xref: /linux/drivers/net/ethernet/intel/ice/ice_virtchnl.c (revision af2d6148d2a159e1a0862bce5a2c88c1618a2b27)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 		     u32 driver_caps)
374 {
375 	if (ice_is_eswitch_mode_switchdev(vf->pf))
376 		/* In switchdev setting VLAN from VF isn't supported */
377 		return 0;
378 
379 	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 		/* VLAN offloads based on current device configuration */
381 		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 		 * these two conditions, which amounts to guest VLAN filtering
385 		 * and offloads being based on the inner VLAN or the
386 		 * inner/single VLAN respectively and don't allow VF to
387 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 		 */
389 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 			return VIRTCHNL_VF_OFFLOAD_VLAN;
391 		} else if (!ice_is_dvm_ena(hw) &&
392 			   !ice_vf_is_port_vlan_ena(vf)) {
393 			/* configure backward compatible support for VFs that
394 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 			 * configured in SVM, and no port VLAN is configured
396 			 */
397 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 			return VIRTCHNL_VF_OFFLOAD_VLAN;
399 		} else if (ice_is_dvm_ena(hw)) {
400 			/* configure software offloaded VLAN support when DVM
401 			 * is enabled, but no port VLAN is enabled
402 			 */
403 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 		}
405 	}
406 
407 	return 0;
408 }
409 
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 	struct virtchnl_vf_resource *vfres = NULL;
421 	struct ice_hw *hw = &vf->pf->hw;
422 	struct ice_vsi *vsi;
423 	int len = 0;
424 	int ret;
425 
426 	if (ice_check_vf_init(vf)) {
427 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 		goto err;
429 	}
430 
431 	len = virtchnl_struct_size(vfres, vsi_res, 0);
432 
433 	vfres = kzalloc(len, GFP_KERNEL);
434 	if (!vfres) {
435 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 		len = 0;
437 		goto err;
438 	}
439 	if (VF_IS_V11(&vf->vf_ver))
440 		vf->driver_caps = *(u32 *)msg;
441 	else
442 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 				  VIRTCHNL_VF_OFFLOAD_VLAN;
444 
445 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 	vsi = ice_get_vf_vsi(vf);
447 	if (!vsi) {
448 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449 		goto err;
450 	}
451 
452 	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453 						    vf->driver_caps);
454 
455 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457 
458 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460 
461 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463 
464 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 &&
465 	    vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
466 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32;
467 
468 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
469 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
470 
471 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
472 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
473 
474 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
475 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
476 
477 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
478 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
479 
480 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
481 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
482 
483 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
484 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
485 
486 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
487 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
488 
489 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
490 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
491 
492 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
493 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
494 
495 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
496 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
497 
498 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_QOS)
499 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_QOS;
500 
501 	if (vf->driver_caps & VIRTCHNL_VF_CAP_PTP)
502 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_PTP;
503 
504 	vfres->num_vsis = 1;
505 	/* Tx and Rx queue are equal for VF */
506 	vfres->num_queue_pairs = vsi->num_txq;
507 	vfres->max_vectors = vf->num_msix;
508 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
509 	vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
510 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
511 
512 	vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
513 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
514 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
515 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
516 			vf->hw_lan_addr);
517 
518 	/* match guest capabilities */
519 	vf->driver_caps = vfres->vf_cap_flags;
520 
521 	ice_vc_set_caps_allowlist(vf);
522 	ice_vc_set_working_allowlist(vf);
523 
524 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
525 
526 err:
527 	/* send the response back to the VF */
528 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
529 				    (u8 *)vfres, len);
530 
531 	kfree(vfres);
532 	return ret;
533 }
534 
535 /**
536  * ice_vc_reset_vf_msg
537  * @vf: pointer to the VF info
538  *
539  * called from the VF to reset itself,
540  * unlike other virtchnl messages, PF driver
541  * doesn't send the response back to the VF
542  */
543 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
544 {
545 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
546 		ice_reset_vf(vf, 0);
547 }
548 
549 /**
550  * ice_vc_isvalid_vsi_id
551  * @vf: pointer to the VF info
552  * @vsi_id: VF relative VSI ID
553  *
554  * check for the valid VSI ID
555  */
556 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
557 {
558 	return vsi_id == ICE_VF_VSI_ID;
559 }
560 
561 /**
562  * ice_vc_isvalid_q_id
563  * @vsi: VSI to check queue ID against
564  * @qid: VSI relative queue ID
565  *
566  * check for the valid queue ID
567  */
568 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u16 qid)
569 {
570 	/* allocated Tx and Rx queues should be always equal for VF VSI */
571 	return qid < vsi->alloc_txq;
572 }
573 
574 /**
575  * ice_vc_isvalid_ring_len
576  * @ring_len: length of ring
577  *
578  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
579  * or zero
580  */
581 static bool ice_vc_isvalid_ring_len(u16 ring_len)
582 {
583 	return ring_len == 0 ||
584 	       (ring_len >= ICE_MIN_NUM_DESC &&
585 		ring_len <= ICE_MAX_NUM_DESC &&
586 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
587 }
588 
589 /**
590  * ice_vc_validate_pattern
591  * @vf: pointer to the VF info
592  * @proto: virtchnl protocol headers
593  *
594  * validate the pattern is supported or not.
595  *
596  * Return: true on success, false on error.
597  */
598 bool
599 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
600 {
601 	bool is_ipv4 = false;
602 	bool is_ipv6 = false;
603 	bool is_udp = false;
604 	u16 ptype = -1;
605 	int i = 0;
606 
607 	while (i < proto->count &&
608 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
609 		switch (proto->proto_hdr[i].type) {
610 		case VIRTCHNL_PROTO_HDR_ETH:
611 			ptype = ICE_PTYPE_MAC_PAY;
612 			break;
613 		case VIRTCHNL_PROTO_HDR_IPV4:
614 			ptype = ICE_PTYPE_IPV4_PAY;
615 			is_ipv4 = true;
616 			break;
617 		case VIRTCHNL_PROTO_HDR_IPV6:
618 			ptype = ICE_PTYPE_IPV6_PAY;
619 			is_ipv6 = true;
620 			break;
621 		case VIRTCHNL_PROTO_HDR_UDP:
622 			if (is_ipv4)
623 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
624 			else if (is_ipv6)
625 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
626 			is_udp = true;
627 			break;
628 		case VIRTCHNL_PROTO_HDR_TCP:
629 			if (is_ipv4)
630 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
631 			else if (is_ipv6)
632 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
633 			break;
634 		case VIRTCHNL_PROTO_HDR_SCTP:
635 			if (is_ipv4)
636 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
637 			else if (is_ipv6)
638 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
639 			break;
640 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
641 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
642 			if (is_ipv4)
643 				ptype = ICE_MAC_IPV4_GTPU;
644 			else if (is_ipv6)
645 				ptype = ICE_MAC_IPV6_GTPU;
646 			goto out;
647 		case VIRTCHNL_PROTO_HDR_L2TPV3:
648 			if (is_ipv4)
649 				ptype = ICE_MAC_IPV4_L2TPV3;
650 			else if (is_ipv6)
651 				ptype = ICE_MAC_IPV6_L2TPV3;
652 			goto out;
653 		case VIRTCHNL_PROTO_HDR_ESP:
654 			if (is_ipv4)
655 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
656 						ICE_MAC_IPV4_ESP;
657 			else if (is_ipv6)
658 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
659 						ICE_MAC_IPV6_ESP;
660 			goto out;
661 		case VIRTCHNL_PROTO_HDR_AH:
662 			if (is_ipv4)
663 				ptype = ICE_MAC_IPV4_AH;
664 			else if (is_ipv6)
665 				ptype = ICE_MAC_IPV6_AH;
666 			goto out;
667 		case VIRTCHNL_PROTO_HDR_PFCP:
668 			if (is_ipv4)
669 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
670 			else if (is_ipv6)
671 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
672 			goto out;
673 		default:
674 			break;
675 		}
676 		i++;
677 	}
678 
679 out:
680 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
681 }
682 
683 /**
684  * ice_vc_parse_rss_cfg - parses hash fields and headers from
685  * a specific virtchnl RSS cfg
686  * @hw: pointer to the hardware
687  * @rss_cfg: pointer to the virtchnl RSS cfg
688  * @hash_cfg: pointer to the HW hash configuration
689  *
690  * Return true if all the protocol header and hash fields in the RSS cfg could
691  * be parsed, else return false
692  *
693  * This function parses the virtchnl RSS cfg to be the intended
694  * hash fields and the intended header for RSS configuration
695  */
696 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
697 				 struct virtchnl_rss_cfg *rss_cfg,
698 				 struct ice_rss_hash_cfg *hash_cfg)
699 {
700 	const struct ice_vc_hash_field_match_type *hf_list;
701 	const struct ice_vc_hdr_match_type *hdr_list;
702 	int i, hf_list_len, hdr_list_len;
703 	u32 *addl_hdrs = &hash_cfg->addl_hdrs;
704 	u64 *hash_flds = &hash_cfg->hash_flds;
705 
706 	/* set outer layer RSS as default */
707 	hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
708 
709 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
710 		hash_cfg->symm = true;
711 	else
712 		hash_cfg->symm = false;
713 
714 	hf_list = ice_vc_hash_field_list;
715 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
716 	hdr_list = ice_vc_hdr_list;
717 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
718 
719 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
720 		struct virtchnl_proto_hdr *proto_hdr =
721 					&rss_cfg->proto_hdrs.proto_hdr[i];
722 		bool hdr_found = false;
723 		int j;
724 
725 		/* Find matched ice headers according to virtchnl headers. */
726 		for (j = 0; j < hdr_list_len; j++) {
727 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
728 
729 			if (proto_hdr->type == hdr_map.vc_hdr) {
730 				*addl_hdrs |= hdr_map.ice_hdr;
731 				hdr_found = true;
732 			}
733 		}
734 
735 		if (!hdr_found)
736 			return false;
737 
738 		/* Find matched ice hash fields according to
739 		 * virtchnl hash fields.
740 		 */
741 		for (j = 0; j < hf_list_len; j++) {
742 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
743 
744 			if (proto_hdr->type == hf_map.vc_hdr &&
745 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
746 				*hash_flds |= hf_map.ice_hash_field;
747 				break;
748 			}
749 		}
750 	}
751 
752 	return true;
753 }
754 
755 /**
756  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
757  * RSS offloads
758  * @caps: VF driver negotiated capabilities
759  *
760  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
761  * else return false
762  */
763 static bool ice_vf_adv_rss_offload_ena(u32 caps)
764 {
765 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
766 }
767 
768 /**
769  * ice_vc_handle_rss_cfg
770  * @vf: pointer to the VF info
771  * @msg: pointer to the message buffer
772  * @add: add a RSS config if true, otherwise delete a RSS config
773  *
774  * This function adds/deletes a RSS config
775  */
776 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
777 {
778 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
779 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
780 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
781 	struct device *dev = ice_pf_to_dev(vf->pf);
782 	struct ice_hw *hw = &vf->pf->hw;
783 	struct ice_vsi *vsi;
784 
785 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
786 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
787 			vf->vf_id);
788 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
789 		goto error_param;
790 	}
791 
792 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
793 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
794 			vf->vf_id);
795 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
796 		goto error_param;
797 	}
798 
799 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
800 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
801 		goto error_param;
802 	}
803 
804 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
805 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
806 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
807 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
808 			vf->vf_id);
809 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
810 		goto error_param;
811 	}
812 
813 	vsi = ice_get_vf_vsi(vf);
814 	if (!vsi) {
815 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
816 		goto error_param;
817 	}
818 
819 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
820 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
821 		goto error_param;
822 	}
823 
824 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
825 		struct ice_vsi_ctx *ctx;
826 		u8 lut_type, hash_type;
827 		int status;
828 
829 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
830 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
831 				ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
832 
833 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
834 		if (!ctx) {
835 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
836 			goto error_param;
837 		}
838 
839 		ctx->info.q_opt_rss =
840 			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
841 			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
842 
843 		/* Preserve existing queueing option setting */
844 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
845 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
846 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
847 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
848 
849 		ctx->info.valid_sections =
850 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
851 
852 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
853 		if (status) {
854 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
855 				status, ice_aq_str(hw->adminq.sq_last_status));
856 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
857 		} else {
858 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
859 		}
860 
861 		kfree(ctx);
862 	} else {
863 		struct ice_rss_hash_cfg cfg;
864 
865 		/* Only check for none raw pattern case */
866 		if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
867 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
868 			goto error_param;
869 		}
870 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
871 		cfg.hash_flds = ICE_HASH_INVALID;
872 		cfg.hdr_type = ICE_RSS_ANY_HEADERS;
873 
874 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
875 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
876 			goto error_param;
877 		}
878 
879 		if (add) {
880 			if (ice_add_rss_cfg(hw, vsi, &cfg)) {
881 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
882 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
883 					vsi->vsi_num, v_ret);
884 			}
885 		} else {
886 			int status;
887 
888 			status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
889 			/* We just ignore -ENOENT, because if two configurations
890 			 * share the same profile remove one of them actually
891 			 * removes both, since the profile is deleted.
892 			 */
893 			if (status && status != -ENOENT) {
894 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
895 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
896 					vf->vf_id, status);
897 			}
898 		}
899 	}
900 
901 error_param:
902 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
903 }
904 
905 /**
906  * ice_vc_config_rss_key
907  * @vf: pointer to the VF info
908  * @msg: pointer to the msg buffer
909  *
910  * Configure the VF's RSS key
911  */
912 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
913 {
914 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
915 	struct virtchnl_rss_key *vrk =
916 		(struct virtchnl_rss_key *)msg;
917 	struct ice_vsi *vsi;
918 
919 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
920 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
921 		goto error_param;
922 	}
923 
924 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
925 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
926 		goto error_param;
927 	}
928 
929 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
930 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
931 		goto error_param;
932 	}
933 
934 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
935 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
936 		goto error_param;
937 	}
938 
939 	vsi = ice_get_vf_vsi(vf);
940 	if (!vsi) {
941 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
942 		goto error_param;
943 	}
944 
945 	if (ice_set_rss_key(vsi, vrk->key))
946 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
947 error_param:
948 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
949 				     NULL, 0);
950 }
951 
952 /**
953  * ice_vc_config_rss_lut
954  * @vf: pointer to the VF info
955  * @msg: pointer to the msg buffer
956  *
957  * Configure the VF's RSS LUT
958  */
959 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
960 {
961 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
962 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
963 	struct ice_vsi *vsi;
964 
965 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
966 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
967 		goto error_param;
968 	}
969 
970 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
971 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
972 		goto error_param;
973 	}
974 
975 	if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
976 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
977 		goto error_param;
978 	}
979 
980 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
981 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
982 		goto error_param;
983 	}
984 
985 	vsi = ice_get_vf_vsi(vf);
986 	if (!vsi) {
987 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
988 		goto error_param;
989 	}
990 
991 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
992 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
993 error_param:
994 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
995 				     NULL, 0);
996 }
997 
998 /**
999  * ice_vc_config_rss_hfunc
1000  * @vf: pointer to the VF info
1001  * @msg: pointer to the msg buffer
1002  *
1003  * Configure the VF's RSS Hash function
1004  */
1005 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1006 {
1007 	struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1008 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1009 	u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1010 	struct ice_vsi *vsi;
1011 
1012 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1013 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1014 		goto error_param;
1015 	}
1016 
1017 	if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1018 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1019 		goto error_param;
1020 	}
1021 
1022 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1023 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1024 		goto error_param;
1025 	}
1026 
1027 	vsi = ice_get_vf_vsi(vf);
1028 	if (!vsi) {
1029 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1030 		goto error_param;
1031 	}
1032 
1033 	if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1034 		hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1035 
1036 	if (ice_set_rss_hfunc(vsi, hfunc))
1037 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1038 error_param:
1039 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1040 				     NULL, 0);
1041 }
1042 
1043 /**
1044  * ice_vc_get_qos_caps - Get current QoS caps from PF
1045  * @vf: pointer to the VF info
1046  *
1047  * Get VF's QoS capabilities, such as TC number, arbiter and
1048  * bandwidth from PF.
