1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_VLAN; 444 445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 446 vsi = ice_get_vf_vsi(vf); 447 if (!vsi) { 448 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 449 goto err; 450 } 451 452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 453 vf->driver_caps); 454 455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) 456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 457 458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 460 461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 463 464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 && 465 vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 485 486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC; 488 489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 491 492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 494 495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 497 498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_QOS) 499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_QOS; 500 501 if (vf->driver_caps & VIRTCHNL_VF_CAP_PTP) 502 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_PTP; 503 504 vfres->num_vsis = 1; 505 /* Tx and Rx queue are equal for VF */ 506 vfres->num_queue_pairs = vsi->num_txq; 507 vfres->max_vectors = vf->num_msix; 508 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 509 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 510 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 511 512 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID; 513 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 514 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 515 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 516 vf->hw_lan_addr); 517 518 /* match guest capabilities */ 519 vf->driver_caps = vfres->vf_cap_flags; 520 521 ice_vc_set_caps_allowlist(vf); 522 ice_vc_set_working_allowlist(vf); 523 524 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 525 526 err: 527 /* send the response back to the VF */ 528 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 529 (u8 *)vfres, len); 530 531 kfree(vfres); 532 return ret; 533 } 534 535 /** 536 * ice_vc_reset_vf_msg 537 * @vf: pointer to the VF info 538 * 539 * called from the VF to reset itself, 540 * unlike other virtchnl messages, PF driver 541 * doesn't send the response back to the VF 542 */ 543 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 544 { 545 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 546 ice_reset_vf(vf, 0); 547 } 548 549 /** 550 * ice_vc_isvalid_vsi_id 551 * @vf: pointer to the VF info 552 * @vsi_id: VF relative VSI ID 553 * 554 * check for the valid VSI ID 555 */ 556 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 557 { 558 return vsi_id == ICE_VF_VSI_ID; 559 } 560 561 /** 562 * ice_vc_isvalid_q_id 563 * @vsi: VSI to check queue ID against 564 * @qid: VSI relative queue ID 565 * 566 * check for the valid queue ID 567 */ 568 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid) 569 { 570 /* allocated Tx and Rx queues should be always equal for VF VSI */ 571 return qid < vsi->alloc_txq; 572 } 573 574 /** 575 * ice_vc_isvalid_ring_len 576 * @ring_len: length of ring 577 * 578 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 579 * or zero 580 */ 581 static bool ice_vc_isvalid_ring_len(u16 ring_len) 582 { 583 return ring_len == 0 || 584 (ring_len >= ICE_MIN_NUM_DESC && 585 ring_len <= ICE_MAX_NUM_DESC && 586 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 587 } 588 589 /** 590 * ice_vc_validate_pattern 591 * @vf: pointer to the VF info 592 * @proto: virtchnl protocol headers 593 * 594 * validate the pattern is supported or not. 595 * 596 * Return: true on success, false on error. 597 */ 598 bool 599 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 600 { 601 bool is_ipv4 = false; 602 bool is_ipv6 = false; 603 bool is_udp = false; 604 u16 ptype = -1; 605 int i = 0; 606 607 while (i < proto->count && 608 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 609 switch (proto->proto_hdr[i].type) { 610 case VIRTCHNL_PROTO_HDR_ETH: 611 ptype = ICE_PTYPE_MAC_PAY; 612 break; 613 case VIRTCHNL_PROTO_HDR_IPV4: 614 ptype = ICE_PTYPE_IPV4_PAY; 615 is_ipv4 = true; 616 break; 617 case VIRTCHNL_PROTO_HDR_IPV6: 618 ptype = ICE_PTYPE_IPV6_PAY; 619 is_ipv6 = true; 620 break; 621 case VIRTCHNL_PROTO_HDR_UDP: 622 if (is_ipv4) 623 ptype = ICE_PTYPE_IPV4_UDP_PAY; 624 else if (is_ipv6) 625 ptype = ICE_PTYPE_IPV6_UDP_PAY; 626 is_udp = true; 627 break; 628 case VIRTCHNL_PROTO_HDR_TCP: 629 if (is_ipv4) 630 ptype = ICE_PTYPE_IPV4_TCP_PAY; 631 else if (is_ipv6) 632 ptype = ICE_PTYPE_IPV6_TCP_PAY; 633 break; 634 case VIRTCHNL_PROTO_HDR_SCTP: 635 if (is_ipv4) 636 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 637 else if (is_ipv6) 638 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 639 break; 640 case VIRTCHNL_PROTO_HDR_GTPU_IP: 641 case VIRTCHNL_PROTO_HDR_GTPU_EH: 642 if (is_ipv4) 643 ptype = ICE_MAC_IPV4_GTPU; 644 else if (is_ipv6) 645 ptype = ICE_MAC_IPV6_GTPU; 646 goto out; 647 case VIRTCHNL_PROTO_HDR_L2TPV3: 648 if (is_ipv4) 649 ptype = ICE_MAC_IPV4_L2TPV3; 650 else if (is_ipv6) 651 ptype = ICE_MAC_IPV6_L2TPV3; 652 goto out; 653 case VIRTCHNL_PROTO_HDR_ESP: 654 if (is_ipv4) 655 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 656 ICE_MAC_IPV4_ESP; 657 else if (is_ipv6) 658 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 659 ICE_MAC_IPV6_ESP; 660 goto out; 661 case VIRTCHNL_PROTO_HDR_AH: 662 if (is_ipv4) 663 ptype = ICE_MAC_IPV4_AH; 664 else if (is_ipv6) 665 ptype = ICE_MAC_IPV6_AH; 666 goto out; 667 case VIRTCHNL_PROTO_HDR_PFCP: 668 if (is_ipv4) 669 ptype = ICE_MAC_IPV4_PFCP_SESSION; 670 else if (is_ipv6) 671 ptype = ICE_MAC_IPV6_PFCP_SESSION; 672 goto out; 673 default: 674 break; 675 } 676 i++; 677 } 678 679 out: 680 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 681 } 682 683 /** 684 * ice_vc_parse_rss_cfg - parses hash fields and headers from 685 * a specific virtchnl RSS cfg 686 * @hw: pointer to the hardware 687 * @rss_cfg: pointer to the virtchnl RSS cfg 688 * @hash_cfg: pointer to the HW hash configuration 689 * 690 * Return true if all the protocol header and hash fields in the RSS cfg could 691 * be parsed, else return false 692 * 693 * This function parses the virtchnl RSS cfg to be the intended 694 * hash fields and the intended header for RSS configuration 695 */ 696 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw, 697 struct virtchnl_rss_cfg *rss_cfg, 698 struct ice_rss_hash_cfg *hash_cfg) 699 { 700 const struct ice_vc_hash_field_match_type *hf_list; 701 const struct ice_vc_hdr_match_type *hdr_list; 702 int i, hf_list_len, hdr_list_len; 703 u32 *addl_hdrs = &hash_cfg->addl_hdrs; 704 u64 *hash_flds = &hash_cfg->hash_flds; 705 706 /* set outer layer RSS as default */ 707 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS; 708 709 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 710 hash_cfg->symm = true; 711 else 712 hash_cfg->symm = false; 713 714 hf_list = ice_vc_hash_field_list; 715 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 716 hdr_list = ice_vc_hdr_list; 717 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 718 719 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 720 struct virtchnl_proto_hdr *proto_hdr = 721 &rss_cfg->proto_hdrs.proto_hdr[i]; 722 bool hdr_found = false; 723 int j; 724 725 /* Find matched ice headers according to virtchnl headers. */ 726 for (j = 0; j < hdr_list_len; j++) { 727 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 728 729 if (proto_hdr->type == hdr_map.vc_hdr) { 730 *addl_hdrs |= hdr_map.ice_hdr; 731 hdr_found = true; 732 } 733 } 734 735 if (!hdr_found) 736 return false; 737 738 /* Find matched ice hash fields according to 739 * virtchnl hash fields. 740 */ 741 for (j = 0; j < hf_list_len; j++) { 742 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 743 744 if (proto_hdr->type == hf_map.vc_hdr && 745 proto_hdr->field_selector == hf_map.vc_hash_field) { 746 *hash_flds |= hf_map.ice_hash_field; 747 break; 748 } 749 } 750 } 751 752 return true; 753 } 754 755 /** 756 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 757 * RSS offloads 758 * @caps: VF driver negotiated capabilities 759 * 760 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 761 * else return false 762 */ 763 static bool ice_vf_adv_rss_offload_ena(u32 caps) 764 { 765 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 766 } 767 768 /** 769 * ice_vc_handle_rss_cfg 770 * @vf: pointer to the VF info 771 * @msg: pointer to the message buffer 772 * @add: add a RSS config if true, otherwise delete a RSS config 773 * 774 * This function adds/deletes a RSS config 775 */ 776 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 777 { 778 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 779 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 780 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 781 struct device *dev = ice_pf_to_dev(vf->pf); 782 struct ice_hw *hw = &vf->pf->hw; 783 struct ice_vsi *vsi; 784 785 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 786 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 787 vf->vf_id); 788 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 789 goto error_param; 790 } 791 792 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 793 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 794 vf->vf_id); 795 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 796 goto error_param; 797 } 798 799 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 800 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 801 goto error_param; 802 } 803 804 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 805 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 806 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 807 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 808 vf->vf_id); 809 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 810 goto error_param; 811 } 812 813 vsi = ice_get_vf_vsi(vf); 814 if (!vsi) { 815 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 816 goto error_param; 817 } 818 819 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 820 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 821 goto error_param; 822 } 823 824 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 825 struct ice_vsi_ctx *ctx; 826 u8 lut_type, hash_type; 827 int status; 828 829 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 830 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR : 831 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 832 833 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 834 if (!ctx) { 835 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 836 goto error_param; 837 } 838 839 ctx->info.q_opt_rss = 840 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 841 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 842 843 /* Preserve existing queueing option setting */ 844 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 845 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 846 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 847 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 848 849 ctx->info.valid_sections = 850 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 851 852 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 853 if (status) { 854 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 855 status, ice_aq_str(hw->adminq.sq_last_status)); 856 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 857 } else { 858 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 859 } 860 861 kfree(ctx); 862 } else { 863 struct ice_rss_hash_cfg cfg; 864 865 /* Only check for none raw pattern case */ 866 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 867 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 868 goto error_param; 869 } 870 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 871 cfg.hash_flds = ICE_HASH_INVALID; 872 cfg.hdr_type = ICE_RSS_ANY_HEADERS; 873 874 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) { 875 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 876 goto error_param; 877 } 878 879 if (add) { 880 if (ice_add_rss_cfg(hw, vsi, &cfg)) { 881 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 882 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 883 vsi->vsi_num, v_ret); 884 } 885 } else { 886 int status; 887 888 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg); 889 /* We just ignore -ENOENT, because if two configurations 890 * share the same profile remove one of them actually 891 * removes both, since the profile is deleted. 892 */ 893 if (status && status != -ENOENT) { 894 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 895 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 896 vf->vf_id, status); 897 } 898 } 899 } 900 901 error_param: 902 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 903 } 904 905 /** 906 * ice_vc_config_rss_key 907 * @vf: pointer to the VF info 908 * @msg: pointer to the msg buffer 909 * 910 * Configure the VF's RSS key 911 */ 912 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 913 { 914 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 915 struct virtchnl_rss_key *vrk = 916 (struct virtchnl_rss_key *)msg; 917 struct ice_vsi *vsi; 918 919 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 920 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 921 goto error_param; 922 } 923 924 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 925 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 926 goto error_param; 927 } 928 929 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 930 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 931 goto error_param; 932 } 933 934 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 935 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 936 goto error_param; 937 } 938 939 vsi = ice_get_vf_vsi(vf); 940 if (!vsi) { 941 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 942 goto error_param; 943 } 944 945 if (ice_set_rss_key(vsi, vrk->key)) 946 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 947 error_param: 948 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 949 NULL, 0); 950 } 951 952 /** 953 * ice_vc_config_rss_lut 954 * @vf: pointer to the VF info 955 * @msg: pointer to the msg buffer 956 * 957 * Configure the VF's RSS LUT 958 */ 959 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 960 { 961 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 962 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 963 struct ice_vsi *vsi; 964 965 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 966 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 967 goto error_param; 968 } 969 970 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 971 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 972 goto error_param; 973 } 974 975 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 976 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 977 goto error_param; 978 } 979 980 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 981 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 982 goto error_param; 983 } 984 985 vsi = ice_get_vf_vsi(vf); 986 if (!vsi) { 987 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 988 goto error_param; 989 } 990 991 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 992 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 993 error_param: 994 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 995 NULL, 0); 996 } 997 998 /** 999 * ice_vc_config_rss_hfunc 1000 * @vf: pointer to the VF info 1001 * @msg: pointer to the msg buffer 1002 * 1003 * Configure the VF's RSS Hash function 1004 */ 1005 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg) 1006 { 1007 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg; 1008 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1009 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1010 struct ice_vsi *vsi; 1011 1012 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1013 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1014 goto error_param; 1015 } 1016 1017 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) { 1018 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1019 goto error_param; 1020 } 1021 1022 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 1023 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1024 goto error_param; 1025 } 1026 1027 vsi = ice_get_vf_vsi(vf); 1028 if (!vsi) { 1029 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1030 goto error_param; 1031 } 1032 1033 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 1034 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ; 1035 1036 if (ice_set_rss_hfunc(vsi, hfunc)) 1037 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1038 error_param: 1039 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret, 1040 NULL, 0); 1041 } 1042 1043 /** 1044 * ice_vc_get_qos_caps - Get current QoS caps from PF 1045 * @vf: pointer to the VF info 1046 * 1047 * Get VF's QoS capabilities, such as TC number, arbiter and 1048 * bandwidth from PF. 1049 * 1050 * Return: 0 on success or negative error value. 