1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_VLAN; 444 445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 446 vsi = ice_get_vf_vsi(vf); 447 if (!vsi) { 448 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 449 goto err; 450 } 451 452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 453 vf->driver_caps); 454 455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) 456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 457 458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 460 461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 463 464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 && 465 vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 485 486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC; 488 489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 491 492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 494 495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 497 498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_QOS) 499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_QOS; 500 501 vfres->num_vsis = 1; 502 /* Tx and Rx queue are equal for VF */ 503 vfres->num_queue_pairs = vsi->num_txq; 504 vfres->max_vectors = vf->num_msix; 505 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 506 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 507 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 508 509 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID; 510 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 511 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 512 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 513 vf->hw_lan_addr); 514 515 /* match guest capabilities */ 516 vf->driver_caps = vfres->vf_cap_flags; 517 518 ice_vc_set_caps_allowlist(vf); 519 ice_vc_set_working_allowlist(vf); 520 521 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 522 523 err: 524 /* send the response back to the VF */ 525 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 526 (u8 *)vfres, len); 527 528 kfree(vfres); 529 return ret; 530 } 531 532 /** 533 * ice_vc_reset_vf_msg 534 * @vf: pointer to the VF info 535 * 536 * called from the VF to reset itself, 537 * unlike other virtchnl messages, PF driver 538 * doesn't send the response back to the VF 539 */ 540 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 541 { 542 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 543 ice_reset_vf(vf, 0); 544 } 545 546 /** 547 * ice_vc_isvalid_vsi_id 548 * @vf: pointer to the VF info 549 * @vsi_id: VF relative VSI ID 550 * 551 * check for the valid VSI ID 552 */ 553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 554 { 555 return vsi_id == ICE_VF_VSI_ID; 556 } 557 558 /** 559 * ice_vc_isvalid_q_id 560 * @vsi: VSI to check queue ID against 561 * @qid: VSI relative queue ID 562 * 563 * check for the valid queue ID 564 */ 565 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid) 566 { 567 /* allocated Tx and Rx queues should be always equal for VF VSI */ 568 return qid < vsi->alloc_txq; 569 } 570 571 /** 572 * ice_vc_isvalid_ring_len 573 * @ring_len: length of ring 574 * 575 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 576 * or zero 577 */ 578 static bool ice_vc_isvalid_ring_len(u16 ring_len) 579 { 580 return ring_len == 0 || 581 (ring_len >= ICE_MIN_NUM_DESC && 582 ring_len <= ICE_MAX_NUM_DESC && 583 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 584 } 585 586 /** 587 * ice_vc_validate_pattern 588 * @vf: pointer to the VF info 589 * @proto: virtchnl protocol headers 590 * 591 * validate the pattern is supported or not. 592 * 593 * Return: true on success, false on error. 594 */ 595 bool 596 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 597 { 598 bool is_ipv4 = false; 599 bool is_ipv6 = false; 600 bool is_udp = false; 601 u16 ptype = -1; 602 int i = 0; 603 604 while (i < proto->count && 605 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 606 switch (proto->proto_hdr[i].type) { 607 case VIRTCHNL_PROTO_HDR_ETH: 608 ptype = ICE_PTYPE_MAC_PAY; 609 break; 610 case VIRTCHNL_PROTO_HDR_IPV4: 611 ptype = ICE_PTYPE_IPV4_PAY; 612 is_ipv4 = true; 613 break; 614 case VIRTCHNL_PROTO_HDR_IPV6: 615 ptype = ICE_PTYPE_IPV6_PAY; 616 is_ipv6 = true; 617 break; 618 case VIRTCHNL_PROTO_HDR_UDP: 619 if (is_ipv4) 620 ptype = ICE_PTYPE_IPV4_UDP_PAY; 621 else if (is_ipv6) 622 ptype = ICE_PTYPE_IPV6_UDP_PAY; 623 is_udp = true; 624 break; 625 case VIRTCHNL_PROTO_HDR_TCP: 626 if (is_ipv4) 627 ptype = ICE_PTYPE_IPV4_TCP_PAY; 628 else if (is_ipv6) 629 ptype = ICE_PTYPE_IPV6_TCP_PAY; 630 break; 631 case VIRTCHNL_PROTO_HDR_SCTP: 632 if (is_ipv4) 633 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 634 else if (is_ipv6) 635 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 636 break; 637 case VIRTCHNL_PROTO_HDR_GTPU_IP: 638 case VIRTCHNL_PROTO_HDR_GTPU_EH: 639 if (is_ipv4) 640 ptype = ICE_MAC_IPV4_GTPU; 641 else if (is_ipv6) 642 ptype = ICE_MAC_IPV6_GTPU; 643 goto out; 644 case VIRTCHNL_PROTO_HDR_L2TPV3: 645 if (is_ipv4) 646 ptype = ICE_MAC_IPV4_L2TPV3; 647 else if (is_ipv6) 648 ptype = ICE_MAC_IPV6_L2TPV3; 649 goto out; 650 case VIRTCHNL_PROTO_HDR_ESP: 651 if (is_ipv4) 652 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 653 ICE_MAC_IPV4_ESP; 654 else if (is_ipv6) 655 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 656 ICE_MAC_IPV6_ESP; 657 goto out; 658 case VIRTCHNL_PROTO_HDR_AH: 659 if (is_ipv4) 660 ptype = ICE_MAC_IPV4_AH; 661 else if (is_ipv6) 662 ptype = ICE_MAC_IPV6_AH; 663 goto out; 664 case VIRTCHNL_PROTO_HDR_PFCP: 665 if (is_ipv4) 666 ptype = ICE_MAC_IPV4_PFCP_SESSION; 667 else if (is_ipv6) 668 ptype = ICE_MAC_IPV6_PFCP_SESSION; 669 goto out; 670 default: 671 break; 672 } 673 i++; 674 } 675 676 out: 677 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 678 } 679 680 /** 681 * ice_vc_parse_rss_cfg - parses hash fields and headers from 682 * a specific virtchnl RSS cfg 683 * @hw: pointer to the hardware 684 * @rss_cfg: pointer to the virtchnl RSS cfg 685 * @hash_cfg: pointer to the HW hash configuration 686 * 687 * Return true if all the protocol header and hash fields in the RSS cfg could 688 * be parsed, else return false 689 * 690 * This function parses the virtchnl RSS cfg to be the intended 691 * hash fields and the intended header for RSS configuration 692 */ 693 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw, 694 struct virtchnl_rss_cfg *rss_cfg, 695 struct ice_rss_hash_cfg *hash_cfg) 696 { 697 const struct ice_vc_hash_field_match_type *hf_list; 698 const struct ice_vc_hdr_match_type *hdr_list; 699 int i, hf_list_len, hdr_list_len; 700 u32 *addl_hdrs = &hash_cfg->addl_hdrs; 701 u64 *hash_flds = &hash_cfg->hash_flds; 702 703 /* set outer layer RSS as default */ 704 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS; 705 706 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 707 hash_cfg->symm = true; 708 else 709 hash_cfg->symm = false; 710 711 hf_list = ice_vc_hash_field_list; 712 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 713 hdr_list = ice_vc_hdr_list; 714 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 715 716 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 717 struct virtchnl_proto_hdr *proto_hdr = 718 &rss_cfg->proto_hdrs.proto_hdr[i]; 719 bool hdr_found = false; 720 int j; 721 722 /* Find matched ice headers according to virtchnl headers. */ 723 for (j = 0; j < hdr_list_len; j++) { 724 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 725 726 if (proto_hdr->type == hdr_map.vc_hdr) { 727 *addl_hdrs |= hdr_map.ice_hdr; 728 hdr_found = true; 729 } 730 } 731 732 if (!hdr_found) 733 return false; 734 735 /* Find matched ice hash fields according to 736 * virtchnl hash fields. 737 */ 738 for (j = 0; j < hf_list_len; j++) { 739 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 740 741 if (proto_hdr->type == hf_map.vc_hdr && 742 proto_hdr->field_selector == hf_map.vc_hash_field) { 743 *hash_flds |= hf_map.ice_hash_field; 744 break; 745 } 746 } 747 } 748 749 return true; 750 } 751 752 /** 753 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 754 * RSS offloads 755 * @caps: VF driver negotiated capabilities 756 * 757 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 758 * else return false 759 */ 760 static bool ice_vf_adv_rss_offload_ena(u32 caps) 761 { 762 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 763 } 764 765 /** 766 * ice_vc_handle_rss_cfg 767 * @vf: pointer to the VF info 768 * @msg: pointer to the message buffer 769 * @add: add a RSS config if true, otherwise delete a RSS config 770 * 771 * This function adds/deletes a RSS config 772 */ 773 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 774 { 775 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 776 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 777 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 778 struct device *dev = ice_pf_to_dev(vf->pf); 779 struct ice_hw *hw = &vf->pf->hw; 780 struct ice_vsi *vsi; 781 782 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 783 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 784 vf->vf_id); 785 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 786 goto error_param; 787 } 788 789 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 790 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 791 vf->vf_id); 792 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 793 goto error_param; 794 } 795 796 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 797 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 798 goto error_param; 799 } 800 801 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 802 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 803 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 804 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 805 vf->vf_id); 806 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 807 goto error_param; 808 } 809 810 vsi = ice_get_vf_vsi(vf); 811 if (!vsi) { 812 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 813 goto error_param; 814 } 815 816 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 817 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 818 goto error_param; 819 } 820 821 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 822 struct ice_vsi_ctx *ctx; 823 u8 lut_type, hash_type; 824 int status; 825 826 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 827 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR : 828 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 829 830 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 831 if (!ctx) { 832 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 833 goto error_param; 834 } 835 836 ctx->info.q_opt_rss = 837 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 838 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 839 840 /* Preserve existing queueing option setting */ 841 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 842 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 843 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 844 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 845 846 ctx->info.valid_sections = 847 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 848 849 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 850 if (status) { 851 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 852 status, ice_aq_str(hw->adminq.sq_last_status)); 853 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 854 } else { 855 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 856 } 857 858 kfree(ctx); 859 } else { 860 struct ice_rss_hash_cfg cfg; 861 862 /* Only check for none raw pattern case */ 863 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 864 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 865 goto error_param; 866 } 867 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 868 cfg.hash_flds = ICE_HASH_INVALID; 869 cfg.hdr_type = ICE_RSS_ANY_HEADERS; 870 871 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) { 872 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 873 goto error_param; 874 } 875 876 if (add) { 877 if (ice_add_rss_cfg(hw, vsi, &cfg)) { 878 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 879 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 880 vsi->vsi_num, v_ret); 881 } 882 } else { 883 int status; 884 885 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg); 886 /* We just ignore -ENOENT, because if two configurations 887 * share the same profile remove one of them actually 888 * removes both, since the profile is deleted. 889 */ 890 if (status && status != -ENOENT) { 891 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 892 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 893 vf->vf_id, status); 894 } 895 } 896 } 897 898 error_param: 899 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 900 } 901 902 /** 903 * ice_vc_config_rss_key 904 * @vf: pointer to the VF info 905 * @msg: pointer to the msg buffer 906 * 907 * Configure the VF's RSS key 908 */ 909 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 910 { 911 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 912 struct virtchnl_rss_key *vrk = 913 (struct virtchnl_rss_key *)msg; 914 struct ice_vsi *vsi; 915 916 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 917 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 918 goto error_param; 919 } 920 921 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 922 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 923 goto error_param; 924 } 925 926 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 927 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 928 goto error_param; 929 } 930 931 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 932 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 933 goto error_param; 934 } 935 936 vsi = ice_get_vf_vsi(vf); 937 if (!vsi) { 938 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 939 goto error_param; 940 } 941 942 if (ice_set_rss_key(vsi, vrk->key)) 943 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 944 error_param: 945 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 946 NULL, 0); 947 } 948 949 /** 950 * ice_vc_config_rss_lut 951 * @vf: pointer to the VF info 952 * @msg: pointer to the msg buffer 953 * 954 * Configure the VF's RSS LUT 955 */ 956 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 957 { 958 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 959 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 960 struct ice_vsi *vsi; 961 962 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 963 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 964 goto error_param; 965 } 966 967 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 968 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 969 goto error_param; 970 } 971 972 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 973 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 974 goto error_param; 975 } 976 977 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 978 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 979 goto error_param; 980 } 981 982 vsi = ice_get_vf_vsi(vf); 983 if (!vsi) { 984 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 985 goto error_param; 986 } 987 988 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 989 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 990 error_param: 991 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 992 NULL, 0); 993 } 994 995 /** 996 * ice_vc_config_rss_hfunc 997 * @vf: pointer to the VF info 998 * @msg: pointer to the msg buffer 999 * 1000 * Configure the VF's RSS Hash function 1001 */ 1002 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg) 1003 { 1004 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg; 1005 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1006 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1007 struct ice_vsi *vsi; 1008 1009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1010 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1011 goto error_param; 1012 } 1013 1014 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) { 1015 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1016 goto error_param; 1017 } 1018 1019 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 1020 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1021 goto error_param; 1022 } 1023 1024 vsi = ice_get_vf_vsi(vf); 1025 if (!vsi) { 1026 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1027 goto error_param; 1028 } 1029 1030 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 1031 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ; 1032 1033 if (ice_set_rss_hfunc(vsi, hfunc)) 1034 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1035 error_param: 1036 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret, 1037 NULL, 0); 1038 } 1039 1040 /** 1041 * ice_vc_get_qos_caps - Get current QoS caps from PF 1042 * @vf: pointer to the VF info 1043 * 1044 * Get VF's QoS capabilities, such as TC number, arbiter and 1045 * bandwidth from PF. 1046 * 1047 * Return: 0 on success or negative error value. 