1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_VLAN; 444 445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 446 vsi = ice_get_vf_vsi(vf); 447 if (!vsi) { 448 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 449 goto err; 450 } 451 452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 453 vf->driver_caps); 454 455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) 456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 457 458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 460 461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 463 464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 && 465 vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 485 486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC; 488 489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 491 492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 494 495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 497 498 vfres->num_vsis = 1; 499 /* Tx and Rx queue are equal for VF */ 500 vfres->num_queue_pairs = vsi->num_txq; 501 vfres->max_vectors = vf->num_msix; 502 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 503 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 504 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 505 506 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID; 507 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 508 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 509 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 510 vf->hw_lan_addr); 511 512 /* match guest capabilities */ 513 vf->driver_caps = vfres->vf_cap_flags; 514 515 ice_vc_set_caps_allowlist(vf); 516 ice_vc_set_working_allowlist(vf); 517 518 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 519 520 err: 521 /* send the response back to the VF */ 522 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 523 (u8 *)vfres, len); 524 525 kfree(vfres); 526 return ret; 527 } 528 529 /** 530 * ice_vc_reset_vf_msg 531 * @vf: pointer to the VF info 532 * 533 * called from the VF to reset itself, 534 * unlike other virtchnl messages, PF driver 535 * doesn't send the response back to the VF 536 */ 537 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 538 { 539 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 540 ice_reset_vf(vf, 0); 541 } 542 543 /** 544 * ice_vc_isvalid_vsi_id 545 * @vf: pointer to the VF info 546 * @vsi_id: VF relative VSI ID 547 * 548 * check for the valid VSI ID 549 */ 550 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 551 { 552 return vsi_id == ICE_VF_VSI_ID; 553 } 554 555 /** 556 * ice_vc_isvalid_q_id 557 * @vsi: VSI to check queue ID against 558 * @qid: VSI relative queue ID 559 * 560 * check for the valid queue ID 561 */ 562 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid) 563 { 564 /* allocated Tx and Rx queues should be always equal for VF VSI */ 565 return qid < vsi->alloc_txq; 566 } 567 568 /** 569 * ice_vc_isvalid_ring_len 570 * @ring_len: length of ring 571 * 572 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 573 * or zero 574 */ 575 static bool ice_vc_isvalid_ring_len(u16 ring_len) 576 { 577 return ring_len == 0 || 578 (ring_len >= ICE_MIN_NUM_DESC && 579 ring_len <= ICE_MAX_NUM_DESC && 580 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 581 } 582 583 /** 584 * ice_vc_validate_pattern 585 * @vf: pointer to the VF info 586 * @proto: virtchnl protocol headers 587 * 588 * validate the pattern is supported or not. 589 * 590 * Return: true on success, false on error. 591 */ 592 bool 593 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 594 { 595 bool is_ipv4 = false; 596 bool is_ipv6 = false; 597 bool is_udp = false; 598 u16 ptype = -1; 599 int i = 0; 600 601 while (i < proto->count && 602 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 603 switch (proto->proto_hdr[i].type) { 604 case VIRTCHNL_PROTO_HDR_ETH: 605 ptype = ICE_PTYPE_MAC_PAY; 606 break; 607 case VIRTCHNL_PROTO_HDR_IPV4: 608 ptype = ICE_PTYPE_IPV4_PAY; 609 is_ipv4 = true; 610 break; 611 case VIRTCHNL_PROTO_HDR_IPV6: 612 ptype = ICE_PTYPE_IPV6_PAY; 613 is_ipv6 = true; 614 break; 615 case VIRTCHNL_PROTO_HDR_UDP: 616 if (is_ipv4) 617 ptype = ICE_PTYPE_IPV4_UDP_PAY; 618 else if (is_ipv6) 619 ptype = ICE_PTYPE_IPV6_UDP_PAY; 620 is_udp = true; 621 break; 622 case VIRTCHNL_PROTO_HDR_TCP: 623 if (is_ipv4) 624 ptype = ICE_PTYPE_IPV4_TCP_PAY; 625 else if (is_ipv6) 626 ptype = ICE_PTYPE_IPV6_TCP_PAY; 627 break; 628 case VIRTCHNL_PROTO_HDR_SCTP: 629 if (is_ipv4) 630 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 631 else if (is_ipv6) 632 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 633 break; 634 case VIRTCHNL_PROTO_HDR_GTPU_IP: 635 case VIRTCHNL_PROTO_HDR_GTPU_EH: 636 if (is_ipv4) 637 ptype = ICE_MAC_IPV4_GTPU; 638 else if (is_ipv6) 639 ptype = ICE_MAC_IPV6_GTPU; 640 goto out; 641 case VIRTCHNL_PROTO_HDR_L2TPV3: 642 if (is_ipv4) 643 ptype = ICE_MAC_IPV4_L2TPV3; 644 else if (is_ipv6) 645 ptype = ICE_MAC_IPV6_L2TPV3; 646 goto out; 647 case VIRTCHNL_PROTO_HDR_ESP: 648 if (is_ipv4) 649 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 650 ICE_MAC_IPV4_ESP; 651 else if (is_ipv6) 652 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 653 ICE_MAC_IPV6_ESP; 654 goto out; 655 case VIRTCHNL_PROTO_HDR_AH: 656 if (is_ipv4) 657 ptype = ICE_MAC_IPV4_AH; 658 else if (is_ipv6) 659 ptype = ICE_MAC_IPV6_AH; 660 goto out; 661 case VIRTCHNL_PROTO_HDR_PFCP: 662 if (is_ipv4) 663 ptype = ICE_MAC_IPV4_PFCP_SESSION; 664 else if (is_ipv6) 665 ptype = ICE_MAC_IPV6_PFCP_SESSION; 666 goto out; 667 default: 668 break; 669 } 670 i++; 671 } 672 673 out: 674 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 675 } 676 677 /** 678 * ice_vc_parse_rss_cfg - parses hash fields and headers from 679 * a specific virtchnl RSS cfg 680 * @hw: pointer to the hardware 681 * @rss_cfg: pointer to the virtchnl RSS cfg 682 * @hash_cfg: pointer to the HW hash configuration 683 * 684 * Return true if all the protocol header and hash fields in the RSS cfg could 685 * be parsed, else return false 686 * 687 * This function parses the virtchnl RSS cfg to be the intended 688 * hash fields and the intended header for RSS configuration 689 */ 690 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw, 691 struct virtchnl_rss_cfg *rss_cfg, 692 struct ice_rss_hash_cfg *hash_cfg) 693 { 694 const struct ice_vc_hash_field_match_type *hf_list; 695 const struct ice_vc_hdr_match_type *hdr_list; 696 int i, hf_list_len, hdr_list_len; 697 u32 *addl_hdrs = &hash_cfg->addl_hdrs; 698 u64 *hash_flds = &hash_cfg->hash_flds; 699 700 /* set outer layer RSS as default */ 701 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS; 702 703 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 704 hash_cfg->symm = true; 705 else 706 hash_cfg->symm = false; 707 708 hf_list = ice_vc_hash_field_list; 709 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 710 hdr_list = ice_vc_hdr_list; 711 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 712 713 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 714 struct virtchnl_proto_hdr *proto_hdr = 715 &rss_cfg->proto_hdrs.proto_hdr[i]; 716 bool hdr_found = false; 717 int j; 718 719 /* Find matched ice headers according to virtchnl headers. */ 720 for (j = 0; j < hdr_list_len; j++) { 721 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 722 723 if (proto_hdr->type == hdr_map.vc_hdr) { 724 *addl_hdrs |= hdr_map.ice_hdr; 725 hdr_found = true; 726 } 727 } 728 729 if (!hdr_found) 730 return false; 731 732 /* Find matched ice hash fields according to 733 * virtchnl hash fields. 734 */ 735 for (j = 0; j < hf_list_len; j++) { 736 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 737 738 if (proto_hdr->type == hf_map.vc_hdr && 739 proto_hdr->field_selector == hf_map.vc_hash_field) { 740 *hash_flds |= hf_map.ice_hash_field; 741 break; 742 } 743 } 744 } 745 746 return true; 747 } 748 749 /** 750 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 751 * RSS offloads 752 * @caps: VF driver negotiated capabilities 753 * 754 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 755 * else return false 756 */ 757 static bool ice_vf_adv_rss_offload_ena(u32 caps) 758 { 759 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 760 } 761 762 /** 763 * ice_vc_handle_rss_cfg 764 * @vf: pointer to the VF info 765 * @msg: pointer to the message buffer 766 * @add: add a RSS config if true, otherwise delete a RSS config 767 * 768 * This function adds/deletes a RSS config 769 */ 770 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 771 { 772 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 773 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 774 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 775 struct device *dev = ice_pf_to_dev(vf->pf); 776 struct ice_hw *hw = &vf->pf->hw; 777 struct ice_vsi *vsi; 778 779 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 780 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 781 vf->vf_id); 782 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 783 goto error_param; 784 } 785 786 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 787 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 788 vf->vf_id); 789 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 790 goto error_param; 791 } 792 793 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 794 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 795 goto error_param; 796 } 797 798 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 799 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 800 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 801 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 802 vf->vf_id); 803 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 804 goto error_param; 805 } 806 807 vsi = ice_get_vf_vsi(vf); 808 if (!vsi) { 809 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 810 goto error_param; 811 } 812 813 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 814 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 815 goto error_param; 816 } 817 818 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 819 struct ice_vsi_ctx *ctx; 820 u8 lut_type, hash_type; 821 int status; 822 823 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 824 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR : 825 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 826 827 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 828 if (!ctx) { 829 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 830 goto error_param; 831 } 832 833 ctx->info.q_opt_rss = 834 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 835 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 836 837 /* Preserve existing queueing option setting */ 838 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 839 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 840 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 841 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 842 843 ctx->info.valid_sections = 844 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 845 846 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 847 if (status) { 848 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 849 status, ice_aq_str(hw->adminq.sq_last_status)); 850 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 851 } else { 852 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 853 } 854 855 kfree(ctx); 856 } else { 857 struct ice_rss_hash_cfg cfg; 858 859 /* Only check for none raw pattern case */ 860 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 861 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 862 goto error_param; 863 } 864 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 865 cfg.hash_flds = ICE_HASH_INVALID; 866 cfg.hdr_type = ICE_RSS_ANY_HEADERS; 867 868 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) { 869 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 870 goto error_param; 871 } 872 873 if (add) { 874 if (ice_add_rss_cfg(hw, vsi, &cfg)) { 875 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 876 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 877 vsi->vsi_num, v_ret); 878 } 879 } else { 880 int status; 881 882 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg); 883 /* We just ignore -ENOENT, because if two configurations 884 * share the same profile remove one of them actually 885 * removes both, since the profile is deleted. 