1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_RSS_REG | 444 VIRTCHNL_VF_OFFLOAD_VLAN; 445 446 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 447 vsi = ice_get_vf_vsi(vf); 448 if (!vsi) { 449 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 450 goto err; 451 } 452 453 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 454 vf->driver_caps); 455 456 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 457 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 458 } else { 459 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) 460 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; 461 else 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; 463 } 464 465 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 485 486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 488 489 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC; 491 492 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 494 495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 497 498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 500 501 vfres->num_vsis = 1; 502 /* Tx and Rx queue are equal for VF */ 503 vfres->num_queue_pairs = vsi->num_txq; 504 vfres->max_vectors = vf->num_msix; 505 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 506 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 507 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 508 509 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; 510 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 511 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 512 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 513 vf->hw_lan_addr); 514 515 /* match guest capabilities */ 516 vf->driver_caps = vfres->vf_cap_flags; 517 518 ice_vc_set_caps_allowlist(vf); 519 ice_vc_set_working_allowlist(vf); 520 521 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 522 523 err: 524 /* send the response back to the VF */ 525 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 526 (u8 *)vfres, len); 527 528 kfree(vfres); 529 return ret; 530 } 531 532 /** 533 * ice_vc_reset_vf_msg 534 * @vf: pointer to the VF info 535 * 536 * called from the VF to reset itself, 537 * unlike other virtchnl messages, PF driver 538 * doesn't send the response back to the VF 539 */ 540 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 541 { 542 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 543 ice_reset_vf(vf, 0); 544 } 545 546 /** 547 * ice_vc_isvalid_vsi_id 548 * @vf: pointer to the VF info 549 * @vsi_id: VF relative VSI ID 550 * 551 * check for the valid VSI ID 552 */ 553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 554 { 555 struct ice_pf *pf = vf->pf; 556 struct ice_vsi *vsi; 557 558 vsi = ice_find_vsi(pf, vsi_id); 559 560 return (vsi && (vsi->vf == vf)); 561 } 562 563 /** 564 * ice_vc_isvalid_q_id 565 * @vf: pointer to the VF info 566 * @vsi_id: VSI ID 567 * @qid: VSI relative queue ID 568 * 569 * check for the valid queue ID 570 */ 571 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) 572 { 573 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id); 574 /* allocated Tx and Rx queues should be always equal for VF VSI */ 575 return (vsi && (qid < vsi->alloc_txq)); 576 } 577 578 /** 579 * ice_vc_isvalid_ring_len 580 * @ring_len: length of ring 581 * 582 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 583 * or zero 584 */ 585 static bool ice_vc_isvalid_ring_len(u16 ring_len) 586 { 587 return ring_len == 0 || 588 (ring_len >= ICE_MIN_NUM_DESC && 589 ring_len <= ICE_MAX_NUM_DESC && 590 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 591 } 592 593 /** 594 * ice_vc_validate_pattern 595 * @vf: pointer to the VF info 596 * @proto: virtchnl protocol headers 597 * 598 * validate the pattern is supported or not. 599 * 600 * Return: true on success, false on error. 601 */ 602 bool 603 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 604 { 605 bool is_ipv4 = false; 606 bool is_ipv6 = false; 607 bool is_udp = false; 608 u16 ptype = -1; 609 int i = 0; 610 611 while (i < proto->count && 612 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 613 switch (proto->proto_hdr[i].type) { 614 case VIRTCHNL_PROTO_HDR_ETH: 615 ptype = ICE_PTYPE_MAC_PAY; 616 break; 617 case VIRTCHNL_PROTO_HDR_IPV4: 618 ptype = ICE_PTYPE_IPV4_PAY; 619 is_ipv4 = true; 620 break; 621 case VIRTCHNL_PROTO_HDR_IPV6: 622 ptype = ICE_PTYPE_IPV6_PAY; 623 is_ipv6 = true; 624 break; 625 case VIRTCHNL_PROTO_HDR_UDP: 626 if (is_ipv4) 627 ptype = ICE_PTYPE_IPV4_UDP_PAY; 628 else if (is_ipv6) 629 ptype = ICE_PTYPE_IPV6_UDP_PAY; 630 is_udp = true; 631 break; 632 case VIRTCHNL_PROTO_HDR_TCP: 633 if (is_ipv4) 634 ptype = ICE_PTYPE_IPV4_TCP_PAY; 635 else if (is_ipv6) 636 ptype = ICE_PTYPE_IPV6_TCP_PAY; 637 break; 638 case VIRTCHNL_PROTO_HDR_SCTP: 639 if (is_ipv4) 640 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 641 else if (is_ipv6) 642 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 643 break; 644 case VIRTCHNL_PROTO_HDR_GTPU_IP: 645 case VIRTCHNL_PROTO_HDR_GTPU_EH: 646 if (is_ipv4) 647 ptype = ICE_MAC_IPV4_GTPU; 648 else if (is_ipv6) 649 ptype = ICE_MAC_IPV6_GTPU; 650 goto out; 651 case VIRTCHNL_PROTO_HDR_L2TPV3: 652 if (is_ipv4) 653 ptype = ICE_MAC_IPV4_L2TPV3; 654 else if (is_ipv6) 655 ptype = ICE_MAC_IPV6_L2TPV3; 656 goto out; 657 case VIRTCHNL_PROTO_HDR_ESP: 658 if (is_ipv4) 659 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 660 ICE_MAC_IPV4_ESP; 661 else if (is_ipv6) 662 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 663 ICE_MAC_IPV6_ESP; 664 goto out; 665 case VIRTCHNL_PROTO_HDR_AH: 666 if (is_ipv4) 667 ptype = ICE_MAC_IPV4_AH; 668 else if (is_ipv6) 669 ptype = ICE_MAC_IPV6_AH; 670 goto out; 671 case VIRTCHNL_PROTO_HDR_PFCP: 672 if (is_ipv4) 673 ptype = ICE_MAC_IPV4_PFCP_SESSION; 674 else if (is_ipv6) 675 ptype = ICE_MAC_IPV6_PFCP_SESSION; 676 goto out; 677 default: 678 break; 679 } 680 i++; 681 } 682 683 out: 684 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 685 } 686 687 /** 688 * ice_vc_parse_rss_cfg - parses hash fields and headers from 689 * a specific virtchnl RSS cfg 690 * @hw: pointer to the hardware 691 * @rss_cfg: pointer to the virtchnl RSS cfg 692 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 693 * to configure 694 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 695 * 696 * Return true if all the protocol header and hash fields in the RSS cfg could 697 * be parsed, else return false 698 * 699 * This function parses the virtchnl RSS cfg to be the intended 700 * hash fields and the intended header for RSS configuration 701 */ 702 static bool 703 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 704 u32 *addl_hdrs, u64 *hash_flds) 705 { 706 const struct ice_vc_hash_field_match_type *hf_list; 707 const struct ice_vc_hdr_match_type *hdr_list; 708 int i, hf_list_len, hdr_list_len; 709 710 hf_list = ice_vc_hash_field_list; 711 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 712 hdr_list = ice_vc_hdr_list; 713 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 714 715 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 716 struct virtchnl_proto_hdr *proto_hdr = 717 &rss_cfg->proto_hdrs.proto_hdr[i]; 718 bool hdr_found = false; 719 int j; 720 721 /* Find matched ice headers according to virtchnl headers. */ 722 for (j = 0; j < hdr_list_len; j++) { 723 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 724 725 if (proto_hdr->type == hdr_map.vc_hdr) { 726 *addl_hdrs |= hdr_map.ice_hdr; 727 hdr_found = true; 728 } 729 } 730 731 if (!hdr_found) 732 return false; 733 734 /* Find matched ice hash fields according to 735 * virtchnl hash fields. 736 */ 737 for (j = 0; j < hf_list_len; j++) { 738 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 739 740 if (proto_hdr->type == hf_map.vc_hdr && 741 proto_hdr->field_selector == hf_map.vc_hash_field) { 742 *hash_flds |= hf_map.ice_hash_field; 743 break; 744 } 745 } 746 } 747 748 return true; 749 } 750 751 /** 752 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 753 * RSS offloads 754 * @caps: VF driver negotiated capabilities 755 * 756 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 757 * else return false 758 */ 759 static bool ice_vf_adv_rss_offload_ena(u32 caps) 760 { 761 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 762 } 763 764 /** 765 * ice_vc_handle_rss_cfg 766 * @vf: pointer to the VF info 767 * @msg: pointer to the message buffer 768 * @add: add a RSS config if true, otherwise delete a RSS config 769 * 770 * This function adds/deletes a RSS config 771 */ 772 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 773 { 774 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 775 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 776 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 777 struct device *dev = ice_pf_to_dev(vf->pf); 778 struct ice_hw *hw = &vf->pf->hw; 779 struct ice_vsi *vsi; 780 781 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 782 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 783 vf->vf_id); 784 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 785 goto error_param; 786 } 787 788 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 789 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 790 vf->vf_id); 791 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 792 goto error_param; 793 } 794 795 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 796 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 797 goto error_param; 798 } 799 800 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 801 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 802 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 803 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 804 vf->vf_id); 805 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 806 goto error_param; 807 } 808 809 vsi = ice_get_vf_vsi(vf); 810 if (!vsi) { 811 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 812 goto error_param; 813 } 814 815 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 816 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 817 goto error_param; 818 } 819 820 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 821 struct ice_vsi_ctx *ctx; 822 u8 lut_type, hash_type; 823 int status; 824 825 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 826 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR : 827 ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 828 829 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 830 if (!ctx) { 831 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 832 goto error_param; 833 } 834 835 ctx->info.q_opt_rss = ((lut_type << 836 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 837 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 838 (hash_type & 839 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 840 841 /* Preserve existing queueing option setting */ 842 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 843 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 844 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 845 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 846 847 ctx->info.valid_sections = 848 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 849 850 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 851 if (status) { 852 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 853 status, ice_aq_str(hw->adminq.sq_last_status)); 854 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 855 } else { 856 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 857 } 858 859 kfree(ctx); 860 } else { 861 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 862 u64 hash_flds = ICE_HASH_INVALID; 863 864 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 865 &hash_flds)) { 866 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 867 goto error_param; 868 } 869 870 if (add) { 871 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 872 addl_hdrs)) { 873 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 874 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 875 vsi->vsi_num, v_ret); 876 } 877 } else { 878 int status; 879 880 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 881 addl_hdrs); 882 /* We just ignore -ENOENT, because if two configurations 883 * share the same profile remove one of them actually 884 * removes both, since the profile is deleted. 