1049  *
1050  * Return: 0 on success or negative error value.
1051  */
1052 static int ice_vc_get_qos_caps(struct ice_vf *vf)
1053 {
1054 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1055 	struct virtchnl_qos_cap_list *cap_list = NULL;
1056 	u8 tc_prio[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1057 	struct virtchnl_qos_cap_elem *cfg = NULL;
1058 	struct ice_vsi_ctx *vsi_ctx;
1059 	struct ice_pf *pf = vf->pf;
1060 	struct ice_port_info *pi;
1061 	struct ice_vsi *vsi;
1062 	u8 numtc, tc;
1063 	u16 len = 0;
1064 	int ret, i;
1065 
1066 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1067 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1068 		goto err;
1069 	}
1070 
1071 	vsi = ice_get_vf_vsi(vf);
1072 	if (!vsi) {
1073 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1074 		goto err;
1075 	}
1076 
1077 	pi = pf->hw.port_info;
1078 	numtc = vsi->tc_cfg.numtc;
1079 
1080 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vf->lan_vsi_idx);
1081 	if (!vsi_ctx) {
1082 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1083 		goto err;
1084 	}
1085 
1086 	len = struct_size(cap_list, cap, numtc);
1087 	cap_list = kzalloc(len, GFP_KERNEL);
1088 	if (!cap_list) {
1089 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
1090 		len = 0;
1091 		goto err;
1092 	}
1093 
1094 	cap_list->vsi_id = vsi->vsi_num;
1095 	cap_list->num_elem = numtc;
1096 
1097 	/* Store the UP2TC configuration from DCB to a user priority bitmap
1098 	 * of each TC. Each element of prio_of_tc represents one TC. Each
1099 	 * bitmap indicates the user priorities belong to this TC.
1100 	 */
1101 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1102 		tc = pi->qos_cfg.local_dcbx_cfg.etscfg.prio_table[i];
1103 		tc_prio[tc] |= BIT(i);
1104 	}
1105 
1106 	for (i = 0; i < numtc; i++) {
1107 		cfg = &cap_list->cap[i];
1108 		cfg->tc_num = i;
1109 		cfg->tc_prio = tc_prio[i];
1110 		cfg->arbiter = pi->qos_cfg.local_dcbx_cfg.etscfg.tsatable[i];
1111 		cfg->weight = VIRTCHNL_STRICT_WEIGHT;
1112 		cfg->type = VIRTCHNL_BW_SHAPER;
1113 		cfg->shaper.committed = vsi_ctx->sched.bw_t_info[i].cir_bw.bw;
1114 		cfg->shaper.peak = vsi_ctx->sched.bw_t_info[i].eir_bw.bw;
1115 	}
1116 
1117 err:
1118 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_QOS_CAPS, v_ret,
1119 				    (u8 *)cap_list, len);
1120 	kfree(cap_list);
1121 	return ret;
1122 }
1123 
1124 /**
1125  * ice_vf_cfg_qs_bw - Configure per queue bandwidth
1126  * @vf: pointer to the VF info
1127  * @num_queues: number of queues to be configured
1128  *
1129  * Configure per queue bandwidth.
1130  *
1131  * Return: 0 on success or negative error value.
1132  */
1133 static int ice_vf_cfg_qs_bw(struct ice_vf *vf, u16 num_queues)
1134 {
1135 	struct ice_hw *hw = &vf->pf->hw;
1136 	struct ice_vsi *vsi;
1137 	int ret;
1138 	u16 i;
1139 
1140 	vsi = ice_get_vf_vsi(vf);
1141 	if (!vsi)
1142 		return -EINVAL;
1143 
1144 	for (i = 0; i < num_queues; i++) {
1145 		u32 p_rate, min_rate;
1146 		u8 tc;
1147 
1148 		p_rate = vf->qs_bw[i].peak;
1149 		min_rate = vf->qs_bw[i].committed;
1150 		tc = vf->qs_bw[i].tc;
1151 		if (p_rate)
1152 			ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1153 					       vf->qs_bw[i].queue_id,
1154 					       ICE_MAX_BW, p_rate);
1155 		else
1156 			ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1157 						    vf->qs_bw[i].queue_id,
1158 						    ICE_MAX_BW);
1159 		if (ret)
1160 			return ret;
1161 
1162 		if (min_rate)
1163 			ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1164 					       vf->qs_bw[i].queue_id,
1165 					       ICE_MIN_BW, min_rate);
1166 		else
1167 			ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1168 						    vf->qs_bw[i].queue_id,
1169 						    ICE_MIN_BW);
1170 
1171 		if (ret)
1172 			return ret;
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 /**
1179  * ice_vf_cfg_q_quanta_profile - Configure quanta profile
1180  * @vf: pointer to the VF info
1181  * @quanta_prof_idx: pointer to the quanta profile index
1182  * @quanta_size: quanta size to be set
1183  *
1184  * This function chooses available quanta profile and configures the register.
1185  * The quanta profile is evenly divided by the number of device ports, and then
1186  * available to the specific PF and VFs. The first profile for each PF is a
1187  * reserved default profile. Only quanta size of the rest unused profile can be
1188  * modified.
1189  *
1190  * Return: 0 on success or negative error value.
1191  */
1192 static int ice_vf_cfg_q_quanta_profile(struct ice_vf *vf, u16 quanta_size,
1193 				       u16 *quanta_prof_idx)
1194 {
1195 	const u16 n_desc = calc_quanta_desc(quanta_size);
1196 	struct ice_hw *hw = &vf->pf->hw;
1197 	const u16 n_cmd = 2 * n_desc;
1198 	struct ice_pf *pf = vf->pf;
1199 	u16 per_pf, begin_id;
1200 	u8 n_used;
1201 	u32 reg;
1202 
1203 	begin_id = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / hw->dev_caps.num_funcs *
1204 		   hw->logical_pf_id;
1205 
1206 	if (quanta_size == ICE_DFLT_QUANTA) {
1207 		*quanta_prof_idx = begin_id;
1208 	} else {
1209 		per_pf = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) /
1210 			 hw->dev_caps.num_funcs;
1211 		n_used = pf->num_quanta_prof_used;
1212 		if (n_used < per_pf) {
1213 			*quanta_prof_idx = begin_id + 1 + n_used;
1214 			pf->num_quanta_prof_used++;
1215 		} else {
1216 			return -EINVAL;
1217 		}
1218 	}
1219 
1220 	reg = FIELD_PREP(GLCOMM_QUANTA_PROF_QUANTA_SIZE_M, quanta_size) |
1221 	      FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_CMD_M, n_cmd) |
1222 	      FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_DESC_M, n_desc);
1223 	wr32(hw, GLCOMM_QUANTA_PROF(*quanta_prof_idx), reg);
1224 
1225 	return 0;
1226 }
1227 
1228 /**
1229  * ice_vc_cfg_promiscuous_mode_msg
1230  * @vf: pointer to the VF info
1231  * @msg: pointer to the msg buffer
1232  *
1233  * called from the VF to configure VF VSIs promiscuous mode
1234  */
1235 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1236 {
1237 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1238 	bool rm_promisc, alluni = false, allmulti = false;
1239 	struct virtchnl_promisc_info *info =
1240 	    (struct virtchnl_promisc_info *)msg;
1241 	struct ice_vsi_vlan_ops *vlan_ops;
1242 	int mcast_err = 0, ucast_err = 0;
1243 	struct ice_pf *pf = vf->pf;
1244 	struct ice_vsi *vsi;
1245 	u8 mcast_m, ucast_m;
1246 	struct device *dev;
1247 	int ret = 0;
1248 
1249 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1250 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1251 		goto error_param;
1252 	}
1253 
1254 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1255 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1256 		goto error_param;
1257 	}
1258 
1259 	vsi = ice_get_vf_vsi(vf);
1260 	if (!vsi) {
1261 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1262 		goto error_param;
1263 	}
1264 
1265 	dev = ice_pf_to_dev(pf);
1266 	if (!ice_is_vf_trusted(vf)) {
1267 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1268 			vf->vf_id);
1269 		/* Leave v_ret alone, lie to the VF on purpose. */
1270 		goto error_param;
1271 	}
1272 
1273 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1274 		alluni = true;
1275 
1276 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1277 		allmulti = true;
1278 
1279 	rm_promisc = !allmulti && !alluni;
1280 
1281 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1282 	if (rm_promisc)
1283 		ret = vlan_ops->ena_rx_filtering(vsi);
1284 	else
1285 		ret = vlan_ops->dis_rx_filtering(vsi);
1286 	if (ret) {
1287 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1288 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1289 		goto error_param;
1290 	}
1291 
1292 	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1293 
1294 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1295 		if (alluni) {
1296 			/* in this case we're turning on promiscuous mode */
1297 			ret = ice_set_dflt_vsi(vsi);
1298 		} else {
1299 			/* in this case we're turning off promiscuous mode */
1300 			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1301 				ret = ice_clear_dflt_vsi(vsi);
1302 		}
1303 
1304 		/* in this case we're turning on/off only
1305 		 * allmulticast
1306 		 */
1307 		if (allmulti)
1308 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1309 		else
1310 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1311 
1312 		if (ret) {
1313 			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1314 				vf->vf_id, ret);
1315 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1316 			goto error_param;
1317 		}
1318 	} else {
1319 		if (alluni)
1320 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1321 		else
1322 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1323 
1324 		if (allmulti)
1325 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1326 		else
1327 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1328 
1329 		if (ucast_err || mcast_err)
1330 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1331 	}
1332 
1333 	if (!mcast_err) {
1334 		if (allmulti &&
1335 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1336 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1337 				 vf->vf_id);
1338 		else if (!allmulti &&
1339 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1340 					    vf->vf_states))
1341 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1342 				 vf->vf_id);
1343 	} else {
1344 		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1345 			vf->vf_id, mcast_err);
1346 	}
1347 
1348 	if (!ucast_err) {
1349 		if (alluni &&
1350 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1351 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1352 				 vf->vf_id);
1353 		else if (!alluni &&
1354 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1355 					    vf->vf_states))
1356 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1357 				 vf->vf_id);
1358 	} else {
1359 		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1360 			vf->vf_id, ucast_err);
1361 	}
1362 
1363 error_param:
1364 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1365 				     v_ret, NULL, 0);
1366 }
1367 
1368 /**
1369  * ice_vc_get_stats_msg
1370  * @vf: pointer to the VF info
1371  * @msg: pointer to the msg buffer
1372  *
1373  * called from the VF to get VSI stats
1374  */
1375 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1376 {
1377 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1378 	struct virtchnl_queue_select *vqs =
1379 		(struct virtchnl_queue_select *)msg;
1380 	struct ice_eth_stats stats = { 0 };
1381 	struct ice_vsi *vsi;
1382 
1383 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1384 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1385 		goto error_param;
1386 	}
1387 
1388 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1389 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1390 		goto error_param;
1391 	}
1392 
1393 	vsi = ice_get_vf_vsi(vf);
1394 	if (!vsi) {
1395 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1396 		goto error_param;
1397 	}
1398 
1399 	ice_update_eth_stats(vsi);
1400 
1401 	stats = vsi->eth_stats;
1402 
1403 error_param:
1404 	/* send the response to the VF */
1405 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1406 				     (u8 *)&stats, sizeof(stats));
1407 }
1408 
1409 /**
1410  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1411  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1412  *
1413  * Return true on successful validation, else false
1414  */
1415 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1416 {
1417 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1418 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1419 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1420 		return false;
1421 
1422 	return true;
1423 }
1424 
1425 /**
1426  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1427  * @vsi: VSI of the VF to configure
1428  * @q_idx: VF queue index used to determine the queue in the PF's space
1429  */
1430 void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1431 {
1432 	struct ice_hw *hw = &vsi->back->hw;
1433 	u32 pfq = vsi->txq_map[q_idx];
1434 	u32 reg;
1435 
1436 	reg = rd32(hw, QINT_TQCTL(pfq));
1437 
1438 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1439 	 * this is most likely a poll mode VF driver, so don't enable an
1440 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1441 	 */
1442 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1443 		return;
1444 
1445 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1446 }
1447 
1448 /**
1449  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1450  * @vsi: VSI of the VF to configure
1451  * @q_idx: VF queue index used to determine the queue in the PF's space
1452  */
1453 void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1454 {
1455 	struct ice_hw *hw = &vsi->back->hw;
1456 	u32 pfq = vsi->rxq_map[q_idx];
1457 	u32 reg;
1458 
1459 	reg = rd32(hw, QINT_RQCTL(pfq));
1460 
1461 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1462 	 * this is most likely a poll mode VF driver, so don't enable an
1463 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1464 	 */
1465 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1466 		return;
1467 
1468 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1469 }
1470 
1471 /**
1472  * ice_vc_ena_qs_msg
1473  * @vf: pointer to the VF info
1474  * @msg: pointer to the msg buffer
1475  *
1476  * called from the VF to enable all or specific queue(s)
1477  */
1478 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1479 {
1480 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1481 	struct virtchnl_queue_select *vqs =
1482 	    (struct virtchnl_queue_select *)msg;
1483 	struct ice_vsi *vsi;
1484 	unsigned long q_map;
1485 	u16 vf_q_id;
1486 
1487 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1488 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1489 		goto error_param;
1490 	}
1491 
1492 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1493 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1494 		goto error_param;
1495 	}
1496 
1497 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1498 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1499 		goto error_param;
1500 	}
1501 
1502 	vsi = ice_get_vf_vsi(vf);
1503 	if (!vsi) {
1504 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1505 		goto error_param;
1506 	}
1507 
1508 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1509 	 * Tx queue group list was configured and the context bits were
1510 	 * programmed using ice_vsi_cfg_txqs
1511 	 */
1512 	q_map = vqs->rx_queues;
1513 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1514 		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1515 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1516 			goto error_param;
1517 		}
1518 
1519 		/* Skip queue if enabled */
1520 		if (test_bit(vf_q_id, vf->rxq_ena))
1521 			continue;
1522 
1523 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1524 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1525 				vf_q_id, vsi->vsi_num);
1526 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1527 			goto error_param;
1528 		}
1529 
1530 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1531 		set_bit(vf_q_id, vf->rxq_ena);
1532 	}
1533 
1534 	q_map = vqs->tx_queues;
1535 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1536 		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1537 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1538 			goto error_param;
1539 		}
1540 
1541 		/* Skip queue if enabled */
1542 		if (test_bit(vf_q_id, vf->txq_ena))
1543 			continue;
1544 
1545 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1546 		set_bit(vf_q_id, vf->txq_ena);
1547 	}
1548 
1549 	/* Set flag to indicate that queues are enabled */
1550 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1551 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1552 
1553 error_param:
1554 	/* send the response to the VF */
1555 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1556 				     NULL, 0);
1557 }
1558 
1559 /**
1560  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1561  * @vf: VF to disable queue for
1562  * @vsi: VSI for the VF
1563  * @q_id: VF relative (0-based) queue ID
1564  *
1565  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1566  * disabled then clear q_id bit in the enabled queues bitmap and return
1567  * success. Otherwise return error.
