 				}
2368 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2369 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2370 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2371 						vid, status);
2372 					goto error_param;
2373 				}
2374 			} else if (vlan_promisc) {
2375 				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2376 				if (status) {
2377 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2378 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2379 						vid, status);
2380 				}
2381 			}
2382 		}
2383 	} else {
2384 		/* In case of non_trusted VF, number of VLAN elements passed
2385 		 * to PF for removal might be greater than number of VLANs
2386 		 * filter programmed for that VF - So, use actual number of
2387 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2388 		 * removing VLAN that doesn't exist, which result to sending
2389 		 * erroneous failed message back to the VF
2390 		 */
2391 		int num_vf_vlan;
2392 
2393 		num_vf_vlan = vsi->num_vlan;
2394 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2395 			u16 vid = vfl->vlan_id[i];
2396 			struct ice_vlan vlan;
2397 
2398 			/* we add VLAN 0 by default for each VF so we can enable
2399 			 * Tx VLAN anti-spoof without triggering MDD events so
2400 			 * we don't want a VIRTCHNL request to remove it
2401 			 */
2402 			if (!vid)
2403 				continue;
2404 
2405 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2406 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2407 			if (status) {
2408 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2409 				goto error_param;
2410 			}
2411 
2412 			/* Disable VLAN filtering when only VLAN 0 is left */
2413 			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2414 				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2415 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2416 			}
2417 
2418 			if (vlan_promisc)
2419 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2420 		}
2421 	}
2422 
2423 error_param:
2424 	/* send the response to the VF */
2425 	if (add_v)
2426 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2427 					     NULL, 0);
2428 	else
2429 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2430 					     NULL, 0);
2431 }
2432 
2433 /**
2434  * ice_vc_add_vlan_msg
2435  * @vf: pointer to the VF info
2436  * @msg: pointer to the msg buffer
2437  *
2438  * Add and program guest VLAN ID
2439  */
2440 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2441 {
2442 	return ice_vc_process_vlan_msg(vf, msg, true);
2443 }
2444 
2445 /**
2446  * ice_vc_remove_vlan_msg
2447  * @vf: pointer to the VF info
2448  * @msg: pointer to the msg buffer
2449  *
2450  * remove programmed guest VLAN ID
2451  */
2452 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2453 {
2454 	return ice_vc_process_vlan_msg(vf, msg, false);
2455 }
2456 
2457 /**
2458  * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2459  * @vsi: pointer to the VF VSI info
2460  */
2461 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2462 {
2463 	unsigned int i;
2464 
2465 	ice_for_each_alloc_rxq(vsi, i)
2466 		if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2467 			return true;
2468 
2469 	return false;
2470 }
2471 
2472 /**
2473  * ice_vc_ena_vlan_stripping
2474  * @vf: pointer to the VF info
2475  *
2476  * Enable VLAN header stripping for a given VF
2477  */
2478 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2479 {
2480 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2481 	struct ice_vsi *vsi;
2482 
2483 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2484 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2485 		goto error_param;
2486 	}
2487 
2488 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2489 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2490 		goto error_param;
2491 	}
2492 
2493 	vsi = ice_get_vf_vsi(vf);
2494 	if (!vsi) {
2495 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2496 		goto error_param;
2497 	}
2498 
2499 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2500 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2501 	else
2502 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2503 
2504 error_param:
2505 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2506 				     v_ret, NULL, 0);
2507 }
2508 
2509 /**
2510  * ice_vc_dis_vlan_stripping
2511  * @vf: pointer to the VF info
2512  *
2513  * Disable VLAN header stripping for a given VF
2514  */
2515 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2516 {
2517 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2518 	struct ice_vsi *vsi;
2519 
2520 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2521 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2522 		goto error_param;
2523 	}
2524 
2525 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2526 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2527 		goto error_param;
2528 	}
2529 
2530 	vsi = ice_get_vf_vsi(vf);
2531 	if (!vsi) {
2532 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2533 		goto error_param;
2534 	}
2535 
2536 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2537 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2538 	else
2539 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2540 
2541 error_param:
2542 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2543 				     v_ret, NULL, 0);
2544 }
2545 
2546 /**
2547  * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2548  * @vf: pointer to the VF info
2549  */
2550 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2551 {
2552 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2553 	struct virtchnl_rss_hena *vrh = NULL;
2554 	int len = 0, ret;
2555 
2556 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2557 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2558 		goto err;
2559 	}
2560 
2561 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2562 		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2563 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2564 		goto err;
2565 	}
2566 
2567 	len = sizeof(struct virtchnl_rss_hena);
2568 	vrh = kzalloc(len, GFP_KERNEL);
2569 	if (!vrh) {
2570 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2571 		len = 0;
2572 		goto err;
2573 	}
2574 
2575 	vrh->hena = ICE_DEFAULT_RSS_HENA;
2576 err:
2577 	/* send the response back to the VF */
2578 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2579 				    (u8 *)vrh, len);
2580 	kfree(vrh);
2581 	return ret;
2582 }
2583 
2584 /**
2585  * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2586  * @vf: pointer to the VF info
2587  * @msg: pointer to the msg buffer
2588  */
2589 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2590 {
2591 	struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2592 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2593 	struct ice_pf *pf = vf->pf;
2594 	struct ice_vsi *vsi;
2595 	struct device *dev;
2596 	int status;
2597 
2598 	dev = ice_pf_to_dev(pf);
2599 
2600 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2601 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2602 		goto err;
2603 	}
2604 
2605 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2606 		dev_err(dev, "RSS not supported by PF\n");
2607 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2608 		goto err;
2609 	}
2610 
2611 	vsi = ice_get_vf_vsi(vf);
2612 	if (!vsi) {
2613 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2614 		goto err;
2615 	}
2616 
2617 	/* clear all previously programmed RSS configuration to allow VF drivers
2618 	 * the ability to customize the RSS configuration and/or completely
2619 	 * disable RSS
2620 	 */
2621 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2622 	if (status && !vrh->hena) {
2623 		/* only report failure to clear the current RSS configuration if
2624 		 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2625 		 */
2626 		v_ret = ice_err_to_virt_err(status);
2627 		goto err;
2628 	} else if (status) {
2629 		/* allow the VF to update the RSS configuration even on failure
2630 		 * to clear the current RSS confguration in an attempt to keep
2631 		 * RSS in a working state
2632 		 */
2633 		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2634 			 vf->vf_id);
2635 	}
2636 
2637 	if (vrh->hena) {
2638 		status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena);
2639 		v_ret = ice_err_to_virt_err(status);
2640 	}
2641 
2642 	/* send the response to the VF */
2643 err:
2644 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2645 				     NULL, 0);
2646 }
2647 
2648 /**
2649  * ice_vc_query_rxdid - query RXDID supported by DDP package
2650  * @vf: pointer to VF info
2651  *
2652  * Called from VF to query a bitmap of supported flexible
2653  * descriptor RXDIDs of a DDP package.