1051 */ 1052 static int ice_vc_get_qos_caps(struct ice_vf *vf) 1053 { 1054 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1055 struct virtchnl_qos_cap_list *cap_list = NULL; 1056 u8 tc_prio[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1057 struct virtchnl_qos_cap_elem *cfg = NULL; 1058 struct ice_vsi_ctx *vsi_ctx; 1059 struct ice_pf *pf = vf->pf; 1060 struct ice_port_info *pi; 1061 struct ice_vsi *vsi; 1062 u8 numtc, tc; 1063 u16 len = 0; 1064 int ret, i; 1065 1066 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1067 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1068 goto err; 1069 } 1070 1071 vsi = ice_get_vf_vsi(vf); 1072 if (!vsi) { 1073 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1074 goto err; 1075 } 1076 1077 pi = pf->hw.port_info; 1078 numtc = vsi->tc_cfg.numtc; 1079 1080 vsi_ctx = ice_get_vsi_ctx(pi->hw, vf->lan_vsi_idx); 1081 if (!vsi_ctx) { 1082 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1083 goto err; 1084 } 1085 1086 len = struct_size(cap_list, cap, numtc); 1087 cap_list = kzalloc(len, GFP_KERNEL); 1088 if (!cap_list) { 1089 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 1090 len = 0; 1091 goto err; 1092 } 1093 1094 cap_list->vsi_id = vsi->vsi_num; 1095 cap_list->num_elem = numtc; 1096 1097 /* Store the UP2TC configuration from DCB to a user priority bitmap 1098 * of each TC. Each element of prio_of_tc represents one TC. Each 1099 * bitmap indicates the user priorities belong to this TC. 1100 */ 1101 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 1102 tc = pi->qos_cfg.local_dcbx_cfg.etscfg.prio_table[i]; 1103 tc_prio[tc] |= BIT(i); 1104 } 1105 1106 for (i = 0; i < numtc; i++) { 1107 cfg = &cap_list->cap[i]; 1108 cfg->tc_num = i; 1109 cfg->tc_prio = tc_prio[i]; 1110 cfg->arbiter = pi->qos_cfg.local_dcbx_cfg.etscfg.tsatable[i]; 1111 cfg->weight = VIRTCHNL_STRICT_WEIGHT; 1112 cfg->type = VIRTCHNL_BW_SHAPER; 1113 cfg->shaper.committed = vsi_ctx->sched.bw_t_info[i].cir_bw.bw; 1114 cfg->shaper.peak = vsi_ctx->sched.bw_t_info[i].eir_bw.bw; 1115 } 1116 1117 err: 1118 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_QOS_CAPS, v_ret, 1119 (u8 *)cap_list, len); 1120 kfree(cap_list); 1121 return ret; 1122 } 1123 1124 /** 1125 * ice_vf_cfg_qs_bw - Configure per queue bandwidth 1126 * @vf: pointer to the VF info 1127 * @num_queues: number of queues to be configured 1128 * 1129 * Configure per queue bandwidth. 1130 * 1131 * Return: 0 on success or negative error value. 1132 */ 1133 static int ice_vf_cfg_qs_bw(struct ice_vf *vf, u16 num_queues) 1134 { 1135 struct ice_hw *hw = &vf->pf->hw; 1136 struct ice_vsi *vsi; 1137 int ret; 1138 u16 i; 1139 1140 vsi = ice_get_vf_vsi(vf); 1141 if (!vsi) 1142 return -EINVAL; 1143 1144 for (i = 0; i < num_queues; i++) { 1145 u32 p_rate, min_rate; 1146 u8 tc; 1147 1148 p_rate = vf->qs_bw[i].peak; 1149 min_rate = vf->qs_bw[i].committed; 1150 tc = vf->qs_bw[i].tc; 1151 if (p_rate) 1152 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc, 1153 vf->qs_bw[i].queue_id, 1154 ICE_MAX_BW, p_rate); 1155 else 1156 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc, 1157 vf->qs_bw[i].queue_id, 1158 ICE_MAX_BW); 1159 if (ret) 1160 return ret; 1161 1162 if (min_rate) 1163 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc, 1164 vf->qs_bw[i].queue_id, 1165 ICE_MIN_BW, min_rate); 1166 else 1167 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc, 1168 vf->qs_bw[i].queue_id, 1169 ICE_MIN_BW); 1170 1171 if (ret) 1172 return ret; 1173 } 1174 1175 return 0; 1176 } 1177 1178 /** 1179 * ice_vf_cfg_q_quanta_profile - Configure quanta profile 1180 * @vf: pointer to the VF info 1181 * @quanta_prof_idx: pointer to the quanta profile index 1182 * @quanta_size: quanta size to be set 1183 * 1184 * This function chooses available quanta profile and configures the register. 1185 * The quanta profile is evenly divided by the number of device ports, and then 1186 * available to the specific PF and VFs. The first profile for each PF is a 1187 * reserved default profile. Only quanta size of the rest unused profile can be 1188 * modified. 1189 * 1190 * Return: 0 on success or negative error value. 1191 */ 1192 static int ice_vf_cfg_q_quanta_profile(struct ice_vf *vf, u16 quanta_size, 1193 u16 *quanta_prof_idx) 1194 { 1195 const u16 n_desc = calc_quanta_desc(quanta_size); 1196 struct ice_hw *hw = &vf->pf->hw; 1197 const u16 n_cmd = 2 * n_desc; 1198 struct ice_pf *pf = vf->pf; 1199 u16 per_pf, begin_id; 1200 u8 n_used; 1201 u32 reg; 1202 1203 begin_id = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / hw->dev_caps.num_funcs * 1204 hw->logical_pf_id; 1205 1206 if (quanta_size == ICE_DFLT_QUANTA) { 1207 *quanta_prof_idx = begin_id; 1208 } else { 1209 per_pf = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / 1210 hw->dev_caps.num_funcs; 1211 n_used = pf->num_quanta_prof_used; 1212 if (n_used < per_pf) { 1213 *quanta_prof_idx = begin_id + 1 + n_used; 1214 pf->num_quanta_prof_used++; 1215 } else { 1216 return -EINVAL; 1217 } 1218 } 1219 1220 reg = FIELD_PREP(GLCOMM_QUANTA_PROF_QUANTA_SIZE_M, quanta_size) | 1221 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_CMD_M, n_cmd) | 1222 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_DESC_M, n_desc); 1223 wr32(hw, GLCOMM_QUANTA_PROF(*quanta_prof_idx), reg); 1224 1225 return 0; 1226 } 1227 1228 /** 1229 * ice_vc_cfg_promiscuous_mode_msg 1230 * @vf: pointer to the VF info 1231 * @msg: pointer to the msg buffer 1232 * 1233 * called from the VF to configure VF VSIs promiscuous mode 1234 */ 1235 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 1236 { 1237 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1238 bool rm_promisc, alluni = false, allmulti = false; 1239 struct virtchnl_promisc_info *info = 1240 (struct virtchnl_promisc_info *)msg; 1241 struct ice_vsi_vlan_ops *vlan_ops; 1242 int mcast_err = 0, ucast_err = 0; 1243 struct ice_pf *pf = vf->pf; 1244 struct ice_vsi *vsi; 1245 u8 mcast_m, ucast_m; 1246 struct device *dev; 1247 int ret = 0; 1248 1249 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1250 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1251 goto error_param; 1252 } 1253 1254 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1255 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1256 goto error_param; 1257 } 1258 1259 vsi = ice_get_vf_vsi(vf); 1260 if (!vsi) { 1261 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1262 goto error_param; 1263 } 1264 1265 dev = ice_pf_to_dev(pf); 1266 if (!ice_is_vf_trusted(vf)) { 1267 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1268 vf->vf_id); 1269 /* Leave v_ret alone, lie to the VF on purpose. */ 1270 goto error_param; 1271 } 1272 1273 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1274 alluni = true; 1275 1276 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1277 allmulti = true; 1278 1279 rm_promisc = !allmulti && !alluni; 1280 1281 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1282 if (rm_promisc) 1283 ret = vlan_ops->ena_rx_filtering(vsi); 1284 else 1285 ret = vlan_ops->dis_rx_filtering(vsi); 1286 if (ret) { 1287 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1288 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1289 goto error_param; 1290 } 1291 1292 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1293 1294 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1295 if (alluni) { 1296 /* in this case we're turning on promiscuous mode */ 1297 ret = ice_set_dflt_vsi(vsi); 1298 } else { 1299 /* in this case we're turning off promiscuous mode */ 1300 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1301 ret = ice_clear_dflt_vsi(vsi); 1302 } 1303 1304 /* in this case we're turning on/off only 1305 * allmulticast 1306 */ 1307 if (allmulti) 1308 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1309 else 1310 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1311 1312 if (ret) { 1313 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1314 vf->vf_id, ret); 1315 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1316 goto error_param; 1317 } 1318 } else { 1319 if (alluni) 1320 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1321 else 1322 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1323 1324 if (allmulti) 1325 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1326 else 1327 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1328 1329 if (ucast_err || mcast_err) 1330 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1331 } 1332 1333 if (!mcast_err) { 1334 if (allmulti && 1335 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1336 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1337 vf->vf_id); 1338 else if (!allmulti && 1339 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1340 vf->vf_states)) 1341 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1342 vf->vf_id); 1343 } else { 1344 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1345 vf->vf_id, mcast_err); 1346 } 1347 1348 if (!ucast_err) { 1349 if (alluni && 1350 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1351 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1352 vf->vf_id); 1353 else if (!alluni && 1354 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1355 vf->vf_states)) 1356 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1357 vf->vf_id); 1358 } else { 1359 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1360 vf->vf_id, ucast_err); 1361 } 1362 1363 error_param: 1364 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1365 v_ret, NULL, 0); 1366 } 1367 1368 /** 1369 * ice_vc_get_stats_msg 1370 * @vf: pointer to the VF info 1371 * @msg: pointer to the msg buffer 1372 * 1373 * called from the VF to get VSI stats 1374 */ 1375 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1376 { 1377 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1378 struct virtchnl_queue_select *vqs = 1379 (struct virtchnl_queue_select *)msg; 1380 struct ice_eth_stats stats = { 0 }; 1381 struct ice_vsi *vsi; 1382 1383 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1384 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1385 goto error_param; 1386 } 1387 1388 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1389 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1390 goto error_param; 1391 } 1392 1393 vsi = ice_get_vf_vsi(vf); 1394 if (!vsi) { 1395 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1396 goto error_param; 1397 } 1398 1399 ice_update_eth_stats(vsi); 1400 1401 stats = vsi->eth_stats; 1402 1403 error_param: 1404 /* send the response to the VF */ 1405 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1406 (u8 *)&stats, sizeof(stats)); 1407 } 1408 1409 /** 1410 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1411 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1412 * 1413 * Return true on successful validation, else false 1414 */ 1415 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1416 { 1417 if ((!vqs->rx_queues && !vqs->tx_queues) || 1418 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1419 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1420 return false; 1421 1422 return true; 1423 } 1424 1425 /** 1426 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1427 * @vsi: VSI of the VF to configure 1428 * @q_idx: VF queue index used to determine the queue in the PF's space 1429 */ 1430 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1431 { 1432 struct ice_hw *hw = &vsi->back->hw; 1433 u32 pfq = vsi->txq_map[q_idx]; 1434 u32 reg; 1435 1436 reg = rd32(hw, QINT_TQCTL(pfq)); 1437 1438 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1439 * this is most likely a poll mode VF driver, so don't enable an 1440 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1441 */ 1442 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1443 return; 1444 1445 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1446 } 1447 1448 /** 1449 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1450 * @vsi: VSI of the VF to configure 1451 * @q_idx: VF queue index used to determine the queue in the PF's space 1452 */ 1453 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1454 { 1455 struct ice_hw *hw = &vsi->back->hw; 1456 u32 pfq = vsi->rxq_map[q_idx]; 1457 u32 reg; 1458 1459 reg = rd32(hw, QINT_RQCTL(pfq)); 1460 1461 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1462 * this is most likely a poll mode VF driver, so don't enable an 1463 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1464 */ 1465 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1466 return; 1467 1468 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1469 } 1470 1471 /** 1472 * ice_vc_ena_qs_msg 1473 * @vf: pointer to the VF info 1474 * @msg: pointer to the msg buffer 1475 * 1476 * called from the VF to enable all or specific queue(s) 1477 */ 1478 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1479 { 1480 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1481 struct virtchnl_queue_select *vqs = 1482 (struct virtchnl_queue_select *)msg; 1483 struct ice_vsi *vsi; 1484 unsigned long q_map; 1485 u16 vf_q_id; 1486 1487 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1488 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1489 goto error_param; 1490 } 1491 1492 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1493 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1494 goto error_param; 1495 } 1496 1497 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1498 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1499 goto error_param; 1500 } 1501 1502 vsi = ice_get_vf_vsi(vf); 1503 if (!vsi) { 1504 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1505 goto error_param; 1506 } 1507 1508 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1509 * Tx queue group list was configured and the context bits were 1510 * programmed using ice_vsi_cfg_txqs 1511 */ 1512 q_map = vqs->rx_queues; 1513 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1514 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1515 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1516 goto error_param; 1517 } 1518 1519 /* Skip queue if enabled */ 1520 if (test_bit(vf_q_id, vf->rxq_ena)) 1521 continue; 1522 1523 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1524 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1525 vf_q_id, vsi->vsi_num); 1526 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1527 goto error_param; 1528 } 1529 1530 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1531 set_bit(vf_q_id, vf->rxq_ena); 1532 } 1533 1534 q_map = vqs->tx_queues; 1535 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1536 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1537 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1538 goto error_param; 1539 } 1540 1541 /* Skip queue if enabled */ 1542 if (test_bit(vf_q_id, vf->txq_ena)) 1543 continue; 1544 1545 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1546 set_bit(vf_q_id, vf->txq_ena); 1547 } 1548 1549 /* Set flag to indicate that queues are enabled */ 1550 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1551 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1552 1553 error_param: 1554 /* send the response to the VF */ 1555 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1556 NULL, 0); 1557 } 1558 1559 /** 1560 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1561 * @vf: VF to disable queue for 1562 * @vsi: VSI for the VF 1563 * @q_id: VF relative (0-based) queue ID 1564 * 1565 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1566 * disabled then clear q_id bit in the enabled queues bitmap and return 1567 * success. Otherwise return error. 