xref: /linux/drivers/net/ethernet/intel/ice/ice_virtchnl.c (revision ab475966455ce285c2c9978a3e3bfe97d75ff8d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 		     u32 driver_caps)
374 {
375 	if (ice_is_eswitch_mode_switchdev(vf->pf))
376 		/* In switchdev setting VLAN from VF isn't supported */
377 		return 0;
378 
379 	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 		/* VLAN offloads based on current device configuration */
381 		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 		 * these two conditions, which amounts to guest VLAN filtering
385 		 * and offloads being based on the inner VLAN or the
386 		 * inner/single VLAN respectively and don't allow VF to
387 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 		 */
389 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 			return VIRTCHNL_VF_OFFLOAD_VLAN;
391 		} else if (!ice_is_dvm_ena(hw) &&
392 			   !ice_vf_is_port_vlan_ena(vf)) {
393 			/* configure backward compatible support for VFs that
394 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 			 * configured in SVM, and no port VLAN is configured
396 			 */
397 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 			return VIRTCHNL_VF_OFFLOAD_VLAN;
399 		} else if (ice_is_dvm_ena(hw)) {
400 			/* configure software offloaded VLAN support when DVM
401 			 * is enabled, but no port VLAN is enabled
402 			 */
403 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 		}
405 	}
406 
407 	return 0;
408 }
409 
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 	struct virtchnl_vf_resource *vfres = NULL;
421 	struct ice_hw *hw = &vf->pf->hw;
422 	struct ice_vsi *vsi;
423 	int len = 0;
424 	int ret;
425 
426 	if (ice_check_vf_init(vf)) {
427 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 		goto err;
429 	}
430 
431 	len = virtchnl_struct_size(vfres, vsi_res, 0);
432 
433 	vfres = kzalloc(len, GFP_KERNEL);
434 	if (!vfres) {
435 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 		len = 0;
437 		goto err;
438 	}
439 	if (VF_IS_V11(&vf->vf_ver))
440 		vf->driver_caps = *(u32 *)msg;
441 	else
442 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
444 				  VIRTCHNL_VF_OFFLOAD_VLAN;
445 
446 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
447 	vsi = ice_get_vf_vsi(vf);
448 	if (!vsi) {
449 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
450 		goto err;
451 	}
452 
453 	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
454 						    vf->driver_caps);
455 
456 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
457 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
458 	} else {
459 		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
460 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
461 		else
462 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
463 	}
464 
465 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
466 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
467 
468 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
469 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
470 
471 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
472 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
473 
474 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
475 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
476 
477 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
478 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
479 
480 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
481 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
482 
483 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
484 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
485 
486 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
487 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
488 
489 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
490 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
491 
492 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
493 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
494 
495 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
496 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
497 
498 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
499 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
500 
501 	vfres->num_vsis = 1;
502 	/* Tx and Rx queue are equal for VF */
503 	vfres->num_queue_pairs = vsi->num_txq;
504 	vfres->max_vectors = vf->num_msix;
505 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
506 	vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
507 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
508 
509 	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
510 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
511 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
512 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
513 			vf->hw_lan_addr);
514 
515 	/* match guest capabilities */
516 	vf->driver_caps = vfres->vf_cap_flags;
517 
518 	ice_vc_set_caps_allowlist(vf);
519 	ice_vc_set_working_allowlist(vf);
520 
521 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
522 
523 err:
524 	/* send the response back to the VF */
525 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
526 				    (u8 *)vfres, len);
527 
528 	kfree(vfres);
529 	return ret;
530 }
531 
532 /**
533  * ice_vc_reset_vf_msg
534  * @vf: pointer to the VF info
535  *
536  * called from the VF to reset itself,
537  * unlike other virtchnl messages, PF driver
538  * doesn't send the response back to the VF
539  */
540 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
541 {
542 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
543 		ice_reset_vf(vf, 0);
544 }
545 
546 /**
547  * ice_vc_isvalid_vsi_id
548  * @vf: pointer to the VF info
549  * @vsi_id: VF relative VSI ID
550  *
551  * check for the valid VSI ID
552  */
553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
554 {
555 	struct ice_pf *pf = vf->pf;
556 	struct ice_vsi *vsi;
557 
558 	vsi = ice_find_vsi(pf, vsi_id);
559 
560 	return (vsi && (vsi->vf == vf));
561 }
562 
563 /**
564  * ice_vc_isvalid_q_id
565  * @vf: pointer to the VF info
566  * @vsi_id: VSI ID
567  * @qid: VSI relative queue ID
568  *
569  * check for the valid queue ID
570  */
571 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
572 {
573 	struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
574 	/* allocated Tx and Rx queues should be always equal for VF VSI */
575 	return (vsi && (qid < vsi->alloc_txq));
576 }
577 
578 /**
579  * ice_vc_isvalid_ring_len
580  * @ring_len: length of ring
581  *
582  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
583  * or zero
584  */
585 static bool ice_vc_isvalid_ring_len(u16 ring_len)
586 {
587 	return ring_len == 0 ||
588 	       (ring_len >= ICE_MIN_NUM_DESC &&
589 		ring_len <= ICE_MAX_NUM_DESC &&
590 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
591 }
592 
593 /**
594  * ice_vc_validate_pattern
595  * @vf: pointer to the VF info
596  * @proto: virtchnl protocol headers
597  *
598  * validate the pattern is supported or not.
599  *
600  * Return: true on success, false on error.
601  */
602 bool
603 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
604 {
605 	bool is_ipv4 = false;
606 	bool is_ipv6 = false;
607 	bool is_udp = false;
608 	u16 ptype = -1;
609 	int i = 0;
610 
611 	while (i < proto->count &&
612 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
613 		switch (proto->proto_hdr[i].type) {
614 		case VIRTCHNL_PROTO_HDR_ETH:
615 			ptype = ICE_PTYPE_MAC_PAY;
616 			break;
617 		case VIRTCHNL_PROTO_HDR_IPV4:
618 			ptype = ICE_PTYPE_IPV4_PAY;
619 			is_ipv4 = true;
620 			break;
621 		case VIRTCHNL_PROTO_HDR_IPV6:
622 			ptype = ICE_PTYPE_IPV6_PAY;
623 			is_ipv6 = true;
624 			break;
625 		case VIRTCHNL_PROTO_HDR_UDP:
626 			if (is_ipv4)
627 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
628 			else if (is_ipv6)
629 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
630 			is_udp = true;
631 			break;
632 		case VIRTCHNL_PROTO_HDR_TCP:
633 			if (is_ipv4)
634 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
635 			else if (is_ipv6)
636 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
637 			break;
638 		case VIRTCHNL_PROTO_HDR_SCTP:
639 			if (is_ipv4)
640 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
641 			else if (is_ipv6)
642 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
643 			break;
644 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
645 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
646 			if (is_ipv4)
647 				ptype = ICE_MAC_IPV4_GTPU;
648 			else if (is_ipv6)
649 				ptype = ICE_MAC_IPV6_GTPU;
650 			goto out;
651 		case VIRTCHNL_PROTO_HDR_L2TPV3:
652 			if (is_ipv4)
653 				ptype = ICE_MAC_IPV4_L2TPV3;
654 			else if (is_ipv6)
655 				ptype = ICE_MAC_IPV6_L2TPV3;
656 			goto out;
657 		case VIRTCHNL_PROTO_HDR_ESP:
658 			if (is_ipv4)
659 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
660 						ICE_MAC_IPV4_ESP;
661 			else if (is_ipv6)
662 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
663 						ICE_MAC_IPV6_ESP;
664 			goto out;
665 		case VIRTCHNL_PROTO_HDR_AH:
666 			if (is_ipv4)
667 				ptype = ICE_MAC_IPV4_AH;
668 			else if (is_ipv6)
669 				ptype = ICE_MAC_IPV6_AH;
670 			goto out;
671 		case VIRTCHNL_PROTO_HDR_PFCP:
672 			if (is_ipv4)
673 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
674 			else if (is_ipv6)
675 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
676 			goto out;
677 		default:
678 			break;
679 		}
680 		i++;
681 	}
682 
683 out:
684 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
685 }
686 
687 /**
688  * ice_vc_parse_rss_cfg - parses hash fields and headers from
689  * a specific virtchnl RSS cfg
690  * @hw: pointer to the hardware
691  * @rss_cfg: pointer to the virtchnl RSS cfg
692  * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
693  * to configure
694  * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
695  *
696  * Return true if all the protocol header and hash fields in the RSS cfg could
697  * be parsed, else return false
698  *
699  * This function parses the virtchnl RSS cfg to be the intended
700  * hash fields and the intended header for RSS configuration
701  */
702 static bool
703 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
704 		     u32 *addl_hdrs, u64 *hash_flds)
705 {
706 	const struct ice_vc_hash_field_match_type *hf_list;
707 	const struct ice_vc_hdr_match_type *hdr_list;
708 	int i, hf_list_len, hdr_list_len;
709 
710 	hf_list = ice_vc_hash_field_list;
711 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
712 	hdr_list = ice_vc_hdr_list;
713 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
714 
715 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
716 		struct virtchnl_proto_hdr *proto_hdr =
717 					&rss_cfg->proto_hdrs.proto_hdr[i];
718 		bool hdr_found = false;
719 		int j;
720 
721 		/* Find matched ice headers according to virtchnl headers. */
722 		for (j = 0; j < hdr_list_len; j++) {
723 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
724 
725 			if (proto_hdr->type == hdr_map.vc_hdr) {
726 				*addl_hdrs |= hdr_map.ice_hdr;
727 				hdr_found = true;
728 			}
729 		}
730 
731 		if (!hdr_found)
732 			return false;
733 
734 		/* Find matched ice hash fields according to
735 		 * virtchnl hash fields.
736 		 */
737 		for (j = 0; j < hf_list_len; j++) {
738 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
739 
740 			if (proto_hdr->type == hf_map.vc_hdr &&
741 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
742 				*hash_flds |= hf_map.ice_hash_field;
743 				break;
744 			}
745 		}
746 	}
747 
748 	return true;
749 }
750 
751 /**
752  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
753  * RSS offloads
754  * @caps: VF driver negotiated capabilities
755  *
756  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
757  * else return false
758  */
759 static bool ice_vf_adv_rss_offload_ena(u32 caps)
760 {
761 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
762 }
763 
764 /**
765  * ice_vc_handle_rss_cfg
766  * @vf: pointer to the VF info
767  * @msg: pointer to the message buffer
768  * @add: add a RSS config if true, otherwise delete a RSS config
769  *
770  * This function adds/deletes a RSS config
771  */
772 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
773 {
774 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
775 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
776 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
777 	struct device *dev = ice_pf_to_dev(vf->pf);
778 	struct ice_hw *hw = &vf->pf->hw;
779 	struct ice_vsi *vsi;
780 
781 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
782 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
783 			vf->vf_id);
784 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
785 		goto error_param;
786 	}
787 
788 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
789 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
790 			vf->vf_id);
791 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
792 		goto error_param;
793 	}
794 
795 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
796 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
797 		goto error_param;
798 	}
799 
800 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
801 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
802 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
803 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
804 			vf->vf_id);
805 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
806 		goto error_param;
807 	}
808 
809 	vsi = ice_get_vf_vsi(vf);
810 	if (!vsi) {
811 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
812 		goto error_param;
813 	}
814 
815 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
816 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
817 		goto error_param;
818 	}
819 
820 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
821 		struct ice_vsi_ctx *ctx;
822 		u8 lut_type, hash_type;
823 		int status;
824 
825 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
826 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
827 				ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
828 
829 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
830 		if (!ctx) {
831 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
832 			goto error_param;
833 		}
834 
835 		ctx->info.q_opt_rss = ((lut_type <<
836 					ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
837 				       ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
838 				       (hash_type &
839 					ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
840 
841 		/* Preserve existing queueing option setting */
842 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
843 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
844 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
845 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
846 
847 		ctx->info.valid_sections =
848 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
849 
850 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
851 		if (status) {
852 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
853 				status, ice_aq_str(hw->adminq.sq_last_status));
854 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
855 		} else {
856 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
857 		}
858 
859 		kfree(ctx);
860 	} else {
861 		u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
862 		u64 hash_flds = ICE_HASH_INVALID;
863 
864 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
865 					  &hash_flds)) {
866 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
867 			goto error_param;
868 		}
869 
870 		if (add) {
871 			if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
872 					    addl_hdrs)) {
873 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
874 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
875 					vsi->vsi_num, v_ret);
876 			}
877 		} else {
878 			int status;
879 
880 			status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
881 						 addl_hdrs);
882 			/* We just ignore -ENOENT, because if two configurations
883 			 * share the same profile remove one of them actually
884 			 * removes both, since the profile is deleted.