2654  */
2655 static int ice_vc_query_rxdid(struct ice_vf *vf)
2656 {
2657 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2658 	struct virtchnl_supported_rxdids *rxdid = NULL;
2659 	struct ice_hw *hw = &vf->pf->hw;
2660 	struct ice_pf *pf = vf->pf;
2661 	int len = 0;
2662 	int ret, i;
2663 	u32 regval;
2664 
2665 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2666 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2667 		goto err;
2668 	}
2669 
2670 	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2671 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2672 		goto err;
2673 	}
2674 
2675 	len = sizeof(struct virtchnl_supported_rxdids);
2676 	rxdid = kzalloc(len, GFP_KERNEL);
2677 	if (!rxdid) {
2678 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2679 		len = 0;
2680 		goto err;
2681 	}
2682 
2683 	/* RXDIDs supported by DDP package can be read from the register
2684 	 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2685 	 * is not listed in DDP package, add it in the bitmap manually.
2686 	 * Legacy 16byte descriptor is not supported.
2687 	 */
2688 	rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2689 
2690 	for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2691 		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2692 		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2693 			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2694 			rxdid->supported_rxdids |= BIT(i);
2695 	}
2696 
2697 	pf->supported_rxdids = rxdid->supported_rxdids;
2698 
2699 err:
2700 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2701 				    v_ret, (u8 *)rxdid, len);
2702 	kfree(rxdid);
2703 	return ret;
2704 }
2705 
2706 /**
2707  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2708  * @vf: VF to enable/disable VLAN stripping for on initialization
2709  *
2710  * Set the default for VLAN stripping based on whether a port VLAN is configured
2711  * and the current VLAN mode of the device.
2712  */
2713 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2714 {
2715 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2716 
2717 	vf->vlan_strip_ena = 0;
2718 
2719 	if (!vsi)
2720 		return -EINVAL;
2721 
2722 	/* don't modify stripping if port VLAN is configured in SVM since the
2723 	 * port VLAN is based on the inner/single VLAN in SVM
2724 	 */
2725 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2726 		return 0;
2727 
2728 	if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2729 		int err;
2730 
2731 		err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2732 		if (!err)
2733 			vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2734 		return err;
2735 	}
2736 
2737 	return vsi->inner_vlan_ops.dis_stripping(vsi);
2738 }
2739 
2740 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2741 {
2742 	if (vf->trusted)
2743 		return VLAN_N_VID;
2744 	else
2745 		return ICE_MAX_VLAN_PER_VF;
2746 }
2747 
2748 /**
2749  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2750  * @vf: VF that being checked for
2751  *
2752  * When the device is in double VLAN mode, check whether or not the outer VLAN
2753  * is allowed.
2754  */
2755 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2756 {
2757 	if (ice_vf_is_port_vlan_ena(vf))
2758 		return true;
2759 
2760 	return false;
2761 }
2762 
2763 /**
2764  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2765  * @vf: VF that capabilities are being set for
2766  * @caps: VLAN capabilities to populate
2767  *
2768  * Determine VLAN capabilities support based on whether a port VLAN is
2769  * configured. If a port VLAN is configured then the VF should use the inner
2770  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2771  * capabilies.
2772  */
2773 static void
2774 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2775 {
2776 	struct virtchnl_vlan_supported_caps *supported_caps;
2777 
2778 	if (ice_vf_outer_vlan_not_allowed(vf)) {
2779 		/* until support for inner VLAN filtering is added when a port
2780 		 * VLAN is configured, only support software offloaded inner
2781 		 * VLANs when a port VLAN is confgured in DVM
2782 		 */
2783 		supported_caps = &caps->filtering.filtering_support;
2784 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2785 
2786 		supported_caps = &caps->offloads.stripping_support;
2787 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2788 					VIRTCHNL_VLAN_TOGGLE |
2789 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2790 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2791 
2792 		supported_caps = &caps->offloads.insertion_support;
2793 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2794 					VIRTCHNL_VLAN_TOGGLE |
2795 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2796 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2797 
2798 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2799 		caps->offloads.ethertype_match =
2800 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2801 	} else {
2802 		supported_caps = &caps->filtering.filtering_support;
2803 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2804 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2805 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2806 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2807 					VIRTCHNL_VLAN_ETHERTYPE_AND;
2808 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2809 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2810 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2811 
2812 		supported_caps = &caps->offloads.stripping_support;
2813 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2814 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2815 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2816 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2817 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2818 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2819 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2820 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2821 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2822 
2823 		supported_caps = &caps->offloads.insertion_support;
2824 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2825 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2826 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2827 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2828 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2829 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2830 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2831 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2832 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2833 
2834 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2835 
2836 		caps->offloads.ethertype_match =
2837 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2838 	}
2839 
2840 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2841 }
2842 
2843 /**
2844  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2845  * @vf: VF that capabilities are being set for
2846  * @caps: VLAN capabilities to populate
2847  *
2848  * Determine VLAN capabilities support based on whether a port VLAN is
2849  * configured. If a port VLAN is configured then the VF does not have any VLAN
2850  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2851  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2852  * VLAN fitlering and offload capabilities.