885 */ 886 if (status && status != -ENOENT) { 887 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 888 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 889 vf->vf_id, status); 890 } 891 } 892 } 893 894 error_param: 895 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 896 } 897 898 /** 899 * ice_vc_config_rss_key 900 * @vf: pointer to the VF info 901 * @msg: pointer to the msg buffer 902 * 903 * Configure the VF's RSS key 904 */ 905 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 906 { 907 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 908 struct virtchnl_rss_key *vrk = 909 (struct virtchnl_rss_key *)msg; 910 struct ice_vsi *vsi; 911 912 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 913 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 914 goto error_param; 915 } 916 917 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 918 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 919 goto error_param; 920 } 921 922 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 923 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 924 goto error_param; 925 } 926 927 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 928 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 929 goto error_param; 930 } 931 932 vsi = ice_get_vf_vsi(vf); 933 if (!vsi) { 934 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 935 goto error_param; 936 } 937 938 if (ice_set_rss_key(vsi, vrk->key)) 939 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 940 error_param: 941 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 942 NULL, 0); 943 } 944 945 /** 946 * ice_vc_config_rss_lut 947 * @vf: pointer to the VF info 948 * @msg: pointer to the msg buffer 949 * 950 * Configure the VF's RSS LUT 951 */ 952 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 953 { 954 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 955 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 956 struct ice_vsi *vsi; 957 958 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 959 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 960 goto error_param; 961 } 962 963 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 964 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 965 goto error_param; 966 } 967 968 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 969 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 970 goto error_param; 971 } 972 973 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 974 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 975 goto error_param; 976 } 977 978 vsi = ice_get_vf_vsi(vf); 979 if (!vsi) { 980 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 981 goto error_param; 982 } 983 984 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 985 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 986 error_param: 987 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 988 NULL, 0); 989 } 990 991 /** 992 * ice_vc_cfg_promiscuous_mode_msg 993 * @vf: pointer to the VF info 994 * @msg: pointer to the msg buffer 995 * 996 * called from the VF to configure VF VSIs promiscuous mode 997 */ 998 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 999 { 1000 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1001 bool rm_promisc, alluni = false, allmulti = false; 1002 struct virtchnl_promisc_info *info = 1003 (struct virtchnl_promisc_info *)msg; 1004 struct ice_vsi_vlan_ops *vlan_ops; 1005 int mcast_err = 0, ucast_err = 0; 1006 struct ice_pf *pf = vf->pf; 1007 struct ice_vsi *vsi; 1008 u8 mcast_m, ucast_m; 1009 struct device *dev; 1010 int ret = 0; 1011 1012 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1013 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1014 goto error_param; 1015 } 1016 1017 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1018 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1019 goto error_param; 1020 } 1021 1022 vsi = ice_get_vf_vsi(vf); 1023 if (!vsi) { 1024 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1025 goto error_param; 1026 } 1027 1028 dev = ice_pf_to_dev(pf); 1029 if (!ice_is_vf_trusted(vf)) { 1030 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1031 vf->vf_id); 1032 /* Leave v_ret alone, lie to the VF on purpose. */ 1033 goto error_param; 1034 } 1035 1036 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1037 alluni = true; 1038 1039 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1040 allmulti = true; 1041 1042 rm_promisc = !allmulti && !alluni; 1043 1044 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1045 if (rm_promisc) 1046 ret = vlan_ops->ena_rx_filtering(vsi); 1047 else 1048 ret = vlan_ops->dis_rx_filtering(vsi); 1049 if (ret) { 1050 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1051 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1052 goto error_param; 1053 } 1054 1055 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1056 1057 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1058 if (alluni) { 1059 /* in this case we're turning on promiscuous mode */ 1060 ret = ice_set_dflt_vsi(vsi); 1061 } else { 1062 /* in this case we're turning off promiscuous mode */ 1063 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1064 ret = ice_clear_dflt_vsi(vsi); 1065 } 1066 1067 /* in this case we're turning on/off only 1068 * allmulticast 1069 */ 1070 if (allmulti) 1071 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1072 else 1073 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1074 1075 if (ret) { 1076 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1077 vf->vf_id, ret); 1078 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1079 goto error_param; 1080 } 1081 } else { 1082 if (alluni) 1083 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1084 else 1085 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1086 1087 if (allmulti) 1088 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1089 else 1090 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1091 1092 if (ucast_err || mcast_err) 1093 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1094 } 1095 1096 if (!mcast_err) { 1097 if (allmulti && 1098 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1099 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1100 vf->vf_id); 1101 else if (!allmulti && 1102 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1103 vf->vf_states)) 1104 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1105 vf->vf_id); 1106 } else { 1107 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1108 vf->vf_id, mcast_err); 1109 } 1110 1111 if (!ucast_err) { 1112 if (alluni && 1113 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1114 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1115 vf->vf_id); 1116 else if (!alluni && 1117 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1118 vf->vf_states)) 1119 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1120 vf->vf_id); 1121 } else { 1122 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1123 vf->vf_id, ucast_err); 1124 } 1125 1126 error_param: 1127 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1128 v_ret, NULL, 0); 1129 } 1130 1131 /** 1132 * ice_vc_get_stats_msg 1133 * @vf: pointer to the VF info 1134 * @msg: pointer to the msg buffer 1135 * 1136 * called from the VF to get VSI stats 1137 */ 1138 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1139 { 1140 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1141 struct virtchnl_queue_select *vqs = 1142 (struct virtchnl_queue_select *)msg; 1143 struct ice_eth_stats stats = { 0 }; 1144 struct ice_vsi *vsi; 1145 1146 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1147 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1148 goto error_param; 1149 } 1150 1151 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1152 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1153 goto error_param; 1154 } 1155 1156 vsi = ice_get_vf_vsi(vf); 1157 if (!vsi) { 1158 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1159 goto error_param; 1160 } 1161 1162 ice_update_eth_stats(vsi); 1163 1164 stats = vsi->eth_stats; 1165 1166 error_param: 1167 /* send the response to the VF */ 1168 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1169 (u8 *)&stats, sizeof(stats)); 1170 } 1171 1172 /** 1173 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1174 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1175 * 1176 * Return true on successful validation, else false 1177 */ 1178 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1179 { 1180 if ((!vqs->rx_queues && !vqs->tx_queues) || 1181 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1182 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1183 return false; 1184 1185 return true; 1186 } 1187 1188 /** 1189 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1190 * @vsi: VSI of the VF to configure 1191 * @q_idx: VF queue index used to determine the queue in the PF's space 1192 */ 1193 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1194 { 1195 struct ice_hw *hw = &vsi->back->hw; 1196 u32 pfq = vsi->txq_map[q_idx]; 1197 u32 reg; 1198 1199 reg = rd32(hw, QINT_TQCTL(pfq)); 1200 1201 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1202 * this is most likely a poll mode VF driver, so don't enable an 1203 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1204 */ 1205 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1206 return; 1207 1208 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1209 } 1210 1211 /** 1212 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1213 * @vsi: VSI of the VF to configure 1214 * @q_idx: VF queue index used to determine the queue in the PF's space 1215 */ 1216 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1217 { 1218 struct ice_hw *hw = &vsi->back->hw; 1219 u32 pfq = vsi->rxq_map[q_idx]; 1220 u32 reg; 1221 1222 reg = rd32(hw, QINT_RQCTL(pfq)); 1223 1224 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1225 * this is most likely a poll mode VF driver, so don't enable an 1226 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1227 */ 1228 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1229 return; 1230 1231 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1232 } 1233 1234 /** 1235 * ice_vc_ena_qs_msg 1236 * @vf: pointer to the VF info 1237 * @msg: pointer to the msg buffer 1238 * 1239 * called from the VF to enable all or specific queue(s) 1240 */ 1241 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1242 { 1243 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1244 struct virtchnl_queue_select *vqs = 1245 (struct virtchnl_queue_select *)msg; 1246 struct ice_vsi *vsi; 1247 unsigned long q_map; 1248 u16 vf_q_id; 1249 1250 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1251 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1252 goto error_param; 1253 } 1254 1255 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1256 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1257 goto error_param; 1258 } 1259 1260 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1261 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1262 goto error_param; 1263 } 1264 1265 vsi = ice_get_vf_vsi(vf); 1266 if (!vsi) { 1267 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1268 goto error_param; 1269 } 1270 1271 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1272 * Tx queue group list was configured and the context bits were 1273 * programmed using ice_vsi_cfg_txqs 1274 */ 1275 q_map = vqs->rx_queues; 1276 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1277 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1278 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1279 goto error_param; 1280 } 1281 1282 /* Skip queue if enabled */ 1283 if (test_bit(vf_q_id, vf->rxq_ena)) 1284 continue; 1285 1286 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1287 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1288 vf_q_id, vsi->vsi_num); 1289 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1290 goto error_param; 1291 } 1292 1293 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1294 set_bit(vf_q_id, vf->rxq_ena); 1295 } 1296 1297 q_map = vqs->tx_queues; 1298 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1299 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1300 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1301 goto error_param; 1302 } 1303 1304 /* Skip queue if enabled */ 1305 if (test_bit(vf_q_id, vf->txq_ena)) 1306 continue; 1307 1308 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1309 set_bit(vf_q_id, vf->txq_ena); 1310 } 1311 1312 /* Set flag to indicate that queues are enabled */ 1313 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1314 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1315 1316 error_param: 1317 /* send the response to the VF */ 1318 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1319 NULL, 0); 1320 } 1321 1322 /** 1323 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1324 * @vf: VF to disable queue for 1325 * @vsi: VSI for the VF 1326 * @q_id: VF relative (0-based) queue ID 1327 * 1328 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1329 * disabled then clear q_id bit in the enabled queues bitmap and return 1330 * success. Otherwise return error. 1331 */ 1332 static int 1333 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1334 { 1335 struct ice_txq_meta txq_meta = { 0 }; 1336 struct ice_tx_ring *ring; 1337 int err; 1338 1339 if (!test_bit(q_id, vf->txq_ena)) 1340 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1341 q_id, vsi->vsi_num); 1342 1343 ring = vsi->tx_rings[q_id]; 1344 if (!ring) 1345 return -EINVAL; 1346 1347 ice_fill_txq_meta(vsi, ring, &txq_meta); 1348 1349 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1350 if (err) { 1351 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1352 q_id, vsi->vsi_num); 1353 return err; 1354 } 1355 1356 /* Clear enabled queues flag */ 1357 clear_bit(q_id, vf->txq_ena); 1358 1359 return 0; 1360 } 1361 1362 /** 1363 * ice_vc_dis_qs_msg 1364 * @vf: pointer to the VF info 1365 * @msg: pointer to the msg buffer 1366 * 1367 * called from the VF to disable all or specific queue(s) 1368 */ 1369 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1370 { 1371 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1372 struct virtchnl_queue_select *vqs = 1373 (struct virtchnl_queue_select *)msg; 1374 struct ice_vsi *vsi; 1375 unsigned long q_map; 1376 u16 vf_q_id; 1377 1378 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1379 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1380 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1381 goto error_param; 1382 } 1383 1384 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1385 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1386 goto error_param; 1387 } 1388 1389 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1390 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1391 goto error_param; 1392 } 1393 1394 vsi = ice_get_vf_vsi(vf); 1395 if (!vsi) { 1396 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1397 goto error_param; 1398 } 1399 1400 if (vqs->tx_queues) { 1401 q_map = vqs->tx_queues; 1402 1403 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1404 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1405 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1406 goto error_param; 1407 } 1408 1409 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1410 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1411 goto error_param; 1412 } 1413 } 1414 } 1415 1416 q_map = vqs->rx_queues; 1417 /* speed up Rx queue disable by batching them if possible */ 1418 if (q_map && 1419 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1420 if (ice_vsi_stop_all_rx_rings(vsi)) { 1421 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1422 vsi->vsi_num); 1423 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1424 goto error_param; 1425 } 1426 1427 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1428 } else if (q_map) { 1429 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1430 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1431 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1432 goto error_param; 1433 } 1434 1435 /* Skip queue if not enabled */ 1436 if (!test_bit(vf_q_id, vf->rxq_ena)) 1437 continue; 1438 1439 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1440 true)) { 1441 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1442 vf_q_id, vsi->vsi_num); 1443 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1444 goto error_param; 1445 } 1446 1447 /* Clear enabled queues flag */ 1448 clear_bit(vf_q_id, vf->rxq_ena); 1449 } 1450 } 1451 1452 /* Clear enabled queues flag */ 1453 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1454 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1455 1456 error_param: 1457 /* send the response to the VF */ 1458 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1459 NULL, 0); 1460 } 1461 1462 /** 1463 * ice_cfg_interrupt 1464 * @vf: pointer to the VF info 1465 * @vsi: the VSI being configured 1466 * @vector_id: vector ID 1467 * @map: vector map for mapping vectors to queues 1468 * @q_vector: structure for interrupt vector 1469 * configure the IRQ to queue map 1470 */ 1471 static int 1472 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1473 struct virtchnl_vector_map *map, 1474 struct ice_q_vector *q_vector) 1475 { 1476 u16 vsi_q_id, vsi_q_id_idx; 1477 unsigned long qmap; 1478 1479 q_vector->num_ring_rx = 0; 1480 q_vector->num_ring_tx = 0; 1481 1482 qmap = map->rxq_map; 1483 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1484 vsi_q_id = vsi_q_id_idx; 1485 1486 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1487 return VIRTCHNL_STATUS_ERR_PARAM; 1488 1489 q_vector->num_ring_rx++; 1490 q_vector->rx.itr_idx = map->rxitr_idx; 1491 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1492 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1493 q_vector->rx.itr_idx); 1494 } 1495 1496 qmap = map->txq_map; 1497 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1498 vsi_q_id = vsi_q_id_idx; 1499 1500 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1501 return VIRTCHNL_STATUS_ERR_PARAM; 1502 1503 q_vector->num_ring_tx++; 1504 q_vector->tx.itr_idx = map->txitr_idx; 1505 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1506 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1507 q_vector->tx.itr_idx); 1508 } 1509 1510 return VIRTCHNL_STATUS_SUCCESS; 1511 } 1512 1513 /** 1514 * ice_vc_cfg_irq_map_msg 1515 * @vf: pointer to the VF info 1516 * @msg: pointer to the msg buffer 1517 * 1518 * called from the VF to configure the IRQ to queue map 1519 */ 1520 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1521 { 1522 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1523 u16 num_q_vectors_mapped, vsi_id, vector_id; 1524 struct virtchnl_irq_map_info *irqmap_info; 1525 struct virtchnl_vector_map *map; 1526 struct ice_pf *pf = vf->pf; 1527 struct ice_vsi *vsi; 1528 int i; 1529 1530 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1531 num_q_vectors_mapped = irqmap_info->num_vectors; 1532 1533 /* Check to make sure number of VF vectors mapped is not greater than 1534 * number of VF vectors originally allocated, and check that 1535 * there is actually at least a single VF queue vector mapped 1536 */ 1537 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1538 pf->vfs.num_msix_per < num_q_vectors_mapped || 1539 !num_q_vectors_mapped) { 1540 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1541 goto error_param; 1542 } 1543 1544 vsi = ice_get_vf_vsi(vf); 1545 if (!vsi) { 1546 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1547 goto error_param; 1548 } 1549 1550 for (i = 0; i < num_q_vectors_mapped; i++) { 1551 struct ice_q_vector *q_vector; 1552 1553 map = &irqmap_info->vecmap[i]; 1554 1555 vector_id = map->vector_id; 1556 vsi_id = map->vsi_id; 1557 /* vector_id is always 0-based for each VF, and can never be 1558 * larger than or equal to the max allowed interrupts per VF 1559 */ 1560 if (!(vector_id < pf->vfs.num_msix_per) || 1561 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1562 (!vector_id && (map->rxq_map || map->txq_map))) { 1563 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1564 goto error_param; 1565 } 1566 1567 /* No need to map VF miscellaneous or rogue vector */ 1568 if (!vector_id) 1569 continue; 1570 1571 /* Subtract non queue vector from vector_id passed by VF 1572 * to get actual number of VSI queue vector array index 1573 */ 1574 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1575 if (!q_vector) { 1576 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1577 goto error_param; 1578 } 1579 1580 /* lookout for the invalid queue index */ 1581 v_ret = (enum virtchnl_status_code) 1582 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1583 if (v_ret) 1584 goto error_param; 1585 } 1586 1587 error_param: 1588 /* send the response to the VF */ 1589 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1590 NULL, 0); 1591 } 1592 1593 /** 1594 * ice_vc_cfg_qs_msg 1595 * @vf: pointer to the VF info 1596 * @msg: pointer to the msg buffer 1597 * 1598 * called from the VF to configure the Rx/Tx queues 1599 */ 1600 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1601 { 1602 struct virtchnl_vsi_queue_config_info *qci = 1603 (struct virtchnl_vsi_queue_config_info *)msg; 1604 struct virtchnl_queue_pair_info *qpi; 1605 struct ice_pf *pf = vf->pf; 1606 struct ice_vsi *vsi; 1607 int i = -1, q_idx; 1608 1609 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1610 goto error_param; 1611 1612 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1613 goto error_param; 1614 1615 vsi = ice_get_vf_vsi(vf); 1616 if (!vsi) 1617 goto error_param; 1618 1619 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1620 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1621 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1622 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1623 goto error_param; 1624 } 1625 1626 for (i = 0; i < qci->num_queue_pairs; i++) { 1627 if (!qci->qpair[i].rxq.crc_disable) 1628 continue; 1629 1630 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) || 1631 vf->vlan_strip_ena) 1632 goto error_param; 1633 } 1634 1635 for (i = 0; i < qci->num_queue_pairs; i++) { 1636 qpi = &qci->qpair[i]; 1637 if (qpi->txq.vsi_id != qci->vsi_id || 1638 qpi->rxq.vsi_id != qci->vsi_id || 1639 qpi->rxq.queue_id != qpi->txq.queue_id || 1640 qpi->txq.headwb_enabled || 1641 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1642 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1643 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { 1644 goto error_param; 1645 } 1646 1647 q_idx = qpi->rxq.queue_id; 1648 1649 /* make sure selected "q_idx" is in valid range of queues 1650 * for selected "vsi" 1651 */ 1652 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1653 goto error_param; 1654 } 1655 1656 /* copy Tx queue info from VF into VSI */ 1657 if (qpi->txq.ring_len > 0) { 1658 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1659 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1660 1661 /* Disable any existing queue first */ 1662 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1663 goto error_param; 1664 1665 /* Configure a queue with the requested settings */ 1666 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1667 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1668 vf->vf_id, i); 1669 goto error_param; 1670 } 1671 } 1672 1673 /* copy Rx queue info from VF into VSI */ 1674 if (qpi->rxq.ring_len > 0) { 1675 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1676 u32 rxdid; 1677 1678 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1679 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1680 1681 if (qpi->rxq.crc_disable) 1682 vsi->rx_rings[q_idx]->flags |= 1683 ICE_RX_FLAGS_CRC_STRIP_DIS; 1684 else 1685 vsi->rx_rings[q_idx]->flags &= 1686 ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1687 1688 if (qpi->rxq.databuffer_size != 0 && 1689 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1690 qpi->rxq.databuffer_size < 1024)) 1691 goto error_param; 1692 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1693 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1694 if (qpi->rxq.max_pkt_size > max_frame_size || 1695 qpi->rxq.max_pkt_size < 64) 1696 goto error_param; 1697 1698 vsi->max_frame = qpi->rxq.max_pkt_size; 1699 /* add space for the port VLAN since the VF driver is 1700 * not expected to account for it in the MTU 1701 * calculation 1702 */ 1703 if (ice_vf_is_port_vlan_ena(vf)) 1704 vsi->max_frame += VLAN_HLEN; 1705 1706 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1707 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1708 vf->vf_id, i); 1709 goto error_param; 1710 } 1711 1712 /* If Rx flex desc is supported, select RXDID for Rx 1713 * queues. Otherwise, use legacy 32byte descriptor 1714 * format. Legacy 16byte descriptor is not supported. 1715 * If this RXDID is selected, return error. 1716 */ 1717 if (vf->driver_caps & 1718 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 1719 rxdid = qpi->rxq.rxdid; 1720 if (!(BIT(rxdid) & pf->supported_rxdids)) 1721 goto error_param; 1722 } else { 1723 rxdid = ICE_RXDID_LEGACY_1; 1724 } 1725 1726 ice_write_qrxflxp_cntxt(&vsi->back->hw, 1727 vsi->rxq_map[q_idx], 1728 rxdid, 0x03, false); 1729 } 1730 } 1731 1732 /* send the response to the VF */ 1733 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1734 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1735 error_param: 1736 /* disable whatever we can */ 1737 for (; i >= 0; i--) { 1738 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1739 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1740 vf->vf_id, i); 1741 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1742 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1743 vf->vf_id, i); 1744 } 1745 1746 ice_lag_move_new_vf_nodes(vf); 1747 1748 /* send the response to the VF */ 1749 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1750 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1751 } 1752 1753 /** 1754 * ice_can_vf_change_mac 1755 * @vf: pointer to the VF info 1756 * 1757 * Return true if the VF is allowed to change its MAC filters, false otherwise 1758 */ 1759 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1760 { 1761 /* If the VF MAC address has been set administratively (via the 1762 * ndo_set_vf_mac command), then deny permission to the VF to 1763 * add/delete unicast MAC addresses, unless the VF is trusted 1764 */ 1765 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1766 return false; 1767 1768 return true; 1769 } 1770 1771 /** 1772 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1773 * @vc_ether_addr: used to extract the type 1774 */ 1775 static u8 1776 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1777 { 1778 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1779 } 1780 1781 /** 1782 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1783 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1784 */ 1785 static bool 1786 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1787 { 1788 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1789 1790 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1791 } 1792 1793 /** 1794 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1795 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1796 * 1797 * This function should only be called when the MAC address in 1798 * virtchnl_ether_addr is a valid unicast MAC 1799 */ 1800 static bool 1801 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1802 { 1803 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1804 1805 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1806 } 1807 1808 /** 1809 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1810 * @vf: VF to update 1811 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1812 */ 1813 static void 1814 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1815 { 1816 u8 *mac_addr = vc_ether_addr->addr; 1817 1818 if (!is_valid_ether_addr(mac_addr)) 1819 return; 1820 1821 /* only allow legacy VF drivers to set the device and hardware MAC if it 1822 * is zero and allow new VF drivers to set the hardware MAC if the type 1823 * was correctly specified over VIRTCHNL 1824 */ 1825 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1826 is_zero_ether_addr(vf->hw_lan_addr)) || 1827 ice_is_vc_addr_primary(vc_ether_addr)) { 1828 ether_addr_copy(vf->dev_lan_addr, mac_addr); 1829 ether_addr_copy(vf->hw_lan_addr, mac_addr); 1830 } 1831 1832 /* hardware and device MACs are already set, but its possible that the 1833 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1834 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1835 * away for the legacy VF driver case as it will be updated in the 1836 * delete flow for this case 1837 */ 1838 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1839 ether_addr_copy(vf->legacy_last_added_umac.addr, 1840 mac_addr); 1841 vf->legacy_last_added_umac.time_modified = jiffies; 1842 } 1843 } 1844 1845 /** 1846 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1847 * @vf: pointer to the VF info 1848 * @vsi: pointer to the VF's VSI 1849 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1850 */ 1851 static int 1852 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1853 struct virtchnl_ether_addr *vc_ether_addr) 1854 { 1855 struct device *dev = ice_pf_to_dev(vf->pf); 1856 u8 *mac_addr = vc_ether_addr->addr; 1857 int ret; 1858 1859 /* device MAC already added */ 1860 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 1861 return 0; 1862 1863 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1864 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1865 return -EPERM; 1866 } 1867 1868 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1869 if (ret == -EEXIST) { 1870 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1871 vf->vf_id); 1872 /* don't return since we might need to update 1873 * the primary MAC in ice_vfhw_mac_add() below 1874 */ 1875 } else if (ret) { 1876 