1568 */ 1569 static int 1570 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1571 { 1572 struct ice_txq_meta txq_meta = { 0 }; 1573 struct ice_tx_ring *ring; 1574 int err; 1575 1576 if (!test_bit(q_id, vf->txq_ena)) 1577 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1578 q_id, vsi->vsi_num); 1579 1580 ring = vsi->tx_rings[q_id]; 1581 if (!ring) 1582 return -EINVAL; 1583 1584 ice_fill_txq_meta(vsi, ring, &txq_meta); 1585 1586 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1587 if (err) { 1588 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1589 q_id, vsi->vsi_num); 1590 return err; 1591 } 1592 1593 /* Clear enabled queues flag */ 1594 clear_bit(q_id, vf->txq_ena); 1595 1596 return 0; 1597 } 1598 1599 /** 1600 * ice_vc_dis_qs_msg 1601 * @vf: pointer to the VF info 1602 * @msg: pointer to the msg buffer 1603 * 1604 * called from the VF to disable all or specific queue(s) 1605 */ 1606 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1607 { 1608 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1609 struct virtchnl_queue_select *vqs = 1610 (struct virtchnl_queue_select *)msg; 1611 struct ice_vsi *vsi; 1612 unsigned long q_map; 1613 u16 vf_q_id; 1614 1615 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1616 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1617 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1618 goto error_param; 1619 } 1620 1621 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1622 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1623 goto error_param; 1624 } 1625 1626 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1627 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1628 goto error_param; 1629 } 1630 1631 vsi = ice_get_vf_vsi(vf); 1632 if (!vsi) { 1633 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1634 goto error_param; 1635 } 1636 1637 if (vqs->tx_queues) { 1638 q_map = vqs->tx_queues; 1639 1640 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1641 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1642 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1643 goto error_param; 1644 } 1645 1646 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1647 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1648 goto error_param; 1649 } 1650 } 1651 } 1652 1653 q_map = vqs->rx_queues; 1654 /* speed up Rx queue disable by batching them if possible */ 1655 if (q_map && 1656 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1657 if (ice_vsi_stop_all_rx_rings(vsi)) { 1658 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1659 vsi->vsi_num); 1660 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1661 goto error_param; 1662 } 1663 1664 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1665 } else if (q_map) { 1666 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1667 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1668 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1669 goto error_param; 1670 } 1671 1672 /* Skip queue if not enabled */ 1673 if (!test_bit(vf_q_id, vf->rxq_ena)) 1674 continue; 1675 1676 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1677 true)) { 1678 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1679 vf_q_id, vsi->vsi_num); 1680 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1681 goto error_param; 1682 } 1683 1684 /* Clear enabled queues flag */ 1685 clear_bit(vf_q_id, vf->rxq_ena); 1686 } 1687 } 1688 1689 /* Clear enabled queues flag */ 1690 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1691 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1692 1693 error_param: 1694 /* send the response to the VF */ 1695 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1696 NULL, 0); 1697 } 1698 1699 /** 1700 * ice_cfg_interrupt 1701 * @vf: pointer to the VF info 1702 * @vsi: the VSI being configured 1703 * @map: vector map for mapping vectors to queues 1704 * @q_vector: structure for interrupt vector 1705 * configure the IRQ to queue map 1706 */ 1707 static enum virtchnl_status_code 1708 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, 1709 struct virtchnl_vector_map *map, 1710 struct ice_q_vector *q_vector) 1711 { 1712 u16 vsi_q_id, vsi_q_id_idx; 1713 unsigned long qmap; 1714 1715 q_vector->num_ring_rx = 0; 1716 q_vector->num_ring_tx = 0; 1717 1718 qmap = map->rxq_map; 1719 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1720 vsi_q_id = vsi_q_id_idx; 1721 1722 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1723 return VIRTCHNL_STATUS_ERR_PARAM; 1724 1725 q_vector->num_ring_rx++; 1726 q_vector->rx.itr_idx = map->rxitr_idx; 1727 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1728 ice_cfg_rxq_interrupt(vsi, vsi_q_id, 1729 q_vector->vf_reg_idx, 1730 q_vector->rx.itr_idx); 1731 } 1732 1733 qmap = map->txq_map; 1734 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1735 vsi_q_id = vsi_q_id_idx; 1736 1737 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1738 return VIRTCHNL_STATUS_ERR_PARAM; 1739 1740 q_vector->num_ring_tx++; 1741 q_vector->tx.itr_idx = map->txitr_idx; 1742 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1743 ice_cfg_txq_interrupt(vsi, vsi_q_id, 1744 q_vector->vf_reg_idx, 1745 q_vector->tx.itr_idx); 1746 } 1747 1748 return VIRTCHNL_STATUS_SUCCESS; 1749 } 1750 1751 /** 1752 * ice_vc_cfg_irq_map_msg 1753 * @vf: pointer to the VF info 1754 * @msg: pointer to the msg buffer 1755 * 1756 * called from the VF to configure the IRQ to queue map 1757 */ 1758 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1759 { 1760 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1761 u16 num_q_vectors_mapped, vsi_id, vector_id; 1762 struct virtchnl_irq_map_info *irqmap_info; 1763 struct virtchnl_vector_map *map; 1764 struct ice_vsi *vsi; 1765 int i; 1766 1767 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1768 num_q_vectors_mapped = irqmap_info->num_vectors; 1769 1770 /* Check to make sure number of VF vectors mapped is not greater than 1771 * number of VF vectors originally allocated, and check that 1772 * there is actually at least a single VF queue vector mapped 1773 */ 1774 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1775 vf->num_msix < num_q_vectors_mapped || 1776 !num_q_vectors_mapped) { 1777 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1778 goto error_param; 1779 } 1780 1781 vsi = ice_get_vf_vsi(vf); 1782 if (!vsi) { 1783 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1784 goto error_param; 1785 } 1786 1787 for (i = 0; i < num_q_vectors_mapped; i++) { 1788 struct ice_q_vector *q_vector; 1789 1790 map = &irqmap_info->vecmap[i]; 1791 1792 vector_id = map->vector_id; 1793 vsi_id = map->vsi_id; 1794 /* vector_id is always 0-based for each VF, and can never be 1795 * larger than or equal to the max allowed interrupts per VF 1796 */ 1797 if (!(vector_id < vf->num_msix) || 1798 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1799 (!vector_id && (map->rxq_map || map->txq_map))) { 1800 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1801 goto error_param; 1802 } 1803 1804 /* No need to map VF miscellaneous or rogue vector */ 1805 if (!vector_id) 1806 continue; 1807 1808 /* Subtract non queue vector from vector_id passed by VF 1809 * to get actual number of VSI queue vector array index 1810 */ 1811 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1812 if (!q_vector) { 1813 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1814 goto error_param; 1815 } 1816 1817 /* lookout for the invalid queue index */ 1818 v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector); 1819 if (v_ret) 1820 goto error_param; 1821 } 1822 1823 error_param: 1824 /* send the response to the VF */ 1825 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1826 NULL, 0); 1827 } 1828 1829 /** 1830 * ice_vc_cfg_q_bw - Configure per queue bandwidth 1831 * @vf: pointer to the VF info 1832 * @msg: pointer to the msg buffer which holds the command descriptor 1833 * 1834 * Configure VF queues bandwidth. 1835 * 1836 * Return: 0 on success or negative error value. 1837 */ 1838 static int ice_vc_cfg_q_bw(struct ice_vf *vf, u8 *msg) 1839 { 1840 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1841 struct virtchnl_queues_bw_cfg *qbw = 1842 (struct virtchnl_queues_bw_cfg *)msg; 1843 struct ice_vsi *vsi; 1844 u16 i; 1845 1846 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1847 !ice_vc_isvalid_vsi_id(vf, qbw->vsi_id)) { 1848 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1849 goto err; 1850 } 1851 1852 vsi = ice_get_vf_vsi(vf); 1853 if (!vsi) { 1854 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1855 goto err; 1856 } 1857 1858 if (qbw->num_queues > ICE_MAX_RSS_QS_PER_VF || 1859 qbw->num_queues > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1860 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n", 1861 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1862 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1863 goto err; 1864 } 1865 1866 for (i = 0; i < qbw->num_queues; i++) { 1867 if (qbw->cfg[i].shaper.peak != 0 && vf->max_tx_rate != 0 && 1868 qbw->cfg[i].shaper.peak > vf->max_tx_rate) 1869 dev_warn(ice_pf_to_dev(vf->pf), "The maximum queue %d rate limit configuration may not take effect because the maximum TX rate for VF-%d is %d\n", 1870 qbw->cfg[i].queue_id, vf->vf_id, 1871 vf->max_tx_rate); 1872 if (qbw->cfg[i].shaper.committed != 0 && vf->min_tx_rate != 0 && 1873 qbw->cfg[i].shaper.committed < vf->min_tx_rate) 1874 dev_warn(ice_pf_to_dev(vf->pf), "The minimum queue %d rate limit configuration may not take effect because the minimum TX rate for VF-%d is %d\n", 1875 qbw->cfg[i].queue_id, vf->vf_id, 1876 vf->max_tx_rate); 1877 } 1878 1879 for (i = 0; i < qbw->num_queues; i++) { 1880 vf->qs_bw[i].queue_id = qbw->cfg[i].queue_id; 1881 vf->qs_bw[i].peak = qbw->cfg[i].shaper.peak; 1882 vf->qs_bw[i].committed = qbw->cfg[i].shaper.committed; 1883 vf->qs_bw[i].tc = qbw->cfg[i].tc; 1884 } 1885 1886 if (ice_vf_cfg_qs_bw(vf, qbw->num_queues)) 1887 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1888 1889 err: 1890 /* send the response to the VF */ 1891 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUEUE_BW, 1892 v_ret, NULL, 0); 1893 } 1894 1895 /** 1896 * ice_vc_cfg_q_quanta - Configure per queue quanta 1897 * @vf: pointer to the VF info 1898 * @msg: pointer to the msg buffer which holds the command descriptor 1899 * 1900 * Configure VF queues quanta. 1901 * 1902 * Return: 0 on success or negative error value. 1903 */ 1904 static int ice_vc_cfg_q_quanta(struct ice_vf *vf, u8 *msg) 1905 { 1906 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1907 u16 quanta_prof_id, quanta_size, start_qid, end_qid, i; 1908 struct virtchnl_quanta_cfg *qquanta = 1909 (struct virtchnl_quanta_cfg *)msg; 1910 struct ice_vsi *vsi; 1911 int ret; 1912 1913 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1914 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1915 goto err; 1916 } 1917 1918 vsi = ice_get_vf_vsi(vf); 1919 if (!vsi) { 1920 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1921 goto err; 1922 } 1923 1924 end_qid = qquanta->queue_select.start_queue_id + 1925 qquanta->queue_select.num_queues; 1926 if (end_qid > ICE_MAX_RSS_QS_PER_VF || 1927 end_qid > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1928 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n", 1929 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1930 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1931 goto err; 1932 } 1933 1934 quanta_size = qquanta->quanta_size; 1935 if (quanta_size > ICE_MAX_QUANTA_SIZE || 1936 quanta_size < ICE_MIN_QUANTA_SIZE) { 1937 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1938 goto err; 1939 } 1940 1941 if (quanta_size % 64) { 1942 dev_err(ice_pf_to_dev(vf->pf), "quanta size should be the product of 64\n"); 1943 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1944 goto err; 1945 } 1946 1947 ret = ice_vf_cfg_q_quanta_profile(vf, quanta_size, 1948 &quanta_prof_id); 1949 if (ret) { 1950 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 1951 goto err; 1952 } 1953 1954 start_qid = qquanta->queue_select.start_queue_id; 1955 for (i = start_qid; i < end_qid; i++) 1956 vsi->tx_rings[i]->quanta_prof_id = quanta_prof_id; 1957 1958 err: 1959 /* send the response to the VF */ 1960 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUANTA, 1961 v_ret, NULL, 0); 1962 } 1963 1964 /** 1965 * ice_vc_cfg_qs_msg 1966 * @vf: pointer to the VF info 1967 * @msg: pointer to the msg buffer 1968 * 1969 * called from the VF to configure the Rx/Tx queues 1970 */ 1971 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1972 { 1973 struct virtchnl_vsi_queue_config_info *qci = 1974 (struct virtchnl_vsi_queue_config_info *)msg; 1975 struct virtchnl_queue_pair_info *qpi; 1976 struct ice_pf *pf = vf->pf; 1977 struct ice_lag *lag; 1978 struct ice_vsi *vsi; 1979 u8 act_prt, pri_prt; 1980 int i = -1, q_idx; 1981 bool ena_ts; 1982 1983 lag = pf->lag; 1984 mutex_lock(&pf->lag_mutex); 1985 act_prt = ICE_LAG_INVALID_PORT; 1986 pri_prt = pf->hw.port_info->lport; 1987 if (lag && lag->bonded && lag->primary) { 1988 act_prt = lag->active_port; 1989 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && 1990 lag->upper_netdev) 1991 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); 1992 else 1993 act_prt = ICE_LAG_INVALID_PORT; 1994 } 1995 1996 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1997 goto error_param; 1998 1999 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 2000 goto error_param; 2001 2002 vsi = ice_get_vf_vsi(vf); 2003 if (!vsi) 2004 goto error_param; 2005 2006 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 2007 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 2008 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 2009 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 2010 goto error_param; 2011 } 2012 2013 for (i = 0; i < qci->num_queue_pairs; i++) { 2014 if (!qci->qpair[i].rxq.crc_disable) 2015 continue; 2016 2017 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) || 2018 vf->vlan_strip_ena) 2019 goto error_param; 2020 } 2021 2022 for (i = 0; i < qci->num_queue_pairs; i++) { 2023 qpi = &qci->qpair[i]; 2024 if (qpi->txq.vsi_id != qci->vsi_id || 2025 qpi->rxq.vsi_id != qci->vsi_id || 2026 qpi->rxq.queue_id != qpi->txq.queue_id || 2027 qpi->txq.headwb_enabled || 2028 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 2029 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 2030 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) { 2031 goto error_param; 2032 } 2033 2034 q_idx = qpi->rxq.queue_id; 2035 2036 /* make sure selected "q_idx" is in valid range of queues 2037 * for selected "vsi" 2038 */ 2039 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 2040 goto error_param; 2041 } 2042 2043 /* copy Tx queue info from VF into VSI */ 2044 if (qpi->txq.ring_len > 0) { 2045 vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr; 2046 vsi->tx_rings[q_idx]->count = qpi->txq.ring_len; 2047 2048 /* Disable any existing queue first */ 2049 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 2050 goto error_param; 2051 2052 /* Configure a queue with the requested settings */ 2053 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 2054 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 2055 vf->vf_id, q_idx); 2056 goto error_param; 2057 } 2058 } 2059 2060 /* copy Rx queue info from VF into VSI */ 2061 if (qpi->rxq.ring_len > 0) { 2062 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 2063 struct ice_rx_ring *ring = vsi->rx_rings[q_idx]; 2064 u32 rxdid; 2065 2066 ring->dma = qpi->rxq.dma_ring_addr; 2067 ring->count = qpi->rxq.ring_len; 2068 2069 if (qpi->rxq.crc_disable) 2070 ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 2071 else 2072 ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 2073 2074 if (qpi->rxq.databuffer_size != 0 && 2075 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 2076 qpi->rxq.databuffer_size < 1024)) 2077 goto error_param; 2078 ring->rx_buf_len = qpi->rxq.databuffer_size; 2079 if (qpi->rxq.max_pkt_size > max_frame_size || 2080 qpi->rxq.max_pkt_size < 64) 2081 goto error_param; 2082 2083 ring->max_frame = qpi->rxq.max_pkt_size; 2084 /* add space for the port VLAN since the VF driver is 2085 * not expected to account for it in the MTU 2086 * calculation 2087 */ 2088 if (ice_vf_is_port_vlan_ena(vf)) 2089 ring->max_frame += VLAN_HLEN; 2090 2091 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 2092 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 2093 vf->vf_id, q_idx); 2094 goto error_param; 2095 } 2096 2097 /* If Rx flex desc is supported, select RXDID for Rx 2098 * queues. Otherwise, use legacy 32byte descriptor 2099 * format. Legacy 16byte descriptor is not supported. 