2853  */
2854 static void
2855 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2856 {
2857 	struct virtchnl_vlan_supported_caps *supported_caps;
2858 
2859 	if (ice_vf_is_port_vlan_ena(vf)) {
2860 		supported_caps = &caps->filtering.filtering_support;
2861 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2862 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2863 
2864 		supported_caps = &caps->offloads.stripping_support;
2865 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2866 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2867 
2868 		supported_caps = &caps->offloads.insertion_support;
2869 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2870 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2871 
2872 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2873 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2874 		caps->filtering.max_filters = 0;
2875 	} else {
2876 		supported_caps = &caps->filtering.filtering_support;
2877 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2878 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2879 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2880 
2881 		supported_caps = &caps->offloads.stripping_support;
2882 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2883 					VIRTCHNL_VLAN_TOGGLE |
2884 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2885 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2886 
2887 		supported_caps = &caps->offloads.insertion_support;
2888 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2889 					VIRTCHNL_VLAN_TOGGLE |
2890 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2891 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2892 
2893 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2894 		caps->offloads.ethertype_match =
2895 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2896 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2897 	}
2898 }
2899 
2900 /**
2901  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2902  * @vf: VF to determine VLAN capabilities for
2903  *
2904  * This will only be called if the VF and PF successfully negotiated
2905  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2906  *
2907  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2908  * is configured or not.
2909  */
2910 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2911 {
2912 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2913 	struct virtchnl_vlan_caps *caps = NULL;
2914 	int err, len = 0;
2915 
2916 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2917 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2918 		goto out;
2919 	}
2920 
2921 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2922 	if (!caps) {
2923 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2924 		goto out;
2925 	}
2926 	len = sizeof(*caps);
2927 
2928 	if (ice_is_dvm_ena(&vf->pf->hw))
2929 		ice_vc_set_dvm_caps(vf, caps);
2930 	else
2931 		ice_vc_set_svm_caps(vf, caps);
2932 
2933 	/* store negotiated caps to prevent invalid VF messages */
2934 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2935 
2936 out:
2937 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2938 				    v_ret, (u8 *)caps, len);
2939 	kfree(caps);
2940 	return err;
2941 }
2942 
2943 /**
2944  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2945  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2946  * @tpid: VLAN TPID used for validation
2947  *
2948  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2949  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2950  */
2951 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2952 {
2953 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2954 
2955 	switch (tpid) {
2956 	case ETH_P_8021Q:
2957 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2958 		break;
2959 	case ETH_P_8021AD:
2960 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2961 		break;
2962 	case ETH_P_QINQ1:
2963 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2964 		break;
2965 	}
2966 
2967 	if (!(filtering_caps & vlan_ethertype))
2968 		return false;
2969 
2970 	return true;
2971 }
2972 
2973 /**
2974  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2975  * @vc_vlan: virtchnl_vlan to validate
2976  *
2977  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2978  * false. Otherwise return true.
2979  */
2980 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2981 {
2982 	if (!vc_vlan->tci || !vc_vlan->tpid)
2983 		return false;
2984 
2985 	return true;
2986 }
2987 
2988 /**
2989  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2990  * @vfc: negotiated/supported VLAN filtering capabilities
2991  * @vfl: VLAN filter list from VF to validate
2992  *
2993  * Validate all of the filters in the VLAN filter list from the VF. If any of
2994  * the checks fail then return false. Otherwise return true.
2995  */
2996 static bool
2997 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2998 				 struct virtchnl_vlan_filter_list_v2 *vfl)
2999 {
3000 	u16 i;
3001 
3002 	if (!vfl->num_elements)
3003 		return false;
3004 
3005 	for (i = 0; i < vfl->num_elements; i++) {
3006 		struct virtchnl_vlan_supported_caps *filtering_support =
3007 			&vfc->filtering_support;
3008 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3009 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
3010 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
3011 
3012 		if ((ice_vc_is_valid_vlan(outer) &&
3013 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3014 		    (ice_vc_is_valid_vlan(inner) &&
3015 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3016 			return false;
3017 
3018 		if ((outer->tci_mask &&
3019 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3020 		    (inner->tci_mask &&
3021 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3022 			return false;
3023 
3024 		if (((outer->tci & VLAN_PRIO_MASK) &&
3025 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3026 		    ((inner->tci & VLAN_PRIO_MASK) &&
3027 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3028 			return false;
3029 
3030 		if ((ice_vc_is_valid_vlan(outer) &&
3031 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
3032 						outer->tpid)) ||
3033 		    (ice_vc_is_valid_vlan(inner) &&
3034 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
3035 						inner->tpid)))
3036 			return false;
3037 	}
3038 
3039 	return true;
3040 }
3041 
3042 /**
3043  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3044  * @vc_vlan: struct virtchnl_vlan to transform
3045  */
3046 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3047 {