885 			 */
886 			if (status && status != -ENOENT) {
887 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
888 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
889 					vf->vf_id, status);
890 			}
891 		}
892 	}
893 
894 error_param:
895 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
896 }
897 
898 /**
899  * ice_vc_config_rss_key
900  * @vf: pointer to the VF info
901  * @msg: pointer to the msg buffer
902  *
903  * Configure the VF's RSS key
904  */
905 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
906 {
907 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
908 	struct virtchnl_rss_key *vrk =
909 		(struct virtchnl_rss_key *)msg;
910 	struct ice_vsi *vsi;
911 
912 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
913 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
914 		goto error_param;
915 	}
916 
917 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
918 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
919 		goto error_param;
920 	}
921 
922 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
923 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
924 		goto error_param;
925 	}
926 
927 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
928 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
929 		goto error_param;
930 	}
931 
932 	vsi = ice_get_vf_vsi(vf);
933 	if (!vsi) {
934 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
935 		goto error_param;
936 	}
937 
938 	if (ice_set_rss_key(vsi, vrk->key))
939 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
940 error_param:
941 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
942 				     NULL, 0);
943 }
944 
945 /**
946  * ice_vc_config_rss_lut
947  * @vf: pointer to the VF info
948  * @msg: pointer to the msg buffer
949  *
950  * Configure the VF's RSS LUT
951  */
952 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
953 {
954 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
955 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
956 	struct ice_vsi *vsi;
957 
958 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
959 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
960 		goto error_param;
961 	}
962 
963 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
964 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
965 		goto error_param;
966 	}
967 
968 	if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
969 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
970 		goto error_param;
971 	}
972 
973 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
974 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
975 		goto error_param;
976 	}
977 
978 	vsi = ice_get_vf_vsi(vf);
979 	if (!vsi) {
980 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
981 		goto error_param;
982 	}
983 
984 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
985 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
986 error_param:
987 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
988 				     NULL, 0);
989 }
990 
991 /**
992  * ice_vc_cfg_promiscuous_mode_msg
993  * @vf: pointer to the VF info
994  * @msg: pointer to the msg buffer
995  *
996  * called from the VF to configure VF VSIs promiscuous mode
997  */
998 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
999 {
1000 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1001 	bool rm_promisc, alluni = false, allmulti = false;
1002 	struct virtchnl_promisc_info *info =
1003 	    (struct virtchnl_promisc_info *)msg;
1004 	struct ice_vsi_vlan_ops *vlan_ops;
1005 	int mcast_err = 0, ucast_err = 0;
1006 	struct ice_pf *pf = vf->pf;
1007 	struct ice_vsi *vsi;
1008 	u8 mcast_m, ucast_m;
1009 	struct device *dev;
1010 	int ret = 0;
1011 
1012 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1013 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1014 		goto error_param;
1015 	}
1016 
1017 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1018 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1019 		goto error_param;
1020 	}
1021 
1022 	vsi = ice_get_vf_vsi(vf);
1023 	if (!vsi) {
1024 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1025 		goto error_param;
1026 	}
1027 
1028 	dev = ice_pf_to_dev(pf);
1029 	if (!ice_is_vf_trusted(vf)) {
1030 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1031 			vf->vf_id);
1032 		/* Leave v_ret alone, lie to the VF on purpose. */
1033 		goto error_param;
1034 	}
1035 
1036 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1037 		alluni = true;
1038 
1039 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1040 		allmulti = true;
1041 
1042 	rm_promisc = !allmulti && !alluni;
1043 
1044 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1045 	if (rm_promisc)
1046 		ret = vlan_ops->ena_rx_filtering(vsi);
1047 	else
1048 		ret = vlan_ops->dis_rx_filtering(vsi);
1049 	if (ret) {
1050 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1051 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1052 		goto error_param;
1053 	}
1054 
1055 	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1056 
1057 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1058 		if (alluni) {
1059 			/* in this case we're turning on promiscuous mode */
1060 			ret = ice_set_dflt_vsi(vsi);
1061 		} else {
1062 			/* in this case we're turning off promiscuous mode */
1063 			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1064 				ret = ice_clear_dflt_vsi(vsi);
1065 		}
1066 
1067 		/* in this case we're turning on/off only
1068 		 * allmulticast
1069 		 */
1070 		if (allmulti)
1071 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1072 		else
1073 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1074 
1075 		if (ret) {
1076 			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1077 				vf->vf_id, ret);
1078 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1079 			goto error_param;
1080 		}
1081 	} else {
1082 		if (alluni)
1083 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1084 		else
1085 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1086 
1087 		if (allmulti)
1088 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1089 		else
1090 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1091 
1092 		if (ucast_err || mcast_err)
1093 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1094 	}
1095 
1096 	if (!mcast_err) {
1097 		if (allmulti &&
1098 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1099 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1100 				 vf->vf_id);
1101 		else if (!allmulti &&
1102 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1103 					    vf->vf_states))
1104 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1105 				 vf->vf_id);
1106 	} else {
1107 		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1108 			vf->vf_id, mcast_err);
1109 	}
1110 
1111 	if (!ucast_err) {
1112 		if (alluni &&
1113 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1114 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1115 				 vf->vf_id);
1116 		else if (!alluni &&
1117 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1118 					    vf->vf_states))
1119 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1120 				 vf->vf_id);
1121 	} else {
1122 		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1123 			vf->vf_id, ucast_err);
1124 	}
1125 
1126 error_param:
1127 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1128 				     v_ret, NULL, 0);
1129 }
1130 
1131 /**
1132  * ice_vc_get_stats_msg
1133  * @vf: pointer to the VF info
1134  * @msg: pointer to the msg buffer
1135  *
1136  * called from the VF to get VSI stats
1137  */
1138 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1139 {
1140 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1141 	struct virtchnl_queue_select *vqs =
1142 		(struct virtchnl_queue_select *)msg;
1143 	struct ice_eth_stats stats = { 0 };
1144 	struct ice_vsi *vsi;
1145 
1146 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1147 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1148 		goto error_param;
1149 	}
1150 
1151 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1152 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1153 		goto error_param;
1154 	}
1155 
1156 	vsi = ice_get_vf_vsi(vf);
1157 	if (!vsi) {
1158 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1159 		goto error_param;
1160 	}
1161 
1162 	ice_update_eth_stats(vsi);
1163 
1164 	stats = vsi->eth_stats;
1165 
1166 error_param:
1167 	/* send the response to the VF */
1168 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1169 				     (u8 *)&stats, sizeof(stats));
1170 }
1171 
1172 /**
1173  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1174  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1175  *
1176  * Return true on successful validation, else false
1177  */
1178 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1179 {
1180 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1181 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1182 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1183 		return false;
1184 
1185 	return true;
1186 }
1187 
1188 /**
1189  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1190  * @vsi: VSI of the VF to configure
1191  * @q_idx: VF queue index used to determine the queue in the PF's space
1192  */
1193 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1194 {
1195 	struct ice_hw *hw = &vsi->back->hw;
1196 	u32 pfq = vsi->txq_map[q_idx];
1197 	u32 reg;
1198 
1199 	reg = rd32(hw, QINT_TQCTL(pfq));
1200 
1201 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1202 	 * this is most likely a poll mode VF driver, so don't enable an
1203 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1204 	 */
1205 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1206 		return;
1207 
1208 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1209 }
1210 
1211 /**
1212  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1213  * @vsi: VSI of the VF to configure
1214  * @q_idx: VF queue index used to determine the queue in the PF's space
1215  */
1216 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1217 {
1218 	struct ice_hw *hw = &vsi->back->hw;
1219 	u32 pfq = vsi->rxq_map[q_idx];
1220 	u32 reg;
1221 
1222 	reg = rd32(hw, QINT_RQCTL(pfq));
1223 
1224 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1225 	 * this is most likely a poll mode VF driver, so don't enable an
1226 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1227 	 */
1228 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1229 		return;
1230 
1231 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1232 }
1233 
1234 /**
1235  * ice_vc_ena_qs_msg
1236  * @vf: pointer to the VF info
1237  * @msg: pointer to the msg buffer
1238  *
1239  * called from the VF to enable all or specific queue(s)
1240  */
1241 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1242 {
1243 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1244 	struct virtchnl_queue_select *vqs =
1245 	    (struct virtchnl_queue_select *)msg;
1246 	struct ice_vsi *vsi;
1247 	unsigned long q_map;
1248 	u16 vf_q_id;
1249 
1250 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1251 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1252 		goto error_param;
1253 	}
1254 
1255 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1256 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1257 		goto error_param;
1258 	}
1259 
1260 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1261 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1262 		goto error_param;
1263 	}
1264 
1265 	vsi = ice_get_vf_vsi(vf);
1266 	if (!vsi) {
1267 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1268 		goto error_param;
1269 	}
1270 
1271 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1272 	 * Tx queue group list was configured and the context bits were
1273 	 * programmed using ice_vsi_cfg_txqs
1274 	 */
1275 	q_map = vqs->rx_queues;
1276 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1277 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1278 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1279 			goto error_param;
1280 		}
1281 
1282 		/* Skip queue if enabled */
1283 		if (test_bit(vf_q_id, vf->rxq_ena))
1284 			continue;
1285 
1286 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1287 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1288 				vf_q_id, vsi->vsi_num);
1289 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1290 			goto error_param;
1291 		}
1292 
1293 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1294 		set_bit(vf_q_id, vf->rxq_ena);
1295 	}
1296 
1297 	q_map = vqs->tx_queues;
1298 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1299 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1300 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1301 			goto error_param;
1302 		}
1303 
1304 		/* Skip queue if enabled */
1305 		if (test_bit(vf_q_id, vf->txq_ena))
1306 			continue;
1307 
1308 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1309 		set_bit(vf_q_id, vf->txq_ena);
1310 	}
1311 
1312 	/* Set flag to indicate that queues are enabled */
1313 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1314 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1315 
1316 error_param:
1317 	/* send the response to the VF */
1318 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1319 				     NULL, 0);
1320 }
1321 
1322 /**
1323  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1324  * @vf: VF to disable queue for
1325  * @vsi: VSI for the VF
1326  * @q_id: VF relative (0-based) queue ID
1327  *
1328  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1329  * disabled then clear q_id bit in the enabled queues bitmap and return
1330  * success. Otherwise return error.