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1877 mac_addr, vf->vf_id, ret); 1878 return ret; 1879 } else { 1880 vf->num_mac++; 1881 } 1882 1883 ice_vfhw_mac_add(vf, vc_ether_addr); 1884 1885 return ret; 1886 } 1887 1888 /** 1889 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1890 * @last_added_umac: structure used to check expiration 1891 */ 1892 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1893 { 1894 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1895 return time_is_before_jiffies(last_added_umac->time_modified + 1896 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1897 } 1898 1899 /** 1900 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1901 * @vf: VF to update 1902 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1903 * 1904 * only update cached hardware MAC for legacy VF drivers on delete 1905 * because we cannot guarantee order/type of MAC from the VF driver 1906 */ 1907 static void 1908 ice_update_legacy_cached_mac(struct ice_vf *vf, 1909 struct virtchnl_ether_addr *vc_ether_addr) 1910 { 1911 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1912 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1913 return; 1914 1915 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 1916 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 1917 } 1918 1919 /** 1920 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1921 * @vf: VF to update 1922 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1923 */ 1924 static void 1925 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1926 { 1927 u8 *mac_addr = vc_ether_addr->addr; 1928 1929 if (!is_valid_ether_addr(mac_addr) || 1930 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1931 return; 1932 1933 /* allow the device MAC to be repopulated in the add flow and don't 1934 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 1935 * to be persistent on VM reboot and across driver unload/load, which 1936 * won't work if we clear the hardware MAC here 1937 */ 1938 eth_zero_addr(vf->dev_lan_addr); 1939 1940 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1941 } 1942 1943 /** 1944 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1945 * @vf: pointer to the VF info 1946 * @vsi: pointer to the VF's VSI 1947 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1948 */ 1949 static int 1950 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1951 struct virtchnl_ether_addr *vc_ether_addr) 1952 { 1953 struct device *dev = ice_pf_to_dev(vf->pf); 1954 u8 *mac_addr = vc_ether_addr->addr; 1955 int status; 1956 1957 if (!ice_can_vf_change_mac(vf) && 1958 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1959 return 0; 1960 1961 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1962 if (status == -ENOENT) { 1963 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1964 vf->vf_id); 1965 return -ENOENT; 1966 } else if (status) { 1967 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1968 mac_addr, vf->vf_id, status); 1969 return -EIO; 1970 } 1971 1972 ice_vfhw_mac_del(vf, vc_ether_addr); 1973 1974 vf->num_mac--; 1975 1976 return 0; 1977 } 1978 1979 /** 1980 * ice_vc_handle_mac_addr_msg 1981 * @vf: pointer to the VF info 1982 * @msg: pointer to the msg buffer 1983 * @set: true if MAC filters are being set, false otherwise 1984 * 1985 * add guest MAC address filter 1986 */ 1987 static int 1988 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1989 { 1990 int (*ice_vc_cfg_mac) 1991 (struct ice_vf *vf, struct ice_vsi *vsi, 1992 struct virtchnl_ether_addr *virtchnl_ether_addr); 1993 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1994 struct virtchnl_ether_addr_list *al = 1995 (struct virtchnl_ether_addr_list *)msg; 1996 struct ice_pf *pf = vf->pf; 1997 enum virtchnl_ops vc_op; 1998 struct ice_vsi *vsi; 1999 int i; 2000 2001 if (set) { 2002 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 2003 ice_vc_cfg_mac = ice_vc_add_mac_addr; 2004 } else { 2005 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 2006 ice_vc_cfg_mac = ice_vc_del_mac_addr; 2007 } 2008 2009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2010 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2011 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2012 goto handle_mac_exit; 2013 } 2014 2015 /* If this VF is not privileged, then we can't add more than a 2016 * limited number of addresses. Check to make sure that the 2017 * additions do not push us over the limit. 2018 */ 2019 if (set && !ice_is_vf_trusted(vf) && 2020 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2021 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2022 vf->vf_id); 2023 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2024 goto handle_mac_exit; 2025 } 2026 2027 vsi = ice_get_vf_vsi(vf); 2028 if (!vsi) { 2029 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2030 goto handle_mac_exit; 2031 } 2032 2033 for (i = 0; i < al->num_elements; i++) { 2034 u8 *mac_addr = al->list[i].addr; 2035 int result; 2036 2037 if (is_broadcast_ether_addr(mac_addr) || 2038 is_zero_ether_addr(mac_addr)) 2039 continue; 2040 2041 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2042 if (result == -EEXIST || result == -ENOENT) { 2043 continue; 2044 } else if (result) { 2045 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2046 goto handle_mac_exit; 2047 } 2048 } 2049 2050 handle_mac_exit: 2051 /* send the response to the VF */ 2052 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2053 } 2054 2055 /** 2056 * ice_vc_add_mac_addr_msg 2057 * @vf: pointer to the VF info 2058 * @msg: pointer to the msg buffer 2059 * 2060 * add guest MAC address filter 2061 */ 2062 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2063 { 2064 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2065 } 2066 2067 /** 2068 * ice_vc_del_mac_addr_msg 2069 * @vf: pointer to the VF info 2070 * @msg: pointer to the msg buffer 2071 * 2072 * remove guest MAC address filter 2073 */ 2074 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2075 { 2076 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2077 } 2078 2079 /** 2080 * ice_vc_request_qs_msg 2081 * @vf: pointer to the VF info 2082 * @msg: pointer to the msg buffer 2083 * 2084 * VFs get a default number of queues but can use this message to request a 2085 * different number. If the request is successful, PF will reset the VF and 2086 * return 0. If unsuccessful, PF will send message informing VF of number of 2087 * available queue pairs via virtchnl message response to VF. 2088 */ 2089 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2090 { 2091 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2092 struct virtchnl_vf_res_request *vfres = 2093 (struct virtchnl_vf_res_request *)msg; 2094 u16 req_queues = vfres->num_queue_pairs; 2095 struct ice_pf *pf = vf->pf; 2096 u16 max_allowed_vf_queues; 2097 u16 tx_rx_queue_left; 2098 struct device *dev; 2099 u16 cur_queues; 2100 2101 dev = ice_pf_to_dev(pf); 2102 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2103 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2104 goto error_param; 2105 } 2106 2107 cur_queues = vf->num_vf_qs; 2108 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2109 ice_get_avail_rxq_count(pf)); 2110 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2111 if (!req_queues) { 2112 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2113 vf->vf_id); 2114 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2115 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2116 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2117 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2118 } else if (req_queues > cur_queues && 2119 req_queues - cur_queues > tx_rx_queue_left) { 2120 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2121 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2122 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2123 ICE_MAX_RSS_QS_PER_VF); 2124 } else { 2125 /* request is successful, then reset VF */ 2126 vf->num_req_qs = req_queues; 2127 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2128 dev_info(dev, "VF %d granted request of %u queues.\n", 2129 vf->vf_id, req_queues); 2130 return 0; 2131 } 2132 2133 error_param: 2134 /* send the response to the VF */ 2135 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2136 v_ret, (u8 *)vfres, sizeof(*vfres)); 2137 } 2138 2139 /** 2140 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2141 * @caps: VF driver negotiated capabilities 2142 * 2143 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2144 */ 2145 static bool ice_vf_vlan_offload_ena(u32 caps) 2146 { 2147 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2148 } 2149 2150 /** 2151 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2152 * @vf: VF used to determine if VLAN promiscuous config is allowed 2153 */ 2154 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2155 { 2156 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2157 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2158 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2159 return true; 2160 2161 return false; 2162 } 2163 2164 /** 2165 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2166 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2167 * @vlan: VLAN used to enable VLAN promiscuous 2168 * 2169 * This function should only be called if VLAN promiscuous mode is allowed, 2170 * which can be determined via ice_is_vlan_promisc_allowed(). 2171 */ 2172 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2173 { 2174 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2175 int status; 2176 2177 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2178 vlan->vid); 2179 if (status && status != -EEXIST) 2180 return status; 2181 2182 return 0; 2183 } 2184 2185 /** 2186 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2187 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2188 * @vlan: VLAN used to disable VLAN promiscuous 2189 * 2190 * This function should only be called if VLAN promiscuous mode is allowed, 2191 * which can be determined via ice_is_vlan_promisc_allowed(). 2192 */ 2193 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2194 { 2195 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2196 int status; 2197 2198 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2199 vlan->vid); 2200 if (status && status != -ENOENT) 2201 return status; 2202 2203 return 0; 2204 } 2205 2206 /** 2207 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2208 * @vf: VF to check against 2209 * @vsi: VF's VSI 2210 * 2211 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2212 * wants to, so return false. 2213 * 2214 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2215 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2216 */ 2217 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2218 { 2219 if (ice_is_vf_trusted(vf)) 2220 return false; 2221 2222 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2223 return ((ice_vsi_num_non_zero_vlans(vsi) + 2224 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2225 } 2226 2227 /** 2228 * ice_vc_process_vlan_msg 2229 * @vf: pointer to the VF info 2230 * @msg: pointer to the msg buffer 2231 * @add_v: Add VLAN if true, otherwise delete VLAN 2232 * 2233 * Process virtchnl op to add or remove programmed guest VLAN ID 2234 */ 2235 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2236 { 2237 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2238 struct virtchnl_vlan_filter_list *vfl = 2239 (struct virtchnl_vlan_filter_list *)msg; 2240 struct ice_pf *pf = vf->pf; 2241 bool vlan_promisc = false; 2242 struct ice_vsi *vsi; 2243 struct device *dev; 2244 int status = 0; 2245 int i; 2246 2247 dev = ice_pf_to_dev(pf); 2248 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2249 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2250 goto error_param; 2251 } 2252 2253 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2254 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2255 goto error_param; 2256 } 2257 2258 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2259 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2260 goto error_param; 2261 } 2262 2263 for (i = 0; i < vfl->num_elements; i++) { 2264 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2265 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2266 dev_err(dev, "invalid VF VLAN id %d\n", 2267 vfl->vlan_id[i]); 2268 goto error_param; 2269 } 2270 } 2271 2272 vsi = ice_get_vf_vsi(vf); 2273 if (!vsi) { 2274 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2275 goto error_param; 2276 } 2277 2278 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2279 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2280 vf->vf_id); 2281 /* There is no need to let VF know about being not trusted, 2282 * so we can just return success message here 2283 */ 2284 goto error_param; 2285 } 2286 2287 /* in DVM a VF can add/delete inner VLAN filters when 2288 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2289 */ 2290 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2291 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2292 goto error_param; 2293 } 2294 2295 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2296 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2297 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2298 */ 2299 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2300 !ice_is_dvm_ena(&pf->hw) && 2301 !ice_vf_is_port_vlan_ena(vf); 2302 2303 if (add_v) { 2304 for (i = 0; i < vfl->num_elements; i++) { 2305 u16 vid = vfl->vlan_id[i]; 2306 struct ice_vlan vlan; 2307 2308 if (ice_vf_has_max_vlans(vf, vsi)) { 2309 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2310 vf->vf_id); 2311 /* There is no need to let VF know about being 2312 * not trusted, so we can just return success 2313 * message here as well. 2314 */ 2315 goto error_param; 2316 } 2317 2318 /* we add VLAN 0 by default for each VF so we can enable 2319 * Tx VLAN anti-spoof without triggering MDD events so 2320 * we don't need to add it again here 2321 */ 2322 if (!vid) 2323 continue; 2324 2325 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2326 