xref: /linux/drivers/net/ethernet/intel/ice/ice_virtchnl.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 		     u32 driver_caps)
374 {
375 	if (ice_is_eswitch_mode_switchdev(vf->pf))
376 		/* In switchdev setting VLAN from VF isn't supported */
377 		return 0;
378 
379 	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 		/* VLAN offloads based on current device configuration */
381 		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 		 * these two conditions, which amounts to guest VLAN filtering
385 		 * and offloads being based on the inner VLAN or the
386 		 * inner/single VLAN respectively and don't allow VF to
387 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 		 */
389 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 			return VIRTCHNL_VF_OFFLOAD_VLAN;
391 		} else if (!ice_is_dvm_ena(hw) &&
392 			   !ice_vf_is_port_vlan_ena(vf)) {
393 			/* configure backward compatible support for VFs that
394 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 			 * configured in SVM, and no port VLAN is configured
396 			 */
397 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 			return VIRTCHNL_VF_OFFLOAD_VLAN;
399 		} else if (ice_is_dvm_ena(hw)) {
400 			/* configure software offloaded VLAN support when DVM
401 			 * is enabled, but no port VLAN is enabled
402 			 */
403 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 		}
405 	}
406 
407 	return 0;
408 }
409 
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 	struct virtchnl_vf_resource *vfres = NULL;
421 	struct ice_hw *hw = &vf->pf->hw;
422 	struct ice_vsi *vsi;
423 	int len = 0;
424 	int ret;
425 
426 	if (ice_check_vf_init(vf)) {
427 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 		goto err;
429 	}
430 
431 	len = virtchnl_struct_size(vfres, vsi_res, 0);
432 
433 	vfres = kzalloc(len, GFP_KERNEL);
434 	if (!vfres) {
435 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 		len = 0;
437 		goto err;
438 	}
439 	if (VF_IS_V11(&vf->vf_ver))
440 		vf->driver_caps = *(u32 *)msg;
441 	else
442 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
444 				  VIRTCHNL_VF_OFFLOAD_VLAN;
445 
446 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
447 	vsi = ice_get_vf_vsi(vf);
448 	if (!vsi) {
449 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
450 		goto err;
451 	}
452 
453 	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
454 						    vf->driver_caps);
455 
456 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
457 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
458 	} else {
459 		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
460 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
461 		else
462 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
463 	}
464 
465 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
466 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
467 
468 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
469 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
470 
471 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
472 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
473 
474 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
475 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
476 
477 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
478 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
479 
480 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
481 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
482 
483 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
484 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
485 
486 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
487 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
488 
489 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
490 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
491 
492 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
493 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
494 
495 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
496 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
497 
498 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
499 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
500 
501 	vfres->num_vsis = 1;
502 	/* Tx and Rx queue are equal for VF */
503 	vfres->num_queue_pairs = vsi->num_txq;
504 	vfres->max_vectors = vf->num_msix;
505 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
506 	vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
507 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
508 
509 	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
510 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
511 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
512 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
513 			vf->hw_lan_addr);
514 
515 	/* match guest capabilities */
516 	vf->driver_caps = vfres->vf_cap_flags;
517 
518 	ice_vc_set_caps_allowlist(vf);
519 	ice_vc_set_working_allowlist(vf);
520 
521 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
522 
523 err:
524 	/* send the response back to the VF */
525 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
526 				    (u8 *)vfres, len);
527 
528 	kfree(vfres);
529 	return ret;
530 }
531 
532 /**
533  * ice_vc_reset_vf_msg
534  * @vf: pointer to the VF info
535  *
536  * called from the VF to reset itself,
537  * unlike other virtchnl messages, PF driver
538  * doesn't send the response back to the VF
539  */
540 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
541 {
542 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
543 		ice_reset_vf(vf, 0);
544 }
545 
546 /**
547  * ice_vc_isvalid_vsi_id
548  * @vf: pointer to the VF info
549  * @vsi_id: VF relative VSI ID
550  *
551  * check for the valid VSI ID
552  */
553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
554 {
555 	struct ice_pf *pf = vf->pf;
556 	struct ice_vsi *vsi;
557 
558 	vsi = ice_find_vsi(pf, vsi_id);
559 
560 	return (vsi && (vsi->vf == vf));
561 }
562 
563 /**
564  * ice_vc_isvalid_q_id
565  * @vf: pointer to the VF info
566  * @vsi_id: VSI ID
567  * @qid: VSI relative queue ID
568  *
569  * check for the valid queue ID
570  */
571 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
572 {
573 	struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
574 	/* allocated Tx and Rx queues should be always equal for VF VSI */
575 	return (vsi && (qid < vsi->alloc_txq));
576 }
577 
578 /**
579  * ice_vc_isvalid_ring_len
580  * @ring_len: length of ring
581  *
582  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
583  * or zero
584  */
585 static bool ice_vc_isvalid_ring_len(u16 ring_len)
586 {
587 	return ring_len == 0 ||
588 	       (ring_len >= ICE_MIN_NUM_DESC &&
589 		ring_len <= ICE_MAX_NUM_DESC &&
590 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
591 }
592 
593 /**
594  * ice_vc_validate_pattern
595  * @vf: pointer to the VF info
596  * @proto: virtchnl protocol headers
597  *
598  * validate the pattern is supported or not.
599  *
600  * Return: true on success, false on error.
601  */
602 bool
603 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
604 {
605 	bool is_ipv4 = false;
606 	bool is_ipv6 = false;
607 	bool is_udp = false;
608 	u16 ptype = -1;
609 	int i = 0;
610 
611 	while (i < proto->count &&
612 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
613 		switch (proto->proto_hdr[i].type) {
614 		case VIRTCHNL_PROTO_HDR_ETH:
615 			ptype = ICE_PTYPE_MAC_PAY;
616 			break;
617 		case VIRTCHNL_PROTO_HDR_IPV4:
618 			ptype = ICE_PTYPE_IPV4_PAY;
619 			is_ipv4 = true;
620 			break;
621 		case VIRTCHNL_PROTO_HDR_IPV6:
622 			ptype = ICE_PTYPE_IPV6_PAY;
623 			is_ipv6 = true;
624 			break;
625 		case VIRTCHNL_PROTO_HDR_UDP:
626 			if (is_ipv4)
627 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
628 			else if (is_ipv6)
629 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
630 			is_udp = true;
631 			break;
632 		case VIRTCHNL_PROTO_HDR_TCP:
633 			if (is_ipv4)
634 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
635 			else if (is_ipv6)
636 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
637 			break;
638 		case VIRTCHNL_PROTO_HDR_SCTP:
639 			if (is_ipv4)
640 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
641 			else if (is_ipv6)
642 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
643 			break;
644 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
645 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
646 			if (is_ipv4)
647 				ptype = ICE_MAC_IPV4_GTPU;
648 			else if (is_ipv6)
649 				ptype = ICE_MAC_IPV6_GTPU;
650 			goto out;
651 		case VIRTCHNL_PROTO_HDR_L2TPV3:
652 			if (is_ipv4)
653 				ptype = ICE_MAC_IPV4_L2TPV3;
654 			else if (is_ipv6)
655 				ptype = ICE_MAC_IPV6_L2TPV3;
656 			goto out;
657 		case VIRTCHNL_PROTO_HDR_ESP:
658 			if (is_ipv4)
659 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
660 						ICE_MAC_IPV4_ESP;
661 			else if (is_ipv6)
662 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
663 						ICE_MAC_IPV6_ESP;
664 			goto out;
665 		case VIRTCHNL_PROTO_HDR_AH:
666 			if (is_ipv4)
667 				ptype = ICE_MAC_IPV4_AH;
668 			else if (is_ipv6)
669 				ptype = ICE_MAC_IPV6_AH;
670 			goto out;
671 		case VIRTCHNL_PROTO_HDR_PFCP:
672 			if (is_ipv4)
673 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
674 			else if (is_ipv6)
675 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
676 			goto out;
677 		default:
678 			break;
679 		}
680 		i++;
681 	}
682 
683 out:
684 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
685 }
686 
687 /**
688  * ice_vc_parse_rss_cfg - parses hash fields and headers from
689  * a specific virtchnl RSS cfg
690  * @hw: pointer to the hardware
691  * @rss_cfg: pointer to the virtchnl RSS cfg
692  * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
693  * to configure
694  * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
695  *
696  * Return true if all the protocol header and hash fields in the RSS cfg could
697  * be parsed, else return false
698  *
699  * This function parses the virtchnl RSS cfg to be the intended
700  * hash fields and the intended header for RSS configuration
701  */
702 static bool
703 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
704 		     u32 *addl_hdrs, u64 *hash_flds)
705 {
706 	const struct ice_vc_hash_field_match_type *hf_list;
707 	const struct ice_vc_hdr_match_type *hdr_list;
708 	int i, hf_list_len, hdr_list_len;
709 
710 	hf_list = ice_vc_hash_field_list;
711 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
712 	hdr_list = ice_vc_hdr_list;
713 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
714 
715 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
716 		struct virtchnl_proto_hdr *proto_hdr =
717 					&rss_cfg->proto_hdrs.proto_hdr[i];
718 		bool hdr_found = false;
719 		int j;
720 
721 		/* Find matched ice headers according to virtchnl headers. */
722 		for (j = 0; j < hdr_list_len; j++) {
723 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
724 
725 			if (proto_hdr->type == hdr_map.vc_hdr) {
726 				*addl_hdrs |= hdr_map.ice_hdr;
727 				hdr_found = true;
728 			}
729 		}
730 
731 		if (!hdr_found)
732 			return false;
733 
734 		/* Find matched ice hash fields according to
735 		 * virtchnl hash fields.
736 		 */
737 		for (j = 0; j < hf_list_len; j++) {
738 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
739 
740 			if (proto_hdr->type == hf_map.vc_hdr &&
741 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
742 				*hash_flds |= hf_map.ice_hash_field;
743 				break;
744 			}
745 		}
746 	}
747 
748 	return true;
749 }
750 
751 /**
752  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
753  * RSS offloads
754  * @caps: VF driver negotiated capabilities
755  *
756  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
757  * else return false
758  */
759 static bool ice_vf_adv_rss_offload_ena(u32 caps)
760 {
761 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
762 }
763 
764 /**
765  * ice_vc_handle_rss_cfg
766  * @vf: pointer to the VF info
767  * @msg: pointer to the message buffer
768  * @add: add a RSS config if true, otherwise delete a RSS config
769  *
770  * This function adds/deletes a RSS config
771  */
772 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
773 {
774 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
775 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
776 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
777 	struct device *dev = ice_pf_to_dev(vf->pf);
778 	struct ice_hw *hw = &vf->pf->hw;
779 	struct ice_vsi *vsi;
780 
781 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
782 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
783 			vf->vf_id);
784 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
785 		goto error_param;
786 	}
787 
788 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
789 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
790 			vf->vf_id);
791 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
792 		goto error_param;
793 	}
794 
795 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
796 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
797 		goto error_param;
798 	}
799 
800 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
801 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
802 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
803 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
804 			vf->vf_id);
805 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
806 		goto error_param;
807 	}
808 
809 	vsi = ice_get_vf_vsi(vf);
810 	if (!vsi) {
811 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
812 		goto error_param;
813 	}
814 
815 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
816 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
817 		goto error_param;
818 	}
819 
820 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
821 		struct ice_vsi_ctx *ctx;
822 		u8 lut_type, hash_type;
823 		int status;
824 
825 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
826 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
827 				ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
828 
829 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
830 		if (!ctx) {
831 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
832 			goto error_param;
833 		}
834 
835 		ctx->info.q_opt_rss = ((lut_type <<
836 					ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
837 				       ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
838 				       (hash_type &
839 					ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
840 
841 		/* Preserve existing queueing option setting */
842 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
843 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
844 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
845 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
846 
847 		ctx->info.valid_sections =
848 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
849 
850 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
851 		if (status) {
852 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
853 				status, ice_aq_str(hw->adminq.sq_last_status));
854 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
855 		} else {
856 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
857 		}
858 
859 		kfree(ctx);
860 	} else {
861 		u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
862 		u64 hash_flds = ICE_HASH_INVALID;
863 
864 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
865 					  &hash_flds)) {
866 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
867 			goto error_param;
868 		}
869 
870 		if (add) {
871 			if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
872 					    addl_hdrs)) {
873 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
874 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
875 					vsi->vsi_num, v_ret);
876 			}
877 		} else {
878 			int status;
879 
880 			status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
881 						 addl_hdrs);
882 			/* We just ignore -ENOENT, because if two configurations
883 			 * share the same profile remove one of them actually
884 			 * removes both, since the profile is deleted.