2100 * If this RXDID is selected, return error. 2101 */ 2102 if (vf->driver_caps & 2103 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 2104 rxdid = qpi->rxq.rxdid; 2105 if (!(BIT(rxdid) & pf->supported_rxdids)) 2106 goto error_param; 2107 } else { 2108 rxdid = ICE_RXDID_LEGACY_1; 2109 } 2110 2111 ena_ts = ((vf->driver_caps & 2112 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) && 2113 (vf->driver_caps & VIRTCHNL_VF_CAP_PTP) && 2114 (qpi->rxq.flags & VIRTCHNL_PTP_RX_TSTAMP)); 2115 2116 ice_write_qrxflxp_cntxt(&vsi->back->hw, 2117 vsi->rxq_map[q_idx], rxdid, 2118 ICE_RXDID_PRIO, ena_ts); 2119 } 2120 } 2121 2122 if (lag && lag->bonded && lag->primary && 2123 act_prt != ICE_LAG_INVALID_PORT) 2124 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 2125 mutex_unlock(&pf->lag_mutex); 2126 2127 /* send the response to the VF */ 2128 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 2129 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 2130 error_param: 2131 /* disable whatever we can */ 2132 for (; i >= 0; i--) { 2133 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 2134 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 2135 vf->vf_id, i); 2136 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 2137 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 2138 vf->vf_id, i); 2139 } 2140 2141 if (lag && lag->bonded && lag->primary && 2142 act_prt != ICE_LAG_INVALID_PORT) 2143 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 2144 mutex_unlock(&pf->lag_mutex); 2145 2146 ice_lag_move_new_vf_nodes(vf); 2147 2148 /* send the response to the VF */ 2149 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 2150 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 2151 } 2152 2153 /** 2154 * ice_can_vf_change_mac 2155 * @vf: pointer to the VF info 2156 * 2157 * Return true if the VF is allowed to change its MAC filters, false otherwise 2158 */ 2159 static bool ice_can_vf_change_mac(struct ice_vf *vf) 2160 { 2161 /* If the VF MAC address has been set administratively (via the 2162 * ndo_set_vf_mac command), then deny permission to the VF to 2163 * add/delete unicast MAC addresses, unless the VF is trusted 2164 */ 2165 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 2166 return false; 2167 2168 return true; 2169 } 2170 2171 /** 2172 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 2173 * @vc_ether_addr: used to extract the type 2174 */ 2175 static u8 2176 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 2177 { 2178 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 2179 } 2180 2181 /** 2182 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 2183 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 2184 */ 2185 static bool 2186 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 2187 { 2188 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 2189 2190 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 2191 } 2192 2193 /** 2194 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 2195 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 2196 * 2197 * This function should only be called when the MAC address in 2198 * virtchnl_ether_addr is a valid unicast MAC 2199 */ 2200 static bool 2201 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 2202 { 2203 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 2204 2205 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 2206 } 2207 2208 /** 2209 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 2210 * @vf: VF to update 2211 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 2212 */ 2213 static void 2214 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 2215 { 2216 u8 *mac_addr = vc_ether_addr->addr; 2217 2218 if (!is_valid_ether_addr(mac_addr)) 2219 return; 2220 2221 /* only allow legacy VF drivers to set the device and hardware MAC if it 2222 * is zero and allow new VF drivers to set the hardware MAC if the type 2223 * was correctly specified over VIRTCHNL 2224 */ 2225 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 2226 is_zero_ether_addr(vf->hw_lan_addr)) || 2227 ice_is_vc_addr_primary(vc_ether_addr)) { 2228 ether_addr_copy(vf->dev_lan_addr, mac_addr); 2229 ether_addr_copy(vf->hw_lan_addr, mac_addr); 2230 } 2231 2232 /* hardware and device MACs are already set, but its possible that the 2233 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 2234 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 2235 * away for the legacy VF driver case as it will be updated in the 2236 * delete flow for this case 2237 */ 2238 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 2239 ether_addr_copy(vf->legacy_last_added_umac.addr, 2240 mac_addr); 2241 vf->legacy_last_added_umac.time_modified = jiffies; 2242 } 2243 } 2244 2245 /** 2246 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 2247 * @vf: pointer to the VF info 2248 * @vsi: pointer to the VF's VSI 2249 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 2250 */ 2251 static int 2252 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 2253 struct virtchnl_ether_addr *vc_ether_addr) 2254 { 2255 struct device *dev = ice_pf_to_dev(vf->pf); 2256 u8 *mac_addr = vc_ether_addr->addr; 2257 int ret; 2258 2259 /* device MAC already added */ 2260 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 2261 return 0; 2262 2263 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 2264 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 2265 return -EPERM; 2266 } 2267 2268 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 2269 if (ret == -EEXIST) { 2270 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 2271 vf->vf_id); 2272 /* don't return since we might need to update 2273 * the primary MAC in ice_vfhw_mac_add() below 2274 */ 2275 } else if (ret) { 2276 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 2277 mac_addr, vf->vf_id, ret); 2278 return ret; 2279 } else { 2280 vf->num_mac++; 2281 } 2282 2283 ice_vfhw_mac_add(vf, vc_ether_addr); 2284 2285 return ret; 2286 } 2287 2288 /** 2289 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 2290 * @last_added_umac: structure used to check expiration 2291 */ 2292 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 2293 { 2294 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 2295 return time_is_before_jiffies(last_added_umac->time_modified + 2296 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 2297 } 2298 2299 /** 2300 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 2301 * @vf: VF to update 2302 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 2303 * 2304 * only update cached hardware MAC for legacy VF drivers on delete 2305 * because we cannot guarantee order/type of MAC from the VF driver 2306 */ 2307 static void 2308 ice_update_legacy_cached_mac(struct ice_vf *vf, 2309 struct virtchnl_ether_addr *vc_ether_addr) 2310 { 2311 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 2312 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 2313 return; 2314 2315 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 2316 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 2317 } 2318 2319 /** 2320 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 2321 * @vf: VF to update 2322 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 2323 */ 2324 static void 2325 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 2326 { 2327 u8 *mac_addr = vc_ether_addr->addr; 2328 2329 if (!is_valid_ether_addr(mac_addr) || 2330 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2331 return; 2332 2333 /* allow the device MAC to be repopulated in the add flow and don't 2334 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 2335 * to be persistent on VM reboot and across driver unload/load, which 2336 * won't work if we clear the hardware MAC here 2337 */ 2338 eth_zero_addr(vf->dev_lan_addr); 2339 2340 ice_update_legacy_cached_mac(vf, vc_ether_addr); 2341 } 2342 2343 /** 2344 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 2345 * @vf: pointer to the VF info 2346 * @vsi: pointer to the VF's VSI 2347 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 2348 */ 2349 static int 2350 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 2351 struct virtchnl_ether_addr *vc_ether_addr) 2352 { 2353 struct device *dev = ice_pf_to_dev(vf->pf); 2354 u8 *mac_addr = vc_ether_addr->addr; 2355 int status; 2356 2357 if (!ice_can_vf_change_mac(vf) && 2358 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2359 return 0; 2360 2361 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 2362 if (status == -ENOENT) { 2363 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 2364 vf->vf_id); 2365 return -ENOENT; 2366 } else if (status) { 2367 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 2368 mac_addr, vf->vf_id, status); 2369 return -EIO; 2370 } 2371 2372 ice_vfhw_mac_del(vf, vc_ether_addr); 2373 2374 vf->num_mac--; 2375 2376 return 0; 2377 } 2378 2379 /** 2380 * ice_vc_handle_mac_addr_msg 2381 * @vf: pointer to the VF info 2382 * @msg: pointer to the msg buffer 2383 * @set: true if MAC filters are being set, false otherwise 2384 * 2385 * add guest MAC address filter 2386 */ 2387 static int 2388 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 2389 { 2390 int (*ice_vc_cfg_mac) 2391 (struct ice_vf *vf, struct ice_vsi *vsi, 2392 struct virtchnl_ether_addr *virtchnl_ether_addr); 2393 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2394 struct virtchnl_ether_addr_list *al = 2395 (struct virtchnl_ether_addr_list *)msg; 2396 struct ice_pf *pf = vf->pf; 2397 enum virtchnl_ops vc_op; 2398 struct ice_vsi *vsi; 2399 int i; 2400 2401 if (set) { 2402 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 2403 ice_vc_cfg_mac = ice_vc_add_mac_addr; 2404 } else { 2405 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 2406 ice_vc_cfg_mac = ice_vc_del_mac_addr; 2407 } 2408 2409 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2410 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2411 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2412 goto handle_mac_exit; 2413 } 2414 2415 /* If this VF is not privileged, then we can't add more than a 2416 * limited number of addresses. Check to make sure that the 2417 * additions do not push us over the limit. 2418 */ 2419 if (set && !ice_is_vf_trusted(vf) && 2420 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2421 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2422 vf->vf_id); 2423 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2424 goto handle_mac_exit; 2425 } 2426 2427 vsi = ice_get_vf_vsi(vf); 2428 if (!vsi) { 2429 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2430 goto handle_mac_exit; 2431 } 2432 2433 for (i = 0; i < al->num_elements; i++) { 2434 u8 *mac_addr = al->list[i].addr; 2435 int result; 2436 2437 if (is_broadcast_ether_addr(mac_addr) || 2438 is_zero_ether_addr(mac_addr)) 2439 continue; 2440 2441 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2442 if (result == -EEXIST || result == -ENOENT) { 2443 continue; 2444 } else if (result) { 2445 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2446 goto handle_mac_exit; 2447 } 2448 } 2449 2450 handle_mac_exit: 2451 /* send the response to the VF */ 2452 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2453 } 2454 2455 /** 2456 * ice_vc_add_mac_addr_msg 2457 * @vf: pointer to the VF info 2458 * @msg: pointer to the msg buffer 2459 * 2460 * add guest MAC address filter 2461 */ 2462 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2463 { 2464 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2465 } 2466 2467 /** 2468 * ice_vc_del_mac_addr_msg 2469 * @vf: pointer to the VF info 2470 * @msg: pointer to the msg buffer 2471 * 2472 * remove guest MAC address filter 2473 */ 2474 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2475 { 2476 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2477 } 2478 2479 /** 2480 * ice_vc_request_qs_msg 2481 * @vf: pointer to the VF info 2482 * @msg: pointer to the msg buffer 2483 * 2484 * VFs get a default number of queues but can use this message to request a 2485 * different number. If the request is successful, PF will reset the VF and 2486 * return 0. If unsuccessful, PF will send message informing VF of number of 2487 * available queue pairs via virtchnl message response to VF. 2488 */ 2489 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2490 { 2491 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2492 struct virtchnl_vf_res_request *vfres = 2493 (struct virtchnl_vf_res_request *)msg; 2494 u16 req_queues = vfres->num_queue_pairs; 2495 struct ice_pf *pf = vf->pf; 2496 u16 max_allowed_vf_queues; 2497 u16 tx_rx_queue_left; 2498 struct device *dev; 2499 u16 cur_queues; 2500 2501 dev = ice_pf_to_dev(pf); 2502 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2503 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2504 goto error_param; 2505 } 2506 2507 cur_queues = vf->num_vf_qs; 2508 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2509 ice_get_avail_rxq_count(pf)); 2510 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2511 if (!req_queues) { 2512 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2513 vf->vf_id); 2514 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2515 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2516 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2517 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2518 } else if (req_queues > cur_queues && 2519 req_queues - cur_queues > tx_rx_queue_left) { 2520 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2521 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2522 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2523 ICE_MAX_RSS_QS_PER_VF); 2524 } else { 2525 /* request is successful, then reset VF */ 2526 vf->num_req_qs = req_queues; 2527 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2528 dev_info(dev, "VF %d granted request of %u queues.\n", 2529 vf->vf_id, req_queues); 2530 return 0; 2531 } 2532 2533 error_param: 2534 /* send the response to the VF */ 2535 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2536 v_ret, (u8 *)vfres, sizeof(*vfres)); 2537 } 2538 2539 /** 2540 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2541 * @caps: VF driver negotiated capabilities 2542 * 2543 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2544 */ 2545 static bool ice_vf_vlan_offload_ena(u32 caps) 2546 { 2547 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2548 } 2549 2550 /** 2551 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2552 * @vf: VF used to determine if VLAN promiscuous config is allowed 2553 */ 2554 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2555 { 2556 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2557 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2558 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2559 return true; 2560 2561 return false; 2562 } 2563 2564 /** 2565 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2566 * @vf: VF to enable VLAN promisc on 2567 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2568 * @vlan: VLAN used to enable VLAN promiscuous 2569 * 2570 * This function should only be called if VLAN promiscuous mode is allowed, 2571 * which can be determined via ice_is_vlan_promisc_allowed(). 