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2327 if (status) { 2328 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2329 goto error_param; 2330 } 2331 2332 /* Enable VLAN filtering on first non-zero VLAN */ 2333 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2334 if (vf->spoofchk) { 2335 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2336 if (status) { 2337 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2338 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2339 vid, status); 2340 goto error_param; 2341 } 2342 } 2343 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2344 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2345 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2346 vid, status); 2347 goto error_param; 2348 } 2349 } else if (vlan_promisc) { 2350 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2351 if (status) { 2352 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2353 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2354 vid, status); 2355 } 2356 } 2357 } 2358 } else { 2359 /* In case of non_trusted VF, number of VLAN elements passed 2360 * to PF for removal might be greater than number of VLANs 2361 * filter programmed for that VF - So, use actual number of 2362 * VLANS added earlier with add VLAN opcode. In order to avoid 2363 * removing VLAN that doesn't exist, which result to sending 2364 * erroneous failed message back to the VF 2365 */ 2366 int num_vf_vlan; 2367 2368 num_vf_vlan = vsi->num_vlan; 2369 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2370 u16 vid = vfl->vlan_id[i]; 2371 struct ice_vlan vlan; 2372 2373 /* we add VLAN 0 by default for each VF so we can enable 2374 * Tx VLAN anti-spoof without triggering MDD events so 2375 * we don't want a VIRTCHNL request to remove it 2376 */ 2377 if (!vid) 2378 continue; 2379 2380 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2381 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2382 if (status) { 2383 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2384 goto error_param; 2385 } 2386 2387 /* Disable VLAN filtering when only VLAN 0 is left */ 2388 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2389 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2390 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2391 } 2392 2393 if (vlan_promisc) 2394 ice_vf_dis_vlan_promisc(vsi, &vlan); 2395 } 2396 } 2397 2398 error_param: 2399 /* send the response to the VF */ 2400 if (add_v) 2401 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2402 NULL, 0); 2403 else 2404 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2405 NULL, 0); 2406 } 2407 2408 /** 2409 * ice_vc_add_vlan_msg 2410 * @vf: pointer to the VF info 2411 * @msg: pointer to the msg buffer 2412 * 2413 * Add and program guest VLAN ID 2414 */ 2415 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2416 { 2417 return ice_vc_process_vlan_msg(vf, msg, true); 2418 } 2419 2420 /** 2421 * ice_vc_remove_vlan_msg 2422 * @vf: pointer to the VF info 2423 * @msg: pointer to the msg buffer 2424 * 2425 * remove programmed guest VLAN ID 2426 */ 2427 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2428 { 2429 return ice_vc_process_vlan_msg(vf, msg, false); 2430 } 2431 2432 /** 2433 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not 2434 * @vsi: pointer to the VF VSI info 2435 */ 2436 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi) 2437 { 2438 unsigned int i; 2439 2440 ice_for_each_alloc_rxq(vsi, i) 2441 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS) 2442 return true; 2443 2444 return false; 2445 } 2446 2447 /** 2448 * ice_vc_ena_vlan_stripping 2449 * @vf: pointer to the VF info 2450 * 2451 * Enable VLAN header stripping for a given VF 2452 */ 2453 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2454 { 2455 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2456 struct ice_vsi *vsi; 2457 2458 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2459 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2460 goto error_param; 2461 } 2462 2463 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2464 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2465 goto error_param; 2466 } 2467 2468 vsi = ice_get_vf_vsi(vf); 2469 if (!vsi) { 2470 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2471 goto error_param; 2472 } 2473 2474 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2475 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2476 else 2477 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2478 2479 error_param: 2480 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2481 v_ret, NULL, 0); 2482 } 2483 2484 /** 2485 * ice_vc_dis_vlan_stripping 2486 * @vf: pointer to the VF info 2487 * 2488 * Disable VLAN header stripping for a given VF 2489 */ 2490 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2491 { 2492 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2493 struct ice_vsi *vsi; 2494 2495 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2496 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2497 goto error_param; 2498 } 2499 2500 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2501 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2502 goto error_param; 2503 } 2504 2505 vsi = ice_get_vf_vsi(vf); 2506 if (!vsi) { 2507 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2508 goto error_param; 2509 } 2510 2511 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2512 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2513 else 2514 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 2515 2516 error_param: 2517 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2518 v_ret, NULL, 0); 2519 } 2520 2521 /** 2522 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2523 * @vf: pointer to the VF info 2524 */ 2525 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2526 { 2527 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2528 struct virtchnl_rss_hena *vrh = NULL; 2529 int len = 0, ret; 2530 2531 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2532 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2533 goto err; 2534 } 2535 2536 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2537 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2538 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2539 goto err; 2540 } 2541 2542 len = sizeof(struct virtchnl_rss_hena); 2543 vrh = kzalloc(len, GFP_KERNEL); 2544 if (!vrh) { 2545 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2546 len = 0; 2547 goto err; 2548 } 2549 2550 vrh->hena = ICE_DEFAULT_RSS_HENA; 2551 err: 2552 /* send the response back to the VF */ 2553 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2554 (u8 *)vrh, len); 2555 kfree(vrh); 2556 return ret; 2557 } 2558 2559 /** 2560 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2561 * @vf: pointer to the VF info 2562 * @msg: pointer to the msg buffer 2563 */ 2564 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2565 { 2566 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2567 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2568 struct ice_pf *pf = vf->pf; 2569 struct ice_vsi *vsi; 2570 struct device *dev; 2571 int status; 2572 2573 dev = ice_pf_to_dev(pf); 2574 2575 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2576 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2577 goto err; 2578 } 2579 2580 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2581 dev_err(dev, "RSS not supported by PF\n"); 2582 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2583 goto err; 2584 } 2585 2586 vsi = ice_get_vf_vsi(vf); 2587 if (!vsi) { 2588 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2589 goto err; 2590 } 2591 2592 /* clear all previously programmed RSS configuration to allow VF drivers 2593 * the ability to customize the RSS configuration and/or completely 2594 * disable RSS 2595 */ 2596 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2597 if (status && !vrh->hena) { 2598 /* only report failure to clear the current RSS configuration if 2599 * that was clearly the VF's intention (i.e. vrh->hena = 0) 2600 */ 2601 v_ret = ice_err_to_virt_err(status); 2602 goto err; 2603 } else if (status) { 2604 /* allow the VF to update the RSS configuration even on failure 2605 * to clear the current RSS confguration in an attempt to keep 2606 * RSS in a working state 2607 */ 2608 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 2609 vf->vf_id); 2610 } 2611 2612 if (vrh->hena) { 2613 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena); 2614 v_ret = ice_err_to_virt_err(status); 2615 } 2616 2617 /* send the response to the VF */ 2618 err: 2619 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 2620 NULL, 0); 2621 } 2622 2623 /** 2624 * ice_vc_query_rxdid - query RXDID supported by DDP package 2625 * @vf: pointer to VF info 2626 * 2627 * Called from VF to query a bitmap of supported flexible 2628 * descriptor RXDIDs of a DDP package. 2629 */ 2630 static int ice_vc_query_rxdid(struct ice_vf *vf) 2631 { 2632 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2633 struct virtchnl_supported_rxdids *rxdid = NULL; 2634 struct ice_hw *hw = &vf->pf->hw; 2635 struct ice_pf *pf = vf->pf; 2636 int len = 0; 2637 int ret, i; 2638 u32 regval; 2639 2640 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2641 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2642 goto err; 2643 } 2644 2645 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 2646 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2647 goto err; 2648 } 2649 2650 len = sizeof(struct virtchnl_supported_rxdids); 2651 rxdid = kzalloc(len, GFP_KERNEL); 2652 if (!rxdid) { 2653 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2654 len = 0; 2655 goto err; 2656 } 2657 2658 /* RXDIDs supported by DDP package can be read from the register 2659 * to get the supported RXDID bitmap. But the legacy 32byte RXDID 2660 * is not listed in DDP package, add it in the bitmap manually. 2661 * Legacy 16byte descriptor is not supported. 2662 */ 2663 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1); 2664 2665 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 2666 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 2667 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 2668 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 2669 rxdid->supported_rxdids |= BIT(i); 2670 } 2671 2672 pf->supported_rxdids = rxdid->supported_rxdids; 2673 2674 err: 2675 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 2676 v_ret, (u8 *)rxdid, len); 2677 kfree(rxdid); 2678 return ret; 2679 } 2680 2681 /** 2682 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2683 * @vf: VF to enable/disable VLAN stripping for on initialization 2684 * 2685 * Set the default for VLAN stripping based on whether a port VLAN is configured 2686 * and the current VLAN mode of the device. 2687 */ 2688 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2689 { 2690 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2691 2692 vf->vlan_strip_ena = 0; 2693 2694 if (!vsi) 2695 return -EINVAL; 2696 2697 /* don't modify stripping if port VLAN is configured in SVM since the 2698 * port VLAN is based on the inner/single VLAN in SVM 2699 */ 2700 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2701 return 0; 2702 2703 if (ice_vf_vlan_offload_ena(vf->driver_caps)) { 2704 int err; 2705 2706 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2707 if (!err) 2708 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2709 return err; 2710 } 2711 2712 return vsi->inner_vlan_ops.dis_stripping(vsi); 2713 } 2714 2715 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2716 { 2717 if (vf->trusted) 2718 return VLAN_N_VID; 2719 else 2720 return ICE_MAX_VLAN_PER_VF; 2721 } 2722 2723 /** 2724 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2725 * @vf: VF that being checked for 2726 * 2727 * When the device is in double VLAN mode, check whether or not the outer VLAN 2728 * is allowed. 2729 */ 2730 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2731 { 2732 if (ice_vf_is_port_vlan_ena(vf)) 2733 return true; 2734 2735 return false; 2736 } 2737 2738 /** 2739 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2740 * @vf: VF that capabilities are being set for 2741 * @caps: VLAN capabilities to populate 2742 * 2743 * Determine VLAN capabilities support based on whether a port VLAN is 2744 * configured. If a port VLAN is configured then the VF should use the inner 2745 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2746 * capabilies. 