1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_RSS_REG | 444 VIRTCHNL_VF_OFFLOAD_VLAN; 445 446 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 447 vsi = ice_get_vf_vsi(vf); 448 if (!vsi) { 449 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 450 goto err; 451 } 452 453 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 454 vf->driver_caps); 455 456 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 457 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 458 } else { 459 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) 460 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; 461 else 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; 463 } 464 465 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 485 486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 488 489 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC; 491 492 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 494 495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 497 498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 500 501 vfres->num_vsis = 1; 502 /* Tx and Rx queue are equal for VF */ 503 vfres->num_queue_pairs = vsi->num_txq; 504 vfres->max_vectors = vf->num_msix; 505 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 506 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 507 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 508 509 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID; 510 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 511 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 512 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 513 vf->hw_lan_addr); 514 515 /* match guest capabilities */ 516 vf->driver_caps = vfres->vf_cap_flags; 517 518 ice_vc_set_caps_allowlist(vf); 519 ice_vc_set_working_allowlist(vf); 520 521 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 522 523 err: 524 /* send the response back to the VF */ 525 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 526 (u8 *)vfres, len); 527 528 kfree(vfres); 529 return ret; 530 } 531 532 /** 533 * ice_vc_reset_vf_msg 534 * @vf: pointer to the VF info 535 * 536 * called from the VF to reset itself, 537 * unlike other virtchnl messages, PF driver 538 * doesn't send the response back to the VF 539 */ 540 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 541 { 542 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 543 ice_reset_vf(vf, 0); 544 } 545 546 /** 547 * ice_vc_isvalid_vsi_id 548 * @vf: pointer to the VF info 549 * @vsi_id: VF relative VSI ID 550 * 551 * check for the valid VSI ID 552 */ 553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 554 { 555 return vsi_id == ICE_VF_VSI_ID; 556 } 557 558 /** 559 * ice_vc_isvalid_q_id 560 * @vsi: VSI to check queue ID against 561 * @qid: VSI relative queue ID 562 * 563 * check for the valid queue ID 564 */ 565 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid) 566 { 567 /* allocated Tx and Rx queues should be always equal for VF VSI */ 568 return qid < vsi->alloc_txq; 569 } 570 571 /** 572 * ice_vc_isvalid_ring_len 573 * @ring_len: length of ring 574 * 575 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 576 * or zero 577 */ 578 static bool ice_vc_isvalid_ring_len(u16 ring_len) 579 { 580 return ring_len == 0 || 581 (ring_len >= ICE_MIN_NUM_DESC && 582 ring_len <= ICE_MAX_NUM_DESC && 583 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 584 } 585 586 /** 587 * ice_vc_validate_pattern 588 * @vf: pointer to the VF info 589 * @proto: virtchnl protocol headers 590 * 591 * validate the pattern is supported or not. 592 * 593 * Return: true on success, false on error. 594 */ 595 bool 596 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 597 { 598 bool is_ipv4 = false; 599 bool is_ipv6 = false; 600 bool is_udp = false; 601 u16 ptype = -1; 602 int i = 0; 603 604 while (i < proto->count && 605 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 606 switch (proto->proto_hdr[i].type) { 607 case VIRTCHNL_PROTO_HDR_ETH: 608 ptype = ICE_PTYPE_MAC_PAY; 609 break; 610 case VIRTCHNL_PROTO_HDR_IPV4: 611 ptype = ICE_PTYPE_IPV4_PAY; 612 is_ipv4 = true; 613 break; 614 case VIRTCHNL_PROTO_HDR_IPV6: 615 ptype = ICE_PTYPE_IPV6_PAY; 616 is_ipv6 = true; 617 break; 618 case VIRTCHNL_PROTO_HDR_UDP: 619 if (is_ipv4) 620 ptype = ICE_PTYPE_IPV4_UDP_PAY; 621 else if (is_ipv6) 622 ptype = ICE_PTYPE_IPV6_UDP_PAY; 623 is_udp = true; 624 break; 625 case VIRTCHNL_PROTO_HDR_TCP: 626 if (is_ipv4) 627 ptype = ICE_PTYPE_IPV4_TCP_PAY; 628 else if (is_ipv6) 629 ptype = ICE_PTYPE_IPV6_TCP_PAY; 630 break; 631 case VIRTCHNL_PROTO_HDR_SCTP: 632 if (is_ipv4) 633 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 634 else if (is_ipv6) 635 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 636 break; 637 case VIRTCHNL_PROTO_HDR_GTPU_IP: 638 case VIRTCHNL_PROTO_HDR_GTPU_EH: 639 if (is_ipv4) 640 ptype = ICE_MAC_IPV4_GTPU; 641 else if (is_ipv6) 642 ptype = ICE_MAC_IPV6_GTPU; 643 goto out; 644 case VIRTCHNL_PROTO_HDR_L2TPV3: 645 if (is_ipv4) 646 ptype = ICE_MAC_IPV4_L2TPV3; 647 else if (is_ipv6) 648 ptype = ICE_MAC_IPV6_L2TPV3; 649 goto out; 650 case VIRTCHNL_PROTO_HDR_ESP: 651 if (is_ipv4) 652 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 653 ICE_MAC_IPV4_ESP; 654 else if (is_ipv6) 655 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 656 ICE_MAC_IPV6_ESP; 657 goto out; 658 case VIRTCHNL_PROTO_HDR_AH: 659 if (is_ipv4) 660 ptype = ICE_MAC_IPV4_AH; 661 else if (is_ipv6) 662 ptype = ICE_MAC_IPV6_AH; 663 goto out; 664 case VIRTCHNL_PROTO_HDR_PFCP: 665 if (is_ipv4) 666 ptype = ICE_MAC_IPV4_PFCP_SESSION; 667 else if (is_ipv6) 668 ptype = ICE_MAC_IPV6_PFCP_SESSION; 669 goto out; 670 default: 671 break; 672 } 673 i++; 674 } 675 676 out: 677 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 678 } 679 680 /** 681 * ice_vc_parse_rss_cfg - parses hash fields and headers from 682 * a specific virtchnl RSS cfg 683 * @hw: pointer to the hardware 684 * @rss_cfg: pointer to the virtchnl RSS cfg 685 * @hash_cfg: pointer to the HW hash configuration 686 * 687 * Return true if all the protocol header and hash fields in the RSS cfg could 688 * be parsed, else return false 689 * 690 * This function parses the virtchnl RSS cfg to be the intended 691 * hash fields and the intended header for RSS configuration 692 */ 693 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw, 694 struct virtchnl_rss_cfg *rss_cfg, 695 struct ice_rss_hash_cfg *hash_cfg) 696 { 697 const struct ice_vc_hash_field_match_type *hf_list; 698 const struct ice_vc_hdr_match_type *hdr_list; 699 int i, hf_list_len, hdr_list_len; 700 u32 *addl_hdrs = &hash_cfg->addl_hdrs; 701 u64 *hash_flds = &hash_cfg->hash_flds; 702 703 /* set outer layer RSS as default */ 704 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS; 705 706 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 707 hash_cfg->symm = true; 708 else 709 hash_cfg->symm = false; 710 711 hf_list = ice_vc_hash_field_list; 712 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 713 hdr_list = ice_vc_hdr_list; 714 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 715 716 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 717 struct virtchnl_proto_hdr *proto_hdr = 718 &rss_cfg->proto_hdrs.proto_hdr[i]; 719 bool hdr_found = false; 720 int j; 721 722 /* Find matched ice headers according to virtchnl headers. */ 723 for (j = 0; j < hdr_list_len; j++) { 724 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 725 726 if (proto_hdr->type == hdr_map.vc_hdr) { 727 *addl_hdrs |= hdr_map.ice_hdr; 728 hdr_found = true; 729 } 730 } 731 732 if (!hdr_found) 733 return false; 734 735 /* Find matched ice hash fields according to 736 * virtchnl hash fields. 737 */ 738 for (j = 0; j < hf_list_len; j++) { 739 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 740 741 if (proto_hdr->type == hf_map.vc_hdr && 742 proto_hdr->field_selector == hf_map.vc_hash_field) { 743 *hash_flds |= hf_map.ice_hash_field; 744 break; 745 } 746 } 747 } 748 749 return true; 750 } 751 752 /** 753 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 754 * RSS offloads 755 * @caps: VF driver negotiated capabilities 756 * 757 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 758 * else return false 759 */ 760 static bool ice_vf_adv_rss_offload_ena(u32 caps) 761 { 762 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 763 } 764 765 /** 766 * ice_vc_handle_rss_cfg 767 * @vf: pointer to the VF info 768 * @msg: pointer to the message buffer 769 * @add: add a RSS config if true, otherwise delete a RSS config 770 * 771 * This function adds/deletes a RSS config 772 */ 773 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 774 { 775 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 776 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 777 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 778 struct device *dev = ice_pf_to_dev(vf->pf); 779 struct ice_hw *hw = &vf->pf->hw; 780 struct ice_vsi *vsi; 781 782 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 783 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 784 vf->vf_id); 785 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 786 goto error_param; 787 } 788 789 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 790 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 791 vf->vf_id); 792 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 793 goto error_param; 794 } 795 796 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 797 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 798 goto error_param; 799 } 800 801 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 802 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 803 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 804 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 805 vf->vf_id); 806 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 807 goto error_param; 808 } 809 810 vsi = ice_get_vf_vsi(vf); 811 if (!vsi) { 812 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 813 goto error_param; 814 } 815 816 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 817 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 818 goto error_param; 819 } 820 821 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 822 struct ice_vsi_ctx *ctx; 823 u8 lut_type, hash_type; 824 int status; 825 826 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 827 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR : 828 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 829 830 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 831 if (!ctx) { 832 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 833 goto error_param; 834 } 835 836 ctx->info.q_opt_rss = 837 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 838 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 839 840 /* Preserve existing queueing option setting */ 841 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 842 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 843 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 844 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 845 846 ctx->info.valid_sections = 847 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 848 849 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 850 if (status) { 851 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 852 status, ice_aq_str(hw->adminq.sq_last_status)); 853 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 854 } else { 855 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 856 } 857 858 kfree(ctx); 859 } else { 860 struct ice_rss_hash_cfg cfg; 861 862 /* Only check for none raw pattern case */ 863 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 864 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 865 goto error_param; 866 } 867 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 868 cfg.hash_flds = ICE_HASH_INVALID; 869 cfg.hdr_type = ICE_RSS_ANY_HEADERS; 870 871 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) { 872 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 873 goto error_param; 874 } 875 876 if (add) { 877 if (ice_add_rss_cfg(hw, vsi, &cfg)) { 878 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 879 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 880 vsi->vsi_num, v_ret); 881 } 882 } else { 883 int status; 884 885 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg); 886 /* We just ignore -ENOENT, because if two configurations 887 * share the same profile remove one of them actually 888 * removes both, since the profile is deleted. 