2572 */ 2573 static int ice_vf_ena_vlan_promisc(struct ice_vf *vf, struct ice_vsi *vsi, 2574 struct ice_vlan *vlan) 2575 { 2576 u8 promisc_m = 0; 2577 int status; 2578 2579 if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 2580 promisc_m |= ICE_UCAST_VLAN_PROMISC_BITS; 2581 if (test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 2582 promisc_m |= ICE_MCAST_VLAN_PROMISC_BITS; 2583 2584 if (!promisc_m) 2585 return 0; 2586 2587 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2588 vlan->vid); 2589 if (status && status != -EEXIST) 2590 return status; 2591 2592 return 0; 2593 } 2594 2595 /** 2596 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2597 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2598 * @vlan: VLAN used to disable VLAN promiscuous 2599 * 2600 * This function should only be called if VLAN promiscuous mode is allowed, 2601 * which can be determined via ice_is_vlan_promisc_allowed(). 2602 */ 2603 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2604 { 2605 u8 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS | ICE_MCAST_VLAN_PROMISC_BITS; 2606 int status; 2607 2608 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2609 vlan->vid); 2610 if (status && status != -ENOENT) 2611 return status; 2612 2613 return 0; 2614 } 2615 2616 /** 2617 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2618 * @vf: VF to check against 2619 * @vsi: VF's VSI 2620 * 2621 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2622 * wants to, so return false. 2623 * 2624 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2625 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2626 */ 2627 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2628 { 2629 if (ice_is_vf_trusted(vf)) 2630 return false; 2631 2632 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2633 return ((ice_vsi_num_non_zero_vlans(vsi) + 2634 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2635 } 2636 2637 /** 2638 * ice_vc_process_vlan_msg 2639 * @vf: pointer to the VF info 2640 * @msg: pointer to the msg buffer 2641 * @add_v: Add VLAN if true, otherwise delete VLAN 2642 * 2643 * Process virtchnl op to add or remove programmed guest VLAN ID 2644 */ 2645 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2646 { 2647 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2648 struct virtchnl_vlan_filter_list *vfl = 2649 (struct virtchnl_vlan_filter_list *)msg; 2650 struct ice_pf *pf = vf->pf; 2651 bool vlan_promisc = false; 2652 struct ice_vsi *vsi; 2653 struct device *dev; 2654 int status = 0; 2655 int i; 2656 2657 dev = ice_pf_to_dev(pf); 2658 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2659 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2660 goto error_param; 2661 } 2662 2663 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2664 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2665 goto error_param; 2666 } 2667 2668 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2669 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2670 goto error_param; 2671 } 2672 2673 for (i = 0; i < vfl->num_elements; i++) { 2674 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2675 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2676 dev_err(dev, "invalid VF VLAN id %d\n", 2677 vfl->vlan_id[i]); 2678 goto error_param; 2679 } 2680 } 2681 2682 vsi = ice_get_vf_vsi(vf); 2683 if (!vsi) { 2684 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2685 goto error_param; 2686 } 2687 2688 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2689 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2690 vf->vf_id); 2691 /* There is no need to let VF know about being not trusted, 2692 * so we can just return success message here 2693 */ 2694 goto error_param; 2695 } 2696 2697 /* in DVM a VF can add/delete inner VLAN filters when 2698 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2699 */ 2700 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2701 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2702 goto error_param; 2703 } 2704 2705 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2706 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2707 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2708 */ 2709 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2710 !ice_is_dvm_ena(&pf->hw) && 2711 !ice_vf_is_port_vlan_ena(vf); 2712 2713 if (add_v) { 2714 for (i = 0; i < vfl->num_elements; i++) { 2715 u16 vid = vfl->vlan_id[i]; 2716 struct ice_vlan vlan; 2717 2718 if (ice_vf_has_max_vlans(vf, vsi)) { 2719 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2720 vf->vf_id); 2721 /* There is no need to let VF know about being 2722 * not trusted, so we can just return success 2723 * message here as well. 2724 */ 2725 goto error_param; 2726 } 2727 2728 /* we add VLAN 0 by default for each VF so we can enable 2729 * Tx VLAN anti-spoof without triggering MDD events so 2730 * we don't need to add it again here 2731 */ 2732 if (!vid) 2733 continue; 2734 2735 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2736 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2737 if (status) { 2738 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2739 goto error_param; 2740 } 2741 2742 /* Enable VLAN filtering on first non-zero VLAN */ 2743 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2744 if (vf->spoofchk) { 2745 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2746 if (status) { 2747 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2748 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2749 vid, status); 2750 goto error_param; 2751 } 2752 } 2753 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2754 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2755 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2756 vid, status); 2757 goto error_param; 2758 } 2759 } else if (vlan_promisc) { 2760 status = ice_vf_ena_vlan_promisc(vf, vsi, &vlan); 2761 if (status) { 2762 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2763 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2764 vid, status); 2765 } 2766 } 2767 } 2768 } else { 2769 /* In case of non_trusted VF, number of VLAN elements passed 2770 * to PF for removal might be greater than number of VLANs 2771 * filter programmed for that VF - So, use actual number of 2772 * VLANS added earlier with add VLAN opcode. In order to avoid 2773 * removing VLAN that doesn't exist, which result to sending 2774 * erroneous failed message back to the VF 2775 */ 2776 int num_vf_vlan; 2777 2778 num_vf_vlan = vsi->num_vlan; 2779 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2780 u16 vid = vfl->vlan_id[i]; 2781 struct ice_vlan vlan; 2782 2783 /* we add VLAN 0 by default for each VF so we can enable 2784 * Tx VLAN anti-spoof without triggering MDD events so 2785 * we don't want a VIRTCHNL request to remove it 2786 */ 2787 if (!vid) 2788 continue; 2789 2790 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2791 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2792 if (status) { 2793 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2794 goto error_param; 2795 } 2796 2797 /* Disable VLAN filtering when only VLAN 0 is left */ 2798 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2799 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2800 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2801 } 2802 2803 if (vlan_promisc) 2804 ice_vf_dis_vlan_promisc(vsi, &vlan); 2805 } 2806 } 2807 2808 error_param: 2809 /* send the response to the VF */ 2810 if (add_v) 2811 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2812 NULL, 0); 2813 else 2814 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2815 NULL, 0); 2816 } 2817 2818 /** 2819 * ice_vc_add_vlan_msg 2820 * @vf: pointer to the VF info 2821 * @msg: pointer to the msg buffer 2822 * 2823 * Add and program guest VLAN ID 2824 */ 2825 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2826 { 2827 return ice_vc_process_vlan_msg(vf, msg, true); 2828 } 2829 2830 /** 2831 * ice_vc_remove_vlan_msg 2832 * @vf: pointer to the VF info 2833 * @msg: pointer to the msg buffer 2834 * 2835 * remove programmed guest VLAN ID 2836 */ 2837 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2838 { 2839 return ice_vc_process_vlan_msg(vf, msg, false); 2840 } 2841 2842 /** 2843 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not 2844 * @vsi: pointer to the VF VSI info 2845 */ 2846 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi) 2847 { 2848 unsigned int i; 2849 2850 ice_for_each_alloc_rxq(vsi, i) 2851 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS) 2852 return true; 2853 2854 return false; 2855 } 2856 2857 /** 2858 * ice_vc_ena_vlan_stripping 2859 * @vf: pointer to the VF info 2860 * 2861 * Enable VLAN header stripping for a given VF 2862 */ 2863 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2864 { 2865 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2866 struct ice_vsi *vsi; 2867 2868 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2869 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2870 goto error_param; 2871 } 2872 2873 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2874 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2875 goto error_param; 2876 } 2877 2878 vsi = ice_get_vf_vsi(vf); 2879 if (!vsi) { 2880 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2881 goto error_param; 2882 } 2883 2884 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2885 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2886 else 2887 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2888 2889 error_param: 2890 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2891 v_ret, NULL, 0); 2892 } 2893 2894 /** 2895 * ice_vc_dis_vlan_stripping 2896 * @vf: pointer to the VF info 2897 * 2898 * Disable VLAN header stripping for a given VF 2899 */ 2900 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2901 { 2902 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2903 struct ice_vsi *vsi; 2904 2905 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2906 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2907 goto error_param; 2908 } 2909 2910 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2911 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2912 goto error_param; 2913 } 2914 2915 vsi = ice_get_vf_vsi(vf); 2916 if (!vsi) { 2917 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2918 goto error_param; 2919 } 2920 2921 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2922 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2923 else 2924 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 2925 2926 error_param: 2927 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2928 v_ret, NULL, 0); 2929 } 2930 2931 /** 2932 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2933 * @vf: pointer to the VF info 2934 */ 2935 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2936 { 2937 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2938 struct virtchnl_rss_hena *vrh = NULL; 2939 int len = 0, ret; 2940 2941 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2942 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2943 goto err; 2944 } 2945 2946 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2947 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2948 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2949 goto err; 2950 } 2951 2952 len = sizeof(struct virtchnl_rss_hena); 2953 vrh = kzalloc(len, GFP_KERNEL); 2954 if (!vrh) { 2955 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2956 len = 0; 2957 goto err; 2958 } 2959 2960 vrh->hena = ICE_DEFAULT_RSS_HENA; 2961 err: 2962 /* send the response back to the VF */ 2963 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2964 (u8 *)vrh, len); 2965 kfree(vrh); 2966 return ret; 2967 } 2968 2969 /** 2970 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2971 * @vf: pointer to the VF info 2972 * @msg: pointer to the msg buffer 2973 */ 2974 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2975 { 2976 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2977 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2978 struct ice_pf *pf = vf->pf; 2979 struct ice_vsi *vsi; 2980 struct device *dev; 2981 int status; 2982 2983 dev = ice_pf_to_dev(pf); 2984 2985 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2986 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2987 goto err; 2988 } 2989 2990 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2991 dev_err(dev, "RSS not supported by PF\n"); 2992 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2993 goto err; 2994 } 2995 2996 vsi = ice_get_vf_vsi(vf); 2997 if (!vsi) { 2998 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2999 goto err; 3000 } 3001 3002 /* clear all previously programmed RSS configuration to allow VF drivers 3003 * the ability to customize the RSS configuration and/or completely 3004 * disable RSS 3005 */ 3006 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 3007 if (status && !vrh->hena) { 3008 /* only report failure to clear the current RSS configuration if 3009 * that was clearly the VF's intention (i.e. vrh->hena = 0) 3010 */ 3011 v_ret = ice_err_to_virt_err(status); 3012 goto err; 3013 } else if (status) { 3014 /* allow the VF to update the RSS configuration even on failure 3015 * to clear the current RSS confguration in an attempt to keep 3016 * RSS in a working state 3017 */ 3018 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 3019 vf->vf_id); 3020 } 3021 3022 if (vrh->hena) { 3023 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena); 3024 v_ret = ice_err_to_virt_err(status); 3025 } 3026 3027 /* send the response to the VF */ 3028 err: 3029 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 3030 NULL, 0); 3031 } 3032 3033 /** 3034 * ice_vc_query_rxdid - query RXDID supported by DDP package 3035 * @vf: pointer to VF info 3036 * 3037 * Called from VF to query a bitmap of supported flexible 3038 * descriptor RXDIDs of a DDP package. 3039 */ 3040 static int ice_vc_query_rxdid(struct ice_vf *vf) 3041 { 3042 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3043 struct ice_pf *pf = vf->pf; 3044 u64 rxdid; 3045 3046 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3047 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3048 goto err; 3049 } 3050 3051 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 3052 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3053 goto err; 3054 } 3055 3056 rxdid = pf->supported_rxdids; 3057 3058 err: 3059 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 3060 v_ret, (u8 *)&rxdid, sizeof(rxdid)); 3061 } 3062 3063 /** 3064 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 3065 * @vf: VF to enable/disable VLAN stripping for on initialization 3066 * 3067 * Set the default for VLAN stripping based on whether a port VLAN is configured 3068 * and the current VLAN mode of the device. 