1568  */
1569 int ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1570 {
1571 	struct ice_txq_meta txq_meta = { 0 };
1572 	struct ice_tx_ring *ring;
1573 	int err;
1574 
1575 	if (!test_bit(q_id, vf->txq_ena))
1576 		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1577 			q_id, vsi->vsi_num);
1578 
1579 	ring = vsi->tx_rings[q_id];
1580 	if (!ring)
1581 		return -EINVAL;
1582 
1583 	ice_fill_txq_meta(vsi, ring, &txq_meta);
1584 
1585 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1586 	if (err) {
1587 		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1588 			q_id, vsi->vsi_num);
1589 		return err;
1590 	}
1591 
1592 	/* Clear enabled queues flag */
1593 	clear_bit(q_id, vf->txq_ena);
1594 
1595 	return 0;
1596 }
1597 
1598 /**
1599  * ice_vc_dis_qs_msg
1600  * @vf: pointer to the VF info
1601  * @msg: pointer to the msg buffer
1602  *
1603  * called from the VF to disable all or specific queue(s)
1604  */
1605 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1606 {
1607 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1608 	struct virtchnl_queue_select *vqs =
1609 	    (struct virtchnl_queue_select *)msg;
1610 	struct ice_vsi *vsi;
1611 	unsigned long q_map;
1612 	u16 vf_q_id;
1613 
1614 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1615 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1616 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1617 		goto error_param;
1618 	}
1619 
1620 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1621 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1622 		goto error_param;
1623 	}
1624 
1625 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1626 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1627 		goto error_param;
1628 	}
1629 
1630 	vsi = ice_get_vf_vsi(vf);
1631 	if (!vsi) {
1632 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1633 		goto error_param;
1634 	}
1635 
1636 	if (vqs->tx_queues) {
1637 		q_map = vqs->tx_queues;
1638 
1639 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1640 			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1641 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1642 				goto error_param;
1643 			}
1644 
1645 			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1646 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1647 				goto error_param;
1648 			}
1649 		}
1650 	}
1651 
1652 	q_map = vqs->rx_queues;
1653 	/* speed up Rx queue disable by batching them if possible */
1654 	if (q_map &&
1655 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1656 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1657 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1658 				vsi->vsi_num);
1659 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1660 			goto error_param;
1661 		}
1662 
1663 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1664 	} else if (q_map) {
1665 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1666 			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1667 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1668 				goto error_param;
1669 			}
1670 
1671 			/* Skip queue if not enabled */
1672 			if (!test_bit(vf_q_id, vf->rxq_ena))
1673 				continue;
1674 
1675 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1676 						     true)) {
1677 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1678 					vf_q_id, vsi->vsi_num);
1679 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1680 				goto error_param;
1681 			}
1682 
1683 			/* Clear enabled queues flag */
1684 			clear_bit(vf_q_id, vf->rxq_ena);
1685 		}
1686 	}
1687 
1688 	/* Clear enabled queues flag */
1689 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1690 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1691 
1692 error_param:
1693 	/* send the response to the VF */
1694 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1695 				     NULL, 0);
1696 }
1697 
1698 /**
1699  * ice_cfg_interrupt
1700  * @vf: pointer to the VF info
1701  * @vsi: the VSI being configured
1702  * @map: vector map for mapping vectors to queues
1703  * @q_vector: structure for interrupt vector
1704  * configure the IRQ to queue map
1705  */
1706 static enum virtchnl_status_code
1707 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi,
1708 		  struct virtchnl_vector_map *map,
1709 		  struct ice_q_vector *q_vector)
1710 {
1711 	u16 vsi_q_id, vsi_q_id_idx;
1712 	unsigned long qmap;
1713 
1714 	q_vector->num_ring_rx = 0;
1715 	q_vector->num_ring_tx = 0;
1716 
1717 	qmap = map->rxq_map;
1718 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1719 		vsi_q_id = vsi_q_id_idx;
1720 
1721 		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1722 			return VIRTCHNL_STATUS_ERR_PARAM;
1723 
1724 		q_vector->num_ring_rx++;
1725 		q_vector->rx.itr_idx = map->rxitr_idx;
1726 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1727 		ice_cfg_rxq_interrupt(vsi, vsi_q_id,
1728 				      q_vector->vf_reg_idx,
1729 				      q_vector->rx.itr_idx);
1730 	}
1731 
1732 	qmap = map->txq_map;
1733 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1734 		vsi_q_id = vsi_q_id_idx;
1735 
1736 		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1737 			return VIRTCHNL_STATUS_ERR_PARAM;
1738 
1739 		q_vector->num_ring_tx++;
1740 		q_vector->tx.itr_idx = map->txitr_idx;
1741 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1742 		ice_cfg_txq_interrupt(vsi, vsi_q_id,
1743 				      q_vector->vf_reg_idx,
1744 				      q_vector->tx.itr_idx);
1745 	}
1746 
1747 	return VIRTCHNL_STATUS_SUCCESS;
1748 }
1749 
1750 /**
1751  * ice_vc_cfg_irq_map_msg
1752  * @vf: pointer to the VF info
1753  * @msg: pointer to the msg buffer
1754  *
1755  * called from the VF to configure the IRQ to queue map
1756  */
1757 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1758 {
1759 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1760 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1761 	struct virtchnl_irq_map_info *irqmap_info;
1762 	struct virtchnl_vector_map *map;
1763 	struct ice_vsi *vsi;
1764 	int i;
1765 
1766 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1767 	num_q_vectors_mapped = irqmap_info->num_vectors;
1768 
1769 	/* Check to make sure number of VF vectors mapped is not greater than
1770 	 * number of VF vectors originally allocated, and check that
1771 	 * there is actually at least a single VF queue vector mapped
1772 	 */
1773 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1774 	    vf->num_msix < num_q_vectors_mapped ||
1775 	    !num_q_vectors_mapped) {
1776 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1777 		goto error_param;
1778 	}
1779 
1780 	vsi = ice_get_vf_vsi(vf);
1781 	if (!vsi) {
1782 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1783 		goto error_param;
1784 	}
1785 
1786 	for (i = 0; i < num_q_vectors_mapped; i++) {
1787 		struct ice_q_vector *q_vector;
1788 
1789 		map = &irqmap_info->vecmap[i];
1790 
1791 		vector_id = map->vector_id;
1792 		vsi_id = map->vsi_id;
1793 		/* vector_id is always 0-based for each VF, and can never be
1794 		 * larger than or equal to the max allowed interrupts per VF
1795 		 */
1796 		if (!(vector_id < vf->num_msix) ||
1797 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1798 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1799 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1800 			goto error_param;
1801 		}
1802 
1803 		/* No need to map VF miscellaneous or rogue vector */
1804 		if (!vector_id)
1805 			continue;
1806 
1807 		/* Subtract non queue vector from vector_id passed by VF
1808 		 * to get actual number of VSI queue vector array index
1809 		 */
1810 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1811 		if (!q_vector) {
1812 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1813 			goto error_param;
1814 		}
1815 
1816 		/* lookout for the invalid queue index */
1817 		v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector);
1818 		if (v_ret)
1819 			goto error_param;
1820 	}
1821 
1822 error_param:
1823 	/* send the response to the VF */
1824 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1825 				     NULL, 0);
1826 }
1827 
1828 /**
1829  * ice_vc_cfg_q_bw - Configure per queue bandwidth
1830  * @vf: pointer to the VF info
1831  * @msg: pointer to the msg buffer which holds the command descriptor
1832  *
1833  * Configure VF queues bandwidth.
1834  *
1835  * Return: 0 on success or negative error value.
1836  */
1837 static int ice_vc_cfg_q_bw(struct ice_vf *vf, u8 *msg)
1838 {
1839 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1840 	struct virtchnl_queues_bw_cfg *qbw =
1841 		(struct virtchnl_queues_bw_cfg *)msg;
1842 	struct ice_vsi *vsi;
1843 	u16 i;
1844 
1845 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1846 	    !ice_vc_isvalid_vsi_id(vf, qbw->vsi_id)) {
1847 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1848 		goto err;
1849 	}
1850 
1851 	vsi = ice_get_vf_vsi(vf);
1852 	if (!vsi) {
1853 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1854 		goto err;
1855 	}
1856 
1857 	if (qbw->num_queues > ICE_MAX_RSS_QS_PER_VF ||
1858 	    qbw->num_queues > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1859 		dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1860 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1861 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1862 		goto err;
1863 	}
1864 
1865 	for (i = 0; i < qbw->num_queues; i++) {
1866 		if (qbw->cfg[i].shaper.peak != 0 && vf->max_tx_rate != 0 &&
1867 		    qbw->cfg[i].shaper.peak > vf->max_tx_rate) {
1868 			dev_warn(ice_pf_to_dev(vf->pf), "The maximum queue %d rate limit configuration may not take effect because the maximum TX rate for VF-%d is %d\n",
1869 				 qbw->cfg[i].queue_id, vf->vf_id,
1870 				 vf->max_tx_rate);
1871 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1872 			goto err;
1873 		}
1874 		if (qbw->cfg[i].shaper.committed != 0 && vf->min_tx_rate != 0 &&
1875 		    qbw->cfg[i].shaper.committed < vf->min_tx_rate) {
1876 			dev_warn(ice_pf_to_dev(vf->pf), "The minimum queue %d rate limit configuration may not take effect because the minimum TX rate for VF-%d is %d\n",
1877 				 qbw->cfg[i].queue_id, vf->vf_id,
1878 				 vf->min_tx_rate);
1879 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1880 			goto err;
1881 		}
1882 		if (qbw->cfg[i].queue_id > vf->num_vf_qs) {
1883 			dev_warn(ice_pf_to_dev(vf->pf), "VF-%d trying to configure invalid queue_id\n",
1884 				 vf->vf_id);
1885 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1886 			goto err;
1887 		}
1888 		if (qbw->cfg[i].tc >= ICE_MAX_TRAFFIC_CLASS) {
1889 			dev_warn(ice_pf_to_dev(vf->pf), "VF-%d trying to configure a traffic class higher than allowed\n",
1890 				 vf->vf_id);
1891 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1892 			goto err;
1893 		}
1894 	}
1895 
1896 	for (i = 0; i < qbw->num_queues; i++) {
1897 		vf->qs_bw[i].queue_id = qbw->cfg[i].queue_id;
1898 		vf->qs_bw[i].peak = qbw->cfg[i].shaper.peak;
1899 		vf->qs_bw[i].committed = qbw->cfg[i].shaper.committed;
1900 		vf->qs_bw[i].tc = qbw->cfg[i].tc;
1901 	}
1902 
1903 	if (ice_vf_cfg_qs_bw(vf, qbw->num_queues))
1904 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1905 
1906 err:
1907 	/* send the response to the VF */
1908 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUEUE_BW,
1909 				    v_ret, NULL, 0);
1910 }
1911 
1912 /**
1913  * ice_vc_cfg_q_quanta - Configure per queue quanta
1914  * @vf: pointer to the VF info
1915  * @msg: pointer to the msg buffer which holds the command descriptor
1916  *
1917  * Configure VF queues quanta.
1918  *
1919  * Return: 0 on success or negative error value.