1048 */ 1049 static int ice_vc_get_qos_caps(struct ice_vf *vf) 1050 { 1051 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1052 struct virtchnl_qos_cap_list *cap_list = NULL; 1053 u8 tc_prio[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1054 struct virtchnl_qos_cap_elem *cfg = NULL; 1055 struct ice_vsi_ctx *vsi_ctx; 1056 struct ice_pf *pf = vf->pf; 1057 struct ice_port_info *pi; 1058 struct ice_vsi *vsi; 1059 u8 numtc, tc; 1060 u16 len = 0; 1061 int ret, i; 1062 1063 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1064 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1065 goto err; 1066 } 1067 1068 vsi = ice_get_vf_vsi(vf); 1069 if (!vsi) { 1070 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1071 goto err; 1072 } 1073 1074 pi = pf->hw.port_info; 1075 numtc = vsi->tc_cfg.numtc; 1076 1077 vsi_ctx = ice_get_vsi_ctx(pi->hw, vf->lan_vsi_idx); 1078 if (!vsi_ctx) { 1079 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1080 goto err; 1081 } 1082 1083 len = struct_size(cap_list, cap, numtc); 1084 cap_list = kzalloc(len, GFP_KERNEL); 1085 if (!cap_list) { 1086 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 1087 len = 0; 1088 goto err; 1089 } 1090 1091 cap_list->vsi_id = vsi->vsi_num; 1092 cap_list->num_elem = numtc; 1093 1094 /* Store the UP2TC configuration from DCB to a user priority bitmap 1095 * of each TC. Each element of prio_of_tc represents one TC. Each 1096 * bitmap indicates the user priorities belong to this TC. 1097 */ 1098 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 1099 tc = pi->qos_cfg.local_dcbx_cfg.etscfg.prio_table[i]; 1100 tc_prio[tc] |= BIT(i); 1101 } 1102 1103 for (i = 0; i < numtc; i++) { 1104 cfg = &cap_list->cap[i]; 1105 cfg->tc_num = i; 1106 cfg->tc_prio = tc_prio[i]; 1107 cfg->arbiter = pi->qos_cfg.local_dcbx_cfg.etscfg.tsatable[i]; 1108 cfg->weight = VIRTCHNL_STRICT_WEIGHT; 1109 cfg->type = VIRTCHNL_BW_SHAPER; 1110 cfg->shaper.committed = vsi_ctx->sched.bw_t_info[i].cir_bw.bw; 1111 cfg->shaper.peak = vsi_ctx->sched.bw_t_info[i].eir_bw.bw; 1112 } 1113 1114 err: 1115 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_QOS_CAPS, v_ret, 1116 (u8 *)cap_list, len); 1117 kfree(cap_list); 1118 return ret; 1119 } 1120 1121 /** 1122 * ice_vf_cfg_qs_bw - Configure per queue bandwidth 1123 * @vf: pointer to the VF info 1124 * @num_queues: number of queues to be configured 1125 * 1126 * Configure per queue bandwidth. 1127 * 1128 * Return: 0 on success or negative error value. 1129 */ 1130 static int ice_vf_cfg_qs_bw(struct ice_vf *vf, u16 num_queues) 1131 { 1132 struct ice_hw *hw = &vf->pf->hw; 1133 struct ice_vsi *vsi; 1134 int ret; 1135 u16 i; 1136 1137 vsi = ice_get_vf_vsi(vf); 1138 if (!vsi) 1139 return -EINVAL; 1140 1141 for (i = 0; i < num_queues; i++) { 1142 u32 p_rate, min_rate; 1143 u8 tc; 1144 1145 p_rate = vf->qs_bw[i].peak; 1146 min_rate = vf->qs_bw[i].committed; 1147 tc = vf->qs_bw[i].tc; 1148 if (p_rate) 1149 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc, 1150 vf->qs_bw[i].queue_id, 1151 ICE_MAX_BW, p_rate); 1152 else 1153 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc, 1154 vf->qs_bw[i].queue_id, 1155 ICE_MAX_BW); 1156 if (ret) 1157 return ret; 1158 1159 if (min_rate) 1160 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc, 1161 vf->qs_bw[i].queue_id, 1162 ICE_MIN_BW, min_rate); 1163 else 1164 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc, 1165 vf->qs_bw[i].queue_id, 1166 ICE_MIN_BW); 1167 1168 if (ret) 1169 return ret; 1170 } 1171 1172 return 0; 1173 } 1174 1175 /** 1176 * ice_vf_cfg_q_quanta_profile - Configure quanta profile 1177 * @vf: pointer to the VF info 1178 * @quanta_prof_idx: pointer to the quanta profile index 1179 * @quanta_size: quanta size to be set 1180 * 1181 * This function chooses available quanta profile and configures the register. 1182 * The quanta profile is evenly divided by the number of device ports, and then 1183 * available to the specific PF and VFs. The first profile for each PF is a 1184 * reserved default profile. Only quanta size of the rest unused profile can be 1185 * modified. 1186 * 1187 * Return: 0 on success or negative error value. 1188 */ 1189 static int ice_vf_cfg_q_quanta_profile(struct ice_vf *vf, u16 quanta_size, 1190 u16 *quanta_prof_idx) 1191 { 1192 const u16 n_desc = calc_quanta_desc(quanta_size); 1193 struct ice_hw *hw = &vf->pf->hw; 1194 const u16 n_cmd = 2 * n_desc; 1195 struct ice_pf *pf = vf->pf; 1196 u16 per_pf, begin_id; 1197 u8 n_used; 1198 u32 reg; 1199 1200 begin_id = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / hw->dev_caps.num_funcs * 1201 hw->logical_pf_id; 1202 1203 if (quanta_size == ICE_DFLT_QUANTA) { 1204 *quanta_prof_idx = begin_id; 1205 } else { 1206 per_pf = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / 1207 hw->dev_caps.num_funcs; 1208 n_used = pf->num_quanta_prof_used; 1209 if (n_used < per_pf) { 1210 *quanta_prof_idx = begin_id + 1 + n_used; 1211 pf->num_quanta_prof_used++; 1212 } else { 1213 return -EINVAL; 1214 } 1215 } 1216 1217 reg = FIELD_PREP(GLCOMM_QUANTA_PROF_QUANTA_SIZE_M, quanta_size) | 1218 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_CMD_M, n_cmd) | 1219 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_DESC_M, n_desc); 1220 wr32(hw, GLCOMM_QUANTA_PROF(*quanta_prof_idx), reg); 1221 1222 return 0; 1223 } 1224 1225 /** 1226 * ice_vc_cfg_promiscuous_mode_msg 1227 * @vf: pointer to the VF info 1228 * @msg: pointer to the msg buffer 1229 * 1230 * called from the VF to configure VF VSIs promiscuous mode 1231 */ 1232 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 1233 { 1234 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1235 bool rm_promisc, alluni = false, allmulti = false; 1236 struct virtchnl_promisc_info *info = 1237 (struct virtchnl_promisc_info *)msg; 1238 struct ice_vsi_vlan_ops *vlan_ops; 1239 int mcast_err = 0, ucast_err = 0; 1240 struct ice_pf *pf = vf->pf; 1241 struct ice_vsi *vsi; 1242 u8 mcast_m, ucast_m; 1243 struct device *dev; 1244 int ret = 0; 1245 1246 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1247 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1248 goto error_param; 1249 } 1250 1251 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1252 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1253 goto error_param; 1254 } 1255 1256 vsi = ice_get_vf_vsi(vf); 1257 if (!vsi) { 1258 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1259 goto error_param; 1260 } 1261 1262 dev = ice_pf_to_dev(pf); 1263 if (!ice_is_vf_trusted(vf)) { 1264 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1265 vf->vf_id); 1266 /* Leave v_ret alone, lie to the VF on purpose. */ 1267 goto error_param; 1268 } 1269 1270 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1271 alluni = true; 1272 1273 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1274 allmulti = true; 1275 1276 rm_promisc = !allmulti && !alluni; 1277 1278 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1279 if (rm_promisc) 1280 ret = vlan_ops->ena_rx_filtering(vsi); 1281 else 1282 ret = vlan_ops->dis_rx_filtering(vsi); 1283 if (ret) { 1284 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1285 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1286 goto error_param; 1287 } 1288 1289 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1290 1291 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1292 if (alluni) { 1293 /* in this case we're turning on promiscuous mode */ 1294 ret = ice_set_dflt_vsi(vsi); 1295 } else { 1296 /* in this case we're turning off promiscuous mode */ 1297 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1298 ret = ice_clear_dflt_vsi(vsi); 1299 } 1300 1301 /* in this case we're turning on/off only 1302 * allmulticast 1303 */ 1304 if (allmulti) 1305 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1306 else 1307 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1308 1309 if (ret) { 1310 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1311 vf->vf_id, ret); 1312 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1313 goto error_param; 1314 } 1315 } else { 1316 if (alluni) 1317 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1318 else 1319 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1320 1321 if (allmulti) 1322 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1323 else 1324 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1325 1326 if (ucast_err || mcast_err) 1327 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1328 } 1329 1330 if (!mcast_err) { 1331 if (allmulti && 1332 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1333 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1334 vf->vf_id); 1335 else if (!allmulti && 1336 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1337 vf->vf_states)) 1338 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1339 vf->vf_id); 1340 } else { 1341 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1342 vf->vf_id, mcast_err); 1343 } 1344 1345 if (!ucast_err) { 1346 if (alluni && 1347 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1348 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1349 vf->vf_id); 1350 else if (!alluni && 1351 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1352 vf->vf_states)) 1353 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1354 vf->vf_id); 1355 } else { 1356 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1357 vf->vf_id, ucast_err); 1358 } 1359 1360 error_param: 1361 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1362 v_ret, NULL, 0); 1363 } 1364 1365 /** 1366 * ice_vc_get_stats_msg 1367 * @vf: pointer to the VF info 1368 * @msg: pointer to the msg buffer 1369 * 1370 * called from the VF to get VSI stats 1371 */ 1372 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1373 { 1374 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1375 struct virtchnl_queue_select *vqs = 1376 (struct virtchnl_queue_select *)msg; 1377 struct ice_eth_stats stats = { 0 }; 1378 struct ice_vsi *vsi; 1379 1380 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1381 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1382 goto error_param; 1383 } 1384 1385 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1386 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1387 goto error_param; 1388 } 1389 1390 vsi = ice_get_vf_vsi(vf); 1391 if (!vsi) { 1392 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1393 goto error_param; 1394 } 1395 1396 ice_update_eth_stats(vsi); 1397 1398 stats = vsi->eth_stats; 1399 1400 error_param: 1401 /* send the response to the VF */ 1402 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1403 (u8 *)&stats, sizeof(stats)); 1404 } 1405 1406 /** 1407 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1408 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1409 * 1410 * Return true on successful validation, else false 1411 */ 1412 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1413 { 1414 if ((!vqs->rx_queues && !vqs->tx_queues) || 1415 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1416 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1417 return false; 1418 1419 return true; 1420 } 1421 1422 /** 1423 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1424 * @vsi: VSI of the VF to configure 1425 * @q_idx: VF queue index used to determine the queue in the PF's space 1426 */ 1427 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1428 { 1429 struct ice_hw *hw = &vsi->back->hw; 1430 u32 pfq = vsi->txq_map[q_idx]; 1431 u32 reg; 1432 1433 reg = rd32(hw, QINT_TQCTL(pfq)); 1434 1435 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1436 * this is most likely a poll mode VF driver, so don't enable an 1437 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1438 */ 1439 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1440 return; 1441 1442 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1443 } 1444 1445 /** 1446 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1447 * @vsi: VSI of the VF to configure 1448 * @q_idx: VF queue index used to determine the queue in the PF's space 1449 */ 1450 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1451 { 1452 struct ice_hw *hw = &vsi->back->hw; 1453 u32 pfq = vsi->rxq_map[q_idx]; 1454 u32 reg; 1455 1456 reg = rd32(hw, QINT_RQCTL(pfq)); 1457 1458 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1459 * this is most likely a poll mode VF driver, so don't enable an 1460 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1461 */ 1462 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1463 return; 1464 1465 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1466 } 1467 1468 /** 1469 * ice_vc_ena_qs_msg 1470 * @vf: pointer to the VF info 1471 * @msg: pointer to the msg buffer 1472 * 1473 * called from the VF to enable all or specific queue(s) 1474 */ 1475 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1476 { 1477 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1478 struct virtchnl_queue_select *vqs = 1479 (struct virtchnl_queue_select *)msg; 1480 struct ice_vsi *vsi; 1481 unsigned long q_map; 1482 u16 vf_q_id; 1483 1484 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1485 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1486 goto error_param; 1487 } 1488 1489 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1490 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1491 goto error_param; 1492 } 1493 1494 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1495 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1496 goto error_param; 1497 } 1498 1499 vsi = ice_get_vf_vsi(vf); 1500 if (!vsi) { 1501 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1502 goto error_param; 1503 } 1504 1505 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1506 * Tx queue group list was configured and the context bits were 1507 * programmed using ice_vsi_cfg_txqs 1508 */ 1509 q_map = vqs->rx_queues; 1510 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1511 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1512 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1513 goto error_param; 1514 } 1515 1516 /* Skip queue if enabled */ 1517 if (test_bit(vf_q_id, vf->rxq_ena)) 1518 continue; 1519 1520 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1521 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1522 vf_q_id, vsi->vsi_num); 1523 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1524 goto error_param; 1525 } 1526 1527 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1528 set_bit(vf_q_id, vf->rxq_ena); 1529 } 1530 1531 q_map = vqs->tx_queues; 1532 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1533 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1534 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1535 goto error_param; 1536 } 1537 1538 /* Skip queue if enabled */ 1539 if (test_bit(vf_q_id, vf->txq_ena)) 1540 continue; 1541 1542 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1543 set_bit(vf_q_id, vf->txq_ena); 1544 } 1545 1546 /* Set flag to indicate that queues are enabled */ 1547 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1548 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1549 1550 error_param: 1551 /* send the response to the VF */ 1552 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1553 NULL, 0); 1554 } 1555 1556 /** 1557 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1558 * @vf: VF to disable queue for 1559 * @vsi: VSI for the VF 1560 * @q_id: VF relative (0-based) queue ID 1561 * 1562 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1563 * disabled then clear q_id bit in the enabled queues bitmap and return 1564 * success. Otherwise return error. 