889 */ 890 if (status && status != -ENOENT) { 891 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 892 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 893 vf->vf_id, status); 894 } 895 } 896 } 897 898 error_param: 899 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 900 } 901 902 /** 903 * ice_vc_config_rss_key 904 * @vf: pointer to the VF info 905 * @msg: pointer to the msg buffer 906 * 907 * Configure the VF's RSS key 908 */ 909 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 910 { 911 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 912 struct virtchnl_rss_key *vrk = 913 (struct virtchnl_rss_key *)msg; 914 struct ice_vsi *vsi; 915 916 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 917 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 918 goto error_param; 919 } 920 921 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 922 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 923 goto error_param; 924 } 925 926 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 927 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 928 goto error_param; 929 } 930 931 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 932 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 933 goto error_param; 934 } 935 936 vsi = ice_get_vf_vsi(vf); 937 if (!vsi) { 938 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 939 goto error_param; 940 } 941 942 if (ice_set_rss_key(vsi, vrk->key)) 943 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 944 error_param: 945 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 946 NULL, 0); 947 } 948 949 /** 950 * ice_vc_config_rss_lut 951 * @vf: pointer to the VF info 952 * @msg: pointer to the msg buffer 953 * 954 * Configure the VF's RSS LUT 955 */ 956 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 957 { 958 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 959 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 960 struct ice_vsi *vsi; 961 962 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 963 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 964 goto error_param; 965 } 966 967 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 968 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 969 goto error_param; 970 } 971 972 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 973 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 974 goto error_param; 975 } 976 977 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 978 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 979 goto error_param; 980 } 981 982 vsi = ice_get_vf_vsi(vf); 983 if (!vsi) { 984 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 985 goto error_param; 986 } 987 988 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 989 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 990 error_param: 991 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 992 NULL, 0); 993 } 994 995 /** 996 * ice_vc_config_rss_hfunc 997 * @vf: pointer to the VF info 998 * @msg: pointer to the msg buffer 999 * 1000 * Configure the VF's RSS Hash function 1001 */ 1002 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg) 1003 { 1004 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg; 1005 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1006 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1007 struct ice_vsi *vsi; 1008 1009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1010 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1011 goto error_param; 1012 } 1013 1014 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) { 1015 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1016 goto error_param; 1017 } 1018 1019 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 1020 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1021 goto error_param; 1022 } 1023 1024 vsi = ice_get_vf_vsi(vf); 1025 if (!vsi) { 1026 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1027 goto error_param; 1028 } 1029 1030 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 1031 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ; 1032 1033 if (ice_set_rss_hfunc(vsi, hfunc)) 1034 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1035 error_param: 1036 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret, 1037 NULL, 0); 1038 } 1039 1040 /** 1041 * ice_vc_cfg_promiscuous_mode_msg 1042 * @vf: pointer to the VF info 1043 * @msg: pointer to the msg buffer 1044 * 1045 * called from the VF to configure VF VSIs promiscuous mode 1046 */ 1047 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 1048 { 1049 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1050 bool rm_promisc, alluni = false, allmulti = false; 1051 struct virtchnl_promisc_info *info = 1052 (struct virtchnl_promisc_info *)msg; 1053 struct ice_vsi_vlan_ops *vlan_ops; 1054 int mcast_err = 0, ucast_err = 0; 1055 struct ice_pf *pf = vf->pf; 1056 struct ice_vsi *vsi; 1057 u8 mcast_m, ucast_m; 1058 struct device *dev; 1059 int ret = 0; 1060 1061 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1062 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1063 goto error_param; 1064 } 1065 1066 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1067 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1068 goto error_param; 1069 } 1070 1071 vsi = ice_get_vf_vsi(vf); 1072 if (!vsi) { 1073 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1074 goto error_param; 1075 } 1076 1077 dev = ice_pf_to_dev(pf); 1078 if (!ice_is_vf_trusted(vf)) { 1079 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1080 vf->vf_id); 1081 /* Leave v_ret alone, lie to the VF on purpose. */ 1082 goto error_param; 1083 } 1084 1085 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1086 alluni = true; 1087 1088 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1089 allmulti = true; 1090 1091 rm_promisc = !allmulti && !alluni; 1092 1093 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1094 if (rm_promisc) 1095 ret = vlan_ops->ena_rx_filtering(vsi); 1096 else 1097 ret = vlan_ops->dis_rx_filtering(vsi); 1098 if (ret) { 1099 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1100 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1101 goto error_param; 1102 } 1103 1104 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1105 1106 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1107 if (alluni) { 1108 /* in this case we're turning on promiscuous mode */ 1109 ret = ice_set_dflt_vsi(vsi); 1110 } else { 1111 /* in this case we're turning off promiscuous mode */ 1112 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1113 ret = ice_clear_dflt_vsi(vsi); 1114 } 1115 1116 /* in this case we're turning on/off only 1117 * allmulticast 1118 */ 1119 if (allmulti) 1120 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1121 else 1122 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1123 1124 if (ret) { 1125 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1126 vf->vf_id, ret); 1127 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1128 goto error_param; 1129 } 1130 } else { 1131 if (alluni) 1132 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1133 else 1134 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1135 1136 if (allmulti) 1137 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1138 else 1139 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1140 1141 if (ucast_err || mcast_err) 1142 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1143 } 1144 1145 if (!mcast_err) { 1146 if (allmulti && 1147 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1148 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1149 vf->vf_id); 1150 else if (!allmulti && 1151 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1152 vf->vf_states)) 1153 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1154 vf->vf_id); 1155 } else { 1156 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1157 vf->vf_id, mcast_err); 1158 } 1159 1160 if (!ucast_err) { 1161 if (alluni && 1162 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1163 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1164 vf->vf_id); 1165 else if (!alluni && 1166 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1167 vf->vf_states)) 1168 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1169 vf->vf_id); 1170 } else { 1171 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1172 vf->vf_id, ucast_err); 1173 } 1174 1175 error_param: 1176 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1177 v_ret, NULL, 0); 1178 } 1179 1180 /** 1181 * ice_vc_get_stats_msg 1182 * @vf: pointer to the VF info 1183 * @msg: pointer to the msg buffer 1184 * 1185 * called from the VF to get VSI stats 1186 */ 1187 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1188 { 1189 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1190 struct virtchnl_queue_select *vqs = 1191 (struct virtchnl_queue_select *)msg; 1192 struct ice_eth_stats stats = { 0 }; 1193 struct ice_vsi *vsi; 1194 1195 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1196 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1197 goto error_param; 1198 } 1199 1200 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1201 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1202 goto error_param; 1203 } 1204 1205 vsi = ice_get_vf_vsi(vf); 1206 if (!vsi) { 1207 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1208 goto error_param; 1209 } 1210 1211 ice_update_eth_stats(vsi); 1212 1213 stats = vsi->eth_stats; 1214 1215 error_param: 1216 /* send the response to the VF */ 1217 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1218 (u8 *)&stats, sizeof(stats)); 1219 } 1220 1221 /** 1222 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1223 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1224 * 1225 * Return true on successful validation, else false 1226 */ 1227 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1228 { 1229 if ((!vqs->rx_queues && !vqs->tx_queues) || 1230 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1231 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1232 return false; 1233 1234 return true; 1235 } 1236 1237 /** 1238 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1239 * @vsi: VSI of the VF to configure 1240 * @q_idx: VF queue index used to determine the queue in the PF's space 1241 */ 1242 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1243 { 1244 struct ice_hw *hw = &vsi->back->hw; 1245 u32 pfq = vsi->txq_map[q_idx]; 1246 u32 reg; 1247 1248 reg = rd32(hw, QINT_TQCTL(pfq)); 1249 1250 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1251 * this is most likely a poll mode VF driver, so don't enable an 1252 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1253 */ 1254 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1255 return; 1256 1257 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1258 } 1259 1260 /** 1261 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1262 * @vsi: VSI of the VF to configure 1263 * @q_idx: VF queue index used to determine the queue in the PF's space 1264 */ 1265 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1266 { 1267 struct ice_hw *hw = &vsi->back->hw; 1268 u32 pfq = vsi->rxq_map[q_idx]; 1269 u32 reg; 1270 1271 reg = rd32(hw, QINT_RQCTL(pfq)); 1272 1273 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1274 * this is most likely a poll mode VF driver, so don't enable an 1275 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1276 */ 1277 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1278 return; 1279 1280 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1281 } 1282 1283 /** 1284 * ice_vc_ena_qs_msg 1285 * @vf: pointer to the VF info 1286 * @msg: pointer to the msg buffer 1287 * 1288 * called from the VF to enable all or specific queue(s) 1289 */ 1290 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1291 { 1292 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1293 struct virtchnl_queue_select *vqs = 1294 (struct virtchnl_queue_select *)msg; 1295 struct ice_vsi *vsi; 1296 unsigned long q_map; 1297 u16 vf_q_id; 1298 1299 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1300 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1301 goto error_param; 1302 } 1303 1304 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1305 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1306 goto error_param; 1307 } 1308 1309 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1310 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1311 goto error_param; 1312 } 1313 1314 vsi = ice_get_vf_vsi(vf); 1315 if (!vsi) { 1316 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1317 goto error_param; 1318 } 1319 1320 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1321 * Tx queue group list was configured and the context bits were 1322 * programmed using ice_vsi_cfg_txqs 1323 */ 1324 q_map = vqs->rx_queues; 1325 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1326 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1327 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1328 goto error_param; 1329 } 1330 1331 /* Skip queue if enabled */ 1332 if (test_bit(vf_q_id, vf->rxq_ena)) 1333 continue; 1334 1335 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1336 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1337 vf_q_id, vsi->vsi_num); 1338 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1339 goto error_param; 1340 } 1341 1342 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1343 set_bit(vf_q_id, vf->rxq_ena); 1344 } 1345 1346 q_map = vqs->tx_queues; 1347 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1348 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1349 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1350 goto error_param; 1351 } 1352 1353 /* Skip queue if enabled */ 1354 if (test_bit(vf_q_id, vf->txq_ena)) 1355 continue; 1356 1357 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1358 set_bit(vf_q_id, vf->txq_ena); 1359 } 1360 1361 /* Set flag to indicate that queues are enabled */ 1362 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1363 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1364 1365 error_param: 1366 /* send the response to the VF */ 1367 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1368 NULL, 0); 1369 } 1370 1371 /** 1372 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1373 * @vf: VF to disable queue for 1374 * @vsi: VSI for the VF 1375 * @q_id: VF relative (0-based) queue ID 1376 * 1377 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1378 * disabled then clear q_id bit in the enabled queues bitmap and return 1379 * success. Otherwise return error. 