885 			 */
886 			if (status && status != -ENOENT) {
887 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
888 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
889 					vf->vf_id, status);
890 			}
891 		}
892 	}
893 
894 error_param:
895 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
896 }
897 
898 /**
899  * ice_vc_config_rss_key
900  * @vf: pointer to the VF info
901  * @msg: pointer to the msg buffer
902  *
903  * Configure the VF's RSS key
904  */
905 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
906 {
907 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
908 	struct virtchnl_rss_key *vrk =
909 		(struct virtchnl_rss_key *)msg;
910 	struct ice_vsi *vsi;
911 
912 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
913 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
914 		goto error_param;
915 	}
916 
917 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
918 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
919 		goto error_param;
920 	}
921 
922 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
923 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
924 		goto error_param;
925 	}
926 
927 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
928 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
929 		goto error_param;
930 	}
931 
932 	vsi = ice_get_vf_vsi(vf);
933 	if (!vsi) {
934 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
935 		goto error_param;
936 	}
937 
938 	if (ice_set_rss_key(vsi, vrk->key))
939 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
940 error_param:
941 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
942 				     NULL, 0);
943 }
944 
945 /**
946  * ice_vc_config_rss_lut
947  * @vf: pointer to the VF info
948  * @msg: pointer to the msg buffer
949  *
950  * Configure the VF's RSS LUT
951  */
952 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
953 {
954 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
955 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
956 	struct ice_vsi *vsi;
957 
958 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
959 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
960 		goto error_param;
961 	}
962 
963 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
964 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
965 		goto error_param;
966 	}
967 
968 	if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
969 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
970 		goto error_param;
971 	}
972 
973 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
974 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
975 		goto error_param;
976 	}
977 
978 	vsi = ice_get_vf_vsi(vf);
979 	if (!vsi) {
980 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
981 		goto error_param;
982 	}
983 
984 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
985 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
986 error_param:
987 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
988 				     NULL, 0);
989 }
990 
991 /**
992  * ice_vc_cfg_promiscuous_mode_msg
993  * @vf: pointer to the VF info
994  * @msg: pointer to the msg buffer
995  *
996  * called from the VF to configure VF VSIs promiscuous mode
997  */
998 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
999 {
1000 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1001 	bool rm_promisc, alluni = false, allmulti = false;
1002 	struct virtchnl_promisc_info *info =
1003 	    (struct virtchnl_promisc_info *)msg;
1004 	struct ice_vsi_vlan_ops *vlan_ops;
1005 	int mcast_err = 0, ucast_err = 0;
1006 	struct ice_pf *pf = vf->pf;
1007 	struct ice_vsi *vsi;
1008 	u8 mcast_m, ucast_m;
1009 	struct device *dev;
1010 	int ret = 0;
1011 
1012 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1013 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1014 		goto error_param;
1015 	}
1016 
1017 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1018 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1019 		goto error_param;
1020 	}
1021 
1022 	vsi = ice_get_vf_vsi(vf);
1023 	if (!vsi) {
1024 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1025 		goto error_param;
1026 	}
1027 
1028 	dev = ice_pf_to_dev(pf);
1029 	if (!ice_is_vf_trusted(vf)) {
1030 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1031 			vf->vf_id);
1032 		/* Leave v_ret alone, lie to the VF on purpose. */
1033 		goto error_param;
1034 	}
1035 
1036 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1037 		alluni = true;
1038 
1039 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1040 		allmulti = true;
1041 
1042 	rm_promisc = !allmulti && !alluni;
1043 
1044 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1045 	if (rm_promisc)
1046 		ret = vlan_ops->ena_rx_filtering(vsi);
1047 	else
1048 		ret = vlan_ops->dis_rx_filtering(vsi);
1049 	if (ret) {
1050 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1051 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1052 		goto error_param;
1053 	}
1054 
1055 	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1056 
1057 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1058 		if (alluni) {
1059 			/* in this case we're turning on promiscuous mode */
1060 			ret = ice_set_dflt_vsi(vsi);
1061 		} else {
1062 			/* in this case we're turning off promiscuous mode */
1063 			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1064 				ret = ice_clear_dflt_vsi(vsi);
1065 		}
1066 
1067 		/* in this case we're turning on/off only
1068 		 * allmulticast
1069 		 */
1070 		if (allmulti)
1071 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1072 		else
1073 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1074 
1075 		if (ret) {
1076 			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1077 				vf->vf_id, ret);
1078 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1079 			goto error_param;
1080 		}
1081 	} else {
1082 		if (alluni)
1083 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1084 		else
1085 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1086 
1087 		if (allmulti)
1088 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1089 		else
1090 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1091 
1092 		if (ucast_err || mcast_err)
1093 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1094 	}
1095 
1096 	if (!mcast_err) {
1097 		if (allmulti &&
1098 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1099 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1100 				 vf->vf_id);
1101 		else if (!allmulti &&
1102 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1103 					    vf->vf_states))
1104 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1105 				 vf->vf_id);
1106 	} else {
1107 		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1108 			vf->vf_id, mcast_err);
1109 	}
1110 
1111 	if (!ucast_err) {
1112 		if (alluni &&
1113 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1114 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1115 				 vf->vf_id);
1116 		else if (!alluni &&
1117 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1118 					    vf->vf_states))
1119 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1120 				 vf->vf_id);
1121 	} else {
1122 		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1123 			vf->vf_id, ucast_err);
1124 	}
1125 
1126 error_param:
1127 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1128 				     v_ret, NULL, 0);
1129 }
1130 
1131 /**
1132  * ice_vc_get_stats_msg
1133  * @vf: pointer to the VF info
1134  * @msg: pointer to the msg buffer
1135  *
1136  * called from the VF to get VSI stats
1137  */
1138 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1139 {
1140 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1141 	struct virtchnl_queue_select *vqs =
1142 		(struct virtchnl_queue_select *)msg;
1143 	struct ice_eth_stats stats = { 0 };
1144 	struct ice_vsi *vsi;
1145 
1146 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1147 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1148 		goto error_param;
1149 	}
1150 
1151 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1152 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1153 		goto error_param;
1154 	}
1155 
1156 	vsi = ice_get_vf_vsi(vf);
1157 	if (!vsi) {
1158 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1159 		goto error_param;
1160 	}
1161 
1162 	ice_update_eth_stats(vsi);
1163 
1164 	stats = vsi->eth_stats;
1165 
1166 error_param:
1167 	/* send the response to the VF */
1168 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1169 				     (u8 *)&stats, sizeof(stats));
1170 }
1171 
1172 /**
1173  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1174  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1175  *
1176  * Return true on successful validation, else false
1177  */
1178 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1179 {
1180 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1181 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1182 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1183 		return false;
1184 
1185 	return true;
1186 }
1187 
1188 /**
1189  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1190  * @vsi: VSI of the VF to configure
1191  * @q_idx: VF queue index used to determine the queue in the PF's space
1192  */
1193 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1194 {
1195 	struct ice_hw *hw = &vsi->back->hw;
1196 	u32 pfq = vsi->txq_map[q_idx];
1197 	u32 reg;
1198 
1199 	reg = rd32(hw, QINT_TQCTL(pfq));
1200 
1201 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1202 	 * this is most likely a poll mode VF driver, so don't enable an
1203 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1204 	 */
1205 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1206 		return;
1207 
1208 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1209 }
1210 
1211 /**
1212  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1213  * @vsi: VSI of the VF to configure
1214  * @q_idx: VF queue index used to determine the queue in the PF's space
1215  */
1216 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1217 {
1218 	struct ice_hw *hw = &vsi->back->hw;
1219 	u32 pfq = vsi->rxq_map[q_idx];
1220 	u32 reg;
1221 
1222 	reg = rd32(hw, QINT_RQCTL(pfq));
1223 
1224 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1225 	 * this is most likely a poll mode VF driver, so don't enable an
1226 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1227 	 */
1228 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1229 		return;
1230 
1231 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1232 }
1233 
1234 /**
1235  * ice_vc_ena_qs_msg
1236  * @vf: pointer to the VF info
1237  * @msg: pointer to the msg buffer
1238  *
1239  * called from the VF to enable all or specific queue(s)
1240  */
1241 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1242 {
1243 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1244 	struct virtchnl_queue_select *vqs =
1245 	    (struct virtchnl_queue_select *)msg;
1246 	struct ice_vsi *vsi;
1247 	unsigned long q_map;
1248 	u16 vf_q_id;
1249 
1250 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1251 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1252 		goto error_param;
1253 	}
1254 
1255 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1256 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1257 		goto error_param;
1258 	}
1259 
1260 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1261 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1262 		goto error_param;
1263 	}
1264 
1265 	vsi = ice_get_vf_vsi(vf);
1266 	if (!vsi) {
1267 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1268 		goto error_param;
1269 	}
1270 
1271 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1272 	 * Tx queue group list was configured and the context bits were
1273 	 * programmed using ice_vsi_cfg_txqs
1274 	 */
1275 	q_map = vqs->rx_queues;
1276 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1277 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1278 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1279 			goto error_param;
1280 		}
1281 
1282 		/* Skip queue if enabled */
1283 		if (test_bit(vf_q_id, vf->rxq_ena))
1284 			continue;
1285 
1286 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1287 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1288 				vf_q_id, vsi->vsi_num);
1289 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1290 			goto error_param;
1291 		}
1292 
1293 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1294 		set_bit(vf_q_id, vf->rxq_ena);
1295 	}
1296 
1297 	q_map = vqs->tx_queues;
1298 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1299 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1300 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1301 			goto error_param;
1302 		}
1303 
1304 		/* Skip queue if enabled */
1305 		if (test_bit(vf_q_id, vf->txq_ena))
1306 			continue;
1307 
1308 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1309 		set_bit(vf_q_id, vf->txq_ena);
1310 	}
1311 
1312 	/* Set flag to indicate that queues are enabled */
1313 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1314 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1315 
1316 error_param:
1317 	/* send the response to the VF */
1318 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1319 				     NULL, 0);
1320 }
1321 
1322 /**
1323  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1324  * @vf: VF to disable queue for
1325  * @vsi: VSI for the VF
1326  * @q_id: VF relative (0-based) queue ID
1327  *
1328  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1329  * disabled then clear q_id bit in the enabled queues bitmap and return
1330  * success. Otherwise return error.