3048 	struct ice_vlan vlan = { 0 };
3049 
3050 	vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3051 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3052 	vlan.tpid = vc_vlan->tpid;
3053 
3054 	return vlan;
3055 }
3056 
3057 /**
3058  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3059  * @vsi: VF's VSI used to perform the action
3060  * @vlan_action: function to perform the action with (i.e. add/del)
3061  * @vlan: VLAN filter to perform the action with
3062  */
3063 static int
3064 ice_vc_vlan_action(struct ice_vsi *vsi,
3065 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3066 		   struct ice_vlan *vlan)
3067 {
3068 	int err;
3069 
3070 	err = vlan_action(vsi, vlan);
3071 	if (err)
3072 		return err;
3073 
3074 	return 0;
3075 }
3076 
3077 /**
3078  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3079  * @vf: VF used to delete the VLAN(s)
3080  * @vsi: VF's VSI used to delete the VLAN(s)
3081  * @vfl: virthchnl filter list used to delete the filters
3082  */
3083 static int
3084 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3085 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3086 {
3087 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3088 	int err;
3089 	u16 i;
3090 
3091 	for (i = 0; i < vfl->num_elements; i++) {
3092 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3093 		struct virtchnl_vlan *vc_vlan;
3094 
3095 		vc_vlan = &vlan_fltr->outer;
3096 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3097 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3098 
3099 			err = ice_vc_vlan_action(vsi,
3100 						 vsi->outer_vlan_ops.del_vlan,
3101 						 &vlan);
3102 			if (err)
3103 				return err;
3104 
3105 			if (vlan_promisc)
3106 				ice_vf_dis_vlan_promisc(vsi, &vlan);
3107 
3108 			/* Disable VLAN filtering when only VLAN 0 is left */
3109 			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3110 				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3111 				if (err)
3112 					return err;
3113 			}
3114 		}
3115 
3116 		vc_vlan = &vlan_fltr->inner;
3117 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3118 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3119 
3120 			err = ice_vc_vlan_action(vsi,
3121 						 vsi->inner_vlan_ops.del_vlan,
3122 						 &vlan);
3123 			if (err)
3124 				return err;
3125 
3126 			/* no support for VLAN promiscuous on inner VLAN unless
3127 			 * we are in Single VLAN Mode (SVM)
3128 			 */
3129 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3130 				if (vlan_promisc)
3131 					ice_vf_dis_vlan_promisc(vsi, &vlan);
3132 
3133 				/* Disable VLAN filtering when only VLAN 0 is left */
3134 				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3135 					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3136 					if (err)
3137 						return err;
3138 				}
3139 			}
3140 		}
3141 	}
3142 
3143 	return 0;
3144 }
3145 
3146 /**
3147  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3148  * @vf: VF the message was received from
3149  * @msg: message received from the VF
3150  */
3151 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3152 {
3153 	struct virtchnl_vlan_filter_list_v2 *vfl =
3154 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3155 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3156 	struct ice_vsi *vsi;
3157 
3158 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3159 					      vfl)) {
3160 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3161 		goto out;
3162 	}
3163 
3164 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3165 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3166 		goto out;
3167 	}
3168 
3169 	vsi = ice_get_vf_vsi(vf);
3170 	if (!vsi) {
3171 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3172 		goto out;
3173 	}
3174 
3175 	if (ice_vc_del_vlans(vf, vsi, vfl))
3176 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3177 
3178 out:
3179 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3180 				     0);
3181 }
3182 
3183 /**
3184  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3185  * @vf: VF used to add the VLAN(s)
3186  * @vsi: VF's VSI used to add the VLAN(s)
3187  * @vfl: virthchnl filter list used to add the filters
3188  */
3189 static int
3190 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3191 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3192 {
3193 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3194 	int err;
3195 	u16 i;
3196 
3197 	for (i = 0; i < vfl->num_elements; i++) {
3198 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3199 		struct virtchnl_vlan *vc_vlan;
3200 
3201 		vc_vlan = &vlan_fltr->outer;
3202 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3203 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3204 
3205 			err = ice_vc_vlan_action(vsi,
3206 						 vsi->outer_vlan_ops.add_vlan,
3207 						 &vlan);
3208 			if (err)
3209 				return err;
3210 
3211 			if (vlan_promisc) {
3212 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3213 				if (err)
3214 					return err;
3215 			}
3216 
3217 			/* Enable VLAN filtering on first non-zero VLAN */
3218 			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3219 				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3220 				if (err)
3221 					return err;
3222 			}
3223 		}
3224 
3225 		vc_vlan = &vlan_fltr->inner;
3226 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3227 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3228 
3229 			err = ice_vc_vlan_action(vsi,
3230 						 vsi->inner_vlan_ops.add_vlan,
3231 						 &vlan);
3232 			if (err)
3233 				return err;
3234 
3235 			/* no support for VLAN promiscuous on inner VLAN unless
3236 			 * we are in Single VLAN Mode (SVM)
3237 			 */
3238 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3239 				if (vlan_promisc) {
3240 					err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3241 					if (err)
3242 						return err;
3243 				}
3244 
3245 				/* Enable VLAN filtering on first non-zero VLAN */
3246 				if (vf->spoofchk && vlan.vid) {
3247 					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3248 					if (err)
3249 						return err;
3250 				}
3251 			}
3252 		}
3253 	}
3254 
3255 	return 0;
3256 }
3257 
3258 /**
3259  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3260  * @vsi: VF VSI used to get number of existing VLAN filters
3261  * @vfc: negotiated/supported VLAN filtering capabilities
3262  * @vfl: VLAN filter list from VF to validate
3263  *
3264  * Validate all of the filters in the VLAN filter list from the VF during the
3265  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3266  * Otherwise return true.