1565 */ 1566 static int 1567 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1568 { 1569 struct ice_txq_meta txq_meta = { 0 }; 1570 struct ice_tx_ring *ring; 1571 int err; 1572 1573 if (!test_bit(q_id, vf->txq_ena)) 1574 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1575 q_id, vsi->vsi_num); 1576 1577 ring = vsi->tx_rings[q_id]; 1578 if (!ring) 1579 return -EINVAL; 1580 1581 ice_fill_txq_meta(vsi, ring, &txq_meta); 1582 1583 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1584 if (err) { 1585 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1586 q_id, vsi->vsi_num); 1587 return err; 1588 } 1589 1590 /* Clear enabled queues flag */ 1591 clear_bit(q_id, vf->txq_ena); 1592 1593 return 0; 1594 } 1595 1596 /** 1597 * ice_vc_dis_qs_msg 1598 * @vf: pointer to the VF info 1599 * @msg: pointer to the msg buffer 1600 * 1601 * called from the VF to disable all or specific queue(s) 1602 */ 1603 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1604 { 1605 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1606 struct virtchnl_queue_select *vqs = 1607 (struct virtchnl_queue_select *)msg; 1608 struct ice_vsi *vsi; 1609 unsigned long q_map; 1610 u16 vf_q_id; 1611 1612 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1613 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1614 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1615 goto error_param; 1616 } 1617 1618 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1619 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1620 goto error_param; 1621 } 1622 1623 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1624 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1625 goto error_param; 1626 } 1627 1628 vsi = ice_get_vf_vsi(vf); 1629 if (!vsi) { 1630 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1631 goto error_param; 1632 } 1633 1634 if (vqs->tx_queues) { 1635 q_map = vqs->tx_queues; 1636 1637 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1638 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1639 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1640 goto error_param; 1641 } 1642 1643 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1644 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1645 goto error_param; 1646 } 1647 } 1648 } 1649 1650 q_map = vqs->rx_queues; 1651 /* speed up Rx queue disable by batching them if possible */ 1652 if (q_map && 1653 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1654 if (ice_vsi_stop_all_rx_rings(vsi)) { 1655 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1656 vsi->vsi_num); 1657 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1658 goto error_param; 1659 } 1660 1661 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1662 } else if (q_map) { 1663 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1664 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1665 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1666 goto error_param; 1667 } 1668 1669 /* Skip queue if not enabled */ 1670 if (!test_bit(vf_q_id, vf->rxq_ena)) 1671 continue; 1672 1673 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1674 true)) { 1675 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1676 vf_q_id, vsi->vsi_num); 1677 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1678 goto error_param; 1679 } 1680 1681 /* Clear enabled queues flag */ 1682 clear_bit(vf_q_id, vf->rxq_ena); 1683 } 1684 } 1685 1686 /* Clear enabled queues flag */ 1687 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1688 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1689 1690 error_param: 1691 /* send the response to the VF */ 1692 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1693 NULL, 0); 1694 } 1695 1696 /** 1697 * ice_cfg_interrupt 1698 * @vf: pointer to the VF info 1699 * @vsi: the VSI being configured 1700 * @map: vector map for mapping vectors to queues 1701 * @q_vector: structure for interrupt vector 1702 * configure the IRQ to queue map 1703 */ 1704 static enum virtchnl_status_code 1705 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, 1706 struct virtchnl_vector_map *map, 1707 struct ice_q_vector *q_vector) 1708 { 1709 u16 vsi_q_id, vsi_q_id_idx; 1710 unsigned long qmap; 1711 1712 q_vector->num_ring_rx = 0; 1713 q_vector->num_ring_tx = 0; 1714 1715 qmap = map->rxq_map; 1716 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1717 vsi_q_id = vsi_q_id_idx; 1718 1719 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1720 return VIRTCHNL_STATUS_ERR_PARAM; 1721 1722 q_vector->num_ring_rx++; 1723 q_vector->rx.itr_idx = map->rxitr_idx; 1724 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1725 ice_cfg_rxq_interrupt(vsi, vsi_q_id, 1726 q_vector->vf_reg_idx, 1727 q_vector->rx.itr_idx); 1728 } 1729 1730 qmap = map->txq_map; 1731 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1732 vsi_q_id = vsi_q_id_idx; 1733 1734 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1735 return VIRTCHNL_STATUS_ERR_PARAM; 1736 1737 q_vector->num_ring_tx++; 1738 q_vector->tx.itr_idx = map->txitr_idx; 1739 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1740 ice_cfg_txq_interrupt(vsi, vsi_q_id, 1741 q_vector->vf_reg_idx, 1742 q_vector->tx.itr_idx); 1743 } 1744 1745 return VIRTCHNL_STATUS_SUCCESS; 1746 } 1747 1748 /** 1749 * ice_vc_cfg_irq_map_msg 1750 * @vf: pointer to the VF info 1751 * @msg: pointer to the msg buffer 1752 * 1753 * called from the VF to configure the IRQ to queue map 1754 */ 1755 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1756 { 1757 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1758 u16 num_q_vectors_mapped, vsi_id, vector_id; 1759 struct virtchnl_irq_map_info *irqmap_info; 1760 struct virtchnl_vector_map *map; 1761 struct ice_vsi *vsi; 1762 int i; 1763 1764 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1765 num_q_vectors_mapped = irqmap_info->num_vectors; 1766 1767 /* Check to make sure number of VF vectors mapped is not greater than 1768 * number of VF vectors originally allocated, and check that 1769 * there is actually at least a single VF queue vector mapped 1770 */ 1771 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1772 vf->num_msix < num_q_vectors_mapped || 1773 !num_q_vectors_mapped) { 1774 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1775 goto error_param; 1776 } 1777 1778 vsi = ice_get_vf_vsi(vf); 1779 if (!vsi) { 1780 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1781 goto error_param; 1782 } 1783 1784 for (i = 0; i < num_q_vectors_mapped; i++) { 1785 struct ice_q_vector *q_vector; 1786 1787 map = &irqmap_info->vecmap[i]; 1788 1789 vector_id = map->vector_id; 1790 vsi_id = map->vsi_id; 1791 /* vector_id is always 0-based for each VF, and can never be 1792 * larger than or equal to the max allowed interrupts per VF 1793 */ 1794 if (!(vector_id < vf->num_msix) || 1795 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1796 (!vector_id && (map->rxq_map || map->txq_map))) { 1797 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1798 goto error_param; 1799 } 1800 1801 /* No need to map VF miscellaneous or rogue vector */ 1802 if (!vector_id) 1803 continue; 1804 1805 /* Subtract non queue vector from vector_id passed by VF 1806 * to get actual number of VSI queue vector array index 1807 */ 1808 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1809 if (!q_vector) { 1810 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1811 goto error_param; 1812 } 1813 1814 /* lookout for the invalid queue index */ 1815 v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector); 1816 if (v_ret) 1817 goto error_param; 1818 } 1819 1820 error_param: 1821 /* send the response to the VF */ 1822 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1823 NULL, 0); 1824 } 1825 1826 /** 1827 * ice_vc_cfg_q_bw - Configure per queue bandwidth 1828 * @vf: pointer to the VF info 1829 * @msg: pointer to the msg buffer which holds the command descriptor 1830 * 1831 * Configure VF queues bandwidth. 1832 * 1833 * Return: 0 on success or negative error value. 1834 */ 1835 static int ice_vc_cfg_q_bw(struct ice_vf *vf, u8 *msg) 1836 { 1837 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1838 struct virtchnl_queues_bw_cfg *qbw = 1839 (struct virtchnl_queues_bw_cfg *)msg; 1840 struct ice_vsi *vsi; 1841 u16 i; 1842 1843 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1844 !ice_vc_isvalid_vsi_id(vf, qbw->vsi_id)) { 1845 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1846 goto err; 1847 } 1848 1849 vsi = ice_get_vf_vsi(vf); 1850 if (!vsi) { 1851 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1852 goto err; 1853 } 1854 1855 if (qbw->num_queues > ICE_MAX_RSS_QS_PER_VF || 1856 qbw->num_queues > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1857 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n", 1858 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1859 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1860 goto err; 1861 } 1862 1863 for (i = 0; i < qbw->num_queues; i++) { 1864 if (qbw->cfg[i].shaper.peak != 0 && vf->max_tx_rate != 0 && 1865 qbw->cfg[i].shaper.peak > vf->max_tx_rate) 1866 dev_warn(ice_pf_to_dev(vf->pf), "The maximum queue %d rate limit configuration may not take effect because the maximum TX rate for VF-%d is %d\n", 1867 qbw->cfg[i].queue_id, vf->vf_id, 1868 vf->max_tx_rate); 1869 if (qbw->cfg[i].shaper.committed != 0 && vf->min_tx_rate != 0 && 1870 qbw->cfg[i].shaper.committed < vf->min_tx_rate) 1871 dev_warn(ice_pf_to_dev(vf->pf), "The minimum queue %d rate limit configuration may not take effect because the minimum TX rate for VF-%d is %d\n", 1872 qbw->cfg[i].queue_id, vf->vf_id, 1873 vf->max_tx_rate); 1874 } 1875 1876 for (i = 0; i < qbw->num_queues; i++) { 1877 vf->qs_bw[i].queue_id = qbw->cfg[i].queue_id; 1878 vf->qs_bw[i].peak = qbw->cfg[i].shaper.peak; 1879 vf->qs_bw[i].committed = qbw->cfg[i].shaper.committed; 1880 vf->qs_bw[i].tc = qbw->cfg[i].tc; 1881 } 1882 1883 if (ice_vf_cfg_qs_bw(vf, qbw->num_queues)) 1884 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1885 1886 err: 1887 /* send the response to the VF */ 1888 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUEUE_BW, 1889 v_ret, NULL, 0); 1890 } 1891 1892 /** 1893 * ice_vc_cfg_q_quanta - Configure per queue quanta 1894 * @vf: pointer to the VF info 1895 * @msg: pointer to the msg buffer which holds the command descriptor 1896 * 1897 * Configure VF queues quanta. 1898 * 1899 * Return: 0 on success or negative error value. 1900 */ 1901 static int ice_vc_cfg_q_quanta(struct ice_vf *vf, u8 *msg) 1902 { 1903 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1904 u16 quanta_prof_id, quanta_size, start_qid, end_qid, i; 1905 struct virtchnl_quanta_cfg *qquanta = 1906 (struct virtchnl_quanta_cfg *)msg; 1907 struct ice_vsi *vsi; 1908 int ret; 1909 1910 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1911 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1912 goto err; 1913 } 1914 1915 vsi = ice_get_vf_vsi(vf); 1916 if (!vsi) { 1917 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1918 goto err; 1919 } 1920 1921 end_qid = qquanta->queue_select.start_queue_id + 1922 qquanta->queue_select.num_queues; 1923 if (end_qid > ICE_MAX_RSS_QS_PER_VF || 1924 end_qid > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1925 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n", 1926 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1927 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1928 goto err; 1929 } 1930 1931 quanta_size = qquanta->quanta_size; 1932 if (quanta_size > ICE_MAX_QUANTA_SIZE || 1933 quanta_size < ICE_MIN_QUANTA_SIZE) { 1934 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1935 goto err; 1936 } 1937 1938 if (quanta_size % 64) { 1939 dev_err(ice_pf_to_dev(vf->pf), "quanta size should be the product of 64\n"); 1940 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1941 goto err; 1942 } 1943 1944 ret = ice_vf_cfg_q_quanta_profile(vf, quanta_size, 1945 &quanta_prof_id); 1946 if (ret) { 1947 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 1948 goto err; 1949 } 1950 1951 start_qid = qquanta->queue_select.start_queue_id; 1952 for (i = start_qid; i < end_qid; i++) 1953 vsi->tx_rings[i]->quanta_prof_id = quanta_prof_id; 1954 1955 err: 1956 /* send the response to the VF */ 1957 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUANTA, 1958 v_ret, NULL, 0); 1959 } 1960 1961 /** 1962 * ice_vc_cfg_qs_msg 1963 * @vf: pointer to the VF info 1964 * @msg: pointer to the msg buffer 1965 * 1966 * called from the VF to configure the Rx/Tx queues 1967 */ 1968 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1969 { 1970 struct virtchnl_vsi_queue_config_info *qci = 1971 (struct virtchnl_vsi_queue_config_info *)msg; 1972 struct virtchnl_queue_pair_info *qpi; 1973 struct ice_pf *pf = vf->pf; 1974 struct ice_lag *lag; 1975 struct ice_vsi *vsi; 1976 u8 act_prt, pri_prt; 1977 int i = -1, q_idx; 1978 1979 lag = pf->lag; 1980 mutex_lock(&pf->lag_mutex); 1981 act_prt = ICE_LAG_INVALID_PORT; 1982 pri_prt = pf->hw.port_info->lport; 1983 if (lag && lag->bonded && lag->primary) { 1984 act_prt = lag->active_port; 1985 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && 1986 lag->upper_netdev) 1987 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); 1988 else 1989 act_prt = ICE_LAG_INVALID_PORT; 1990 } 1991 1992 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1993 goto error_param; 1994 1995 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1996 goto error_param; 1997 1998 vsi = ice_get_vf_vsi(vf); 1999 if (!vsi) 2000 goto error_param; 2001 2002 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 2003 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 2004 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 2005 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 2006 goto error_param; 2007 } 2008 2009 for (i = 0; i < qci->num_queue_pairs; i++) { 2010 if (!qci->qpair[i].rxq.crc_disable) 2011 continue; 2012 2013 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) || 2014 vf->vlan_strip_ena) 2015 goto error_param; 2016 } 2017 2018 for (i = 0; i < qci->num_queue_pairs; i++) { 2019 qpi = &qci->qpair[i]; 2020 if (qpi->txq.vsi_id != qci->vsi_id || 2021 qpi->rxq.vsi_id != qci->vsi_id || 2022 qpi->rxq.queue_id != qpi->txq.queue_id || 2023 qpi->txq.headwb_enabled || 2024 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 2025 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 2026 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) { 2027 goto error_param; 2028 } 2029 2030 q_idx = qpi->rxq.queue_id; 2031 2032 /* make sure selected "q_idx" is in valid range of queues 2033 * for selected "vsi" 2034 */ 2035 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 2036 goto error_param; 2037 } 2038 2039 /* copy Tx queue info from VF into VSI */ 2040 if (qpi->txq.ring_len > 0) { 2041 vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr; 2042 vsi->tx_rings[q_idx]->count = qpi->txq.ring_len; 2043 2044 /* Disable any existing queue first */ 2045 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 2046 goto error_param; 2047 2048 /* Configure a queue with the requested settings */ 2049 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 2050 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 2051 vf->vf_id, q_idx); 2052 goto error_param; 2053 } 2054 } 2055 2056 /* copy Rx queue info from VF into VSI */ 2057 if (qpi->rxq.ring_len > 0) { 2058 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 2059 struct ice_rx_ring *ring = vsi->rx_rings[q_idx]; 2060 u32 rxdid; 2061 2062 ring->dma = qpi->rxq.dma_ring_addr; 2063 ring->count = qpi->rxq.ring_len; 2064 2065 if (qpi->rxq.crc_disable) 2066 ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 2067 else 2068 ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 2069 2070 if (qpi->rxq.databuffer_size != 0 && 2071 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 2072 qpi->rxq.databuffer_size < 1024)) 2073 goto error_param; 2074 ring->rx_buf_len = qpi->rxq.databuffer_size; 2075 if (qpi->rxq.max_pkt_size > max_frame_size || 2076 qpi->rxq.max_pkt_size < 64) 2077 goto error_param; 2078 2079 ring->max_frame = qpi->rxq.max_pkt_size; 2080 /* add space for the port VLAN since the VF driver is 2081 * not expected to account for it in the MTU 2082 * calculation 2083 */ 2084 if (ice_vf_is_port_vlan_ena(vf)) 2085 ring->max_frame += VLAN_HLEN; 2086 2087 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 2088 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 2089 vf->vf_id, q_idx); 2090 goto error_param; 2091 } 2092 2093 /* If Rx flex desc is supported, select RXDID for Rx 2094 * queues. Otherwise, use legacy 32byte descriptor 2095 * format. Legacy 16byte descriptor is not supported. 