1331  */
1332 static int
1333 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1334 {
1335 	struct ice_txq_meta txq_meta = { 0 };
1336 	struct ice_tx_ring *ring;
1337 	int err;
1338 
1339 	if (!test_bit(q_id, vf->txq_ena))
1340 		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1341 			q_id, vsi->vsi_num);
1342 
1343 	ring = vsi->tx_rings[q_id];
1344 	if (!ring)
1345 		return -EINVAL;
1346 
1347 	ice_fill_txq_meta(vsi, ring, &txq_meta);
1348 
1349 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1350 	if (err) {
1351 		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1352 			q_id, vsi->vsi_num);
1353 		return err;
1354 	}
1355 
1356 	/* Clear enabled queues flag */
1357 	clear_bit(q_id, vf->txq_ena);
1358 
1359 	return 0;
1360 }
1361 
1362 /**
1363  * ice_vc_dis_qs_msg
1364  * @vf: pointer to the VF info
1365  * @msg: pointer to the msg buffer
1366  *
1367  * called from the VF to disable all or specific queue(s)
1368  */
1369 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1370 {
1371 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1372 	struct virtchnl_queue_select *vqs =
1373 	    (struct virtchnl_queue_select *)msg;
1374 	struct ice_vsi *vsi;
1375 	unsigned long q_map;
1376 	u16 vf_q_id;
1377 
1378 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1379 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1380 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1381 		goto error_param;
1382 	}
1383 
1384 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1385 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1386 		goto error_param;
1387 	}
1388 
1389 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1390 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1391 		goto error_param;
1392 	}
1393 
1394 	vsi = ice_get_vf_vsi(vf);
1395 	if (!vsi) {
1396 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1397 		goto error_param;
1398 	}
1399 
1400 	if (vqs->tx_queues) {
1401 		q_map = vqs->tx_queues;
1402 
1403 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1404 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1405 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1406 				goto error_param;
1407 			}
1408 
1409 			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1410 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1411 				goto error_param;
1412 			}
1413 		}
1414 	}
1415 
1416 	q_map = vqs->rx_queues;
1417 	/* speed up Rx queue disable by batching them if possible */
1418 	if (q_map &&
1419 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1420 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1421 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1422 				vsi->vsi_num);
1423 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1424 			goto error_param;
1425 		}
1426 
1427 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1428 	} else if (q_map) {
1429 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1430 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1431 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1432 				goto error_param;
1433 			}
1434 
1435 			/* Skip queue if not enabled */
1436 			if (!test_bit(vf_q_id, vf->rxq_ena))
1437 				continue;
1438 
1439 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1440 						     true)) {
1441 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1442 					vf_q_id, vsi->vsi_num);
1443 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1444 				goto error_param;
1445 			}
1446 
1447 			/* Clear enabled queues flag */
1448 			clear_bit(vf_q_id, vf->rxq_ena);
1449 		}
1450 	}
1451 
1452 	/* Clear enabled queues flag */
1453 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1454 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1455 
1456 error_param:
1457 	/* send the response to the VF */
1458 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1459 				     NULL, 0);
1460 }
1461 
1462 /**
1463  * ice_cfg_interrupt
1464  * @vf: pointer to the VF info
1465  * @vsi: the VSI being configured
1466  * @vector_id: vector ID
1467  * @map: vector map for mapping vectors to queues
1468  * @q_vector: structure for interrupt vector
1469  * configure the IRQ to queue map
1470  */
1471 static int
1472 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1473 		  struct virtchnl_vector_map *map,
1474 		  struct ice_q_vector *q_vector)
1475 {
1476 	u16 vsi_q_id, vsi_q_id_idx;
1477 	unsigned long qmap;
1478 
1479 	q_vector->num_ring_rx = 0;
1480 	q_vector->num_ring_tx = 0;
1481 
1482 	qmap = map->rxq_map;
1483 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1484 		vsi_q_id = vsi_q_id_idx;
1485 
1486 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1487 			return VIRTCHNL_STATUS_ERR_PARAM;
1488 
1489 		q_vector->num_ring_rx++;
1490 		q_vector->rx.itr_idx = map->rxitr_idx;
1491 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1492 		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1493 				      q_vector->rx.itr_idx);
1494 	}
1495 
1496 	qmap = map->txq_map;
1497 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1498 		vsi_q_id = vsi_q_id_idx;
1499 
1500 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1501 			return VIRTCHNL_STATUS_ERR_PARAM;
1502 
1503 		q_vector->num_ring_tx++;
1504 		q_vector->tx.itr_idx = map->txitr_idx;
1505 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1506 		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1507 				      q_vector->tx.itr_idx);
1508 	}
1509 
1510 	return VIRTCHNL_STATUS_SUCCESS;
1511 }
1512 
1513 /**
1514  * ice_vc_cfg_irq_map_msg
1515  * @vf: pointer to the VF info
1516  * @msg: pointer to the msg buffer
1517  *
1518  * called from the VF to configure the IRQ to queue map
1519  */
1520 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1521 {
1522 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1523 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1524 	struct virtchnl_irq_map_info *irqmap_info;
1525 	struct virtchnl_vector_map *map;
1526 	struct ice_pf *pf = vf->pf;
1527 	struct ice_vsi *vsi;
1528 	int i;
1529 
1530 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1531 	num_q_vectors_mapped = irqmap_info->num_vectors;
1532 
1533 	/* Check to make sure number of VF vectors mapped is not greater than
1534 	 * number of VF vectors originally allocated, and check that
1535 	 * there is actually at least a single VF queue vector mapped
1536 	 */
1537 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1538 	    pf->vfs.num_msix_per < num_q_vectors_mapped ||
1539 	    !num_q_vectors_mapped) {
1540 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1541 		goto error_param;
1542 	}
1543 
1544 	vsi = ice_get_vf_vsi(vf);
1545 	if (!vsi) {
1546 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1547 		goto error_param;
1548 	}
1549 
1550 	for (i = 0; i < num_q_vectors_mapped; i++) {
1551 		struct ice_q_vector *q_vector;
1552 
1553 		map = &irqmap_info->vecmap[i];
1554 
1555 		vector_id = map->vector_id;
1556 		vsi_id = map->vsi_id;
1557 		/* vector_id is always 0-based for each VF, and can never be
1558 		 * larger than or equal to the max allowed interrupts per VF
1559 		 */
1560 		if (!(vector_id < pf->vfs.num_msix_per) ||
1561 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1562 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1563 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1564 			goto error_param;
1565 		}
1566 
1567 		/* No need to map VF miscellaneous or rogue vector */
1568 		if (!vector_id)
1569 			continue;
1570 
1571 		/* Subtract non queue vector from vector_id passed by VF
1572 		 * to get actual number of VSI queue vector array index
1573 		 */
1574 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1575 		if (!q_vector) {
1576 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1577 			goto error_param;
1578 		}
1579 
1580 		/* lookout for the invalid queue index */
1581 		v_ret = (enum virtchnl_status_code)
1582 			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1583 		if (v_ret)
1584 			goto error_param;
1585 	}
1586 
1587 error_param:
1588 	/* send the response to the VF */
1589 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1590 				     NULL, 0);
1591 }
1592 
1593 /**
1594  * ice_vc_cfg_qs_msg
1595  * @vf: pointer to the VF info
1596  * @msg: pointer to the msg buffer
1597  *
1598  * called from the VF to configure the Rx/Tx queues
1599  */
1600 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1601 {
1602 	struct virtchnl_vsi_queue_config_info *qci =
1603 	    (struct virtchnl_vsi_queue_config_info *)msg;
1604 	struct virtchnl_queue_pair_info *qpi;
1605 	struct ice_pf *pf = vf->pf;
1606 	struct ice_vsi *vsi;
1607 	int i = -1, q_idx;
1608 
1609 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1610 		goto error_param;
1611 
1612 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1613 		goto error_param;
1614 
1615 	vsi = ice_get_vf_vsi(vf);
1616 	if (!vsi)
1617 		goto error_param;
1618 
1619 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1620 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1621 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1622 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1623 		goto error_param;
1624 	}
1625 
1626 	for (i = 0; i < qci->num_queue_pairs; i++) {
1627 		if (!qci->qpair[i].rxq.crc_disable)
1628 			continue;
1629 
1630 		if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1631 		    vf->vlan_strip_ena)
1632 			goto error_param;
1633 	}
1634 
1635 	for (i = 0; i < qci->num_queue_pairs; i++) {
1636 		qpi = &qci->qpair[i];
1637 		if (qpi->txq.vsi_id != qci->vsi_id ||
1638 		    qpi->rxq.vsi_id != qci->vsi_id ||
1639 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1640 		    qpi->txq.headwb_enabled ||
1641 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1642 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1643 		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1644 			goto error_param;
1645 		}
1646 
1647 		q_idx = qpi->rxq.queue_id;
1648 
1649 		/* make sure selected "q_idx" is in valid range of queues
1650 		 * for selected "vsi"
1651 		 */
1652 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1653 			goto error_param;
1654 		}
1655 
1656 		/* copy Tx queue info from VF into VSI */
1657 		if (qpi->txq.ring_len > 0) {
1658 			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1659 			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1660 
1661 			/* Disable any existing queue first */
1662 			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1663 				goto error_param;
1664 
1665 			/* Configure a queue with the requested settings */
1666 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1667 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1668 					 vf->vf_id, i);
1669 				goto error_param;
1670 			}
1671 		}
1672 
1673 		/* copy Rx queue info from VF into VSI */
1674 		if (qpi->rxq.ring_len > 0) {
1675 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1676 			u32 rxdid;
1677 
1678 			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1679 			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1680 
1681 			if (qpi->rxq.crc_disable)
1682 				vsi->rx_rings[q_idx]->flags |=
1683 					ICE_RX_FLAGS_CRC_STRIP_DIS;
1684 			else
1685 				vsi->rx_rings[q_idx]->flags &=
1686 					~ICE_RX_FLAGS_CRC_STRIP_DIS;
1687 
1688 			if (qpi->rxq.databuffer_size != 0 &&
1689 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1690 			     qpi->rxq.databuffer_size < 1024))
1691 				goto error_param;
1692 			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1693 			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1694 			if (qpi->rxq.max_pkt_size > max_frame_size ||
1695 			    qpi->rxq.max_pkt_size < 64)
1696 				goto error_param;
1697 
1698 			vsi->max_frame = qpi->rxq.max_pkt_size;
1699 			/* add space for the port VLAN since the VF driver is
1700 			 * not expected to account for it in the MTU
1701 			 * calculation
1702 			 */
1703 			if (ice_vf_is_port_vlan_ena(vf))
1704 				vsi->max_frame += VLAN_HLEN;
1705 
1706 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1707 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1708 					 vf->vf_id, i);
1709 				goto error_param;
1710 			}
1711 
1712 			/* If Rx flex desc is supported, select RXDID for Rx
1713 			 * queues. Otherwise, use legacy 32byte descriptor
1714 			 * format. Legacy 16byte descriptor is not supported.
1715 			 * If this RXDID is selected, return error.