2747 */ 2748 static void 2749 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2750 { 2751 struct virtchnl_vlan_supported_caps *supported_caps; 2752 2753 if (ice_vf_outer_vlan_not_allowed(vf)) { 2754 /* until support for inner VLAN filtering is added when a port 2755 * VLAN is configured, only support software offloaded inner 2756 * VLANs when a port VLAN is confgured in DVM 2757 */ 2758 supported_caps = &caps->filtering.filtering_support; 2759 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2760 2761 supported_caps = &caps->offloads.stripping_support; 2762 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2763 VIRTCHNL_VLAN_TOGGLE | 2764 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2765 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2766 2767 supported_caps = &caps->offloads.insertion_support; 2768 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2769 VIRTCHNL_VLAN_TOGGLE | 2770 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2771 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2772 2773 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2774 caps->offloads.ethertype_match = 2775 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2776 } else { 2777 supported_caps = &caps->filtering.filtering_support; 2778 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2779 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2780 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2781 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2782 VIRTCHNL_VLAN_ETHERTYPE_AND; 2783 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2784 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2785 VIRTCHNL_VLAN_ETHERTYPE_9100; 2786 2787 supported_caps = &caps->offloads.stripping_support; 2788 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2789 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2790 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2791 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2792 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2793 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2794 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2795 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2796 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2797 2798 supported_caps = &caps->offloads.insertion_support; 2799 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2800 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2801 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2802 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2803 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2804 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2805 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2806 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2807 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2808 2809 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2810 2811 caps->offloads.ethertype_match = 2812 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2813 } 2814 2815 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2816 } 2817 2818 /** 2819 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2820 * @vf: VF that capabilities are being set for 2821 * @caps: VLAN capabilities to populate 2822 * 2823 * Determine VLAN capabilities support based on whether a port VLAN is 2824 * configured. If a port VLAN is configured then the VF does not have any VLAN 2825 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2826 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2827 * VLAN fitlering and offload capabilities. 2828 */ 2829 static void 2830 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2831 { 2832 struct virtchnl_vlan_supported_caps *supported_caps; 2833 2834 if (ice_vf_is_port_vlan_ena(vf)) { 2835 supported_caps = &caps->filtering.filtering_support; 2836 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2837 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2838 2839 supported_caps = &caps->offloads.stripping_support; 2840 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2841 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2842 2843 supported_caps = &caps->offloads.insertion_support; 2844 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2845 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2846 2847 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2848 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2849 caps->filtering.max_filters = 0; 2850 } else { 2851 supported_caps = &caps->filtering.filtering_support; 2852 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2853 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2854 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2855 2856 supported_caps = &caps->offloads.stripping_support; 2857 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2858 VIRTCHNL_VLAN_TOGGLE | 2859 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2860 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2861 2862 supported_caps = &caps->offloads.insertion_support; 2863 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2864 VIRTCHNL_VLAN_TOGGLE | 2865 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2866 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2867 2868 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2869 caps->offloads.ethertype_match = 2870 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2871 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2872 } 2873 } 2874 2875 /** 2876 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2877 * @vf: VF to determine VLAN capabilities for 2878 * 2879 * This will only be called if the VF and PF successfully negotiated 2880 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2881 * 2882 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2883 * is configured or not. 2884 */ 2885 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2886 { 2887 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2888 struct virtchnl_vlan_caps *caps = NULL; 2889 int err, len = 0; 2890 2891 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2892 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2893 goto out; 2894 } 2895 2896 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2897 if (!caps) { 2898 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2899 goto out; 2900 } 2901 len = sizeof(*caps); 2902 2903 if (ice_is_dvm_ena(&vf->pf->hw)) 2904 ice_vc_set_dvm_caps(vf, caps); 2905 else 2906 ice_vc_set_svm_caps(vf, caps); 2907 2908 /* store negotiated caps to prevent invalid VF messages */ 2909 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2910 2911 out: 2912 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2913 v_ret, (u8 *)caps, len); 2914 kfree(caps); 2915 return err; 2916 } 2917 2918 /** 2919 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2920 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2921 * @tpid: VLAN TPID used for validation 2922 * 2923 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2924 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2925 */ 2926 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2927 { 2928 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2929 2930 switch (tpid) { 2931 case ETH_P_8021Q: 2932 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2933 break; 2934 case ETH_P_8021AD: 2935 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2936 break; 2937 case ETH_P_QINQ1: 2938 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2939 break; 2940 } 2941 2942 if (!(filtering_caps & vlan_ethertype)) 2943 return false; 2944 2945 return true; 2946 } 2947 2948 /** 2949 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2950 * @vc_vlan: virtchnl_vlan to validate 2951 * 2952 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2953 * false. Otherwise return true. 2954 */ 2955 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2956 { 2957 if (!vc_vlan->tci || !vc_vlan->tpid) 2958 return false; 2959 2960 return true; 2961 } 2962 2963 /** 2964 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2965 * @vfc: negotiated/supported VLAN filtering capabilities 2966 * @vfl: VLAN filter list from VF to validate 2967 * 2968 * Validate all of the filters in the VLAN filter list from the VF. If any of 2969 * the checks fail then return false. Otherwise return true. 2970 */ 2971 static bool 2972 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2973 struct virtchnl_vlan_filter_list_v2 *vfl) 2974 { 2975 u16 i; 2976 2977 if (!vfl->num_elements) 2978 return false; 2979 2980 for (i = 0; i < vfl->num_elements; i++) { 2981 struct virtchnl_vlan_supported_caps *filtering_support = 2982 &vfc->filtering_support; 2983 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2984 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2985 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2986 2987 if ((ice_vc_is_valid_vlan(outer) && 2988 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2989 (ice_vc_is_valid_vlan(inner) && 2990 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2991 return false; 2992 2993 if ((outer->tci_mask && 2994 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2995 (inner->tci_mask && 2996 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2997 return false; 2998 2999 if (((outer->tci & VLAN_PRIO_MASK) && 3000 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 3001 ((inner->tci & VLAN_PRIO_MASK) && 3002 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 3003 return false; 3004 3005 if ((ice_vc_is_valid_vlan(outer) && 3006 !ice_vc_validate_vlan_tpid(filtering_support->outer, 3007 outer->tpid)) || 3008 (ice_vc_is_valid_vlan(inner) && 3009 !ice_vc_validate_vlan_tpid(filtering_support->inner, 3010 inner->tpid))) 3011 return false; 3012 } 3013 3014 return true; 3015 } 3016 3017 /** 3018 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 3019 * @vc_vlan: struct virtchnl_vlan to transform 3020 */ 3021 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 3022 { 3023 struct ice_vlan vlan = { 0 }; 3024 3025 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3026 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 3027 vlan.tpid = vc_vlan->tpid; 3028 3029 return vlan; 3030 } 3031 3032 /** 3033 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 3034 * @vsi: VF's VSI used to perform the action 3035 * @vlan_action: function to perform the action with (i.e. add/del) 3036 * @vlan: VLAN filter to perform the action with 3037 */ 3038 static int 3039 ice_vc_vlan_action(struct ice_vsi *vsi, 3040 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3041 struct ice_vlan *vlan) 3042 { 3043 int err; 3044 3045 err = vlan_action(vsi, vlan); 3046 if (err) 3047 return err; 3048 3049 return 0; 3050 } 3051 3052 /** 3053 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3054 * @vf: VF used to delete the VLAN(s) 3055 * @vsi: VF's VSI used to delete the VLAN(s) 3056 * @vfl: virthchnl filter list used to delete the filters 3057 */ 3058 static int 3059 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3060 struct virtchnl_vlan_filter_list_v2 *vfl) 3061 { 3062 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3063 int err; 3064 u16 i; 3065 3066 for (i = 0; i < vfl->num_elements; i++) { 3067 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3068 struct virtchnl_vlan *vc_vlan; 3069 3070 vc_vlan = &vlan_fltr->outer; 3071 if (ice_vc_is_valid_vlan(vc_vlan)) { 3072 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3073 3074 err = ice_vc_vlan_action(vsi, 3075 vsi->outer_vlan_ops.del_vlan, 3076 &vlan); 3077 if (err) 3078 return err; 3079 3080 if (vlan_promisc) 3081 ice_vf_dis_vlan_promisc(vsi, &vlan); 3082 3083 /* Disable VLAN filtering when only VLAN 0 is left */ 3084 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3085 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3086 if (err) 3087 return err; 3088 } 3089 } 3090 3091 vc_vlan = &vlan_fltr->inner; 3092 if (ice_vc_is_valid_vlan(vc_vlan)) { 3093 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3094 3095 err = ice_vc_vlan_action(vsi, 3096 vsi->inner_vlan_ops.del_vlan, 3097 &vlan); 3098 if (err) 3099 return err; 3100 3101 /* no support for VLAN promiscuous on inner VLAN unless 3102 * we are in Single VLAN Mode (SVM) 3103 */ 3104 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3105 if (vlan_promisc) 3106 ice_vf_dis_vlan_promisc(vsi, &vlan); 3107 3108 /* Disable VLAN filtering when only VLAN 0 is left */ 3109 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3110 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3111 if (err) 3112 return err; 3113 } 3114 } 3115 } 3116 } 3117 3118 return 0; 3119 } 3120 3121 /** 3122 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3123 * @vf: VF the message was received from 3124 * @msg: message received from the VF 3125 */ 3126 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3127 { 3128 struct virtchnl_vlan_filter_list_v2 *vfl = 3129 (struct virtchnl_vlan_filter_list_v2 *)msg; 3130 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3131 struct ice_vsi *vsi; 3132 3133 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3134 vfl)) { 3135 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3136 goto out; 3137 } 3138 3139 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3140 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3141 goto out; 3142 } 3143 3144 vsi = ice_get_vf_vsi(vf); 3145 if (!vsi) { 3146 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3147 goto out; 3148 } 3149 3150 if (ice_vc_del_vlans(vf, vsi, vfl)) 3151 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3152 3153 out: 3154 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3155 0); 3156 } 3157 3158 /** 3159 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3160 * @vf: VF used to add the VLAN(s) 3161 * @vsi: VF's VSI used to add the VLAN(s) 3162 * @vfl: virthchnl filter list used to add the filters 3163 */ 3164 static int 3165 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3166 struct virtchnl_vlan_filter_list_v2 *vfl) 3167 { 3168 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3169 int err; 3170 u16 i; 3171 3172 for (i = 0; i < vfl->num_elements; i++) { 3173 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3174 struct virtchnl_vlan *vc_vlan; 3175 3176 vc_vlan = &vlan_fltr->outer; 3177 if (ice_vc_is_valid_vlan(vc_vlan)) { 3178 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3179 3180 err = ice_vc_vlan_action(vsi, 3181 vsi->outer_vlan_ops.add_vlan, 3182 &vlan); 3183 if (err) 3184 return err; 3185 3186 if (vlan_promisc) { 3187 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3188 if (err) 3189 return err; 3190 } 3191 3192 /* Enable VLAN filtering on first non-zero VLAN */ 3193 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3194 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3195 if (err) 3196 return err; 3197 } 3198 } 3199 3200 vc_vlan = &vlan_fltr->inner; 3201 if (ice_vc_is_valid_vlan(vc_vlan)) { 3202 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3203 3204 err = ice_vc_vlan_action(vsi, 3205 vsi->inner_vlan_ops.add_vlan, 3206 &vlan); 3207 if (err) 3208 return err; 3209 3210 /* no support for VLAN promiscuous on inner VLAN unless 3211 * we are in Single VLAN Mode (SVM) 3212 */ 3213 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3214 if (vlan_promisc) { 3215 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3216 if (err) 3217 return err; 3218 } 3219 3220 /* Enable VLAN filtering on first non-zero VLAN */ 3221 if (vf->spoofchk && vlan.vid) { 3222 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3223 if (err) 3224 return err; 3225 } 3226 } 3227 } 3228 } 3229 3230 return 0; 3231 } 3232 3233 /** 3234 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3235 * @vsi: VF VSI