886 */ 887 if (status && status != -ENOENT) { 888 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 889 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 890 vf->vf_id, status); 891 } 892 } 893 } 894 895 error_param: 896 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 897 } 898 899 /** 900 * ice_vc_config_rss_key 901 * @vf: pointer to the VF info 902 * @msg: pointer to the msg buffer 903 * 904 * Configure the VF's RSS key 905 */ 906 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 907 { 908 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 909 struct virtchnl_rss_key *vrk = 910 (struct virtchnl_rss_key *)msg; 911 struct ice_vsi *vsi; 912 913 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 914 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 915 goto error_param; 916 } 917 918 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 919 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 920 goto error_param; 921 } 922 923 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 924 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 925 goto error_param; 926 } 927 928 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 929 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 930 goto error_param; 931 } 932 933 vsi = ice_get_vf_vsi(vf); 934 if (!vsi) { 935 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 936 goto error_param; 937 } 938 939 if (ice_set_rss_key(vsi, vrk->key)) 940 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 941 error_param: 942 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 943 NULL, 0); 944 } 945 946 /** 947 * ice_vc_config_rss_lut 948 * @vf: pointer to the VF info 949 * @msg: pointer to the msg buffer 950 * 951 * Configure the VF's RSS LUT 952 */ 953 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 954 { 955 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 956 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 957 struct ice_vsi *vsi; 958 959 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 960 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 961 goto error_param; 962 } 963 964 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 965 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 966 goto error_param; 967 } 968 969 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 970 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 971 goto error_param; 972 } 973 974 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 975 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 976 goto error_param; 977 } 978 979 vsi = ice_get_vf_vsi(vf); 980 if (!vsi) { 981 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 982 goto error_param; 983 } 984 985 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 986 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 987 error_param: 988 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 989 NULL, 0); 990 } 991 992 /** 993 * ice_vc_config_rss_hfunc 994 * @vf: pointer to the VF info 995 * @msg: pointer to the msg buffer 996 * 997 * Configure the VF's RSS Hash function 998 */ 999 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg) 1000 { 1001 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg; 1002 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1003 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1004 struct ice_vsi *vsi; 1005 1006 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1007 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1008 goto error_param; 1009 } 1010 1011 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) { 1012 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1013 goto error_param; 1014 } 1015 1016 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 1017 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1018 goto error_param; 1019 } 1020 1021 vsi = ice_get_vf_vsi(vf); 1022 if (!vsi) { 1023 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1024 goto error_param; 1025 } 1026 1027 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 1028 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ; 1029 1030 if (ice_set_rss_hfunc(vsi, hfunc)) 1031 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1032 error_param: 1033 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret, 1034 NULL, 0); 1035 } 1036 1037 /** 1038 * ice_vc_cfg_promiscuous_mode_msg 1039 * @vf: pointer to the VF info 1040 * @msg: pointer to the msg buffer 1041 * 1042 * called from the VF to configure VF VSIs promiscuous mode 1043 */ 1044 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 1045 { 1046 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1047 bool rm_promisc, alluni = false, allmulti = false; 1048 struct virtchnl_promisc_info *info = 1049 (struct virtchnl_promisc_info *)msg; 1050 struct ice_vsi_vlan_ops *vlan_ops; 1051 int mcast_err = 0, ucast_err = 0; 1052 struct ice_pf *pf = vf->pf; 1053 struct ice_vsi *vsi; 1054 u8 mcast_m, ucast_m; 1055 struct device *dev; 1056 int ret = 0; 1057 1058 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1059 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1060 goto error_param; 1061 } 1062 1063 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1064 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1065 goto error_param; 1066 } 1067 1068 vsi = ice_get_vf_vsi(vf); 1069 if (!vsi) { 1070 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1071 goto error_param; 1072 } 1073 1074 dev = ice_pf_to_dev(pf); 1075 if (!ice_is_vf_trusted(vf)) { 1076 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1077 vf->vf_id); 1078 /* Leave v_ret alone, lie to the VF on purpose. */ 1079 goto error_param; 1080 } 1081 1082 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1083 alluni = true; 1084 1085 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1086 allmulti = true; 1087 1088 rm_promisc = !allmulti && !alluni; 1089 1090 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1091 if (rm_promisc) 1092 ret = vlan_ops->ena_rx_filtering(vsi); 1093 else 1094 ret = vlan_ops->dis_rx_filtering(vsi); 1095 if (ret) { 1096 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1097 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1098 goto error_param; 1099 } 1100 1101 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1102 1103 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1104 if (alluni) { 1105 /* in this case we're turning on promiscuous mode */ 1106 ret = ice_set_dflt_vsi(vsi); 1107 } else { 1108 /* in this case we're turning off promiscuous mode */ 1109 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1110 ret = ice_clear_dflt_vsi(vsi); 1111 } 1112 1113 /* in this case we're turning on/off only 1114 * allmulticast 1115 */ 1116 if (allmulti) 1117 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1118 else 1119 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1120 1121 if (ret) { 1122 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1123 vf->vf_id, ret); 1124 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1125 goto error_param; 1126 } 1127 } else { 1128 if (alluni) 1129 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1130 else 1131 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1132 1133 if (allmulti) 1134 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1135 else 1136 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1137 1138 if (ucast_err || mcast_err) 1139 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1140 } 1141 1142 if (!mcast_err) { 1143 if (allmulti && 1144 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1145 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1146 vf->vf_id); 1147 else if (!allmulti && 1148 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1149 vf->vf_states)) 1150 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1151 vf->vf_id); 1152 } else { 1153 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1154 vf->vf_id, mcast_err); 1155 } 1156 1157 if (!ucast_err) { 1158 if (alluni && 1159 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1160 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1161 vf->vf_id); 1162 else if (!alluni && 1163 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1164 vf->vf_states)) 1165 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1166 vf->vf_id); 1167 } else { 1168 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1169 vf->vf_id, ucast_err); 1170 } 1171 1172 error_param: 1173 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1174 v_ret, NULL, 0); 1175 } 1176 1177 /** 1178 * ice_vc_get_stats_msg 1179 * @vf: pointer to the VF info 1180 * @msg: pointer to the msg buffer 1181 * 1182 * called from the VF to get VSI stats 1183 */ 1184 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1185 { 1186 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1187 struct virtchnl_queue_select *vqs = 1188 (struct virtchnl_queue_select *)msg; 1189 struct ice_eth_stats stats = { 0 }; 1190 struct ice_vsi *vsi; 1191 1192 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1193 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1194 goto error_param; 1195 } 1196 1197 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1198 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1199 goto error_param; 1200 } 1201 1202 vsi = ice_get_vf_vsi(vf); 1203 if (!vsi) { 1204 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1205 goto error_param; 1206 } 1207 1208 ice_update_eth_stats(vsi); 1209 1210 stats = vsi->eth_stats; 1211 1212 error_param: 1213 /* send the response to the VF */ 1214 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1215 (u8 *)&stats, sizeof(stats)); 1216 } 1217 1218 /** 1219 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1220 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1221 * 1222 * Return true on successful validation, else false 1223 */ 1224 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1225 { 1226 if ((!vqs->rx_queues && !vqs->tx_queues) || 1227 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1228 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1229 return false; 1230 1231 return true; 1232 } 1233 1234 /** 1235 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1236 * @vsi: VSI of the VF to configure 1237 * @q_idx: VF queue index used to determine the queue in the PF's space 1238 */ 1239 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1240 { 1241 struct ice_hw *hw = &vsi->back->hw; 1242 u32 pfq = vsi->txq_map[q_idx]; 1243 u32 reg; 1244 1245 reg = rd32(hw, QINT_TQCTL(pfq)); 1246 1247 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1248 * this is most likely a poll mode VF driver, so don't enable an 1249 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1250 */ 1251 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1252 return; 1253 1254 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1255 } 1256 1257 /** 1258 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1259 * @vsi: VSI of the VF to configure 1260 * @q_idx: VF queue index used to determine the queue in the PF's space 1261 */ 1262 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1263 { 1264 struct ice_hw *hw = &vsi->back->hw; 1265 u32 pfq = vsi->rxq_map[q_idx]; 1266 u32 reg; 1267 1268 reg = rd32(hw, QINT_RQCTL(pfq)); 1269 1270 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1271 * this is most likely a poll mode VF driver, so don't enable an 1272 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1273 */ 1274 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1275 return; 1276 1277 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1278 } 1279 1280 /** 1281 * ice_vc_ena_qs_msg 1282 * @vf: pointer to the VF info 1283 * @msg: pointer to the msg buffer 1284 * 1285 * called from the VF to enable all or specific queue(s) 1286 */ 1287 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1288 { 1289 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1290 struct virtchnl_queue_select *vqs = 1291 (struct virtchnl_queue_select *)msg; 1292 struct ice_vsi *vsi; 1293 unsigned long q_map; 1294 u16 vf_q_id; 1295 1296 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1297 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1298 goto error_param; 1299 } 1300 1301 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1302 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1303 goto error_param; 1304 } 1305 1306 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1307 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1308 goto error_param; 1309 } 1310 1311 vsi = ice_get_vf_vsi(vf); 1312 if (!vsi) { 1313 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1314 goto error_param; 1315 } 1316 1317 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1318 * Tx queue group list was configured and the context bits were 1319 * programmed using ice_vsi_cfg_txqs 1320 */ 1321 q_map = vqs->rx_queues; 1322 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1323 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1324 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1325 goto error_param; 1326 } 1327 1328 /* Skip queue if enabled */ 1329 if (test_bit(vf_q_id, vf->rxq_ena)) 1330 continue; 1331 1332 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1333 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1334 vf_q_id, vsi->vsi_num); 1335 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1336 goto error_param; 1337 } 1338 1339 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1340 set_bit(vf_q_id, vf->rxq_ena); 1341 } 1342 1343 q_map = vqs->tx_queues; 1344 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1345 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1346 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1347 goto error_param; 1348 } 1349 1350 /* Skip queue if enabled */ 1351 if (test_bit(vf_q_id, vf->txq_ena)) 1352 continue; 1353 1354 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1355 set_bit(vf_q_id, vf->txq_ena); 1356 } 1357 1358 /* Set flag to indicate that queues are enabled */ 1359 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1360 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1361 1362 error_param: 1363 /* send the response to the VF */ 1364 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1365 NULL, 0); 1366 } 1367 1368 /** 1369 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1370 * @vf: VF to disable queue for 1371 * @vsi: VSI for the VF 1372 * @q_id: VF relative (0-based) queue ID 1373 * 1374 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1375 * disabled then clear q_id bit in the enabled queues bitmap and return 1376 * success. Otherwise return error. 