1716 			 */
1717 			if (vf->driver_caps &
1718 			    VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1719 				rxdid = qpi->rxq.rxdid;
1720 				if (!(BIT(rxdid) & pf->supported_rxdids))
1721 					goto error_param;
1722 			} else {
1723 				rxdid = ICE_RXDID_LEGACY_1;
1724 			}
1725 
1726 			ice_write_qrxflxp_cntxt(&vsi->back->hw,
1727 						vsi->rxq_map[q_idx],
1728 						rxdid, 0x03, false);
1729 		}
1730 	}
1731 
1732 	/* send the response to the VF */
1733 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1734 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1735 error_param:
1736 	/* disable whatever we can */
1737 	for (; i >= 0; i--) {
1738 		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1739 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1740 				vf->vf_id, i);
1741 		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1742 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1743 				vf->vf_id, i);
1744 	}
1745 
1746 	ice_lag_move_new_vf_nodes(vf);
1747 
1748 	/* send the response to the VF */
1749 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1750 				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1751 }
1752 
1753 /**
1754  * ice_can_vf_change_mac
1755  * @vf: pointer to the VF info
1756  *
1757  * Return true if the VF is allowed to change its MAC filters, false otherwise
1758  */
1759 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1760 {
1761 	/* If the VF MAC address has been set administratively (via the
1762 	 * ndo_set_vf_mac command), then deny permission to the VF to
1763 	 * add/delete unicast MAC addresses, unless the VF is trusted
1764 	 */
1765 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1766 		return false;
1767 
1768 	return true;
1769 }
1770 
1771 /**
1772  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1773  * @vc_ether_addr: used to extract the type
1774  */
1775 static u8
1776 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1777 {
1778 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1779 }
1780 
1781 /**
1782  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1783  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1784  */
1785 static bool
1786 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1787 {
1788 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1789 
1790 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1791 }
1792 
1793 /**
1794  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1795  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1796  *
1797  * This function should only be called when the MAC address in
1798  * virtchnl_ether_addr is a valid unicast MAC
1799  */
1800 static bool
1801 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1802 {
1803 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1804 
1805 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1806 }
1807 
1808 /**
1809  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1810  * @vf: VF to update
1811  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1812  */
1813 static void
1814 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1815 {
1816 	u8 *mac_addr = vc_ether_addr->addr;
1817 
1818 	if (!is_valid_ether_addr(mac_addr))
1819 		return;
1820 
1821 	/* only allow legacy VF drivers to set the device and hardware MAC if it
1822 	 * is zero and allow new VF drivers to set the hardware MAC if the type
1823 	 * was correctly specified over VIRTCHNL
1824 	 */
1825 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1826 	     is_zero_ether_addr(vf->hw_lan_addr)) ||
1827 	    ice_is_vc_addr_primary(vc_ether_addr)) {
1828 		ether_addr_copy(vf->dev_lan_addr, mac_addr);
1829 		ether_addr_copy(vf->hw_lan_addr, mac_addr);
1830 	}
1831 
1832 	/* hardware and device MACs are already set, but its possible that the
1833 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1834 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1835 	 * away for the legacy VF driver case as it will be updated in the
1836 	 * delete flow for this case
1837 	 */
1838 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1839 		ether_addr_copy(vf->legacy_last_added_umac.addr,
1840 				mac_addr);
1841 		vf->legacy_last_added_umac.time_modified = jiffies;
1842 	}
1843 }
1844 
1845 /**
1846  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1847  * @vf: pointer to the VF info
1848  * @vsi: pointer to the VF's VSI
1849  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1850  */
1851 static int
1852 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1853 		    struct virtchnl_ether_addr *vc_ether_addr)
1854 {
1855 	struct device *dev = ice_pf_to_dev(vf->pf);
1856 	u8 *mac_addr = vc_ether_addr->addr;
1857 	int ret;
1858 
1859 	/* device MAC already added */
1860 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1861 		return 0;
1862 
1863 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1864 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1865 		return -EPERM;
1866 	}
1867 
1868 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1869 	if (ret == -EEXIST) {
1870 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1871 			vf->vf_id);
1872 		/* don't return since we might need to update
1873 		 * the primary MAC in ice_vfhw_mac_add() below
1874 		 */
1875 	} else if (ret) {
1876 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1877 			mac_addr, vf->vf_id, ret);
1878 		return ret;
1879 	} else {
1880 		vf->num_mac++;
1881 	}
1882 
1883 	ice_vfhw_mac_add(vf, vc_ether_addr);
1884 
1885 	return ret;
1886 }
1887 
1888 /**
1889  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1890  * @last_added_umac: structure used to check expiration
1891  */
1892 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1893 {
1894 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1895 	return time_is_before_jiffies(last_added_umac->time_modified +
1896 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1897 }
1898 
1899 /**
1900  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1901  * @vf: VF to update
1902  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1903  *
1904  * only update cached hardware MAC for legacy VF drivers on delete
1905  * because we cannot guarantee order/type of MAC from the VF driver
1906  */
1907 static void
1908 ice_update_legacy_cached_mac(struct ice_vf *vf,
1909 			     struct virtchnl_ether_addr *vc_ether_addr)
1910 {
1911 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1912 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1913 		return;
1914 
1915 	ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1916 	ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1917 }
1918 
1919 /**
1920  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1921  * @vf: VF to update
1922  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1923  */
1924 static void
1925 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1926 {
1927 	u8 *mac_addr = vc_ether_addr->addr;
1928 
1929 	if (!is_valid_ether_addr(mac_addr) ||
1930 	    !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1931 		return;
1932 
1933 	/* allow the device MAC to be repopulated in the add flow and don't
1934 	 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
1935 	 * to be persistent on VM reboot and across driver unload/load, which
1936 	 * won't work if we clear the hardware MAC here
1937 	 */
1938 	eth_zero_addr(vf->dev_lan_addr);
1939 
1940 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
1941 }
1942 
1943 /**
1944  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1945  * @vf: pointer to the VF info
1946  * @vsi: pointer to the VF's VSI
1947  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1948  */
1949 static int
1950 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1951 		    struct virtchnl_ether_addr *vc_ether_addr)
1952 {
1953 	struct device *dev = ice_pf_to_dev(vf->pf);
1954 	u8 *mac_addr = vc_ether_addr->addr;
1955 	int status;
1956 
1957 	if (!ice_can_vf_change_mac(vf) &&
1958 	    ether_addr_equal(vf->dev_lan_addr, mac_addr))
1959 		return 0;
1960 
1961 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1962 	if (status == -ENOENT) {
1963 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1964 			vf->vf_id);
1965 		return -ENOENT;
1966 	} else if (status) {
1967 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1968 			mac_addr, vf->vf_id, status);
1969 		return -EIO;
1970 	}
1971 
1972 	ice_vfhw_mac_del(vf, vc_ether_addr);
1973 
1974 	vf->num_mac--;
1975 
1976 	return 0;
1977 }
1978 
1979 /**
1980  * ice_vc_handle_mac_addr_msg
1981  * @vf: pointer to the VF info
1982  * @msg: pointer to the msg buffer
1983  * @set: true if MAC filters are being set, false otherwise
1984  *
1985  * add guest MAC address filter
1986  */
1987 static int
1988 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
1989 {
1990 	int (*ice_vc_cfg_mac)
1991 		(struct ice_vf *vf, struct ice_vsi *vsi,
1992 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
1993 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1994 	struct virtchnl_ether_addr_list *al =
1995 	    (struct virtchnl_ether_addr_list *)msg;
1996 	struct ice_pf *pf = vf->pf;
1997 	enum virtchnl_ops vc_op;
1998 	struct ice_vsi *vsi;
1999 	int i;
2000 
2001 	if (set) {
2002 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2003 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
2004 	} else {
2005 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2006 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
2007 	}
2008 
2009 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2010 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2011 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2012 		goto handle_mac_exit;
2013 	}
2014 
2015 	/* If this VF is not privileged, then we can't add more than a
2016 	 * limited number of addresses. Check to make sure that the
2017 	 * additions do not push us over the limit.
2018 	 */
2019 	if (set && !ice_is_vf_trusted(vf) &&
2020 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2021 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2022 			vf->vf_id);
2023 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2024 		goto handle_mac_exit;
2025 	}
2026 
2027 	vsi = ice_get_vf_vsi(vf);
2028 	if (!vsi) {
2029 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2030 		goto handle_mac_exit;
2031 	}
2032 
2033 	for (i = 0; i < al->num_elements; i++) {
2034 		u8 *mac_addr = al->list[i].addr;
2035 		int result;
2036 
2037 		if (is_broadcast_ether_addr(mac_addr) ||
2038 		    is_zero_ether_addr(mac_addr))
2039 			continue;
2040 
2041 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2042 		if (result == -EEXIST || result == -ENOENT) {
2043 			continue;
2044 		} else if (result) {
2045 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2046 			goto handle_mac_exit;
2047 		}
2048 	}
2049 
2050 handle_mac_exit:
2051 	/* send the response to the VF */
2052 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2053 }
2054 
2055 /**
2056  * ice_vc_add_mac_addr_msg
2057  * @vf: pointer to the VF info
2058  * @msg: pointer to the msg buffer
2059  *
2060  * add guest MAC address filter
2061  */
2062 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2063 {
2064 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2065 }
2066 
2067 /**
2068  * ice_vc_del_mac_addr_msg
2069  * @vf: pointer to the VF info
2070  * @msg: pointer to the msg buffer
2071  *
2072  * remove guest MAC address filter
2073  */
2074 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2075 {
2076 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2077 }
2078 
2079 /**
2080  * ice_vc_request_qs_msg
2081  * @vf: pointer to the VF info
2082  * @msg: pointer to the msg buffer
2083  *
2084  * VFs get a default number of queues but can use this message to request a
2085  * different number. If the request is successful, PF will reset the VF and
2086  * return 0. If unsuccessful, PF will send message informing VF of number of
2087  * available queue pairs via virtchnl message response to VF.
2088  */
2089 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2090 {
2091 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2092 	struct virtchnl_vf_res_request *vfres =
2093 		(struct virtchnl_vf_res_request *)msg;
2094 	u16 req_queues = vfres->num_queue_pairs;
2095 	struct ice_pf *pf = vf->pf;
2096 	u16 max_allowed_vf_queues;
2097 	u16 tx_rx_queue_left;
2098 	struct device *dev;
2099 	u16 cur_queues;
2100 
2101 	dev = ice_pf_to_dev(pf);
2102 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2103 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2104 		goto error_param;
2105 	}
2106 
2107 	cur_queues = vf->num_vf_qs;
2108 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2109 				 ice_get_avail_rxq_count(pf));
2110 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2111 	if (!req_queues) {
2112 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2113 			vf->vf_id);
2114 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2115 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2116 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2117 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2118 	} else if (req_queues > cur_queues &&
2119 		   req_queues - cur_queues > tx_rx_queue_left) {
2120 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2121 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2122 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2123 					       ICE_MAX_RSS_QS_PER_VF);
2124 	} else {
2125 		/* request is successful, then reset VF */
2126 		vf->num_req_qs = req_queues;
2127 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2128 		dev_info(dev, "VF %d granted request of %u queues.\n",
2129 			 vf->vf_id, req_queues);
2130 		return 0;
2131 	}
2132 
2133 error_param:
2134 	/* send the response to the VF */
2135 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2136 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2137 }
2138 
2139 /**
2140  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2141  * @caps: VF driver negotiated capabilities
2142  *
2143  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2144  */
2145 static bool ice_vf_vlan_offload_ena(u32 caps)
2146 {
2147 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2148 }
2149 
2150 /**
2151  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2152  * @vf: VF used to determine if VLAN promiscuous config is allowed
2153  */
2154 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2155 {
2156 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2157 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2158 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2159 		return true;
2160 
2161 	return false;
2162 }
2163 
2164 /**
2165  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2166  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2167  * @vlan: VLAN used to enable VLAN promiscuous
2168  *
2169  * This function should only be called if VLAN promiscuous mode is allowed,
2170  * which can be determined via ice_is_vlan_promisc_allowed().
2171  */
2172 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2173 {
2174 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2175 	int status;
2176 
2177 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2178 					  vlan->vid);
2179 	if (status && status != -EEXIST)
2180 		return status;
2181 
2182 	return 0;
2183 }
2184 
2185 /**
2186  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2187  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2188  * @vlan: VLAN used to disable VLAN promiscuous
2189  *
2190  * This function should only be called if VLAN promiscuous mode is allowed,
2191  * which can be determined via ice_is_vlan_promisc_allowed().
2192  */
2193 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2194 {
2195 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2196 	int status;
2197 
2198 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2199 					    vlan->vid);
2200 	if (status && status != -ENOENT)
2201 		return status;
2202 
2203 	return 0;
2204 }
2205 
2206 /**
2207  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2208  * @vf: VF to check against
2209  * @vsi: VF's VSI
2210  *
2211  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2212  * wants to, so return false.