1380 */ 1381 static int 1382 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1383 { 1384 struct ice_txq_meta txq_meta = { 0 }; 1385 struct ice_tx_ring *ring; 1386 int err; 1387 1388 if (!test_bit(q_id, vf->txq_ena)) 1389 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1390 q_id, vsi->vsi_num); 1391 1392 ring = vsi->tx_rings[q_id]; 1393 if (!ring) 1394 return -EINVAL; 1395 1396 ice_fill_txq_meta(vsi, ring, &txq_meta); 1397 1398 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1399 if (err) { 1400 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1401 q_id, vsi->vsi_num); 1402 return err; 1403 } 1404 1405 /* Clear enabled queues flag */ 1406 clear_bit(q_id, vf->txq_ena); 1407 1408 return 0; 1409 } 1410 1411 /** 1412 * ice_vc_dis_qs_msg 1413 * @vf: pointer to the VF info 1414 * @msg: pointer to the msg buffer 1415 * 1416 * called from the VF to disable all or specific queue(s) 1417 */ 1418 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1419 { 1420 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1421 struct virtchnl_queue_select *vqs = 1422 (struct virtchnl_queue_select *)msg; 1423 struct ice_vsi *vsi; 1424 unsigned long q_map; 1425 u16 vf_q_id; 1426 1427 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1428 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1429 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1430 goto error_param; 1431 } 1432 1433 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1434 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1435 goto error_param; 1436 } 1437 1438 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1439 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1440 goto error_param; 1441 } 1442 1443 vsi = ice_get_vf_vsi(vf); 1444 if (!vsi) { 1445 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1446 goto error_param; 1447 } 1448 1449 if (vqs->tx_queues) { 1450 q_map = vqs->tx_queues; 1451 1452 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1453 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1454 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1455 goto error_param; 1456 } 1457 1458 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1459 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1460 goto error_param; 1461 } 1462 } 1463 } 1464 1465 q_map = vqs->rx_queues; 1466 /* speed up Rx queue disable by batching them if possible */ 1467 if (q_map && 1468 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1469 if (ice_vsi_stop_all_rx_rings(vsi)) { 1470 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1471 vsi->vsi_num); 1472 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1473 goto error_param; 1474 } 1475 1476 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1477 } else if (q_map) { 1478 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1479 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1480 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1481 goto error_param; 1482 } 1483 1484 /* Skip queue if not enabled */ 1485 if (!test_bit(vf_q_id, vf->rxq_ena)) 1486 continue; 1487 1488 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1489 true)) { 1490 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1491 vf_q_id, vsi->vsi_num); 1492 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1493 goto error_param; 1494 } 1495 1496 /* Clear enabled queues flag */ 1497 clear_bit(vf_q_id, vf->rxq_ena); 1498 } 1499 } 1500 1501 /* Clear enabled queues flag */ 1502 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1503 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1504 1505 error_param: 1506 /* send the response to the VF */ 1507 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1508 NULL, 0); 1509 } 1510 1511 /** 1512 * ice_cfg_interrupt 1513 * @vf: pointer to the VF info 1514 * @vsi: the VSI being configured 1515 * @vector_id: vector ID 1516 * @map: vector map for mapping vectors to queues 1517 * @q_vector: structure for interrupt vector 1518 * configure the IRQ to queue map 1519 */ 1520 static int 1521 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1522 struct virtchnl_vector_map *map, 1523 struct ice_q_vector *q_vector) 1524 { 1525 u16 vsi_q_id, vsi_q_id_idx; 1526 unsigned long qmap; 1527 1528 q_vector->num_ring_rx = 0; 1529 q_vector->num_ring_tx = 0; 1530 1531 qmap = map->rxq_map; 1532 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1533 vsi_q_id = vsi_q_id_idx; 1534 1535 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1536 return VIRTCHNL_STATUS_ERR_PARAM; 1537 1538 q_vector->num_ring_rx++; 1539 q_vector->rx.itr_idx = map->rxitr_idx; 1540 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1541 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1542 q_vector->rx.itr_idx); 1543 } 1544 1545 qmap = map->txq_map; 1546 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1547 vsi_q_id = vsi_q_id_idx; 1548 1549 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1550 return VIRTCHNL_STATUS_ERR_PARAM; 1551 1552 q_vector->num_ring_tx++; 1553 q_vector->tx.itr_idx = map->txitr_idx; 1554 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1555 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1556 q_vector->tx.itr_idx); 1557 } 1558 1559 return VIRTCHNL_STATUS_SUCCESS; 1560 } 1561 1562 /** 1563 * ice_vc_cfg_irq_map_msg 1564 * @vf: pointer to the VF info 1565 * @msg: pointer to the msg buffer 1566 * 1567 * called from the VF to configure the IRQ to queue map 1568 */ 1569 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1570 { 1571 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1572 u16 num_q_vectors_mapped, vsi_id, vector_id; 1573 struct virtchnl_irq_map_info *irqmap_info; 1574 struct virtchnl_vector_map *map; 1575 struct ice_vsi *vsi; 1576 int i; 1577 1578 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1579 num_q_vectors_mapped = irqmap_info->num_vectors; 1580 1581 /* Check to make sure number of VF vectors mapped is not greater than 1582 * number of VF vectors originally allocated, and check that 1583 * there is actually at least a single VF queue vector mapped 1584 */ 1585 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1586 vf->num_msix < num_q_vectors_mapped || 1587 !num_q_vectors_mapped) { 1588 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1589 goto error_param; 1590 } 1591 1592 vsi = ice_get_vf_vsi(vf); 1593 if (!vsi) { 1594 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1595 goto error_param; 1596 } 1597 1598 for (i = 0; i < num_q_vectors_mapped; i++) { 1599 struct ice_q_vector *q_vector; 1600 1601 map = &irqmap_info->vecmap[i]; 1602 1603 vector_id = map->vector_id; 1604 vsi_id = map->vsi_id; 1605 /* vector_id is always 0-based for each VF, and can never be 1606 * larger than or equal to the max allowed interrupts per VF 1607 */ 1608 if (!(vector_id < vf->num_msix) || 1609 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1610 (!vector_id && (map->rxq_map || map->txq_map))) { 1611 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1612 goto error_param; 1613 } 1614 1615 /* No need to map VF miscellaneous or rogue vector */ 1616 if (!vector_id) 1617 continue; 1618 1619 /* Subtract non queue vector from vector_id passed by VF 1620 * to get actual number of VSI queue vector array index 1621 */ 1622 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1623 if (!q_vector) { 1624 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1625 goto error_param; 1626 } 1627 1628 /* lookout for the invalid queue index */ 1629 v_ret = (enum virtchnl_status_code) 1630 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1631 if (v_ret) 1632 goto error_param; 1633 } 1634 1635 error_param: 1636 /* send the response to the VF */ 1637 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1638 NULL, 0); 1639 } 1640 1641 /** 1642 * ice_vc_cfg_qs_msg 1643 * @vf: pointer to the VF info 1644 * @msg: pointer to the msg buffer 1645 * 1646 * called from the VF to configure the Rx/Tx queues 1647 */ 1648 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1649 { 1650 struct virtchnl_vsi_queue_config_info *qci = 1651 (struct virtchnl_vsi_queue_config_info *)msg; 1652 struct virtchnl_queue_pair_info *qpi; 1653 struct ice_pf *pf = vf->pf; 1654 struct ice_lag *lag; 1655 struct ice_vsi *vsi; 1656 u8 act_prt, pri_prt; 1657 int i = -1, q_idx; 1658 1659 lag = pf->lag; 1660 mutex_lock(&pf->lag_mutex); 1661 act_prt = ICE_LAG_INVALID_PORT; 1662 pri_prt = pf->hw.port_info->lport; 1663 if (lag && lag->bonded && lag->primary) { 1664 act_prt = lag->active_port; 1665 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && 1666 lag->upper_netdev) 1667 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); 1668 else 1669 act_prt = ICE_LAG_INVALID_PORT; 1670 } 1671 1672 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1673 goto error_param; 1674 1675 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1676 goto error_param; 1677 1678 vsi = ice_get_vf_vsi(vf); 1679 if (!vsi) 1680 goto error_param; 1681 1682 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1683 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1684 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1685 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1686 goto error_param; 1687 } 1688 1689 for (i = 0; i < qci->num_queue_pairs; i++) { 1690 if (!qci->qpair[i].rxq.crc_disable) 1691 continue; 1692 1693 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) || 1694 vf->vlan_strip_ena) 1695 goto error_param; 1696 } 1697 1698 for (i = 0; i < qci->num_queue_pairs; i++) { 1699 qpi = &qci->qpair[i]; 1700 if (qpi->txq.vsi_id != qci->vsi_id || 1701 qpi->rxq.vsi_id != qci->vsi_id || 1702 qpi->rxq.queue_id != qpi->txq.queue_id || 1703 qpi->txq.headwb_enabled || 1704 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1705 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1706 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) { 1707 goto error_param; 1708 } 1709 1710 q_idx = qpi->rxq.queue_id; 1711 1712 /* make sure selected "q_idx" is in valid range of queues 1713 * for selected "vsi" 1714 */ 1715 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1716 goto error_param; 1717 } 1718 1719 /* copy Tx queue info from VF into VSI */ 1720 if (qpi->txq.ring_len > 0) { 1721 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1722 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1723 1724 /* Disable any existing queue first */ 1725 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1726 goto error_param; 1727 1728 /* Configure a queue with the requested settings */ 1729 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1730 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1731 vf->vf_id, i); 1732 goto error_param; 1733 } 1734 } 1735 1736 /* copy Rx queue info from VF into VSI */ 1737 if (qpi->rxq.ring_len > 0) { 1738 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1739 u32 rxdid; 1740 1741 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1742 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1743 1744 if (qpi->rxq.crc_disable) 1745 vsi->rx_rings[q_idx]->flags |= 1746 ICE_RX_FLAGS_CRC_STRIP_DIS; 1747 else 1748 vsi->rx_rings[q_idx]->flags &= 1749 ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1750 1751 if (qpi->rxq.databuffer_size != 0 && 1752 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1753 qpi->rxq.databuffer_size < 1024)) 1754 goto error_param; 1755 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1756 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1757 if (qpi->rxq.max_pkt_size > max_frame_size || 1758 qpi->rxq.max_pkt_size < 64) 1759 goto error_param; 1760 1761 vsi->max_frame = qpi->rxq.max_pkt_size; 1762 /* add space for the port VLAN since the VF driver is 1763 * not expected to account for it in the MTU 1764 * calculation 1765 */ 1766 if (ice_vf_is_port_vlan_ena(vf)) 1767 vsi->max_frame += VLAN_HLEN; 1768 1769 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1770 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1771 vf->vf_id, i); 1772 goto error_param; 1773 } 1774 1775 /* If Rx flex desc is supported, select RXDID for Rx 1776 * queues. Otherwise, use legacy 32byte descriptor 1777 * format. Legacy 16byte descriptor is not supported. 1778 * If this RXDID is selected, return error. 1779 */ 1780 if (vf->driver_caps & 1781 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 1782 rxdid = qpi->rxq.rxdid; 1783 if (!