2096 * If this RXDID is selected, return error. 2097 */ 2098 if (vf->driver_caps & 2099 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 2100 rxdid = qpi->rxq.rxdid; 2101 if (!(BIT(rxdid) & pf->supported_rxdids)) 2102 goto error_param; 2103 } else { 2104 rxdid = ICE_RXDID_LEGACY_1; 2105 } 2106 2107 ice_write_qrxflxp_cntxt(&vsi->back->hw, 2108 vsi->rxq_map[q_idx], 2109 rxdid, 0x03, false); 2110 } 2111 } 2112 2113 if (lag && lag->bonded && lag->primary && 2114 act_prt != ICE_LAG_INVALID_PORT) 2115 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 2116 mutex_unlock(&pf->lag_mutex); 2117 2118 /* send the response to the VF */ 2119 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 2120 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 2121 error_param: 2122 /* disable whatever we can */ 2123 for (; i >= 0; i--) { 2124 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 2125 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 2126 vf->vf_id, i); 2127 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 2128 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 2129 vf->vf_id, i); 2130 } 2131 2132 if (lag && lag->bonded && lag->primary && 2133 act_prt != ICE_LAG_INVALID_PORT) 2134 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 2135 mutex_unlock(&pf->lag_mutex); 2136 2137 ice_lag_move_new_vf_nodes(vf); 2138 2139 /* send the response to the VF */ 2140 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 2141 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 2142 } 2143 2144 /** 2145 * ice_can_vf_change_mac 2146 * @vf: pointer to the VF info 2147 * 2148 * Return true if the VF is allowed to change its MAC filters, false otherwise 2149 */ 2150 static bool ice_can_vf_change_mac(struct ice_vf *vf) 2151 { 2152 /* If the VF MAC address has been set administratively (via the 2153 * ndo_set_vf_mac command), then deny permission to the VF to 2154 * add/delete unicast MAC addresses, unless the VF is trusted 2155 */ 2156 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 2157 return false; 2158 2159 return true; 2160 } 2161 2162 /** 2163 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 2164 * @vc_ether_addr: used to extract the type 2165 */ 2166 static u8 2167 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 2168 { 2169 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 2170 } 2171 2172 /** 2173 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 2174 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 2175 */ 2176 static bool 2177 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 2178 { 2179 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 2180 2181 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 2182 } 2183 2184 /** 2185 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 2186 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 2187 * 2188 * This function should only be called when the MAC address in 2189 * virtchnl_ether_addr is a valid unicast MAC 2190 */ 2191 static bool 2192 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 2193 { 2194 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 2195 2196 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 2197 } 2198 2199 /** 2200 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 2201 * @vf: VF to update 2202 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 2203 */ 2204 static void 2205 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 2206 { 2207 u8 *mac_addr = vc_ether_addr->addr; 2208 2209 if (!is_valid_ether_addr(mac_addr)) 2210 return; 2211 2212 /* only allow legacy VF drivers to set the device and hardware MAC if it 2213 * is zero and allow new VF drivers to set the hardware MAC if the type 2214 * was correctly specified over VIRTCHNL 2215 */ 2216 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 2217 is_zero_ether_addr(vf->hw_lan_addr)) || 2218 ice_is_vc_addr_primary(vc_ether_addr)) { 2219 ether_addr_copy(vf->dev_lan_addr, mac_addr); 2220 ether_addr_copy(vf->hw_lan_addr, mac_addr); 2221 } 2222 2223 /* hardware and device MACs are already set, but its possible that the 2224 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 2225 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 2226 * away for the legacy VF driver case as it will be updated in the 2227 * delete flow for this case 2228 */ 2229 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 2230 ether_addr_copy(vf->legacy_last_added_umac.addr, 2231 mac_addr); 2232 vf->legacy_last_added_umac.time_modified = jiffies; 2233 } 2234 } 2235 2236 /** 2237 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 2238 * @vf: pointer to the VF info 2239 * @vsi: pointer to the VF's VSI 2240 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 2241 */ 2242 static int 2243 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 2244 struct virtchnl_ether_addr *vc_ether_addr) 2245 { 2246 struct device *dev = ice_pf_to_dev(vf->pf); 2247 u8 *mac_addr = vc_ether_addr->addr; 2248 int ret; 2249 2250 /* device MAC already added */ 2251 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 2252 return 0; 2253 2254 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 2255 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 2256 return -EPERM; 2257 } 2258 2259 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 2260 if (ret == -EEXIST) { 2261 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 2262 vf->vf_id); 2263 /* don't return since we might need to update 2264 * the primary MAC in ice_vfhw_mac_add() below 2265 */ 2266 } else if (ret) { 2267 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 2268 mac_addr, vf->vf_id, ret); 2269 return ret; 2270 } else { 2271 vf->num_mac++; 2272 } 2273 2274 ice_vfhw_mac_add(vf, vc_ether_addr); 2275 2276 return ret; 2277 } 2278 2279 /** 2280 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 2281 * @last_added_umac: structure used to check expiration 2282 */ 2283 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 2284 { 2285 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 2286 return time_is_before_jiffies(last_added_umac->time_modified + 2287 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 2288 } 2289 2290 /** 2291 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 2292 * @vf: VF to update 2293 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 2294 * 2295 * only update cached hardware MAC for legacy VF drivers on delete 2296 * because we cannot guarantee order/type of MAC from the VF driver 2297 */ 2298 static void 2299 ice_update_legacy_cached_mac(struct ice_vf *vf, 2300 struct virtchnl_ether_addr *vc_ether_addr) 2301 { 2302 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 2303 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 2304 return; 2305 2306 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 2307 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 2308 } 2309 2310 /** 2311 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 2312 * @vf: VF to update 2313 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 2314 */ 2315 static void 2316 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 2317 { 2318 u8 *mac_addr = vc_ether_addr->addr; 2319 2320 if (!is_valid_ether_addr(mac_addr) || 2321 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2322 return; 2323 2324 /* allow the device MAC to be repopulated in the add flow and don't 2325 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 2326 * to be persistent on VM reboot and across driver unload/load, which 2327 * won't work if we clear the hardware MAC here 2328 */ 2329 eth_zero_addr(vf->dev_lan_addr); 2330 2331 ice_update_legacy_cached_mac(vf, vc_ether_addr); 2332 } 2333 2334 /** 2335 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 2336 * @vf: pointer to the VF info 2337 * @vsi: pointer to the VF's VSI 2338 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 2339 */ 2340 static int 2341 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 2342 struct virtchnl_ether_addr *vc_ether_addr) 2343 { 2344 struct device *dev = ice_pf_to_dev(vf->pf); 2345 u8 *mac_addr = vc_ether_addr->addr; 2346 int status; 2347 2348 if (!ice_can_vf_change_mac(vf) && 2349 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2350 return 0; 2351 2352 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 2353 if (status == -ENOENT) { 2354 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 2355 vf->vf_id); 2356 return -ENOENT; 2357 } else if (status) { 2358 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 2359 mac_addr, vf->vf_id, status); 2360 return -EIO; 2361 } 2362 2363 ice_vfhw_mac_del(vf, vc_ether_addr); 2364 2365 vf->num_mac--; 2366 2367 return 0; 2368 } 2369 2370 /** 2371 * ice_vc_handle_mac_addr_msg 2372 * @vf: pointer to the VF info 2373 * @msg: pointer to the msg buffer 2374 * @set: true if MAC filters are being set, false otherwise 2375 * 2376 * add guest MAC address filter 2377 */ 2378 static int 2379 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 2380 { 2381 int (*ice_vc_cfg_mac) 2382 (struct ice_vf *vf, struct ice_vsi *vsi, 2383 struct virtchnl_ether_addr *virtchnl_ether_addr); 2384 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2385 struct virtchnl_ether_addr_list *al = 2386 (struct virtchnl_ether_addr_list *)msg; 2387 struct ice_pf *pf = vf->pf; 2388 enum virtchnl_ops vc_op; 2389 struct ice_vsi *vsi; 2390 int i; 2391 2392 if (set) { 2393 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 2394 ice_vc_cfg_mac = ice_vc_add_mac_addr; 2395 } else { 2396 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 2397 ice_vc_cfg_mac = ice_vc_del_mac_addr; 2398 } 2399 2400 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2401 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2402 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2403 goto handle_mac_exit; 2404 } 2405 2406 /* If this VF is not privileged, then we can't add more than a 2407 * limited number of addresses. Check to make sure that the 2408 * additions do not push us over the limit. 2409 */ 2410 if (set && !ice_is_vf_trusted(vf) && 2411 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2412 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2413 vf->vf_id); 2414 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2415 goto handle_mac_exit; 2416 } 2417 2418 vsi = ice_get_vf_vsi(vf); 2419 if (!vsi) { 2420 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2421 goto handle_mac_exit; 2422 } 2423 2424 for (i = 0; i < al->num_elements; i++) { 2425 u8 *mac_addr = al->list[i].addr; 2426 int result; 2427 2428 if (is_broadcast_ether_addr(mac_addr) || 2429 is_zero_ether_addr(mac_addr)) 2430 continue; 2431 2432 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2433 if (result == -EEXIST || result == -ENOENT) { 2434 continue; 2435 } else if (result) { 2436 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2437 goto handle_mac_exit; 2438 } 2439 } 2440 2441 handle_mac_exit: 2442 /* send the response to the VF */ 2443 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2444 } 2445 2446 /** 2447 * ice_vc_add_mac_addr_msg 2448 * @vf: pointer to the VF info 2449 * @msg: pointer to the msg buffer 2450 * 2451 * add guest MAC address filter 2452 */ 2453 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2454 { 2455 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2456 } 2457 2458 /** 2459 * ice_vc_del_mac_addr_msg 2460 * @vf: pointer to the VF info 2461 * @msg: pointer to the msg buffer 2462 * 2463 * remove guest MAC address filter 2464 */ 2465 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2466 { 2467 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2468 } 2469 2470 /** 2471 * ice_vc_request_qs_msg 2472 * @vf: pointer to the VF info 2473 * @msg: pointer to the msg buffer 2474 * 2475 * VFs get a default number of queues but can use this message to request a 2476 * different number. If the request is successful, PF will reset the VF and 2477 * return 0. If unsuccessful, PF will send message informing VF of number of 2478 * available queue pairs via virtchnl message response to VF. 2479 */ 2480 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2481 { 2482 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2483 struct virtchnl_vf_res_request *vfres = 2484 (struct virtchnl_vf_res_request *)msg; 2485 u16 req_queues = vfres->num_queue_pairs; 2486 struct ice_pf *pf = vf->pf; 2487 u16 max_allowed_vf_queues; 2488 u16 tx_rx_queue_left; 2489 struct device *dev; 2490 u16 cur_queues; 2491 2492 dev = ice_pf_to_dev(pf); 2493 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2494 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2495 goto error_param; 2496 } 2497 2498 cur_queues = vf->num_vf_qs; 2499 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2500 ice_get_avail_rxq_count(pf)); 2501 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2502 if (!req_queues) { 2503 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2504 vf->vf_id); 2505 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2506 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2507 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2508 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2509 } else if (req_queues > cur_queues && 2510 req_queues - cur_queues > tx_rx_queue_left) { 2511 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2512 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2513 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2514 ICE_MAX_RSS_QS_PER_VF); 2515 } else { 2516 /* request is successful, then reset VF */ 2517 vf->num_req_qs = req_queues; 2518 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2519 dev_info(dev, "VF %d granted request of %u queues.