2213  *
2214  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2215  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2216  */
2217 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2218 {
2219 	if (ice_is_vf_trusted(vf))
2220 		return false;
2221 
2222 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2223 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2224 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2225 }
2226 
2227 /**
2228  * ice_vc_process_vlan_msg
2229  * @vf: pointer to the VF info
2230  * @msg: pointer to the msg buffer
2231  * @add_v: Add VLAN if true, otherwise delete VLAN
2232  *
2233  * Process virtchnl op to add or remove programmed guest VLAN ID
2234  */
2235 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2236 {
2237 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2238 	struct virtchnl_vlan_filter_list *vfl =
2239 	    (struct virtchnl_vlan_filter_list *)msg;
2240 	struct ice_pf *pf = vf->pf;
2241 	bool vlan_promisc = false;
2242 	struct ice_vsi *vsi;
2243 	struct device *dev;
2244 	int status = 0;
2245 	int i;
2246 
2247 	dev = ice_pf_to_dev(pf);
2248 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2249 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2250 		goto error_param;
2251 	}
2252 
2253 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2254 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2255 		goto error_param;
2256 	}
2257 
2258 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2259 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2260 		goto error_param;
2261 	}
2262 
2263 	for (i = 0; i < vfl->num_elements; i++) {
2264 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2265 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2266 			dev_err(dev, "invalid VF VLAN id %d\n",
2267 				vfl->vlan_id[i]);
2268 			goto error_param;
2269 		}
2270 	}
2271 
2272 	vsi = ice_get_vf_vsi(vf);
2273 	if (!vsi) {
2274 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2275 		goto error_param;
2276 	}
2277 
2278 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2279 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2280 			 vf->vf_id);
2281 		/* There is no need to let VF know about being not trusted,
2282 		 * so we can just return success message here
2283 		 */
2284 		goto error_param;
2285 	}
2286 
2287 	/* in DVM a VF can add/delete inner VLAN filters when
2288 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2289 	 */
2290 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2291 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2292 		goto error_param;
2293 	}
2294 
2295 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2296 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2297 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2298 	 */
2299 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2300 		!ice_is_dvm_ena(&pf->hw) &&
2301 		!ice_vf_is_port_vlan_ena(vf);
2302 
2303 	if (add_v) {
2304 		for (i = 0; i < vfl->num_elements; i++) {
2305 			u16 vid = vfl->vlan_id[i];
2306 			struct ice_vlan vlan;
2307 
2308 			if (ice_vf_has_max_vlans(vf, vsi)) {
2309 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2310 					 vf->vf_id);
2311 				/* There is no need to let VF know about being
2312 				 * not trusted, so we can just return success
2313 				 * message here as well.
2314 				 */
2315 				goto error_param;
2316 			}
2317 
2318 			/* we add VLAN 0 by default for each VF so we can enable
2319 			 * Tx VLAN anti-spoof without triggering MDD events so
2320 			 * we don't need to add it again here
2321 			 */
2322 			if (!vid)
2323 				continue;
2324 
2325 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2326 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2327 			if (status) {
2328 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2329 				goto error_param;
2330 			}
2331 
2332 			/* Enable VLAN filtering on first non-zero VLAN */
2333 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2334 				if (vf->spoofchk) {
2335 					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2336 					if (status) {
2337 						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2338 						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2339 							vid, status);
2340 						goto error_param;
2341 					}
2342 				}
2343 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2344 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2345 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2346 						vid, status);
2347 					goto error_param;
2348 				}
2349 			} else if (vlan_promisc) {
2350 				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2351 				if (status) {
2352 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2353 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2354 						vid, status);
2355 				}
2356 			}
2357 		}
2358 	} else {
2359 		/* In case of non_trusted VF, number of VLAN elements passed
2360 		 * to PF for removal might be greater than number of VLANs
2361 		 * filter programmed for that VF - So, use actual number of
2362 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2363 		 * removing VLAN that doesn't exist, which result to sending
2364 		 * erroneous failed message back to the VF
2365 		 */
2366 		int num_vf_vlan;
2367 
2368 		num_vf_vlan = vsi->num_vlan;
2369 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2370 			u16 vid = vfl->vlan_id[i];
2371 			struct ice_vlan vlan;
2372 
2373 			/* we add VLAN 0 by default for each VF so we can enable
2374 			 * Tx VLAN anti-spoof without triggering MDD events so
2375 			 * we don't want a VIRTCHNL request to remove it
2376 			 */
2377 			if (!vid)
2378 				continue;
2379 
2380 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2381 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2382 			if (status) {
2383 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2384 				goto error_param;
2385 			}
2386 
2387 			/* Disable VLAN filtering when only VLAN 0 is left */
2388 			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2389 				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2390 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2391 			}
2392 
2393 			if (vlan_promisc)
2394 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2395 		}
2396 	}
2397 
2398 error_param:
2399 	/* send the response to the VF */
2400 	if (add_v)
2401 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2402 					     NULL, 0);
2403 	else
2404 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2405 					     NULL, 0);
2406 }
2407 
2408 /**
2409  * ice_vc_add_vlan_msg
2410  * @vf: pointer to the VF info
2411  * @msg: pointer to the msg buffer
2412  *
2413  * Add and program guest VLAN ID
2414  */
2415 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2416 {
2417 	return ice_vc_process_vlan_msg(vf, msg, true);
2418 }
2419 
2420 /**
2421  * ice_vc_remove_vlan_msg
2422  * @vf: pointer to the VF info
2423  * @msg: pointer to the msg buffer
2424  *
2425  * remove programmed guest VLAN ID
2426  */
2427 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2428 {
2429 	return ice_vc_process_vlan_msg(vf, msg, false);
2430 }
2431 
2432 /**
2433  * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2434  * @vsi: pointer to the VF VSI info
2435  */
2436 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2437 {
2438 	unsigned int i;
2439 
2440 	ice_for_each_alloc_rxq(vsi, i)
2441 		if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2442 			return true;
2443 
2444 	return false;
2445 }
2446 
2447 /**
2448  * ice_vc_ena_vlan_stripping
2449  * @vf: pointer to the VF info
2450  *
2451  * Enable VLAN header stripping for a given VF
2452  */
2453 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2454 {
2455 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2456 	struct ice_vsi *vsi;
2457 
2458 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2459 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2460 		goto error_param;
2461 	}
2462 
2463 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2464 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2465 		goto error_param;
2466 	}
2467 
2468 	vsi = ice_get_vf_vsi(vf);
2469 	if (!vsi) {
2470 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2471 		goto error_param;
2472 	}
2473 
2474 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2475 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2476 	else
2477 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2478 
2479 error_param:
2480 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2481 				     v_ret, NULL, 0);
2482 }
2483 
2484 /**
2485  * ice_vc_dis_vlan_stripping
2486  * @vf: pointer to the VF info
2487  *
2488  * Disable VLAN header stripping for a given VF
2489  */
2490 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2491 {
2492 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2493 	struct ice_vsi *vsi;
2494 
2495 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2496 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2497 		goto error_param;
2498 	}
2499 
2500 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2501 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2502 		goto error_param;
2503 	}
2504 
2505 	vsi = ice_get_vf_vsi(vf);
2506 	if (!vsi) {
2507 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2508 		goto error_param;
2509 	}
2510 
2511 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2512 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2513 	else
2514 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2515 
2516 error_param:
2517 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2518 				     v_ret, NULL, 0);
2519 }
2520 
2521 /**
2522  * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2523  * @vf: pointer to the VF info
2524  */
2525 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2526 {
2527 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2528 	struct virtchnl_rss_hena *vrh = NULL;
2529 	int len = 0, ret;
2530 
2531 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2532 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2533 		goto err;
2534 	}
2535 
2536 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2537 		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2538 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2539 		goto err;
2540 	}
2541 
2542 	len = sizeof(struct virtchnl_rss_hena);
2543 	vrh = kzalloc(len, GFP_KERNEL);
2544 	if (!vrh) {
2545 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2546 		len = 0;
2547 		goto err;
2548 	}
2549 
2550 	vrh->hena = ICE_DEFAULT_RSS_HENA;
2551 err:
2552 	/* send the response back to the VF */
2553 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2554 				    (u8 *)vrh, len);
2555 	kfree(vrh);
2556 	return ret;
2557 }
2558 
2559 /**
2560  * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2561  * @vf: pointer to the VF info
2562  * @msg: pointer to the msg buffer
2563  */
2564 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2565 {
2566 	struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2567 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2568 	struct ice_pf *pf = vf->pf;
2569 	struct ice_vsi *vsi;
2570 	struct device *dev;
2571 	int status;
2572 
2573 	dev = ice_pf_to_dev(pf);
2574 
2575 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2576 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2577 		goto err;
2578 	}
2579 
2580 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2581 		dev_err(dev, "RSS not supported by PF\n");
2582 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2583 		goto err;
2584 	}
2585 
2586 	vsi = ice_get_vf_vsi(vf);
2587 	if (!vsi) {
2588 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2589 		goto err;
2590 	}
2591 
2592 	/* clear all previously programmed RSS configuration to allow VF drivers
2593 	 * the ability to customize the RSS configuration and/or completely
2594 	 * disable RSS
2595 	 */
2596 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2597 	if (status && !vrh->hena) {
2598 		/* only report failure to clear the current RSS configuration if
2599 		 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2600 		 */
2601 		v_ret = ice_err_to_virt_err(status);
2602 		goto err;
2603 	} else if (status) {
2604 		/* allow the VF to update the RSS configuration even on failure
2605 		 * to clear the current RSS confguration in an attempt to keep
2606 		 * RSS in a working state
2607 		 */
2608 		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2609 			 vf->vf_id);
2610 	}
2611 
2612 	if (vrh->hena) {
2613 		status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena);
2614 		v_ret = ice_err_to_virt_err(status);
2615 	}
2616 
2617 	/* send the response to the VF */
2618 err:
2619 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2620 				     NULL, 0);
2621 }
2622 
2623 /**
2624  * ice_vc_query_rxdid - query RXDID supported by DDP package
2625  * @vf: pointer to VF info
2626  *
2627  * Called from VF to query a bitmap of supported flexible
2628  * descriptor RXDIDs of a DDP package.
2629  */
2630 static int ice_vc_query_rxdid(struct ice_vf *vf)
2631 {
2632 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2633 	struct virtchnl_supported_rxdids *rxdid = NULL;
2634 	struct ice_hw *hw = &vf->pf->hw;
2635 	struct ice_pf *pf = vf->pf;
2636 	int len = 0;
2637 	int ret, i;
2638 	u32 regval;
2639 
2640 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2641 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2642 		goto err;
2643 	}
2644 
2645 	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2646 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2647 		goto err;
2648 	}
2649 
2650 	len = sizeof(struct virtchnl_supported_rxdids);
2651 	rxdid = kzalloc(len, GFP_KERNEL);
2652 	if (!rxdid) {
2653 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2654 		len = 0;
2655 		goto err;
2656 	}
2657 
2658 	/* RXDIDs supported by DDP package can be read from the register
2659 	 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2660 	 * is not listed in DDP package, add it in the bitmap manually.
2661 	 * Legacy 16byte descriptor is not supported.
2662 	 */
2663 	rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2664 
2665 	for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2666 		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2667 		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2668 			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2669 			rxdid->supported_rxdids |= BIT(i);
2670 	}
2671 
2672 	pf->supported_rxdids = rxdid->supported_rxdids;
2673 
2674 err:
2675 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2676 				    v_ret, (u8 *)rxdid, len);
2677 	kfree(rxdid);
2678 	return ret;
2679 }
2680 
2681 /**
2682  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2683  * @vf: VF to enable/disable VLAN stripping for on initialization
2684  *
2685  * Set the default for VLAN stripping based on whether a port VLAN is configured
2686  * and the current VLAN mode of the device.
2687  */
2688 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2689 {
2690 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2691 
2692 	vf->vlan_strip_ena = 0;
2693 
2694 	if (!vsi)
2695 		return -EINVAL;
2696 
2697 	/* don't modify stripping if port VLAN is configured in SVM since the
2698 	 * port VLAN is based on the inner/single VLAN in SVM
2699 	 */
2700 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2701 		return 0;
2702 
2703 	if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2704 		int err;
2705 
2706 		err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2707 		if (!err)
2708 			vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2709 		return err;
2710 	}
2711 
2712 	return vsi->inner_vlan_ops.dis_stripping(vsi);
2713 }
2714 
2715 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2716 {
2717 	if (vf->trusted)
2718 		return VLAN_N_VID;
2719 	else
2720 		return ICE_MAX_VLAN_PER_VF;
2721 }
2722 
2723 /**
2724  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2725  * @vf: VF that being checked for
2726  *
2727  * When the device is in double VLAN mode, check whether or not the outer VLAN
2728  * is allowed.
2729  */
2730 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2731 {
2732 	if (ice_vf_is_port_vlan_ena(vf))
2733 		return true;
2734 
2735 	return false;
2736 }
2737 
2738 /**
2739  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2740  * @vf: VF that capabilities are being set for
2741  * @caps: VLAN capabilities to populate
2742  *
2743  * Determine VLAN capabilities support based on whether a port VLAN is
2744  * configured. If a port VLAN is configured then the VF should use the inner
2745  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2746  * capabilies.