3267  */
3268 static bool
3269 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3270 				     struct virtchnl_vlan_filtering_caps *vfc,
3271 				     struct virtchnl_vlan_filter_list_v2 *vfl)
3272 {
3273 	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3274 		vfl->num_elements;
3275 
3276 	if (num_requested_filters > vfc->max_filters)
3277 		return false;
3278 
3279 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3280 }
3281 
3282 /**
3283  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3284  * @vf: VF the message was received from
3285  * @msg: message received from the VF
3286  */
3287 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3288 {
3289 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3290 	struct virtchnl_vlan_filter_list_v2 *vfl =
3291 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3292 	struct ice_vsi *vsi;
3293 
3294 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3295 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3296 		goto out;
3297 	}
3298 
3299 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3300 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3301 		goto out;
3302 	}
3303 
3304 	vsi = ice_get_vf_vsi(vf);
3305 	if (!vsi) {
3306 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3307 		goto out;
3308 	}
3309 
3310 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3311 						  &vf->vlan_v2_caps.filtering,
3312 						  vfl)) {
3313 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3314 		goto out;
3315 	}
3316 
3317 	if (ice_vc_add_vlans(vf, vsi, vfl))
3318 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3319 
3320 out:
3321 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3322 				     0);
3323 }
3324 
3325 /**
3326  * ice_vc_valid_vlan_setting - validate VLAN setting
3327  * @negotiated_settings: negotiated VLAN settings during VF init
3328  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3329  */
3330 static bool
3331 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3332 {
3333 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3334 		return false;
3335 
3336 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3337 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3338 	 */
3339 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3340 	    hweight32(ethertype_setting) > 1)
3341 		return false;
3342 
3343 	/* ability to modify the VLAN setting was not negotiated */
3344 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3345 		return false;
3346 
3347 	return true;
3348 }
3349 
3350 /**
3351  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3352  * @caps: negotiated VLAN settings during VF init
3353  * @msg: message to validate
3354  *
3355  * Used to validate any VLAN virtchnl message sent as a
3356  * virtchnl_vlan_setting structure. Validates the message against the
3357  * negotiated/supported caps during VF driver init.
3358  */
3359 static bool
3360 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3361 			      struct virtchnl_vlan_setting *msg)
3362 {
3363 	if ((!msg->outer_ethertype_setting &&
3364 	     !msg->inner_ethertype_setting) ||
3365 	    (!caps->outer && !caps->inner))
3366 		return false;
3367 
3368 	if (msg->outer_ethertype_setting &&
3369 	    !ice_vc_valid_vlan_setting(caps->outer,
3370 				       msg->outer_ethertype_setting))
3371 		return false;
3372 
3373 	if (msg->inner_ethertype_setting &&
3374 	    !ice_vc_valid_vlan_setting(caps->inner,
3375 				       msg->inner_ethertype_setting))
3376 		return false;
3377 
3378 	return true;
3379 }
3380 
3381 /**
3382  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3383  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3384  * @tpid: VLAN TPID to populate
3385  */
3386 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3387 {
3388 	switch (ethertype_setting) {
3389 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3390 		*tpid = ETH_P_8021Q;
3391 		break;
3392 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3393 		*tpid = ETH_P_8021AD;
3394 		break;
3395 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3396 		*tpid = ETH_P_QINQ1;
3397 		break;
3398 	default:
3399 		*tpid = 0;
3400 		return -EINVAL;
3401 	}
3402 
3403 	return 0;
3404 }
3405 
3406 /**
3407  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3408  * @vsi: VF's VSI used to enable the VLAN offload
3409  * @ena_offload: function used to enable the VLAN offload
3410  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3411  */
3412 static int
3413 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3414 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3415 			u32 ethertype_setting)
3416 {
3417 	u16 tpid;
3418 	int err;
3419 
3420 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3421 	if (err)
3422 		return err;
3423 
3424 	err = ena_offload(vsi, tpid);
3425 	if (err)
3426 		return err;
3427 
3428 	return 0;
3429 }
3430 
3431 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3432 #define ICE_L2TSEL_BIT_OFFSET		23
3433 enum ice_l2tsel {
3434 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3435 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3436 };
3437 
3438 /**
3439  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3440  * @vsi: VSI used to update l2tsel on
3441  * @l2tsel: l2tsel setting requested
3442  *
3443  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3444  * This will modify which descriptor field the first offloaded VLAN will be
3445  * stripped into.
3446  */
3447 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3448 {
3449 	struct ice_hw *hw = &vsi->back->hw;
3450 	u32 l2tsel_bit;
3451 	int i;
3452 
3453 	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3454 		l2tsel_bit = 0;
3455 	else
3456 		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3457 
3458 	for (i = 0; i < vsi->alloc_rxq; i++) {
3459 		u16 pfq = vsi->rxq_map[i];
3460 		u32 qrx_context_offset;
3461 		u32 regval;
3462 
3463 		qrx_context_offset =
3464 			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3465 
3466 		regval = rd32(hw, qrx_context_offset);
3467 		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3468 		regval |= l2tsel_bit;
3469 		wr32(hw, qrx_context_offset, regval);
3470 	}
3471 }
3472 
3473 /**
3474  * ice_vc_ena_vlan_stripping_v2_msg
3475  * @vf: VF the message was received from
3476  * @msg: message received from the VF
3477  *
3478  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3479  */
3480 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3481 {
3482 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3483 	struct virtchnl_vlan_supported_caps *stripping_support;
3484 	struct virtchnl_vlan_setting *strip_msg =
3485 		(struct virtchnl_vlan_setting *)msg;
3486 	u32 ethertype_setting;
3487 	struct ice_vsi *vsi;
3488 
3489 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3490 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3491 		goto out;
3492 	}
3493 
3494 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3495 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3496 		goto out;
3497 	}
3498 
3499 	vsi = ice_get_vf_vsi(vf);
3500 	if (!vsi) {
3501 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3502 		goto out;
3503 	}
3504 
3505 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3506 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3507 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3508 		goto out;
3509 	}
3510 
3511 	if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3512 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3513 		goto out;
3514 	}
3515 
3516 	ethertype_setting = strip_msg->outer_ethertype_setting;
3517 	if (ethertype_setting) {
3518 		if (ice_vc_ena_vlan_offload(vsi,
3519 					    vsi->outer_vlan_ops.ena_stripping,
3520 					    ethertype_setting)) {
3521 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3522 			goto out;
3523 		} else {
3524 			enum ice_l2tsel l2tsel =
3525 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3526 
3527 			/* PF tells the VF that the outer VLAN tag is always
3528 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3529 			 * inner is always extracted to
3530 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3531 			 * support outer stripping so the first tag always ends
3532 			 * up in L2TAG2_2ND and the second/inner tag, if
3533 			 * enabled, is extracted in L2TAG1.