1377 */ 1378 static int 1379 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1380 { 1381 struct ice_txq_meta txq_meta = { 0 }; 1382 struct ice_tx_ring *ring; 1383 int err; 1384 1385 if (!test_bit(q_id, vf->txq_ena)) 1386 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1387 q_id, vsi->vsi_num); 1388 1389 ring = vsi->tx_rings[q_id]; 1390 if (!ring) 1391 return -EINVAL; 1392 1393 ice_fill_txq_meta(vsi, ring, &txq_meta); 1394 1395 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1396 if (err) { 1397 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1398 q_id, vsi->vsi_num); 1399 return err; 1400 } 1401 1402 /* Clear enabled queues flag */ 1403 clear_bit(q_id, vf->txq_ena); 1404 1405 return 0; 1406 } 1407 1408 /** 1409 * ice_vc_dis_qs_msg 1410 * @vf: pointer to the VF info 1411 * @msg: pointer to the msg buffer 1412 * 1413 * called from the VF to disable all or specific queue(s) 1414 */ 1415 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1416 { 1417 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1418 struct virtchnl_queue_select *vqs = 1419 (struct virtchnl_queue_select *)msg; 1420 struct ice_vsi *vsi; 1421 unsigned long q_map; 1422 u16 vf_q_id; 1423 1424 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1425 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1426 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1427 goto error_param; 1428 } 1429 1430 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1431 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1432 goto error_param; 1433 } 1434 1435 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1436 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1437 goto error_param; 1438 } 1439 1440 vsi = ice_get_vf_vsi(vf); 1441 if (!vsi) { 1442 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1443 goto error_param; 1444 } 1445 1446 if (vqs->tx_queues) { 1447 q_map = vqs->tx_queues; 1448 1449 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1450 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1451 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1452 goto error_param; 1453 } 1454 1455 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1456 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1457 goto error_param; 1458 } 1459 } 1460 } 1461 1462 q_map = vqs->rx_queues; 1463 /* speed up Rx queue disable by batching them if possible */ 1464 if (q_map && 1465 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1466 if (ice_vsi_stop_all_rx_rings(vsi)) { 1467 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1468 vsi->vsi_num); 1469 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1470 goto error_param; 1471 } 1472 1473 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1474 } else if (q_map) { 1475 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1476 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1477 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1478 goto error_param; 1479 } 1480 1481 /* Skip queue if not enabled */ 1482 if (!test_bit(vf_q_id, vf->rxq_ena)) 1483 continue; 1484 1485 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1486 true)) { 1487 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1488 vf_q_id, vsi->vsi_num); 1489 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1490 goto error_param; 1491 } 1492 1493 /* Clear enabled queues flag */ 1494 clear_bit(vf_q_id, vf->rxq_ena); 1495 } 1496 } 1497 1498 /* Clear enabled queues flag */ 1499 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1500 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1501 1502 error_param: 1503 /* send the response to the VF */ 1504 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1505 NULL, 0); 1506 } 1507 1508 /** 1509 * ice_cfg_interrupt 1510 * @vf: pointer to the VF info 1511 * @vsi: the VSI being configured 1512 * @map: vector map for mapping vectors to queues 1513 * @q_vector: structure for interrupt vector 1514 * configure the IRQ to queue map 1515 */ 1516 static enum virtchnl_status_code 1517 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, 1518 struct virtchnl_vector_map *map, 1519 struct ice_q_vector *q_vector) 1520 { 1521 u16 vsi_q_id, vsi_q_id_idx; 1522 unsigned long qmap; 1523 1524 q_vector->num_ring_rx = 0; 1525 q_vector->num_ring_tx = 0; 1526 1527 qmap = map->rxq_map; 1528 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1529 vsi_q_id = vsi_q_id_idx; 1530 1531 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1532 return VIRTCHNL_STATUS_ERR_PARAM; 1533 1534 q_vector->num_ring_rx++; 1535 q_vector->rx.itr_idx = map->rxitr_idx; 1536 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1537 ice_cfg_rxq_interrupt(vsi, vsi_q_id, 1538 q_vector->vf_reg_idx, 1539 q_vector->rx.itr_idx); 1540 } 1541 1542 qmap = map->txq_map; 1543 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1544 vsi_q_id = vsi_q_id_idx; 1545 1546 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1547 return VIRTCHNL_STATUS_ERR_PARAM; 1548 1549 q_vector->num_ring_tx++; 1550 q_vector->tx.itr_idx = map->txitr_idx; 1551 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1552 ice_cfg_txq_interrupt(vsi, vsi_q_id, 1553 q_vector->vf_reg_idx, 1554 q_vector->tx.itr_idx); 1555 } 1556 1557 return VIRTCHNL_STATUS_SUCCESS; 1558 } 1559 1560 /** 1561 * ice_vc_cfg_irq_map_msg 1562 * @vf: pointer to the VF info 1563 * @msg: pointer to the msg buffer 1564 * 1565 * called from the VF to configure the IRQ to queue map 1566 */ 1567 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1568 { 1569 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1570 u16 num_q_vectors_mapped, vsi_id, vector_id; 1571 struct virtchnl_irq_map_info *irqmap_info; 1572 struct virtchnl_vector_map *map; 1573 struct ice_vsi *vsi; 1574 int i; 1575 1576 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1577 num_q_vectors_mapped = irqmap_info->num_vectors; 1578 1579 /* Check to make sure number of VF vectors mapped is not greater than 1580 * number of VF vectors originally allocated, and check that 1581 * there is actually at least a single VF queue vector mapped 1582 */ 1583 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1584 vf->num_msix < num_q_vectors_mapped || 1585 !num_q_vectors_mapped) { 1586 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1587 goto error_param; 1588 } 1589 1590 vsi = ice_get_vf_vsi(vf); 1591 if (!vsi) { 1592 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1593 goto error_param; 1594 } 1595 1596 for (i = 0; i < num_q_vectors_mapped; i++) { 1597 struct ice_q_vector *q_vector; 1598 1599 map = &irqmap_info->vecmap[i]; 1600 1601 vector_id = map->vector_id; 1602 vsi_id = map->vsi_id; 1603 /* vector_id is always 0-based for each VF, and can never be 1604 * larger than or equal to the max allowed interrupts per VF 1605 */ 1606 if (!(vector_id < vf->num_msix) || 1607 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1608 (!vector_id && (map->rxq_map || map->txq_map))) { 1609 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1610 goto error_param; 1611 } 1612 1613 /* No need to map VF miscellaneous or rogue vector */ 1614 if (!vector_id) 1615 continue; 1616 1617 /* Subtract non queue vector from vector_id passed by VF 1618 * to get actual number of VSI queue vector array index 1619 */ 1620 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1621 if (!q_vector) { 1622 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1623 goto error_param; 1624 } 1625 1626 /* lookout for the invalid queue index */ 1627 v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector); 1628 if (v_ret) 1629 goto error_param; 1630 } 1631 1632 error_param: 1633 /* send the response to the VF */ 1634 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1635 NULL, 0); 1636 } 1637 1638 /** 1639 * ice_vc_cfg_qs_msg 1640 * @vf: pointer to the VF info 1641 * @msg: pointer to the msg buffer 1642 * 1643 * called from the VF to configure the Rx/Tx queues 1644 */ 1645 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1646 { 1647 struct virtchnl_vsi_queue_config_info *qci = 1648 (struct virtchnl_vsi_queue_config_info *)msg; 1649 struct virtchnl_queue_pair_info *qpi; 1650 struct ice_pf *pf = vf->pf; 1651 struct ice_lag *lag; 1652 struct ice_vsi *vsi; 1653 u8 act_prt, pri_prt; 1654 int i = -1, q_idx; 1655 1656 lag = pf->lag; 1657 mutex_lock(&pf->lag_mutex); 1658 act_prt = ICE_LAG_INVALID_PORT; 1659 pri_prt = pf->hw.port_info->lport; 1660 if (lag && lag->bonded && lag->primary) { 1661 act_prt = lag->active_port; 1662 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && 1663 lag->upper_netdev) 1664 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); 1665 else 1666 act_prt = ICE_LAG_INVALID_PORT; 1667 } 1668 1669 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1670 goto error_param; 1671 1672 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1673 goto error_param; 1674 1675 vsi = ice_get_vf_vsi(vf); 1676 if (!vsi) 1677 goto error_param; 1678 1679 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1680 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1681 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1682 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1683 goto error_param; 1684 } 1685 1686 for (i = 0; i < qci->num_queue_pairs; i++) { 1687 if (!qci->qpair[i].rxq.crc_disable) 1688 continue; 1689 1690 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) || 1691 vf->vlan_strip_ena) 1692 goto error_param; 1693 } 1694 1695 for (i = 0; i < qci->num_queue_pairs; i++) { 1696 qpi = &qci->qpair[i]; 1697 if (qpi->txq.vsi_id != qci->vsi_id || 1698 qpi->rxq.vsi_id != qci->vsi_id || 1699 qpi->rxq.queue_id != qpi->txq.queue_id || 1700 qpi->txq.headwb_enabled || 1701 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1702 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1703 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) { 1704 goto error_param; 1705 } 1706 1707 q_idx = qpi->rxq.queue_id; 1708 1709 /* make sure selected "q_idx" is in valid range of queues 1710 * for selected "vsi" 1711 */ 1712 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1713 goto error_param; 1714 } 1715 1716 /* copy Tx queue info from VF into VSI */ 1717 if (qpi->txq.ring_len > 0) { 1718 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1719 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1720 1721 /* Disable any existing queue first */ 1722 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1723 goto error_param; 1724 1725 /* Configure a queue with the requested settings */ 1726 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1727 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1728 vf->vf_id, i); 1729 goto error_param; 1730 } 1731 } 1732 1733 /* copy Rx queue info from VF into VSI */ 1734 if (qpi->rxq.ring_len > 0) { 1735 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1736 u32 rxdid; 1737 1738 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1739 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1740 1741 if (qpi->rxq.crc_disable) 1742 vsi->rx_rings[q_idx]->flags |= 1743 ICE_RX_FLAGS_CRC_STRIP_DIS; 1744 else 1745 vsi->rx_rings[q_idx]->flags &= 1746 ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1747 1748 if (qpi->rxq.databuffer_size != 0 && 1749 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1750 qpi->rxq.databuffer_size < 1024)) 1751 goto error_param; 1752 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1753 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1754 if (qpi->rxq.max_pkt_size > max_frame_size || 1755 qpi->rxq.max_pkt_size < 64) 1756 goto error_param; 1757 1758 vsi->max_frame = qpi->rxq.max_pkt_size; 1759 /* add space for the port VLAN since the VF driver is 1760 * not expected to account for it in the MTU 1761 * calculation 1762 */ 1763 if (ice_vf_is_port_vlan_ena(vf)) 1764 vsi->max_frame += VLAN_HLEN; 1765 1766 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1767 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1768 vf->vf_id, i); 1769 goto error_param; 1770 } 1771 1772 /* If Rx flex desc is supported, select RXDID for Rx 1773 * queues. Otherwise, use legacy 32byte descriptor 1774 * format. Legacy 16byte descriptor is not supported. 1775 * If this RXDID is selected, return error. 1776 */ 1777 if (vf->driver_caps & 1778 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 1779 rxdid = qpi->rxq.rxdid; 1780 if (!(BIT(rxdid) & pf->supported_rxdids)) 1781 goto error_param; 1782 } else { 1783 rxdid = ICE_RXDID_LEGACY_1; 1784 } 1785 1786 ice_write_qrxflxp_cntxt(&vsi->back->hw, 1787 vsi->rxq_map[q_idx], 1788 rxdid, 0x03, false); 1789 } 1790 } 1791 1792 if (lag && lag->bonded && lag->primary && 1793 act_prt != ICE_LAG_INVALID_PORT) 1794 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1795 mutex_unlock(&pf->lag_mutex); 1796 1797 /* send the response to the VF */ 1798 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1799 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1800 error_param: 1801 /* disable whatever we can */ 1802 for (; i >= 0; i--) { 1803 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1804 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1805 vf->vf_id, i); 1806 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1807 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1808 vf->vf_id, i); 1809 } 1810 1811 if (lag && lag->bonded && lag->primary && 1812 act_prt != ICE_LAG_INVALID_PORT) 1813 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1814 mutex_unlock(&pf->lag_mutex); 1815 1816 ice_lag_move_new_vf_nodes(vf); 1817 1818 /* send the response to the VF */ 1819 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1820 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1821 } 1822 1823 /** 1824 * ice_can_vf_change_mac 1825 * @vf: pointer to the VF info 1826 * 1827 * Return true if the VF is allowed to change its MAC filters, false otherwise 1828 */ 1829 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1830 { 1831 /* If the VF MAC address has been set administratively (via the 1832 * ndo_set_vf_mac command), then deny permission to the VF to 1833 * add/delete unicast MAC addresses, unless the VF is trusted 1834 */ 1835 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1836 return false; 1837 1838 return true; 1839 } 1840 1841 /** 1842 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1843 * @vc_ether_addr: used to extract the type 1844 */ 1845 static u8 1846 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1847 { 1848 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1849 } 1850 1851 /** 1852 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1853 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1854 */ 1855 static bool 1856 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1857 { 1858 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1859 1860 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1861 } 1862 1863 /** 1864 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1865 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1866 * 1867 * This function should only be called when the MAC address in 1868 * virtchnl_ether_addr is a valid unicast MAC 1869 */ 1870 static bool 1871 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1872 { 1873 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1874 1875 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1876 } 1877 1878 /** 1879 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1880 * @vf: VF to update 1881 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1882 */ 1883 static void 1884 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1885 { 1886 u8 *mac_addr = vc_ether_addr->addr; 1887 1888 if (!is_valid_ether_addr(mac_addr)) 1889 return; 1890 1891 /* only allow legacy VF drivers to set the device and hardware MAC if it 1892 * is zero and allow new VF drivers to set the hardware MAC if the type 1893 * was correctly specified over VIRTCHNL 1894 */ 1895 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1896 is_zero_ether_addr(vf->hw_lan_addr)) || 1897 ice_is_vc_addr_primary(vc_ether_addr)) { 1898 ether_addr_copy(vf->dev_lan_addr, mac_addr); 1899 ether_addr_copy(vf->hw_lan_addr, mac_addr); 1900 } 1901 1902 /* hardware and device MACs are already set, but its possible that the 1903 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1904 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1905 * away for the legacy VF driver case as it will be updated in the 1906 * delete flow for this case 1907 */ 1908 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1909 ether_addr_copy(vf->legacy_last_added_umac.addr, 1910 mac_addr); 1911 vf->legacy_last_added_umac.time_modified = jiffies; 1912 } 1913 } 1914 1915 /** 1916 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1917 * @vf: pointer to the VF info 1918 * @vsi: pointer to the VF's VSI 1919 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1920 */ 1921 static int 1922 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1923 struct virtchnl_ether_addr *vc_ether_addr) 1924 { 1925 struct device *dev = ice_pf_to_dev(vf->pf); 1926 u8 *mac_addr = vc_ether_addr->addr; 1927 int ret; 1928 1929 /* device MAC already added */ 1930 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 1931 return 0; 1932 1933 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1934 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1935 return -EPERM; 1936 } 1937 1938 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1939 if (ret == -EEXIST) { 1940 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1941 vf->vf_id); 1942 /* don't return since we might need to update 1943 * the primary MAC in ice_vfhw_mac_add() below 1944 */ 1945 } else if (ret) { 1946 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1947 mac_addr, vf->vf_id, ret); 1948 return ret; 1949 } else { 1950 vf->num_mac++; 1951 } 1952 1953 ice_vfhw_mac_add(vf, vc_ether_addr); 1954 1955 return ret; 1956 } 1957 1958 /** 1959 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1960 * @last_added_umac: structure used to check expiration 1961 */ 1962 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1963 { 1964 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1965 return time_is_before_jiffies(last_added_umac->time_modified + 1966 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1967 } 1968 1969 /** 1970 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1971 * @vf: VF to update 1972 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1973 * 1974 * only update cached hardware MAC for legacy VF drivers on delete 1975 * because we cannot guarantee order/type of MAC from the VF driver 1976 */ 1977 static void 1978 ice_update_legacy_cached_mac(struct ice_vf *vf, 1979 struct virtchnl_ether_addr *vc_ether_addr) 1980 { 1981 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1982 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1983 return; 1984 1985 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 1986 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 1987 } 1988 1989 /** 1990 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1991 * @vf: VF to update 1992 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1993 */ 1994 static void 1995 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1996 { 1997 u8 *mac_addr = vc_ether_addr->addr; 1998 1999 if (!is_valid_ether_addr(mac_addr) || 2000 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2001 return; 2002 2003 /* allow the device MAC to be repopulated in the add flow and don't 2004 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 2005 * to be persistent on VM reboot and across driver unload/load, which 2006 * won't work if we clear the hardware MAC here 2007 */ 2008 eth_zero_addr(vf->dev_lan_addr); 2009 2010 ice_update_legacy_cached_mac(vf, vc_ether_addr); 2011 } 2012 2013 /** 2014 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 2015 * @vf: pointer to the VF info 2016 * @vsi: pointer to the VF's VSI 2017 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 2018 */ 2019 static int 2020 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 2021 struct virtchnl_ether_addr *vc_ether_addr) 2022 { 2023 struct device *dev = ice_pf_to_dev(vf->pf); 2024 u8 *mac_addr = vc_ether_addr->addr; 2025 int status; 2026 2027 if (!ice_can_vf_change_mac(vf) && 2028 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2029 return 0; 2030 2031 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 2032 if (status == -ENOENT) { 2033 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 2034 vf->vf_id); 2035 return -ENOENT; 2036 } else if (status) { 2037 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 2038 mac_addr, vf->vf_id, status); 2039 return -EIO; 2040 } 2041 2042 ice_vfhw_mac_del(vf, vc_ether_addr); 2043 2044 vf->num_mac--; 2045 2046 return 0; 2047 } 2048 2049 /** 2050 * ice_vc_handle_mac_addr_msg 2051 * @vf: pointer to the VF info 2052 * @msg: pointer to the msg buffer 2053 * @set: true if MAC filters are being set, false otherwise 2054 * 2055 * add guest MAC address filter 2056 */ 2057 static int 2058 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 2059 { 2060 int (*ice_vc_cfg_mac) 2061 (struct ice_vf *vf, struct ice_vsi *vsi, 2062 struct virtchnl_ether_addr *virtchnl_ether_addr); 2063 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2064 struct virtchnl_ether_addr_list *al = 2065 (struct virtchnl_ether_addr_list *)msg; 2066 struct ice_pf *pf = vf->pf; 2067 enum virtchnl_ops vc_op; 2068 struct ice_vsi *vsi; 2069 int i; 2070 2071 if (set) { 2072 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 2073 ice_vc_cfg_mac = ice_vc_add_mac_addr; 2074 } else { 2075 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 2076 ice_vc_cfg_mac = ice_vc_del_mac_addr; 2077 } 2078 2079 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2080 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2081 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2082 goto handle_mac_exit; 2083 } 2084 2085 /* If this VF is not privileged, then we can't add more than a 2086 * limited number of addresses. Check to make sure that the 2087 * additions do not push us over the limit. 2088 */ 2089 if (set && !ice_is_vf_trusted(vf) && 2090 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2091 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2092 vf->vf_id); 2093 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2094 goto handle_mac_exit; 2095 } 2096 2097 vsi = ice_get_vf_vsi(vf); 2098 if (!vsi) { 2099 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2100 goto handle_mac_exit; 2101 } 2102 2103 for (i = 0; i < al->num_elements; i++) { 2104 u8 *mac_addr = al->list[i].addr; 2105 int result; 2106 2107 if (is_broadcast_ether_addr(mac_addr) || 2108 is_zero_ether_addr(mac_addr)) 2109 continue; 2110 2111 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2112 if (result == -EEXIST || result == -ENOENT) { 2113 continue; 2114 } else if (result) { 2115 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2116 goto handle_mac_exit; 2117 } 2118 } 2119 2120 handle_mac_exit: 2121 /* send the response to the VF */ 2122 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2123 } 2124 2125 /** 2126 * ice_vc_add_mac_addr_msg 2127 * @vf: pointer to the VF info 2128 * @msg: pointer to the msg buffer 2129 * 2130 * add guest MAC address filter 2131 */ 2132 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2133 { 2134 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2135 } 2136 2137 /** 2138 * ice_vc_del_mac_addr_msg 2139 * @vf: pointer to the VF info 2140 * @msg: pointer to the msg buffer 2141 * 2142 * remove guest MAC address filter 2143 */ 2144 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2145 { 2146 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2147 } 2148 2149 /** 2150 * ice_vc_request_qs_msg 2151 * @vf: pointer to the VF info 2152 * @msg: pointer to the msg buffer 2153 * 2154 * VFs get a default number of queues but can use this message to request a 2155 * different number. If the request is successful, PF will reset the VF and 2156 * return 0. If unsuccessful, PF will send message informing VF of number of 2157 * available queue pairs via virtchnl message response to VF. 2158 */ 2159 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2160 { 2161 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2162 struct virtchnl_vf_res_request *vfres = 2163 (struct virtchnl_vf_res_request *)msg; 2164 u16 req_queues = vfres->num_queue_pairs; 2165 struct ice_pf *pf = vf->pf; 2166 u16 max_allowed_vf_queues; 2167 u16 tx_rx_queue_left; 2168 struct device *dev; 2169 u16 cur_queues; 2170 2171 dev = ice_pf_to_dev(pf); 2172 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2173 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2174 goto error_param; 2175 } 2176 2177 cur_queues = vf->num_vf_qs; 2178 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2179 ice_get_avail_rxq_count(pf)); 2180 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2181 if (!req_queues) { 2182 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2183 vf->vf_id); 2184 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2185 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2186 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2187 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2188 } else if (req_queues > cur_queues && 2189 req_queues - cur_queues > tx_rx_queue_left) { 2190 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2191 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2192 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2193 ICE_MAX_RSS_QS_PER_VF); 2194 } else { 2195 /* request is successful, then reset VF */ 2196 vf->num_req_qs = req_queues; 2197 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2198 dev_info(dev, "VF %d granted request of %u queues.\n", 2199 vf->vf_id, req_queues); 2200 return 0; 2201 } 2202 2203 error_param: 2204 /* send the response to the VF */ 2205 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2206 v_ret, (u8 *)vfres, sizeof(*vfres)); 2207 } 2208 2209 /** 2210 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2211 * @caps: VF driver negotiated capabilities 2212 * 2213 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2214 */ 2215 static bool ice_vf_vlan_offload_ena(u32 caps) 2216 { 2217 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2218 } 2219 2220 /** 2221 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2222 * @vf: VF used to determine if VLAN promiscuous config is allowed 2223 */ 2224 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2225 { 2226 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2227 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2228 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2229 return true; 2230 2231 return false; 2232 } 2233 2234 /** 2235 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2236 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2237 * @vlan: VLAN used to enable VLAN promiscuous 2238 * 2239 * This function should only be called if VLAN promiscuous mode is allowed, 2240 * which can be determined via ice_is_vlan_promisc_allowed(). 2241 */ 2242 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2243 { 2244 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2245 int status; 2246 2247 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2248 vlan->vid); 2249 if (status && status != -EEXIST) 2250 return status; 2251 2252 return 0; 2253 } 2254 2255 /** 2256 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2257 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2258 * @vlan: VLAN used to disable VLAN promiscuous 2259 * 2260 * This function should only be called if VLAN promiscuous mode is allowed, 2261 * which can be determined via ice_is_vlan_promisc_allowed(). 2262 */ 2263 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2264 { 2265 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2266 int status; 2267 2268 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2269 vlan->vid); 2270 if (status && status != -ENOENT) 2271 return status; 2272 2273 return 0; 2274 } 2275 2276 /** 2277 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2278 * @vf: VF to check against 2279 * @vsi: VF's VSI 2280 * 2281 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2282 * wants to, so return false. 2283 * 2284 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2285 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2286 */ 2287 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2288 { 2289 if (ice_is_vf_trusted(vf)) 2290 return false; 2291 2292 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2293 return ((ice_vsi_num_non_zero_vlans(vsi) + 2294 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2295 } 2296 2297 /** 2298 * ice_vc_process_vlan_msg 2299 * @vf: pointer to the VF info 2300 * @msg: pointer to the msg buffer 2301 * @add_v: Add VLAN if true, otherwise delete VLAN 2302 * 2303 * Process virtchnl op to add or remove programmed guest VLAN ID 2304 */ 2305 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2306 { 2307 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2308 struct virtchnl_vlan_filter_list *vfl = 2309 (struct virtchnl_vlan_filter_list *)msg; 2310 struct ice_pf *pf = vf->pf; 2311 bool vlan_promisc = false; 2312 struct ice_vsi *vsi; 2313 struct device *dev; 2314 int status = 0; 2315 int i; 2316 2317 dev = ice_pf_to_dev(pf); 2318 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2319 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2320 goto error_param; 2321 } 2322 2323 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2324 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2325 goto error_param; 2326 } 2327 2328 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2329 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2330 goto error_param; 2331 } 2332 2333 for (i = 0; i < vfl->num_elements; i++) { 2334 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2335 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2336 dev_err(dev, "invalid VF VLAN id %d\n", 2337 vfl->vlan_id[i]); 2338 goto error_param; 2339 } 2340 } 2341 2342 vsi = ice_get_vf_vsi(vf); 2343 if (!vsi) { 2344 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2345 goto error_param; 2346 } 2347 2348 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2349 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2350 vf->vf_id); 2351 /* There is no need to let VF know about being not trusted, 2352 * so we can just return success message here 2353 */ 2354 goto error_param; 2355 } 2356 2357 /* in DVM a VF can add/delete inner VLAN filters when 2358 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2359 */ 2360 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2361 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2362 goto error_param; 2363 } 2364 2365 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2366 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2367 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2368 */ 2369 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2370 !ice_is_dvm_ena(&pf->hw) && 2371 !ice_vf_is_port_vlan_ena(vf); 2372 2373 if (add_v) { 2374 for (i = 0; i < vfl->num_elements; i++) { 2375 u16 vid = vfl->vlan_id[i]; 2376 struct ice_vlan vlan; 2377 2378 if (ice_vf_has_max_vlans(vf, vsi)) { 2379 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2380 vf->vf_id); 2381 /* There is no need to let VF know about being 2382 * not trusted, so we can just return success 2383 * message here as well. 2384 */ 2385 goto error_param; 2386 } 2387 2388 /* we add VLAN 0 by default for each VF so we can enable 2389 * Tx VLAN anti-spoof without triggering MDD events so 2390 * we don't need to add it again here 2391 */ 2392 if (!vid) 2393 continue; 2394 2395 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2396 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2397 if (status) { 2398 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2399 goto error_param; 2400 } 2401 2402 /* Enable VLAN filtering on first non-zero VLAN */ 2403 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2404 if (vf->spoofchk) { 2405 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2406 if (status) { 2407 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2408 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2409 vid, status); 2410 goto error_param; 2411 } 2412 } 2413 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2414 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2415 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2416 vid, status); 2417 goto error_param; 2418 } 2419 } else if (vlan_promisc) { 2420 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2421 if (status) { 2422 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2423 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2424 vid, status); 2425 } 2426 } 2427 } 2428 } else { 2429 /* In case of non_trusted VF, number of VLAN elements passed 2430 * to PF for removal might be greater than number of VLANs 2431 * filter programmed for that VF - So, use actual number of 2432 * VLANS added earlier with add VLAN opcode. In order to avoid 2433 * removing VLAN that doesn't exist, which result to sending 2434 * erroneous failed message back to the VF 2435 */ 2436 int num_vf_vlan; 2437 2438 num_vf_vlan = vsi->num_vlan; 2439 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2440 u16 vid = vfl->vlan_id[i]; 2441 struct ice_vlan vlan; 2442 2443 /* we add VLAN 0 by default for each VF so we can enable 2444 * Tx VLAN anti-spoof without triggering MDD events so 2445 * we don't want a VIRTCHNL request to remove it 2446 */ 2447 if (!vid) 2448 continue; 2449 2450 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2451 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2452 if (status) { 2453 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2454 goto error_param; 2455 } 2456 2457 /* Disable VLAN filtering when only VLAN 0 is left */ 2458 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2459 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2460 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2461 } 2462 2463 if (vlan_promisc) 2464 ice_vf_dis_vlan_promisc(vsi, &vlan); 2465 } 2466 } 2467 2468 error_param: 2469 /* send the response to the VF */ 2470 if (add_v) 2471 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2472 NULL, 0); 2473 else 2474 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2475 NULL, 0); 2476 } 2477 2478 /** 2479 * ice_vc_add_vlan_msg 2480 * @vf: pointer to the VF info 2481 * @msg: pointer to the msg buffer 2482 * 2483 * Add and program guest VLAN ID 2484 */ 2485 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2486 { 2487 return ice_vc_process_vlan_msg(vf, msg, true); 2488 } 2489 2490 /** 2491 * ice_vc_remove_vlan_msg 2492 * @vf: pointer to the VF info 2493 * @msg: pointer to the msg buffer 2494 * 2495 * remove programmed guest VLAN ID 2496 */ 2497 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2498 { 2499 return ice_vc_process_vlan_msg(vf, msg, false); 2500 } 2501 2502 /** 2503 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not 2504 * @vsi: pointer to the VF VSI info 2505 */ 2506 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi) 2507 { 2508 unsigned int i; 2509 2510 ice_for_each_alloc_rxq(vsi, i) 2511 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS) 2512 return true; 2513 2514 return false; 2515 } 2516 2517 /** 2518 * ice_vc_ena_vlan_stripping 2519 * @vf: pointer to the VF info 2520 * 2521 * Enable VLAN header stripping for a given VF 2522 */ 2523 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2524 { 2525 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2526 struct ice_vsi *vsi; 2527 2528 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2529 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2530 goto error_param; 2531 } 2532 2533 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2534 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2535 goto error_param; 2536 } 2537 2538 vsi = ice_get_vf_vsi(vf); 2539 if (!vsi) { 2540 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2541 goto error_param; 2542 } 2543 2544 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2545 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2546 else 2547 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2548 2549 error_param: 2550 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2551 v_ret, NULL, 0); 2552 } 2553 2554 /** 2555 * ice_vc_dis_vlan_stripping 2556 * @vf: pointer to the VF info 2557 * 2558 * Disable VLAN header stripping for a given VF 2559 */ 2560 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2561 { 2562 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2563 struct ice_vsi *vsi; 2564 2565 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2566 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2567 goto error_param; 2568 } 2569 2570 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2571 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2572 goto error_param; 2573 } 2574 2575 vsi = ice_get_vf_vsi(vf); 2576 if (!vsi) { 2577 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2578 goto error_param; 2579 } 2580 2581 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2582 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2583 else 2584 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 2585 2586 error_param: 2587 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2588 v_ret, NULL, 0); 2589 } 2590 2591 /** 2592 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2593 * @vf: pointer to the VF info 2594 */ 2595 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2596 { 2597 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2598 struct virtchnl_rss_hena *vrh = NULL; 2599 int len = 0, ret; 2600 2601 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2602 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2603 goto err; 2604 } 2605 2606 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2607 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2608 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2609 goto err; 2610 } 2611 2612 len = sizeof(struct virtchnl_rss_hena); 2613 vrh = kzalloc(len, GFP_KERNEL); 2614 if (!vrh) { 2615 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2616 len = 0; 2617 goto err; 2618 } 2619 2620 vrh->hena = ICE_DEFAULT_RSS_HENA; 2621 err: 2622 /* send the response back to the VF */ 2623 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2624 (u8 *)vrh, len); 2625 kfree(vrh); 2626 return ret; 2627 } 2628 2629 /** 2630 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2631 * @vf: pointer to the VF info 2632 * @msg: pointer to the msg buffer 2633 */ 2634 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2635 { 2636 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2637 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2638 struct ice_pf *pf = vf->pf; 2639 struct ice_vsi *vsi; 2640 struct device *dev; 2641 int status; 2642 2643 dev = ice_pf_to_dev(pf); 2644 2645 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2646 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2647 goto err; 2648 } 2649 2650 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2651 dev_err(dev, "RSS not supported by PF\n"); 2652 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2653 goto err; 2654 } 2655 2656 vsi = ice_get_vf_vsi(vf); 2657 if (!vsi) { 2658 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2659 goto err; 2660 } 2661 2662 /* clear all previously programmed RSS configuration to allow VF drivers 2663 * the ability to customize the RSS configuration and/or completely 2664 * disable RSS 2665 */ 2666 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2667 if (status && !vrh->hena) { 2668 /* only report failure to clear the current RSS configuration if 2669 * that was clearly the VF's intention (i.e. vrh->hena = 0) 2670 */ 2671 v_ret = ice_err_to_virt_err(status); 2672 goto err; 2673 } else if (status) { 2674 /* allow the VF to update the RSS configuration even on failure 2675 * to clear the current RSS confguration in an attempt to keep 2676 * RSS in a working state 2677 */ 2678 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 2679 vf->vf_id); 2680 } 2681 2682 if (vrh->hena) { 2683 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena); 2684 v_ret = ice_err_to_virt_err(status); 2685 } 2686 2687 /* send the response to the VF */ 2688 err: 2689 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 2690 NULL, 0); 2691 } 2692 2693 /** 2694 * ice_vc_query_rxdid - query RXDID supported by DDP package 2695 * @vf: pointer to VF info 2696 * 2697 * Called from VF to query a bitmap of supported flexible 2698 * descriptor RXDIDs of a DDP package. 2699 */ 2700 static int ice_vc_query_rxdid(struct ice_vf *vf) 2701 { 2702 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2703 struct virtchnl_supported_rxdids *rxdid = NULL; 2704 struct ice_hw *hw = &vf->pf->hw; 2705 struct ice_pf *pf = vf->pf; 2706 int len = 0; 2707 int ret, i; 2708 u32 regval; 2709 2710 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2711 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2712 goto err; 2713 } 2714 2715 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 2716 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2717 goto err; 2718 } 2719 2720 len = sizeof(struct virtchnl_supported_rxdids); 2721 rxdid = kzalloc(len, GFP_KERNEL); 2722 if (!rxdid) { 2723 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2724 len = 0; 2725 goto err; 2726 } 2727 2728 /* RXDIDs supported by DDP package can be read from the register 2729 * to get the supported RXDID bitmap. But the legacy 32byte RXDID 2730 * is not listed in DDP package, add it in the bitmap manually. 2731 * Legacy 16byte descriptor is not supported. 2732 */ 2733 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1); 2734 2735 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 2736 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 2737 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 2738 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 2739 rxdid->supported_rxdids |= BIT(i); 2740 } 2741 2742 pf->supported_rxdids = rxdid->supported_rxdids; 2743 2744 err: 2745 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 2746 v_ret, (u8 *)rxdid, len); 2747 kfree(rxdid); 2748 return ret; 2749 } 2750 2751 /** 2752 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2753 * @vf: VF to enable/disable VLAN stripping for on initialization 2754 * 2755 * Set the default for VLAN stripping based on whether a port VLAN is configured 2756 * and the current VLAN mode of the device. 2757 */ 2758 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2759 { 2760 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2761 2762 vf->vlan_strip_ena = 0; 2763 2764 if (!vsi) 2765 return -EINVAL; 2766 2767 /* don't modify stripping if port VLAN is configured in SVM since the 2768 * port VLAN is based on the inner/single VLAN in SVM 2769 */ 2770 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2771 return 0; 2772 2773 if (ice_vf_vlan_offload_ena(vf->driver_caps)) { 2774 int err; 2775 2776 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2777 if (!err) 2778 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2779 return err; 2780 } 2781 2782 return vsi->inner_vlan_ops.dis_stripping(vsi); 2783 } 2784 2785 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2786 { 2787 if (vf->trusted) 2788 return VLAN_N_VID; 2789 else 2790 return ICE_MAX_VLAN_PER_VF; 2791 } 2792 2793 /** 2794 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2795 * @vf: VF that being checked for 2796 * 2797 * When the device is in double VLAN mode, check whether or not the outer VLAN 2798 * is allowed. 2799 */ 2800 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2801 { 2802 if (ice_vf_is_port_vlan_ena(vf)) 2803 return true; 2804 2805 return false; 2806 } 2807 2808 /** 2809 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2810 * @vf: VF that capabilities are being set for 2811 * @caps: VLAN capabilities to populate 2812 * 2813 * Determine VLAN capabilities support based on whether a port VLAN is 2814 * configured. If a port VLAN is configured then the VF should use the inner 2815 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2816 * capabilies. 