2747  */
2748 static void
2749 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2750 {
2751 	struct virtchnl_vlan_supported_caps *supported_caps;
2752 
2753 	if (ice_vf_outer_vlan_not_allowed(vf)) {
2754 		/* until support for inner VLAN filtering is added when a port
2755 		 * VLAN is configured, only support software offloaded inner
2756 		 * VLANs when a port VLAN is confgured in DVM
2757 		 */
2758 		supported_caps = &caps->filtering.filtering_support;
2759 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2760 
2761 		supported_caps = &caps->offloads.stripping_support;
2762 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2763 					VIRTCHNL_VLAN_TOGGLE |
2764 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2765 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2766 
2767 		supported_caps = &caps->offloads.insertion_support;
2768 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2769 					VIRTCHNL_VLAN_TOGGLE |
2770 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2771 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2772 
2773 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2774 		caps->offloads.ethertype_match =
2775 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2776 	} else {
2777 		supported_caps = &caps->filtering.filtering_support;
2778 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2779 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2780 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2781 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2782 					VIRTCHNL_VLAN_ETHERTYPE_AND;
2783 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2784 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2785 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2786 
2787 		supported_caps = &caps->offloads.stripping_support;
2788 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2789 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2790 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2791 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2792 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2793 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2794 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2795 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2796 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2797 
2798 		supported_caps = &caps->offloads.insertion_support;
2799 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2800 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2801 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2802 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2803 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2804 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2805 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2806 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2807 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2808 
2809 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2810 
2811 		caps->offloads.ethertype_match =
2812 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2813 	}
2814 
2815 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2816 }
2817 
2818 /**
2819  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2820  * @vf: VF that capabilities are being set for
2821  * @caps: VLAN capabilities to populate
2822  *
2823  * Determine VLAN capabilities support based on whether a port VLAN is
2824  * configured. If a port VLAN is configured then the VF does not have any VLAN
2825  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2826  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2827  * VLAN fitlering and offload capabilities.
2828  */
2829 static void
2830 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2831 {
2832 	struct virtchnl_vlan_supported_caps *supported_caps;
2833 
2834 	if (ice_vf_is_port_vlan_ena(vf)) {
2835 		supported_caps = &caps->filtering.filtering_support;
2836 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2837 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2838 
2839 		supported_caps = &caps->offloads.stripping_support;
2840 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2841 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2842 
2843 		supported_caps = &caps->offloads.insertion_support;
2844 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2845 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2846 
2847 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2848 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2849 		caps->filtering.max_filters = 0;
2850 	} else {
2851 		supported_caps = &caps->filtering.filtering_support;
2852 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2853 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2854 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2855 
2856 		supported_caps = &caps->offloads.stripping_support;
2857 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2858 					VIRTCHNL_VLAN_TOGGLE |
2859 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2860 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2861 
2862 		supported_caps = &caps->offloads.insertion_support;
2863 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2864 					VIRTCHNL_VLAN_TOGGLE |
2865 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2866 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2867 
2868 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2869 		caps->offloads.ethertype_match =
2870 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2871 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2872 	}
2873 }
2874 
2875 /**
2876  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2877  * @vf: VF to determine VLAN capabilities for
2878  *
2879  * This will only be called if the VF and PF successfully negotiated
2880  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2881  *
2882  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2883  * is configured or not.
2884  */
2885 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2886 {
2887 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2888 	struct virtchnl_vlan_caps *caps = NULL;
2889 	int err, len = 0;
2890 
2891 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2892 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2893 		goto out;
2894 	}
2895 
2896 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2897 	if (!caps) {
2898 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2899 		goto out;
2900 	}
2901 	len = sizeof(*caps);
2902 
2903 	if (ice_is_dvm_ena(&vf->pf->hw))
2904 		ice_vc_set_dvm_caps(vf, caps);
2905 	else
2906 		ice_vc_set_svm_caps(vf, caps);
2907 
2908 	/* store negotiated caps to prevent invalid VF messages */
2909 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2910 
2911 out:
2912 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2913 				    v_ret, (u8 *)caps, len);
2914 	kfree(caps);
2915 	return err;
2916 }
2917 
2918 /**
2919  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2920  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2921  * @tpid: VLAN TPID used for validation
2922  *
2923  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2924  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2925  */
2926 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2927 {
2928 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2929 
2930 	switch (tpid) {
2931 	case ETH_P_8021Q:
2932 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2933 		break;
2934 	case ETH_P_8021AD:
2935 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2936 		break;
2937 	case ETH_P_QINQ1:
2938 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2939 		break;
2940 	}
2941 
2942 	if (!(filtering_caps & vlan_ethertype))
2943 		return false;
2944 
2945 	return true;
2946 }
2947 
2948 /**
2949  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2950  * @vc_vlan: virtchnl_vlan to validate
2951  *
2952  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2953  * false. Otherwise return true.
2954  */
2955 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2956 {
2957 	if (!vc_vlan->tci || !vc_vlan->tpid)
2958 		return false;
2959 
2960 	return true;
2961 }
2962 
2963 /**
2964  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2965  * @vfc: negotiated/supported VLAN filtering capabilities
2966  * @vfl: VLAN filter list from VF to validate
2967  *
2968  * Validate all of the filters in the VLAN filter list from the VF. If any of
2969  * the checks fail then return false. Otherwise return true.
2970  */
2971 static bool
2972 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2973 				 struct virtchnl_vlan_filter_list_v2 *vfl)
2974 {
2975 	u16 i;
2976 
2977 	if (!vfl->num_elements)
2978 		return false;
2979 
2980 	for (i = 0; i < vfl->num_elements; i++) {
2981 		struct virtchnl_vlan_supported_caps *filtering_support =
2982 			&vfc->filtering_support;
2983 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2984 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
2985 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
2986 
2987 		if ((ice_vc_is_valid_vlan(outer) &&
2988 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
2989 		    (ice_vc_is_valid_vlan(inner) &&
2990 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
2991 			return false;
2992 
2993 		if ((outer->tci_mask &&
2994 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
2995 		    (inner->tci_mask &&
2996 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
2997 			return false;
2998 
2999 		if (((outer->tci & VLAN_PRIO_MASK) &&
3000 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3001 		    ((inner->tci & VLAN_PRIO_MASK) &&
3002 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3003 			return false;
3004 
3005 		if ((ice_vc_is_valid_vlan(outer) &&
3006 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
3007 						outer->tpid)) ||
3008 		    (ice_vc_is_valid_vlan(inner) &&
3009 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
3010 						inner->tpid)))
3011 			return false;
3012 	}
3013 
3014 	return true;
3015 }
3016 
3017 /**
3018  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3019  * @vc_vlan: struct virtchnl_vlan to transform
3020  */
3021 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3022 {
3023 	struct ice_vlan vlan = { 0 };
3024 
3025 	vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3026 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3027 	vlan.tpid = vc_vlan->tpid;
3028 
3029 	return vlan;
3030 }
3031 
3032 /**
3033  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3034  * @vsi: VF's VSI used to perform the action
3035  * @vlan_action: function to perform the action with (i.e. add/del)
3036  * @vlan: VLAN filter to perform the action with
3037  */
3038 static int
3039 ice_vc_vlan_action(struct ice_vsi *vsi,
3040 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3041 		   struct ice_vlan *vlan)
3042 {
3043 	int err;
3044 
3045 	err = vlan_action(vsi, vlan);
3046 	if (err)
3047 		return err;
3048 
3049 	return 0;
3050 }
3051 
3052 /**
3053  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3054  * @vf: VF used to delete the VLAN(s)
3055  * @vsi: VF's VSI used to delete the VLAN(s)
3056  * @vfl: virthchnl filter list used to delete the filters
3057  */
3058 static int
3059 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3060 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3061 {
3062 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3063 	int err;
3064 	u16 i;
3065 
3066 	for (i = 0; i < vfl->num_elements; i++) {
3067 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3068 		struct virtchnl_vlan *vc_vlan;
3069 
3070 		vc_vlan = &vlan_fltr->outer;
3071 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3072 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3073 
3074 			err = ice_vc_vlan_action(vsi,
3075 						 vsi->outer_vlan_ops.del_vlan,
3076 						 &vlan);
3077 			if (err)
3078 				return err;
3079 
3080 			if (vlan_promisc)
3081 				ice_vf_dis_vlan_promisc(vsi, &vlan);
3082 
3083 			/* Disable VLAN filtering when only VLAN 0 is left */
3084 			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3085 				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3086 				if (err)
3087 					return err;
3088 			}
3089 		}
3090 
3091 		vc_vlan = &vlan_fltr->inner;
3092 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3093 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3094 
3095 			err = ice_vc_vlan_action(vsi,
3096 						 vsi->inner_vlan_ops.del_vlan,
3097 						 &vlan);
3098 			if (err)
3099 				return err;
3100 
3101 			/* no support for VLAN promiscuous on inner VLAN unless
3102 			 * we are in Single VLAN Mode (SVM)
3103 			 */
3104 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3105 				if (vlan_promisc)
3106 					ice_vf_dis_vlan_promisc(vsi, &vlan);
3107 
3108 				/* Disable VLAN filtering when only VLAN 0 is left */
3109 				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3110 					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3111 					if (err)
3112 						return err;
3113 				}
3114 			}
3115 		}
3116 	}
3117 
3118 	return 0;
3119 }
3120 
3121 /**
3122  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3123  * @vf: VF the message was received from
3124  * @msg: message received from the VF
3125  */
3126 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3127 {
3128 	struct virtchnl_vlan_filter_list_v2 *vfl =
3129 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3130 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3131 	struct ice_vsi *vsi;
3132 
3133 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3134 					      vfl)) {
3135 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3136 		goto out;
3137 	}
3138 
3139 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3140 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3141 		goto out;
3142 	}
3143 
3144 	vsi = ice_get_vf_vsi(vf);
3145 	if (!vsi) {
3146 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3147 		goto out;
3148 	}
3149 
3150 	if (ice_vc_del_vlans(vf, vsi, vfl))
3151 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3152 
3153 out:
3154 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3155 				     0);
3156 }
3157 
3158 /**
3159  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3160  * @vf: VF used to add the VLAN(s)
3161  * @vsi: VF's VSI used to add the VLAN(s)
3162  * @vfl: virthchnl filter list used to add the filters
3163  */
3164 static int
3165 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3166 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3167 {
3168 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3169 	int err;
3170 	u16 i;
3171 
3172 	for (i = 0; i < vfl->num_elements; i++) {
3173 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3174 		struct virtchnl_vlan *vc_vlan;
3175 
3176 		vc_vlan = &vlan_fltr->outer;
3177 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3178 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3179 
3180 			err = ice_vc_vlan_action(vsi,
3181 						 vsi->outer_vlan_ops.add_vlan,
3182 						 &vlan);
3183 			if (err)
3184 				return err;
3185 
3186 			if (vlan_promisc) {
3187 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3188 				if (err)
3189 					return err;
3190 			}
3191 
3192 			/* Enable VLAN filtering on first non-zero VLAN */
3193 			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3194 				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3195 				if (err)
3196 					return err;
3197 			}
3198 		}
3199 
3200 		vc_vlan = &vlan_fltr->inner;
3201 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3202 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3203 
3204 			err = ice_vc_vlan_action(vsi,
3205 						 vsi->inner_vlan_ops.add_vlan,
3206 						 &vlan);
3207 			if (err)
3208 				return err;
3209 
3210 			/* no support for VLAN promiscuous on inner VLAN unless
3211 			 * we are in Single VLAN Mode (SVM)
3212 			 */
3213 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3214 				if (vlan_promisc) {
3215 					err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3216 					if (err)
3217 						return err;
3218 				}
3219 
3220 				/* Enable VLAN filtering on first non-zero VLAN */
3221 				if (vf->spoofchk && vlan.vid) {
3222 					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3223 					if (err)
3224 						return err;
3225 				}
3226 			}
3227 		}
3228 	}
3229 
3230 	return 0;
3231 }
3232 
3233 /**
3234  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3235  * @vsi: VF VSI used to get number of existing VLAN filters
3236  * @vfc: negotiated/supported VLAN filtering capabilities
3237  * @vfl: VLAN filter list from VF to validate
3238  *
3239  * Validate all of the filters in the VLAN filter list from the VF during the
3240  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3241  * Otherwise return true.