3534 			 */
3535 			ice_vsi_update_l2tsel(vsi, l2tsel);
3536 
3537 			vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3538 		}
3539 	}
3540 
3541 	ethertype_setting = strip_msg->inner_ethertype_setting;
3542 	if (ethertype_setting &&
3543 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3544 				    ethertype_setting)) {
3545 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3546 		goto out;
3547 	}
3548 
3549 	if (ethertype_setting)
3550 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3551 
3552 out:
3553 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3554 				     v_ret, NULL, 0);
3555 }
3556 
3557 /**
3558  * ice_vc_dis_vlan_stripping_v2_msg
3559  * @vf: VF the message was received from
3560  * @msg: message received from the VF
3561  *
3562  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3563  */
3564 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3565 {
3566 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3567 	struct virtchnl_vlan_supported_caps *stripping_support;
3568 	struct virtchnl_vlan_setting *strip_msg =
3569 		(struct virtchnl_vlan_setting *)msg;
3570 	u32 ethertype_setting;
3571 	struct ice_vsi *vsi;
3572 
3573 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3574 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3575 		goto out;
3576 	}
3577 
3578 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3579 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3580 		goto out;
3581 	}
3582 
3583 	vsi = ice_get_vf_vsi(vf);
3584 	if (!vsi) {
3585 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3586 		goto out;
3587 	}
3588 
3589 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3590 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3591 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3592 		goto out;
3593 	}
3594 
3595 	ethertype_setting = strip_msg->outer_ethertype_setting;
3596 	if (ethertype_setting) {
3597 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3598 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3599 			goto out;
3600 		} else {
3601 			enum ice_l2tsel l2tsel =
3602 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3603 
3604 			/* PF tells the VF that the outer VLAN tag is always
3605 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3606 			 * inner is always extracted to
3607 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3608 			 * support inner stripping while outer stripping is
3609 			 * disabled so that the first and only tag is extracted
3610 			 * in L2TAG1.
3611 			 */
3612 			ice_vsi_update_l2tsel(vsi, l2tsel);
3613 
3614 			vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3615 		}
3616 	}
3617 
3618 	ethertype_setting = strip_msg->inner_ethertype_setting;
3619 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3620 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3621 		goto out;
3622 	}
3623 
3624 	if (ethertype_setting)
3625 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3626 
3627 out:
3628 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3629 				     v_ret, NULL, 0);
3630 }
3631 
3632 /**
3633  * ice_vc_ena_vlan_insertion_v2_msg
3634  * @vf: VF the message was received from
3635  * @msg: message received from the VF
3636  *
3637  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3638  */
3639 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3640 {
3641 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3642 	struct virtchnl_vlan_supported_caps *insertion_support;
3643 	struct virtchnl_vlan_setting *insertion_msg =
3644 		(struct virtchnl_vlan_setting *)msg;
3645 	u32 ethertype_setting;
3646 	struct ice_vsi *vsi;
3647 
3648 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3649 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3650 		goto out;
3651 	}
3652 
3653 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3654 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3655 		goto out;
3656 	}
3657 
3658 	vsi = ice_get_vf_vsi(vf);
3659 	if (!vsi) {
3660 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3661 		goto out;
3662 	}
3663 
3664 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3665 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3666 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3667 		goto out;
3668 	}
3669 
3670 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3671 	if (ethertype_setting &&
3672 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3673 				    ethertype_setting)) {
3674 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3675 		goto out;
3676 	}
3677 
3678 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3679 	if (ethertype_setting &&
3680 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3681 				    ethertype_setting)) {
3682 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3683 		goto out;
3684 	}
3685 
3686 out:
3687 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3688 				     v_ret, NULL, 0);
3689 }
3690 
3691 /**
3692  * ice_vc_dis_vlan_insertion_v2_msg
3693  * @vf: VF the message was received from
3694  * @msg: message received from the VF
3695  *
3696  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3697  */
3698 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3699 {
3700 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3701 	struct virtchnl_vlan_supported_caps *insertion_support;
3702 	struct virtchnl_vlan_setting *insertion_msg =
3703 		(struct virtchnl_vlan_setting *)msg;
3704 	u32 ethertype_setting;
3705 	struct ice_vsi *vsi;
3706 
3707 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3708 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3709 		goto out;
3710 	}
3711 
3712 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3713 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3714 		goto out;
3715 	}
3716 
3717 	vsi = ice_get_vf_vsi(vf);
3718 	if (!vsi) {
3719 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3720 		goto out;
3721 	}
3722 
3723 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3724 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3725 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3726 		goto out;
3727 	}
3728 
3729 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3730 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3731 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3732 		goto out;
3733 	}
3734 
3735 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3736 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3737 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3738 		goto out;
3739 	}
3740 
3741 out:
3742 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3743 				     v_ret, NULL, 0);
3744 }
3745 
3746 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3747 	.get_ver_msg = ice_vc_get_ver_msg,
3748 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3749 	.reset_vf = ice_vc_reset_vf_msg,
3750 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3751 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3752 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3753 	.ena_qs_msg = ice_vc_ena_qs_msg,
3754 	.dis_qs_msg = ice_vc_dis_qs_msg,
3755 	.request_qs_msg = ice_vc_request_qs_msg,
3756 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3757 	.config_rss_key = ice_vc_config_rss_key,
3758 	.config_rss_lut = ice_vc_config_rss_lut,
3759 	.get_stats_msg = ice_vc_get_stats_msg,
3760 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3761 	.add_vlan_msg = ice_vc_add_vlan_msg,
3762 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3763 	.query_rxdid = ice_vc_query_rxdid,
3764 	.get_rss_hena = ice_vc_get_rss_hena,
3765 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3766 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3767 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3768 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3769 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3770 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3771 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3772 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3773 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3774 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3775 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3776 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3777 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3778 };
3779 
3780 /**
3781  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3782  * @vf: the VF to switch ops
3783  */
3784 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3785 {
3786 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3787 }
3788 
3789 /**
3790  * ice_vc_repr_add_mac
3791  * @vf: pointer to VF
3792  * @msg: virtchannel message
3793  *
3794  * When port representors are created, we do not add MAC rule
3795  * to firmware, we store it so that PF could report same
3796  * MAC as VF.