3069 */ 3070 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 3071 { 3072 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 3073 3074 vf->vlan_strip_ena = 0; 3075 3076 if (!vsi) 3077 return -EINVAL; 3078 3079 /* don't modify stripping if port VLAN is configured in SVM since the 3080 * port VLAN is based on the inner/single VLAN in SVM 3081 */ 3082 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 3083 return 0; 3084 3085 if (ice_vf_vlan_offload_ena(vf->driver_caps)) { 3086 int err; 3087 3088 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 3089 if (!err) 3090 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3091 return err; 3092 } 3093 3094 return vsi->inner_vlan_ops.dis_stripping(vsi); 3095 } 3096 3097 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 3098 { 3099 if (vf->trusted) 3100 return VLAN_N_VID; 3101 else 3102 return ICE_MAX_VLAN_PER_VF; 3103 } 3104 3105 /** 3106 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 3107 * @vf: VF that being checked for 3108 * 3109 * When the device is in double VLAN mode, check whether or not the outer VLAN 3110 * is allowed. 3111 */ 3112 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 3113 { 3114 if (ice_vf_is_port_vlan_ena(vf)) 3115 return true; 3116 3117 return false; 3118 } 3119 3120 /** 3121 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 3122 * @vf: VF that capabilities are being set for 3123 * @caps: VLAN capabilities to populate 3124 * 3125 * Determine VLAN capabilities support based on whether a port VLAN is 3126 * configured. If a port VLAN is configured then the VF should use the inner 3127 * filtering/offload capabilities since the port VLAN is using the outer VLAN 3128 * capabilies. 3129 */ 3130 static void 3131 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 3132 { 3133 struct virtchnl_vlan_supported_caps *supported_caps; 3134 3135 if (ice_vf_outer_vlan_not_allowed(vf)) { 3136 /* until support for inner VLAN filtering is added when a port 3137 * VLAN is configured, only support software offloaded inner 3138 * VLANs when a port VLAN is confgured in DVM 3139 */ 3140 supported_caps = &caps->filtering.filtering_support; 3141 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3142 3143 supported_caps = &caps->offloads.stripping_support; 3144 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3145 VIRTCHNL_VLAN_TOGGLE | 3146 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3147 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3148 3149 supported_caps = &caps->offloads.insertion_support; 3150 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3151 VIRTCHNL_VLAN_TOGGLE | 3152 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3153 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3154 3155 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3156 caps->offloads.ethertype_match = 3157 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3158 } else { 3159 supported_caps = &caps->filtering.filtering_support; 3160 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3161 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3162 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3163 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3164 VIRTCHNL_VLAN_ETHERTYPE_AND; 3165 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3166 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3167 VIRTCHNL_VLAN_ETHERTYPE_9100; 3168 3169 supported_caps = &caps->offloads.stripping_support; 3170 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 3171 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3172 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3173 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 3174 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3175 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3176 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3177 VIRTCHNL_VLAN_ETHERTYPE_XOR | 3178 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 3179 3180 supported_caps = &caps->offloads.insertion_support; 3181 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 3182 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3183 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3184 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 3185 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3186 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3187 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3188 VIRTCHNL_VLAN_ETHERTYPE_XOR | 3189 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 3190 3191 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3192 3193 caps->offloads.ethertype_match = 3194 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3195 } 3196 3197 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 3198 } 3199 3200 /** 3201 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 3202 * @vf: VF that capabilities are being set for 3203 * @caps: VLAN capabilities to populate 3204 * 3205 * Determine VLAN capabilities support based on whether a port VLAN is 3206 * configured. If a port VLAN is configured then the VF does not have any VLAN 3207 * filtering or offload capabilities since the port VLAN is using the inner VLAN 3208 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 3209 * VLAN fitlering and offload capabilities. 3210 */ 3211 static void 3212 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 3213 { 3214 struct virtchnl_vlan_supported_caps *supported_caps; 3215 3216 if (ice_vf_is_port_vlan_ena(vf)) { 3217 supported_caps = &caps->filtering.filtering_support; 3218 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3219 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3220 3221 supported_caps = &caps->offloads.stripping_support; 3222 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3223 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3224 3225 supported_caps = &caps->offloads.insertion_support; 3226 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3227 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3228 3229 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 3230 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 3231 caps->filtering.max_filters = 0; 3232 } else { 3233 supported_caps = &caps->filtering.filtering_support; 3234 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 3235 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3236 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3237 3238 supported_caps = &caps->offloads.stripping_support; 3239 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3240 VIRTCHNL_VLAN_TOGGLE | 3241 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3242 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3243 3244 supported_caps = &caps->offloads.insertion_support; 3245 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3246 VIRTCHNL_VLAN_TOGGLE | 3247 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3248 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3249 3250 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3251 caps->offloads.ethertype_match = 3252 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3253 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 3254 } 3255 } 3256 3257 /** 3258 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 3259 * @vf: VF to determine VLAN capabilities for 3260 * 3261 * This will only be called if the VF and PF successfully negotiated 3262 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 3263 * 3264 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 3265 * is configured or not. 3266 */ 3267 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 3268 { 3269 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3270 struct virtchnl_vlan_caps *caps = NULL; 3271 int err, len = 0; 3272 3273 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3274 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3275 goto out; 3276 } 3277 3278 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 3279 if (!caps) { 3280 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 3281 goto out; 3282 } 3283 len = sizeof(*caps); 3284 3285 if (ice_is_dvm_ena(&vf->pf->hw)) 3286 ice_vc_set_dvm_caps(vf, caps); 3287 else 3288 ice_vc_set_svm_caps(vf, caps); 3289 3290 /* store negotiated caps to prevent invalid VF messages */ 3291 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 3292 3293 out: 3294 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 3295 v_ret, (u8 *)caps, len); 3296 kfree(caps); 3297 return err; 3298 } 3299 3300 /** 3301 * ice_vc_validate_vlan_tpid - validate VLAN TPID 3302 * @filtering_caps: negotiated/supported VLAN filtering capabilities 3303 * @tpid: VLAN TPID used for validation 3304 * 3305 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 3306 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 3307 */ 3308 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 3309 { 3310 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 3311 3312 switch (tpid) { 3313 case ETH_P_8021Q: 3314 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 3315 break; 3316 case ETH_P_8021AD: 3317 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 3318 break; 3319 case ETH_P_QINQ1: 3320 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 3321 break; 3322 } 3323 3324 if (!(filtering_caps & vlan_ethertype)) 3325 return false; 3326 3327 return true; 3328 } 3329 3330 /** 3331 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 3332 * @vc_vlan: virtchnl_vlan to validate 3333 * 3334 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 3335 * false. Otherwise return true. 3336 */ 3337 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 3338 { 3339 if (!vc_vlan->tci || !vc_vlan->tpid) 3340 return false; 3341 3342 return true; 3343 } 3344 3345 /** 3346 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 3347 * @vfc: negotiated/supported VLAN filtering capabilities 3348 * @vfl: VLAN filter list from VF to validate 3349 * 3350 * Validate all of the filters in the VLAN filter list from the VF. If any of 3351 * the checks fail then return false. Otherwise return true. 3352 */ 3353 static bool 3354 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 3355 struct virtchnl_vlan_filter_list_v2 *vfl) 3356 { 3357 u16 i; 3358 3359 if (!vfl->num_elements) 3360 return false; 3361 3362 for (i = 0; i < vfl->num_elements; i++) { 3363 struct virtchnl_vlan_supported_caps *filtering_support = 3364 &vfc->filtering_support; 3365 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3366 struct virtchnl_vlan *outer = &vlan_fltr->outer; 3367 struct virtchnl_vlan *inner = &vlan_fltr->inner; 3368 3369 if ((ice_vc_is_valid_vlan(outer) && 3370 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 3371 (ice_vc_is_valid_vlan(inner) && 3372 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 3373 return false; 3374 3375 if ((outer->tci_mask && 3376 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 3377 (inner->tci_mask && 3378 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 3379 return false; 3380 3381 if (((outer->tci & VLAN_PRIO_MASK) && 3382 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 3383 ((inner->tci & VLAN_PRIO_MASK) && 3384 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 3385 return false; 3386 3387 if ((ice_vc_is_valid_vlan(outer) && 3388 !ice_vc_validate_vlan_tpid(filtering_support->outer, 3389 outer->tpid)) || 3390 (ice_vc_is_valid_vlan(inner) && 3391 !ice_vc_validate_vlan_tpid(filtering_support->inner, 3392 inner->tpid))) 3393 return false; 3394 } 3395 3396 return true; 3397 } 3398 3399 /** 3400 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 3401 * @vc_vlan: struct virtchnl_vlan to transform 3402 */ 3403 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 3404 { 3405 struct ice_vlan vlan = { 0 }; 3406 3407 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci); 3408 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 3409 vlan.tpid = vc_vlan->tpid; 3410 3411 return vlan; 3412 } 3413 3414 /** 3415 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 3416 * @vsi: VF's VSI used to perform the action 3417 * @vlan_action: function to perform the action with (i.e. add/del) 3418 * @vlan: VLAN filter to perform the action with 3419 */ 3420 static int 3421 ice_vc_vlan_action(struct ice_vsi *vsi, 3422 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3423 struct ice_vlan *vlan) 3424 { 3425 int err; 3426 3427 err = vlan_action(vsi, vlan); 3428 if (err) 3429 return err; 3430 3431 return 0; 3432 } 3433 3434 /** 3435 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3436 * @vf: VF used to delete the VLAN(s) 3437 * @vsi: VF's VSI used to delete the VLAN(s) 3438 * @vfl: virthchnl filter list used to delete the filters 3439 */ 3440 static int 3441 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3442 struct virtchnl_vlan_filter_list_v2 *vfl) 3443 { 3444 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3445 int err; 3446 u16 i; 3447 3448 for (i = 0; i < vfl->num_elements; i++) { 3449 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3450 struct virtchnl_vlan *vc_vlan; 3451 3452 vc_vlan = &vlan_fltr->outer; 3453 if (ice_vc_is_valid_vlan(vc_vlan)) { 3454 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3455 3456 err = ice_vc_vlan_action(vsi, 3457 vsi->outer_vlan_ops.del_vlan, 3458 &vlan); 3459 if (err) 3460 return err; 3461 3462 if (vlan_promisc) 3463 ice_vf_dis_vlan_promisc(vsi, &vlan); 3464 3465 /* Disable VLAN filtering when only VLAN 0 is left */ 3466 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3467 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3468 if (err) 3469 return err; 3470 } 3471 } 3472 3473 vc_vlan = &vlan_fltr->inner; 3474 if (ice_vc_is_valid_vlan(vc_vlan)) { 3475 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3476 3477 err = ice_vc_vlan_action(vsi, 3478 vsi->inner_vlan_ops.del_vlan, 3479 &vlan); 3480 if (err) 3481 return err; 3482 3483 /* no support for VLAN promiscuous on inner VLAN unless 3484 * we are in Single VLAN Mode (SVM) 3485 */ 3486 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3487 if (vlan_promisc) 3488 ice_vf_dis_vlan_promisc(vsi, &vlan); 3489 3490 /* Disable VLAN filtering when only VLAN 0 is left */ 3491 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3492 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3493 if (err) 3494 return err; 3495 } 3496 } 3497 } 3498 } 3499 3500 return 0; 3501 } 3502 3503 /** 3504 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3505 * @vf: VF the message was received from 3506 * @msg: message received from the VF 3507 */ 3508 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3509 { 3510 struct virtchnl_vlan_filter_list_v2 *vfl = 3511 (struct virtchnl_vlan_filter_list_v2 *)msg; 3512 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3513 struct ice_vsi *vsi; 3514 3515 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3516 vfl)) { 3517 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3518 goto out; 3519 } 3520 3521 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3522 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3523 goto out; 3524 } 3525 3526 vsi = ice_get_vf_vsi(vf); 3527 if (!vsi) { 3528 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3529 goto out; 3530 } 3531 3532 if (ice_vc_del_vlans(vf, vsi, vfl)) 3533 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3534 3535 out: 3536 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3537 0); 3538 } 3539 3540 /** 3541 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3542 * @vf: VF used to add the VLAN(s) 3543 * @vsi: VF's VSI used to add the VLAN(s) 3544 * @vfl: virthchnl filter list used to add the filters 3545 */ 3546 static int 3547 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3548 struct virtchnl_vlan_filter_list_v2 *vfl) 3549 { 3550 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3551 int err; 3552 u16 i; 3553 3554 for (i = 0; i < vfl->num_elements; i++) { 3555 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3556 struct virtchnl_vlan *vc_vlan; 3557 3558 vc_vlan = &vlan_fltr->outer; 3559 if (ice_vc_is_valid_vlan(vc_vlan)) { 3560 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3561 3562 err = ice_vc_vlan_action(vsi, 3563 vsi->outer_vlan_ops.add_vlan, 3564 &vlan); 3565 if (err) 3566 return err; 3567 3568 if (vlan_promisc) { 3569 err = ice_vf_ena_vlan_promisc(vf, vsi, &vlan); 3570 if (err) 3571 return err; 3572 } 3573 3574 /* Enable VLAN filtering on first non-zero VLAN */ 3575 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3576 