1920  */
1921 static int ice_vc_cfg_q_quanta(struct ice_vf *vf, u8 *msg)
1922 {
1923 	u16 quanta_prof_id, quanta_size, start_qid, num_queues, end_qid, i;
1924 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1925 	struct virtchnl_quanta_cfg *qquanta =
1926 		(struct virtchnl_quanta_cfg *)msg;
1927 	struct ice_vsi *vsi;
1928 	int ret;
1929 
1930 	start_qid = qquanta->queue_select.start_queue_id;
1931 	num_queues = qquanta->queue_select.num_queues;
1932 
1933 	if (check_add_overflow(start_qid, num_queues, &end_qid)) {
1934 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1935 		goto err;
1936 	}
1937 
1938 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1939 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1940 		goto err;
1941 	}
1942 
1943 	vsi = ice_get_vf_vsi(vf);
1944 	if (!vsi) {
1945 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1946 		goto err;
1947 	}
1948 
1949 	if (end_qid > ICE_MAX_RSS_QS_PER_VF ||
1950 	    end_qid > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1951 		dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1952 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1953 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1954 		goto err;
1955 	}
1956 
1957 	quanta_size = qquanta->quanta_size;
1958 	if (quanta_size > ICE_MAX_QUANTA_SIZE ||
1959 	    quanta_size < ICE_MIN_QUANTA_SIZE) {
1960 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1961 		goto err;
1962 	}
1963 
1964 	if (quanta_size % 64) {
1965 		dev_err(ice_pf_to_dev(vf->pf), "quanta size should be the product of 64\n");
1966 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1967 		goto err;
1968 	}
1969 
1970 	ret = ice_vf_cfg_q_quanta_profile(vf, quanta_size,
1971 					  &quanta_prof_id);
1972 	if (ret) {
1973 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
1974 		goto err;
1975 	}
1976 
1977 	for (i = start_qid; i < end_qid; i++)
1978 		vsi->tx_rings[i]->quanta_prof_id = quanta_prof_id;
1979 
1980 err:
1981 	/* send the response to the VF */
1982 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUANTA,
1983 				     v_ret, NULL, 0);
1984 }
1985 
1986 /**
1987  * ice_vc_cfg_qs_msg
1988  * @vf: pointer to the VF info
1989  * @msg: pointer to the msg buffer
1990  *
1991  * called from the VF to configure the Rx/Tx queues
1992  */
1993 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1994 {
1995 	struct virtchnl_vsi_queue_config_info *qci =
1996 	    (struct virtchnl_vsi_queue_config_info *)msg;
1997 	struct virtchnl_queue_pair_info *qpi;
1998 	struct ice_pf *pf = vf->pf;
1999 	struct ice_lag *lag;
2000 	struct ice_vsi *vsi;
2001 	u8 act_prt, pri_prt;
2002 	int i = -1, q_idx;
2003 	bool ena_ts;
2004 
2005 	lag = pf->lag;
2006 	mutex_lock(&pf->lag_mutex);
2007 	act_prt = ICE_LAG_INVALID_PORT;
2008 	pri_prt = pf->hw.port_info->lport;
2009 	if (lag && lag->bonded && lag->primary) {
2010 		act_prt = lag->active_port;
2011 		if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
2012 		    lag->upper_netdev)
2013 			ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
2014 		else
2015 			act_prt = ICE_LAG_INVALID_PORT;
2016 	}
2017 
2018 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
2019 		goto error_param;
2020 
2021 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
2022 		goto error_param;
2023 
2024 	vsi = ice_get_vf_vsi(vf);
2025 	if (!vsi)
2026 		goto error_param;
2027 
2028 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
2029 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
2030 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
2031 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
2032 		goto error_param;
2033 	}
2034 
2035 	for (i = 0; i < qci->num_queue_pairs; i++) {
2036 		if (!qci->qpair[i].rxq.crc_disable)
2037 			continue;
2038 
2039 		if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
2040 		    vf->vlan_strip_ena)
2041 			goto error_param;
2042 	}
2043 
2044 	for (i = 0; i < qci->num_queue_pairs; i++) {
2045 		qpi = &qci->qpair[i];
2046 		if (qpi->txq.vsi_id != qci->vsi_id ||
2047 		    qpi->rxq.vsi_id != qci->vsi_id ||
2048 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
2049 		    qpi->txq.headwb_enabled ||
2050 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
2051 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
2052 		    !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
2053 			goto error_param;
2054 		}
2055 
2056 		q_idx = qpi->rxq.queue_id;
2057 
2058 		/* make sure selected "q_idx" is in valid range of queues
2059 		 * for selected "vsi"
2060 		 */
2061 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
2062 			goto error_param;
2063 		}
2064 
2065 		/* copy Tx queue info from VF into VSI */
2066 		if (qpi->txq.ring_len > 0) {
2067 			vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr;
2068 			vsi->tx_rings[q_idx]->count = qpi->txq.ring_len;
2069 
2070 			/* Disable any existing queue first */
2071 			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
2072 				goto error_param;
2073 
2074 			/* Configure a queue with the requested settings */
2075 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
2076 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
2077 					 vf->vf_id, q_idx);
2078 				goto error_param;
2079 			}
2080 		}
2081 
2082 		/* copy Rx queue info from VF into VSI */
2083 		if (qpi->rxq.ring_len > 0) {
2084 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
2085 			struct ice_rx_ring *ring = vsi->rx_rings[q_idx];
2086 			u32 rxdid;
2087 
2088 			ring->dma = qpi->rxq.dma_ring_addr;
2089 			ring->count = qpi->rxq.ring_len;
2090 
2091 			if (qpi->rxq.crc_disable)
2092 				ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
2093 			else
2094 				ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
2095 
2096 			if (qpi->rxq.databuffer_size != 0 &&
2097 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
2098 			     qpi->rxq.databuffer_size < 1024))
2099 				goto error_param;
2100 			ring->rx_buf_len = qpi->rxq.databuffer_size;
2101 			if (qpi->rxq.max_pkt_size > max_frame_size ||
2102 			    qpi->rxq.max_pkt_size < 64)
2103 				goto error_param;
2104 
2105 			ring->max_frame = qpi->rxq.max_pkt_size;
2106 			/* add space for the port VLAN since the VF driver is
2107 			 * not expected to account for it in the MTU
2108 			 * calculation
2109 			 */
2110 			if (ice_vf_is_port_vlan_ena(vf))
2111 				ring->max_frame += VLAN_HLEN;
2112 
2113 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
2114 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
2115 					 vf->vf_id, q_idx);
2116 				goto error_param;
2117 			}
2118 
2119 			/* If Rx flex desc is supported, select RXDID for Rx
2120 			 * queues. Otherwise, use legacy 32byte descriptor
2121 			 * format. Legacy 16byte descriptor is not supported.
2122 			 * If this RXDID is selected, return error.
2123 			 */
2124 			if (vf->driver_caps &
2125 			    VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2126 				rxdid = qpi->rxq.rxdid;
2127 				if (!(BIT(rxdid) & pf->supported_rxdids))
2128 					goto error_param;
2129 			} else {
2130 				rxdid = ICE_RXDID_LEGACY_1;
2131 			}
2132 
2133 			ena_ts = ((vf->driver_caps &
2134 				  VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) &&
2135 				  (vf->driver_caps & VIRTCHNL_VF_CAP_PTP) &&
2136 				  (qpi->rxq.flags & VIRTCHNL_PTP_RX_TSTAMP));
2137 
2138 			ice_write_qrxflxp_cntxt(&vsi->back->hw,
2139 						vsi->rxq_map[q_idx], rxdid,
2140 						ICE_RXDID_PRIO, ena_ts);
2141 		}
2142 	}
2143 
2144 	if (lag && lag->bonded && lag->primary &&
2145 	    act_prt != ICE_LAG_INVALID_PORT)
2146 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2147 	mutex_unlock(&pf->lag_mutex);
2148 
2149 	/* send the response to the VF */
2150 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2151 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
2152 error_param:
2153 	/* disable whatever we can */
2154 	for (; i >= 0; i--) {
2155 		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
2156 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
2157 				vf->vf_id, i);
2158 		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
2159 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
2160 				vf->vf_id, i);
2161 	}
2162 
2163 	if (lag && lag->bonded && lag->primary &&
2164 	    act_prt != ICE_LAG_INVALID_PORT)
2165 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2166 	mutex_unlock(&pf->lag_mutex);
2167 
2168 	ice_lag_move_new_vf_nodes(vf);
2169 
2170 	/* send the response to the VF */
2171 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2172 				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
2173 }
2174 
2175 /**
2176  * ice_can_vf_change_mac
2177  * @vf: pointer to the VF info
2178  *
2179  * Return true if the VF is allowed to change its MAC filters, false otherwise
2180  */
2181 static bool ice_can_vf_change_mac(struct ice_vf *vf)
2182 {
2183 	/* If the VF MAC address has been set administratively (via the
2184 	 * ndo_set_vf_mac command), then deny permission to the VF to
2185 	 * add/delete unicast MAC addresses, unless the VF is trusted
2186 	 */
2187 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
2188 		return false;
2189 
2190 	return true;
2191 }
2192 
2193 /**
2194  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
2195  * @vc_ether_addr: used to extract the type
2196  */
2197 static u8
2198 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
2199 {
2200 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
2201 }
2202 
2203 /**
2204  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
2205  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2206  */
2207 static bool
2208 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
2209 {
2210 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2211 
2212 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
2213 }
2214 
2215 /**
2216  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
2217  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2218  *
2219  * This function should only be called when the MAC address in
2220  * virtchnl_ether_addr is a valid unicast MAC
2221  */
2222 static bool
2223 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
2224 {
2225 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2226 
2227 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
2228 }
2229 
2230 /**
2231  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
2232  * @vf: VF to update
2233  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
2234  */
2235 static void
2236 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2237 {
2238 	u8 *mac_addr = vc_ether_addr->addr;
2239 
2240 	if (!is_valid_ether_addr(mac_addr))
2241 		return;
2242 
2243 	/* only allow legacy VF drivers to set the device and hardware MAC if it
2244 	 * is zero and allow new VF drivers to set the hardware MAC if the type
2245 	 * was correctly specified over VIRTCHNL
2246 	 */
2247 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
2248 	     is_zero_ether_addr(vf->hw_lan_addr)) ||
2249 	    ice_is_vc_addr_primary(vc_ether_addr)) {
2250 		ether_addr_copy(vf->dev_lan_addr, mac_addr);
2251 		ether_addr_copy(vf->hw_lan_addr, mac_addr);
2252 	}
2253 
2254 	/* hardware and device MACs are already set, but its possible that the
2255 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
2256 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
2257 	 * away for the legacy VF driver case as it will be updated in the
2258 	 * delete flow for this case
2259 	 */
2260 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
2261 		ether_addr_copy(vf->legacy_last_added_umac.addr,
2262 				mac_addr);
2263 		vf->legacy_last_added_umac.time_modified = jiffies;
2264 	}
2265 }
2266 
2267 /**
2268  * ice_is_mc_lldp_eth_addr - check if the given MAC is a multicast LLDP address
2269  * @mac: address to check
2270  *
2271  * Return: true if the address is one of the three possible LLDP multicast
2272  *	   addresses, false otherwise.
2273  */
2274 static bool ice_is_mc_lldp_eth_addr(const u8 *mac)
2275 {
2276 	const u8 lldp_mac_base[] = {0x01, 0x80, 0xc2, 0x00, 0x00};
2277 
2278 	if (memcmp(mac, lldp_mac_base, sizeof(lldp_mac_base)))
2279 		return false;
2280 
2281 	return (mac[5] == 0x0e || mac[5] == 0x03 || mac[5] == 0x00);
2282 }
2283 
2284 /**
2285  * ice_vc_can_add_mac - check if the VF is allowed to add a given MAC
2286  * @vf: a VF to add the address to
2287  * @mac: address to check
2288  *
2289  * Return: true if the VF is allowed to add such MAC address, false otherwise.
2290  */
2291 static bool ice_vc_can_add_mac(const struct ice_vf *vf, const u8 *mac)
2292 {
2293 	struct device *dev = ice_pf_to_dev(vf->pf);
2294 
2295 	if (is_unicast_ether_addr(mac) &&
2296 	    !ice_can_vf_change_mac((struct ice_vf *)vf)) {
2297 		dev_err(dev,
2298 			"VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
2299 		return false;
2300 	}
2301 
2302 	if (!vf->trusted && ice_is_mc_lldp_eth_addr(mac)) {
2303 		dev_warn(dev,
2304 			 "An untrusted VF %u is attempting to configure an LLDP multicast address\n",
2305 			 vf->vf_id);
2306 		return false;
2307 	}
2308 
2309 	return true;
2310 }
2311 
2312 /**
2313  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
2314  * @vf: pointer to the VF info
2315  * @vsi: pointer to the VF's VSI
2316  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
2317  */
2318 static int
2319 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2320 		    struct virtchnl_ether_addr *vc_ether_addr)
2321 {
2322 	struct device *dev = ice_pf_to_dev(vf->pf);
2323 	u8 *mac_addr = vc_ether_addr->addr;
2324 	int ret;
2325 
2326 	/* device MAC already added */
2327 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
2328 		return 0;
2329 
2330 	if (!ice_vc_can_add_mac(vf, mac_addr))
2331 		return -EPERM;
2332 
2333 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2334 	if (ret == -EEXIST) {
2335 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
2336 			vf->vf_id);
2337 		/* don't return since we might need to update
2338 		 * the primary MAC in ice_vfhw_mac_add() below
2339 		 */
2340 	} else if (ret) {
2341 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
2342 			mac_addr, vf->vf_id, ret);
2343 		return ret;
2344 	} else {
2345 		vf->num_mac++;
2346 		if (ice_is_mc_lldp_eth_addr(mac_addr))
2347 			ice_vf_update_mac_lldp_num(vf, vsi, true);
2348 	}
2349 
2350 	ice_vfhw_mac_add(vf, vc_ether_addr);
2351 
2352 	return ret;
2353 }
2354 
2355 /**
2356  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
2357  * @last_added_umac: structure used to check expiration
2358  */
2359 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
2360 {
2361 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
2362 	return time_is_before_jiffies(last_added_umac->time_modified +
2363 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
2364 }
2365 
2366 /**
2367  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
2368  * @vf: VF to update
2369  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
2370  *
2371  * only update cached hardware MAC for legacy VF drivers on delete
2372  * because we cannot guarantee order/type of MAC from the VF driver
2373  */
2374 static void
2375 ice_update_legacy_cached_mac(struct ice_vf *vf,
2376 			     struct virtchnl_ether_addr *vc_ether_addr)
2377 {
2378 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
2379 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
2380 		return;
2381 
2382 	ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
2383 	ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
2384 }
2385 
2386 /**
2387  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
2388  * @vf: VF to update
2389  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
2390  */
2391 static void
2392 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2393 {
2394 	u8 *mac_addr = vc_ether_addr->addr;
2395 
2396 	if (!is_valid_ether_addr(mac_addr) ||
2397 	    !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2398 		return;
2399 
2400 	/* allow the device MAC to be repopulated in the add flow and don't
2401 	 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2402 	 * to be persistent on VM reboot and across driver unload/load, which
2403 	 * won't work if we clear the hardware MAC here
2404 	 */
2405 	eth_zero_addr(vf->dev_lan_addr);
2406 
2407 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
2408 }
2409 
2410 /**
2411  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2412  * @vf: pointer to the VF info
2413  * @vsi: pointer to the VF's VSI
2414  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2415  */
2416 static int
2417 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2418 		    struct virtchnl_ether_addr *vc_ether_addr)
2419 {
2420 	struct device *dev = ice_pf_to_dev(vf->pf);
2421 	u8 *mac_addr = vc_ether_addr->addr;
2422 	int status;
2423 
2424 	if (!ice_can_vf_change_mac(vf) &&
2425 	    ether_addr_equal(vf->dev_lan_addr, mac_addr))
2426 		return 0;
2427 
2428 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2429 	if (status == -ENOENT) {
2430 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2431 			vf->vf_id);
2432 		return -ENOENT;
2433 	} else if (status) {
2434 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2435 			mac_addr, vf->vf_id, status);
2436 		return -EIO;
2437 	}
2438 
2439 	ice_vfhw_mac_del(vf, vc_ether_addr);
2440 
2441 	vf->num_mac--;
2442 	if (ice_is_mc_lldp_eth_addr(mac_addr))
2443 		ice_vf_update_mac_lldp_num(vf, vsi, false);
2444 
2445 	return 0;
2446 }
2447 
2448 /**
2449  * ice_vc_handle_mac_addr_msg
2450  * @vf: pointer to the VF info
2451  * @msg: pointer to the msg buffer
2452  * @set: true if MAC filters are being set, false otherwise
2453  *
2454  * add guest MAC address filter
2455  */
2456 static int
2457 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2458 {
2459 	int (*ice_vc_cfg_mac)
2460 		(struct ice_vf *vf, struct ice_vsi *vsi,
2461 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
2462 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2463 	struct virtchnl_ether_addr_list *al =
2464 	    (struct virtchnl_ether_addr_list *)msg;
2465 	struct ice_pf *pf = vf->pf;
2466 	enum virtchnl_ops vc_op;
2467 	struct ice_vsi *vsi;
2468 	int i;
2469 
2470 	if (set) {
2471 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2472 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
2473 	} else {
2474 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2475 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
2476 	}
2477 
2478 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2479 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2480 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2481 		goto handle_mac_exit;
2482 	}
2483 
2484 	/* If this VF is not privileged, then we can't add more than a
2485 	 * limited number of addresses. Check to make sure that the
2486 	 * additions do not push us over the limit.