1331  */
1332 static int
1333 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1334 {
1335 	struct ice_txq_meta txq_meta = { 0 };
1336 	struct ice_tx_ring *ring;
1337 	int err;
1338 
1339 	if (!test_bit(q_id, vf->txq_ena))
1340 		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1341 			q_id, vsi->vsi_num);
1342 
1343 	ring = vsi->tx_rings[q_id];
1344 	if (!ring)
1345 		return -EINVAL;
1346 
1347 	ice_fill_txq_meta(vsi, ring, &txq_meta);
1348 
1349 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1350 	if (err) {
1351 		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1352 			q_id, vsi->vsi_num);
1353 		return err;
1354 	}
1355 
1356 	/* Clear enabled queues flag */
1357 	clear_bit(q_id, vf->txq_ena);
1358 
1359 	return 0;
1360 }
1361 
1362 /**
1363  * ice_vc_dis_qs_msg
1364  * @vf: pointer to the VF info
1365  * @msg: pointer to the msg buffer
1366  *
1367  * called from the VF to disable all or specific queue(s)
1368  */
1369 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1370 {
1371 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1372 	struct virtchnl_queue_select *vqs =
1373 	    (struct virtchnl_queue_select *)msg;
1374 	struct ice_vsi *vsi;
1375 	unsigned long q_map;
1376 	u16 vf_q_id;
1377 
1378 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1379 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1380 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1381 		goto error_param;
1382 	}
1383 
1384 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1385 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1386 		goto error_param;
1387 	}
1388 
1389 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1390 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1391 		goto error_param;
1392 	}
1393 
1394 	vsi = ice_get_vf_vsi(vf);
1395 	if (!vsi) {
1396 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1397 		goto error_param;
1398 	}
1399 
1400 	if (vqs->tx_queues) {
1401 		q_map = vqs->tx_queues;
1402 
1403 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1404 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1405 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1406 				goto error_param;
1407 			}
1408 
1409 			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1410 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1411 				goto error_param;
1412 			}
1413 		}
1414 	}
1415 
1416 	q_map = vqs->rx_queues;
1417 	/* speed up Rx queue disable by batching them if possible */
1418 	if (q_map &&
1419 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1420 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1421 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1422 				vsi->vsi_num);
1423 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1424 			goto error_param;
1425 		}
1426 
1427 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1428 	} else if (q_map) {
1429 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1430 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1431 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1432 				goto error_param;
1433 			}
1434 
1435 			/* Skip queue if not enabled */
1436 			if (!test_bit(vf_q_id, vf->rxq_ena))
1437 				continue;
1438 
1439 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1440 						     true)) {
1441 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1442 					vf_q_id, vsi->vsi_num);
1443 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1444 				goto error_param;
1445 			}
1446 
1447 			/* Clear enabled queues flag */
1448 			clear_bit(vf_q_id, vf->rxq_ena);
1449 		}
1450 	}
1451 
1452 	/* Clear enabled queues flag */
1453 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1454 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1455 
1456 error_param:
1457 	/* send the response to the VF */
1458 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1459 				     NULL, 0);
1460 }
1461 
1462 /**
1463  * ice_cfg_interrupt
1464  * @vf: pointer to the VF info
1465  * @vsi: the VSI being configured
1466  * @vector_id: vector ID
1467  * @map: vector map for mapping vectors to queues
1468  * @q_vector: structure for interrupt vector
1469  * configure the IRQ to queue map
1470  */
1471 static int
1472 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1473 		  struct virtchnl_vector_map *map,
1474 		  struct ice_q_vector *q_vector)
1475 {
1476 	u16 vsi_q_id, vsi_q_id_idx;
1477 	unsigned long qmap;
1478 
1479 	q_vector->num_ring_rx = 0;
1480 	q_vector->num_ring_tx = 0;
1481 
1482 	qmap = map->rxq_map;
1483 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1484 		vsi_q_id = vsi_q_id_idx;
1485 
1486 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1487 			return VIRTCHNL_STATUS_ERR_PARAM;
1488 
1489 		q_vector->num_ring_rx++;
1490 		q_vector->rx.itr_idx = map->rxitr_idx;
1491 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1492 		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1493 				      q_vector->rx.itr_idx);
1494 	}
1495 
1496 	qmap = map->txq_map;
1497 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1498 		vsi_q_id = vsi_q_id_idx;
1499 
1500 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1501 			return VIRTCHNL_STATUS_ERR_PARAM;
1502 
1503 		q_vector->num_ring_tx++;
1504 		q_vector->tx.itr_idx = map->txitr_idx;
1505 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1506 		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1507 				      q_vector->tx.itr_idx);
1508 	}
1509 
1510 	return VIRTCHNL_STATUS_SUCCESS;
1511 }
1512 
1513 /**
1514  * ice_vc_cfg_irq_map_msg
1515  * @vf: pointer to the VF info
1516  * @msg: pointer to the msg buffer
1517  *
1518  * called from the VF to configure the IRQ to queue map
1519  */
1520 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1521 {
1522 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1523 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1524 	struct virtchnl_irq_map_info *irqmap_info;
1525 	struct virtchnl_vector_map *map;
1526 	struct ice_vsi *vsi;
1527 	int i;
1528 
1529 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1530 	num_q_vectors_mapped = irqmap_info->num_vectors;
1531 
1532 	/* Check to make sure number of VF vectors mapped is not greater than
1533 	 * number of VF vectors originally allocated, and check that
1534 	 * there is actually at least a single VF queue vector mapped
1535 	 */
1536 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1537 	    vf->num_msix < num_q_vectors_mapped ||
1538 	    !num_q_vectors_mapped) {
1539 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1540 		goto error_param;
1541 	}
1542 
1543 	vsi = ice_get_vf_vsi(vf);
1544 	if (!vsi) {
1545 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1546 		goto error_param;
1547 	}
1548 
1549 	for (i = 0; i < num_q_vectors_mapped; i++) {
1550 		struct ice_q_vector *q_vector;
1551 
1552 		map = &irqmap_info->vecmap[i];
1553 
1554 		vector_id = map->vector_id;
1555 		vsi_id = map->vsi_id;
1556 		/* vector_id is always 0-based for each VF, and can never be
1557 		 * larger than or equal to the max allowed interrupts per VF
1558 		 */
1559 		if (!(vector_id < vf->num_msix) ||
1560 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1561 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1562 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1563 			goto error_param;
1564 		}
1565 
1566 		/* No need to map VF miscellaneous or rogue vector */
1567 		if (!vector_id)
1568 			continue;
1569 
1570 		/* Subtract non queue vector from vector_id passed by VF
1571 		 * to get actual number of VSI queue vector array index
1572 		 */
1573 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1574 		if (!q_vector) {
1575 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1576 			goto error_param;
1577 		}
1578 
1579 		/* lookout for the invalid queue index */
1580 		v_ret = (enum virtchnl_status_code)
1581 			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1582 		if (v_ret)
1583 			goto error_param;
1584 	}
1585 
1586 error_param:
1587 	/* send the response to the VF */
1588 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1589 				     NULL, 0);
1590 }
1591 
1592 /**
1593  * ice_vc_cfg_qs_msg
1594  * @vf: pointer to the VF info
1595  * @msg: pointer to the msg buffer
1596  *
1597  * called from the VF to configure the Rx/Tx queues
1598  */
1599 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1600 {
1601 	struct virtchnl_vsi_queue_config_info *qci =
1602 	    (struct virtchnl_vsi_queue_config_info *)msg;
1603 	struct virtchnl_queue_pair_info *qpi;
1604 	struct ice_pf *pf = vf->pf;
1605 	struct ice_lag *lag;
1606 	struct ice_vsi *vsi;
1607 	u8 act_prt, pri_prt;
1608 	int i = -1, q_idx;
1609 
1610 	lag = pf->lag;
1611 	mutex_lock(&pf->lag_mutex);
1612 	act_prt = ICE_LAG_INVALID_PORT;
1613 	pri_prt = pf->hw.port_info->lport;
1614 	if (lag && lag->bonded && lag->primary) {
1615 		act_prt = lag->active_port;
1616 		if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1617 		    lag->upper_netdev)
1618 			ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1619 		else
1620 			act_prt = ICE_LAG_INVALID_PORT;
1621 	}
1622 
1623 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1624 		goto error_param;
1625 
1626 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1627 		goto error_param;
1628 
1629 	vsi = ice_get_vf_vsi(vf);
1630 	if (!vsi)
1631 		goto error_param;
1632 
1633 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1634 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1635 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1636 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1637 		goto error_param;
1638 	}
1639 
1640 	for (i = 0; i < qci->num_queue_pairs; i++) {
1641 		if (!qci->qpair[i].rxq.crc_disable)
1642 			continue;
1643 
1644 		if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1645 		    vf->vlan_strip_ena)
1646 			goto error_param;
1647 	}
1648 
1649 	for (i = 0; i < qci->num_queue_pairs; i++) {
1650 		qpi = &qci->qpair[i];
1651 		if (qpi->txq.vsi_id != qci->vsi_id ||
1652 		    qpi->rxq.vsi_id != qci->vsi_id ||
1653 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1654 		    qpi->txq.headwb_enabled ||
1655 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1656 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1657 		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1658 			goto error_param;
1659 		}
1660 
1661 		q_idx = qpi->rxq.queue_id;
1662 
1663 		/* make sure selected "q_idx" is in valid range of queues
1664 		 * for selected "vsi"
1665 		 */
1666 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1667 			goto error_param;
1668 		}
1669 
1670 		/* copy Tx queue info from VF into VSI */
1671 		if (qpi->txq.ring_len > 0) {
1672 			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1673 			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1674 
1675 			/* Disable any existing queue first */
1676 			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1677 				goto error_param;
1678 
1679 			/* Configure a queue with the requested settings */
1680 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1681 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1682 					 vf->vf_id, i);
1683 				goto error_param;
1684 			}
1685 		}
1686 
1687 		/* copy Rx queue info from VF into VSI */
1688 		if (qpi->rxq.ring_len > 0) {
1689 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1690 			u32 rxdid;
1691 
1692 			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1693 			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1694 
1695 			if (qpi->rxq.crc_disable)
1696 				vsi->rx_rings[q_idx]->flags |=
1697 					ICE_RX_FLAGS_CRC_STRIP_DIS;
1698 			else
1699 				vsi->rx_rings[q_idx]->flags &=
1700 					~ICE_RX_FLAGS_CRC_STRIP_DIS;
1701 
1702 			if (qpi->rxq.databuffer_size != 0 &&
1703 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1704 			     qpi->rxq.databuffer_size < 1024))
1705 				goto error_param;
1706 			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1707 			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1708 			if (qpi->rxq.max_pkt_size > max_frame_size ||
1709 			    qpi->rxq.max_pkt_size < 64)
1710 				goto error_param;
1711 
1712 			vsi->max_frame = qpi->rxq.max_pkt_size;
1713 			/* add space for the port VLAN since the VF driver is
1714 			 * not expected to account for it in the MTU
1715 			 * calculation
1716 			 */
1717 			if (ice_vf_is_port_vlan_ena(vf))
1718 				vsi->max_frame += VLAN_HLEN;
1719 
1720 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1721 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1722 					 vf->vf_id, i);
1723 				goto error_param;
1724 			}
1725 
1726 			/* If Rx flex desc is supported, select RXDID for Rx
1727 			 * queues. Otherwise, use legacy 32byte descriptor
1728 			 * format. Legacy 16byte descriptor is not supported.
1729 			 * If this RXDID is selected, return error.