\n", 2520 vf->vf_id, req_queues); 2521 return 0; 2522 } 2523 2524 error_param: 2525 /* send the response to the VF */ 2526 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2527 v_ret, (u8 *)vfres, sizeof(*vfres)); 2528 } 2529 2530 /** 2531 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2532 * @caps: VF driver negotiated capabilities 2533 * 2534 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2535 */ 2536 static bool ice_vf_vlan_offload_ena(u32 caps) 2537 { 2538 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2539 } 2540 2541 /** 2542 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2543 * @vf: VF used to determine if VLAN promiscuous config is allowed 2544 */ 2545 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2546 { 2547 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2548 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2549 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2550 return true; 2551 2552 return false; 2553 } 2554 2555 /** 2556 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2557 * @vf: VF to enable VLAN promisc on 2558 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2559 * @vlan: VLAN used to enable VLAN promiscuous 2560 * 2561 * This function should only be called if VLAN promiscuous mode is allowed, 2562 * which can be determined via ice_is_vlan_promisc_allowed(). 2563 */ 2564 static int ice_vf_ena_vlan_promisc(struct ice_vf *vf, struct ice_vsi *vsi, 2565 struct ice_vlan *vlan) 2566 { 2567 u8 promisc_m = 0; 2568 int status; 2569 2570 if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 2571 promisc_m |= ICE_UCAST_VLAN_PROMISC_BITS; 2572 if (test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 2573 promisc_m |= ICE_MCAST_VLAN_PROMISC_BITS; 2574 2575 if (!promisc_m) 2576 return 0; 2577 2578 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2579 vlan->vid); 2580 if (status && status != -EEXIST) 2581 return status; 2582 2583 return 0; 2584 } 2585 2586 /** 2587 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2588 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2589 * @vlan: VLAN used to disable VLAN promiscuous 2590 * 2591 * This function should only be called if VLAN promiscuous mode is allowed, 2592 * which can be determined via ice_is_vlan_promisc_allowed(). 2593 */ 2594 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2595 { 2596 u8 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS | ICE_MCAST_VLAN_PROMISC_BITS; 2597 int status; 2598 2599 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2600 vlan->vid); 2601 if (status && status != -ENOENT) 2602 return status; 2603 2604 return 0; 2605 } 2606 2607 /** 2608 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2609 * @vf: VF to check against 2610 * @vsi: VF's VSI 2611 * 2612 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2613 * wants to, so return false. 2614 * 2615 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2616 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2617 */ 2618 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2619 { 2620 if (ice_is_vf_trusted(vf)) 2621 return false; 2622 2623 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2624 return ((ice_vsi_num_non_zero_vlans(vsi) + 2625 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2626 } 2627 2628 /** 2629 * ice_vc_process_vlan_msg 2630 * @vf: pointer to the VF info 2631 * @msg: pointer to the msg buffer 2632 * @add_v: Add VLAN if true, otherwise delete VLAN 2633 * 2634 * Process virtchnl op to add or remove programmed guest VLAN ID 2635 */ 2636 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2637 { 2638 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2639 struct virtchnl_vlan_filter_list *vfl = 2640 (struct virtchnl_vlan_filter_list *)msg; 2641 struct ice_pf *pf = vf->pf; 2642 bool vlan_promisc = false; 2643 struct ice_vsi *vsi; 2644 struct device *dev; 2645 int status = 0; 2646 int i; 2647 2648 dev = ice_pf_to_dev(pf); 2649 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2650 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2651 goto error_param; 2652 } 2653 2654 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2655 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2656 goto error_param; 2657 } 2658 2659 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2660 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2661 goto error_param; 2662 } 2663 2664 for (i = 0; i < vfl->num_elements; i++) { 2665 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2666 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2667 dev_err(dev, "invalid VF VLAN id %d\n", 2668 vfl->vlan_id[i]); 2669 goto error_param; 2670 } 2671 } 2672 2673 vsi = ice_get_vf_vsi(vf); 2674 if (!vsi) { 2675 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2676 goto error_param; 2677 } 2678 2679 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2680 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2681 vf->vf_id); 2682 /* There is no need to let VF know about being not trusted, 2683 * so we can just return success message here 2684 */ 2685 goto error_param; 2686 } 2687 2688 /* in DVM a VF can add/delete inner VLAN filters when 2689 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2690 */ 2691 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2692 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2693 goto error_param; 2694 } 2695 2696 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2697 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2698 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2699 */ 2700 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2701 !ice_is_dvm_ena(&pf->hw) && 2702 !ice_vf_is_port_vlan_ena(vf); 2703 2704 if (add_v) { 2705 for (i = 0; i < vfl->num_elements; i++) { 2706 u16 vid = vfl->vlan_id[i]; 2707 struct ice_vlan vlan; 2708 2709 if (ice_vf_has_max_vlans(vf, vsi)) { 2710 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2711 vf->vf_id); 2712 /* There is no need to let VF know about being 2713 * not trusted, so we can just return success 2714 * message here as well. 2715 */ 2716 goto error_param; 2717 } 2718 2719 /* we add VLAN 0 by default for each VF so we can enable 2720 * Tx VLAN anti-spoof without triggering MDD events so 2721 * we don't need to add it again here 2722 */ 2723 if (!vid) 2724 continue; 2725 2726 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2727 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2728 if (status) { 2729 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2730 goto error_param; 2731 } 2732 2733 /* Enable VLAN filtering on first non-zero VLAN */ 2734 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2735 if (vf->spoofchk) { 2736 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2737 if (status) { 2738 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2739 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2740 vid, status); 2741 goto error_param; 2742 } 2743 } 2744 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2745 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2746 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2747 vid, status); 2748 goto error_param; 2749 } 2750 } else if (vlan_promisc) { 2751 status = ice_vf_ena_vlan_promisc(vf, vsi, &vlan); 2752 if (status) { 2753 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2754 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2755 vid, status); 2756 } 2757 } 2758 } 2759 } else { 2760 /* In case of non_trusted VF, number of VLAN elements passed 2761 * to PF for removal might be greater than number of VLANs 2762 * filter programmed for that VF - So, use actual number of 2763 * VLANS added earlier with add VLAN opcode. In order to avoid 2764 * removing VLAN that doesn't exist, which result to sending 2765 * erroneous failed message back to the VF 2766 */ 2767 int num_vf_vlan; 2768 2769 num_vf_vlan = vsi->num_vlan; 2770 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2771 u16 vid = vfl->vlan_id[i]; 2772 struct ice_vlan vlan; 2773 2774 /* we add VLAN 0 by default for each VF so we can enable 2775 * Tx VLAN anti-spoof without triggering MDD events so 2776 * we don't want a VIRTCHNL request to remove it 2777 */ 2778 if (!vid) 2779 continue; 2780 2781 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2782 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2783 if (status) { 2784 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2785 goto error_param; 2786 } 2787 2788 /* Disable VLAN filtering when only VLAN 0 is left */ 2789 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2790 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2791 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2792 } 2793 2794 if (vlan_promisc) 2795 ice_vf_dis_vlan_promisc(vsi, &vlan); 2796 } 2797 } 2798 2799 error_param: 2800 /* send the response to the VF */ 2801 if (add_v) 2802 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2803 NULL, 0); 2804 else 2805 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2806 NULL, 0); 2807 } 2808 2809 /** 2810 * ice_vc_add_vlan_msg 2811 * @vf: pointer to the VF info 2812 * @msg: pointer to the msg buffer 2813 * 2814 * Add and program guest VLAN ID 2815 */ 2816 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2817 { 2818 return ice_vc_process_vlan_msg(vf, msg, true); 2819 } 2820 2821 /** 2822 * ice_vc_remove_vlan_msg 2823 * @vf: pointer to the VF info 2824 * @msg: pointer to the msg buffer 2825 * 2826 * remove programmed guest VLAN ID 2827 */ 2828 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2829 { 2830 return ice_vc_process_vlan_msg(vf, msg, false); 2831 } 2832 2833 /** 2834 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not 2835 * @vsi: pointer to the VF VSI info 2836 */ 2837 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi) 2838 { 2839 unsigned int i; 2840 2841 ice_for_each_alloc_rxq(vsi, i) 2842 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS) 2843 return true; 2844 2845 return false; 2846 } 2847 2848 /** 2849 * ice_vc_ena_vlan_stripping 2850 * @vf: pointer to the VF info 2851 * 2852 * Enable VLAN header stripping for a given VF 2853 */ 2854 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2855 { 2856 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2857 struct ice_vsi *vsi; 2858 2859 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2860 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2861 goto error_param; 2862 } 2863 2864 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2865 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2866 goto error_param; 2867 } 2868 2869 vsi = ice_get_vf_vsi(vf); 2870 if (!vsi) { 2871 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2872 goto error_param; 2873 } 2874 2875 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2876 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2877 else 2878 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2879 2880 error_param: 2881 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2882 v_ret, NULL, 0); 2883 } 2884 2885 /** 2886 * ice_vc_dis_vlan_stripping 2887 * @vf: pointer to the VF info 2888 * 2889 * Disable VLAN header stripping for a given VF 2890 */ 2891 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2892 { 2893 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2894 struct ice_vsi *vsi; 2895 2896 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2897 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2898 goto error_param; 2899 } 2900 2901 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2902 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2903 goto error_param; 2904 } 2905 2906 vsi = ice_get_vf_vsi(vf); 2907 if (!vsi) { 2908 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2909 goto error_param; 2910 } 2911 2912 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2913 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2914 else 2915 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 2916 2917 error_param: 2918 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2919 v_ret, NULL, 0); 2920 } 2921 2922 /** 2923 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2924 * @vf: pointer to the VF info 2925 */ 2926 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2927 { 2928 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2929 struct virtchnl_rss_hena *vrh = NULL; 2930 int len = 0, ret; 2931 2932 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2933 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2934 goto err; 2935 } 2936 2937 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2938 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2939 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2940 goto err; 2941 } 2942 2943 len = sizeof(struct virtchnl_rss_hena); 2944 vrh = kzalloc(len, GFP_KERNEL); 2945 if (!vrh) { 2946 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2947 len = 0; 2948 goto err; 2949 } 2950 2951 vrh->hena = ICE_DEFAULT_RSS_HENA; 2952 err: 2953 /* send the response back to the VF */ 2954 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2955 (u8 *)vrh, len); 2956 kfree(vrh); 2957 return ret; 2958 } 2959 2960 /** 2961 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2962 * @vf: pointer to the VF info 2963 * @msg: pointer to the msg buffer 2964 */ 2965 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2966 { 2967 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2968 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2969 struct ice_pf *pf = vf->pf; 2970 struct ice_vsi *vsi; 2971 struct device *dev; 2972 int status; 2973 2974 dev = ice_pf_to_dev(pf); 2975 2976 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2977 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2978 goto err; 2979 } 2980 2981 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2982 dev_err(dev, "RSS not supported by PF\n"); 2983 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2984 goto err; 2985 } 2986 2987 vsi = ice_get_vf_vsi(vf); 2988 if (!vsi) { 2989 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2990 goto err; 2991 } 2992 2993 /* clear all previously programmed RSS configuration to allow VF drivers 2994 * the ability to customize the RSS configuration and/or completely 2995 * disable RSS 2996 */ 2997 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2998 if (status && !vrh->hena) { 2999 /* only report failure to clear the current RSS configuration if 3000 * that was clearly the VF's intention (i.e. vrh->hena = 0) 3001 */ 3002 v_ret = ice_err_to_virt_err(status); 3003 goto err; 3004 } else if (status) { 3005 /* allow the VF to update the RSS configuration even on failure 3006 * to clear the current RSS confguration in an attempt to keep 3007 * RSS in a working state 3008 */ 3009 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 3010 vf->vf_id); 3011 } 3012 3013 if (vrh->hena) { 3014 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena); 3015 v_ret = ice_err_to_virt_err(status); 3016 } 3017 3018 /* send the response to the VF */ 3019 err: 3020 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 3021 NULL, 0); 3022 } 3023 3024 /** 3025 * ice_vc_query_rxdid - query RXDID supported by DDP package 3026 * @vf: pointer to VF info 3027 * 3028 * Called from VF to query a bitmap of supported flexible 3029 * descriptor RXDIDs of a DDP package. 