2487 	 */
2488 	if (set && !ice_is_vf_trusted(vf) &&
2489 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2490 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2491 			vf->vf_id);
2492 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2493 		goto handle_mac_exit;
2494 	}
2495 
2496 	vsi = ice_get_vf_vsi(vf);
2497 	if (!vsi) {
2498 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2499 		goto handle_mac_exit;
2500 	}
2501 
2502 	for (i = 0; i < al->num_elements; i++) {
2503 		u8 *mac_addr = al->list[i].addr;
2504 		int result;
2505 
2506 		if (is_broadcast_ether_addr(mac_addr) ||
2507 		    is_zero_ether_addr(mac_addr))
2508 			continue;
2509 
2510 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2511 		if (result == -EEXIST || result == -ENOENT) {
2512 			continue;
2513 		} else if (result) {
2514 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2515 			goto handle_mac_exit;
2516 		}
2517 	}
2518 
2519 handle_mac_exit:
2520 	/* send the response to the VF */
2521 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2522 }
2523 
2524 /**
2525  * ice_vc_add_mac_addr_msg
2526  * @vf: pointer to the VF info
2527  * @msg: pointer to the msg buffer
2528  *
2529  * add guest MAC address filter
2530  */
2531 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2532 {
2533 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2534 }
2535 
2536 /**
2537  * ice_vc_del_mac_addr_msg
2538  * @vf: pointer to the VF info
2539  * @msg: pointer to the msg buffer
2540  *
2541  * remove guest MAC address filter
2542  */
2543 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2544 {
2545 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2546 }
2547 
2548 /**
2549  * ice_vc_request_qs_msg
2550  * @vf: pointer to the VF info
2551  * @msg: pointer to the msg buffer
2552  *
2553  * VFs get a default number of queues but can use this message to request a
2554  * different number. If the request is successful, PF will reset the VF and
2555  * return 0. If unsuccessful, PF will send message informing VF of number of
2556  * available queue pairs via virtchnl message response to VF.
2557  */
2558 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2559 {
2560 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2561 	struct virtchnl_vf_res_request *vfres =
2562 		(struct virtchnl_vf_res_request *)msg;
2563 	u16 req_queues = vfres->num_queue_pairs;
2564 	struct ice_pf *pf = vf->pf;
2565 	u16 max_allowed_vf_queues;
2566 	u16 tx_rx_queue_left;
2567 	struct device *dev;
2568 	u16 cur_queues;
2569 
2570 	dev = ice_pf_to_dev(pf);
2571 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2572 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2573 		goto error_param;
2574 	}
2575 
2576 	cur_queues = vf->num_vf_qs;
2577 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2578 				 ice_get_avail_rxq_count(pf));
2579 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2580 	if (!req_queues) {
2581 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2582 			vf->vf_id);
2583 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2584 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2585 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2586 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2587 	} else if (req_queues > cur_queues &&
2588 		   req_queues - cur_queues > tx_rx_queue_left) {
2589 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2590 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2591 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2592 					       ICE_MAX_RSS_QS_PER_VF);
2593 	} else {
2594 		/* request is successful, then reset VF */
2595 		vf->num_req_qs = req_queues;
2596 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2597 		dev_info(dev, "VF %d granted request of %u queues.\n",
2598 			 vf->vf_id, req_queues);
2599 		return 0;
2600 	}
2601 
2602 error_param:
2603 	/* send the response to the VF */
2604 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2605 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2606 }
2607 
2608 /**
2609  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2610  * @caps: VF driver negotiated capabilities
2611  *
2612  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2613  */
2614 static bool ice_vf_vlan_offload_ena(u32 caps)
2615 {
2616 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2617 }
2618 
2619 /**
2620  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2621  * @vf: VF used to determine if VLAN promiscuous config is allowed
2622  */
2623 bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2624 {
2625 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2626 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2627 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2628 		return true;
2629 
2630 	return false;
2631 }
2632 
2633 /**
2634  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2635  * @vf: VF to enable VLAN promisc on
2636  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2637  * @vlan: VLAN used to enable VLAN promiscuous
2638  *
2639  * This function should only be called if VLAN promiscuous mode is allowed,
2640  * which can be determined via ice_is_vlan_promisc_allowed().
2641  */
2642 int ice_vf_ena_vlan_promisc(struct ice_vf *vf, struct ice_vsi *vsi,
2643 			    struct ice_vlan *vlan)
2644 {
2645 	u8 promisc_m = 0;
2646 	int status;
2647 
2648 	if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
2649 		promisc_m |= ICE_UCAST_VLAN_PROMISC_BITS;
2650 	if (test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
2651 		promisc_m |= ICE_MCAST_VLAN_PROMISC_BITS;
2652 
2653 	if (!promisc_m)
2654 		return 0;
2655 
2656 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2657 					  vlan->vid);
2658 	if (status && status != -EEXIST)
2659 		return status;
2660 
2661 	return 0;
2662 }
2663 
2664 /**
2665  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2666  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2667  * @vlan: VLAN used to disable VLAN promiscuous
2668  *
2669  * This function should only be called if VLAN promiscuous mode is allowed,
2670  * which can be determined via ice_is_vlan_promisc_allowed().
2671  */
2672 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2673 {
2674 	u8 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS | ICE_MCAST_VLAN_PROMISC_BITS;
2675 	int status;
2676 
2677 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2678 					    vlan->vid);
2679 	if (status && status != -ENOENT)
2680 		return status;
2681 
2682 	return 0;
2683 }
2684 
2685 /**
2686  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2687  * @vf: VF to check against
2688  * @vsi: VF's VSI
2689  *
2690  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2691  * wants to, so return false.
2692  *
2693  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2694  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2695  */
2696 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2697 {
2698 	if (ice_is_vf_trusted(vf))
2699 		return false;
2700 
2701 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2702 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2703 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2704 }
2705 
2706 /**
2707  * ice_vc_process_vlan_msg
2708  * @vf: pointer to the VF info
2709  * @msg: pointer to the msg buffer
2710  * @add_v: Add VLAN if true, otherwise delete VLAN
2711  *
2712  * Process virtchnl op to add or remove programmed guest VLAN ID
2713  */
2714 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2715 {
2716 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2717 	struct virtchnl_vlan_filter_list *vfl =
2718 	    (struct virtchnl_vlan_filter_list *)msg;
2719 	struct ice_pf *pf = vf->pf;
2720 	bool vlan_promisc = false;
2721 	struct ice_vsi *vsi;
2722 	struct device *dev;
2723 	int status = 0;
2724 	int i;
2725 
2726 	dev = ice_pf_to_dev(pf);
2727 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2728 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2729 		goto error_param;
2730 	}
2731 
2732 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2733 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2734 		goto error_param;
2735 	}
2736 
2737 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2738 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2739 		goto error_param;
2740 	}
2741 
2742 	for (i = 0; i < vfl->num_elements; i++) {
2743 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2744 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2745 			dev_err(dev, "invalid VF VLAN id %d\n",
2746 				vfl->vlan_id[i]);
2747 			goto error_param;
2748 		}
2749 	}
2750 
2751 	vsi = ice_get_vf_vsi(vf);
2752 	if (!vsi) {
2753 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2754 		goto error_param;
2755 	}
2756 
2757 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2758 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2759 			 vf->vf_id);
2760 		/* There is no need to let VF know about being not trusted,
2761 		 * so we can just return success message here
2762 		 */
2763 		goto error_param;
2764 	}
2765 
2766 	/* in DVM a VF can add/delete inner VLAN filters when
2767 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2768 	 */
2769 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2770 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2771 		goto error_param;
2772 	}
2773 
2774 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2775 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2776 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2777 	 */
2778 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2779 		!ice_is_dvm_ena(&pf->hw) &&
2780 		!ice_vf_is_port_vlan_ena(vf);
2781 
2782 	if (add_v) {
2783 		for (i = 0; i < vfl->num_elements; i++) {
2784 			u16 vid = vfl->vlan_id[i];
2785 			struct ice_vlan vlan;
2786 
2787 			if (ice_vf_has_max_vlans(vf, vsi)) {
2788 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2789 					 vf->vf_id);
2790 				/* There is no need to let VF know about being
2791 				 * not trusted, so we can just return success
2792 				 * message here as well.
2793 				 */
2794 				goto error_param;
2795 			}
2796 
2797 			/* we add VLAN 0 by default for each VF so we can enable
2798 			 * Tx VLAN anti-spoof without triggering MDD events so
2799 			 * we don't need to add it again here
2800 			 */
2801 			if (!vid)
2802 				continue;
2803 
2804 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2805 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2806 			if (status) {
2807 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2808 				goto error_param;
2809 			}
2810 
2811 			/* Enable VLAN filtering on first non-zero VLAN */
2812 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2813 				if (vf->spoofchk) {
2814 					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2815 					if (status) {
2816 						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2817 						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2818 							vid, status);
2819 						goto error_param;
2820 					}
2821 				}
2822 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2823 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2824 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2825 						vid, status);
2826 					goto error_param;
2827 				}
2828 			} else if (vlan_promisc) {
2829 				status = ice_vf_ena_vlan_promisc(vf, vsi, &vlan);
2830 				if (status) {
2831 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2832 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2833 						vid, status);
2834 				}
2835 			}
2836 		}
2837 	} else {
2838 		/* In case of non_trusted VF, number of VLAN elements passed
2839 		 * to PF for removal might be greater than number of VLANs
2840 		 * filter programmed for that VF - So, use actual number of
2841 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2842 		 * removing VLAN that doesn't exist, which result to sending
2843 		 * erroneous failed message back to the VF
2844 		 */
2845 		int num_vf_vlan;
2846 
2847 		num_vf_vlan = vsi->num_vlan;
2848 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2849 			u16 vid = vfl->vlan_id[i];
2850 			struct ice_vlan vlan;
2851 
2852 			/* we add VLAN 0 by default for each VF so we can enable
2853 			 * Tx VLAN anti-spoof without triggering MDD events so
2854 			 * we don't want a VIRTCHNL request to remove it
2855 			 */
2856 			if (!vid)
2857 				continue;
2858 
2859 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2860 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2861 			if (status) {
2862 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2863 				goto error_param;
2864 			}
2865 
2866 			/* Disable VLAN filtering when only VLAN 0 is left */
2867 			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2868 				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2869 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2870 			}
2871 
2872 			if (vlan_promisc)
2873 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2874 		}
2875 	}
2876 
2877 error_param:
2878 	/* send the response to the VF */
2879 	if (add_v)
2880 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2881 					     NULL, 0);
2882 	else
2883 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2884 					     NULL, 0);
2885 }
2886 
2887 /**
2888  * ice_vc_add_vlan_msg
2889  * @vf: pointer to the VF info
2890  * @msg: pointer to the msg buffer
2891  *
2892  * Add and program guest VLAN ID
2893  */
2894 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2895 {
2896 	return ice_vc_process_vlan_msg(vf, msg, true);
2897 }
2898 
2899 /**
2900  * ice_vc_remove_vlan_msg
2901  * @vf: pointer to the VF info
2902  * @msg: pointer to the msg buffer
2903  *
2904  * remove programmed guest VLAN ID
2905  */
2906 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2907 {
2908 	return ice_vc_process_vlan_msg(vf, msg, false);
2909 }
2910 
2911 /**
2912  * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2913  * @vsi: pointer to the VF VSI info
2914  */
2915 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2916 {
2917 	unsigned int i;
2918 
2919 	ice_for_each_alloc_rxq(vsi, i)
2920 		if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2921 			return true;
2922 
2923 	return false;
2924 }
2925 
2926 /**
2927  * ice_vc_ena_vlan_stripping
2928  * @vf: pointer to the VF info
2929  *
2930  * Enable VLAN header stripping for a given VF
2931  */
2932 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2933 {
2934 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2935 	struct ice_vsi *vsi;
2936 
2937 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2938 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2939 		goto error_param;
2940 	}
2941 
2942 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2943 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2944 		goto error_param;
2945 	}
2946 
2947 	vsi = ice_get_vf_vsi(vf);
2948 	if (!vsi) {
2949 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2950 		goto error_param;
2951 	}
2952 
2953 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2954 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2955 	else
2956 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2957 
2958 error_param:
2959 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2960 				     v_ret, NULL, 0);
2961 }
2962 
2963 /**
2964  * ice_vc_dis_vlan_stripping
2965  * @vf: pointer to the VF info
2966  *
2967  * Disable VLAN header stripping for a given VF
2968  */
2969 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2970 {
2971 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2972 	struct ice_vsi *vsi;
2973 
2974 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2975 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2976 		goto error_param;
2977 	}
2978 
2979 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2980 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2981 		goto error_param;
2982 	}
2983 
2984 	vsi = ice_get_vf_vsi(vf);
2985 	if (!vsi) {
2986 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2987 		goto error_param;
2988 	}
2989 
2990 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2991 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2992 	else
2993 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2994 
2995 error_param:
2996 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2997 				     v_ret, NULL, 0);
2998 }
2999 
3000 /**
3001  * ice_vc_get_rss_hashcfg - return the RSS Hash configuration
3002  * @vf: pointer to the VF info
3003  */
3004 static int ice_vc_get_rss_hashcfg(struct ice_vf *vf)
3005 {
3006 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3007 	struct virtchnl_rss_hashcfg *vrh = NULL;
3008 	int len = 0, ret;
3009 
3010 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3011 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3012 		goto err;
3013 	}
3014 
3015 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
3016 		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
3017 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3018 		goto err;
3019 	}
3020 
3021 	len = sizeof(struct virtchnl_rss_hashcfg);
3022 	vrh = kzalloc(len, GFP_KERNEL);
3023 	if (!vrh) {
3024 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
3025 		len = 0;
3026 		goto err;
3027 	}
3028 
3029 	vrh->hashcfg = ICE_DEFAULT_RSS_HASHCFG;
3030 err:
3031 	/* send the response back to the VF */
3032 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HASHCFG_CAPS, v_ret,
3033 				    (u8 *)vrh, len);
3034 	kfree(vrh);
3035 	return ret;
3036 }
3037 
3038 /**
3039  * ice_vc_set_rss_hashcfg - set RSS Hash configuration bits for the VF
3040  * @vf: pointer to the VF info
3041  * @msg: pointer to the msg buffer
3042  */
3043 static int ice_vc_set_rss_hashcfg(struct ice_vf *vf, u8 *msg)
3044 {
3045 	struct virtchnl_rss_hashcfg *vrh = (struct virtchnl_rss_hashcfg *)msg;
3046 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3047 	struct ice_pf *pf = vf->pf;
3048 	struct ice_vsi *vsi;
3049 	struct device *dev;
3050 	int status;
3051 
3052 	dev = ice_pf_to_dev(pf);
3053 
3054 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3055 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3056 		goto err;
3057 	}
3058 
3059 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3060 		dev_err(dev, "RSS not supported by PF\n");
3061 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3062 		goto err;
3063 	}
3064 
3065 	vsi = ice_get_vf_vsi(vf);
3066 	if (!vsi) {
3067 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3068 		goto err;
3069 	}
3070 
3071 	/* clear all previously programmed RSS configuration to allow VF drivers
3072 	 * the ability to customize the RSS configuration and/or completely
3073 	 * disable RSS
3074 	 */
3075 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
3076 	if (status && !vrh->hashcfg) {
3077 		/* only report failure to clear the current RSS configuration if
3078 		 * that was clearly the VF's intention (i.e. vrh->hashcfg = 0)
3079 		 */
3080 		v_ret = ice_err_to_virt_err(status);
3081 		goto err;
3082 	} else if (status) {
3083 		/* allow the VF to update the RSS configuration even on failure
3084 		 * to clear the current RSS confguration in an attempt to keep
3085 		 * RSS in a working state
3086 		 */
3087 		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
3088 			 vf->vf_id);
3089 	}
3090 
3091 	if (vrh->hashcfg) {
3092 		status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hashcfg);
3093 		v_ret = ice_err_to_virt_err(status);
3094 	}
3095 
3096 	/* save the requested VF configuration */
3097 	if (!v_ret)
3098 		vf->rss_hashcfg = vrh->hashcfg;
3099 
3100 	/* send the response to the VF */
3101 err:
3102 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HASHCFG, v_ret,
3103 				     NULL, 0);
3104 }
3105 
3106 /**
3107  * ice_vc_query_rxdid - query RXDID supported by DDP package
3108  * @vf: pointer to VF info
3109  *
3110  * Called from VF to query a bitmap of supported flexible
3111  * descriptor RXDIDs of a DDP package.