1730 			 */
1731 			if (vf->driver_caps &
1732 			    VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1733 				rxdid = qpi->rxq.rxdid;
1734 				if (!(BIT(rxdid) & pf->supported_rxdids))
1735 					goto error_param;
1736 			} else {
1737 				rxdid = ICE_RXDID_LEGACY_1;
1738 			}
1739 
1740 			ice_write_qrxflxp_cntxt(&vsi->back->hw,
1741 						vsi->rxq_map[q_idx],
1742 						rxdid, 0x03, false);
1743 		}
1744 	}
1745 
1746 	if (lag && lag->bonded && lag->primary &&
1747 	    act_prt != ICE_LAG_INVALID_PORT)
1748 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1749 	mutex_unlock(&pf->lag_mutex);
1750 
1751 	/* send the response to the VF */
1752 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1753 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1754 error_param:
1755 	/* disable whatever we can */
1756 	for (; i >= 0; i--) {
1757 		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1758 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1759 				vf->vf_id, i);
1760 		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1761 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1762 				vf->vf_id, i);
1763 	}
1764 
1765 	if (lag && lag->bonded && lag->primary &&
1766 	    act_prt != ICE_LAG_INVALID_PORT)
1767 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1768 	mutex_unlock(&pf->lag_mutex);
1769 
1770 	ice_lag_move_new_vf_nodes(vf);
1771 
1772 	/* send the response to the VF */
1773 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1774 				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1775 }
1776 
1777 /**
1778  * ice_can_vf_change_mac
1779  * @vf: pointer to the VF info
1780  *
1781  * Return true if the VF is allowed to change its MAC filters, false otherwise
1782  */
1783 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1784 {
1785 	/* If the VF MAC address has been set administratively (via the
1786 	 * ndo_set_vf_mac command), then deny permission to the VF to
1787 	 * add/delete unicast MAC addresses, unless the VF is trusted
1788 	 */
1789 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1790 		return false;
1791 
1792 	return true;
1793 }
1794 
1795 /**
1796  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1797  * @vc_ether_addr: used to extract the type
1798  */
1799 static u8
1800 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1801 {
1802 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1803 }
1804 
1805 /**
1806  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1807  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1808  */
1809 static bool
1810 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1811 {
1812 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1813 
1814 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1815 }
1816 
1817 /**
1818  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1819  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1820  *
1821  * This function should only be called when the MAC address in
1822  * virtchnl_ether_addr is a valid unicast MAC
1823  */
1824 static bool
1825 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1826 {
1827 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1828 
1829 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1830 }
1831 
1832 /**
1833  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1834  * @vf: VF to update
1835  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1836  */
1837 static void
1838 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1839 {
1840 	u8 *mac_addr = vc_ether_addr->addr;
1841 
1842 	if (!is_valid_ether_addr(mac_addr))
1843 		return;
1844 
1845 	/* only allow legacy VF drivers to set the device and hardware MAC if it
1846 	 * is zero and allow new VF drivers to set the hardware MAC if the type
1847 	 * was correctly specified over VIRTCHNL
1848 	 */
1849 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1850 	     is_zero_ether_addr(vf->hw_lan_addr)) ||
1851 	    ice_is_vc_addr_primary(vc_ether_addr)) {
1852 		ether_addr_copy(vf->dev_lan_addr, mac_addr);
1853 		ether_addr_copy(vf->hw_lan_addr, mac_addr);
1854 	}
1855 
1856 	/* hardware and device MACs are already set, but its possible that the
1857 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1858 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1859 	 * away for the legacy VF driver case as it will be updated in the
1860 	 * delete flow for this case
1861 	 */
1862 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1863 		ether_addr_copy(vf->legacy_last_added_umac.addr,
1864 				mac_addr);
1865 		vf->legacy_last_added_umac.time_modified = jiffies;
1866 	}
1867 }
1868 
1869 /**
1870  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1871  * @vf: pointer to the VF info
1872  * @vsi: pointer to the VF's VSI
1873  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1874  */
1875 static int
1876 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1877 		    struct virtchnl_ether_addr *vc_ether_addr)
1878 {
1879 	struct device *dev = ice_pf_to_dev(vf->pf);
1880 	u8 *mac_addr = vc_ether_addr->addr;
1881 	int ret;
1882 
1883 	/* device MAC already added */
1884 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1885 		return 0;
1886 
1887 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1888 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1889 		return -EPERM;
1890 	}
1891 
1892 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1893 	if (ret == -EEXIST) {
1894 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1895 			vf->vf_id);
1896 		/* don't return since we might need to update
1897 		 * the primary MAC in ice_vfhw_mac_add() below
1898 		 */
1899 	} else if (ret) {
1900 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1901 			mac_addr, vf->vf_id, ret);
1902 		return ret;
1903 	} else {
1904 		vf->num_mac++;
1905 	}
1906 
1907 	ice_vfhw_mac_add(vf, vc_ether_addr);
1908 
1909 	return ret;
1910 }
1911 
1912 /**
1913  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1914  * @last_added_umac: structure used to check expiration
1915  */
1916 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1917 {
1918 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1919 	return time_is_before_jiffies(last_added_umac->time_modified +
1920 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1921 }
1922 
1923 /**
1924  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1925  * @vf: VF to update
1926  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1927  *
1928  * only update cached hardware MAC for legacy VF drivers on delete
1929  * because we cannot guarantee order/type of MAC from the VF driver
1930  */
1931 static void
1932 ice_update_legacy_cached_mac(struct ice_vf *vf,
1933 			     struct virtchnl_ether_addr *vc_ether_addr)
1934 {
1935 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1936 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1937 		return;
1938 
1939 	ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1940 	ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1941 }
1942 
1943 /**
1944  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1945  * @vf: VF to update
1946  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1947  */
1948 static void
1949 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1950 {
1951 	u8 *mac_addr = vc_ether_addr->addr;
1952 
1953 	if (!is_valid_ether_addr(mac_addr) ||
1954 	    !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1955 		return;
1956 
1957 	/* allow the device MAC to be repopulated in the add flow and don't
1958 	 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
1959 	 * to be persistent on VM reboot and across driver unload/load, which
1960 	 * won't work if we clear the hardware MAC here
1961 	 */
1962 	eth_zero_addr(vf->dev_lan_addr);
1963 
1964 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
1965 }
1966 
1967 /**
1968  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1969  * @vf: pointer to the VF info
1970  * @vsi: pointer to the VF's VSI
1971  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1972  */
1973 static int
1974 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1975 		    struct virtchnl_ether_addr *vc_ether_addr)
1976 {
1977 	struct device *dev = ice_pf_to_dev(vf->pf);
1978 	u8 *mac_addr = vc_ether_addr->addr;
1979 	int status;
1980 
1981 	if (!ice_can_vf_change_mac(vf) &&
1982 	    ether_addr_equal(vf->dev_lan_addr, mac_addr))
1983 		return 0;
1984 
1985 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1986 	if (status == -ENOENT) {
1987 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1988 			vf->vf_id);
1989 		return -ENOENT;
1990 	} else if (status) {
1991 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1992 			mac_addr, vf->vf_id, status);
1993 		return -EIO;
1994 	}
1995 
1996 	ice_vfhw_mac_del(vf, vc_ether_addr);
1997 
1998 	vf->num_mac--;
1999 
2000 	return 0;
2001 }
2002 
2003 /**
2004  * ice_vc_handle_mac_addr_msg
2005  * @vf: pointer to the VF info
2006  * @msg: pointer to the msg buffer
2007  * @set: true if MAC filters are being set, false otherwise
2008  *
2009  * add guest MAC address filter
2010  */
2011 static int
2012 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2013 {
2014 	int (*ice_vc_cfg_mac)
2015 		(struct ice_vf *vf, struct ice_vsi *vsi,
2016 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
2017 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2018 	struct virtchnl_ether_addr_list *al =
2019 	    (struct virtchnl_ether_addr_list *)msg;
2020 	struct ice_pf *pf = vf->pf;
2021 	enum virtchnl_ops vc_op;
2022 	struct ice_vsi *vsi;
2023 	int i;
2024 
2025 	if (set) {
2026 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2027 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
2028 	} else {
2029 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2030 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
2031 	}
2032 
2033 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2034 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2035 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2036 		goto handle_mac_exit;
2037 	}
2038 
2039 	/* If this VF is not privileged, then we can't add more than a
2040 	 * limited number of addresses. Check to make sure that the
2041 	 * additions do not push us over the limit.
2042 	 */
2043 	if (set && !ice_is_vf_trusted(vf) &&
2044 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2045 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2046 			vf->vf_id);
2047 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2048 		goto handle_mac_exit;
2049 	}
2050 
2051 	vsi = ice_get_vf_vsi(vf);
2052 	if (!vsi) {
2053 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2054 		goto handle_mac_exit;
2055 	}
2056 
2057 	for (i = 0; i < al->num_elements; i++) {
2058 		u8 *mac_addr = al->list[i].addr;
2059 		int result;
2060 
2061 		if (is_broadcast_ether_addr(mac_addr) ||
2062 		    is_zero_ether_addr(mac_addr))
2063 			continue;
2064 
2065 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2066 		if (result == -EEXIST || result == -ENOENT) {
2067 			continue;
2068 		} else if (result) {
2069 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2070 			goto handle_mac_exit;
2071 		}
2072 	}
2073 
2074 handle_mac_exit:
2075 	/* send the response to the VF */
2076 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2077 }
2078 
2079 /**
2080  * ice_vc_add_mac_addr_msg
2081  * @vf: pointer to the VF info
2082  * @msg: pointer to the msg buffer
2083  *
2084  * add guest MAC address filter
2085  */
2086 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2087 {
2088 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2089 }
2090 
2091 /**
2092  * ice_vc_del_mac_addr_msg
2093  * @vf: pointer to the VF info
2094  * @msg: pointer to the msg buffer
2095  *
2096  * remove guest MAC address filter
2097  */
2098 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2099 {
2100 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2101 }
2102 
2103 /**
2104  * ice_vc_request_qs_msg
2105  * @vf: pointer to the VF info
2106  * @msg: pointer to the msg buffer
2107  *
2108  * VFs get a default number of queues but can use this message to request a
2109  * different number. If the request is successful, PF will reset the VF and
2110  * return 0. If unsuccessful, PF will send message informing VF of number of
2111  * available queue pairs via virtchnl message response to VF.
2112  */
2113 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2114 {
2115 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2116 	struct virtchnl_vf_res_request *vfres =
2117 		(struct virtchnl_vf_res_request *)msg;
2118 	u16 req_queues = vfres->num_queue_pairs;
2119 	struct ice_pf *pf = vf->pf;
2120 	u16 max_allowed_vf_queues;
2121 	u16 tx_rx_queue_left;
2122 	struct device *dev;
2123 	u16 cur_queues;
2124 
2125 	dev = ice_pf_to_dev(pf);
2126 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2127 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2128 		goto error_param;
2129 	}
2130 
2131 	cur_queues = vf->num_vf_qs;
2132 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2133 				 ice_get_avail_rxq_count(pf));
2134 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2135 	if (!req_queues) {
2136 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2137 			vf->vf_id);
2138 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2139 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2140 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2141 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2142 	} else if (req_queues > cur_queues &&
2143 		   req_queues - cur_queues > tx_rx_queue_left) {
2144 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2145 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2146 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2147 					       ICE_MAX_RSS_QS_PER_VF);
2148 	} else {
2149 		/* request is successful, then reset VF */
2150 		vf->num_req_qs = req_queues;
2151 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2152 		dev_info(dev, "VF %d granted request of %u queues.\n",
2153 			 vf->vf_id, req_queues);
2154 		return 0;
2155 	}
2156 
2157 error_param:
2158 	/* send the response to the VF */
2159 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2160 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2161 }
2162 
2163 /**
2164  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2165  * @caps: VF driver negotiated capabilities
2166  *
2167  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2168  */
2169 static bool ice_vf_vlan_offload_ena(u32 caps)
2170 {
2171 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2172 }
2173 
2174 /**
2175  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2176  * @vf: VF used to determine if VLAN promiscuous config is allowed
2177  */
2178 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2179 {
2180 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2181 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2182 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2183 		return true;
2184 
2185 	return false;
2186 }
2187 
2188 /**
2189  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2190  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2191  * @vlan: VLAN used to enable VLAN promiscuous
2192  *
2193  * This function should only be called if VLAN promiscuous mode is allowed,
2194  * which can be determined via ice_is_vlan_promisc_allowed().
2195  */
2196 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2197 {
2198 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2199 	int status;
2200 
2201 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2202 					  vlan->vid);
2203 	if (status && status != -EEXIST)
2204 		return status;
2205 
2206 	return 0;
2207 }
2208 
2209 /**
2210  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2211  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2212  * @vlan: VLAN used to disable VLAN promiscuous
2213  *
2214  * This function should only be called if VLAN promiscuous mode is allowed,
2215  * which can be determined via ice_is_vlan_promisc_allowed().
2216  */
2217 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2218 {
2219 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2220 	int status;
2221 
2222 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2223 					    vlan->vid);
2224 	if (status && status != -ENOENT)
2225 		return status;
2226 
2227 	return 0;
2228 }
2229 
2230 /**
2231  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2232  * @vf: VF to check against
2233  * @vsi: VF's VSI
2234  *
2235  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2236  * wants to, so return false.