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3577 if (err) 3578 return err; 3579 } 3580 } 3581 3582 vc_vlan = &vlan_fltr->inner; 3583 if (ice_vc_is_valid_vlan(vc_vlan)) { 3584 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3585 3586 err = ice_vc_vlan_action(vsi, 3587 vsi->inner_vlan_ops.add_vlan, 3588 &vlan); 3589 if (err) 3590 return err; 3591 3592 /* no support for VLAN promiscuous on inner VLAN unless 3593 * we are in Single VLAN Mode (SVM) 3594 */ 3595 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3596 if (vlan_promisc) { 3597 err = ice_vf_ena_vlan_promisc(vf, vsi, 3598 &vlan); 3599 if (err) 3600 return err; 3601 } 3602 3603 /* Enable VLAN filtering on first non-zero VLAN */ 3604 if (vf->spoofchk && vlan.vid) { 3605 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3606 if (err) 3607 return err; 3608 } 3609 } 3610 } 3611 } 3612 3613 return 0; 3614 } 3615 3616 /** 3617 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3618 * @vsi: VF VSI used to get number of existing VLAN filters 3619 * @vfc: negotiated/supported VLAN filtering capabilities 3620 * @vfl: VLAN filter list from VF to validate 3621 * 3622 * Validate all of the filters in the VLAN filter list from the VF during the 3623 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3624 * Otherwise return true. 3625 */ 3626 static bool 3627 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3628 struct virtchnl_vlan_filtering_caps *vfc, 3629 struct virtchnl_vlan_filter_list_v2 *vfl) 3630 { 3631 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3632 vfl->num_elements; 3633 3634 if (num_requested_filters > vfc->max_filters) 3635 return false; 3636 3637 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3638 } 3639 3640 /** 3641 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3642 * @vf: VF the message was received from 3643 * @msg: message received from the VF 3644 */ 3645 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3646 { 3647 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3648 struct virtchnl_vlan_filter_list_v2 *vfl = 3649 (struct virtchnl_vlan_filter_list_v2 *)msg; 3650 struct ice_vsi *vsi; 3651 3652 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3653 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3654 goto out; 3655 } 3656 3657 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3658 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3659 goto out; 3660 } 3661 3662 vsi = ice_get_vf_vsi(vf); 3663 if (!vsi) { 3664 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3665 goto out; 3666 } 3667 3668 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3669 &vf->vlan_v2_caps.filtering, 3670 vfl)) { 3671 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3672 goto out; 3673 } 3674 3675 if (ice_vc_add_vlans(vf, vsi, vfl)) 3676 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3677 3678 out: 3679 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3680 0); 3681 } 3682 3683 /** 3684 * ice_vc_valid_vlan_setting - validate VLAN setting 3685 * @negotiated_settings: negotiated VLAN settings during VF init 3686 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3687 */ 3688 static bool 3689 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3690 { 3691 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3692 return false; 3693 3694 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3695 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3696 */ 3697 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3698 hweight32(ethertype_setting) > 1) 3699 return false; 3700 3701 /* ability to modify the VLAN setting was not negotiated */ 3702 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3703 return false; 3704 3705 return true; 3706 } 3707 3708 /** 3709 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3710 * @caps: negotiated VLAN settings during VF init 3711 * @msg: message to validate 3712 * 3713 * Used to validate any VLAN virtchnl message sent as a 3714 * virtchnl_vlan_setting structure. Validates the message against the 3715 * negotiated/supported caps during VF driver init. 3716 */ 3717 static bool 3718 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3719 struct virtchnl_vlan_setting *msg) 3720 { 3721 if ((!msg->outer_ethertype_setting && 3722 !msg->inner_ethertype_setting) || 3723 (!caps->outer && !caps->inner)) 3724 return false; 3725 3726 if (msg->outer_ethertype_setting && 3727 !ice_vc_valid_vlan_setting(caps->outer, 3728 msg->outer_ethertype_setting)) 3729 return false; 3730 3731 if (msg->inner_ethertype_setting && 3732 !ice_vc_valid_vlan_setting(caps->inner, 3733 msg->inner_ethertype_setting)) 3734 return false; 3735 3736 return true; 3737 } 3738 3739 /** 3740 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3741 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3742 * @tpid: VLAN TPID to populate 3743 */ 3744 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3745 { 3746 switch (ethertype_setting) { 3747 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3748 *tpid = ETH_P_8021Q; 3749 break; 3750 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3751 *tpid = ETH_P_8021AD; 3752 break; 3753 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3754 *tpid = ETH_P_QINQ1; 3755 break; 3756 default: 3757 *tpid = 0; 3758 return -EINVAL; 3759 } 3760 3761 return 0; 3762 } 3763 3764 /** 3765 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3766 * @vsi: VF's VSI used to enable the VLAN offload 3767 * @ena_offload: function used to enable the VLAN offload 3768 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3769 */ 3770 static int 3771 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3772 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3773 u32 ethertype_setting) 3774 { 3775 u16 tpid; 3776 int err; 3777 3778 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3779 if (err) 3780 return err; 3781 3782 err = ena_offload(vsi, tpid); 3783 if (err) 3784 return err; 3785 3786 return 0; 3787 } 3788 3789 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3790 #define ICE_L2TSEL_BIT_OFFSET 23 3791 enum ice_l2tsel { 3792 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3793 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3794 }; 3795 3796 /** 3797 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3798 * @vsi: VSI used to update l2tsel on 3799 * @l2tsel: l2tsel setting requested 3800 * 3801 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3802 * This will modify which descriptor field the first offloaded VLAN will be 3803 * stripped into. 3804 */ 3805 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3806 { 3807 struct ice_hw *hw = &vsi->back->hw; 3808 u32 l2tsel_bit; 3809 int i; 3810 3811 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3812 l2tsel_bit = 0; 3813 else 3814 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3815 3816 for (i = 0; i < vsi->alloc_rxq; i++) { 3817 u16 pfq = vsi->rxq_map[i]; 3818 u32 qrx_context_offset; 3819 u32 regval; 3820 3821 qrx_context_offset = 3822 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3823 3824 regval = rd32(hw, qrx_context_offset); 3825 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3826 regval |= l2tsel_bit; 3827 wr32(hw, qrx_context_offset, regval); 3828 } 3829 } 3830 3831 /** 3832 * ice_vc_ena_vlan_stripping_v2_msg 3833 * @vf: VF the message was received from 3834 * @msg: message received from the VF 3835 * 3836 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3837 */ 3838 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3839 { 3840 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3841 struct virtchnl_vlan_supported_caps *stripping_support; 3842 struct virtchnl_vlan_setting *strip_msg = 3843 (struct virtchnl_vlan_setting *)msg; 3844 u32 ethertype_setting; 3845 struct ice_vsi *vsi; 3846 3847 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3848 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3849 goto out; 3850 } 3851 3852 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3853 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3854 goto out; 3855 } 3856 3857 vsi = ice_get_vf_vsi(vf); 3858 if (!vsi) { 3859 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3860 goto out; 3861 } 3862 3863 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3864 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3865 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3866 goto out; 3867 } 3868 3869 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) { 3870 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3871 goto out; 3872 } 3873 3874 ethertype_setting = strip_msg->outer_ethertype_setting; 3875 if (ethertype_setting) { 3876 if (ice_vc_ena_vlan_offload(vsi, 3877 vsi->outer_vlan_ops.ena_stripping, 3878 ethertype_setting)) { 3879 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3880 goto out; 3881 } else { 3882 enum ice_l2tsel l2tsel = 3883 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3884 3885 /* PF tells the VF that the outer VLAN tag is always 3886 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3887 * inner is always extracted to 3888 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3889 * support outer stripping so the first tag always ends 3890 * up in L2TAG2_2ND and the second/inner tag, if 3891 * enabled, is extracted in L2TAG1. 3892 */ 3893 ice_vsi_update_l2tsel(vsi, l2tsel); 3894 3895 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA; 3896 } 3897 } 3898 3899 ethertype_setting = strip_msg->inner_ethertype_setting; 3900 if (ethertype_setting && 3901 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3902 ethertype_setting)) { 3903 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3904 goto out; 3905 } 3906 3907 if (ethertype_setting) 3908 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3909 3910 out: 3911 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3912 v_ret, NULL, 0); 3913 } 3914 3915 /** 3916 * ice_vc_dis_vlan_stripping_v2_msg 3917 * @vf: VF the message was received from 3918 * @msg: message received from the VF 3919 * 3920 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3921 */ 3922 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3923 { 3924 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3925 struct virtchnl_vlan_supported_caps *stripping_support; 3926 struct virtchnl_vlan_setting *strip_msg = 3927 (struct virtchnl_vlan_setting *)msg; 3928 u32 ethertype_setting; 3929 struct ice_vsi *vsi; 3930 3931 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3932 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3933 goto out; 3934 } 3935 3936 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3937 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3938 goto out; 3939 } 3940 3941 vsi = ice_get_vf_vsi(vf); 3942 if (!vsi) { 3943 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3944 goto out; 3945 } 3946 3947 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3948 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3949 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3950 goto out; 3951 } 3952 3953 ethertype_setting = strip_msg->outer_ethertype_setting; 3954 if (ethertype_setting) { 3955 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3956 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3957 goto out; 3958 } else { 3959 enum ice_l2tsel l2tsel = 3960 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3961 3962 /* PF tells the VF that the outer VLAN tag is always 3963 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3964 * inner is always extracted to 3965 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3966 * support inner stripping while outer stripping is 3967 * disabled so that the first and only tag is extracted 3968 * in L2TAG1. 3969 */ 3970 ice_vsi_update_l2tsel(vsi, l2tsel); 3971 3972 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA; 3973 } 3974 } 3975 3976 ethertype_setting = strip_msg->inner_ethertype_setting; 3977 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3978 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3979 goto out; 3980 } 3981 3982 if (ethertype_setting) 3983 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 3984 3985 out: 3986 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3987 v_ret, NULL, 0); 3988 } 3989 3990 /** 3991 * ice_vc_ena_vlan_insertion_v2_msg 3992 * @vf: VF the message was received from 3993 * @msg: message received from the VF 3994 * 3995 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3996 */ 3997 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3998 { 3999 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4000 struct virtchnl_vlan_supported_caps *insertion_support; 4001 struct virtchnl_vlan_setting *insertion_msg = 4002 (struct virtchnl_vlan_setting *)msg; 4003 u32 ethertype_setting; 4004 struct ice_vsi *vsi; 4005 4006 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 4007 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4008 goto out; 4009 } 4010 4011 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 4012 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4013 goto out; 4014 } 4015 4016 vsi = ice_get_vf_vsi(vf); 4017 if (!vsi) { 4018 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4019 goto out; 4020 } 4021 4022 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 4023 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 4024 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4025 goto out; 4026 } 4027 4028 ethertype_setting = insertion_msg->outer_ethertype_setting; 4029 if (ethertype_setting && 4030 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 4031 ethertype_setting)) { 4032 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4033 goto out; 4034 } 4035 4036 ethertype_setting = insertion_msg->inner_ethertype_setting; 4037 if (ethertype_setting && 4038 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 4039 ethertype_setting)) { 4040 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4041 goto out; 4042 } 4043 4044 out: 4045 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 4046 v_ret, NULL, 0); 4047 } 4048 4049 /** 4050 * ice_vc_dis_vlan_insertion_v2_msg 4051 * @vf: VF the message was received from 4052 * @msg: message received from the VF 4053 * 4054 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 4055 */ 4056 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 4057 { 4058 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4059 struct virtchnl_vlan_supported_caps *insertion_support; 4060 struct virtchnl_vlan_setting *insertion_msg = 4061 (struct virtchnl_vlan_setting *)msg; 4062 u32 ethertype_setting; 4063 struct ice_vsi *vsi; 4064 4065 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 4066 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4067 goto out; 4068 } 4069 4070 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 4071 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4072 goto out; 4073 } 4074 4075 vsi = ice_get_vf_vsi(vf); 4076 if (!vsi) { 4077 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4078 goto out; 4079 } 4080 4081 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 4082 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 4083 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4084 goto out; 4085 } 4086 4087 ethertype_setting = insertion_msg->outer_ethertype_setting; 4088 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 4089 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4090 goto out; 4091 } 4092 4093 ethertype_setting = insertion_msg->inner_ethertype_setting; 4094 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 4095 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4096 goto out; 4097 } 4098 4099 out: 4100 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 4101 v_ret, NULL, 0); 4102 } 4103 4104 static int ice_vc_get_ptp_cap(struct ice_vf *vf, 4105 const struct virtchnl_ptp_caps *msg) 4106 { 4107 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4108 u32 caps = VIRTCHNL_1588_PTP_CAP_RX_TSTAMP | 4109 VIRTCHNL_1588_PTP_CAP_READ_PHC; 4110 4111 