used to get number of existing VLAN filters 3236 * @vfc: negotiated/supported VLAN filtering capabilities 3237 * @vfl: VLAN filter list from VF to validate 3238 * 3239 * Validate all of the filters in the VLAN filter list from the VF during the 3240 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3241 * Otherwise return true. 3242 */ 3243 static bool 3244 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3245 struct virtchnl_vlan_filtering_caps *vfc, 3246 struct virtchnl_vlan_filter_list_v2 *vfl) 3247 { 3248 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3249 vfl->num_elements; 3250 3251 if (num_requested_filters > vfc->max_filters) 3252 return false; 3253 3254 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3255 } 3256 3257 /** 3258 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3259 * @vf: VF the message was received from 3260 * @msg: message received from the VF 3261 */ 3262 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3263 { 3264 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3265 struct virtchnl_vlan_filter_list_v2 *vfl = 3266 (struct virtchnl_vlan_filter_list_v2 *)msg; 3267 struct ice_vsi *vsi; 3268 3269 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3270 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3271 goto out; 3272 } 3273 3274 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3275 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3276 goto out; 3277 } 3278 3279 vsi = ice_get_vf_vsi(vf); 3280 if (!vsi) { 3281 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3282 goto out; 3283 } 3284 3285 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3286 &vf->vlan_v2_caps.filtering, 3287 vfl)) { 3288 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3289 goto out; 3290 } 3291 3292 if (ice_vc_add_vlans(vf, vsi, vfl)) 3293 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3294 3295 out: 3296 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3297 0); 3298 } 3299 3300 /** 3301 * ice_vc_valid_vlan_setting - validate VLAN setting 3302 * @negotiated_settings: negotiated VLAN settings during VF init 3303 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3304 */ 3305 static bool 3306 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3307 { 3308 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3309 return false; 3310 3311 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3312 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3313 */ 3314 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3315 hweight32(ethertype_setting) > 1) 3316 return false; 3317 3318 /* ability to modify the VLAN setting was not negotiated */ 3319 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3320 return false; 3321 3322 return true; 3323 } 3324 3325 /** 3326 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3327 * @caps: negotiated VLAN settings during VF init 3328 * @msg: message to validate 3329 * 3330 * Used to validate any VLAN virtchnl message sent as a 3331 * virtchnl_vlan_setting structure. Validates the message against the 3332 * negotiated/supported caps during VF driver init. 3333 */ 3334 static bool 3335 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3336 struct virtchnl_vlan_setting *msg) 3337 { 3338 if ((!msg->outer_ethertype_setting && 3339 !msg->inner_ethertype_setting) || 3340 (!caps->outer && !caps->inner)) 3341 return false; 3342 3343 if (msg->outer_ethertype_setting && 3344 !ice_vc_valid_vlan_setting(caps->outer, 3345 msg->outer_ethertype_setting)) 3346 return false; 3347 3348 if (msg->inner_ethertype_setting && 3349 !ice_vc_valid_vlan_setting(caps->inner, 3350 msg->inner_ethertype_setting)) 3351 return false; 3352 3353 return true; 3354 } 3355 3356 /** 3357 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3358 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3359 * @tpid: VLAN TPID to populate 3360 */ 3361 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3362 { 3363 switch (ethertype_setting) { 3364 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3365 *tpid = ETH_P_8021Q; 3366 break; 3367 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3368 *tpid = ETH_P_8021AD; 3369 break; 3370 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3371 *tpid = ETH_P_QINQ1; 3372 break; 3373 default: 3374 *tpid = 0; 3375 return -EINVAL; 3376 } 3377 3378 return 0; 3379 } 3380 3381 /** 3382 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3383 * @vsi: VF's VSI used to enable the VLAN offload 3384 * @ena_offload: function used to enable the VLAN offload 3385 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3386 */ 3387 static int 3388 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3389 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3390 u32 ethertype_setting) 3391 { 3392 u16 tpid; 3393 int err; 3394 3395 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3396 if (err) 3397 return err; 3398 3399 err = ena_offload(vsi, tpid); 3400 if (err) 3401 return err; 3402 3403 return 0; 3404 } 3405 3406 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3407 #define ICE_L2TSEL_BIT_OFFSET 23 3408 enum ice_l2tsel { 3409 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3410 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3411 }; 3412 3413 /** 3414 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3415 * @vsi: VSI used to update l2tsel on 3416 * @l2tsel: l2tsel setting requested 3417 * 3418 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3419 * This will modify which descriptor field the first offloaded VLAN will be 3420 * stripped into. 3421 */ 3422 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3423 { 3424 struct ice_hw *hw = &vsi->back->hw; 3425 u32 l2tsel_bit; 3426 int i; 3427 3428 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3429 l2tsel_bit = 0; 3430 else 3431 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3432 3433 for (i = 0; i < vsi->alloc_rxq; i++) { 3434 u16 pfq = vsi->rxq_map[i]; 3435 u32 qrx_context_offset; 3436 u32 regval; 3437 3438 qrx_context_offset = 3439 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3440 3441 regval = rd32(hw, qrx_context_offset); 3442 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3443 regval |= l2tsel_bit; 3444 wr32(hw, qrx_context_offset, regval); 3445 } 3446 } 3447 3448 /** 3449 * ice_vc_ena_vlan_stripping_v2_msg 3450 * @vf: VF the message was received from 3451 * @msg: message received from the VF 3452 * 3453 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3454 */ 3455 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3456 { 3457 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3458 struct virtchnl_vlan_supported_caps *stripping_support; 3459 struct virtchnl_vlan_setting *strip_msg = 3460 (struct virtchnl_vlan_setting *)msg; 3461 u32 ethertype_setting; 3462 struct ice_vsi *vsi; 3463 3464 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3465 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3466 goto out; 3467 } 3468 3469 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3470 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3471 goto out; 3472 } 3473 3474 vsi = ice_get_vf_vsi(vf); 3475 if (!vsi) { 3476 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3477 goto out; 3478 } 3479 3480 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3481 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3482 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3483 goto out; 3484 } 3485 3486 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) { 3487 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3488 goto out; 3489 } 3490 3491 ethertype_setting = strip_msg->outer_ethertype_setting; 3492 if (ethertype_setting) { 3493 if (ice_vc_ena_vlan_offload(vsi, 3494 vsi->outer_vlan_ops.ena_stripping, 3495 ethertype_setting)) { 3496 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3497 goto out; 3498 } else { 3499 enum ice_l2tsel l2tsel = 3500 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3501 3502 /* PF tells the VF that the outer VLAN tag is always 3503 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3504 * inner is always extracted to 3505 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3506 * support outer stripping so the first tag always ends 3507 * up in L2TAG2_2ND and the second/inner tag, if 3508 * enabled, is extracted in L2TAG1. 3509 */ 3510 ice_vsi_update_l2tsel(vsi, l2tsel); 3511 3512 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA; 3513 } 3514 } 3515 3516 ethertype_setting = strip_msg->inner_ethertype_setting; 3517 if (ethertype_setting && 3518 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3519 ethertype_setting)) { 3520 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3521 goto out; 3522 } 3523 3524 if (ethertype_setting) 3525 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3526 3527 out: 3528 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3529 v_ret, NULL, 0); 3530 } 3531 3532 /** 3533 * ice_vc_dis_vlan_stripping_v2_msg 3534 * @vf: VF the message was received from 3535 * @msg: message received from the VF 3536 * 3537 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3538 */ 3539 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3540 { 3541 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3542 struct virtchnl_vlan_supported_caps *stripping_support; 3543 struct virtchnl_vlan_setting *strip_msg = 3544 (struct virtchnl_vlan_setting *)msg; 3545 u32 ethertype_setting; 3546 struct ice_vsi *vsi; 3547 3548 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3549 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3550 goto out; 3551 } 3552 3553 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3554 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3555 goto out; 3556 } 3557 3558 vsi = ice_get_vf_vsi(vf); 3559 if (!vsi) { 3560 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3561 goto out; 3562 } 3563 3564 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3565 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3566 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3567 goto out; 3568 } 3569 3570 ethertype_setting = strip_msg->outer_ethertype_setting; 3571 if (ethertype_setting) { 3572 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3573 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3574 goto out; 3575 } else { 3576 enum ice_l2tsel l2tsel = 3577 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3578 3579 /* PF tells the VF that the outer VLAN tag is always 3580 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3581 * inner is always extracted to 3582 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3583 * support inner stripping while outer stripping is 3584 * disabled so that the first and only tag is extracted 3585 * in L2TAG1. 3586 */ 3587 ice_vsi_update_l2tsel(vsi, l2tsel); 3588 3589 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA; 3590 } 3591 } 3592 3593 ethertype_setting = strip_msg->inner_ethertype_setting; 3594 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3595 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3596 goto out; 3597 } 3598 3599 if (ethertype_setting) 3600 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 3601 3602 out: 3603 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3604 v_ret, NULL, 0); 3605 } 3606 3607 /** 3608 * ice_vc_ena_vlan_insertion_v2_msg 3609 * @vf: VF the message was received from 3610 * @msg: message received from the VF 3611 * 3612 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3613 */ 3614 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3615 { 3616 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3617 struct virtchnl_vlan_supported_caps *insertion_support; 3618 struct virtchnl_vlan_setting *insertion_msg = 3619 (struct virtchnl_vlan_setting *)msg; 3620 u32 ethertype_setting; 3621 struct ice_vsi *vsi; 3622 3623 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3624 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3625 goto out; 3626 } 3627 3628 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3629 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3630 goto out; 3631 } 3632 3633 vsi = ice_get_vf_vsi(vf); 3634 if (!vsi) { 3635 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3636 goto out; 3637 } 3638 3639 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3640 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3641 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3642 goto out; 3643 } 3644 3645 ethertype_setting = insertion_msg->outer_ethertype_setting; 3646 if (ethertype_setting && 3647 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3648 ethertype_setting)) { 3649 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3650 goto out; 3651 } 3652 3653 ethertype_setting = insertion_msg->inner_ethertype_setting; 3654 if (ethertype_setting && 3655 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3656 ethertype_setting)) { 3657 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3658 goto out; 3659 } 3660 3661 out: 3662 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3663 v_ret, NULL, 0); 3664 } 3665 3666 /** 3667 * ice_vc_dis_vlan_insertion_v2_msg 3668 * @vf: VF the message was received from 3669 * @msg: message received from the VF 3670 * 3671 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3672 */ 3673 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3674 { 3675 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3676 struct virtchnl_vlan_supported_caps *insertion_support; 3677 struct virtchnl_vlan_setting *insertion_msg = 3678 (struct virtchnl_vlan_setting *)msg; 3679 u32 ethertype_setting; 3680 struct ice_vsi *vsi; 3681 3682 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3683 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3684 goto out; 3685 } 3686 3687 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3688 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3689 goto out; 3690 } 3691 3692 vsi = ice_get_vf_vsi(vf); 3693 if (!vsi) { 3694 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3695 goto out; 3696 } 3697 3698 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3699 