3030 */ 3031 static int ice_vc_query_rxdid(struct ice_vf *vf) 3032 { 3033 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3034 struct virtchnl_supported_rxdids rxdid = {}; 3035 struct ice_pf *pf = vf->pf; 3036 3037 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3038 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3039 goto err; 3040 } 3041 3042 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 3043 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3044 goto err; 3045 } 3046 3047 rxdid.supported_rxdids = pf->supported_rxdids; 3048 3049 err: 3050 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 3051 v_ret, (u8 *)&rxdid, sizeof(rxdid)); 3052 } 3053 3054 /** 3055 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 3056 * @vf: VF to enable/disable VLAN stripping for on initialization 3057 * 3058 * Set the default for VLAN stripping based on whether a port VLAN is configured 3059 * and the current VLAN mode of the device. 3060 */ 3061 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 3062 { 3063 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 3064 3065 vf->vlan_strip_ena = 0; 3066 3067 if (!vsi) 3068 return -EINVAL; 3069 3070 /* don't modify stripping if port VLAN is configured in SVM since the 3071 * port VLAN is based on the inner/single VLAN in SVM 3072 */ 3073 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 3074 return 0; 3075 3076 if (ice_vf_vlan_offload_ena(vf->driver_caps)) { 3077 int err; 3078 3079 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 3080 if (!err) 3081 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3082 return err; 3083 } 3084 3085 return vsi->inner_vlan_ops.dis_stripping(vsi); 3086 } 3087 3088 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 3089 { 3090 if (vf->trusted) 3091 return VLAN_N_VID; 3092 else 3093 return ICE_MAX_VLAN_PER_VF; 3094 } 3095 3096 /** 3097 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 3098 * @vf: VF that being checked for 3099 * 3100 * When the device is in double VLAN mode, check whether or not the outer VLAN 3101 * is allowed. 3102 */ 3103 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 3104 { 3105 if (ice_vf_is_port_vlan_ena(vf)) 3106 return true; 3107 3108 return false; 3109 } 3110 3111 /** 3112 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 3113 * @vf: VF that capabilities are being set for 3114 * @caps: VLAN capabilities to populate 3115 * 3116 * Determine VLAN capabilities support based on whether a port VLAN is 3117 * configured. If a port VLAN is configured then the VF should use the inner 3118 * filtering/offload capabilities since the port VLAN is using the outer VLAN 3119 * capabilies. 3120 */ 3121 static void 3122 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 3123 { 3124 struct virtchnl_vlan_supported_caps *supported_caps; 3125 3126 if (ice_vf_outer_vlan_not_allowed(vf)) { 3127 /* until support for inner VLAN filtering is added when a port 3128 * VLAN is configured, only support software offloaded inner 3129 * VLANs when a port VLAN is confgured in DVM 3130 */ 3131 supported_caps = &caps->filtering.filtering_support; 3132 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3133 3134 supported_caps = &caps->offloads.stripping_support; 3135 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3136 VIRTCHNL_VLAN_TOGGLE | 3137 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3138 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3139 3140 supported_caps = &caps->offloads.insertion_support; 3141 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3142 VIRTCHNL_VLAN_TOGGLE | 3143 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3144 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3145 3146 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3147 caps->offloads.ethertype_match = 3148 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3149 } else { 3150 supported_caps = &caps->filtering.filtering_support; 3151 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3152 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3153 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3154 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3155 VIRTCHNL_VLAN_ETHERTYPE_AND; 3156 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3157 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3158 VIRTCHNL_VLAN_ETHERTYPE_9100; 3159 3160 supported_caps = &caps->offloads.stripping_support; 3161 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 3162 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3163 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3164 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 3165 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3166 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3167 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3168 VIRTCHNL_VLAN_ETHERTYPE_XOR | 3169 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 3170 3171 supported_caps = &caps->offloads.insertion_support; 3172 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 3173 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3174 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3175 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 3176 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3177 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3178 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3179 VIRTCHNL_VLAN_ETHERTYPE_XOR | 3180 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 3181 3182 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3183 3184 caps->offloads.ethertype_match = 3185 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3186 } 3187 3188 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 3189 } 3190 3191 /** 3192 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 3193 * @vf: VF that capabilities are being set for 3194 * @caps: VLAN capabilities to populate 3195 * 3196 * Determine VLAN capabilities support based on whether a port VLAN is 3197 * configured. If a port VLAN is configured then the VF does not have any VLAN 3198 * filtering or offload capabilities since the port VLAN is using the inner VLAN 3199 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 3200 * VLAN fitlering and offload capabilities. 3201 */ 3202 static void 3203 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 3204 { 3205 struct virtchnl_vlan_supported_caps *supported_caps; 3206 3207 if (ice_vf_is_port_vlan_ena(vf)) { 3208 supported_caps = &caps->filtering.filtering_support; 3209 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3210 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3211 3212 supported_caps = &caps->offloads.stripping_support; 3213 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3214 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3215 3216 supported_caps = &caps->offloads.insertion_support; 3217 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3218 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3219 3220 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 3221 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 3222 caps->filtering.max_filters = 0; 3223 } else { 3224 supported_caps = &caps->filtering.filtering_support; 3225 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 3226 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3227 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3228 3229 supported_caps = &caps->offloads.stripping_support; 3230 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3231 VIRTCHNL_VLAN_TOGGLE | 3232 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3233 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3234 3235 supported_caps = &caps->offloads.insertion_support; 3236 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3237 VIRTCHNL_VLAN_TOGGLE | 3238 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3239 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3240 3241 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3242 caps->offloads.ethertype_match = 3243 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3244 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 3245 } 3246 } 3247 3248 /** 3249 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 3250 * @vf: VF to determine VLAN capabilities for 3251 * 3252 * This will only be called if the VF and PF successfully negotiated 3253 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 3254 * 3255 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 3256 * is configured or not. 3257 */ 3258 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 3259 { 3260 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3261 struct virtchnl_vlan_caps *caps = NULL; 3262 int err, len = 0; 3263 3264 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3265 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3266 goto out; 3267 } 3268 3269 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 3270 if (!caps) { 3271 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 3272 goto out; 3273 } 3274 len = sizeof(*caps); 3275 3276 if (ice_is_dvm_ena(&vf->pf->hw)) 3277 ice_vc_set_dvm_caps(vf, caps); 3278 else 3279 ice_vc_set_svm_caps(vf, caps); 3280 3281 /* store negotiated caps to prevent invalid VF messages */ 3282 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 3283 3284 out: 3285 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 3286 v_ret, (u8 *)caps, len); 3287 kfree(caps); 3288 return err; 3289 } 3290 3291 /** 3292 * ice_vc_validate_vlan_tpid - validate VLAN TPID 3293 * @filtering_caps: negotiated/supported VLAN filtering capabilities 3294 * @tpid: VLAN TPID used for validation 3295 * 3296 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 3297 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 3298 */ 3299 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 3300 { 3301 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 3302 3303 switch (tpid) { 3304 case ETH_P_8021Q: 3305 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 3306 break; 3307 case ETH_P_8021AD: 3308 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 3309 break; 3310 case ETH_P_QINQ1: 3311 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 3312 break; 3313 } 3314 3315 if (!(filtering_caps & vlan_ethertype)) 3316 return false; 3317 3318 return true; 3319 } 3320 3321 /** 3322 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 3323 * @vc_vlan: virtchnl_vlan to validate 3324 * 3325 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 3326 * false. Otherwise return true. 3327 */ 3328 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 3329 { 3330 if (!vc_vlan->tci || !vc_vlan->tpid) 3331 return false; 3332 3333 return true; 3334 } 3335 3336 /** 3337 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 3338 * @vfc: negotiated/supported VLAN filtering capabilities 3339 * @vfl: VLAN filter list from VF to validate 3340 * 3341 * Validate all of the filters in the VLAN filter list from the VF. If any of 3342 * the checks fail then return false. Otherwise return true. 3343 */ 3344 static bool 3345 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 3346 struct virtchnl_vlan_filter_list_v2 *vfl) 3347 { 3348 u16 i; 3349 3350 if (!vfl->num_elements) 3351 return false; 3352 3353 for (i = 0; i < vfl->num_elements; i++) { 3354 struct virtchnl_vlan_supported_caps *filtering_support = 3355 &vfc->filtering_support; 3356 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3357 struct virtchnl_vlan *outer = &vlan_fltr->outer; 3358 struct virtchnl_vlan *inner = &vlan_fltr->inner; 3359 3360 if ((ice_vc_is_valid_vlan(outer) && 3361 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 3362 (ice_vc_is_valid_vlan(inner) && 3363 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 3364 return false; 3365 3366 if ((outer->tci_mask && 3367 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 3368 (inner->tci_mask && 3369 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 3370 return false; 3371 3372 if (((outer->tci & VLAN_PRIO_MASK) && 3373 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 3374 ((inner->tci & VLAN_PRIO_MASK) && 3375 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 3376 return false; 3377 3378 if ((ice_vc_is_valid_vlan(outer) && 3379 !ice_vc_validate_vlan_tpid(filtering_support->outer, 3380 outer->tpid)) || 3381 (ice_vc_is_valid_vlan(inner) && 3382 !ice_vc_validate_vlan_tpid(filtering_support->inner, 3383 inner->tpid))) 3384 return false; 3385 } 3386 3387 return true; 3388 } 3389 3390 /** 3391 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 3392 * @vc_vlan: struct virtchnl_vlan to transform 3393 */ 3394 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 3395 { 3396 struct ice_vlan vlan = { 0 }; 3397 3398 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci); 3399 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 3400 vlan.tpid = vc_vlan->tpid; 3401 3402 return vlan; 3403 } 3404 3405 /** 3406 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 3407 * @vsi: VF's VSI used to perform the action 3408 * @vlan_action: function to perform the action with (i.e. add/del) 3409 * @vlan: VLAN filter to perform the action with 3410 */ 3411 static int 3412 ice_vc_vlan_action(struct ice_vsi *vsi, 3413 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3414 struct ice_vlan *vlan) 3415 { 3416 int err; 3417 3418 err = vlan_action(vsi, vlan); 3419 if (err) 3420 return err; 3421 3422 return 0; 3423 } 3424 3425 /** 3426 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3427 * @vf: VF used to delete the VLAN(s) 3428 * @vsi: VF's VSI used to delete the VLAN(s) 3429 * @vfl: virthchnl filter list used to delete the filters 3430 */ 3431 static int 3432 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3433 struct virtchnl_vlan_filter_list_v2 *vfl) 3434 { 3435 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3436 int err; 3437 u16 i; 3438 3439 for (i = 0; i < vfl->num_elements; i++) { 3440 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3441 struct virtchnl_vlan *vc_vlan; 3442 3443 vc_vlan = &vlan_fltr->outer; 3444 if (ice_vc_is_valid_vlan(vc_vlan)) { 3445 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3446 3447 err = ice_vc_vlan_action(vsi, 3448 vsi->outer_vlan_ops.del_vlan, 3449 &vlan); 3450 if (err) 3451 return err; 3452 3453 if (vlan_promisc) 3454 ice_vf_dis_vlan_promisc(vsi, &vlan); 3455 3456 /* Disable VLAN filtering when only VLAN 0 is left */ 3457 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3458 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3459 if (err) 3460 return err; 3461 } 3462 } 3463 3464 vc_vlan = &vlan_fltr->inner; 3465 if (ice_vc_is_valid_vlan(vc_vlan)) { 3466 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3467 3468 err = ice_vc_vlan_action(vsi, 3469 vsi->inner_vlan_ops.del_vlan, 3470 &vlan); 3471 if (err) 3472 return err; 3473 3474 /* no support for VLAN promiscuous on inner VLAN unless 3475 * we are in Single VLAN Mode (SVM) 3476 */ 3477 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3478 if (vlan_promisc) 3479 ice_vf_dis_vlan_promisc(vsi, &vlan); 3480 3481 /* Disable VLAN filtering when only VLAN 0 is left */ 3482 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3483 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3484 if (err) 3485 return err; 3486 } 3487 } 3488 } 3489 } 3490 3491 return 0; 3492 } 3493 3494 /** 3495 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3496 * @vf: VF the message was received from 3497 * @msg: message received from the VF 3498 */ 3499 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3500 { 3501 struct virtchnl_vlan_filter_list_v2 *vfl = 3502 (struct virtchnl_vlan_filter_list_v2 *)msg; 3503 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3504 struct ice_vsi *vsi; 3505 3506 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3507 vfl)) { 3508 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3509 goto out; 3510 } 3511 3512 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3513 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3514 