2817 */ 2818 static void 2819 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2820 { 2821 struct virtchnl_vlan_supported_caps *supported_caps; 2822 2823 if (ice_vf_outer_vlan_not_allowed(vf)) { 2824 /* until support for inner VLAN filtering is added when a port 2825 * VLAN is configured, only support software offloaded inner 2826 * VLANs when a port VLAN is confgured in DVM 2827 */ 2828 supported_caps = &caps->filtering.filtering_support; 2829 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2830 2831 supported_caps = &caps->offloads.stripping_support; 2832 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2833 VIRTCHNL_VLAN_TOGGLE | 2834 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2835 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2836 2837 supported_caps = &caps->offloads.insertion_support; 2838 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2839 VIRTCHNL_VLAN_TOGGLE | 2840 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2841 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2842 2843 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2844 caps->offloads.ethertype_match = 2845 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2846 } else { 2847 supported_caps = &caps->filtering.filtering_support; 2848 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2849 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2850 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2851 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2852 VIRTCHNL_VLAN_ETHERTYPE_AND; 2853 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2854 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2855 VIRTCHNL_VLAN_ETHERTYPE_9100; 2856 2857 supported_caps = &caps->offloads.stripping_support; 2858 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2859 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2860 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2861 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2862 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2863 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2864 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2865 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2866 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2867 2868 supported_caps = &caps->offloads.insertion_support; 2869 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2870 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2871 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2872 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2873 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2874 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2875 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2876 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2877 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2878 2879 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2880 2881 caps->offloads.ethertype_match = 2882 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2883 } 2884 2885 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2886 } 2887 2888 /** 2889 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2890 * @vf: VF that capabilities are being set for 2891 * @caps: VLAN capabilities to populate 2892 * 2893 * Determine VLAN capabilities support based on whether a port VLAN is 2894 * configured. If a port VLAN is configured then the VF does not have any VLAN 2895 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2896 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2897 * VLAN fitlering and offload capabilities. 2898 */ 2899 static void 2900 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2901 { 2902 struct virtchnl_vlan_supported_caps *supported_caps; 2903 2904 if (ice_vf_is_port_vlan_ena(vf)) { 2905 supported_caps = &caps->filtering.filtering_support; 2906 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2907 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2908 2909 supported_caps = &caps->offloads.stripping_support; 2910 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2911 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2912 2913 supported_caps = &caps->offloads.insertion_support; 2914 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2915 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2916 2917 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2918 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2919 caps->filtering.max_filters = 0; 2920 } else { 2921 supported_caps = &caps->filtering.filtering_support; 2922 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2923 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2924 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2925 2926 supported_caps = &caps->offloads.stripping_support; 2927 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2928 VIRTCHNL_VLAN_TOGGLE | 2929 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2930 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2931 2932 supported_caps = &caps->offloads.insertion_support; 2933 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2934 VIRTCHNL_VLAN_TOGGLE | 2935 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2936 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2937 2938 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2939 caps->offloads.ethertype_match = 2940 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2941 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2942 } 2943 } 2944 2945 /** 2946 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2947 * @vf: VF to determine VLAN capabilities for 2948 * 2949 * This will only be called if the VF and PF successfully negotiated 2950 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2951 * 2952 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2953 * is configured or not. 2954 */ 2955 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2956 { 2957 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2958 struct virtchnl_vlan_caps *caps = NULL; 2959 int err, len = 0; 2960 2961 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2962 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2963 goto out; 2964 } 2965 2966 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2967 if (!caps) { 2968 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2969 goto out; 2970 } 2971 len = sizeof(*caps); 2972 2973 if (ice_is_dvm_ena(&vf->pf->hw)) 2974 ice_vc_set_dvm_caps(vf, caps); 2975 else 2976 ice_vc_set_svm_caps(vf, caps); 2977 2978 /* store negotiated caps to prevent invalid VF messages */ 2979 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2980 2981 out: 2982 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2983 v_ret, (u8 *)caps, len); 2984 kfree(caps); 2985 return err; 2986 } 2987 2988 /** 2989 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2990 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2991 * @tpid: VLAN TPID used for validation 2992 * 2993 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2994 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2995 */ 2996 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2997 { 2998 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2999 3000 switch (tpid) { 3001 case ETH_P_8021Q: 3002 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 3003 break; 3004 case ETH_P_8021AD: 3005 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 3006 break; 3007 case ETH_P_QINQ1: 3008 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 3009 break; 3010 } 3011 3012 if (!(filtering_caps & vlan_ethertype)) 3013 return false; 3014 3015 return true; 3016 } 3017 3018 /** 3019 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 3020 * @vc_vlan: virtchnl_vlan to validate 3021 * 3022 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 3023 * false. Otherwise return true. 3024 */ 3025 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 3026 { 3027 if (!vc_vlan->tci || !vc_vlan->tpid) 3028 return false; 3029 3030 return true; 3031 } 3032 3033 /** 3034 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 3035 * @vfc: negotiated/supported VLAN filtering capabilities 3036 * @vfl: VLAN filter list from VF to validate 3037 * 3038 * Validate all of the filters in the VLAN filter list from the VF. If any of 3039 * the checks fail then return false. Otherwise return true. 3040 */ 3041 static bool 3042 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 3043 struct virtchnl_vlan_filter_list_v2 *vfl) 3044 { 3045 u16 i; 3046 3047 if (!vfl->num_elements) 3048 return false; 3049 3050 for (i = 0; i < vfl->num_elements; i++) { 3051 struct virtchnl_vlan_supported_caps *filtering_support = 3052 &vfc->filtering_support; 3053 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3054 struct virtchnl_vlan *outer = &vlan_fltr->outer; 3055 struct virtchnl_vlan *inner = &vlan_fltr->inner; 3056 3057 if ((ice_vc_is_valid_vlan(outer) && 3058 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 3059 (ice_vc_is_valid_vlan(inner) && 3060 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 3061 return false; 3062 3063 if ((outer->tci_mask && 3064 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 3065 (inner->tci_mask && 3066 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 3067 return false; 3068 3069 if (((outer->tci & VLAN_PRIO_MASK) && 3070 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 3071 ((inner->tci & VLAN_PRIO_MASK) && 3072 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 3073 return false; 3074 3075 if ((ice_vc_is_valid_vlan(outer) && 3076 !ice_vc_validate_vlan_tpid(filtering_support->outer, 3077 outer->tpid)) || 3078 (ice_vc_is_valid_vlan(inner) && 3079 !ice_vc_validate_vlan_tpid(filtering_support->inner, 3080 inner->tpid))) 3081 return false; 3082 } 3083 3084 return true; 3085 } 3086 3087 /** 3088 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 3089 * @vc_vlan: struct virtchnl_vlan to transform 3090 */ 3091 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 3092 { 3093 struct ice_vlan vlan = { 0 }; 3094 3095 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci); 3096 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 3097 vlan.tpid = vc_vlan->tpid; 3098 3099 return vlan; 3100 } 3101 3102 /** 3103 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 3104 * @vsi: VF's VSI used to perform the action 3105 * @vlan_action: function to perform the action with (i.e. add/del) 3106 * @vlan: VLAN filter to perform the action with 3107 */ 3108 static int 3109 ice_vc_vlan_action(struct ice_vsi *vsi, 3110 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3111 struct ice_vlan *vlan) 3112 { 3113 int err; 3114 3115 err = vlan_action(vsi, vlan); 3116 if (err) 3117 return err; 3118 3119 return 0; 3120 } 3121 3122 /** 3123 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3124 * @vf: VF used to delete the VLAN(s) 3125 * @vsi: VF's VSI used to delete the VLAN(s) 3126 * @vfl: virthchnl filter list used to delete the filters 3127 */ 3128 static int 3129 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3130 struct virtchnl_vlan_filter_list_v2 *vfl) 3131 { 3132 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3133 int err; 3134 u16 i; 3135 3136 for (i = 0; i < vfl->num_elements; i++) { 3137 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3138 struct virtchnl_vlan *vc_vlan; 3139 3140 vc_vlan = &vlan_fltr->outer; 3141 if (ice_vc_is_valid_vlan(vc_vlan)) { 3142 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3143 3144 err = ice_vc_vlan_action(vsi, 3145 vsi->outer_vlan_ops.del_vlan, 3146 &vlan); 3147 if (err) 3148 return err; 3149 3150 if (vlan_promisc) 3151 ice_vf_dis_vlan_promisc(vsi, &vlan); 3152 3153 /* Disable VLAN filtering when only VLAN 0 is left */ 3154 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3155 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3156 if (err) 3157 return err; 3158 } 3159 } 3160 3161 vc_vlan = &vlan_fltr->inner; 3162 if (ice_vc_is_valid_vlan(vc_vlan)) { 3163 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3164 3165 err = ice_vc_vlan_action(vsi, 3166 vsi->inner_vlan_ops.del_vlan, 3167 &vlan); 3168 if (err) 3169 return err; 3170 3171 /* no support for VLAN promiscuous on inner VLAN unless 3172 * we are in Single VLAN Mode (SVM) 3173 */ 3174 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3175 if (vlan_promisc) 3176 ice_vf_dis_vlan_promisc(vsi, &vlan); 3177 3178 /* Disable VLAN filtering when only VLAN 0 is left */ 3179 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3180 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3181 if (err) 3182 return err; 3183 } 3184 } 3185 } 3186 } 3187 3188 return 0; 3189 } 3190 3191 /** 3192 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3193 * @vf: VF the message was received from 3194 * @msg: message received from the VF 3195 */ 3196 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3197 { 3198 struct virtchnl_vlan_filter_list_v2 *vfl = 3199 (struct virtchnl_vlan_filter_list_v2 *)msg; 3200 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3201 struct ice_vsi *vsi; 3202 3203 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3204 vfl)) { 3205 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3206 goto out; 3207 } 3208 3209 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3210 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3211 goto out; 3212 } 3213 3214 vsi = ice_get_vf_vsi(vf); 3215 if (!vsi) { 3216 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3217 goto out; 3218 } 3219 3220 if (ice_vc_del_vlans(vf, vsi, vfl)) 3221 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3222 3223 out: 3224 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3225 0); 3226 } 3227 3228 /** 3229 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3230 * @vf: VF used to add the VLAN(s) 3231 * @vsi: VF's VSI used to add the VLAN(s) 3232 * @vfl: virthchnl filter list used to add the filters 3233 */ 3234 static int 3235 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3236 struct virtchnl_vlan_filter_list_v2 *vfl) 3237 { 3238 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3239 int err; 3240 u16 i; 3241 3242 for (i = 0; i < vfl->num_elements; i++) { 3243 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3244 struct virtchnl_vlan *vc_vlan; 3245 3246 vc_vlan = &vlan_fltr->outer; 3247 if (ice_vc_is_valid_vlan(vc_vlan)) { 3248 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3249 3250 err = ice_vc_vlan_action(vsi, 3251 vsi->outer_vlan_ops.add_vlan, 3252 &vlan); 3253 if (err) 3254 return err; 3255 3256 if (vlan_promisc) { 3257 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3258 if (err) 3259 return err; 3260 } 3261 3262 /* Enable VLAN filtering on first non-zero VLAN */ 3263 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3264 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3265 if (err) 3266 return err; 3267 } 3268 } 3269 3270 vc_vlan = &vlan_fltr->inner; 3271 if (ice_vc_is_valid_vlan(vc_vlan)) { 3272 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3273 3274 err = ice_vc_vlan_action(vsi, 3275 vsi->inner_vlan_ops.add_vlan, 3276 &vlan); 3277 if (err) 3278 return err; 3279 3280 /* no support for VLAN promiscuous on inner VLAN unless 3281 * we are in Single VLAN Mode (SVM) 3282 */ 3283 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3284 if (vlan_promisc) { 3285 