3112  */
3113 static int ice_vc_query_rxdid(struct ice_vf *vf)
3114 {
3115 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3116 	struct ice_pf *pf = vf->pf;
3117 	u64 rxdid;
3118 
3119 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3120 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3121 		goto err;
3122 	}
3123 
3124 	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
3125 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3126 		goto err;
3127 	}
3128 
3129 	rxdid = pf->supported_rxdids;
3130 
3131 err:
3132 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
3133 				     v_ret, (u8 *)&rxdid, sizeof(rxdid));
3134 }
3135 
3136 /**
3137  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
3138  * @vf: VF to enable/disable VLAN stripping for on initialization
3139  *
3140  * Set the default for VLAN stripping based on whether a port VLAN is configured
3141  * and the current VLAN mode of the device.
3142  */
3143 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
3144 {
3145 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
3146 
3147 	vf->vlan_strip_ena = 0;
3148 
3149 	if (!vsi)
3150 		return -EINVAL;
3151 
3152 	/* don't modify stripping if port VLAN is configured in SVM since the
3153 	 * port VLAN is based on the inner/single VLAN in SVM
3154 	 */
3155 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
3156 		return 0;
3157 
3158 	if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
3159 		int err;
3160 
3161 		err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
3162 		if (!err)
3163 			vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3164 		return err;
3165 	}
3166 
3167 	return vsi->inner_vlan_ops.dis_stripping(vsi);
3168 }
3169 
3170 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
3171 {
3172 	if (vf->trusted)
3173 		return VLAN_N_VID;
3174 	else
3175 		return ICE_MAX_VLAN_PER_VF;
3176 }
3177 
3178 /**
3179  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
3180  * @vf: VF that being checked for
3181  *
3182  * When the device is in double VLAN mode, check whether or not the outer VLAN
3183  * is allowed.
3184  */
3185 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
3186 {
3187 	if (ice_vf_is_port_vlan_ena(vf))
3188 		return true;
3189 
3190 	return false;
3191 }
3192 
3193 /**
3194  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
3195  * @vf: VF that capabilities are being set for
3196  * @caps: VLAN capabilities to populate
3197  *
3198  * Determine VLAN capabilities support based on whether a port VLAN is
3199  * configured. If a port VLAN is configured then the VF should use the inner
3200  * filtering/offload capabilities since the port VLAN is using the outer VLAN
3201  * capabilies.
3202  */
3203 static void
3204 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3205 {
3206 	struct virtchnl_vlan_supported_caps *supported_caps;
3207 
3208 	if (ice_vf_outer_vlan_not_allowed(vf)) {
3209 		/* until support for inner VLAN filtering is added when a port
3210 		 * VLAN is configured, only support software offloaded inner
3211 		 * VLANs when a port VLAN is confgured in DVM
3212 		 */
3213 		supported_caps = &caps->filtering.filtering_support;
3214 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3215 
3216 		supported_caps = &caps->offloads.stripping_support;
3217 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3218 					VIRTCHNL_VLAN_TOGGLE |
3219 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3220 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3221 
3222 		supported_caps = &caps->offloads.insertion_support;
3223 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3224 					VIRTCHNL_VLAN_TOGGLE |
3225 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3226 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3227 
3228 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3229 		caps->offloads.ethertype_match =
3230 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3231 	} else {
3232 		supported_caps = &caps->filtering.filtering_support;
3233 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3234 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3235 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3236 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
3237 					VIRTCHNL_VLAN_ETHERTYPE_AND;
3238 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3239 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3240 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
3241 
3242 		supported_caps = &caps->offloads.stripping_support;
3243 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3244 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
3245 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3246 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3247 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
3248 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3249 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
3250 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
3251 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
3252 
3253 		supported_caps = &caps->offloads.insertion_support;
3254 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3255 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
3256 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3257 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3258 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
3259 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3260 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
3261 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
3262 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
3263 
3264 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3265 
3266 		caps->offloads.ethertype_match =
3267 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3268 	}
3269 
3270 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3271 }
3272 
3273 /**
3274  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
3275  * @vf: VF that capabilities are being set for
3276  * @caps: VLAN capabilities to populate
3277  *
3278  * Determine VLAN capabilities support based on whether a port VLAN is
3279  * configured. If a port VLAN is configured then the VF does not have any VLAN
3280  * filtering or offload capabilities since the port VLAN is using the inner VLAN
3281  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
3282  * VLAN fitlering and offload capabilities.
3283  */
3284 static void
3285 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3286 {
3287 	struct virtchnl_vlan_supported_caps *supported_caps;
3288 
3289 	if (ice_vf_is_port_vlan_ena(vf)) {
3290 		supported_caps = &caps->filtering.filtering_support;
3291 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3292 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3293 
3294 		supported_caps = &caps->offloads.stripping_support;
3295 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3296 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3297 
3298 		supported_caps = &caps->offloads.insertion_support;
3299 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3300 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3301 
3302 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
3303 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
3304 		caps->filtering.max_filters = 0;
3305 	} else {
3306 		supported_caps = &caps->filtering.filtering_support;
3307 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
3308 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3309 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3310 
3311 		supported_caps = &caps->offloads.stripping_support;
3312 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3313 					VIRTCHNL_VLAN_TOGGLE |
3314 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3315 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3316 
3317 		supported_caps = &caps->offloads.insertion_support;
3318 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3319 					VIRTCHNL_VLAN_TOGGLE |
3320 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3321 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3322 
3323 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3324 		caps->offloads.ethertype_match =
3325 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3326 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3327 	}
3328 }
3329 
3330 /**
3331  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
3332  * @vf: VF to determine VLAN capabilities for
3333  *
3334  * This will only be called if the VF and PF successfully negotiated
3335  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
3336  *
3337  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
3338  * is configured or not.
3339  */
3340 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
3341 {
3342 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3343 	struct virtchnl_vlan_caps *caps = NULL;
3344 	int err, len = 0;
3345 
3346 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3347 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3348 		goto out;
3349 	}
3350 
3351 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
3352 	if (!caps) {
3353 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
3354 		goto out;
3355 	}
3356 	len = sizeof(*caps);
3357 
3358 	if (ice_is_dvm_ena(&vf->pf->hw))
3359 		ice_vc_set_dvm_caps(vf, caps);
3360 	else
3361 		ice_vc_set_svm_caps(vf, caps);
3362 
3363 	/* store negotiated caps to prevent invalid VF messages */
3364 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
3365 
3366 out:
3367 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
3368 				    v_ret, (u8 *)caps, len);
3369 	kfree(caps);
3370 	return err;
3371 }
3372 
3373 /**
3374  * ice_vc_validate_vlan_tpid - validate VLAN TPID
3375  * @filtering_caps: negotiated/supported VLAN filtering capabilities
3376  * @tpid: VLAN TPID used for validation
3377  *
3378  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
3379  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
3380  */
3381 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
3382 {
3383 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
3384 
3385 	switch (tpid) {
3386 	case ETH_P_8021Q:
3387 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3388 		break;
3389 	case ETH_P_8021AD:
3390 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3391 		break;
3392 	case ETH_P_QINQ1:
3393 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3394 		break;
3395 	}
3396 
3397 	if (!(filtering_caps & vlan_ethertype))
3398 		return false;
3399 
3400 	return true;
3401 }
3402 
3403 /**
3404  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3405  * @vc_vlan: virtchnl_vlan to validate
3406  *
3407  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3408  * false. Otherwise return true.
3409  */
3410 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3411 {
3412 	if (!vc_vlan->tci || !vc_vlan->tpid)
3413 		return false;
3414 
3415 	return true;
3416 }
3417 
3418 /**
3419  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3420  * @vfc: negotiated/supported VLAN filtering capabilities
3421  * @vfl: VLAN filter list from VF to validate
3422  *
3423  * Validate all of the filters in the VLAN filter list from the VF. If any of
3424  * the checks fail then return false. Otherwise return true.
3425  */
3426 static bool
3427 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3428 				 struct virtchnl_vlan_filter_list_v2 *vfl)
3429 {
3430 	u16 i;
3431 
3432 	if (!vfl->num_elements)
3433 		return false;
3434 
3435 	for (i = 0; i < vfl->num_elements; i++) {
3436 		struct virtchnl_vlan_supported_caps *filtering_support =
3437 			&vfc->filtering_support;
3438 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3439 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
3440 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
3441 
3442 		if ((ice_vc_is_valid_vlan(outer) &&
3443 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3444 		    (ice_vc_is_valid_vlan(inner) &&
3445 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3446 			return false;
3447 
3448 		if ((outer->tci_mask &&
3449 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3450 		    (inner->tci_mask &&
3451 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3452 			return false;
3453 
3454 		if (((outer->tci & VLAN_PRIO_MASK) &&
3455 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3456 		    ((inner->tci & VLAN_PRIO_MASK) &&
3457 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3458 			return false;
3459 
3460 		if ((ice_vc_is_valid_vlan(outer) &&
3461 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
3462 						outer->tpid)) ||
3463 		    (ice_vc_is_valid_vlan(inner) &&
3464 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
3465 						inner->tpid)))
3466 			return false;
3467 	}
3468 
3469 	return true;
3470 }
3471 
3472 /**
3473  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3474  * @vc_vlan: struct virtchnl_vlan to transform
3475  */
3476 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3477 {
3478 	struct ice_vlan vlan = { 0 };
3479 
3480 	vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3481 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3482 	vlan.tpid = vc_vlan->tpid;
3483 
3484 	return vlan;
3485 }
3486 
3487 /**
3488  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3489  * @vsi: VF's VSI used to perform the action
3490  * @vlan_action: function to perform the action with (i.e. add/del)
3491  * @vlan: VLAN filter to perform the action with
3492  */
3493 static int
3494 ice_vc_vlan_action(struct ice_vsi *vsi,
3495 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3496 		   struct ice_vlan *vlan)
3497 {
3498 	int err;
3499 
3500 	err = vlan_action(vsi, vlan);
3501 	if (err)
3502 		return err;
3503 
3504 	return 0;
3505 }
3506 
3507 /**
3508  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3509  * @vf: VF used to delete the VLAN(s)
3510  * @vsi: VF's VSI used to delete the VLAN(s)
3511  * @vfl: virthchnl filter list used to delete the filters
3512  */
3513 static int
3514 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3515 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3516 {
3517 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3518 	int err;
3519 	u16 i;
3520 
3521 	for (i = 0; i < vfl->num_elements; i++) {
3522 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3523 		struct virtchnl_vlan *vc_vlan;
3524 
3525 		vc_vlan = &vlan_fltr->outer;
3526 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3527 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3528 
3529 			err = ice_vc_vlan_action(vsi,
3530 						 vsi->outer_vlan_ops.del_vlan,
3531 						 &vlan);
3532 			if (err)
3533 				return err;
3534 
3535 			if (vlan_promisc)
3536 				ice_vf_dis_vlan_promisc(vsi, &vlan);
3537 
3538 			/* Disable VLAN filtering when only VLAN 0 is left */
3539 			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3540 				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3541 				if (err)
3542 					return err;
3543 			}
3544 		}
3545 
3546 		vc_vlan = &vlan_fltr->inner;
3547 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3548 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3549 
3550 			err = ice_vc_vlan_action(vsi,
3551 						 vsi->inner_vlan_ops.del_vlan,
3552 						 &vlan);
3553 			if (err)
3554 				return err;
3555 
3556 			/* no support for VLAN promiscuous on inner VLAN unless
3557 			 * we are in Single VLAN Mode (SVM)
3558 			 */
3559 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3560 				if (vlan_promisc)
3561 					ice_vf_dis_vlan_promisc(vsi, &vlan);
3562 
3563 				/* Disable VLAN filtering when only VLAN 0 is left */
3564 				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3565 					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3566 					if (err)
3567 						return err;
3568 				}
3569 			}
3570 		}
3571 	}
3572 
3573 	return 0;
3574 }
3575 
3576 /**
3577  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3578  * @vf: VF the message was received from
3579  * @msg: message received from the VF
3580  */
3581 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3582 {
3583 	struct virtchnl_vlan_filter_list_v2 *vfl =
3584 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3585 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3586 	struct ice_vsi *vsi;
3587 
3588 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3589 					      vfl)) {
3590 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3591 		goto out;
3592 	}
3593 
3594 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3595 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3596 		goto out;
3597 	}
3598 
3599 	vsi = ice_get_vf_vsi(vf);
3600 	if (!vsi) {
3601 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3602 		goto out;
3603 	}
3604 
3605 	if (ice_vc_del_vlans(vf, vsi, vfl))
3606 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3607 
3608 out:
3609 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3610 				     0);
3611 }
3612 
3613 /**
3614  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3615  * @vf: VF used to add the VLAN(s)
3616  * @vsi: VF's VSI used to add the VLAN(s)
3617  * @vfl: virthchnl filter list used to add the filters
3618  */
3619 static int
3620 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3621 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3622 {
3623 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3624 	int err;
3625 	u16 i;
3626 
3627 	for (i = 0; i < vfl->num_elements; i++) {
3628 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3629 		struct virtchnl_vlan *vc_vlan;
3630 
3631 		vc_vlan = &vlan_fltr->outer;
3632 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3633 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3634 
3635 			err = ice_vc_vlan_action(vsi,
3636 						 vsi->outer_vlan_ops.add_vlan,
3637 						 &vlan);
3638 			if (err)
3639 				return err;
3640 
3641 			if (vlan_promisc) {
3642 				err = ice_vf_ena_vlan_promisc(vf, vsi, &vlan);
3643 				if (err)
3644 					return err;
3645 			}
3646 
3647 			/* Enable VLAN filtering on first non-zero VLAN */
3648 			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3649 				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3650 				if (err)
3651 					return err;
3652 			}
3653 		}
3654 
3655 		vc_vlan = &vlan_fltr->inner;
3656 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3657 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3658 
3659 			err = ice_vc_vlan_action(vsi,
3660 						 vsi->inner_vlan_ops.add_vlan,
3661 						 &vlan);
3662 			if (err)
3663 				return err;
3664 
3665 			/* no support for VLAN promiscuous on inner VLAN unless
3666 			 * we are in Single VLAN Mode (SVM)
3667 			 */
3668 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3669 				if (vlan_promisc) {
3670 					err = ice_vf_ena_vlan_promisc(vf, vsi,
3671 								      &vlan);
3672 					if (err)
3673 						return err;
3674 				}
3675 
3676 				/* Enable VLAN filtering on first non-zero VLAN */
3677 				if (vf->spoofchk && vlan.vid) {
3678 					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3679 					if (err)
3680 						return err;
3681 				}
3682 			}
3683 		}
3684 	}
3685 
3686 	return 0;
3687 }
3688 
3689 /**
3690  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3691  * @vsi: VF VSI used to get number of existing VLAN filters
3692  * @vfc: negotiated/supported VLAN filtering capabilities
3693  * @vfl: VLAN filter list from VF to validate
3694  *
3695  * Validate all of the filters in the VLAN filter list from the VF during the
3696  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3697  * Otherwise return true.