2237  *
2238  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2239  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2240  */
2241 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2242 {
2243 	if (ice_is_vf_trusted(vf))
2244 		return false;
2245 
2246 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2247 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2248 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2249 }
2250 
2251 /**
2252  * ice_vc_process_vlan_msg
2253  * @vf: pointer to the VF info
2254  * @msg: pointer to the msg buffer
2255  * @add_v: Add VLAN if true, otherwise delete VLAN
2256  *
2257  * Process virtchnl op to add or remove programmed guest VLAN ID
2258  */
2259 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2260 {
2261 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2262 	struct virtchnl_vlan_filter_list *vfl =
2263 	    (struct virtchnl_vlan_filter_list *)msg;
2264 	struct ice_pf *pf = vf->pf;
2265 	bool vlan_promisc = false;
2266 	struct ice_vsi *vsi;
2267 	struct device *dev;
2268 	int status = 0;
2269 	int i;
2270 
2271 	dev = ice_pf_to_dev(pf);
2272 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2273 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2274 		goto error_param;
2275 	}
2276 
2277 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2278 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2279 		goto error_param;
2280 	}
2281 
2282 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2283 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2284 		goto error_param;
2285 	}
2286 
2287 	for (i = 0; i < vfl->num_elements; i++) {
2288 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2289 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2290 			dev_err(dev, "invalid VF VLAN id %d\n",
2291 				vfl->vlan_id[i]);
2292 			goto error_param;
2293 		}
2294 	}
2295 
2296 	vsi = ice_get_vf_vsi(vf);
2297 	if (!vsi) {
2298 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2299 		goto error_param;
2300 	}
2301 
2302 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2303 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2304 			 vf->vf_id);
2305 		/* There is no need to let VF know about being not trusted,
2306 		 * so we can just return success message here
2307 		 */
2308 		goto error_param;
2309 	}
2310 
2311 	/* in DVM a VF can add/delete inner VLAN filters when
2312 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2313 	 */
2314 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2315 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2316 		goto error_param;
2317 	}
2318 
2319 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2320 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2321 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2322 	 */
2323 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2324 		!ice_is_dvm_ena(&pf->hw) &&
2325 		!ice_vf_is_port_vlan_ena(vf);
2326 
2327 	if (add_v) {
2328 		for (i = 0; i < vfl->num_elements; i++) {
2329 			u16 vid = vfl->vlan_id[i];
2330 			struct ice_vlan vlan;
2331 
2332 			if (ice_vf_has_max_vlans(vf, vsi)) {
2333 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2334 					 vf->vf_id);
2335 				/* There is no need to let VF know about being
2336 				 * not trusted, so we can just return success
2337 				 * message here as well.
2338 				 */
2339 				goto error_param;
2340 			}
2341 
2342 			/* we add VLAN 0 by default for each VF so we can enable
2343 			 * Tx VLAN anti-spoof without triggering MDD events so
2344 			 * we don't need to add it again here
2345 			 */
2346 			if (!vid)
2347 				continue;
2348 
2349 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2350 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2351 			if (status) {
2352 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2353 				goto error_param;
2354 			}
2355 
2356 			/* Enable VLAN filtering on first non-zero VLAN */
2357 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2358 				if (vf->spoofchk) {
2359 					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2360 					if (status) {
2361 						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2362 						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2363 							vid, status);
2364 						goto error_param;
2365 					}
2366 				}
2367 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2368 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2369 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2370 						vid, status);
2371 					goto error_param;
2372 				}
2373 			} else if (vlan_promisc) {
2374 				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2375 				if (status) {
2376 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2377 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2378 						vid, status);
2379 				}
2380 			}
2381 		}
2382 	} else {
2383 		/* In case of non_trusted VF, number of VLAN elements passed
2384 		 * to PF for removal might be greater than number of VLANs
2385 		 * filter programmed for that VF - So, use actual number of
2386 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2387 		 * removing VLAN that doesn't exist, which result to sending
2388 		 * erroneous failed message back to the VF
2389 		 */
2390 		int num_vf_vlan;
2391 
2392 		num_vf_vlan = vsi->num_vlan;
2393 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2394 			u16 vid = vfl->vlan_id[i];
2395 			struct ice_vlan vlan;
2396 
2397 			/* we add VLAN 0 by default for each VF so we can enable
2398 			 * Tx VLAN anti-spoof without triggering MDD events so
2399 			 * we don't want a VIRTCHNL request to remove it
2400 			 */
2401 			if (!vid)
2402 				continue;
2403 
2404 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2405 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2406 			if (status) {
2407 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2408 				goto error_param;
2409 			}
2410 
2411 			/* Disable VLAN filtering when only VLAN 0 is left */
2412 			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2413 				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2414 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2415 			}
2416 
2417 			if (vlan_promisc)
2418 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2419 		}
2420 	}
2421 
2422 error_param:
2423 	/* send the response to the VF */
2424 	if (add_v)
2425 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2426 					     NULL, 0);
2427 	else
2428 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2429 					     NULL, 0);
2430 }
2431 
2432 /**
2433  * ice_vc_add_vlan_msg
2434  * @vf: pointer to the VF info
2435  * @msg: pointer to the msg buffer
2436  *
2437  * Add and program guest VLAN ID
2438  */
2439 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2440 {
2441 	return ice_vc_process_vlan_msg(vf, msg, true);
2442 }
2443 
2444 /**
2445  * ice_vc_remove_vlan_msg
2446  * @vf: pointer to the VF info
2447  * @msg: pointer to the msg buffer
2448  *
2449  * remove programmed guest VLAN ID
2450  */
2451 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2452 {
2453 	return ice_vc_process_vlan_msg(vf, msg, false);
2454 }
2455 
2456 /**
2457  * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2458  * @vsi: pointer to the VF VSI info
2459  */
2460 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2461 {
2462 	unsigned int i;
2463 
2464 	ice_for_each_alloc_rxq(vsi, i)
2465 		if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2466 			return true;
2467 
2468 	return false;
2469 }
2470 
2471 /**
2472  * ice_vc_ena_vlan_stripping
2473  * @vf: pointer to the VF info
2474  *
2475  * Enable VLAN header stripping for a given VF
2476  */
2477 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2478 {
2479 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2480 	struct ice_vsi *vsi;
2481 
2482 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2483 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2484 		goto error_param;
2485 	}
2486 
2487 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2488 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2489 		goto error_param;
2490 	}
2491 
2492 	vsi = ice_get_vf_vsi(vf);
2493 	if (!vsi) {
2494 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2495 		goto error_param;
2496 	}
2497 
2498 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2499 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2500 	else
2501 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2502 
2503 error_param:
2504 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2505 				     v_ret, NULL, 0);
2506 }
2507 
2508 /**
2509  * ice_vc_dis_vlan_stripping
2510  * @vf: pointer to the VF info
2511  *
2512  * Disable VLAN header stripping for a given VF
2513  */
2514 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2515 {
2516 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2517 	struct ice_vsi *vsi;
2518 
2519 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2520 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2521 		goto error_param;
2522 	}
2523 
2524 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2525 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2526 		goto error_param;
2527 	}
2528 
2529 	vsi = ice_get_vf_vsi(vf);
2530 	if (!vsi) {
2531 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2532 		goto error_param;
2533 	}
2534 
2535 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2536 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2537 	else
2538 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2539 
2540 error_param:
2541 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2542 				     v_ret, NULL, 0);
2543 }
2544 
2545 /**
2546  * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2547  * @vf: pointer to the VF info
2548  */
2549 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2550 {
2551 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2552 	struct virtchnl_rss_hena *vrh = NULL;
2553 	int len = 0, ret;
2554 
2555 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2556 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2557 		goto err;
2558 	}
2559 
2560 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2561 		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2562 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2563 		goto err;
2564 	}
2565 
2566 	len = sizeof(struct virtchnl_rss_hena);
2567 	vrh = kzalloc(len, GFP_KERNEL);
2568 	if (!vrh) {
2569 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2570 		len = 0;
2571 		goto err;
2572 	}
2573 
2574 	vrh->hena = ICE_DEFAULT_RSS_HENA;
2575 err:
2576 	/* send the response back to the VF */
2577 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2578 				    (u8 *)vrh, len);
2579 	kfree(vrh);
2580 	return ret;
2581 }
2582 
2583 /**
2584  * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2585  * @vf: pointer to the VF info
2586  * @msg: pointer to the msg buffer
2587  */
2588 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2589 {
2590 	struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2591 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2592 	struct ice_pf *pf = vf->pf;
2593 	struct ice_vsi *vsi;
2594 	struct device *dev;
2595 	int status;
2596 
2597 	dev = ice_pf_to_dev(pf);
2598 
2599 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2600 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2601 		goto err;
2602 	}
2603 
2604 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2605 		dev_err(dev, "RSS not supported by PF\n");
2606 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2607 		goto err;
2608 	}
2609 
2610 	vsi = ice_get_vf_vsi(vf);
2611 	if (!vsi) {
2612 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2613 		goto err;
2614 	}
2615 
2616 	/* clear all previously programmed RSS configuration to allow VF drivers
2617 	 * the ability to customize the RSS configuration and/or completely
2618 	 * disable RSS
2619 	 */
2620 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2621 	if (status && !vrh->hena) {
2622 		/* only report failure to clear the current RSS configuration if
2623 		 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2624 		 */
2625 		v_ret = ice_err_to_virt_err(status);
2626 		goto err;
2627 	} else if (status) {
2628 		/* allow the VF to update the RSS configuration even on failure
2629 		 * to clear the current RSS confguration in an attempt to keep
2630 		 * RSS in a working state
2631 		 */
2632 		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2633 			 vf->vf_id);
2634 	}
2635 
2636 	if (vrh->hena) {
2637 		status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena);
2638 		v_ret = ice_err_to_virt_err(status);
2639 	}
2640 
2641 	/* send the response to the VF */
2642 err:
2643 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2644 				     NULL, 0);
2645 }
2646 
2647 /**
2648  * ice_vc_query_rxdid - query RXDID supported by DDP package
2649  * @vf: pointer to VF info
2650  *
2651  * Called from VF to query a bitmap of supported flexible
2652  * descriptor RXDIDs of a DDP package.
2653  */
2654 static int ice_vc_query_rxdid(struct ice_vf *vf)
2655 {
2656 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2657 	struct virtchnl_supported_rxdids *rxdid = NULL;
2658 	struct ice_hw *hw = &vf->pf->hw;
2659 	struct ice_pf *pf = vf->pf;
2660 	int len = 0;
2661 	int ret, i;
2662 	u32 regval;
2663 
2664 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2665 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2666 		goto err;
2667 	}
2668 
2669 	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2670 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2671 		goto err;
2672 	}
2673 
2674 	len = sizeof(struct virtchnl_supported_rxdids);
2675 	rxdid = kzalloc(len, GFP_KERNEL);
2676 	if (!rxdid) {
2677 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2678 		len = 0;
2679 		goto err;
2680 	}
2681 
2682 	/* RXDIDs supported by DDP package can be read from the register
2683 	 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2684 	 * is not listed in DDP package, add it in the bitmap manually.
2685 	 * Legacy 16byte descriptor is not supported.
2686 	 */
2687 	rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2688 
2689 	for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2690 		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2691 		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2692 			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2693 			rxdid->supported_rxdids |= BIT(i);
2694 	}
2695 
2696 	pf->supported_rxdids = rxdid->supported_rxdids;
2697 
2698 err:
2699 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2700 				    v_ret, (u8 *)rxdid, len);
2701 	kfree(rxdid);
2702 	return ret;
2703 }
2704 
2705 /**
2706  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2707  * @vf: VF to enable/disable VLAN stripping for on initialization
2708  *
2709  * Set the default for VLAN stripping based on whether a port VLAN is configured
2710  * and the current VLAN mode of the device.
2711  */
2712 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2713 {
2714 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2715 
2716 	vf->vlan_strip_ena = 0;
2717 
2718 	if (!vsi)
2719 		return -EINVAL;
2720 
2721 	/* don't modify stripping if port VLAN is configured in SVM since the
2722 	 * port VLAN is based on the inner/single VLAN in SVM
2723 	 */
2724 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2725 		return 0;
2726 
2727 	if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2728 		int err;
2729 
2730 		err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2731 		if (!err)
2732 			vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2733 		return err;
2734 	}
2735 
2736 	return vsi->inner_vlan_ops.dis_stripping(vsi);
2737 }
2738 
2739 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2740 {
2741 	if (vf->trusted)
2742 		return VLAN_N_VID;
2743 	else
2744 		return ICE_MAX_VLAN_PER_VF;
2745 }
2746 
2747 /**
2748  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2749  * @vf: VF that being checked for
2750  *
2751  * When the device is in double VLAN mode, check whether or not the outer VLAN
2752  * is allowed.