3242  */
3243 static bool
3244 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3245 				     struct virtchnl_vlan_filtering_caps *vfc,
3246 				     struct virtchnl_vlan_filter_list_v2 *vfl)
3247 {
3248 	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3249 		vfl->num_elements;
3250 
3251 	if (num_requested_filters > vfc->max_filters)
3252 		return false;
3253 
3254 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3255 }
3256 
3257 /**
3258  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3259  * @vf: VF the message was received from
3260  * @msg: message received from the VF
3261  */
3262 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3263 {
3264 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3265 	struct virtchnl_vlan_filter_list_v2 *vfl =
3266 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3267 	struct ice_vsi *vsi;
3268 
3269 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3270 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3271 		goto out;
3272 	}
3273 
3274 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3275 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3276 		goto out;
3277 	}
3278 
3279 	vsi = ice_get_vf_vsi(vf);
3280 	if (!vsi) {
3281 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3282 		goto out;
3283 	}
3284 
3285 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3286 						  &vf->vlan_v2_caps.filtering,
3287 						  vfl)) {
3288 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3289 		goto out;
3290 	}
3291 
3292 	if (ice_vc_add_vlans(vf, vsi, vfl))
3293 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3294 
3295 out:
3296 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3297 				     0);
3298 }
3299 
3300 /**
3301  * ice_vc_valid_vlan_setting - validate VLAN setting
3302  * @negotiated_settings: negotiated VLAN settings during VF init
3303  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3304  */
3305 static bool
3306 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3307 {
3308 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3309 		return false;
3310 
3311 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3312 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3313 	 */
3314 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3315 	    hweight32(ethertype_setting) > 1)
3316 		return false;
3317 
3318 	/* ability to modify the VLAN setting was not negotiated */
3319 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3320 		return false;
3321 
3322 	return true;
3323 }
3324 
3325 /**
3326  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3327  * @caps: negotiated VLAN settings during VF init
3328  * @msg: message to validate
3329  *
3330  * Used to validate any VLAN virtchnl message sent as a
3331  * virtchnl_vlan_setting structure. Validates the message against the
3332  * negotiated/supported caps during VF driver init.
3333  */
3334 static bool
3335 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3336 			      struct virtchnl_vlan_setting *msg)
3337 {
3338 	if ((!msg->outer_ethertype_setting &&
3339 	     !msg->inner_ethertype_setting) ||
3340 	    (!caps->outer && !caps->inner))
3341 		return false;
3342 
3343 	if (msg->outer_ethertype_setting &&
3344 	    !ice_vc_valid_vlan_setting(caps->outer,
3345 				       msg->outer_ethertype_setting))
3346 		return false;
3347 
3348 	if (msg->inner_ethertype_setting &&
3349 	    !ice_vc_valid_vlan_setting(caps->inner,
3350 				       msg->inner_ethertype_setting))
3351 		return false;
3352 
3353 	return true;
3354 }
3355 
3356 /**
3357  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3358  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3359  * @tpid: VLAN TPID to populate
3360  */
3361 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3362 {
3363 	switch (ethertype_setting) {
3364 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3365 		*tpid = ETH_P_8021Q;
3366 		break;
3367 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3368 		*tpid = ETH_P_8021AD;
3369 		break;
3370 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3371 		*tpid = ETH_P_QINQ1;
3372 		break;
3373 	default:
3374 		*tpid = 0;
3375 		return -EINVAL;
3376 	}
3377 
3378 	return 0;
3379 }
3380 
3381 /**
3382  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3383  * @vsi: VF's VSI used to enable the VLAN offload
3384  * @ena_offload: function used to enable the VLAN offload
3385  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3386  */
3387 static int
3388 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3389 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3390 			u32 ethertype_setting)
3391 {
3392 	u16 tpid;
3393 	int err;
3394 
3395 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3396 	if (err)
3397 		return err;
3398 
3399 	err = ena_offload(vsi, tpid);
3400 	if (err)
3401 		return err;
3402 
3403 	return 0;
3404 }
3405 
3406 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3407 #define ICE_L2TSEL_BIT_OFFSET		23
3408 enum ice_l2tsel {
3409 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3410 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3411 };
3412 
3413 /**
3414  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3415  * @vsi: VSI used to update l2tsel on
3416  * @l2tsel: l2tsel setting requested
3417  *
3418  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3419  * This will modify which descriptor field the first offloaded VLAN will be
3420  * stripped into.
3421  */
3422 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3423 {
3424 	struct ice_hw *hw = &vsi->back->hw;
3425 	u32 l2tsel_bit;
3426 	int i;
3427 
3428 	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3429 		l2tsel_bit = 0;
3430 	else
3431 		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3432 
3433 	for (i = 0; i < vsi->alloc_rxq; i++) {
3434 		u16 pfq = vsi->rxq_map[i];
3435 		u32 qrx_context_offset;
3436 		u32 regval;
3437 
3438 		qrx_context_offset =
3439 			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3440 
3441 		regval = rd32(hw, qrx_context_offset);
3442 		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3443 		regval |= l2tsel_bit;
3444 		wr32(hw, qrx_context_offset, regval);
3445 	}
3446 }
3447 
3448 /**
3449  * ice_vc_ena_vlan_stripping_v2_msg
3450  * @vf: VF the message was received from
3451  * @msg: message received from the VF
3452  *
3453  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3454  */
3455 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3456 {
3457 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3458 	struct virtchnl_vlan_supported_caps *stripping_support;
3459 	struct virtchnl_vlan_setting *strip_msg =
3460 		(struct virtchnl_vlan_setting *)msg;
3461 	u32 ethertype_setting;
3462 	struct ice_vsi *vsi;
3463 
3464 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3465 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3466 		goto out;
3467 	}
3468 
3469 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3470 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3471 		goto out;
3472 	}
3473 
3474 	vsi = ice_get_vf_vsi(vf);
3475 	if (!vsi) {
3476 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3477 		goto out;
3478 	}
3479 
3480 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3481 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3482 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3483 		goto out;
3484 	}
3485 
3486 	if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3487 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3488 		goto out;
3489 	}
3490 
3491 	ethertype_setting = strip_msg->outer_ethertype_setting;
3492 	if (ethertype_setting) {
3493 		if (ice_vc_ena_vlan_offload(vsi,
3494 					    vsi->outer_vlan_ops.ena_stripping,
3495 					    ethertype_setting)) {
3496 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3497 			goto out;
3498 		} else {
3499 			enum ice_l2tsel l2tsel =
3500 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3501 
3502 			/* PF tells the VF that the outer VLAN tag is always
3503 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3504 			 * inner is always extracted to
3505 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3506 			 * support outer stripping so the first tag always ends
3507 			 * up in L2TAG2_2ND and the second/inner tag, if
3508 			 * enabled, is extracted in L2TAG1.
3509 			 */
3510 			ice_vsi_update_l2tsel(vsi, l2tsel);
3511 
3512 			vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3513 		}
3514 	}
3515 
3516 	ethertype_setting = strip_msg->inner_ethertype_setting;
3517 	if (ethertype_setting &&
3518 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3519 				    ethertype_setting)) {
3520 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3521 		goto out;
3522 	}
3523 
3524 	if (ethertype_setting)
3525 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3526 
3527 out:
3528 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3529 				     v_ret, NULL, 0);
3530 }
3531 
3532 /**
3533  * ice_vc_dis_vlan_stripping_v2_msg
3534  * @vf: VF the message was received from
3535  * @msg: message received from the VF
3536  *
3537  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3538  */
3539 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3540 {
3541 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3542 	struct virtchnl_vlan_supported_caps *stripping_support;
3543 	struct virtchnl_vlan_setting *strip_msg =
3544 		(struct virtchnl_vlan_setting *)msg;
3545 	u32 ethertype_setting;
3546 	struct ice_vsi *vsi;
3547 
3548 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3549 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3550 		goto out;
3551 	}
3552 
3553 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3554 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3555 		goto out;
3556 	}
3557 
3558 	vsi = ice_get_vf_vsi(vf);
3559 	if (!vsi) {
3560 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3561 		goto out;
3562 	}
3563 
3564 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3565 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3566 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3567 		goto out;
3568 	}
3569 
3570 	ethertype_setting = strip_msg->outer_ethertype_setting;
3571 	if (ethertype_setting) {
3572 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3573 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3574 			goto out;
3575 		} else {
3576 			enum ice_l2tsel l2tsel =
3577 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3578 
3579 			/* PF tells the VF that the outer VLAN tag is always
3580 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3581 			 * inner is always extracted to
3582 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3583 			 * support inner stripping while outer stripping is
3584 			 * disabled so that the first and only tag is extracted
3585 			 * in L2TAG1.
3586 			 */
3587 			ice_vsi_update_l2tsel(vsi, l2tsel);
3588 
3589 			vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3590 		}
3591 	}
3592 
3593 	ethertype_setting = strip_msg->inner_ethertype_setting;
3594 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3595 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3596 		goto out;
3597 	}
3598 
3599 	if (ethertype_setting)
3600 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3601 
3602 out:
3603 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3604 				     v_ret, NULL, 0);
3605 }
3606 
3607 /**
3608  * ice_vc_ena_vlan_insertion_v2_msg
3609  * @vf: VF the message was received from
3610  * @msg: message received from the VF
3611  *
3612  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3613  */
3614 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3615 {
3616 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3617 	struct virtchnl_vlan_supported_caps *insertion_support;
3618 	struct virtchnl_vlan_setting *insertion_msg =
3619 		(struct virtchnl_vlan_setting *)msg;
3620 	u32 ethertype_setting;
3621 	struct ice_vsi *vsi;
3622 
3623 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3624 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3625 		goto out;
3626 	}
3627 
3628 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3629 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3630 		goto out;
3631 	}
3632 
3633 	vsi = ice_get_vf_vsi(vf);
3634 	if (!vsi) {
3635 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3636 		goto out;
3637 	}
3638 
3639 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3640 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3641 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3642 		goto out;
3643 	}
3644 
3645 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3646 	if (ethertype_setting &&
3647 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3648 				    ethertype_setting)) {
3649 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3650 		goto out;
3651 	}
3652 
3653 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3654 	if (ethertype_setting &&
3655 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3656 				    ethertype_setting)) {
3657 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3658 		goto out;
3659 	}
3660 
3661 out:
3662 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3663 				     v_ret, NULL, 0);
3664 }
3665 
3666 /**
3667  * ice_vc_dis_vlan_insertion_v2_msg
3668  * @vf: VF the message was received from
3669  * @msg: message received from the VF
3670  *
3671  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3672  */
3673 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3674 {
3675 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3676 	struct virtchnl_vlan_supported_caps *insertion_support;
3677 	struct virtchnl_vlan_setting *insertion_msg =
3678 		(struct virtchnl_vlan_setting *)msg;
3679 	u32 ethertype_setting;
3680 	struct ice_vsi *vsi;
3681 
3682 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3683 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3684 		goto out;
3685 	}
3686 
3687 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3688 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3689 		goto out;
3690 	}
3691 
3692 	vsi = ice_get_vf_vsi(vf);
3693 	if (!vsi) {
3694 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3695 		goto out;
3696 	}
3697 
3698 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3699 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3700 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3701 		goto out;
3702 	}
3703 
3704 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3705 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3706 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3707 		goto out;
3708 	}
3709 
3710 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3711 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3712 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3713 		goto out;
3714 	}
3715 
3716 out:
3717 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3718 				     v_ret, NULL, 0);
3719 }
3720 
3721 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3722 	.get_ver_msg = ice_vc_get_ver_msg,
3723 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3724 	.reset_vf = ice_vc_reset_vf_msg,
3725 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3726 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3727 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3728 	.ena_qs_msg = ice_vc_ena_qs_msg,
3729 	.dis_qs_msg = ice_vc_dis_qs_msg,
3730 	.request_qs_msg = ice_vc_request_qs_msg,
3731 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3732 	.config_rss_key = ice_vc_config_rss_key,
3733 	.config_rss_lut = ice_vc_config_rss_lut,
3734 	.get_stats_msg = ice_vc_get_stats_msg,
3735 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3736 	.add_vlan_msg = ice_vc_add_vlan_msg,
3737 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3738 	.query_rxdid = ice_vc_query_rxdid,
3739 	.get_rss_hena = ice_vc_get_rss_hena,
3740 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3741 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3742 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3743 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3744 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3745 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3746 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3747 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3748 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3749 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3750 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3751 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3752 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3753 };
3754 
3755 /**
3756  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3757  * @vf: the VF to switch ops
3758  */
3759 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3760 {
3761 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3762 }
3763 
3764 /**
3765  * ice_vc_repr_add_mac
3766  * @vf: pointer to VF
3767  * @msg: virtchannel message
3768  *
3769  * When port representors are created, we do not add MAC rule
3770  * to firmware, we store it so that PF could report same
3771  * MAC as VF.