(BIT(rxdid) & pf->supported_rxdids)) 1784 goto error_param; 1785 } else { 1786 rxdid = ICE_RXDID_LEGACY_1; 1787 } 1788 1789 ice_write_qrxflxp_cntxt(&vsi->back->hw, 1790 vsi->rxq_map[q_idx], 1791 rxdid, 0x03, false); 1792 } 1793 } 1794 1795 if (lag && lag->bonded && lag->primary && 1796 act_prt != ICE_LAG_INVALID_PORT) 1797 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1798 mutex_unlock(&pf->lag_mutex); 1799 1800 /* send the response to the VF */ 1801 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1802 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1803 error_param: 1804 /* disable whatever we can */ 1805 for (; i >= 0; i--) { 1806 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1807 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1808 vf->vf_id, i); 1809 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1810 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1811 vf->vf_id, i); 1812 } 1813 1814 if (lag && lag->bonded && lag->primary && 1815 act_prt != ICE_LAG_INVALID_PORT) 1816 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1817 mutex_unlock(&pf->lag_mutex); 1818 1819 ice_lag_move_new_vf_nodes(vf); 1820 1821 /* send the response to the VF */ 1822 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1823 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1824 } 1825 1826 /** 1827 * ice_can_vf_change_mac 1828 * @vf: pointer to the VF info 1829 * 1830 * Return true if the VF is allowed to change its MAC filters, false otherwise 1831 */ 1832 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1833 { 1834 /* If the VF MAC address has been set administratively (via the 1835 * ndo_set_vf_mac command), then deny permission to the VF to 1836 * add/delete unicast MAC addresses, unless the VF is trusted 1837 */ 1838 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1839 return false; 1840 1841 return true; 1842 } 1843 1844 /** 1845 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1846 * @vc_ether_addr: used to extract the type 1847 */ 1848 static u8 1849 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1850 { 1851 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1852 } 1853 1854 /** 1855 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1856 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1857 */ 1858 static bool 1859 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1860 { 1861 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1862 1863 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1864 } 1865 1866 /** 1867 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1868 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1869 * 1870 * This function should only be called when the MAC address in 1871 * virtchnl_ether_addr is a valid unicast MAC 1872 */ 1873 static bool 1874 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1875 { 1876 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1877 1878 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1879 } 1880 1881 /** 1882 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1883 * @vf: VF to update 1884 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1885 */ 1886 static void 1887 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1888 { 1889 u8 *mac_addr = vc_ether_addr->addr; 1890 1891 if (!is_valid_ether_addr(mac_addr)) 1892 return; 1893 1894 /* only allow legacy VF drivers to set the device and hardware MAC if it 1895 * is zero and allow new VF drivers to set the hardware MAC if the type 1896 * was correctly specified over VIRTCHNL 1897 */ 1898 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1899 is_zero_ether_addr(vf->hw_lan_addr)) || 1900 ice_is_vc_addr_primary(vc_ether_addr)) { 1901 ether_addr_copy(vf->dev_lan_addr, mac_addr); 1902 ether_addr_copy(vf->hw_lan_addr, mac_addr); 1903 } 1904 1905 /* hardware and device MACs are already set, but its possible that the 1906 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1907 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1908 * away for the legacy VF driver case as it will be updated in the 1909 * delete flow for this case 1910 */ 1911 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1912 ether_addr_copy(vf->legacy_last_added_umac.addr, 1913 mac_addr); 1914 vf->legacy_last_added_umac.time_modified = jiffies; 1915 } 1916 } 1917 1918 /** 1919 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1920 * @vf: pointer to the VF info 1921 * @vsi: pointer to the VF's VSI 1922 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1923 */ 1924 static int 1925 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1926 struct virtchnl_ether_addr *vc_ether_addr) 1927 { 1928 struct device *dev = ice_pf_to_dev(vf->pf); 1929 u8 *mac_addr = vc_ether_addr->addr; 1930 int ret; 1931 1932 /* device MAC already added */ 1933 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 1934 return 0; 1935 1936 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1937 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1938 return -EPERM; 1939 } 1940 1941 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1942 if (ret == -EEXIST) { 1943 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1944 vf->vf_id); 1945 /* don't return since we might need to update 1946 * the primary MAC in ice_vfhw_mac_add() below 1947 */ 1948 } else if (ret) { 1949 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1950 mac_addr, vf->vf_id, ret); 1951 return ret; 1952 } else { 1953 vf->num_mac++; 1954 } 1955 1956 ice_vfhw_mac_add(vf, vc_ether_addr); 1957 1958 return ret; 1959 } 1960 1961 /** 1962 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1963 * @last_added_umac: structure used to check expiration 1964 */ 1965 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1966 { 1967 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1968 return time_is_before_jiffies(last_added_umac->time_modified + 1969 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1970 } 1971 1972 /** 1973 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1974 * @vf: VF to update 1975 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1976 * 1977 * only update cached hardware MAC for legacy VF drivers on delete 1978 * because we cannot guarantee order/type of MAC from the VF driver 1979 */ 1980 static void 1981 ice_update_legacy_cached_mac(struct ice_vf *vf, 1982 struct virtchnl_ether_addr *vc_ether_addr) 1983 { 1984 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1985 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1986 return; 1987 1988 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 1989 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 1990 } 1991 1992 /** 1993 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1994 * @vf: VF to update 1995 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1996 */ 1997 static void 1998 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1999 { 2000 u8 *mac_addr = vc_ether_addr->addr; 2001 2002 if (!is_valid_ether_addr(mac_addr) || 2003 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2004 return; 2005 2006 /* allow the device MAC to be repopulated in the add flow and don't 2007 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 2008 * to be persistent on VM reboot and across driver unload/load, which 2009 * won't work if we clear the hardware MAC here 2010 */ 2011 eth_zero_addr(vf->dev_lan_addr); 2012 2013 ice_update_legacy_cached_mac(vf, vc_ether_addr); 2014 } 2015 2016 /** 2017 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 2018 * @vf: pointer to the VF info 2019 * @vsi: pointer to the VF's VSI 2020 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 2021 */ 2022 static int 2023 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 2024 struct virtchnl_ether_addr *vc_ether_addr) 2025 { 2026 struct device *dev = ice_pf_to_dev(vf->pf); 2027 u8 *mac_addr = vc_ether_addr->addr; 2028 int status; 2029 2030 if (!ice_can_vf_change_mac(vf) && 2031 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2032 return 0; 2033 2034 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 2035 if (status == -ENOENT) { 2036 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 2037 vf->vf_id); 2038 return -ENOENT; 2039 } else if (status) { 2040 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 2041 mac_addr, vf->vf_id, status); 2042 return -EIO; 2043 } 2044 2045 ice_vfhw_mac_del(vf, vc_ether_addr); 2046 2047 vf->num_mac--; 2048 2049 return 0; 2050 } 2051 2052 /** 2053 * ice_vc_handle_mac_addr_msg 2054 * @vf: pointer to the VF info 2055 * @msg: pointer to the msg buffer 2056 * @set: true if MAC filters are being set, false otherwise 2057 * 2058 * add guest MAC address filter 2059 */ 2060 static int 2061 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 2062 { 2063 int (*ice_vc_cfg_mac) 2064 (struct ice_vf *vf, struct ice_vsi *vsi, 2065 struct virtchnl_ether_addr *virtchnl_ether_addr); 2066 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2067 struct virtchnl_ether_addr_list *al = 2068 (struct virtchnl_ether_addr_list *)msg; 2069 struct ice_pf *pf = vf->pf; 2070 enum virtchnl_ops vc_op; 2071 struct ice_vsi *vsi; 2072 int i; 2073 2074 if (set) { 2075 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 2076 ice_vc_cfg_mac = ice_vc_add_mac_addr; 2077 } else { 2078 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 2079 ice_vc_cfg_mac = ice_vc_del_mac_addr; 2080 } 2081 2082 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2083 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2084 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2085 goto handle_mac_exit; 2086 } 2087 2088 /* If this VF is not privileged, then we can't add more than a 2089 * limited number of addresses. Check to make sure that the 2090 * additions do not push us over the limit. 2091 */ 2092 if (set && !ice_is_vf_trusted(vf) && 2093 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2094 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2095 vf->vf_id); 2096 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2097 goto handle_mac_exit; 2098 } 2099 2100 vsi = ice_get_vf_vsi(vf); 2101 if (!vsi) { 2102 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2103 goto handle_mac_exit; 2104 } 2105 2106 for (i = 0; i < al->num_elements; i++) { 2107 u8 *mac_addr = al->list[i].addr; 2108 int result; 2109 2110 if (is_broadcast_ether_addr(mac_addr) || 2111 is_zero_ether_addr(mac_addr)) 2112 continue; 2113 2114 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2115 if (result == -EEXIST || result == -ENOENT) { 2116 continue; 2117 } else if (result) { 2118 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2119 goto handle_mac_exit; 2120 } 2121 } 2122 2123 handle_mac_exit: 2124 /* send the response to the VF */ 2125 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2126 } 2127 2128 /** 2129 * ice_vc_add_mac_addr_msg 2130 * @vf: pointer to the VF info 2131 * @msg: pointer to the msg buffer 2132 * 2133 * add guest MAC address filter 2134 */ 2135 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2136 { 2137 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2138 } 2139 2140 /** 2141 * ice_vc_del_mac_addr_msg 2142 * @vf: pointer to the VF info 2143 * @msg: pointer to the msg buffer 2144 * 2145 * remove guest MAC address filter 2146 */ 2147 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2148 { 2149 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2150 } 2151 2152 /** 2153 * ice_vc_request_qs_msg 2154 * @vf: pointer to the VF info 2155 * @msg: pointer to the msg buffer 2156 * 2157 * VFs get a default number of queues but can use this message to request a 2158 * different number. If the request is successful, PF will reset the VF and 2159 * return 0. If unsuccessful, PF will send message informing VF of number of 2160 * available queue pairs via virtchnl message response to VF. 2161 */ 2162 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2163 { 2164 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2165 struct virtchnl_vf_res_request *vfres = 2166 (struct virtchnl_vf_res_request *)msg; 2167 u16 req_queues = vfres->num_queue_pairs; 2168 struct ice_pf *pf = vf->pf; 2169 u16 max_allowed_vf_queues; 2170 u16 tx_rx_queue_left; 2171 struct device *dev; 2172 u16 cur_queues; 2173 2174 dev = ice_pf_to_dev(pf); 2175 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2176 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2177 goto error_param; 2178 } 2179 2180 cur_queues = vf->num_vf_qs; 2181 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2182 ice_get_avail_rxq_count(pf)); 2183 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2184 if (!req_queues) { 2185 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2186 vf->vf_id); 2187 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2188 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2189 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2190 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2191 } else if (req_queues > cur_queues && 2192 req_queues - cur_queues > tx_rx_queue_left) { 2193 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2194 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2195 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2196 ICE_MAX_RSS_QS_PER_VF); 2197 } else { 2198 /* request is successful, then reset VF */ 2199 vf->num_req_qs = req_queues; 2200 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2201 dev_info(dev, "VF %d granted request of %u queues.\n", 2202 vf->vf_id, req_queues); 2203 return 0; 2204 } 2205 2206 error_param: 2207 /* send the response to the VF */ 2208 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2209 v_ret, (u8 *)vfres, sizeof(*vfres)); 2210 } 2211 2212 /** 2213 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2214 * @caps: VF driver negotiated capabilities 2215 * 2216 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2217 */ 2218 static bool ice_vf_vlan_offload_ena(u32 caps) 2219 { 2220 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2221 } 2222 2223 /** 2224 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2225 * @vf: VF used to determine if VLAN promiscuous config is allowed 2226 */ 2227 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2228 { 2229 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2230 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2231 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2232 return true; 2233 2234 return false; 2235 } 2236 2237 /** 2238 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2239 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2240 * @vlan: VLAN used to enable VLAN promiscuous 2241 * 2242 * This function should only be called if VLAN promiscuous mode is allowed, 2243 * which can be determined via ice_is_vlan_promisc_allowed(). 2244 */ 2245 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2246 { 2247 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2248 int status; 2249 2250 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2251 vlan->vid); 2252 if (status && status != -EEXIST) 2253 return status; 2254 2255 return 0; 2256 } 2257 2258 /** 2259 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2260 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2261 * @vlan: VLAN used to disable VLAN promiscuous 2262 * 2263 * This function should only be called if VLAN promiscuous mode is allowed, 2264 * which can be determined via ice_is_vlan_promisc_allowed(). 