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3700 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3701 goto out; 3702 } 3703 3704 ethertype_setting = insertion_msg->outer_ethertype_setting; 3705 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3706 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3707 goto out; 3708 } 3709 3710 ethertype_setting = insertion_msg->inner_ethertype_setting; 3711 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3712 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3713 goto out; 3714 } 3715 3716 out: 3717 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3718 v_ret, NULL, 0); 3719 } 3720 3721 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3722 .get_ver_msg = ice_vc_get_ver_msg, 3723 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3724 .reset_vf = ice_vc_reset_vf_msg, 3725 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3726 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3727 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3728 .ena_qs_msg = ice_vc_ena_qs_msg, 3729 .dis_qs_msg = ice_vc_dis_qs_msg, 3730 .request_qs_msg = ice_vc_request_qs_msg, 3731 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3732 .config_rss_key = ice_vc_config_rss_key, 3733 .config_rss_lut = ice_vc_config_rss_lut, 3734 .get_stats_msg = ice_vc_get_stats_msg, 3735 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3736 .add_vlan_msg = ice_vc_add_vlan_msg, 3737 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3738 .query_rxdid = ice_vc_query_rxdid, 3739 .get_rss_hena = ice_vc_get_rss_hena, 3740 .set_rss_hena_msg = ice_vc_set_rss_hena, 3741 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3742 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3743 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3744 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3745 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3746 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3747 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3748 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3749 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3750 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3751 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3752 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3753 }; 3754 3755 /** 3756 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3757 * @vf: the VF to switch ops 3758 */ 3759 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3760 { 3761 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3762 } 3763 3764 /** 3765 * ice_vc_repr_add_mac 3766 * @vf: pointer to VF 3767 * @msg: virtchannel message 3768 * 3769 * When port representors are created, we do not add MAC rule 3770 * to firmware, we store it so that PF could report same 3771 * MAC as VF. 3772 */ 3773 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3774 { 3775 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3776 struct virtchnl_ether_addr_list *al = 3777 (struct virtchnl_ether_addr_list *)msg; 3778 struct ice_vsi *vsi; 3779 struct ice_pf *pf; 3780 int i; 3781 3782 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3783 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3784 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3785 goto handle_mac_exit; 3786 } 3787 3788 pf = vf->pf; 3789 3790 vsi = ice_get_vf_vsi(vf); 3791 if (!vsi) { 3792 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3793 goto handle_mac_exit; 3794 } 3795 3796 for (i = 0; i < al->num_elements; i++) { 3797 u8 *mac_addr = al->list[i].addr; 3798 3799 if (!is_unicast_ether_addr(mac_addr) || 3800 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 3801 continue; 3802 3803 if (vf->pf_set_mac) { 3804 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3805 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3806 goto handle_mac_exit; 3807 } 3808 3809 ice_vfhw_mac_add(vf, &al->list[i]); 3810 vf->num_mac++; 3811 break; 3812 } 3813 3814 handle_mac_exit: 3815 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3816 v_ret, NULL, 0); 3817 } 3818 3819 /** 3820 * ice_vc_repr_del_mac - response with success for deleting MAC 3821 * @vf: pointer to VF 3822 * @msg: virtchannel message 3823 * 3824 * Respond with success to not break normal VF flow. 3825 * For legacy VF driver try to update cached MAC address. 3826 */ 3827 static int 3828 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3829 { 3830 struct virtchnl_ether_addr_list *al = 3831 (struct virtchnl_ether_addr_list *)msg; 3832 3833 ice_update_legacy_cached_mac(vf, &al->list[0]); 3834 3835 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3836 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3837 } 3838 3839 static int 3840 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3841 { 3842 dev_dbg(ice_pf_to_dev(vf->pf), 3843 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3844 vf->vf_id); 3845 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3846 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3847 NULL, 0); 3848 } 3849 3850 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3851 .get_ver_msg = ice_vc_get_ver_msg, 3852 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3853 .reset_vf = ice_vc_reset_vf_msg, 3854 .add_mac_addr_msg = ice_vc_repr_add_mac, 3855 .del_mac_addr_msg = ice_vc_repr_del_mac, 3856 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3857 .ena_qs_msg = ice_vc_ena_qs_msg, 3858 .dis_qs_msg = ice_vc_dis_qs_msg, 3859 .request_qs_msg = ice_vc_request_qs_msg, 3860 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3861 .config_rss_key = ice_vc_config_rss_key, 3862 .config_rss_lut = ice_vc_config_rss_lut, 3863 .get_stats_msg = ice_vc_get_stats_msg, 3864 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3865 .add_vlan_msg = ice_vc_add_vlan_msg, 3866 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3867 .query_rxdid = ice_vc_query_rxdid, 3868 .get_rss_hena = ice_vc_get_rss_hena, 3869 .set_rss_hena_msg = ice_vc_set_rss_hena, 3870 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3871 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3872 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3873 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3874 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3875 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3876 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3877 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3878 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3879 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3880 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3881 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3882 }; 3883 3884 /** 3885 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3886 * @vf: the VF to switch ops 3887 */ 3888 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3889 { 3890 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3891 } 3892 3893 /** 3894 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 3895 * @vf: the VF to check 3896 * @mbxdata: data about the state of the mailbox 3897 * 3898 * Detect if a given VF might be malicious and attempting to overflow the PF 3899 * mailbox. If so, log a warning message and ignore this event. 3900 */ 3901 static bool 3902 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 3903 { 3904 bool report_malvf = false; 3905 struct device *dev; 3906 struct ice_pf *pf; 3907 int status; 3908 3909 pf = vf->pf; 3910 dev = ice_pf_to_dev(pf); 3911 3912 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 3913 return vf->mbx_info.malicious; 3914 3915 /* check to see if we have a newly malicious VF */ 3916 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 3917 &report_malvf); 3918 if (status) 3919 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 3920 vf->vf_id, vf->dev_lan_addr, status); 3921 3922 if (report_malvf) { 3923 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3924 u8 zero_addr[ETH_ALEN] = {}; 3925 3926 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 3927 vf->dev_lan_addr, 3928 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 3929 } 3930 3931 return vf->mbx_info.malicious; 3932 } 3933 3934 /** 3935 * ice_vc_process_vf_msg - Process request from VF 3936 * @pf: pointer to the PF structure 3937 * @event: pointer to the AQ event 3938 * @mbxdata: information used to detect VF attempting mailbox overflow 3939 * 3940 * called from the common asq/arq handler to 3941 * process request from VF 3942 */ 3943 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 3944 struct ice_mbx_data *mbxdata) 3945 { 3946 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3947 s16 vf_id = le16_to_cpu(event->desc.retval); 3948 const struct ice_virtchnl_ops *ops; 3949 u16 msglen = event->msg_len; 3950 u8 *msg = event->msg_buf; 3951 struct ice_vf *vf = NULL; 3952 struct device *dev; 3953 int err = 0; 3954 3955 dev = ice_pf_to_dev(pf); 3956 3957 vf = ice_get_vf_by_id(pf, vf_id); 3958 if (!vf) { 3959 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3960 vf_id, v_opcode, msglen); 3961 return; 3962 } 3963 3964 mutex_lock(&vf->cfg_lock); 3965 3966 /* Check if the VF is trying to overflow the mailbox */ 3967 if (ice_is_malicious_vf(vf, mbxdata)) 3968 goto finish; 3969 3970 /* Check if VF is disabled. */ 3971 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3972 err = -EPERM; 3973 goto error_handler; 3974 } 3975 3976 ops = vf->virtchnl_ops; 3977 3978 /* Perform basic checks on the msg */ 3979 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3980 if (err) { 3981 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3982 err = -EPERM; 3983 else 3984 err = -EINVAL; 3985 } 3986 3987 error_handler: 3988 if (err) { 3989 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3990 NULL, 0); 3991 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3992 vf_id, v_opcode, msglen, err); 3993 goto finish; 3994 } 3995 3996 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3997 ice_vc_send_msg_to_vf(vf, v_opcode, 3998 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3999 0); 4000 goto finish; 4001 } 4002 4003 switch (v_opcode) { 4004 case VIRTCHNL_OP_VERSION: 4005 err = ops->get_ver_msg(vf, msg); 4006 break; 4007 case VIRTCHNL_OP_GET_VF_RESOURCES: 4008 err = ops->get_vf_res_msg(vf, msg); 4009 if (ice_vf_init_vlan_stripping(vf)) 4010 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 4011 vf->vf_id); 4012 ice_vc_notify_vf_link_state(vf); 4013 break; 4014 case VIRTCHNL_OP_RESET_VF: 4015 ops->reset_vf(vf); 4016 break; 4017 case VIRTCHNL_OP_ADD_ETH_ADDR: 4018 err = ops->add_mac_addr_msg(vf, msg); 4019 break; 4020 case VIRTCHNL_OP_DEL_ETH_ADDR: 4021 err = ops->del_mac_addr_msg(vf, msg); 4022 break; 4023 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 4024 err = ops->cfg_qs_msg(vf, msg); 4025 break; 4026 case VIRTCHNL_OP_ENABLE_QUEUES: 4027 err = ops->ena_qs_msg(vf, msg); 4028 ice_vc_notify_vf_link_state(vf); 4029 break; 4030 case VIRTCHNL_OP_DISABLE_QUEUES: 4031 err = ops->dis_qs_msg(vf, msg); 4032 break; 4033 case VIRTCHNL_OP_REQUEST_QUEUES: 4034 err = ops->request_qs_msg(vf, msg); 4035 break; 4036 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 4037 err = ops->cfg_irq_map_msg(vf, msg); 4038 break; 4039 case VIRTCHNL_OP_CONFIG_RSS_KEY: 4040 err = ops->config_rss_key(vf, msg); 4041 break; 4042 case VIRTCHNL_OP_CONFIG_RSS_LUT: 4043 err = ops->config_rss_lut(vf, msg); 4044 break; 4045 case VIRTCHNL_OP_GET_STATS: 4046 err = ops->get_stats_msg(vf, msg); 4047 break; 4048 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 4049 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4050 break; 4051 case VIRTCHNL_OP_ADD_VLAN: 4052 err = ops->add_vlan_msg(vf, msg); 4053 break; 4054 case VIRTCHNL_OP_DEL_VLAN: 4055 err = ops->remove_vlan_msg(vf, msg); 4056 break; 4057 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4058 err = ops->query_rxdid(vf); 4059 break; 4060 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4061 err = ops->get_rss_hena(vf); 4062 break; 4063 case VIRTCHNL_OP_SET_RSS_HENA: 4064 err = ops->set_rss_hena_msg(vf, msg); 4065 break; 4066 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4067 err = ops->ena_vlan_stripping(vf); 4068 break; 4069 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4070 err = ops->dis_vlan_stripping(vf); 4071 break; 4072 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4073 err = ops->add_fdir_fltr_msg(vf, msg); 4074 break; 4075 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4076 err = ops->del_fdir_fltr_msg(vf, msg); 4077 break; 4078 case VIRTCHNL_OP_ADD_RSS_CFG: 4079 err = ops->handle_rss_cfg_msg(vf, msg, true); 4080 break; 4081 case VIRTCHNL_OP_DEL_RSS_CFG: 4082 err = ops->handle_rss_cfg_msg(vf, msg, false); 4083 break; 4084 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4085 err = ops->get_offload_vlan_v2_caps(vf); 4086 break; 4087 case VIRTCHNL_OP_ADD_VLAN_V2: 4088 err = ops->add_vlan_v2_msg(vf, msg); 4089 break; 4090 case VIRTCHNL_OP_DEL_VLAN_V2: 4091 err = ops->remove_vlan_v2_msg(vf, msg); 4092 break; 4093 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4094 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4095 break; 4096 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4097 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4098 break; 4099 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4100 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4101 break; 4102 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4103 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4104 break; 4105 case VIRTCHNL_OP_UNKNOWN: 4106 default: 4107 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4108 vf_id); 4109 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4110 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4111 NULL, 0); 4112 break; 4113 } 4114 if (err) { 4115 /* Helper function cares less about error return values here 4116 * as it is busy with pending work. 4117 */ 4118 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4119 vf_id, v_opcode, err); 4120 } 4121 4122 finish: 4123 mutex_unlock(&vf->cfg_lock); 4124 ice_put_vf(vf); 4125 } 4126