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3286 if (err) 3287 return err; 3288 } 3289 3290 /* Enable VLAN filtering on first non-zero VLAN */ 3291 if (vf->spoofchk && vlan.vid) { 3292 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3293 if (err) 3294 return err; 3295 } 3296 } 3297 } 3298 } 3299 3300 return 0; 3301 } 3302 3303 /** 3304 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3305 * @vsi: VF VSI used to get number of existing VLAN filters 3306 * @vfc: negotiated/supported VLAN filtering capabilities 3307 * @vfl: VLAN filter list from VF to validate 3308 * 3309 * Validate all of the filters in the VLAN filter list from the VF during the 3310 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3311 * Otherwise return true. 3312 */ 3313 static bool 3314 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3315 struct virtchnl_vlan_filtering_caps *vfc, 3316 struct virtchnl_vlan_filter_list_v2 *vfl) 3317 { 3318 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3319 vfl->num_elements; 3320 3321 if (num_requested_filters > vfc->max_filters) 3322 return false; 3323 3324 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3325 } 3326 3327 /** 3328 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3329 * @vf: VF the message was received from 3330 * @msg: message received from the VF 3331 */ 3332 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3333 { 3334 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3335 struct virtchnl_vlan_filter_list_v2 *vfl = 3336 (struct virtchnl_vlan_filter_list_v2 *)msg; 3337 struct ice_vsi *vsi; 3338 3339 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3340 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3341 goto out; 3342 } 3343 3344 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3345 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3346 goto out; 3347 } 3348 3349 vsi = ice_get_vf_vsi(vf); 3350 if (!vsi) { 3351 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3352 goto out; 3353 } 3354 3355 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3356 &vf->vlan_v2_caps.filtering, 3357 vfl)) { 3358 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3359 goto out; 3360 } 3361 3362 if (ice_vc_add_vlans(vf, vsi, vfl)) 3363 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3364 3365 out: 3366 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3367 0); 3368 } 3369 3370 /** 3371 * ice_vc_valid_vlan_setting - validate VLAN setting 3372 * @negotiated_settings: negotiated VLAN settings during VF init 3373 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3374 */ 3375 static bool 3376 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3377 { 3378 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3379 return false; 3380 3381 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3382 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3383 */ 3384 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3385 hweight32(ethertype_setting) > 1) 3386 return false; 3387 3388 /* ability to modify the VLAN setting was not negotiated */ 3389 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3390 return false; 3391 3392 return true; 3393 } 3394 3395 /** 3396 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3397 * @caps: negotiated VLAN settings during VF init 3398 * @msg: message to validate 3399 * 3400 * Used to validate any VLAN virtchnl message sent as a 3401 * virtchnl_vlan_setting structure. Validates the message against the 3402 * negotiated/supported caps during VF driver init. 3403 */ 3404 static bool 3405 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3406 struct virtchnl_vlan_setting *msg) 3407 { 3408 if ((!msg->outer_ethertype_setting && 3409 !msg->inner_ethertype_setting) || 3410 (!caps->outer && !caps->inner)) 3411 return false; 3412 3413 if (msg->outer_ethertype_setting && 3414 !ice_vc_valid_vlan_setting(caps->outer, 3415 msg->outer_ethertype_setting)) 3416 return false; 3417 3418 if (msg->inner_ethertype_setting && 3419 !ice_vc_valid_vlan_setting(caps->inner, 3420 msg->inner_ethertype_setting)) 3421 return false; 3422 3423 return true; 3424 } 3425 3426 /** 3427 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3428 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3429 * @tpid: VLAN TPID to populate 3430 */ 3431 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3432 { 3433 switch (ethertype_setting) { 3434 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3435 *tpid = ETH_P_8021Q; 3436 break; 3437 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3438 *tpid = ETH_P_8021AD; 3439 break; 3440 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3441 *tpid = ETH_P_QINQ1; 3442 break; 3443 default: 3444 *tpid = 0; 3445 return -EINVAL; 3446 } 3447 3448 return 0; 3449 } 3450 3451 /** 3452 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3453 * @vsi: VF's VSI used to enable the VLAN offload 3454 * @ena_offload: function used to enable the VLAN offload 3455 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3456 */ 3457 static int 3458 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3459 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3460 u32 ethertype_setting) 3461 { 3462 u16 tpid; 3463 int err; 3464 3465 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3466 if (err) 3467 return err; 3468 3469 err = ena_offload(vsi, tpid); 3470 if (err) 3471 return err; 3472 3473 return 0; 3474 } 3475 3476 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3477 #define ICE_L2TSEL_BIT_OFFSET 23 3478 enum ice_l2tsel { 3479 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3480 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3481 }; 3482 3483 /** 3484 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3485 * @vsi: VSI used to update l2tsel on 3486 * @l2tsel: l2tsel setting requested 3487 * 3488 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3489 * This will modify which descriptor field the first offloaded VLAN will be 3490 * stripped into. 3491 */ 3492 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3493 { 3494 struct ice_hw *hw = &vsi->back->hw; 3495 u32 l2tsel_bit; 3496 int i; 3497 3498 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3499 l2tsel_bit = 0; 3500 else 3501 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3502 3503 for (i = 0; i < vsi->alloc_rxq; i++) { 3504 u16 pfq = vsi->rxq_map[i]; 3505 u32 qrx_context_offset; 3506 u32 regval; 3507 3508 qrx_context_offset = 3509 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3510 3511 regval = rd32(hw, qrx_context_offset); 3512 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3513 regval |= l2tsel_bit; 3514 wr32(hw, qrx_context_offset, regval); 3515 } 3516 } 3517 3518 /** 3519 * ice_vc_ena_vlan_stripping_v2_msg 3520 * @vf: VF the message was received from 3521 * @msg: message received from the VF 3522 * 3523 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3524 */ 3525 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3526 { 3527 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3528 struct virtchnl_vlan_supported_caps *stripping_support; 3529 struct virtchnl_vlan_setting *strip_msg = 3530 (struct virtchnl_vlan_setting *)msg; 3531 u32 ethertype_setting; 3532 struct ice_vsi *vsi; 3533 3534 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3535 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3536 goto out; 3537 } 3538 3539 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3540 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3541 goto out; 3542 } 3543 3544 vsi = ice_get_vf_vsi(vf); 3545 if (!vsi) { 3546 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3547 goto out; 3548 } 3549 3550 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3551 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3552 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3553 goto out; 3554 } 3555 3556 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) { 3557 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3558 goto out; 3559 } 3560 3561 ethertype_setting = strip_msg->outer_ethertype_setting; 3562 if (ethertype_setting) { 3563 if (ice_vc_ena_vlan_offload(vsi, 3564 vsi->outer_vlan_ops.ena_stripping, 3565 ethertype_setting)) { 3566 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3567 goto out; 3568 } else { 3569 enum ice_l2tsel l2tsel = 3570 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3571 3572 /* PF tells the VF that the outer VLAN tag is always 3573 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3574 * inner is always extracted to 3575 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3576 * support outer stripping so the first tag always ends 3577 * up in L2TAG2_2ND and the second/inner tag, if 3578 * enabled, is extracted in L2TAG1. 3579 */ 3580 ice_vsi_update_l2tsel(vsi, l2tsel); 3581 3582 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA; 3583 } 3584 } 3585 3586 ethertype_setting = strip_msg->inner_ethertype_setting; 3587 if (ethertype_setting && 3588 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3589 ethertype_setting)) { 3590 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3591 goto out; 3592 } 3593 3594 if (ethertype_setting) 3595 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3596 3597 out: 3598 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3599 v_ret, NULL, 0); 3600 } 3601 3602 /** 3603 * ice_vc_dis_vlan_stripping_v2_msg 3604 * @vf: VF the message was received from 3605 * @msg: message received from the VF 3606 * 3607 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3608 */ 3609 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3610 { 3611 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3612 struct virtchnl_vlan_supported_caps *stripping_support; 3613 struct virtchnl_vlan_setting *strip_msg = 3614 (struct virtchnl_vlan_setting *)msg; 3615 u32 ethertype_setting; 3616 struct ice_vsi *vsi; 3617 3618 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3619 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3620 goto out; 3621 } 3622 3623 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3624 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3625 goto out; 3626 } 3627 3628 vsi = ice_get_vf_vsi(vf); 3629 if (!vsi) { 3630 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3631 goto out; 3632 } 3633 3634 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3635 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3636 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3637 goto out; 3638 } 3639 3640 ethertype_setting = strip_msg->outer_ethertype_setting; 3641 if (ethertype_setting) { 3642 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3643 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3644 goto out; 3645 } else { 3646 enum ice_l2tsel l2tsel = 3647 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3648 3649 /* PF tells the VF that the outer VLAN tag is always 3650 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3651 * inner is always extracted to 3652 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3653 * support inner stripping while outer stripping is 3654 * disabled so that the first and only tag is extracted 3655 * in L2TAG1. 3656 */ 3657 ice_vsi_update_l2tsel(vsi, l2tsel); 3658 3659 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA; 3660 } 3661 } 3662 3663 ethertype_setting = strip_msg->inner_ethertype_setting; 3664 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3665 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3666 goto out; 3667 } 3668 3669 if (ethertype_setting) 3670 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 3671 3672 out: 3673 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3674 v_ret, NULL, 0); 3675 } 3676 3677 /** 3678 * ice_vc_ena_vlan_insertion_v2_msg 3679 * @vf: VF the message was received from 3680 * @msg: message received from the VF 3681 * 3682 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3683 */ 3684 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3685 { 3686 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3687 struct virtchnl_vlan_supported_caps *insertion_support; 3688 struct virtchnl_vlan_setting *insertion_msg = 3689 (struct virtchnl_vlan_setting *)msg; 3690 u32 ethertype_setting; 3691 struct ice_vsi *vsi; 3692 3693 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3694 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3695 goto out; 3696 } 3697 3698 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3699 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3700 goto out; 3701 } 3702 3703 vsi = ice_get_vf_vsi(vf); 3704 if (!vsi) { 3705 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3706 goto out; 3707 } 3708 3709 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3710 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3711 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3712 goto out; 3713 } 3714 3715 ethertype_setting = insertion_msg->outer_ethertype_setting; 3716 if (ethertype_setting && 3717 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3718 ethertype_setting)) { 3719 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3720 goto out; 3721 } 3722 3723 ethertype_setting = insertion_msg->inner_ethertype_setting; 3724 if (ethertype_setting && 3725 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3726 ethertype_setting)) { 3727 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3728 goto out; 3729 } 3730 3731 out: 3732 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3733 v_ret, NULL, 0); 3734 } 3735 3736 /** 3737 * ice_vc_dis_vlan_insertion_v2_msg 3738 * @vf: VF the message was received from 3739 * @msg: message received from the VF 3740 * 3741 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3742 */ 3743 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3744 { 3745 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3746 struct virtchnl_vlan_supported_caps *insertion_support; 3747 struct virtchnl_vlan_setting *insertion_msg = 3748 (struct virtchnl_vlan_setting *)msg; 3749 u32 ethertype_setting; 3750 struct ice_vsi *vsi; 3751 3752 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3753 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3754 goto out; 3755 } 3756 3757 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3758 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3759 goto out; 3760 } 3761 3762 vsi = ice_get_vf_vsi(vf); 3763 if (!vsi) { 3764 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3765 