2265 */ 2266 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2267 { 2268 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2269 int status; 2270 2271 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2272 vlan->vid); 2273 if (status && status != -ENOENT) 2274 return status; 2275 2276 return 0; 2277 } 2278 2279 /** 2280 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2281 * @vf: VF to check against 2282 * @vsi: VF's VSI 2283 * 2284 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2285 * wants to, so return false. 2286 * 2287 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2288 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2289 */ 2290 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2291 { 2292 if (ice_is_vf_trusted(vf)) 2293 return false; 2294 2295 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2296 return ((ice_vsi_num_non_zero_vlans(vsi) + 2297 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2298 } 2299 2300 /** 2301 * ice_vc_process_vlan_msg 2302 * @vf: pointer to the VF info 2303 * @msg: pointer to the msg buffer 2304 * @add_v: Add VLAN if true, otherwise delete VLAN 2305 * 2306 * Process virtchnl op to add or remove programmed guest VLAN ID 2307 */ 2308 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2309 { 2310 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2311 struct virtchnl_vlan_filter_list *vfl = 2312 (struct virtchnl_vlan_filter_list *)msg; 2313 struct ice_pf *pf = vf->pf; 2314 bool vlan_promisc = false; 2315 struct ice_vsi *vsi; 2316 struct device *dev; 2317 int status = 0; 2318 int i; 2319 2320 dev = ice_pf_to_dev(pf); 2321 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2322 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2323 goto error_param; 2324 } 2325 2326 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2327 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2328 goto error_param; 2329 } 2330 2331 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2332 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2333 goto error_param; 2334 } 2335 2336 for (i = 0; i < vfl->num_elements; i++) { 2337 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2338 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2339 dev_err(dev, "invalid VF VLAN id %d\n", 2340 vfl->vlan_id[i]); 2341 goto error_param; 2342 } 2343 } 2344 2345 vsi = ice_get_vf_vsi(vf); 2346 if (!vsi) { 2347 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2348 goto error_param; 2349 } 2350 2351 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2352 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2353 vf->vf_id); 2354 /* There is no need to let VF know about being not trusted, 2355 * so we can just return success message here 2356 */ 2357 goto error_param; 2358 } 2359 2360 /* in DVM a VF can add/delete inner VLAN filters when 2361 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2362 */ 2363 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2364 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2365 goto error_param; 2366 } 2367 2368 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2369 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2370 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2371 */ 2372 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2373 !ice_is_dvm_ena(&pf->hw) && 2374 !ice_vf_is_port_vlan_ena(vf); 2375 2376 if (add_v) { 2377 for (i = 0; i < vfl->num_elements; i++) { 2378 u16 vid = vfl->vlan_id[i]; 2379 struct ice_vlan vlan; 2380 2381 if (ice_vf_has_max_vlans(vf, vsi)) { 2382 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2383 vf->vf_id); 2384 /* There is no need to let VF know about being 2385 * not trusted, so we can just return success 2386 * message here as well. 2387 */ 2388 goto error_param; 2389 } 2390 2391 /* we add VLAN 0 by default for each VF so we can enable 2392 * Tx VLAN anti-spoof without triggering MDD events so 2393 * we don't need to add it again here 2394 */ 2395 if (!vid) 2396 continue; 2397 2398 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2399 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2400 if (status) { 2401 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2402 goto error_param; 2403 } 2404 2405 /* Enable VLAN filtering on first non-zero VLAN */ 2406 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2407 if (vf->spoofchk) { 2408 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2409 if (status) { 2410 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2411 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2412 vid, status); 2413 goto error_param; 2414 } 2415 } 2416 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2417 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2418 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2419 vid, status); 2420 goto error_param; 2421 } 2422 } else if (vlan_promisc) { 2423 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2424 if (status) { 2425 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2426 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2427 vid, status); 2428 } 2429 } 2430 } 2431 } else { 2432 /* In case of non_trusted VF, number of VLAN elements passed 2433 * to PF for removal might be greater than number of VLANs 2434 * filter programmed for that VF - So, use actual number of 2435 * VLANS added earlier with add VLAN opcode. In order to avoid 2436 * removing VLAN that doesn't exist, which result to sending 2437 * erroneous failed message back to the VF 2438 */ 2439 int num_vf_vlan; 2440 2441 num_vf_vlan = vsi->num_vlan; 2442 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2443 u16 vid = vfl->vlan_id[i]; 2444 struct ice_vlan vlan; 2445 2446 /* we add VLAN 0 by default for each VF so we can enable 2447 * Tx VLAN anti-spoof without triggering MDD events so 2448 * we don't want a VIRTCHNL request to remove it 2449 */ 2450 if (!vid) 2451 continue; 2452 2453 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2454 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2455 if (status) { 2456 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2457 goto error_param; 2458 } 2459 2460 /* Disable VLAN filtering when only VLAN 0 is left */ 2461 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2462 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2463 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2464 } 2465 2466 if (vlan_promisc) 2467 ice_vf_dis_vlan_promisc(vsi, &vlan); 2468 } 2469 } 2470 2471 error_param: 2472 /* send the response to the VF */ 2473 if (add_v) 2474 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2475 NULL, 0); 2476 else 2477 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2478 NULL, 0); 2479 } 2480 2481 /** 2482 * ice_vc_add_vlan_msg 2483 * @vf: pointer to the VF info 2484 * @msg: pointer to the msg buffer 2485 * 2486 * Add and program guest VLAN ID 2487 */ 2488 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2489 { 2490 return ice_vc_process_vlan_msg(vf, msg, true); 2491 } 2492 2493 /** 2494 * ice_vc_remove_vlan_msg 2495 * @vf: pointer to the VF info 2496 * @msg: pointer to the msg buffer 2497 * 2498 * remove programmed guest VLAN ID 2499 */ 2500 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2501 { 2502 return ice_vc_process_vlan_msg(vf, msg, false); 2503 } 2504 2505 /** 2506 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not 2507 * @vsi: pointer to the VF VSI info 2508 */ 2509 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi) 2510 { 2511 unsigned int i; 2512 2513 ice_for_each_alloc_rxq(vsi, i) 2514 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS) 2515 return true; 2516 2517 return false; 2518 } 2519 2520 /** 2521 * ice_vc_ena_vlan_stripping 2522 * @vf: pointer to the VF info 2523 * 2524 * Enable VLAN header stripping for a given VF 2525 */ 2526 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2527 { 2528 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2529 struct ice_vsi *vsi; 2530 2531 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2532 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2533 goto error_param; 2534 } 2535 2536 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2537 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2538 goto error_param; 2539 } 2540 2541 vsi = ice_get_vf_vsi(vf); 2542 if (!vsi) { 2543 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2544 goto error_param; 2545 } 2546 2547 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2548 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2549 else 2550 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2551 2552 error_param: 2553 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2554 v_ret, NULL, 0); 2555 } 2556 2557 /** 2558 * ice_vc_dis_vlan_stripping 2559 * @vf: pointer to the VF info 2560 * 2561 * Disable VLAN header stripping for a given VF 2562 */ 2563 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2564 { 2565 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2566 struct ice_vsi *vsi; 2567 2568 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2569 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2570 goto error_param; 2571 } 2572 2573 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2574 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2575 goto error_param; 2576 } 2577 2578 vsi = ice_get_vf_vsi(vf); 2579 if (!vsi) { 2580 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2581 goto error_param; 2582 } 2583 2584 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2585 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2586 else 2587 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 2588 2589 error_param: 2590 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2591 v_ret, NULL, 0); 2592 } 2593 2594 /** 2595 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2596 * @vf: pointer to the VF info 2597 */ 2598 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2599 { 2600 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2601 struct virtchnl_rss_hena *vrh = NULL; 2602 int len = 0, ret; 2603 2604 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2605 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2606 goto err; 2607 } 2608 2609 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2610 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2611 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2612 goto err; 2613 } 2614 2615 len = sizeof(struct virtchnl_rss_hena); 2616 vrh = kzalloc(len, GFP_KERNEL); 2617 if (!vrh) { 2618 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2619 len = 0; 2620 goto err; 2621 } 2622 2623 vrh->hena = ICE_DEFAULT_RSS_HENA; 2624 err: 2625 /* send the response back to the VF */ 2626 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2627 (u8 *)vrh, len); 2628 kfree(vrh); 2629 return ret; 2630 } 2631 2632 /** 2633 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2634 * @vf: pointer to the VF info 2635 * @msg: pointer to the msg buffer 2636 */ 2637 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2638 { 2639 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2640 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2641 struct ice_pf *pf = vf->pf; 2642 struct ice_vsi *vsi; 2643 struct device *dev; 2644 int status; 2645 2646 dev = ice_pf_to_dev(pf); 2647 2648 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2649 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2650 goto err; 2651 } 2652 2653 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2654 dev_err(dev, "RSS not supported by PF\n"); 2655 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2656 goto err; 2657 } 2658 2659 vsi = ice_get_vf_vsi(vf); 2660 if (!vsi) { 2661 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2662 goto err; 2663 } 2664 2665 /* clear all previously programmed RSS configuration to allow VF drivers 2666 * the ability to customize the RSS configuration and/or completely 2667 * disable RSS 2668 */ 2669 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2670 if (status && !vrh->hena) { 2671 /* only report failure to clear the current RSS configuration if 2672 * that was clearly the VF's intention (i.e. vrh->hena = 0) 2673 */ 2674 v_ret = ice_err_to_virt_err(status); 2675 goto err; 2676 } else if (status) { 2677 /* allow the VF to update the RSS configuration even on failure 2678 * to clear the current RSS confguration in an attempt to keep 2679 * RSS in a working state 2680 */ 2681 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 2682 vf->vf_id); 2683 } 2684 2685 if (vrh->hena) { 2686 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena); 2687 v_ret = ice_err_to_virt_err(status); 2688 } 2689 2690 /* send the response to the VF */ 2691 err: 2692 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 2693 NULL, 0); 2694 } 2695 2696 /** 2697 * ice_vc_query_rxdid - query RXDID supported by DDP package 2698 * @vf: pointer to VF info 2699 * 2700 * Called from VF to query a bitmap of supported flexible 2701 * descriptor RXDIDs of a DDP package. 2702 */ 2703 static int ice_vc_query_rxdid(struct ice_vf *vf) 2704 { 2705 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2706 struct virtchnl_supported_rxdids *rxdid = NULL; 2707 struct ice_hw *hw = &vf->pf->hw; 2708 struct ice_pf *pf = vf->pf; 2709 int len = 0; 2710 int ret, i; 2711 u32 regval; 2712 2713 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2714 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2715 goto err; 2716 } 2717 2718 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 2719 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2720 goto err; 2721 } 2722 2723 len = sizeof(struct virtchnl_supported_rxdids); 2724 rxdid = kzalloc(len, GFP_KERNEL); 2725 if (!rxdid) { 2726 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2727 len = 0; 2728 goto err; 2729 } 2730 2731 /* RXDIDs supported by DDP package can be read from the register 2732 * to get the supported RXDID bitmap. But the legacy 32byte RXDID 2733 * is not listed in DDP package, add it in the bitmap manually. 