goto out; 3515 } 3516 3517 vsi = ice_get_vf_vsi(vf); 3518 if (!vsi) { 3519 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3520 goto out; 3521 } 3522 3523 if (ice_vc_del_vlans(vf, vsi, vfl)) 3524 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3525 3526 out: 3527 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3528 0); 3529 } 3530 3531 /** 3532 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3533 * @vf: VF used to add the VLAN(s) 3534 * @vsi: VF's VSI used to add the VLAN(s) 3535 * @vfl: virthchnl filter list used to add the filters 3536 */ 3537 static int 3538 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3539 struct virtchnl_vlan_filter_list_v2 *vfl) 3540 { 3541 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3542 int err; 3543 u16 i; 3544 3545 for (i = 0; i < vfl->num_elements; i++) { 3546 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3547 struct virtchnl_vlan *vc_vlan; 3548 3549 vc_vlan = &vlan_fltr->outer; 3550 if (ice_vc_is_valid_vlan(vc_vlan)) { 3551 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3552 3553 err = ice_vc_vlan_action(vsi, 3554 vsi->outer_vlan_ops.add_vlan, 3555 &vlan); 3556 if (err) 3557 return err; 3558 3559 if (vlan_promisc) { 3560 err = ice_vf_ena_vlan_promisc(vf, vsi, &vlan); 3561 if (err) 3562 return err; 3563 } 3564 3565 /* Enable VLAN filtering on first non-zero VLAN */ 3566 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3567 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3568 if (err) 3569 return err; 3570 } 3571 } 3572 3573 vc_vlan = &vlan_fltr->inner; 3574 if (ice_vc_is_valid_vlan(vc_vlan)) { 3575 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3576 3577 err = ice_vc_vlan_action(vsi, 3578 vsi->inner_vlan_ops.add_vlan, 3579 &vlan); 3580 if (err) 3581 return err; 3582 3583 /* no support for VLAN promiscuous on inner VLAN unless 3584 * we are in Single VLAN Mode (SVM) 3585 */ 3586 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3587 if (vlan_promisc) { 3588 err = ice_vf_ena_vlan_promisc(vf, vsi, 3589 &vlan); 3590 if (err) 3591 return err; 3592 } 3593 3594 /* Enable VLAN filtering on first non-zero VLAN */ 3595 if (vf->spoofchk && vlan.vid) { 3596 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3597 if (err) 3598 return err; 3599 } 3600 } 3601 } 3602 } 3603 3604 return 0; 3605 } 3606 3607 /** 3608 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3609 * @vsi: VF VSI used to get number of existing VLAN filters 3610 * @vfc: negotiated/supported VLAN filtering capabilities 3611 * @vfl: VLAN filter list from VF to validate 3612 * 3613 * Validate all of the filters in the VLAN filter list from the VF during the 3614 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3615 * Otherwise return true. 3616 */ 3617 static bool 3618 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3619 struct virtchnl_vlan_filtering_caps *vfc, 3620 struct virtchnl_vlan_filter_list_v2 *vfl) 3621 { 3622 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3623 vfl->num_elements; 3624 3625 if (num_requested_filters > vfc->max_filters) 3626 return false; 3627 3628 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3629 } 3630 3631 /** 3632 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3633 * @vf: VF the message was received from 3634 * @msg: message received from the VF 3635 */ 3636 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3637 { 3638 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3639 struct virtchnl_vlan_filter_list_v2 *vfl = 3640 (struct virtchnl_vlan_filter_list_v2 *)msg; 3641 struct ice_vsi *vsi; 3642 3643 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3644 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3645 goto out; 3646 } 3647 3648 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3649 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3650 goto out; 3651 } 3652 3653 vsi = ice_get_vf_vsi(vf); 3654 if (!vsi) { 3655 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3656 goto out; 3657 } 3658 3659 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3660 &vf->vlan_v2_caps.filtering, 3661 vfl)) { 3662 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3663 goto out; 3664 } 3665 3666 if (ice_vc_add_vlans(vf, vsi, vfl)) 3667 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3668 3669 out: 3670 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3671 0); 3672 } 3673 3674 /** 3675 * ice_vc_valid_vlan_setting - validate VLAN setting 3676 * @negotiated_settings: negotiated VLAN settings during VF init 3677 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3678 */ 3679 static bool 3680 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3681 { 3682 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3683 return false; 3684 3685 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3686 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3687 */ 3688 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3689 hweight32(ethertype_setting) > 1) 3690 return false; 3691 3692 /* ability to modify the VLAN setting was not negotiated */ 3693 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3694 return false; 3695 3696 return true; 3697 } 3698 3699 /** 3700 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3701 * @caps: negotiated VLAN settings during VF init 3702 * @msg: message to validate 3703 * 3704 * Used to validate any VLAN virtchnl message sent as a 3705 * virtchnl_vlan_setting structure. Validates the message against the 3706 * negotiated/supported caps during VF driver init. 3707 */ 3708 static bool 3709 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3710 struct virtchnl_vlan_setting *msg) 3711 { 3712 if ((!msg->outer_ethertype_setting && 3713 !msg->inner_ethertype_setting) || 3714 (!caps->outer && !caps->inner)) 3715 return false; 3716 3717 if (msg->outer_ethertype_setting && 3718 !ice_vc_valid_vlan_setting(caps->outer, 3719 msg->outer_ethertype_setting)) 3720 return false; 3721 3722 if (msg->inner_ethertype_setting && 3723 !ice_vc_valid_vlan_setting(caps->inner, 3724 msg->inner_ethertype_setting)) 3725 return false; 3726 3727 return true; 3728 } 3729 3730 /** 3731 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3732 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3733 * @tpid: VLAN TPID to populate 3734 */ 3735 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3736 { 3737 switch (ethertype_setting) { 3738 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3739 *tpid = ETH_P_8021Q; 3740 break; 3741 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3742 *tpid = ETH_P_8021AD; 3743 break; 3744 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3745 *tpid = ETH_P_QINQ1; 3746 break; 3747 default: 3748 *tpid = 0; 3749 return -EINVAL; 3750 } 3751 3752 return 0; 3753 } 3754 3755 /** 3756 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3757 * @vsi: VF's VSI used to enable the VLAN offload 3758 * @ena_offload: function used to enable the VLAN offload 3759 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3760 */ 3761 static int 3762 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3763 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3764 u32 ethertype_setting) 3765 { 3766 u16 tpid; 3767 int err; 3768 3769 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3770 if (err) 3771 return err; 3772 3773 err = ena_offload(vsi, tpid); 3774 if (err) 3775 return err; 3776 3777 return 0; 3778 } 3779 3780 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3781 #define ICE_L2TSEL_BIT_OFFSET 23 3782 enum ice_l2tsel { 3783 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3784 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3785 }; 3786 3787 /** 3788 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3789 * @vsi: VSI used to update l2tsel on 3790 * @l2tsel: l2tsel setting requested 3791 * 3792 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3793 * This will modify which descriptor field the first offloaded VLAN will be 3794 * stripped into. 3795 */ 3796 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3797 { 3798 struct ice_hw *hw = &vsi->back->hw; 3799 u32 l2tsel_bit; 3800 int i; 3801 3802 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3803 l2tsel_bit = 0; 3804 else 3805 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3806 3807 for (i = 0; i < vsi->alloc_rxq; i++) { 3808 u16 pfq = vsi->rxq_map[i]; 3809 u32 qrx_context_offset; 3810 u32 regval; 3811 3812 qrx_context_offset = 3813 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3814 3815 regval = rd32(hw, qrx_context_offset); 3816 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3817 regval |= l2tsel_bit; 3818 wr32(hw, qrx_context_offset, regval); 3819 } 3820 } 3821 3822 /** 3823 * ice_vc_ena_vlan_stripping_v2_msg 3824 * @vf: VF the message was received from 3825 * @msg: message received from the VF 3826 * 3827 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3828 */ 3829 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3830 { 3831 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3832 struct virtchnl_vlan_supported_caps *stripping_support; 3833 struct virtchnl_vlan_setting *strip_msg = 3834 (struct virtchnl_vlan_setting *)msg; 3835 u32 ethertype_setting; 3836 struct ice_vsi *vsi; 3837 3838 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3839 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3840 goto out; 3841 } 3842 3843 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3844 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3845 goto out; 3846 } 3847 3848 vsi = ice_get_vf_vsi(vf); 3849 if (!vsi) { 3850 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3851 goto out; 3852 } 3853 3854 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3855 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3856 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3857 goto out; 3858 } 3859 3860 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) { 3861 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3862 goto out; 3863 } 3864 3865 ethertype_setting = strip_msg->outer_ethertype_setting; 3866 if (ethertype_setting) { 3867 if (ice_vc_ena_vlan_offload(vsi, 3868 vsi->outer_vlan_ops.ena_stripping, 3869 ethertype_setting)) { 3870 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3871 goto out; 3872 } else { 3873 enum ice_l2tsel l2tsel = 3874 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3875 3876 /* PF tells the VF that the outer VLAN tag is always 3877 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3878 * inner is always extracted to 3879 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3880 * support outer stripping so the first tag always ends 3881 * up in L2TAG2_2ND and the second/inner tag, if 3882 * enabled, is extracted in L2TAG1. 3883 */ 3884 ice_vsi_update_l2tsel(vsi, l2tsel); 3885 3886 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA; 3887 } 3888 } 3889 3890 ethertype_setting = strip_msg->inner_ethertype_setting; 3891 if (ethertype_setting && 3892 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3893 ethertype_setting)) { 3894 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3895 goto out; 3896 } 3897 3898 if (ethertype_setting) 3899 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3900 3901 out: 3902 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3903 v_ret, NULL, 0); 3904 } 3905 3906 /** 3907 * ice_vc_dis_vlan_stripping_v2_msg 3908 * @vf: VF the message was received from 3909 * @msg: message received from the VF 3910 * 3911 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3912 */ 3913 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3914 { 3915 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3916 struct virtchnl_vlan_supported_caps *stripping_support; 3917 struct virtchnl_vlan_setting *strip_msg = 3918 (struct virtchnl_vlan_setting *)msg; 3919 u32 ethertype_setting; 3920 struct ice_vsi *vsi; 3921 3922 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3923 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3924 goto out; 3925 } 3926 3927 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3928 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3929 goto out; 3930 } 3931 3932 vsi = ice_get_vf_vsi(vf); 3933 if (!vsi) { 3934 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3935 goto out; 3936 } 3937 3938 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3939 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3940 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3941 goto out; 3942 } 3943 3944 ethertype_setting = strip_msg->outer_ethertype_setting; 3945 if (ethertype_setting) { 3946 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3947 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3948 goto out; 3949 } else { 3950 enum ice_l2tsel l2tsel = 3951 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3952 3953 /* PF tells the VF that the outer VLAN tag is always 3954 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3955 * inner is always extracted to 3956 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3957 * support inner stripping while outer stripping is 3958 * disabled so that the first and only tag is extracted 3959 * in L2TAG1. 3960 */ 3961 ice_vsi_update_l2tsel(vsi, l2tsel); 3962 3963 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA; 3964 } 3965 } 3966 3967 ethertype_setting = strip_msg->inner_ethertype_setting; 3968 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3969 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3970 goto out; 3971 } 3972 3973 if (ethertype_setting) 3974 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 3975 3976 out: 3977 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3978 v_ret, NULL, 0); 3979 } 3980 3981 /** 3982 * ice_vc_ena_vlan_insertion_v2_msg 3983 * @vf: VF the message was received from 3984 * @msg: message received from the VF 3985 * 3986 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3987 */ 3988 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3989 { 3990 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3991 struct virtchnl_vlan_supported_caps *insertion_support; 3992 struct virtchnl_vlan_setting *insertion_msg = 3993 (struct virtchnl_vlan_setting *)msg; 3994 u32 ethertype_setting; 3995 struct ice_vsi *vsi; 3996 3997 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3998 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3999 goto out; 4000 } 4001 4002 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 4003 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4004 goto out; 4005 } 4006 4007 vsi = ice_get_vf_vsi(vf); 4008 if (!vsi) { 4009 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4010 goto out; 4011 } 4012 4013 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 4014 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 4015 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4016 goto out; 4017 } 4018 4019 ethertype_setting = insertion_msg->outer_ethertype_setting; 4020 if (ethertype_setting && 4021 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 4022 ethertype_setting)) { 4023 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4024 goto out; 4025 } 4026 4027 ethertype_setting = insertion_msg->inner_ethertype_setting; 4028 if (ethertype_setting && 4029 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 4030 ethertype_setting)) { 4031 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4032 goto out; 4033 } 4034 4035 out: 4036 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 4037 v_ret, NULL, 0); 4038 } 4039 4040 /** 4041 * ice_vc_dis_vlan_insertion_v2_msg 4042 * @vf: VF the message was received from 4043 * @msg: message received from the VF 4044 * 4045 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 