goto out; 3766 } 3767 3768 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3769 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3770 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3771 goto out; 3772 } 3773 3774 ethertype_setting = insertion_msg->outer_ethertype_setting; 3775 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3776 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3777 goto out; 3778 } 3779 3780 ethertype_setting = insertion_msg->inner_ethertype_setting; 3781 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3782 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3783 goto out; 3784 } 3785 3786 out: 3787 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3788 v_ret, NULL, 0); 3789 } 3790 3791 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3792 .get_ver_msg = ice_vc_get_ver_msg, 3793 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3794 .reset_vf = ice_vc_reset_vf_msg, 3795 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3796 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3797 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3798 .ena_qs_msg = ice_vc_ena_qs_msg, 3799 .dis_qs_msg = ice_vc_dis_qs_msg, 3800 .request_qs_msg = ice_vc_request_qs_msg, 3801 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3802 .config_rss_key = ice_vc_config_rss_key, 3803 .config_rss_lut = ice_vc_config_rss_lut, 3804 .config_rss_hfunc = ice_vc_config_rss_hfunc, 3805 .get_stats_msg = ice_vc_get_stats_msg, 3806 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3807 .add_vlan_msg = ice_vc_add_vlan_msg, 3808 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3809 .query_rxdid = ice_vc_query_rxdid, 3810 .get_rss_hena = ice_vc_get_rss_hena, 3811 .set_rss_hena_msg = ice_vc_set_rss_hena, 3812 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3813 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3814 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3815 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3816 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3817 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3818 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3819 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3820 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3821 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3822 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3823 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3824 }; 3825 3826 /** 3827 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3828 * @vf: the VF to switch ops 3829 */ 3830 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3831 { 3832 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3833 } 3834 3835 /** 3836 * ice_vc_repr_add_mac 3837 * @vf: pointer to VF 3838 * @msg: virtchannel message 3839 * 3840 * When port representors are created, we do not add MAC rule 3841 * to firmware, we store it so that PF could report same 3842 * MAC as VF. 3843 */ 3844 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3845 { 3846 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3847 struct virtchnl_ether_addr_list *al = 3848 (struct virtchnl_ether_addr_list *)msg; 3849 struct ice_vsi *vsi; 3850 struct ice_pf *pf; 3851 int i; 3852 3853 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3854 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3855 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3856 goto handle_mac_exit; 3857 } 3858 3859 pf = vf->pf; 3860 3861 vsi = ice_get_vf_vsi(vf); 3862 if (!vsi) { 3863 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3864 goto handle_mac_exit; 3865 } 3866 3867 for (i = 0; i < al->num_elements; i++) { 3868 u8 *mac_addr = al->list[i].addr; 3869 3870 if (!is_unicast_ether_addr(mac_addr) || 3871 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 3872 continue; 3873 3874 if (vf->pf_set_mac) { 3875 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3876 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3877 goto handle_mac_exit; 3878 } 3879 3880 ice_vfhw_mac_add(vf, &al->list[i]); 3881 vf->num_mac++; 3882 break; 3883 } 3884 3885 handle_mac_exit: 3886 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3887 v_ret, NULL, 0); 3888 } 3889 3890 /** 3891 * ice_vc_repr_del_mac - response with success for deleting MAC 3892 * @vf: pointer to VF 3893 * @msg: virtchannel message 3894 * 3895 * Respond with success to not break normal VF flow. 3896 * For legacy VF driver try to update cached MAC address. 3897 */ 3898 static int 3899 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3900 { 3901 struct virtchnl_ether_addr_list *al = 3902 (struct virtchnl_ether_addr_list *)msg; 3903 3904 ice_update_legacy_cached_mac(vf, &al->list[0]); 3905 3906 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3907 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3908 } 3909 3910 static int 3911 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3912 { 3913 dev_dbg(ice_pf_to_dev(vf->pf), 3914 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3915 vf->vf_id); 3916 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3917 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3918 NULL, 0); 3919 } 3920 3921 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3922 .get_ver_msg = ice_vc_get_ver_msg, 3923 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3924 .reset_vf = ice_vc_reset_vf_msg, 3925 .add_mac_addr_msg = ice_vc_repr_add_mac, 3926 .del_mac_addr_msg = ice_vc_repr_del_mac, 3927 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3928 .ena_qs_msg = ice_vc_ena_qs_msg, 3929 .dis_qs_msg = ice_vc_dis_qs_msg, 3930 .request_qs_msg = ice_vc_request_qs_msg, 3931 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3932 .config_rss_key = ice_vc_config_rss_key, 3933 .config_rss_lut = ice_vc_config_rss_lut, 3934 .config_rss_hfunc = ice_vc_config_rss_hfunc, 3935 .get_stats_msg = ice_vc_get_stats_msg, 3936 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3937 .add_vlan_msg = ice_vc_add_vlan_msg, 3938 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3939 .query_rxdid = ice_vc_query_rxdid, 3940 .get_rss_hena = ice_vc_get_rss_hena, 3941 .set_rss_hena_msg = ice_vc_set_rss_hena, 3942 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3943 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3944 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3945 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3946 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3947 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3948 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3949 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3950 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3951 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3952 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3953 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3954 }; 3955 3956 /** 3957 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3958 * @vf: the VF to switch ops 3959 */ 3960 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3961 { 3962 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3963 } 3964 3965 /** 3966 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 3967 * @vf: the VF to check 3968 * @mbxdata: data about the state of the mailbox 3969 * 3970 * Detect if a given VF might be malicious and attempting to overflow the PF 3971 * mailbox. If so, log a warning message and ignore this event. 3972 */ 3973 static bool 3974 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 3975 { 3976 bool report_malvf = false; 3977 struct device *dev; 3978 struct ice_pf *pf; 3979 int status; 3980 3981 pf = vf->pf; 3982 dev = ice_pf_to_dev(pf); 3983 3984 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 3985 return vf->mbx_info.malicious; 3986 3987 /* check to see if we have a newly malicious VF */ 3988 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 3989 &report_malvf); 3990 if (status) 3991 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 3992 vf->vf_id, vf->dev_lan_addr, status); 3993 3994 if (report_malvf) { 3995 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3996 u8 zero_addr[ETH_ALEN] = {}; 3997 3998 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 3999 vf->dev_lan_addr, 4000 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 4001 } 4002 4003 return vf->mbx_info.malicious; 4004 } 4005 4006 /** 4007 * ice_vc_process_vf_msg - Process request from VF 4008 * @pf: pointer to the PF structure 4009 * @event: pointer to the AQ event 4010 * @mbxdata: information used to detect VF attempting mailbox overflow 4011 * 4012 * called from the common asq/arq handler to 4013 * process request from VF 4014 */ 4015 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 4016 struct ice_mbx_data *mbxdata) 4017 { 4018 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 4019 s16 vf_id = le16_to_cpu(event->desc.retval); 4020 const struct ice_virtchnl_ops *ops; 4021 u16 msglen = event->msg_len; 4022 u8 *msg = event->msg_buf; 4023 struct ice_vf *vf = NULL; 4024 struct device *dev; 4025 int err = 0; 4026 4027 dev = ice_pf_to_dev(pf); 4028 4029 vf = ice_get_vf_by_id(pf, vf_id); 4030 if (!vf) { 4031 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 4032 vf_id, v_opcode, msglen); 4033 return; 4034 } 4035 4036 mutex_lock(&vf->cfg_lock); 4037 4038 /* Check if the VF is trying to overflow the mailbox */ 4039 if (ice_is_malicious_vf(vf, mbxdata)) 4040 goto finish; 4041 4042 /* Check if VF is disabled. */ 4043 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 4044 err = -EPERM; 4045 goto error_handler; 4046 } 4047 4048 ops = vf->virtchnl_ops; 4049 4050 /* Perform basic checks on the msg */ 4051 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 4052 if (err) { 4053 if (err == VIRTCHNL_STATUS_ERR_PARAM) 4054 err = -EPERM; 4055 else 4056 err = -EINVAL; 4057 } 4058 4059 error_handler: 4060 if (err) { 4061 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 4062 NULL, 0); 4063 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 4064 vf_id, v_opcode, msglen, err); 4065 goto finish; 4066 } 4067 4068 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 4069 ice_vc_send_msg_to_vf(vf, v_opcode, 4070 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 4071 0); 4072 goto finish; 4073 } 4074 4075 switch (v_opcode) { 4076 case VIRTCHNL_OP_VERSION: 4077 err = ops->get_ver_msg(vf, msg); 4078 break; 4079 case VIRTCHNL_OP_GET_VF_RESOURCES: 4080 err = ops->get_vf_res_msg(vf, msg); 4081 if (ice_vf_init_vlan_stripping(vf)) 4082 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 4083 vf->vf_id); 4084 ice_vc_notify_vf_link_state(vf); 4085 break; 4086 case VIRTCHNL_OP_RESET_VF: 4087 ops->reset_vf(vf); 4088 break; 4089 case VIRTCHNL_OP_ADD_ETH_ADDR: 4090 err = ops->add_mac_addr_msg(vf, msg); 4091 break; 4092 case VIRTCHNL_OP_DEL_ETH_ADDR: 4093 err = ops->del_mac_addr_msg(vf, msg); 4094 break; 4095 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 4096 err = ops->cfg_qs_msg(vf, msg); 4097 break; 4098 case VIRTCHNL_OP_ENABLE_QUEUES: 4099 err = ops->ena_qs_msg(vf, msg); 4100 ice_vc_notify_vf_link_state(vf); 4101 break; 4102 case VIRTCHNL_OP_DISABLE_QUEUES: 4103 err = ops->dis_qs_msg(vf, msg); 4104 break; 4105 case VIRTCHNL_OP_REQUEST_QUEUES: 4106 err = ops->request_qs_msg(vf, msg); 4107 break; 4108 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 4109 err = ops->cfg_irq_map_msg(vf, msg); 4110 break; 4111 case VIRTCHNL_OP_CONFIG_RSS_KEY: 4112 err = ops->config_rss_key(vf, msg); 4113 break; 4114 case VIRTCHNL_OP_CONFIG_RSS_LUT: 4115 err = ops->config_rss_lut(vf, msg); 4116 break; 4117 case VIRTCHNL_OP_CONFIG_RSS_HFUNC: 4118 err = ops->config_rss_hfunc(vf, msg); 4119 break; 4120 case VIRTCHNL_OP_GET_STATS: 4121 err = ops->get_stats_msg(vf, msg); 4122 break; 4123 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 4124 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4125 break; 4126 case VIRTCHNL_OP_ADD_VLAN: 4127 err = ops->add_vlan_msg(vf, msg); 4128 break; 4129 case VIRTCHNL_OP_DEL_VLAN: 4130 err = ops->remove_vlan_msg(vf, msg); 4131 break; 4132 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4133 err = ops->query_rxdid(vf); 4134 break; 4135 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4136 err = ops->get_rss_hena(vf); 4137 break; 4138 case VIRTCHNL_OP_SET_RSS_HENA: 4139 err = ops->set_rss_hena_msg(vf, msg); 4140 break; 4141 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4142 err = ops->ena_vlan_stripping(vf); 4143 break; 4144 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4145 err = ops->dis_vlan_stripping(vf); 4146 break; 4147 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4148 err = ops->add_fdir_fltr_msg(vf, msg); 4149 break; 4150 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4151 err = ops->del_fdir_fltr_msg(vf, msg); 4152 break; 4153 case VIRTCHNL_OP_ADD_RSS_CFG: 4154 err = ops->handle_rss_cfg_msg(vf, msg, true); 4155 break; 4156 case VIRTCHNL_OP_DEL_RSS_CFG: 4157 err = ops->handle_rss_cfg_msg(vf, msg, false); 4158 break; 4159 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4160 err = ops->get_offload_vlan_v2_caps(vf); 4161 break; 4162 case VIRTCHNL_OP_ADD_VLAN_V2: 4163 err = ops->add_vlan_v2_msg(vf, msg); 4164 break; 4165 case VIRTCHNL_OP_DEL_VLAN_V2: 4166 err = ops->remove_vlan_v2_msg(vf, msg); 4167 break; 4168 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4169 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4170 break; 4171 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4172 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4173 break; 4174 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4175 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4176 break; 4177 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4178 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4179 break; 4180 case VIRTCHNL_OP_UNKNOWN: 4181 default: 4182 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4183 vf_id); 4184 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4185 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4186 NULL, 0); 4187 break; 4188 } 4189 if (err) { 4190 /* Helper function cares less about error return values here 4191 * as it is busy with pending work. 4192 */ 4193 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4194 vf_id, v_opcode, err); 4195 } 4196 4197 finish: 4198 mutex_unlock(&vf->cfg_lock); 4199 ice_put_vf(vf); 4200 } 4201