3772  */
3773 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3774 {
3775 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3776 	struct virtchnl_ether_addr_list *al =
3777 	    (struct virtchnl_ether_addr_list *)msg;
3778 	struct ice_vsi *vsi;
3779 	struct ice_pf *pf;
3780 	int i;
3781 
3782 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3783 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3784 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3785 		goto handle_mac_exit;
3786 	}
3787 
3788 	pf = vf->pf;
3789 
3790 	vsi = ice_get_vf_vsi(vf);
3791 	if (!vsi) {
3792 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3793 		goto handle_mac_exit;
3794 	}
3795 
3796 	for (i = 0; i < al->num_elements; i++) {
3797 		u8 *mac_addr = al->list[i].addr;
3798 
3799 		if (!is_unicast_ether_addr(mac_addr) ||
3800 		    ether_addr_equal(mac_addr, vf->hw_lan_addr))
3801 			continue;
3802 
3803 		if (vf->pf_set_mac) {
3804 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3805 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3806 			goto handle_mac_exit;
3807 		}
3808 
3809 		ice_vfhw_mac_add(vf, &al->list[i]);
3810 		vf->num_mac++;
3811 		break;
3812 	}
3813 
3814 handle_mac_exit:
3815 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3816 				     v_ret, NULL, 0);
3817 }
3818 
3819 /**
3820  * ice_vc_repr_del_mac - response with success for deleting MAC
3821  * @vf: pointer to VF
3822  * @msg: virtchannel message
3823  *
3824  * Respond with success to not break normal VF flow.
3825  * For legacy VF driver try to update cached MAC address.
3826  */
3827 static int
3828 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3829 {
3830 	struct virtchnl_ether_addr_list *al =
3831 		(struct virtchnl_ether_addr_list *)msg;
3832 
3833 	ice_update_legacy_cached_mac(vf, &al->list[0]);
3834 
3835 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3836 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3837 }
3838 
3839 static int
3840 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3841 {
3842 	dev_dbg(ice_pf_to_dev(vf->pf),
3843 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3844 		vf->vf_id);
3845 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3846 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3847 				     NULL, 0);
3848 }
3849 
3850 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3851 	.get_ver_msg = ice_vc_get_ver_msg,
3852 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3853 	.reset_vf = ice_vc_reset_vf_msg,
3854 	.add_mac_addr_msg = ice_vc_repr_add_mac,
3855 	.del_mac_addr_msg = ice_vc_repr_del_mac,
3856 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3857 	.ena_qs_msg = ice_vc_ena_qs_msg,
3858 	.dis_qs_msg = ice_vc_dis_qs_msg,
3859 	.request_qs_msg = ice_vc_request_qs_msg,
3860 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3861 	.config_rss_key = ice_vc_config_rss_key,
3862 	.config_rss_lut = ice_vc_config_rss_lut,
3863 	.get_stats_msg = ice_vc_get_stats_msg,
3864 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3865 	.add_vlan_msg = ice_vc_add_vlan_msg,
3866 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3867 	.query_rxdid = ice_vc_query_rxdid,
3868 	.get_rss_hena = ice_vc_get_rss_hena,
3869 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3870 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3871 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3872 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3873 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3874 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3875 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3876 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3877 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3878 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3879 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3880 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3881 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3882 };
3883 
3884 /**
3885  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3886  * @vf: the VF to switch ops
3887  */
3888 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3889 {
3890 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3891 }
3892 
3893 /**
3894  * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3895  * @vf: the VF to check
3896  * @mbxdata: data about the state of the mailbox
3897  *
3898  * Detect if a given VF might be malicious and attempting to overflow the PF
3899  * mailbox. If so, log a warning message and ignore this event.
3900  */
3901 static bool
3902 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3903 {
3904 	bool report_malvf = false;
3905 	struct device *dev;
3906 	struct ice_pf *pf;
3907 	int status;
3908 
3909 	pf = vf->pf;
3910 	dev = ice_pf_to_dev(pf);
3911 
3912 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3913 		return vf->mbx_info.malicious;
3914 
3915 	/* check to see if we have a newly malicious VF */
3916 	status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3917 					  &report_malvf);
3918 	if (status)
3919 		dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3920 				     vf->vf_id, vf->dev_lan_addr, status);
3921 
3922 	if (report_malvf) {
3923 		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3924 		u8 zero_addr[ETH_ALEN] = {};
3925 
3926 		dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3927 			 vf->dev_lan_addr,
3928 			 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3929 	}
3930 
3931 	return vf->mbx_info.malicious;
3932 }
3933 
3934 /**
3935  * ice_vc_process_vf_msg - Process request from VF
3936  * @pf: pointer to the PF structure
3937  * @event: pointer to the AQ event
3938  * @mbxdata: information used to detect VF attempting mailbox overflow
3939  *
3940  * called from the common asq/arq handler to
3941  * process request from VF
3942  */
3943 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
3944 			   struct ice_mbx_data *mbxdata)
3945 {
3946 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3947 	s16 vf_id = le16_to_cpu(event->desc.retval);
3948 	const struct ice_virtchnl_ops *ops;
3949 	u16 msglen = event->msg_len;
3950 	u8 *msg = event->msg_buf;
3951 	struct ice_vf *vf = NULL;
3952 	struct device *dev;
3953 	int err = 0;
3954 
3955 	dev = ice_pf_to_dev(pf);
3956 
3957 	vf = ice_get_vf_by_id(pf, vf_id);
3958 	if (!vf) {
3959 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3960 			vf_id, v_opcode, msglen);
3961 		return;
3962 	}
3963 
3964 	mutex_lock(&vf->cfg_lock);
3965 
3966 	/* Check if the VF is trying to overflow the mailbox */
3967 	if (ice_is_malicious_vf(vf, mbxdata))
3968 		goto finish;
3969 
3970 	/* Check if VF is disabled. */
3971 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3972 		err = -EPERM;
3973 		goto error_handler;
3974 	}
3975 
3976 	ops = vf->virtchnl_ops;
3977 
3978 	/* Perform basic checks on the msg */
3979 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3980 	if (err) {
3981 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
3982 			err = -EPERM;
3983 		else
3984 			err = -EINVAL;
3985 	}
3986 
3987 error_handler:
3988 	if (err) {
3989 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3990 				      NULL, 0);
3991 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3992 			vf_id, v_opcode, msglen, err);
3993 		goto finish;
3994 	}
3995 
3996 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
3997 		ice_vc_send_msg_to_vf(vf, v_opcode,
3998 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
3999 				      0);
4000 		goto finish;
4001 	}
4002 
4003 	switch (v_opcode) {
4004 	case VIRTCHNL_OP_VERSION:
4005 		err = ops->get_ver_msg(vf, msg);
4006 		break;
4007 	case VIRTCHNL_OP_GET_VF_RESOURCES:
4008 		err = ops->get_vf_res_msg(vf, msg);
4009 		if (ice_vf_init_vlan_stripping(vf))
4010 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4011 				vf->vf_id);
4012 		ice_vc_notify_vf_link_state(vf);
4013 		break;
4014 	case VIRTCHNL_OP_RESET_VF:
4015 		ops->reset_vf(vf);
4016 		break;
4017 	case VIRTCHNL_OP_ADD_ETH_ADDR:
4018 		err = ops->add_mac_addr_msg(vf, msg);
4019 		break;
4020 	case VIRTCHNL_OP_DEL_ETH_ADDR:
4021 		err = ops->del_mac_addr_msg(vf, msg);
4022 		break;
4023 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4024 		err = ops->cfg_qs_msg(vf, msg);
4025 		break;
4026 	case VIRTCHNL_OP_ENABLE_QUEUES:
4027 		err = ops->ena_qs_msg(vf, msg);
4028 		ice_vc_notify_vf_link_state(vf);
4029 		break;
4030 	case VIRTCHNL_OP_DISABLE_QUEUES:
4031 		err = ops->dis_qs_msg(vf, msg);
4032 		break;
4033 	case VIRTCHNL_OP_REQUEST_QUEUES:
4034 		err = ops->request_qs_msg(vf, msg);
4035 		break;
4036 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4037 		err = ops->cfg_irq_map_msg(vf, msg);
4038 		break;
4039 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
4040 		err = ops->config_rss_key(vf, msg);
4041 		break;
4042 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
4043 		err = ops->config_rss_lut(vf, msg);
4044 		break;
4045 	case VIRTCHNL_OP_GET_STATS:
4046 		err = ops->get_stats_msg(vf, msg);
4047 		break;
4048 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4049 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
4050 		break;
4051 	case VIRTCHNL_OP_ADD_VLAN:
4052 		err = ops->add_vlan_msg(vf, msg);
4053 		break;
4054 	case VIRTCHNL_OP_DEL_VLAN:
4055 		err = ops->remove_vlan_msg(vf, msg);
4056 		break;
4057 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4058 		err = ops->query_rxdid(vf);
4059 		break;
4060 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4061 		err = ops->get_rss_hena(vf);
4062 		break;
4063 	case VIRTCHNL_OP_SET_RSS_HENA:
4064 		err = ops->set_rss_hena_msg(vf, msg);
4065 		break;
4066 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4067 		err = ops->ena_vlan_stripping(vf);
4068 		break;
4069 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4070 		err = ops->dis_vlan_stripping(vf);
4071 		break;
4072 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4073 		err = ops->add_fdir_fltr_msg(vf, msg);
4074 		break;
4075 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4076 		err = ops->del_fdir_fltr_msg(vf, msg);
4077 		break;
4078 	case VIRTCHNL_OP_ADD_RSS_CFG:
4079 		err = ops->handle_rss_cfg_msg(vf, msg, true);
4080 		break;
4081 	case VIRTCHNL_OP_DEL_RSS_CFG:
4082 		err = ops->handle_rss_cfg_msg(vf, msg, false);
4083 		break;
4084 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4085 		err = ops->get_offload_vlan_v2_caps(vf);
4086 		break;
4087 	case VIRTCHNL_OP_ADD_VLAN_V2:
4088 		err = ops->add_vlan_v2_msg(vf, msg);
4089 		break;
4090 	case VIRTCHNL_OP_DEL_VLAN_V2:
4091 		err = ops->remove_vlan_v2_msg(vf, msg);
4092 		break;
4093 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4094 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4095 		break;
4096 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4097 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4098 		break;
4099 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4100 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4101 		break;
4102 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4103 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4104 		break;
4105 	case VIRTCHNL_OP_UNKNOWN:
4106 	default:
4107 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4108 			vf_id);
4109 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4110 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4111 					    NULL, 0);
4112 		break;
4113 	}
4114 	if (err) {
4115 		/* Helper function cares less about error return values here
4116 		 * as it is busy with pending work.
4117 		 */
4118 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4119 			 vf_id, v_opcode, err);
4120 	}
4121 
4122 finish:
4123 	mutex_unlock(&vf->cfg_lock);
4124 	ice_put_vf(vf);
4125 }
4126