3797  */
3798 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3799 {
3800 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3801 	struct virtchnl_ether_addr_list *al =
3802 	    (struct virtchnl_ether_addr_list *)msg;
3803 	struct ice_vsi *vsi;
3804 	struct ice_pf *pf;
3805 	int i;
3806 
3807 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3808 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3809 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3810 		goto handle_mac_exit;
3811 	}
3812 
3813 	pf = vf->pf;
3814 
3815 	vsi = ice_get_vf_vsi(vf);
3816 	if (!vsi) {
3817 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3818 		goto handle_mac_exit;
3819 	}
3820 
3821 	for (i = 0; i < al->num_elements; i++) {
3822 		u8 *mac_addr = al->list[i].addr;
3823 
3824 		if (!is_unicast_ether_addr(mac_addr) ||
3825 		    ether_addr_equal(mac_addr, vf->hw_lan_addr))
3826 			continue;
3827 
3828 		if (vf->pf_set_mac) {
3829 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3830 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3831 			goto handle_mac_exit;
3832 		}
3833 
3834 		ice_vfhw_mac_add(vf, &al->list[i]);
3835 		vf->num_mac++;
3836 		break;
3837 	}
3838 
3839 handle_mac_exit:
3840 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3841 				     v_ret, NULL, 0);
3842 }
3843 
3844 /**
3845  * ice_vc_repr_del_mac - response with success for deleting MAC
3846  * @vf: pointer to VF
3847  * @msg: virtchannel message
3848  *
3849  * Respond with success to not break normal VF flow.
3850  * For legacy VF driver try to update cached MAC address.
3851  */
3852 static int
3853 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3854 {
3855 	struct virtchnl_ether_addr_list *al =
3856 		(struct virtchnl_ether_addr_list *)msg;
3857 
3858 	ice_update_legacy_cached_mac(vf, &al->list[0]);
3859 
3860 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3861 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3862 }
3863 
3864 static int
3865 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3866 {
3867 	dev_dbg(ice_pf_to_dev(vf->pf),
3868 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3869 		vf->vf_id);
3870 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3871 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3872 				     NULL, 0);
3873 }
3874 
3875 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3876 	.get_ver_msg = ice_vc_get_ver_msg,
3877 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3878 	.reset_vf = ice_vc_reset_vf_msg,
3879 	.add_mac_addr_msg = ice_vc_repr_add_mac,
3880 	.del_mac_addr_msg = ice_vc_repr_del_mac,
3881 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3882 	.ena_qs_msg = ice_vc_ena_qs_msg,
3883 	.dis_qs_msg = ice_vc_dis_qs_msg,
3884 	.request_qs_msg = ice_vc_request_qs_msg,
3885 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3886 	.config_rss_key = ice_vc_config_rss_key,
3887 	.config_rss_lut = ice_vc_config_rss_lut,
3888 	.get_stats_msg = ice_vc_get_stats_msg,
3889 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3890 	.add_vlan_msg = ice_vc_add_vlan_msg,
3891 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3892 	.query_rxdid = ice_vc_query_rxdid,
3893 	.get_rss_hena = ice_vc_get_rss_hena,
3894 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3895 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3896 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3897 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3898 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3899 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3900 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3901 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3902 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3903 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3904 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3905 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3906 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3907 };
3908 
3909 /**
3910  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3911  * @vf: the VF to switch ops
3912  */
3913 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3914 {
3915 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3916 }
3917 
3918 /**
3919  * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3920  * @vf: the VF to check
3921  * @mbxdata: data about the state of the mailbox
3922  *
3923  * Detect if a given VF might be malicious and attempting to overflow the PF
3924  * mailbox. If so, log a warning message and ignore this event.