2753  */
2754 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2755 {
2756 	if (ice_vf_is_port_vlan_ena(vf))
2757 		return true;
2758 
2759 	return false;
2760 }
2761 
2762 /**
2763  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2764  * @vf: VF that capabilities are being set for
2765  * @caps: VLAN capabilities to populate
2766  *
2767  * Determine VLAN capabilities support based on whether a port VLAN is
2768  * configured. If a port VLAN is configured then the VF should use the inner
2769  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2770  * capabilies.
2771  */
2772 static void
2773 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2774 {
2775 	struct virtchnl_vlan_supported_caps *supported_caps;
2776 
2777 	if (ice_vf_outer_vlan_not_allowed(vf)) {
2778 		/* until support for inner VLAN filtering is added when a port
2779 		 * VLAN is configured, only support software offloaded inner
2780 		 * VLANs when a port VLAN is confgured in DVM
2781 		 */
2782 		supported_caps = &caps->filtering.filtering_support;
2783 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2784 
2785 		supported_caps = &caps->offloads.stripping_support;
2786 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2787 					VIRTCHNL_VLAN_TOGGLE |
2788 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2789 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2790 
2791 		supported_caps = &caps->offloads.insertion_support;
2792 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2793 					VIRTCHNL_VLAN_TOGGLE |
2794 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2795 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2796 
2797 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2798 		caps->offloads.ethertype_match =
2799 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2800 	} else {
2801 		supported_caps = &caps->filtering.filtering_support;
2802 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2803 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2804 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2805 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2806 					VIRTCHNL_VLAN_ETHERTYPE_AND;
2807 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2808 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2809 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2810 
2811 		supported_caps = &caps->offloads.stripping_support;
2812 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2813 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2814 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2815 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2816 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2817 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2818 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2819 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2820 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2821 
2822 		supported_caps = &caps->offloads.insertion_support;
2823 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2824 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2825 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2826 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2827 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2828 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2829 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2830 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2831 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2832 
2833 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2834 
2835 		caps->offloads.ethertype_match =
2836 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2837 	}
2838 
2839 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2840 }
2841 
2842 /**
2843  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2844  * @vf: VF that capabilities are being set for
2845  * @caps: VLAN capabilities to populate
2846  *
2847  * Determine VLAN capabilities support based on whether a port VLAN is
2848  * configured. If a port VLAN is configured then the VF does not have any VLAN
2849  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2850  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2851  * VLAN fitlering and offload capabilities.
2852  */
2853 static void
2854 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2855 {
2856 	struct virtchnl_vlan_supported_caps *supported_caps;
2857 
2858 	if (ice_vf_is_port_vlan_ena(vf)) {
2859 		supported_caps = &caps->filtering.filtering_support;
2860 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2861 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2862 
2863 		supported_caps = &caps->offloads.stripping_support;
2864 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2865 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2866 
2867 		supported_caps = &caps->offloads.insertion_support;
2868 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2869 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2870 
2871 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2872 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2873 		caps->filtering.max_filters = 0;
2874 	} else {
2875 		supported_caps = &caps->filtering.filtering_support;
2876 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2877 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2878 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2879 
2880 		supported_caps = &caps->offloads.stripping_support;
2881 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2882 					VIRTCHNL_VLAN_TOGGLE |
2883 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2884 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2885 
2886 		supported_caps = &caps->offloads.insertion_support;
2887 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2888 					VIRTCHNL_VLAN_TOGGLE |
2889 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2890 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2891 
2892 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2893 		caps->offloads.ethertype_match =
2894 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2895 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2896 	}
2897 }
2898 
2899 /**
2900  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2901  * @vf: VF to determine VLAN capabilities for
2902  *
2903  * This will only be called if the VF and PF successfully negotiated
2904  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2905  *
2906  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2907  * is configured or not.
2908  */
2909 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2910 {
2911 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2912 	struct virtchnl_vlan_caps *caps = NULL;
2913 	int err, len = 0;
2914 
2915 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2916 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2917 		goto out;
2918 	}
2919 
2920 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2921 	if (!caps) {
2922 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2923 		goto out;
2924 	}
2925 	len = sizeof(*caps);
2926 
2927 	if (ice_is_dvm_ena(&vf->pf->hw))
2928 		ice_vc_set_dvm_caps(vf, caps);
2929 	else
2930 		ice_vc_set_svm_caps(vf, caps);
2931 
2932 	/* store negotiated caps to prevent invalid VF messages */
2933 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2934 
2935 out:
2936 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2937 				    v_ret, (u8 *)caps, len);
2938 	kfree(caps);
2939 	return err;
2940 }
2941 
2942 /**
2943  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2944  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2945  * @tpid: VLAN TPID used for validation
2946  *
2947  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2948  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2949  */
2950 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2951 {
2952 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2953 
2954 	switch (tpid) {
2955 	case ETH_P_8021Q:
2956 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2957 		break;
2958 	case ETH_P_8021AD:
2959 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2960 		break;
2961 	case ETH_P_QINQ1:
2962 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2963 		break;
2964 	}
2965 
2966 	if (!(filtering_caps & vlan_ethertype))
2967 		return false;
2968 
2969 	return true;
2970 }
2971 
2972 /**
2973  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2974  * @vc_vlan: virtchnl_vlan to validate
2975  *
2976  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2977  * false. Otherwise return true.
2978  */
2979 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2980 {
2981 	if (!vc_vlan->tci || !vc_vlan->tpid)
2982 		return false;
2983 
2984 	return true;
2985 }
2986 
2987 /**
2988  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2989  * @vfc: negotiated/supported VLAN filtering capabilities
2990  * @vfl: VLAN filter list from VF to validate
2991  *
2992  * Validate all of the filters in the VLAN filter list from the VF. If any of
2993  * the checks fail then return false. Otherwise return true.
2994  */
2995 static bool
2996 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2997 				 struct virtchnl_vlan_filter_list_v2 *vfl)
2998 {
2999 	u16 i;
3000 
3001 	if (!vfl->num_elements)
3002 		return false;
3003 
3004 	for (i = 0; i < vfl->num_elements; i++) {
3005 		struct virtchnl_vlan_supported_caps *filtering_support =
3006 			&vfc->filtering_support;
3007 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3008 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
3009 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
3010 
3011 		if ((ice_vc_is_valid_vlan(outer) &&
3012 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3013 		    (ice_vc_is_valid_vlan(inner) &&
3014 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3015 			return false;
3016 
3017 		if ((outer->tci_mask &&
3018 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3019 		    (inner->tci_mask &&
3020 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3021 			return false;
3022 
3023 		if (((outer->tci & VLAN_PRIO_MASK) &&
3024 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3025 		    ((inner->tci & VLAN_PRIO_MASK) &&
3026 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3027 			return false;
3028 
3029 		if ((ice_vc_is_valid_vlan(outer) &&
3030 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
3031 						outer->tpid)) ||
3032 		    (ice_vc_is_valid_vlan(inner) &&
3033 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
3034 						inner->tpid)))
3035 			return false;
3036 	}
3037 
3038 	return true;
3039 }
3040 
3041 /**
3042  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3043  * @vc_vlan: struct virtchnl_vlan to transform
3044  */
3045 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3046 {
3047 	struct ice_vlan vlan = { 0 };
3048 
3049 	vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3050 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3051 	vlan.tpid = vc_vlan->tpid;
3052 
3053 	return vlan;
3054 }
3055 
3056 /**
3057  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3058  * @vsi: VF's VSI used to perform the action
3059  * @vlan_action: function to perform the action with (i.e. add/del)
3060  * @vlan: VLAN filter to perform the action with
3061  */
3062 static int
3063 ice_vc_vlan_action(struct ice_vsi *vsi,
3064 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3065 		   struct ice_vlan *vlan)
3066 {
3067 	int err;
3068 
3069 	err = vlan_action(vsi, vlan);
3070 	if (err)
3071 		return err;
3072 
3073 	return 0;
3074 }
3075 
3076 /**
3077  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3078  * @vf: VF used to delete the VLAN(s)
3079  * @vsi: VF's VSI used to delete the VLAN(s)
3080  * @vfl: virthchnl filter list used to delete the filters
3081  */
3082 static int
3083 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3084 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3085 {
3086 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3087 	int err;
3088 	u16 i;
3089 
3090 	for (i = 0; i < vfl->num_elements; i++) {
3091 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3092 		struct virtchnl_vlan *vc_vlan;
3093 
3094 		vc_vlan = &vlan_fltr->outer;
3095 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3096 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3097 
3098 			err = ice_vc_vlan_action(vsi,
3099 						 vsi->outer_vlan_ops.del_vlan,
3100 						 &vlan);
3101 			if (err)
3102 				return err;
3103 
3104 			if (vlan_promisc)
3105 				ice_vf_dis_vlan_promisc(vsi, &vlan);
3106 
3107 			/* Disable VLAN filtering when only VLAN 0 is left */
3108 			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3109 				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3110 				if (err)
3111 					return err;
3112 			}
3113 		}
3114 
3115 		vc_vlan = &vlan_fltr->inner;
3116 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3117 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3118 
3119 			err = ice_vc_vlan_action(vsi,
3120 						 vsi->inner_vlan_ops.del_vlan,
3121 						 &vlan);
3122 			if (err)
3123 				return err;
3124 
3125 			/* no support for VLAN promiscuous on inner VLAN unless
3126 			 * we are in Single VLAN Mode (SVM)
3127 			 */
3128 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3129 				if (vlan_promisc)
3130 					ice_vf_dis_vlan_promisc(vsi, &vlan);
3131 
3132 				/* Disable VLAN filtering when only VLAN 0 is left */
3133 				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3134 					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3135 					if (err)
3136 						return err;
3137 				}
3138 			}
3139 		}
3140 	}
3141 
3142 	return 0;
3143 }
3144 
3145 /**
3146  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3147  * @vf: VF the message was received from
3148  * @msg: message received from the VF
3149  */
3150 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3151 {
3152 	struct virtchnl_vlan_filter_list_v2 *vfl =
3153 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3154 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3155 	struct ice_vsi *vsi;
3156 
3157 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3158 					      vfl)) {
3159 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3160 		goto out;
3161 	}
3162 
3163 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3164 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3165 		goto out;
3166 	}
3167 
3168 	vsi = ice_get_vf_vsi(vf);
3169 	if (!vsi) {
3170 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3171 		goto out;
3172 	}
3173 
3174 	if (ice_vc_del_vlans(vf, vsi, vfl))
3175 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3176 
3177 out:
3178 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3179 				     0);
3180 }
3181 
3182 /**
3183  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3184  * @vf: VF used to add the VLAN(s)
3185  * @vsi: VF's VSI used to add the VLAN(s)
3186  * @vfl: virthchnl filter list used to add the filters
3187  */
3188 static int
3189 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3190 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3191 {
3192 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3193 	int err;
3194 	u16 i;
3195 
3196 	for (i = 0; i < vfl->num_elements; i++) {
3197 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3198 		struct virtchnl_vlan *vc_vlan;
3199 
3200 		vc_vlan = &vlan_fltr->outer;
3201 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3202 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3203 
3204 			err = ice_vc_vlan_action(vsi,
3205 						 vsi->outer_vlan_ops.add_vlan,
3206 						 &vlan);
3207 			if (err)
3208 				return err;
3209 
3210 			if (vlan_promisc) {
3211 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3212 				if (err)
3213 					return err;
3214 			}
3215 
3216 			/* Enable VLAN filtering on first non-zero VLAN */
3217 			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3218 				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3219 				if (err)
3220 					return err;
3221 			}
3222 		}
3223 
3224 		vc_vlan = &vlan_fltr->inner;
3225 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3226 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3227 
3228 			err = ice_vc_vlan_action(vsi,
3229 						 vsi->inner_vlan_ops.add_vlan,
3230 						 &vlan);
3231 			if (err)
3232 				return err;
3233 
3234 			/* no support for VLAN promiscuous on inner VLAN unless
3235 			 * we are in Single VLAN Mode (SVM)
3236 			 */
3237 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3238 				if (vlan_promisc) {
3239 					err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3240 					if (err)
3241 						return err;
3242 				}
3243 
3244 				/* Enable VLAN filtering on first non-zero VLAN */
3245 				if (vf->spoofchk && vlan.vid) {
3246 					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3247 					if (err)
3248 						return err;
3249 				}
3250 			}
3251 		}
3252 	}
3253 
3254 	return 0;
3255 }
3256 
3257 /**
3258  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3259  * @vsi: VF VSI used to get number of existing VLAN filters
3260  * @vfc: negotiated/supported VLAN filtering capabilities
3261  * @vfl: VLAN filter list from VF to validate
3262  *
3263  * Validate all of the filters in the VLAN filter list from the VF during the
3264  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3265  * Otherwise return true.