2734 * Legacy 16byte descriptor is not supported. 2735 */ 2736 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1); 2737 2738 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 2739 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 2740 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 2741 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 2742 rxdid->supported_rxdids |= BIT(i); 2743 } 2744 2745 pf->supported_rxdids = rxdid->supported_rxdids; 2746 2747 err: 2748 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 2749 v_ret, (u8 *)rxdid, len); 2750 kfree(rxdid); 2751 return ret; 2752 } 2753 2754 /** 2755 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2756 * @vf: VF to enable/disable VLAN stripping for on initialization 2757 * 2758 * Set the default for VLAN stripping based on whether a port VLAN is configured 2759 * and the current VLAN mode of the device. 2760 */ 2761 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2762 { 2763 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2764 2765 vf->vlan_strip_ena = 0; 2766 2767 if (!vsi) 2768 return -EINVAL; 2769 2770 /* don't modify stripping if port VLAN is configured in SVM since the 2771 * port VLAN is based on the inner/single VLAN in SVM 2772 */ 2773 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2774 return 0; 2775 2776 if (ice_vf_vlan_offload_ena(vf->driver_caps)) { 2777 int err; 2778 2779 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2780 if (!err) 2781 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2782 return err; 2783 } 2784 2785 return vsi->inner_vlan_ops.dis_stripping(vsi); 2786 } 2787 2788 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2789 { 2790 if (vf->trusted) 2791 return VLAN_N_VID; 2792 else 2793 return ICE_MAX_VLAN_PER_VF; 2794 } 2795 2796 /** 2797 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2798 * @vf: VF that being checked for 2799 * 2800 * When the device is in double VLAN mode, check whether or not the outer VLAN 2801 * is allowed. 2802 */ 2803 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2804 { 2805 if (ice_vf_is_port_vlan_ena(vf)) 2806 return true; 2807 2808 return false; 2809 } 2810 2811 /** 2812 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2813 * @vf: VF that capabilities are being set for 2814 * @caps: VLAN capabilities to populate 2815 * 2816 * Determine VLAN capabilities support based on whether a port VLAN is 2817 * configured. If a port VLAN is configured then the VF should use the inner 2818 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2819 * capabilies. 2820 */ 2821 static void 2822 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2823 { 2824 struct virtchnl_vlan_supported_caps *supported_caps; 2825 2826 if (ice_vf_outer_vlan_not_allowed(vf)) { 2827 /* until support for inner VLAN filtering is added when a port 2828 * VLAN is configured, only support software offloaded inner 2829 * VLANs when a port VLAN is confgured in DVM 2830 */ 2831 supported_caps = &caps->filtering.filtering_support; 2832 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2833 2834 supported_caps = &caps->offloads.stripping_support; 2835 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2836 VIRTCHNL_VLAN_TOGGLE | 2837 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2838 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2839 2840 supported_caps = &caps->offloads.insertion_support; 2841 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2842 VIRTCHNL_VLAN_TOGGLE | 2843 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2844 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2845 2846 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2847 caps->offloads.ethertype_match = 2848 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2849 } else { 2850 supported_caps = &caps->filtering.filtering_support; 2851 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2852 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2853 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2854 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2855 VIRTCHNL_VLAN_ETHERTYPE_AND; 2856 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2857 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2858 VIRTCHNL_VLAN_ETHERTYPE_9100; 2859 2860 supported_caps = &caps->offloads.stripping_support; 2861 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2862 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2863 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2864 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2865 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2866 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2867 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2868 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2869 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2870 2871 supported_caps = &caps->offloads.insertion_support; 2872 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2873 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2874 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2875 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2876 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2877 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2878 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2879 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2880 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2881 2882 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2883 2884 caps->offloads.ethertype_match = 2885 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2886 } 2887 2888 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2889 } 2890 2891 /** 2892 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2893 * @vf: VF that capabilities are being set for 2894 * @caps: VLAN capabilities to populate 2895 * 2896 * Determine VLAN capabilities support based on whether a port VLAN is 2897 * configured. If a port VLAN is configured then the VF does not have any VLAN 2898 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2899 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2900 * VLAN fitlering and offload capabilities. 2901 */ 2902 static void 2903 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2904 { 2905 struct virtchnl_vlan_supported_caps *supported_caps; 2906 2907 if (ice_vf_is_port_vlan_ena(vf)) { 2908 supported_caps = &caps->filtering.filtering_support; 2909 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2910 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2911 2912 supported_caps = &caps->offloads.stripping_support; 2913 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2914 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2915 2916 supported_caps = &caps->offloads.insertion_support; 2917 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2918 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2919 2920 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2921 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2922 caps->filtering.max_filters = 0; 2923 } else { 2924 supported_caps = &caps->filtering.filtering_support; 2925 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2926 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2927 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2928 2929 supported_caps = &caps->offloads.stripping_support; 2930 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2931 VIRTCHNL_VLAN_TOGGLE | 2932 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2933 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2934 2935 supported_caps = &caps->offloads.insertion_support; 2936 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2937 VIRTCHNL_VLAN_TOGGLE | 2938 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2939 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2940 2941 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2942 caps->offloads.ethertype_match = 2943 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2944 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2945 } 2946 } 2947 2948 /** 2949 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2950 * @vf: VF to determine VLAN capabilities for 2951 * 2952 * This will only be called if the VF and PF successfully negotiated 2953 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2954 * 2955 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2956 * is configured or not. 2957 */ 2958 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2959 { 2960 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2961 struct virtchnl_vlan_caps *caps = NULL; 2962 int err, len = 0; 2963 2964 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2965 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2966 goto out; 2967 } 2968 2969 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2970 if (!caps) { 2971 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2972 goto out; 2973 } 2974 len = sizeof(*caps); 2975 2976 if (ice_is_dvm_ena(&vf->pf->hw)) 2977 ice_vc_set_dvm_caps(vf, caps); 2978 else 2979 ice_vc_set_svm_caps(vf, caps); 2980 2981 /* store negotiated caps to prevent invalid VF messages */ 2982 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2983 2984 out: 2985 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2986 v_ret, (u8 *)caps, len); 2987 kfree(caps); 2988 return err; 2989 } 2990 2991 /** 2992 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2993 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2994 * @tpid: VLAN TPID used for validation 2995 * 2996 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2997 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2998 */ 2999 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 3000 { 3001 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 3002 3003 switch (tpid) { 3004 case ETH_P_8021Q: 3005 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 3006 break; 3007 case ETH_P_8021AD: 3008 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 3009 break; 3010 case ETH_P_QINQ1: 3011 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 3012 break; 3013 } 3014 3015 if (!(filtering_caps & vlan_ethertype)) 3016 return false; 3017 3018 return true; 3019 } 3020 3021 /** 3022 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 3023 * @vc_vlan: virtchnl_vlan to validate 3024 * 3025 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 3026 * false. Otherwise return true. 3027 */ 3028 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 3029 { 3030 if (!vc_vlan->tci || !vc_vlan->tpid) 3031 return false; 3032 3033 return true; 3034 } 3035 3036 /** 3037 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 3038 * @vfc: negotiated/supported VLAN filtering capabilities 3039 * @vfl: VLAN filter list from VF to validate 3040 * 3041 * Validate all of the filters in the VLAN filter list from the VF. If any of 3042 * the checks fail then return false. Otherwise return true. 3043 */ 3044 static bool 3045 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 3046 struct virtchnl_vlan_filter_list_v2 *vfl) 3047 { 3048 u16 i; 3049 3050 if (!vfl->num_elements) 3051 return false; 3052 3053 for (i = 0; i < vfl->num_elements; i++) { 3054 struct virtchnl_vlan_supported_caps *filtering_support = 3055 &vfc->filtering_support; 3056 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3057 struct virtchnl_vlan *outer = &vlan_fltr->outer; 3058 struct virtchnl_vlan *inner = &vlan_fltr->inner; 3059 3060 if ((ice_vc_is_valid_vlan(outer) && 3061 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 3062 (ice_vc_is_valid_vlan(inner) && 3063 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 3064 return false; 3065 3066 if ((outer->tci_mask && 3067 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 3068 (inner->tci_mask && 3069 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 3070 return false; 3071 3072 if (((outer->tci & VLAN_PRIO_MASK) && 3073 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 3074 ((inner->tci & VLAN_PRIO_MASK) && 3075 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 3076 return false; 3077 3078 if ((ice_vc_is_valid_vlan(outer) && 3079 !ice_vc_validate_vlan_tpid(filtering_support->outer, 3080 outer->tpid)) || 3081 (ice_vc_is_valid_vlan(inner) && 3082 !ice_vc_validate_vlan_tpid(filtering_support->inner, 3083 inner->tpid))) 3084 return false; 3085 } 3086 3087 return true; 3088 } 3089 3090 /** 3091 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 3092 * @vc_vlan: struct virtchnl_vlan to transform 3093 */ 3094 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 3095 { 3096 struct ice_vlan vlan = { 0 }; 3097 3098 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci); 3099 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 3100 vlan.tpid = vc_vlan->tpid; 3101 3102 return vlan; 3103 } 3104 3105 /** 3106 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 3107 * @vsi: VF's VSI used to perform the action 3108 * @vlan_action: function to perform the action with (i.e. add/del) 3109 * @vlan: VLAN filter to perform the action with 3110 */ 3111 static int 3112 ice_vc_vlan_action(struct ice_vsi *vsi, 3113 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3114 struct ice_vlan *vlan) 3115 { 3116 int err; 3117 3118 err = vlan_action(vsi, vlan); 3119 if (err) 3120 return err; 3121 3122 return 0; 3123 } 3124 3125 /** 3126 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3127 * @vf: VF used to delete the VLAN(s) 3128 * @vsi: VF's VSI used to delete the VLAN(s) 3129 * @vfl: virthchnl filter list used to delete the filters 3130 */ 3131 static int 3132 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3133 struct virtchnl_vlan_filter_list_v2 *vfl) 3134 { 3135 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3136 int err; 3137 u16 i; 3138 3139 for (i = 0; i < vfl->num_elements; i++) { 3140 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3141 struct virtchnl_vlan *vc_vlan; 3142 3143 vc_vlan = &vlan_fltr->outer; 3144 if (ice_vc_is_valid_vlan(vc_vlan)) { 3145 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3146 3147 err = ice_vc_vlan_action(vsi, 3148 vsi->outer_vlan_ops.del_vlan, 3149 &vlan); 3150 if (err) 3151 return err; 3152 3153 if (vlan_promisc) 3154 ice_vf_dis_vlan_promisc(vsi, &vlan); 3155 3156 /* Disable VLAN filtering when only VLAN 0 is left */ 3157 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3158 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3159 if (err) 3160 return err; 3161 } 3162 } 3163 3164 vc_vlan = &vlan_fltr->inner; 3165 if (ice_vc_is_valid_vlan(vc_vlan)) { 3166 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3167 3168 err = ice_vc_vlan_action(vsi, 3169 vsi->inner_vlan_ops.del_vlan, 3170 &vlan); 3171 if (err) 3172 return err; 3173 3174 /* no support for VLAN promiscuous on inner VLAN unless 3175 * we are in Single VLAN Mode (SVM) 3176 */ 3177 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3178 if (vlan_promisc) 3179 ice_vf_dis_vlan_promisc(vsi, &vlan); 3180 3181 /* Disable VLAN filtering when only VLAN 0 is left */ 3182 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3183 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3184 if (err) 3185 return err; 3186 } 3187 } 3188 } 3189 } 3190 3191 return 0; 3192 } 3193 3194 /** 3195 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3196 * @vf: VF the message was received from 3197 * @msg: message received from the VF 3198 */ 3199 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3200 { 3201 struct virtchnl_vlan_filter_list_v2 *vfl = 3202 (struct virtchnl_vlan_filter_list_v2 *)msg; 3203 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3204 struct ice_vsi *vsi; 3205 3206 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3207 vfl)) { 3208 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3209 goto out; 3210 } 3211 3212 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3213 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3214 goto out; 3215 } 3216 3217 vsi = ice_get_vf_vsi(vf); 3218 if (!vsi) { 3219 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3220 goto out; 3221 } 3222 3223 if (ice_vc_del_vlans(vf, vsi, vfl)) 3224 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3225 3226 out: 3227 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3228 0); 3229 } 3230 3231 /** 3232 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3233 * @vf: VF used to add the VLAN(s) 3234 * @vsi: VF's VSI used to add the VLAN(s) 3235 * @vfl: virthchnl filter list used to add the filters 3236 */ 3237 static int 3238 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3239 struct virtchnl_vlan_filter_list_v2 *vfl) 3240 { 3241 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3242 int err; 3243 u16 i; 3244 3245 for (i = 0; i < vfl->num_elements; i++) { 3246 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3247 struct virtchnl_vlan *vc_vlan; 3248 3249 vc_vlan = &vlan_fltr->outer; 3250 if (ice_vc_is_valid_vlan(vc_vlan)) { 3251 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3252 3253 err = ice_vc_vlan_action(vsi, 3254 vsi->outer_vlan_ops.add_vlan, 3255 &vlan); 3256 if (err) 3257 return err; 3258 3259 if (vlan_promisc) { 3260 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3261 if (err) 3262 return err; 3263 } 3264 3265 /* Enable VLAN filtering on first non-zero VLAN */ 3266 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3267 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3268 if (err) 3269 return err; 3270 } 3271 } 3272 3273 vc_vlan = &vlan_fltr->inner; 3274 if (ice_vc_is_valid_vlan(vc_vlan)) { 3275 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3276 3277 err = ice_vc_vlan_action(vsi, 3278 vsi->inner_vlan_ops.add_vlan, 3279 &vlan); 3280 if (err) 3281 return err; 3282 3283 /* no support for VLAN promiscuous on inner VLAN unless 3284 * we are in Single VLAN Mode (SVM) 3285 */ 3286 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3287 if (vlan_promisc) { 3288 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3289 if (err) 3290 return err; 3291 } 3292 3293 /* Enable VLAN filtering on first non-zero VLAN */ 3294 if (vf->spoofchk && vlan.vid) { 3295 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3296 if (err) 3297 return err; 3298 } 3299 } 3300 } 3301 } 3302 3303 return 0; 3304 } 3305 3306 /** 3307 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3308 * @vsi: VF VSI used to get number of existing VLAN filters 3309 * @vfc: negotiated/supported VLAN filtering capabilities 3310 * @vfl: VLAN filter list from VF to validate 3311 * 3312 * Validate all of the filters in the VLAN filter list from the VF during the 3313 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3314 * Otherwise return true. 3315 */ 3316 static bool 3317 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3318 struct virtchnl_vlan_filtering_caps *vfc, 3319 struct virtchnl_vlan_filter_list_v2 *vfl) 3320 { 3321 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3322 vfl->num_elements; 3323 3324 if (num_requested_filters > vfc->max_filters) 3325 return false; 3326 3327 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3328 } 3329 3330 /** 3331 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3332 * @vf: VF the message was received from 3333 * @msg: message received from the VF 3334 */ 3335 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3336 { 3337 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3338 struct virtchnl_vlan_filter_list_v2 *vfl = 3339 (struct virtchnl_vlan_filter_list_v2 *)msg; 3340 struct ice_vsi *vsi; 3341 3342 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3343 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3344 goto out; 3345 } 3346 3347 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3348 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3349 goto out; 3350 } 3351 3352 vsi = ice_get_vf_vsi(vf); 3353 if (!vsi) { 3354 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3355 goto out; 3356 } 3357 3358 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3359 &vf->vlan_v2_caps.filtering, 3360 vfl)) { 3361 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3362 goto out; 3363 } 3364 3365 if (ice_vc_add_vlans(vf, vsi, vfl)) 3366 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3367 3368 out: 3369 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3370 0); 3371 } 3372 3373 /** 3374 * ice_vc_valid_vlan_setting - validate VLAN setting 3375 * @negotiated_settings: negotiated VLAN settings during VF init 3376 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3377 */ 3378 static bool 3379 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3380 { 3381 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3382 return false; 3383 3384 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3385 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3386 */ 3387 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3388 hweight32(ethertype_setting) > 1) 3389 return false; 3390 3391 /* ability to modify the VLAN setting was not negotiated */ 3392 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3393 return false; 3394 3395 return true; 3396 } 3397 3398 /** 3399 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3400 * @caps: negotiated VLAN settings during VF init 3401 * @msg: message to validate 3402 * 3403 * Used to validate any VLAN virtchnl message sent as a 3404 * virtchnl_vlan_setting structure. Validates the message against the 3405 * negotiated/supported caps during VF driver init. 3406 */ 3407 static bool 3408 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3409 struct virtchnl_vlan_setting *msg) 3410 { 3411 if ((!msg->outer_ethertype_setting && 3412 !msg->inner_ethertype_setting) || 3413 (!caps->outer && !caps->inner)) 3414 return false; 3415 3416 if (msg->outer_ethertype_setting && 3417 !ice_vc_valid_vlan_setting(caps->outer, 3418 msg->outer_ethertype_setting)) 3419 return false; 3420 3421 if (msg->inner_ethertype_setting && 3422 !ice_vc_valid_vlan_setting(caps->inner, 3423 msg->inner_ethertype_setting)) 3424 return false; 3425 3426 return true; 3427 } 3428 3429 /** 3430 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3431 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3432 * @tpid: VLAN TPID to populate 3433 */ 3434 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3435 { 3436 switch (ethertype_setting) { 3437 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3438 *tpid = ETH_P_8021Q; 3439 break; 3440 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3441 *tpid = ETH_P_8021AD; 3442 break; 3443 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3444 *tpid = ETH_P_QINQ1; 3445 break; 3446 default: 3447 *tpid = 0; 3448 return -EINVAL; 3449 } 3450 3451 return 0; 3452 } 3453 3454 /** 3455 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3456 * @vsi: VF's VSI used to enable the VLAN offload 3457 * @ena_offload: function used to enable the VLAN offload 3458 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3459 */ 3460 static int 3461 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3462 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3463 u32 ethertype_setting) 3464 { 3465 u16 tpid; 3466 int err; 3467 3468 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3469 if (err) 3470 return err; 3471 3472 err = ena_offload(vsi, tpid); 3473 if (err) 3474 return err; 3475 3476 return 0; 3477 } 3478 3479 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3480 #define ICE_L2TSEL_BIT_OFFSET 23 3481 enum ice_l2tsel { 3482 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3483 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3484 }; 3485 3486 /** 3487 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3488 * @vsi: VSI used to update l2tsel on 3489 * @l2tsel: l2tsel setting requested 3490 * 3491 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3492 * This will modify which descriptor field the first offloaded VLAN will be 3493 * stripped into. 3494 */ 3495 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3496 { 3497 struct ice_hw *hw = &vsi->back->hw; 3498 u32 l2tsel_bit; 3499 int i; 3500 3501 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3502 l2tsel_bit = 0; 3503 else 3504 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3505 3506 for (i = 0; i < vsi->alloc_rxq; i++) { 3507 u16 pfq = vsi->rxq_map[i]; 3508 u32 qrx_context_offset; 3509 u32 regval; 3510 3511 qrx_context_offset = 3512 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3513 3514 regval = rd32(hw, qrx_context_offset); 3515 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3516 regval |= l2tsel_bit; 3517 wr32(hw, qrx_context_offset, regval); 3518 } 3519 } 3520 3521 /** 3522 * ice_vc_ena_vlan_stripping_v2_msg 3523 * @vf: VF the message was received from 3524 * @msg: message received from the VF 3525 * 3526 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3527 */ 3528 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3529 { 3530 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3531 struct virtchnl_vlan_supported_caps *stripping_support; 3532 struct virtchnl_vlan_setting *strip_msg = 3533 (struct virtchnl_vlan_setting *)msg; 3534 u32 ethertype_setting; 3535 struct ice_vsi *vsi; 3536 3537 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3538 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3539 goto out; 3540 } 3541 3542 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3543 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3544 goto out; 3545 } 3546 3547 vsi = ice_get_vf_vsi(vf); 3548 if (!vsi) { 3549 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3550 goto out; 3551 } 3552 3553 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3554 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3555 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3556 goto out; 3557 } 3558 3559 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) { 3560 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3561 goto out; 3562 } 3563 3564 ethertype_setting = strip_msg->outer_ethertype_setting; 3565 if (ethertype_setting) { 3566 if (ice_vc_ena_vlan_offload(vsi, 3567 vsi->outer_vlan_ops.ena_stripping, 3568 ethertype_setting)) { 3569 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3570 goto out; 3571 } else { 3572 enum ice_l2tsel l2tsel = 3573 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3574 3575 /* PF tells the VF that the outer VLAN tag is always 3576 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3577 * inner is always extracted to 3578 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3579 * support outer stripping so the first tag always ends 3580 * up in L2TAG2_2ND and the second/inner tag, if 3581 * enabled, is extracted in L2TAG1. 