3925  */
3926 static bool
3927 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3928 {
3929 	bool report_malvf = false;
3930 	struct device *dev;
3931 	struct ice_pf *pf;
3932 	int status;
3933 
3934 	pf = vf->pf;
3935 	dev = ice_pf_to_dev(pf);
3936 
3937 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3938 		return vf->mbx_info.malicious;
3939 
3940 	/* check to see if we have a newly malicious VF */
3941 	status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3942 					  &report_malvf);
3943 	if (status)
3944 		dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3945 				     vf->vf_id, vf->dev_lan_addr, status);
3946 
3947 	if (report_malvf) {
3948 		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3949 		u8 zero_addr[ETH_ALEN] = {};
3950 
3951 		dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3952 			 vf->dev_lan_addr,
3953 			 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3954 	}
3955 
3956 	return vf->mbx_info.malicious;
3957 }
3958 
3959 /**
3960  * ice_vc_process_vf_msg - Process request from VF
3961  * @pf: pointer to the PF structure
3962  * @event: pointer to the AQ event
3963  * @mbxdata: information used to detect VF attempting mailbox overflow
3964  *
3965  * called from the common asq/arq handler to
3966  * process request from VF
3967  */
3968 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
3969 			   struct ice_mbx_data *mbxdata)
3970 {
3971 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3972 	s16 vf_id = le16_to_cpu(event->desc.retval);
3973 	const struct ice_virtchnl_ops *ops;
3974 	u16 msglen = event->msg_len;
3975 	u8 *msg = event->msg_buf;
3976 	struct ice_vf *vf = NULL;
3977 	struct device *dev;
3978 	int err = 0;
3979 
3980 	dev = ice_pf_to_dev(pf);
3981 
3982 	vf = ice_get_vf_by_id(pf, vf_id);
3983 	if (!vf) {
3984 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3985 			vf_id, v_opcode, msglen);
3986 		return;
3987 	}
3988 
3989 	mutex_lock(&vf->cfg_lock);
3990 
3991 	/* Check if the VF is trying to overflow the mailbox */
3992 	if (ice_is_malicious_vf(vf, mbxdata))
3993 		goto finish;
3994 
3995 	/* Check if VF is disabled. */
3996 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3997 		err = -EPERM;
3998 		goto error_handler;
3999 	}
4000 
4001 	ops = vf->virtchnl_ops;
4002 
4003 	/* Perform basic checks on the msg */
4004 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4005 	if (err) {
4006 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
4007 			err = -EPERM;
4008 		else
4009 			err = -EINVAL;
4010 	}
4011 
4012 error_handler:
4013 	if (err) {
4014 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4015 				      NULL, 0);
4016 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4017 			vf_id, v_opcode, msglen, err);
4018 		goto finish;
4019 	}
4020 
4021 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4022 		ice_vc_send_msg_to_vf(vf, v_opcode,
4023 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4024 				      0);
4025 		goto finish;
4026 	}
4027 
4028 	switch (v_opcode) {
4029 	case VIRTCHNL_OP_VERSION:
4030 		err = ops->get_ver_msg(vf, msg);
4031 		break;
4032 	case VIRTCHNL_OP_GET_VF_RESOURCES:
4033 		err = ops->get_vf_res_msg(vf, msg);
4034 		if (ice_vf_init_vlan_stripping(vf))
4035 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4036 				vf->vf_id);
4037 		ice_vc_notify_vf_link_state(vf);
4038 		break;
4039 	case VIRTCHNL_OP_RESET_VF:
4040 		ops->reset_vf(vf);
4041 		break;
4042 	case VIRTCHNL_OP_ADD_ETH_ADDR:
4043 		err = ops->add_mac_addr_msg(vf, msg);
4044 		break;
4045 	case VIRTCHNL_OP_DEL_ETH_ADDR:
4046 		err = ops->del_mac_addr_msg(vf, msg);
4047 		break;
4048 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4049 		err = ops->cfg_qs_msg(vf, msg);
4050 		break;
4051 	case VIRTCHNL_OP_ENABLE_QUEUES:
4052 		err = ops->ena_qs_msg(vf, msg);
4053 		ice_vc_notify_vf_link_state(vf);
4054 		break;
4055 	case VIRTCHNL_OP_DISABLE_QUEUES:
4056 		err = ops->dis_qs_msg(vf, msg);
4057 		break;
4058 	case VIRTCHNL_OP_REQUEST_QUEUES:
4059 		err = ops->request_qs_msg(vf, msg);
4060 		break;
4061 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4062 		err = ops->cfg_irq_map_msg(vf, msg);
4063 		break;
4064 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
4065 		err = ops->config_rss_key(vf, msg);
4066 		break;
4067 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
4068 		err = ops->config_rss_lut(vf, msg);
4069 		break;
4070 	case VIRTCHNL_OP_GET_STATS:
4071 		err = ops->get_stats_msg(vf, msg);
4072 		break;
4073 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4074 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
4075 		break;
4076 	case VIRTCHNL_OP_ADD_VLAN:
4077 		err = ops->add_vlan_msg(vf, msg);
4078 		break;
4079 	case VIRTCHNL_OP_DEL_VLAN:
4080 		err = ops->remove_vlan_msg(vf, msg);
4081 		break;
4082 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4083 		err = ops->query_rxdid(vf);
4084 		break;
4085 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4086 		err = ops->get_rss_hena(vf);
4087 		break;
4088 	case VIRTCHNL_OP_SET_RSS_HENA:
4089 		err = ops->set_rss_hena_msg(vf, msg);
4090 		break;
4091 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4092 		err = ops->ena_vlan_stripping(vf);
4093 		break;
4094 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4095 		err = ops->dis_vlan_stripping(vf);
4096 		break;
4097 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4098 		err = ops->add_fdir_fltr_msg(vf, msg);
4099 		break;
4100 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4101 		err = ops->del_fdir_fltr_msg(vf, msg);
4102 		break;
4103 	case VIRTCHNL_OP_ADD_RSS_CFG:
4104 		err = ops->handle_rss_cfg_msg(vf, msg, true);
4105 		break;
4106 	case VIRTCHNL_OP_DEL_RSS_CFG:
4107 		err = ops->handle_rss_cfg_msg(vf, msg, false);
4108 		break;
4109 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4110 		err = ops->get_offload_vlan_v2_caps(vf);
4111 		break;
4112 	case VIRTCHNL_OP_ADD_VLAN_V2:
4113 		err = ops->add_vlan_v2_msg(vf, msg);
4114 		break;
4115 	case VIRTCHNL_OP_DEL_VLAN_V2:
4116 		err = ops->remove_vlan_v2_msg(vf, msg);
4117 		break;
4118 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4119 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4120 		break;
4121 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4122 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4123 		break;
4124 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4125 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4126 		break;
4127 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4128 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4129 		break;
4130 	case VIRTCHNL_OP_UNKNOWN:
4131 	default:
4132 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4133 			vf_id);
4134 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4135 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4136 					    NULL, 0);
4137 		break;
4138 	}
4139 	if (err) {
4140 		/* Helper function cares less about error return values here
4141 		 * as it is busy with pending work.
4142 		 */
4143 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4144 			 vf_id, v_opcode, err);
4145 	}
4146 
4147 finish:
4148 	mutex_unlock(&vf->cfg_lock);
4149 	ice_put_vf(vf);
4150 }
4151