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 4112 goto err; 4113 4114 v_ret = VIRTCHNL_STATUS_SUCCESS; 4115 4116 if (msg->caps & caps) 4117 vf->ptp_caps = caps; 4118 4119 err: 4120 /* send the response back to the VF */ 4121 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_1588_PTP_GET_CAPS, v_ret, 4122 (u8 *)&vf->ptp_caps, 4123 sizeof(struct virtchnl_ptp_caps)); 4124 } 4125 4126 static int ice_vc_get_phc_time(struct ice_vf *vf) 4127 { 4128 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4129 struct virtchnl_phc_time *phc_time = NULL; 4130 struct ice_pf *pf = vf->pf; 4131 u32 len = 0; 4132 int ret; 4133 4134 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 4135 goto err; 4136 4137 v_ret = VIRTCHNL_STATUS_SUCCESS; 4138 4139 phc_time = kzalloc(sizeof(*phc_time), GFP_KERNEL); 4140 if (!phc_time) { 4141 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 4142 goto err; 4143 } 4144 4145 len = sizeof(*phc_time); 4146 4147 phc_time->time = ice_ptp_read_src_clk_reg(pf, NULL); 4148 4149 err: 4150 /* send the response back to the VF */ 4151 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_1588_PTP_GET_TIME, v_ret, 4152 (u8 *)phc_time, len); 4153 kfree(phc_time); 4154 return ret; 4155 } 4156 4157 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 4158 .get_ver_msg = ice_vc_get_ver_msg, 4159 .get_vf_res_msg = ice_vc_get_vf_res_msg, 4160 .reset_vf = ice_vc_reset_vf_msg, 4161 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 4162 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 4163 .cfg_qs_msg = ice_vc_cfg_qs_msg, 4164 .ena_qs_msg = ice_vc_ena_qs_msg, 4165 .dis_qs_msg = ice_vc_dis_qs_msg, 4166 .request_qs_msg = ice_vc_request_qs_msg, 4167 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 4168 .config_rss_key = ice_vc_config_rss_key, 4169 .config_rss_lut = ice_vc_config_rss_lut, 4170 .config_rss_hfunc = ice_vc_config_rss_hfunc, 4171 .get_stats_msg = ice_vc_get_stats_msg, 4172 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 4173 .add_vlan_msg = ice_vc_add_vlan_msg, 4174 .remove_vlan_msg = ice_vc_remove_vlan_msg, 4175 .query_rxdid = ice_vc_query_rxdid, 4176 .get_rss_hena = ice_vc_get_rss_hena, 4177 .set_rss_hena_msg = ice_vc_set_rss_hena, 4178 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 4179 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 4180 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 4181 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 4182 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 4183 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 4184 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 4185 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 4186 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 4187 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 4188 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 4189 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 4190 .get_qos_caps = ice_vc_get_qos_caps, 4191 .cfg_q_bw = ice_vc_cfg_q_bw, 4192 .cfg_q_quanta = ice_vc_cfg_q_quanta, 4193 .get_ptp_cap = ice_vc_get_ptp_cap, 4194 .get_phc_time = ice_vc_get_phc_time, 4195 /* If you add a new op here please make sure to add it to 4196 * ice_virtchnl_repr_ops as well. 4197 */ 4198 }; 4199 4200 /** 4201 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 4202 * @vf: the VF to switch ops 4203 */ 4204 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 4205 { 4206 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 4207 } 4208 4209 /** 4210 * ice_vc_repr_add_mac 4211 * @vf: pointer to VF 4212 * @msg: virtchannel message 4213 * 4214 * When port representors are created, we do not add MAC rule 4215 * to firmware, we store it so that PF could report same 4216 * MAC as VF. 4217 */ 4218 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 4219 { 4220 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4221 struct virtchnl_ether_addr_list *al = 4222 (struct virtchnl_ether_addr_list *)msg; 4223 struct ice_vsi *vsi; 4224 struct ice_pf *pf; 4225 int i; 4226 4227 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 4228 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 4229 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4230 goto handle_mac_exit; 4231 } 4232 4233 pf = vf->pf; 4234 4235 vsi = ice_get_vf_vsi(vf); 4236 if (!vsi) { 4237 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4238 goto handle_mac_exit; 4239 } 4240 4241 for (i = 0; i < al->num_elements; i++) { 4242 u8 *mac_addr = al->list[i].addr; 4243 4244 if (!is_unicast_ether_addr(mac_addr) || 4245 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 4246 continue; 4247 4248 if (vf->pf_set_mac) { 4249 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 4250 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 4251 goto handle_mac_exit; 4252 } 4253 4254 ice_vfhw_mac_add(vf, &al->list[i]); 4255 vf->num_mac++; 4256 break; 4257 } 4258 4259 handle_mac_exit: 4260 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 4261 v_ret, NULL, 0); 4262 } 4263 4264 /** 4265 * ice_vc_repr_del_mac - response with success for deleting MAC 4266 * @vf: pointer to VF 4267 * @msg: virtchannel message 4268 * 4269 * Respond with success to not break normal VF flow. 4270 * For legacy VF driver try to update cached MAC address. 4271 */ 4272 static int 4273 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 4274 { 4275 struct virtchnl_ether_addr_list *al = 4276 (struct virtchnl_ether_addr_list *)msg; 4277 4278 ice_update_legacy_cached_mac(vf, &al->list[0]); 4279 4280 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 4281 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 4282 } 4283 4284 static int 4285 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 4286 { 4287 dev_dbg(ice_pf_to_dev(vf->pf), 4288 "Can't config promiscuous mode in switchdev mode for VF %d\n", 4289 vf->vf_id); 4290 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 4291 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4292 NULL, 0); 4293 } 4294 4295 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 4296 .get_ver_msg = ice_vc_get_ver_msg, 4297 .get_vf_res_msg = ice_vc_get_vf_res_msg, 4298 .reset_vf = ice_vc_reset_vf_msg, 4299 .add_mac_addr_msg = ice_vc_repr_add_mac, 4300 .del_mac_addr_msg = ice_vc_repr_del_mac, 4301 .cfg_qs_msg = ice_vc_cfg_qs_msg, 4302 .ena_qs_msg = ice_vc_ena_qs_msg, 4303 .dis_qs_msg = ice_vc_dis_qs_msg, 4304 .request_qs_msg = ice_vc_request_qs_msg, 4305 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 4306 .config_rss_key = ice_vc_config_rss_key, 4307 .config_rss_lut = ice_vc_config_rss_lut, 4308 .config_rss_hfunc = ice_vc_config_rss_hfunc, 4309 .get_stats_msg = ice_vc_get_stats_msg, 4310 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 4311 .add_vlan_msg = ice_vc_add_vlan_msg, 4312 .remove_vlan_msg = ice_vc_remove_vlan_msg, 4313 .query_rxdid = ice_vc_query_rxdid, 4314 .get_rss_hena = ice_vc_get_rss_hena, 4315 .set_rss_hena_msg = ice_vc_set_rss_hena, 4316 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 4317 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 4318 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 4319 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 4320 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 4321 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 4322 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 4323 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 4324 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 4325 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 4326 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 4327 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 4328 .get_qos_caps = ice_vc_get_qos_caps, 4329 .cfg_q_bw = ice_vc_cfg_q_bw, 4330 .cfg_q_quanta = ice_vc_cfg_q_quanta, 4331 .get_ptp_cap = ice_vc_get_ptp_cap, 4332 .get_phc_time = ice_vc_get_phc_time, 4333 }; 4334 4335 /** 4336 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 4337 * @vf: the VF to switch ops 4338 */ 4339 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 4340 { 4341 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 4342 } 4343 4344 /** 4345 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 4346 * @vf: the VF to check 4347 * @mbxdata: data about the state of the mailbox 4348 * 4349 * Detect if a given VF might be malicious and attempting to overflow the PF 4350 * mailbox. If so, log a warning message and ignore this event. 4351 */ 4352 static bool 4353 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 4354 { 4355 bool report_malvf = false; 4356 struct device *dev; 4357 struct ice_pf *pf; 4358 int status; 4359 4360 pf = vf->pf; 4361 dev = ice_pf_to_dev(pf); 4362 4363 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 4364 return vf->mbx_info.malicious; 4365 4366 /* check to see if we have a newly malicious VF */ 4367 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 4368 &report_malvf); 4369 if (status) 4370 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 4371 vf->vf_id, vf->dev_lan_addr, status); 4372 4373 if (report_malvf) { 4374 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 4375 u8 zero_addr[ETH_ALEN] = {}; 4376 4377 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 4378 vf->dev_lan_addr, 4379 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 4380 } 4381 4382 return vf->mbx_info.malicious; 4383 } 4384 4385 /** 4386 * ice_vc_process_vf_msg - Process request from VF 4387 * @pf: pointer to the PF structure 4388 * @event: pointer to the AQ event 4389 * @mbxdata: information used to detect VF attempting mailbox overflow 4390 * 4391 * Called from the common asq/arq handler to process request from VF. When this 4392 * flow is used for devices with hardware VF to PF message queue overflow 4393 * support (ICE_F_MBX_LIMIT) mbxdata is set to NULL and ice_is_malicious_vf 4394 * check is skipped. 4395 */ 4396 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 4397 struct ice_mbx_data *mbxdata) 4398 { 4399 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 4400 s16 vf_id = le16_to_cpu(event->desc.retval); 4401 const struct ice_virtchnl_ops *ops; 4402 u16 msglen = event->msg_len; 4403 u8 *msg = event->msg_buf; 4404 struct ice_vf *vf = NULL; 4405 struct device *dev; 4406 int err = 0; 4407 4408 dev = ice_pf_to_dev(pf); 4409 4410 vf = ice_get_vf_by_id(pf, vf_id); 4411 if (!vf) { 4412 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 4413 vf_id, v_opcode, msglen); 4414 return; 4415 } 4416 4417 mutex_lock(&vf->cfg_lock); 4418 4419 /* Check if the VF is trying to overflow the mailbox */ 4420 if (mbxdata && ice_is_malicious_vf(vf, mbxdata)) 4421 goto finish; 4422 4423 /* Check if VF is disabled. */ 4424 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 4425 err = -EPERM; 4426 goto error_handler; 4427 } 4428 4429 ops = vf->virtchnl_ops; 4430 4431 /* Perform basic checks on the msg */ 4432 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 4433 if (err) { 4434 if (err == VIRTCHNL_STATUS_ERR_PARAM) 4435 err = -EPERM; 4436 else 4437 err = -EINVAL; 4438 } 4439 4440 error_handler: 4441 if (err) { 4442 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 4443 NULL, 0); 4444 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 4445 vf_id, v_opcode, msglen, err); 4446 goto finish; 4447 } 4448 4449 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 4450 ice_vc_send_msg_to_vf(vf, v_opcode, 4451 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 4452 0); 4453 goto finish; 4454 } 4455 4456 switch (v_opcode) { 4457 case VIRTCHNL_OP_VERSION: 4458 err = ops->get_ver_msg(vf, msg); 4459 break; 4460 case VIRTCHNL_OP_GET_VF_RESOURCES: 4461 err = ops->get_vf_res_msg(vf, msg); 4462 if (ice_vf_init_vlan_stripping(vf)) 4463 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 4464 vf->vf_id); 4465 ice_vc_notify_vf_link_state(vf); 4466 break; 4467 case VIRTCHNL_OP_RESET_VF: 4468 ops->reset_vf(vf); 4469 break; 4470 case VIRTCHNL_OP_ADD_ETH_ADDR: 4471 err = ops->add_mac_addr_msg(vf, msg); 4472 break; 4473 case VIRTCHNL_OP_DEL_ETH_ADDR: 4474 err = ops->del_mac_addr_msg(vf, msg); 4475 break; 4476 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 4477 err = ops->cfg_qs_msg(vf, msg); 4478 break; 4479 case VIRTCHNL_OP_ENABLE_QUEUES: 4480 err = ops->ena_qs_msg(vf, msg); 4481 ice_vc_notify_vf_link_state(vf); 4482 break; 4483 case VIRTCHNL_OP_DISABLE_QUEUES: 4484 err = ops->dis_qs_msg(vf, msg); 4485 break; 4486 case VIRTCHNL_OP_REQUEST_QUEUES: 4487 err = ops->request_qs_msg(vf, msg); 4488 break; 4489 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 4490 err = ops->cfg_irq_map_msg(vf, msg); 4491 break; 4492 case VIRTCHNL_OP_CONFIG_RSS_KEY: 4493 err = ops->config_rss_key(vf, msg); 4494 break; 4495 case VIRTCHNL_OP_CONFIG_RSS_LUT: 4496 err = ops->config_rss_lut(vf, msg); 4497 break; 4498 case VIRTCHNL_OP_CONFIG_RSS_HFUNC: 4499 err = ops->config_rss_hfunc(vf, msg); 4500 break; 4501 case VIRTCHNL_OP_GET_STATS: 4502 err = ops->get_stats_msg(vf, msg); 4503 break; 4504 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 4505 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4506 break; 4507 case VIRTCHNL_OP_ADD_VLAN: 4508 err = ops->add_vlan_msg(vf, msg); 4509 break; 4510 case VIRTCHNL_OP_DEL_VLAN: 4511 err = ops->remove_vlan_msg(vf, msg); 4512 break; 4513 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4514 err = ops->query_rxdid(vf); 4515 break; 4516 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4517 err = ops->get_rss_hena(vf); 4518 break; 4519 case VIRTCHNL_OP_SET_RSS_HENA: 4520 err = ops->set_rss_hena_msg(vf, msg); 4521 break; 4522 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4523 err = ops->ena_vlan_stripping(vf); 4524 break; 4525 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4526 err = ops->dis_vlan_stripping(vf); 4527 break; 4528 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4529 err = ops->add_fdir_fltr_msg(vf, msg); 4530 break; 4531 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4532 err = ops->del_fdir_fltr_msg(vf, msg); 4533 break; 4534 case VIRTCHNL_OP_ADD_RSS_CFG: 4535 err = ops->handle_rss_cfg_msg(vf, msg, true); 4536 break; 4537 case VIRTCHNL_OP_DEL_RSS_CFG: 4538 err = ops->handle_rss_cfg_msg(vf, msg, false); 4539 break; 4540 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4541 err = ops->get_offload_vlan_v2_caps(vf); 4542 break; 4543 case VIRTCHNL_OP_ADD_VLAN_V2: 4544 err = ops->add_vlan_v2_msg(vf, msg); 4545 break; 4546 case VIRTCHNL_OP_DEL_VLAN_V2: 4547 err = ops->remove_vlan_v2_msg(vf, msg); 4548 break; 4549 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4550 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4551 break; 4552 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4553 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4554 break; 4555 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4556 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4557 break; 4558 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4559 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4560 break; 4561 case VIRTCHNL_OP_GET_QOS_CAPS: 4562 err = ops->get_qos_caps(vf); 4563 break; 4564 case VIRTCHNL_OP_CONFIG_QUEUE_BW: 4565 err = ops->cfg_q_bw(vf, msg); 4566 break; 4567 case VIRTCHNL_OP_CONFIG_QUANTA: 4568 err = ops->cfg_q_quanta(vf, msg); 4569 break; 4570 case VIRTCHNL_OP_1588_PTP_GET_CAPS: 4571 err = ops->get_ptp_cap(vf, (const void *)msg); 4572 break; 4573 case VIRTCHNL_OP_1588_PTP_GET_TIME: 4574 err = ops->get_phc_time(vf); 4575 break; 4576 case VIRTCHNL_OP_UNKNOWN: 4577 default: 4578 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4579 vf_id); 4580 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4581 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4582 NULL, 0); 4583 break; 4584 } 4585 if (err) { 4586 /* Helper function cares less about error return values here 4587 * as it is busy with pending work. 4588 */ 4589 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4590 vf_id, v_opcode, err); 4591 } 4592 4593 finish: 4594 mutex_unlock(&vf->cfg_lock); 4595 ice_put_vf(vf); 4596 } 4597