3266  */
3267 static bool
3268 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3269 				     struct virtchnl_vlan_filtering_caps *vfc,
3270 				     struct virtchnl_vlan_filter_list_v2 *vfl)
3271 {
3272 	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3273 		vfl->num_elements;
3274 
3275 	if (num_requested_filters > vfc->max_filters)
3276 		return false;
3277 
3278 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3279 }
3280 
3281 /**
3282  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3283  * @vf: VF the message was received from
3284  * @msg: message received from the VF
3285  */
3286 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3287 {
3288 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3289 	struct virtchnl_vlan_filter_list_v2 *vfl =
3290 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3291 	struct ice_vsi *vsi;
3292 
3293 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3294 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3295 		goto out;
3296 	}
3297 
3298 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3299 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3300 		goto out;
3301 	}
3302 
3303 	vsi = ice_get_vf_vsi(vf);
3304 	if (!vsi) {
3305 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3306 		goto out;
3307 	}
3308 
3309 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3310 						  &vf->vlan_v2_caps.filtering,
3311 						  vfl)) {
3312 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3313 		goto out;
3314 	}
3315 
3316 	if (ice_vc_add_vlans(vf, vsi, vfl))
3317 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3318 
3319 out:
3320 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3321 				     0);
3322 }
3323 
3324 /**
3325  * ice_vc_valid_vlan_setting - validate VLAN setting
3326  * @negotiated_settings: negotiated VLAN settings during VF init
3327  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3328  */
3329 static bool
3330 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3331 {
3332 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3333 		return false;
3334 
3335 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3336 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3337 	 */
3338 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3339 	    hweight32(ethertype_setting) > 1)
3340 		return false;
3341 
3342 	/* ability to modify the VLAN setting was not negotiated */
3343 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3344 		return false;
3345 
3346 	return true;
3347 }
3348 
3349 /**
3350  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3351  * @caps: negotiated VLAN settings during VF init
3352  * @msg: message to validate
3353  *
3354  * Used to validate any VLAN virtchnl message sent as a
3355  * virtchnl_vlan_setting structure. Validates the message against the
3356  * negotiated/supported caps during VF driver init.
3357  */
3358 static bool
3359 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3360 			      struct virtchnl_vlan_setting *msg)
3361 {
3362 	if ((!msg->outer_ethertype_setting &&
3363 	     !msg->inner_ethertype_setting) ||
3364 	    (!caps->outer && !caps->inner))
3365 		return false;
3366 
3367 	if (msg->outer_ethertype_setting &&
3368 	    !ice_vc_valid_vlan_setting(caps->outer,
3369 				       msg->outer_ethertype_setting))
3370 		return false;
3371 
3372 	if (msg->inner_ethertype_setting &&
3373 	    !ice_vc_valid_vlan_setting(caps->inner,
3374 				       msg->inner_ethertype_setting))
3375 		return false;
3376 
3377 	return true;
3378 }
3379 
3380 /**
3381  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3382  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3383  * @tpid: VLAN TPID to populate
3384  */
3385 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3386 {
3387 	switch (ethertype_setting) {
3388 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3389 		*tpid = ETH_P_8021Q;
3390 		break;
3391 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3392 		*tpid = ETH_P_8021AD;
3393 		break;
3394 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3395 		*tpid = ETH_P_QINQ1;
3396 		break;
3397 	default:
3398 		*tpid = 0;
3399 		return -EINVAL;
3400 	}
3401 
3402 	return 0;
3403 }
3404 
3405 /**
3406  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3407  * @vsi: VF's VSI used to enable the VLAN offload
3408  * @ena_offload: function used to enable the VLAN offload
3409  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3410  */
3411 static int
3412 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3413 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3414 			u32 ethertype_setting)
3415 {
3416 	u16 tpid;
3417 	int err;
3418 
3419 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3420 	if (err)
3421 		return err;
3422 
3423 	err = ena_offload(vsi, tpid);
3424 	if (err)
3425 		return err;
3426 
3427 	return 0;
3428 }
3429 
3430 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3431 #define ICE_L2TSEL_BIT_OFFSET		23
3432 enum ice_l2tsel {
3433 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3434 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3435 };
3436 
3437 /**
3438  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3439  * @vsi: VSI used to update l2tsel on
3440  * @l2tsel: l2tsel setting requested
3441  *
3442  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3443  * This will modify which descriptor field the first offloaded VLAN will be
3444  * stripped into.
3445  */
3446 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3447 {
3448 	struct ice_hw *hw = &vsi->back->hw;
3449 	u32 l2tsel_bit;
3450 	int i;
3451 
3452 	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3453 		l2tsel_bit = 0;
3454 	else
3455 		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3456 
3457 	for (i = 0; i < vsi->alloc_rxq; i++) {
3458 		u16 pfq = vsi->rxq_map[i];
3459 		u32 qrx_context_offset;
3460 		u32 regval;
3461 
3462 		qrx_context_offset =
3463 			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3464 
3465 		regval = rd32(hw, qrx_context_offset);
3466 		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3467 		regval |= l2tsel_bit;
3468 		wr32(hw, qrx_context_offset, regval);
3469 	}
3470 }
3471 
3472 /**
3473  * ice_vc_ena_vlan_stripping_v2_msg
3474  * @vf: VF the message was received from
3475  * @msg: message received from the VF
3476  *
3477  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3478  */
3479 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3480 {
3481 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3482 	struct virtchnl_vlan_supported_caps *stripping_support;
3483 	struct virtchnl_vlan_setting *strip_msg =
3484 		(struct virtchnl_vlan_setting *)msg;
3485 	u32 ethertype_setting;
3486 	struct ice_vsi *vsi;
3487 
3488 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3489 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3490 		goto out;
3491 	}
3492 
3493 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3494 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3495 		goto out;
3496 	}
3497 
3498 	vsi = ice_get_vf_vsi(vf);
3499 	if (!vsi) {
3500 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3501 		goto out;
3502 	}
3503 
3504 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3505 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3506 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3507 		goto out;
3508 	}
3509 
3510 	if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3511 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3512 		goto out;
3513 	}
3514 
3515 	ethertype_setting = strip_msg->outer_ethertype_setting;
3516 	if (ethertype_setting) {
3517 		if (ice_vc_ena_vlan_offload(vsi,
3518 					    vsi->outer_vlan_ops.ena_stripping,
3519 					    ethertype_setting)) {
3520 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3521 			goto out;
3522 		} else {
3523 			enum ice_l2tsel l2tsel =
3524 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3525 
3526 			/* PF tells the VF that the outer VLAN tag is always
3527 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3528 			 * inner is always extracted to
3529 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3530 			 * support outer stripping so the first tag always ends
3531 			 * up in L2TAG2_2ND and the second/inner tag, if
3532 			 * enabled, is extracted in L2TAG1.
3533 			 */
3534 			ice_vsi_update_l2tsel(vsi, l2tsel);
3535 
3536 			vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3537 		}
3538 	}
3539 
3540 	ethertype_setting = strip_msg->inner_ethertype_setting;
3541 	if (ethertype_setting &&
3542 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3543 				    ethertype_setting)) {
3544 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3545 		goto out;
3546 	}
3547 
3548 	if (ethertype_setting)
3549 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3550 
3551 out:
3552 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3553 				     v_ret, NULL, 0);
3554 }
3555 
3556 /**
3557  * ice_vc_dis_vlan_stripping_v2_msg
3558  * @vf: VF the message was received from
3559  * @msg: message received from the VF
3560  *
3561  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3562  */
3563 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3564 {
3565 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3566 	struct virtchnl_vlan_supported_caps *stripping_support;
3567 	struct virtchnl_vlan_setting *strip_msg =
3568 		(struct virtchnl_vlan_setting *)msg;
3569 	u32 ethertype_setting;
3570 	struct ice_vsi *vsi;
3571 
3572 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3573 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3574 		goto out;
3575 	}
3576 
3577 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3578 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3579 		goto out;
3580 	}
3581 
3582 	vsi = ice_get_vf_vsi(vf);
3583 	if (!vsi) {
3584 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3585 		goto out;
3586 	}
3587 
3588 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3589 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3590 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3591 		goto out;
3592 	}
3593 
3594 	ethertype_setting = strip_msg->outer_ethertype_setting;
3595 	if (ethertype_setting) {
3596 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3597 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3598 			goto out;
3599 		} else {
3600 			enum ice_l2tsel l2tsel =
3601 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3602 
3603 			/* PF tells the VF that the outer VLAN tag is always
3604 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3605 			 * inner is always extracted to
3606 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3607 			 * support inner stripping while outer stripping is
3608 			 * disabled so that the first and only tag is extracted
3609 			 * in L2TAG1.
3610 			 */
3611 			ice_vsi_update_l2tsel(vsi, l2tsel);
3612 
3613 			vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3614 		}
3615 	}
3616 
3617 	ethertype_setting = strip_msg->inner_ethertype_setting;
3618 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3619 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3620 		goto out;
3621 	}
3622 
3623 	if (ethertype_setting)
3624 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3625 
3626 out:
3627 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3628 				     v_ret, NULL, 0);
3629 }
3630 
3631 /**
3632  * ice_vc_ena_vlan_insertion_v2_msg
3633  * @vf: VF the message was received from
3634  * @msg: message received from the VF
3635  *
3636  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3637  */
3638 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3639 {
3640 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3641 	struct virtchnl_vlan_supported_caps *insertion_support;
3642 	struct virtchnl_vlan_setting *insertion_msg =
3643 		(struct virtchnl_vlan_setting *)msg;
3644 	u32 ethertype_setting;
3645 	struct ice_vsi *vsi;
3646 
3647 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3648 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3649 		goto out;
3650 	}
3651 
3652 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3653 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3654 		goto out;
3655 	}
3656 
3657 	vsi = ice_get_vf_vsi(vf);
3658 	if (!vsi) {
3659 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3660 		goto out;
3661 	}
3662 
3663 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3664 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3665 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3666 		goto out;
3667 	}
3668 
3669 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3670 	if (ethertype_setting &&
3671 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3672 				    ethertype_setting)) {
3673 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3674 		goto out;
3675 	}
3676 
3677 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3678 	if (ethertype_setting &&
3679 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3680 				    ethertype_setting)) {
3681 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3682 		goto out;
3683 	}
3684 
3685 out:
3686 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3687 				     v_ret, NULL, 0);
3688 }
3689 
3690 /**
3691  * ice_vc_dis_vlan_insertion_v2_msg
3692  * @vf: VF the message was received from
3693  * @msg: message received from the VF
3694  *
3695  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3696  */
3697 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3698 {
3699 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3700 	struct virtchnl_vlan_supported_caps *insertion_support;
3701 	struct virtchnl_vlan_setting *insertion_msg =
3702 		(struct virtchnl_vlan_setting *)msg;
3703 	u32 ethertype_setting;
3704 	struct ice_vsi *vsi;
3705 
3706 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3707 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3708 		goto out;
3709 	}
3710 
3711 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3712 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3713 		goto out;
3714 	}
3715 
3716 	vsi = ice_get_vf_vsi(vf);
3717 	if (!vsi) {
3718 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3719 		goto out;
3720 	}
3721 
3722 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3723 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3724 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3725 		goto out;
3726 	}
3727 
3728 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3729 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3730 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3731 		goto out;
3732 	}
3733 
3734 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3735 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3736 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3737 		goto out;
3738 	}
3739 
3740 out:
3741 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3742 				     v_ret, NULL, 0);
3743 }
3744 
3745 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3746 	.get_ver_msg = ice_vc_get_ver_msg,
3747 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3748 	.reset_vf = ice_vc_reset_vf_msg,
3749 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3750 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3751 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3752 	.ena_qs_msg = ice_vc_ena_qs_msg,
3753 	.dis_qs_msg = ice_vc_dis_qs_msg,
3754 	.request_qs_msg = ice_vc_request_qs_msg,
3755 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3756 	.config_rss_key = ice_vc_config_rss_key,
3757 	.config_rss_lut = ice_vc_config_rss_lut,
3758 	.get_stats_msg = ice_vc_get_stats_msg,
3759 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3760 	.add_vlan_msg = ice_vc_add_vlan_msg,
3761 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3762 	.query_rxdid = ice_vc_query_rxdid,
3763 	.get_rss_hena = ice_vc_get_rss_hena,
3764 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3765 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3766 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3767 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3768 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3769 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3770 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3771 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3772 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3773 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3774 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3775 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3776 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3777 };
3778 
3779 /**
3780  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3781  * @vf: the VF to switch ops
3782  */
3783 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3784 {
3785 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3786 }
3787 
3788 /**
3789  * ice_vc_repr_add_mac
3790  * @vf: pointer to VF
3791  * @msg: virtchannel message
3792  *
3793  * When port representors are created, we do not add MAC rule
3794  * to firmware, we store it so that PF could report same
3795  * MAC as VF.