3698  */
3699 static bool
3700 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3701 				     struct virtchnl_vlan_filtering_caps *vfc,
3702 				     struct virtchnl_vlan_filter_list_v2 *vfl)
3703 {
3704 	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3705 		vfl->num_elements;
3706 
3707 	if (num_requested_filters > vfc->max_filters)
3708 		return false;
3709 
3710 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3711 }
3712 
3713 /**
3714  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3715  * @vf: VF the message was received from
3716  * @msg: message received from the VF
3717  */
3718 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3719 {
3720 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3721 	struct virtchnl_vlan_filter_list_v2 *vfl =
3722 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3723 	struct ice_vsi *vsi;
3724 
3725 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3726 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3727 		goto out;
3728 	}
3729 
3730 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3731 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3732 		goto out;
3733 	}
3734 
3735 	vsi = ice_get_vf_vsi(vf);
3736 	if (!vsi) {
3737 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3738 		goto out;
3739 	}
3740 
3741 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3742 						  &vf->vlan_v2_caps.filtering,
3743 						  vfl)) {
3744 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3745 		goto out;
3746 	}
3747 
3748 	if (ice_vc_add_vlans(vf, vsi, vfl))
3749 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3750 
3751 out:
3752 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3753 				     0);
3754 }
3755 
3756 /**
3757  * ice_vc_valid_vlan_setting - validate VLAN setting
3758  * @negotiated_settings: negotiated VLAN settings during VF init
3759  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3760  */
3761 static bool
3762 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3763 {
3764 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3765 		return false;
3766 
3767 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3768 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3769 	 */
3770 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3771 	    hweight32(ethertype_setting) > 1)
3772 		return false;
3773 
3774 	/* ability to modify the VLAN setting was not negotiated */
3775 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3776 		return false;
3777 
3778 	return true;
3779 }
3780 
3781 /**
3782  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3783  * @caps: negotiated VLAN settings during VF init
3784  * @msg: message to validate
3785  *
3786  * Used to validate any VLAN virtchnl message sent as a
3787  * virtchnl_vlan_setting structure. Validates the message against the
3788  * negotiated/supported caps during VF driver init.
3789  */
3790 static bool
3791 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3792 			      struct virtchnl_vlan_setting *msg)
3793 {
3794 	if ((!msg->outer_ethertype_setting &&
3795 	     !msg->inner_ethertype_setting) ||
3796 	    (!caps->outer && !caps->inner))
3797 		return false;
3798 
3799 	if (msg->outer_ethertype_setting &&
3800 	    !ice_vc_valid_vlan_setting(caps->outer,
3801 				       msg->outer_ethertype_setting))
3802 		return false;
3803 
3804 	if (msg->inner_ethertype_setting &&
3805 	    !ice_vc_valid_vlan_setting(caps->inner,
3806 				       msg->inner_ethertype_setting))
3807 		return false;
3808 
3809 	return true;
3810 }
3811 
3812 /**
3813  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3814  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3815  * @tpid: VLAN TPID to populate
3816  */
3817 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3818 {
3819 	switch (ethertype_setting) {
3820 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3821 		*tpid = ETH_P_8021Q;
3822 		break;
3823 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3824 		*tpid = ETH_P_8021AD;
3825 		break;
3826 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3827 		*tpid = ETH_P_QINQ1;
3828 		break;
3829 	default:
3830 		*tpid = 0;
3831 		return -EINVAL;
3832 	}
3833 
3834 	return 0;
3835 }
3836 
3837 /**
3838  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3839  * @vsi: VF's VSI used to enable the VLAN offload
3840  * @ena_offload: function used to enable the VLAN offload
3841  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3842  */
3843 static int
3844 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3845 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3846 			u32 ethertype_setting)
3847 {
3848 	u16 tpid;
3849 	int err;
3850 
3851 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3852 	if (err)
3853 		return err;
3854 
3855 	err = ena_offload(vsi, tpid);
3856 	if (err)
3857 		return err;
3858 
3859 	return 0;
3860 }
3861 
3862 /**
3863  * ice_vc_ena_vlan_stripping_v2_msg
3864  * @vf: VF the message was received from
3865  * @msg: message received from the VF
3866  *
3867  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3868  */
3869 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3870 {
3871 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3872 	struct virtchnl_vlan_supported_caps *stripping_support;
3873 	struct virtchnl_vlan_setting *strip_msg =
3874 		(struct virtchnl_vlan_setting *)msg;
3875 	u32 ethertype_setting;
3876 	struct ice_vsi *vsi;
3877 
3878 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3879 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3880 		goto out;
3881 	}
3882 
3883 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3884 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3885 		goto out;
3886 	}
3887 
3888 	vsi = ice_get_vf_vsi(vf);
3889 	if (!vsi) {
3890 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3891 		goto out;
3892 	}
3893 
3894 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3895 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3896 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3897 		goto out;
3898 	}
3899 
3900 	if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3901 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3902 		goto out;
3903 	}
3904 
3905 	ethertype_setting = strip_msg->outer_ethertype_setting;
3906 	if (ethertype_setting) {
3907 		if (ice_vc_ena_vlan_offload(vsi,
3908 					    vsi->outer_vlan_ops.ena_stripping,
3909 					    ethertype_setting)) {
3910 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3911 			goto out;
3912 		} else {
3913 			enum ice_l2tsel l2tsel =
3914 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3915 
3916 			/* PF tells the VF that the outer VLAN tag is always
3917 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3918 			 * inner is always extracted to
3919 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3920 			 * support outer stripping so the first tag always ends
3921 			 * up in L2TAG2_2ND and the second/inner tag, if
3922 			 * enabled, is extracted in L2TAG1.
3923 			 */
3924 			ice_vsi_update_l2tsel(vsi, l2tsel);
3925 
3926 			vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3927 		}
3928 	}
3929 
3930 	ethertype_setting = strip_msg->inner_ethertype_setting;
3931 	if (ethertype_setting &&
3932 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3933 				    ethertype_setting)) {
3934 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3935 		goto out;
3936 	}
3937 
3938 	if (ethertype_setting)
3939 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3940 
3941 out:
3942 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3943 				     v_ret, NULL, 0);
3944 }
3945 
3946 /**
3947  * ice_vc_dis_vlan_stripping_v2_msg
3948  * @vf: VF the message was received from
3949  * @msg: message received from the VF
3950  *
3951  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3952  */
3953 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3954 {
3955 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3956 	struct virtchnl_vlan_supported_caps *stripping_support;
3957 	struct virtchnl_vlan_setting *strip_msg =
3958 		(struct virtchnl_vlan_setting *)msg;
3959 	u32 ethertype_setting;
3960 	struct ice_vsi *vsi;
3961 
3962 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3963 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3964 		goto out;
3965 	}
3966 
3967 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3968 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3969 		goto out;
3970 	}
3971 
3972 	vsi = ice_get_vf_vsi(vf);
3973 	if (!vsi) {
3974 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3975 		goto out;
3976 	}
3977 
3978 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3979 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3980 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3981 		goto out;
3982 	}
3983 
3984 	ethertype_setting = strip_msg->outer_ethertype_setting;
3985 	if (ethertype_setting) {
3986 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3987 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3988 			goto out;
3989 		} else {
3990 			enum ice_l2tsel l2tsel =
3991 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3992 
3993 			/* PF tells the VF that the outer VLAN tag is always
3994 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3995 			 * inner is always extracted to
3996 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3997 			 * support inner stripping while outer stripping is
3998 			 * disabled so that the first and only tag is extracted
3999 			 * in L2TAG1.
4000 			 */
4001 			ice_vsi_update_l2tsel(vsi, l2tsel);
4002 
4003 			vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
4004 		}
4005 	}
4006 
4007 	ethertype_setting = strip_msg->inner_ethertype_setting;
4008 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
4009 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4010 		goto out;
4011 	}
4012 
4013 	if (ethertype_setting)
4014 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
4015 
4016 out:
4017 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
4018 				     v_ret, NULL, 0);
4019 }
4020 
4021 /**
4022  * ice_vc_ena_vlan_insertion_v2_msg
4023  * @vf: VF the message was received from
4024  * @msg: message received from the VF
4025  *
4026  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
4027  */
4028 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
4029 {
4030 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4031 	struct virtchnl_vlan_supported_caps *insertion_support;
4032 	struct virtchnl_vlan_setting *insertion_msg =
4033 		(struct virtchnl_vlan_setting *)msg;
4034 	u32 ethertype_setting;
4035 	struct ice_vsi *vsi;
4036 
4037 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
4038 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4039 		goto out;
4040 	}
4041 
4042 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4043 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4044 		goto out;
4045 	}
4046 
4047 	vsi = ice_get_vf_vsi(vf);
4048 	if (!vsi) {
4049 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4050 		goto out;
4051 	}
4052 
4053 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4054 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4055 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4056 		goto out;
4057 	}
4058 
4059 	ethertype_setting = insertion_msg->outer_ethertype_setting;
4060 	if (ethertype_setting &&
4061 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
4062 				    ethertype_setting)) {
4063 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4064 		goto out;
4065 	}
4066 
4067 	ethertype_setting = insertion_msg->inner_ethertype_setting;
4068 	if (ethertype_setting &&
4069 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
4070 				    ethertype_setting)) {
4071 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4072 		goto out;
4073 	}
4074 
4075 out:
4076 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
4077 				     v_ret, NULL, 0);
4078 }
4079 
4080 /**
4081  * ice_vc_dis_vlan_insertion_v2_msg
4082  * @vf: VF the message was received from
4083  * @msg: message received from the VF
4084  *
4085  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
4086  */
4087 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
4088 {
4089 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4090 	struct virtchnl_vlan_supported_caps *insertion_support;
4091 	struct virtchnl_vlan_setting *insertion_msg =
4092 		(struct virtchnl_vlan_setting *)msg;
4093 	u32 ethertype_setting;
4094 	struct ice_vsi *vsi;
4095 
4096 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
4097 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4098 		goto out;
4099 	}
4100 
4101 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4102 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4103 		goto out;
4104 	}
4105 
4106 	vsi = ice_get_vf_vsi(vf);
4107 	if (!vsi) {
4108 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4109 		goto out;
4110 	}
4111 
4112 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4113 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4114 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4115 		goto out;
4116 	}
4117 
4118 	ethertype_setting = insertion_msg->outer_ethertype_setting;
4119 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
4120 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4121 		goto out;
4122 	}
4123 
4124 	ethertype_setting = insertion_msg->inner_ethertype_setting;
4125 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
4126 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4127 		goto out;
4128 	}
4129 
4130 out:
4131 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
4132 				     v_ret, NULL, 0);
4133 }
4134 
4135 static int ice_vc_get_ptp_cap(struct ice_vf *vf,
4136 			      const struct virtchnl_ptp_caps *msg)
4137 {
4138 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4139 	u32 caps = VIRTCHNL_1588_PTP_CAP_RX_TSTAMP |
4140 		   VIRTCHNL_1588_PTP_CAP_READ_PHC;
4141 
4142 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
4143 		goto err;
4144 
4145 	v_ret = VIRTCHNL_STATUS_SUCCESS;
4146 
4147 	if (msg->caps & caps)
4148 		vf->ptp_caps = caps;
4149 
4150 err:
4151 	/* send the response back to the VF */
4152 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_1588_PTP_GET_CAPS, v_ret,
4153 				     (u8 *)&vf->ptp_caps,
4154 				     sizeof(struct virtchnl_ptp_caps));
4155 }
4156 
4157 static int ice_vc_get_phc_time(struct ice_vf *vf)
4158 {
4159 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4160 	struct virtchnl_phc_time *phc_time = NULL;
4161 	struct ice_pf *pf = vf->pf;
4162 	u32 len = 0;
4163 	int ret;
4164 
4165 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
4166 		goto err;
4167 
4168 	v_ret = VIRTCHNL_STATUS_SUCCESS;
4169 
4170 	phc_time = kzalloc(sizeof(*phc_time), GFP_KERNEL);
4171 	if (!phc_time) {
4172 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
4173 		goto err;
4174 	}
4175 
4176 	len = sizeof(*phc_time);
4177 
4178 	phc_time->time = ice_ptp_read_src_clk_reg(pf, NULL);
4179 
4180 err:
4181 	/* send the response back to the VF */
4182 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_1588_PTP_GET_TIME, v_ret,
4183 				    (u8 *)phc_time, len);
4184 	kfree(phc_time);
4185 	return ret;
4186 }
4187 
4188 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
4189 	.get_ver_msg = ice_vc_get_ver_msg,
4190 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
4191 	.reset_vf = ice_vc_reset_vf_msg,
4192 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
4193 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
4194 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
4195 	.ena_qs_msg = ice_vc_ena_qs_msg,
4196 	.dis_qs_msg = ice_vc_dis_qs_msg,
4197 	.request_qs_msg = ice_vc_request_qs_msg,
4198 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4199 	.config_rss_key = ice_vc_config_rss_key,
4200 	.config_rss_lut = ice_vc_config_rss_lut,
4201 	.config_rss_hfunc = ice_vc_config_rss_hfunc,
4202 	.get_stats_msg = ice_vc_get_stats_msg,
4203 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
4204 	.add_vlan_msg = ice_vc_add_vlan_msg,
4205 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
4206 	.query_rxdid = ice_vc_query_rxdid,
4207 	.get_rss_hashcfg = ice_vc_get_rss_hashcfg,
4208 	.set_rss_hashcfg = ice_vc_set_rss_hashcfg,
4209 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4210 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4211 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4212 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4213 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4214 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4215 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4216 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4217 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4218 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4219 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4220 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4221 	.get_qos_caps = ice_vc_get_qos_caps,
4222 	.cfg_q_bw = ice_vc_cfg_q_bw,
4223 	.cfg_q_quanta = ice_vc_cfg_q_quanta,
4224 	.get_ptp_cap = ice_vc_get_ptp_cap,
4225 	.get_phc_time = ice_vc_get_phc_time,
4226 	/* If you add a new op here please make sure to add it to
4227 	 * ice_virtchnl_repr_ops as well.