4046 */ 4047 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 4048 { 4049 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4050 struct virtchnl_vlan_supported_caps *insertion_support; 4051 struct virtchnl_vlan_setting *insertion_msg = 4052 (struct virtchnl_vlan_setting *)msg; 4053 u32 ethertype_setting; 4054 struct ice_vsi *vsi; 4055 4056 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 4057 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4058 goto out; 4059 } 4060 4061 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 4062 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4063 goto out; 4064 } 4065 4066 vsi = ice_get_vf_vsi(vf); 4067 if (!vsi) { 4068 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4069 goto out; 4070 } 4071 4072 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 4073 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 4074 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4075 goto out; 4076 } 4077 4078 ethertype_setting = insertion_msg->outer_ethertype_setting; 4079 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 4080 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4081 goto out; 4082 } 4083 4084 ethertype_setting = insertion_msg->inner_ethertype_setting; 4085 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 4086 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4087 goto out; 4088 } 4089 4090 out: 4091 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 4092 v_ret, NULL, 0); 4093 } 4094 4095 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 4096 .get_ver_msg = ice_vc_get_ver_msg, 4097 .get_vf_res_msg = ice_vc_get_vf_res_msg, 4098 .reset_vf = ice_vc_reset_vf_msg, 4099 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 4100 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 4101 .cfg_qs_msg = ice_vc_cfg_qs_msg, 4102 .ena_qs_msg = ice_vc_ena_qs_msg, 4103 .dis_qs_msg = ice_vc_dis_qs_msg, 4104 .request_qs_msg = ice_vc_request_qs_msg, 4105 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 4106 .config_rss_key = ice_vc_config_rss_key, 4107 .config_rss_lut = ice_vc_config_rss_lut, 4108 .config_rss_hfunc = ice_vc_config_rss_hfunc, 4109 .get_stats_msg = ice_vc_get_stats_msg, 4110 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 4111 .add_vlan_msg = ice_vc_add_vlan_msg, 4112 .remove_vlan_msg = ice_vc_remove_vlan_msg, 4113 .query_rxdid = ice_vc_query_rxdid, 4114 .get_rss_hena = ice_vc_get_rss_hena, 4115 .set_rss_hena_msg = ice_vc_set_rss_hena, 4116 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 4117 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 4118 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 4119 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 4120 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 4121 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 4122 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 4123 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 4124 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 4125 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 4126 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 4127 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 4128 .get_qos_caps = ice_vc_get_qos_caps, 4129 .cfg_q_bw = ice_vc_cfg_q_bw, 4130 .cfg_q_quanta = ice_vc_cfg_q_quanta, 4131 }; 4132 4133 /** 4134 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 4135 * @vf: the VF to switch ops 4136 */ 4137 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 4138 { 4139 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 4140 } 4141 4142 /** 4143 * ice_vc_repr_add_mac 4144 * @vf: pointer to VF 4145 * @msg: virtchannel message 4146 * 4147 * When port representors are created, we do not add MAC rule 4148 * to firmware, we store it so that PF could report same 4149 * MAC as VF. 4150 */ 4151 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 4152 { 4153 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4154 struct virtchnl_ether_addr_list *al = 4155 (struct virtchnl_ether_addr_list *)msg; 4156 struct ice_vsi *vsi; 4157 struct ice_pf *pf; 4158 int i; 4159 4160 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 4161 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 4162 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4163 goto handle_mac_exit; 4164 } 4165 4166 pf = vf->pf; 4167 4168 vsi = ice_get_vf_vsi(vf); 4169 if (!vsi) { 4170 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4171 goto handle_mac_exit; 4172 } 4173 4174 for (i = 0; i < al->num_elements; i++) { 4175 u8 *mac_addr = al->list[i].addr; 4176 4177 if (!is_unicast_ether_addr(mac_addr) || 4178 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 4179 continue; 4180 4181 if (vf->pf_set_mac) { 4182 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 4183 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 4184 goto handle_mac_exit; 4185 } 4186 4187 ice_vfhw_mac_add(vf, &al->list[i]); 4188 vf->num_mac++; 4189 break; 4190 } 4191 4192 handle_mac_exit: 4193 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 4194 v_ret, NULL, 0); 4195 } 4196 4197 /** 4198 * ice_vc_repr_del_mac - response with success for deleting MAC 4199 * @vf: pointer to VF 4200 * @msg: virtchannel message 4201 * 4202 * Respond with success to not break normal VF flow. 4203 * For legacy VF driver try to update cached MAC address. 4204 */ 4205 static int 4206 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 4207 { 4208 struct virtchnl_ether_addr_list *al = 4209 (struct virtchnl_ether_addr_list *)msg; 4210 4211 ice_update_legacy_cached_mac(vf, &al->list[0]); 4212 4213 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 4214 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 4215 } 4216 4217 static int 4218 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 4219 { 4220 dev_dbg(ice_pf_to_dev(vf->pf), 4221 "Can't config promiscuous mode in switchdev mode for VF %d\n", 4222 vf->vf_id); 4223 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 4224 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4225 NULL, 0); 4226 } 4227 4228 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 4229 .get_ver_msg = ice_vc_get_ver_msg, 4230 .get_vf_res_msg = ice_vc_get_vf_res_msg, 4231 .reset_vf = ice_vc_reset_vf_msg, 4232 .add_mac_addr_msg = ice_vc_repr_add_mac, 4233 .del_mac_addr_msg = ice_vc_repr_del_mac, 4234 .cfg_qs_msg = ice_vc_cfg_qs_msg, 4235 .ena_qs_msg = ice_vc_ena_qs_msg, 4236 .dis_qs_msg = ice_vc_dis_qs_msg, 4237 .request_qs_msg = ice_vc_request_qs_msg, 4238 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 4239 .config_rss_key = ice_vc_config_rss_key, 4240 .config_rss_lut = ice_vc_config_rss_lut, 4241 .config_rss_hfunc = ice_vc_config_rss_hfunc, 4242 .get_stats_msg = ice_vc_get_stats_msg, 4243 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 4244 .add_vlan_msg = ice_vc_add_vlan_msg, 4245 .remove_vlan_msg = ice_vc_remove_vlan_msg, 4246 .query_rxdid = ice_vc_query_rxdid, 4247 .get_rss_hena = ice_vc_get_rss_hena, 4248 .set_rss_hena_msg = ice_vc_set_rss_hena, 4249 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 4250 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 4251 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 4252 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 4253 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 4254 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 4255 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 4256 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 4257 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 4258 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 4259 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 4260 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 4261 }; 4262 4263 /** 4264 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 4265 * @vf: the VF to switch ops 4266 */ 4267 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 4268 { 4269 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 4270 } 4271 4272 /** 4273 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 4274 * @vf: the VF to check 4275 * @mbxdata: data about the state of the mailbox 4276 * 4277 * Detect if a given VF might be malicious and attempting to overflow the PF 4278 * mailbox. If so, log a warning message and ignore this event. 4279 */ 4280 static bool 4281 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 4282 { 4283 bool report_malvf = false; 4284 struct device *dev; 4285 struct ice_pf *pf; 4286 int status; 4287 4288 pf = vf->pf; 4289 dev = ice_pf_to_dev(pf); 4290 4291 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 4292 return vf->mbx_info.malicious; 4293 4294 /* check to see if we have a newly malicious VF */ 4295 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 4296 &report_malvf); 4297 if (status) 4298 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 4299 vf->vf_id, vf->dev_lan_addr, status); 4300 4301 if (report_malvf) { 4302 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 4303 u8 zero_addr[ETH_ALEN] = {}; 4304 4305 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 4306 vf->dev_lan_addr, 4307 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 4308 } 4309 4310 return vf->mbx_info.malicious; 4311 } 4312 4313 /** 4314 * ice_vc_process_vf_msg - Process request from VF 4315 * @pf: pointer to the PF structure 4316 * @event: pointer to the AQ event 4317 * @mbxdata: information used to detect VF attempting mailbox overflow 4318 * 4319 * Called from the common asq/arq handler to process request from VF. When this 4320 * flow is used for devices with hardware VF to PF message queue overflow 4321 * support (ICE_F_MBX_LIMIT) mbxdata is set to NULL and ice_is_malicious_vf 4322 * check is skipped. 4323 */ 4324 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 4325 struct ice_mbx_data *mbxdata) 4326 { 4327 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 4328 s16 vf_id = le16_to_cpu(event->desc.retval); 4329 const struct ice_virtchnl_ops *ops; 4330 u16 msglen = event->msg_len; 4331 u8 *msg = event->msg_buf; 4332 struct ice_vf *vf = NULL; 4333 struct device *dev; 4334 int err = 0; 4335 4336 dev = ice_pf_to_dev(pf); 4337 4338 vf = ice_get_vf_by_id(pf, vf_id); 4339 if (!vf) { 4340 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 4341 vf_id, v_opcode, msglen); 4342 return; 4343 } 4344 4345 mutex_lock(&vf->cfg_lock); 4346 4347 /* Check if the VF is trying to overflow the mailbox */ 4348 if (mbxdata && ice_is_malicious_vf(vf, mbxdata)) 4349 goto finish; 4350 4351 /* Check if VF is disabled. */ 4352 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 4353 err = -EPERM; 4354 goto error_handler; 4355 } 4356 4357 ops = vf->virtchnl_ops; 4358 4359 /* Perform basic checks on the msg */ 4360 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 4361 if (err) { 4362 if (err == VIRTCHNL_STATUS_ERR_PARAM) 4363 err = -EPERM; 4364 else 4365 err = -EINVAL; 4366 } 4367 4368 error_handler: 4369 if (err) { 4370 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 4371 NULL, 0); 4372 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 4373 vf_id, v_opcode, msglen, err); 4374 goto finish; 4375 } 4376 4377 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 4378 ice_vc_send_msg_to_vf(vf, v_opcode, 4379 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 4380 0); 4381 goto finish; 4382 } 4383 4384 switch (v_opcode) { 4385 case VIRTCHNL_OP_VERSION: 4386 err = ops->get_ver_msg(vf, msg); 4387 break; 4388 case VIRTCHNL_OP_GET_VF_RESOURCES: 4389 err = ops->get_vf_res_msg(vf, msg); 4390 if (ice_vf_init_vlan_stripping(vf)) 4391 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 4392 vf->vf_id); 4393 ice_vc_notify_vf_link_state(vf); 4394 break; 4395 case VIRTCHNL_OP_RESET_VF: 4396 ops->reset_vf(vf); 4397 break; 4398 case VIRTCHNL_OP_ADD_ETH_ADDR: 4399 err = ops->add_mac_addr_msg(vf, msg); 4400 break; 4401 case VIRTCHNL_OP_DEL_ETH_ADDR: 4402 err = ops->del_mac_addr_msg(vf, msg); 4403 break; 4404 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 4405 err = ops->cfg_qs_msg(vf, msg); 4406 break; 4407 case VIRTCHNL_OP_ENABLE_QUEUES: 4408 err = ops->ena_qs_msg(vf, msg); 4409 ice_vc_notify_vf_link_state(vf); 4410 break; 4411 case VIRTCHNL_OP_DISABLE_QUEUES: 4412 err = ops->dis_qs_msg(vf, msg); 4413 break; 4414 case VIRTCHNL_OP_REQUEST_QUEUES: 4415 err = ops->request_qs_msg(vf, msg); 4416 break; 4417 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 4418 err = ops->cfg_irq_map_msg(vf, msg); 4419 break; 4420 case VIRTCHNL_OP_CONFIG_RSS_KEY: 4421 err = ops->config_rss_key(vf, msg); 4422 break; 4423 case VIRTCHNL_OP_CONFIG_RSS_LUT: 4424 err = ops->config_rss_lut(vf, msg); 4425 break; 4426 case VIRTCHNL_OP_CONFIG_RSS_HFUNC: 4427 err = ops->config_rss_hfunc(vf, msg); 4428 break; 4429 case VIRTCHNL_OP_GET_STATS: 4430 err = ops->get_stats_msg(vf, msg); 4431 break; 4432 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 4433 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4434 break; 4435 case VIRTCHNL_OP_ADD_VLAN: 4436 err = ops->add_vlan_msg(vf, msg); 4437 break; 4438 case VIRTCHNL_OP_DEL_VLAN: 4439 err = ops->remove_vlan_msg(vf, msg); 4440 break; 4441 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4442 err = ops->query_rxdid(vf); 4443 break; 4444 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4445 err = ops->get_rss_hena(vf); 4446 break; 4447 case VIRTCHNL_OP_SET_RSS_HENA: 4448 err = ops->set_rss_hena_msg(vf, msg); 4449 break; 4450 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4451 err = ops->ena_vlan_stripping(vf); 4452 break; 4453 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4454 err = ops->dis_vlan_stripping(vf); 4455 break; 4456 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4457 err = ops->add_fdir_fltr_msg(vf, msg); 4458 break; 4459 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4460 err = ops->del_fdir_fltr_msg(vf, msg); 4461 break; 4462 case VIRTCHNL_OP_ADD_RSS_CFG: 4463 err = ops->handle_rss_cfg_msg(vf, msg, true); 4464 break; 4465 case VIRTCHNL_OP_DEL_RSS_CFG: 4466 err = ops->handle_rss_cfg_msg(vf, msg, false); 4467 break; 4468 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4469 err = ops->get_offload_vlan_v2_caps(vf); 4470 break; 4471 case VIRTCHNL_OP_ADD_VLAN_V2: 4472 err = ops->add_vlan_v2_msg(vf, msg); 4473 break; 4474 case VIRTCHNL_OP_DEL_VLAN_V2: 4475 err = ops->remove_vlan_v2_msg(vf, msg); 4476 break; 4477 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4478 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4479 break; 4480 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4481 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4482 break; 4483 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4484 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4485 break; 4486 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4487 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4488 break; 4489 case VIRTCHNL_OP_GET_QOS_CAPS: 4490 err = ops->get_qos_caps(vf); 4491 break; 4492 case VIRTCHNL_OP_CONFIG_QUEUE_BW: 4493 err = ops->cfg_q_bw(vf, msg); 4494 break; 4495 case VIRTCHNL_OP_CONFIG_QUANTA: 4496 err = ops->cfg_q_quanta(vf, msg); 4497 break; 4498 case VIRTCHNL_OP_UNKNOWN: 4499 default: 4500 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4501 vf_id); 4502 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4503 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4504 NULL, 0); 4505 break; 4506 } 4507 if (err) { 4508 /* Helper function cares less about error return values here 4509 * as it is busy with pending work. 4510 */ 4511 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4512 vf_id, v_opcode, err); 4513 } 4514 4515 finish: 4516 mutex_unlock(&vf->cfg_lock); 4517 ice_put_vf(vf); 4518 } 4519