3796  */
3797 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3798 {
3799 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3800 	struct virtchnl_ether_addr_list *al =
3801 	    (struct virtchnl_ether_addr_list *)msg;
3802 	struct ice_vsi *vsi;
3803 	struct ice_pf *pf;
3804 	int i;
3805 
3806 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3807 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3808 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3809 		goto handle_mac_exit;
3810 	}
3811 
3812 	pf = vf->pf;
3813 
3814 	vsi = ice_get_vf_vsi(vf);
3815 	if (!vsi) {
3816 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3817 		goto handle_mac_exit;
3818 	}
3819 
3820 	for (i = 0; i < al->num_elements; i++) {
3821 		u8 *mac_addr = al->list[i].addr;
3822 
3823 		if (!is_unicast_ether_addr(mac_addr) ||
3824 		    ether_addr_equal(mac_addr, vf->hw_lan_addr))
3825 			continue;
3826 
3827 		if (vf->pf_set_mac) {
3828 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3829 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3830 			goto handle_mac_exit;
3831 		}
3832 
3833 		ice_vfhw_mac_add(vf, &al->list[i]);
3834 		vf->num_mac++;
3835 		break;
3836 	}
3837 
3838 handle_mac_exit:
3839 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3840 				     v_ret, NULL, 0);
3841 }
3842 
3843 /**
3844  * ice_vc_repr_del_mac - response with success for deleting MAC
3845  * @vf: pointer to VF
3846  * @msg: virtchannel message
3847  *
3848  * Respond with success to not break normal VF flow.
3849  * For legacy VF driver try to update cached MAC address.
3850  */
3851 static int
3852 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3853 {
3854 	struct virtchnl_ether_addr_list *al =
3855 		(struct virtchnl_ether_addr_list *)msg;
3856 
3857 	ice_update_legacy_cached_mac(vf, &al->list[0]);
3858 
3859 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3860 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3861 }
3862 
3863 static int
3864 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3865 {
3866 	dev_dbg(ice_pf_to_dev(vf->pf),
3867 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3868 		vf->vf_id);
3869 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3870 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3871 				     NULL, 0);
3872 }
3873 
3874 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3875 	.get_ver_msg = ice_vc_get_ver_msg,
3876 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3877 	.reset_vf = ice_vc_reset_vf_msg,
3878 	.add_mac_addr_msg = ice_vc_repr_add_mac,
3879 	.del_mac_addr_msg = ice_vc_repr_del_mac,
3880 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3881 	.ena_qs_msg = ice_vc_ena_qs_msg,
3882 	.dis_qs_msg = ice_vc_dis_qs_msg,
3883 	.request_qs_msg = ice_vc_request_qs_msg,
3884 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3885 	.config_rss_key = ice_vc_config_rss_key,
3886 	.config_rss_lut = ice_vc_config_rss_lut,
3887 	.get_stats_msg = ice_vc_get_stats_msg,
3888 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3889 	.add_vlan_msg = ice_vc_add_vlan_msg,
3890 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3891 	.query_rxdid = ice_vc_query_rxdid,
3892 	.get_rss_hena = ice_vc_get_rss_hena,
3893 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3894 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3895 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3896 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3897 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3898 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3899 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3900 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3901 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3902 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3903 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3904 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3905 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3906 };
3907 
3908 /**
3909  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3910  * @vf: the VF to switch ops
3911  */
3912 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3913 {
3914 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3915 }
3916 
3917 /**
3918  * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3919  * @vf: the VF to check
3920  * @mbxdata: data about the state of the mailbox
3921  *
3922  * Detect if a given VF might be malicious and attempting to overflow the PF
3923  * mailbox. If so, log a warning message and ignore this event.
3924  */
3925 static bool
3926 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3927 {
3928 	bool report_malvf = false;
3929 	struct device *dev;
3930 	struct ice_pf *pf;
3931 	int status;
3932 
3933 	pf = vf->pf;
3934 	dev = ice_pf_to_dev(pf);
3935 
3936 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3937 		return vf->mbx_info.malicious;
3938 
3939 	/* check to see if we have a newly malicious VF */
3940 	status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3941 					  &report_malvf);
3942 	if (status)
3943 		dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3944 				     vf->vf_id, vf->dev_lan_addr, status);
3945 
3946 	if (report_malvf) {
3947 		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3948 		u8 zero_addr[ETH_ALEN] = {};
3949 
3950 		dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3951 			 vf->dev_lan_addr,
3952 			 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3953 	}
3954 
3955 	return vf->mbx_info.malicious;
3956 }
3957 
3958 /**
3959  * ice_vc_process_vf_msg - Process request from VF
3960  * @pf: pointer to the PF structure
3961  * @event: pointer to the AQ event
3962  * @mbxdata: information used to detect VF attempting mailbox overflow
3963  *
3964  * called from the common asq/arq handler to
3965  * process request from VF
3966  */
3967 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
3968 			   struct ice_mbx_data *mbxdata)
3969 {
3970 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3971 	s16 vf_id = le16_to_cpu(event->desc.retval);
3972 	const struct ice_virtchnl_ops *ops;
3973 	u16 msglen = event->msg_len;
3974 	u8 *msg = event->msg_buf;
3975 	struct ice_vf *vf = NULL;
3976 	struct device *dev;
3977 	int err = 0;
3978 
3979 	dev = ice_pf_to_dev(pf);
3980 
3981 	vf = ice_get_vf_by_id(pf, vf_id);
3982 	if (!vf) {
3983 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3984 			vf_id, v_opcode, msglen);
3985 		return;
3986 	}
3987 
3988 	mutex_lock(&vf->cfg_lock);
3989 
3990 	/* Check if the VF is trying to overflow the mailbox */
3991 	if (ice_is_malicious_vf(vf, mbxdata))
3992 		goto finish;
3993 
3994 	/* Check if VF is disabled. */
3995 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3996 		err = -EPERM;
3997 		goto error_handler;
3998 	}
3999 
4000 	ops = vf->virtchnl_ops;
4001 
4002 	/* Perform basic checks on the msg */
4003 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4004 	if (err) {
4005 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
4006 			err = -EPERM;
4007 		else
4008 			err = -EINVAL;
4009 	}
4010 
4011 error_handler:
4012 	if (err) {
4013 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4014 				      NULL, 0);
4015 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4016 			vf_id, v_opcode, msglen, err);
4017 		goto finish;
4018 	}
4019 
4020 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4021 		ice_vc_send_msg_to_vf(vf, v_opcode,
4022 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4023 				      0);
4024 		goto finish;
4025 	}
4026 
4027 	switch (v_opcode) {
4028 	case VIRTCHNL_OP_VERSION:
4029 		err = ops->get_ver_msg(vf, msg);
4030 		break;
4031 	case VIRTCHNL_OP_GET_VF_RESOURCES:
4032 		err = ops->get_vf_res_msg(vf, msg);
4033 		if (ice_vf_init_vlan_stripping(vf))
4034 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4035 				vf->vf_id);
4036 		ice_vc_notify_vf_link_state(vf);
4037 		break;
4038 	case VIRTCHNL_OP_RESET_VF:
4039 		ops->reset_vf(vf);
4040 		break;
4041 	case VIRTCHNL_OP_ADD_ETH_ADDR:
4042 		err = ops->add_mac_addr_msg(vf, msg);
4043 		break;
4044 	case VIRTCHNL_OP_DEL_ETH_ADDR:
4045 		err = ops->del_mac_addr_msg(vf, msg);
4046 		break;
4047 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4048 		err = ops->cfg_qs_msg(vf, msg);
4049 		break;
4050 	case VIRTCHNL_OP_ENABLE_QUEUES:
4051 		err = ops->ena_qs_msg(vf, msg);
4052 		ice_vc_notify_vf_link_state(vf);
4053 		break;
4054 	case VIRTCHNL_OP_DISABLE_QUEUES:
4055 		err = ops->dis_qs_msg(vf, msg);
4056 		break;
4057 	case VIRTCHNL_OP_REQUEST_QUEUES:
4058 		err = ops->request_qs_msg(vf, msg);
4059 		break;
4060 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4061 		err = ops->cfg_irq_map_msg(vf, msg);
4062 		break;
4063 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
4064 		err = ops->config_rss_key(vf, msg);
4065 		break;
4066 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
4067 		err = ops->config_rss_lut(vf, msg);
4068 		break;
4069 	case VIRTCHNL_OP_GET_STATS:
4070 		err = ops->get_stats_msg(vf, msg);
4071 		break;
4072 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4073 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
4074 		break;
4075 	case VIRTCHNL_OP_ADD_VLAN:
4076 		err = ops->add_vlan_msg(vf, msg);
4077 		break;
4078 	case VIRTCHNL_OP_DEL_VLAN:
4079 		err = ops->remove_vlan_msg(vf, msg);
4080 		break;
4081 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4082 		err = ops->query_rxdid(vf);
4083 		break;
4084 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4085 		err = ops->get_rss_hena(vf);
4086 		break;
4087 	case VIRTCHNL_OP_SET_RSS_HENA:
4088 		err = ops->set_rss_hena_msg(vf, msg);
4089 		break;
4090 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4091 		err = ops->ena_vlan_stripping(vf);
4092 		break;
4093 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4094 		err = ops->dis_vlan_stripping(vf);
4095 		break;
4096 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4097 		err = ops->add_fdir_fltr_msg(vf, msg);
4098 		break;
4099 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4100 		err = ops->del_fdir_fltr_msg(vf, msg);
4101 		break;
4102 	case VIRTCHNL_OP_ADD_RSS_CFG:
4103 		err = ops->handle_rss_cfg_msg(vf, msg, true);
4104 		break;
4105 	case VIRTCHNL_OP_DEL_RSS_CFG:
4106 		err = ops->handle_rss_cfg_msg(vf, msg, false);
4107 		break;
4108 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4109 		err = ops->get_offload_vlan_v2_caps(vf);
4110 		break;
4111 	case VIRTCHNL_OP_ADD_VLAN_V2:
4112 		err = ops->add_vlan_v2_msg(vf, msg);
4113 		break;
4114 	case VIRTCHNL_OP_DEL_VLAN_V2:
4115 		err = ops->remove_vlan_v2_msg(vf, msg);
4116 		break;
4117 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4118 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4119 		break;
4120 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4121 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4122 		break;
4123 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4124 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4125 		break;
4126 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4127 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4128 		break;
4129 	case VIRTCHNL_OP_UNKNOWN:
4130 	default:
4131 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4132 			vf_id);
4133 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4134 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4135 					    NULL, 0);
4136 		break;
4137 	}
4138 	if (err) {
4139 		/* Helper function cares less about error return values here
4140 		 * as it is busy with pending work.
4141 		 */
4142 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4143 			 vf_id, v_opcode, err);
4144 	}
4145 
4146 finish:
4147 	mutex_unlock(&vf->cfg_lock);
4148 	ice_put_vf(vf);
4149 }
4150