4228 	 */
4229 };
4230 
4231 /**
4232  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
4233  * @vf: the VF to switch ops
4234  */
4235 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
4236 {
4237 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
4238 }
4239 
4240 /**
4241  * ice_vc_repr_add_mac
4242  * @vf: pointer to VF
4243  * @msg: virtchannel message
4244  *
4245  * When port representors are created, we do not add MAC rule
4246  * to firmware, we store it so that PF could report same
4247  * MAC as VF.
4248  */
4249 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
4250 {
4251 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4252 	struct virtchnl_ether_addr_list *al =
4253 	    (struct virtchnl_ether_addr_list *)msg;
4254 	struct ice_vsi *vsi;
4255 	struct ice_pf *pf;
4256 	int i;
4257 
4258 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
4259 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
4260 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4261 		goto handle_mac_exit;
4262 	}
4263 
4264 	pf = vf->pf;
4265 
4266 	vsi = ice_get_vf_vsi(vf);
4267 	if (!vsi) {
4268 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4269 		goto handle_mac_exit;
4270 	}
4271 
4272 	for (i = 0; i < al->num_elements; i++) {
4273 		u8 *mac_addr = al->list[i].addr;
4274 
4275 		if (!is_unicast_ether_addr(mac_addr) ||
4276 		    ether_addr_equal(mac_addr, vf->hw_lan_addr))
4277 			continue;
4278 
4279 		if (vf->pf_set_mac) {
4280 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
4281 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
4282 			goto handle_mac_exit;
4283 		}
4284 
4285 		ice_vfhw_mac_add(vf, &al->list[i]);
4286 		break;
4287 	}
4288 
4289 handle_mac_exit:
4290 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
4291 				     v_ret, NULL, 0);
4292 }
4293 
4294 /**
4295  * ice_vc_repr_del_mac - response with success for deleting MAC
4296  * @vf: pointer to VF
4297  * @msg: virtchannel message
4298  *
4299  * Respond with success to not break normal VF flow.
4300  * For legacy VF driver try to update cached MAC address.
4301  */
4302 static int
4303 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
4304 {
4305 	struct virtchnl_ether_addr_list *al =
4306 		(struct virtchnl_ether_addr_list *)msg;
4307 
4308 	ice_update_legacy_cached_mac(vf, &al->list[0]);
4309 
4310 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
4311 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
4312 }
4313 
4314 static int
4315 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
4316 {
4317 	dev_dbg(ice_pf_to_dev(vf->pf),
4318 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
4319 		vf->vf_id);
4320 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
4321 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4322 				     NULL, 0);
4323 }
4324 
4325 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
4326 	.get_ver_msg = ice_vc_get_ver_msg,
4327 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
4328 	.reset_vf = ice_vc_reset_vf_msg,
4329 	.add_mac_addr_msg = ice_vc_repr_add_mac,
4330 	.del_mac_addr_msg = ice_vc_repr_del_mac,
4331 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
4332 	.ena_qs_msg = ice_vc_ena_qs_msg,
4333 	.dis_qs_msg = ice_vc_dis_qs_msg,
4334 	.request_qs_msg = ice_vc_request_qs_msg,
4335 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4336 	.config_rss_key = ice_vc_config_rss_key,
4337 	.config_rss_lut = ice_vc_config_rss_lut,
4338 	.config_rss_hfunc = ice_vc_config_rss_hfunc,
4339 	.get_stats_msg = ice_vc_get_stats_msg,
4340 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
4341 	.add_vlan_msg = ice_vc_add_vlan_msg,
4342 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
4343 	.query_rxdid = ice_vc_query_rxdid,
4344 	.get_rss_hashcfg = ice_vc_get_rss_hashcfg,
4345 	.set_rss_hashcfg = ice_vc_set_rss_hashcfg,
4346 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4347 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4348 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4349 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4350 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4351 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4352 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4353 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4354 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4355 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4356 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4357 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4358 	.get_qos_caps = ice_vc_get_qos_caps,
4359 	.cfg_q_bw = ice_vc_cfg_q_bw,
4360 	.cfg_q_quanta = ice_vc_cfg_q_quanta,
4361 	.get_ptp_cap = ice_vc_get_ptp_cap,
4362 	.get_phc_time = ice_vc_get_phc_time,
4363 };
4364 
4365 /**
4366  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
4367  * @vf: the VF to switch ops
4368  */
4369 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
4370 {
4371 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
4372 }
4373 
4374 /**
4375  * ice_is_malicious_vf - check if this vf might be overflowing mailbox
4376  * @vf: the VF to check
4377  * @mbxdata: data about the state of the mailbox
4378  *
4379  * Detect if a given VF might be malicious and attempting to overflow the PF
4380  * mailbox. If so, log a warning message and ignore this event.
4381  */
4382 static bool
4383 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
4384 {
4385 	bool report_malvf = false;
4386 	struct device *dev;
4387 	struct ice_pf *pf;
4388 	int status;
4389 
4390 	pf = vf->pf;
4391 	dev = ice_pf_to_dev(pf);
4392 
4393 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
4394 		return vf->mbx_info.malicious;
4395 
4396 	/* check to see if we have a newly malicious VF */
4397 	status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
4398 					  &report_malvf);
4399 	if (status)
4400 		dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
4401 				     vf->vf_id, vf->dev_lan_addr, status);
4402 
4403 	if (report_malvf) {
4404 		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
4405 		u8 zero_addr[ETH_ALEN] = {};
4406 
4407 		dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
4408 			 vf->dev_lan_addr,
4409 			 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4410 	}
4411 
4412 	return vf->mbx_info.malicious;
4413 }
4414 
4415 /**
4416  * ice_vc_process_vf_msg - Process request from VF
4417  * @pf: pointer to the PF structure
4418  * @event: pointer to the AQ event
4419  * @mbxdata: information used to detect VF attempting mailbox overflow
4420  *
4421  * Called from the common asq/arq handler to process request from VF. When this
4422  * flow is used for devices with hardware VF to PF message queue overflow
4423  * support (ICE_F_MBX_LIMIT) mbxdata is set to NULL and ice_is_malicious_vf
4424  * check is skipped.
4425  */
4426 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4427 			   struct ice_mbx_data *mbxdata)
4428 {
4429 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4430 	s16 vf_id = le16_to_cpu(event->desc.retval);
4431 	const struct ice_virtchnl_ops *ops;
4432 	u16 msglen = event->msg_len;
4433 	u8 *msg = event->msg_buf;
4434 	struct ice_vf *vf = NULL;
4435 	struct device *dev;
4436 	int err = 0;
4437 
4438 	dev = ice_pf_to_dev(pf);
4439 
4440 	vf = ice_get_vf_by_id(pf, vf_id);
4441 	if (!vf) {
4442 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4443 			vf_id, v_opcode, msglen);
4444 		return;
4445 	}
4446 
4447 	mutex_lock(&vf->cfg_lock);
4448 
4449 	/* Check if the VF is trying to overflow the mailbox */
4450 	if (mbxdata && ice_is_malicious_vf(vf, mbxdata))
4451 		goto finish;
4452 
4453 	/* Check if VF is disabled. */
4454 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4455 		err = -EPERM;
4456 		goto error_handler;
4457 	}
4458 
4459 	ops = vf->virtchnl_ops;
4460 
4461 	/* Perform basic checks on the msg */
4462 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4463 	if (err) {
4464 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
4465 			err = -EPERM;
4466 		else
4467 			err = -EINVAL;
4468 	}
4469 
4470 error_handler:
4471 	if (err) {
4472 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4473 				      NULL, 0);
4474 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4475 			vf_id, v_opcode, msglen, err);
4476 		goto finish;
4477 	}
4478 
4479 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4480 		ice_vc_send_msg_to_vf(vf, v_opcode,
4481 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4482 				      0);
4483 		goto finish;
4484 	}
4485 
4486 	switch (v_opcode) {
4487 	case VIRTCHNL_OP_VERSION:
4488 		err = ops->get_ver_msg(vf, msg);
4489 		break;
4490 	case VIRTCHNL_OP_GET_VF_RESOURCES:
4491 		err = ops->get_vf_res_msg(vf, msg);
4492 		if (ice_vf_init_vlan_stripping(vf))
4493 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4494 				vf->vf_id);
4495 		ice_vc_notify_vf_link_state(vf);
4496 		break;
4497 	case VIRTCHNL_OP_RESET_VF:
4498 		ops->reset_vf(vf);
4499 		break;
4500 	case VIRTCHNL_OP_ADD_ETH_ADDR:
4501 		err = ops->add_mac_addr_msg(vf, msg);
4502 		break;
4503 	case VIRTCHNL_OP_DEL_ETH_ADDR:
4504 		err = ops->del_mac_addr_msg(vf, msg);
4505 		break;
4506 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4507 		err = ops->cfg_qs_msg(vf, msg);
4508 		break;
4509 	case VIRTCHNL_OP_ENABLE_QUEUES:
4510 		err = ops->ena_qs_msg(vf, msg);
4511 		ice_vc_notify_vf_link_state(vf);
4512 		break;
4513 	case VIRTCHNL_OP_DISABLE_QUEUES:
4514 		err = ops->dis_qs_msg(vf, msg);
4515 		break;
4516 	case VIRTCHNL_OP_REQUEST_QUEUES:
4517 		err = ops->request_qs_msg(vf, msg);
4518 		break;
4519 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4520 		err = ops->cfg_irq_map_msg(vf, msg);
4521 		break;
4522 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
4523 		err = ops->config_rss_key(vf, msg);
4524 		break;
4525 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
4526 		err = ops->config_rss_lut(vf, msg);
4527 		break;
4528 	case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4529 		err = ops->config_rss_hfunc(vf, msg);
4530 		break;
4531 	case VIRTCHNL_OP_GET_STATS:
4532 		err = ops->get_stats_msg(vf, msg);
4533 		break;
4534 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4535 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
4536 		break;
4537 	case VIRTCHNL_OP_ADD_VLAN:
4538 		err = ops->add_vlan_msg(vf, msg);
4539 		break;
4540 	case VIRTCHNL_OP_DEL_VLAN:
4541 		err = ops->remove_vlan_msg(vf, msg);
4542 		break;
4543 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4544 		err = ops->query_rxdid(vf);
4545 		break;
4546 	case VIRTCHNL_OP_GET_RSS_HASHCFG_CAPS:
4547 		err = ops->get_rss_hashcfg(vf);
4548 		break;
4549 	case VIRTCHNL_OP_SET_RSS_HASHCFG:
4550 		err = ops->set_rss_hashcfg(vf, msg);
4551 		break;
4552 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4553 		err = ops->ena_vlan_stripping(vf);
4554 		break;
4555 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4556 		err = ops->dis_vlan_stripping(vf);
4557 		break;
4558 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4559 		err = ops->add_fdir_fltr_msg(vf, msg);
4560 		break;
4561 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4562 		err = ops->del_fdir_fltr_msg(vf, msg);
4563 		break;
4564 	case VIRTCHNL_OP_ADD_RSS_CFG:
4565 		err = ops->handle_rss_cfg_msg(vf, msg, true);
4566 		break;
4567 	case VIRTCHNL_OP_DEL_RSS_CFG:
4568 		err = ops->handle_rss_cfg_msg(vf, msg, false);
4569 		break;
4570 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4571 		err = ops->get_offload_vlan_v2_caps(vf);
4572 		break;
4573 	case VIRTCHNL_OP_ADD_VLAN_V2:
4574 		err = ops->add_vlan_v2_msg(vf, msg);
4575 		break;
4576 	case VIRTCHNL_OP_DEL_VLAN_V2:
4577 		err = ops->remove_vlan_v2_msg(vf, msg);
4578 		break;
4579 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4580 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4581 		break;
4582 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4583 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4584 		break;
4585 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4586 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4587 		break;
4588 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4589 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4590 		break;
4591 	case VIRTCHNL_OP_GET_QOS_CAPS:
4592 		err = ops->get_qos_caps(vf);
4593 		break;
4594 	case VIRTCHNL_OP_CONFIG_QUEUE_BW:
4595 		err = ops->cfg_q_bw(vf, msg);
4596 		break;
4597 	case VIRTCHNL_OP_CONFIG_QUANTA:
4598 		err = ops->cfg_q_quanta(vf, msg);
4599 		break;
4600 	case VIRTCHNL_OP_1588_PTP_GET_CAPS:
4601 		err = ops->get_ptp_cap(vf, (const void *)msg);
4602 		break;
4603 	case VIRTCHNL_OP_1588_PTP_GET_TIME:
4604 		err = ops->get_phc_time(vf);
4605 		break;
4606 	case VIRTCHNL_OP_UNKNOWN:
4607 	default:
4608 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4609 			vf_id);
4610 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4611 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4612 					    NULL, 0);
4613 		break;
4614 	}
4615 	if (err) {
4616 		/* Helper function cares less about error return values here
4617 		 * as it is busy with pending work.
4618 		 */
4619 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4620 			 vf_id, v_opcode, err);
4621 	}
4622 
4623 finish:
4624 	mutex_unlock(&vf->cfg_lock);
4625 	ice_put_vf(vf);
4626 }
4627