3582 */ 3583 ice_vsi_update_l2tsel(vsi, l2tsel); 3584 3585 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA; 3586 } 3587 } 3588 3589 ethertype_setting = strip_msg->inner_ethertype_setting; 3590 if (ethertype_setting && 3591 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3592 ethertype_setting)) { 3593 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3594 goto out; 3595 } 3596 3597 if (ethertype_setting) 3598 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3599 3600 out: 3601 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3602 v_ret, NULL, 0); 3603 } 3604 3605 /** 3606 * ice_vc_dis_vlan_stripping_v2_msg 3607 * @vf: VF the message was received from 3608 * @msg: message received from the VF 3609 * 3610 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3611 */ 3612 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3613 { 3614 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3615 struct virtchnl_vlan_supported_caps *stripping_support; 3616 struct virtchnl_vlan_setting *strip_msg = 3617 (struct virtchnl_vlan_setting *)msg; 3618 u32 ethertype_setting; 3619 struct ice_vsi *vsi; 3620 3621 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3622 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3623 goto out; 3624 } 3625 3626 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3627 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3628 goto out; 3629 } 3630 3631 vsi = ice_get_vf_vsi(vf); 3632 if (!vsi) { 3633 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3634 goto out; 3635 } 3636 3637 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3638 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3639 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3640 goto out; 3641 } 3642 3643 ethertype_setting = strip_msg->outer_ethertype_setting; 3644 if (ethertype_setting) { 3645 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3646 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3647 goto out; 3648 } else { 3649 enum ice_l2tsel l2tsel = 3650 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3651 3652 /* PF tells the VF that the outer VLAN tag is always 3653 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3654 * inner is always extracted to 3655 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3656 * support inner stripping while outer stripping is 3657 * disabled so that the first and only tag is extracted 3658 * in L2TAG1. 3659 */ 3660 ice_vsi_update_l2tsel(vsi, l2tsel); 3661 3662 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA; 3663 } 3664 } 3665 3666 ethertype_setting = strip_msg->inner_ethertype_setting; 3667 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3668 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3669 goto out; 3670 } 3671 3672 if (ethertype_setting) 3673 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 3674 3675 out: 3676 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3677 v_ret, NULL, 0); 3678 } 3679 3680 /** 3681 * ice_vc_ena_vlan_insertion_v2_msg 3682 * @vf: VF the message was received from 3683 * @msg: message received from the VF 3684 * 3685 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3686 */ 3687 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3688 { 3689 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3690 struct virtchnl_vlan_supported_caps *insertion_support; 3691 struct virtchnl_vlan_setting *insertion_msg = 3692 (struct virtchnl_vlan_setting *)msg; 3693 u32 ethertype_setting; 3694 struct ice_vsi *vsi; 3695 3696 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3697 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3698 goto out; 3699 } 3700 3701 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3702 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3703 goto out; 3704 } 3705 3706 vsi = ice_get_vf_vsi(vf); 3707 if (!vsi) { 3708 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3709 goto out; 3710 } 3711 3712 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3713 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3714 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3715 goto out; 3716 } 3717 3718 ethertype_setting = insertion_msg->outer_ethertype_setting; 3719 if (ethertype_setting && 3720 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3721 ethertype_setting)) { 3722 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3723 goto out; 3724 } 3725 3726 ethertype_setting = insertion_msg->inner_ethertype_setting; 3727 if (ethertype_setting && 3728 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3729 ethertype_setting)) { 3730 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3731 goto out; 3732 } 3733 3734 out: 3735 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3736 v_ret, NULL, 0); 3737 } 3738 3739 /** 3740 * ice_vc_dis_vlan_insertion_v2_msg 3741 * @vf: VF the message was received from 3742 * @msg: message received from the VF 3743 * 3744 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3745 */ 3746 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3747 { 3748 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3749 struct virtchnl_vlan_supported_caps *insertion_support; 3750 struct virtchnl_vlan_setting *insertion_msg = 3751 (struct virtchnl_vlan_setting *)msg; 3752 u32 ethertype_setting; 3753 struct ice_vsi *vsi; 3754 3755 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3756 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3757 goto out; 3758 } 3759 3760 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3761 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3762 goto out; 3763 } 3764 3765 vsi = ice_get_vf_vsi(vf); 3766 if (!vsi) { 3767 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3768 goto out; 3769 } 3770 3771 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3772 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3773 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3774 goto out; 3775 } 3776 3777 ethertype_setting = insertion_msg->outer_ethertype_setting; 3778 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3779 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3780 goto out; 3781 } 3782 3783 ethertype_setting = insertion_msg->inner_ethertype_setting; 3784 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3785 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3786 goto out; 3787 } 3788 3789 out: 3790 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3791 v_ret, NULL, 0); 3792 } 3793 3794 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3795 .get_ver_msg = ice_vc_get_ver_msg, 3796 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3797 .reset_vf = ice_vc_reset_vf_msg, 3798 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3799 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3800 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3801 .ena_qs_msg = ice_vc_ena_qs_msg, 3802 .dis_qs_msg = ice_vc_dis_qs_msg, 3803 .request_qs_msg = ice_vc_request_qs_msg, 3804 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3805 .config_rss_key = ice_vc_config_rss_key, 3806 .config_rss_lut = ice_vc_config_rss_lut, 3807 .config_rss_hfunc = ice_vc_config_rss_hfunc, 3808 .get_stats_msg = ice_vc_get_stats_msg, 3809 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3810 .add_vlan_msg = ice_vc_add_vlan_msg, 3811 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3812 .query_rxdid = ice_vc_query_rxdid, 3813 .get_rss_hena = ice_vc_get_rss_hena, 3814 .set_rss_hena_msg = ice_vc_set_rss_hena, 3815 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3816 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3817 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3818 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3819 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3820 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3821 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3822 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3823 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3824 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3825 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3826 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3827 }; 3828 3829 /** 3830 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3831 * @vf: the VF to switch ops 3832 */ 3833 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3834 { 3835 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3836 } 3837 3838 /** 3839 * ice_vc_repr_add_mac 3840 * @vf: pointer to VF 3841 * @msg: virtchannel message 3842 * 3843 * When port representors are created, we do not add MAC rule 3844 * to firmware, we store it so that PF could report same 3845 * MAC as VF. 3846 */ 3847 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3848 { 3849 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3850 struct virtchnl_ether_addr_list *al = 3851 (struct virtchnl_ether_addr_list *)msg; 3852 struct ice_vsi *vsi; 3853 struct ice_pf *pf; 3854 int i; 3855 3856 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3857 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3858 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3859 goto handle_mac_exit; 3860 } 3861 3862 pf = vf->pf; 3863 3864 vsi = ice_get_vf_vsi(vf); 3865 if (!vsi) { 3866 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3867 goto handle_mac_exit; 3868 } 3869 3870 for (i = 0; i < al->num_elements; i++) { 3871 u8 *mac_addr = al->list[i].addr; 3872 3873 if (!is_unicast_ether_addr(mac_addr) || 3874 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 3875 continue; 3876 3877 if (vf->pf_set_mac) { 3878 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3879 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3880 goto handle_mac_exit; 3881 } 3882 3883 ice_vfhw_mac_add(vf, &al->list[i]); 3884 vf->num_mac++; 3885 break; 3886 } 3887 3888 handle_mac_exit: 3889 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3890 v_ret, NULL, 0); 3891 } 3892 3893 /** 3894 * ice_vc_repr_del_mac - response with success for deleting MAC 3895 * @vf: pointer to VF 3896 * @msg: virtchannel message 3897 * 3898 * Respond with success to not break normal VF flow. 3899 * For legacy VF driver try to update cached MAC address. 3900 */ 3901 static int 3902 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3903 { 3904 struct virtchnl_ether_addr_list *al = 3905 (struct virtchnl_ether_addr_list *)msg; 3906 3907 ice_update_legacy_cached_mac(vf, &al->list[0]); 3908 3909 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3910 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3911 } 3912 3913 static int 3914 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3915 { 3916 dev_dbg(ice_pf_to_dev(vf->pf), 3917 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3918 vf->vf_id); 3919 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3920 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3921 NULL, 0); 3922 } 3923 3924 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3925 .get_ver_msg = ice_vc_get_ver_msg, 3926 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3927 .reset_vf = ice_vc_reset_vf_msg, 3928 .add_mac_addr_msg = ice_vc_repr_add_mac, 3929 .del_mac_addr_msg = ice_vc_repr_del_mac, 3930 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3931 .ena_qs_msg = ice_vc_ena_qs_msg, 3932 .dis_qs_msg = ice_vc_dis_qs_msg, 3933 .request_qs_msg = ice_vc_request_qs_msg, 3934 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3935 .config_rss_key = ice_vc_config_rss_key, 3936 .config_rss_lut = ice_vc_config_rss_lut, 3937 .config_rss_hfunc = ice_vc_config_rss_hfunc, 3938 .get_stats_msg = ice_vc_get_stats_msg, 3939 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3940 .add_vlan_msg = ice_vc_add_vlan_msg, 3941 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3942 .query_rxdid = ice_vc_query_rxdid, 3943 .get_rss_hena = ice_vc_get_rss_hena, 3944 .set_rss_hena_msg = ice_vc_set_rss_hena, 3945 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3946 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3947 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3948 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3949 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3950 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3951 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3952 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3953 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3954 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3955 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3956 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3957 }; 3958 3959 /** 3960 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3961 * @vf: the VF to switch ops 3962 */ 3963 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3964 { 3965 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3966 } 3967 3968 /** 3969 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 3970 * @vf: the VF to check 3971 * @mbxdata: data about the state of the mailbox 3972 * 3973 * Detect if a given VF might be malicious and attempting to overflow the PF 3974 * mailbox. If so, log a warning message and ignore this event. 3975 */ 3976 static bool 3977 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 3978 { 3979 bool report_malvf = false; 3980 struct device *dev; 3981 struct ice_pf *pf; 3982 int status; 3983 3984 pf = vf->pf; 3985 dev = ice_pf_to_dev(pf); 3986 3987 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 3988 return vf->mbx_info.malicious; 3989 3990 /* check to see if we have a newly malicious VF */ 3991 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 3992 &report_malvf); 3993 if (status) 3994 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 3995 vf->vf_id, vf->dev_lan_addr, status); 3996 3997 if (report_malvf) { 3998 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3999 u8 zero_addr[ETH_ALEN] = {}; 4000 4001 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 4002 vf->dev_lan_addr, 4003 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 4004 } 4005 4006 return vf->mbx_info.malicious; 4007 } 4008 4009 /** 4010 * ice_vc_process_vf_msg - Process request from VF 4011 * @pf: pointer to the PF structure 4012 * @event: pointer to the AQ event 4013 * @mbxdata: information used to detect VF attempting mailbox overflow 4014 * 4015 * called from the common asq/arq handler to 4016 * process request from VF 4017 */ 4018 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 4019 struct ice_mbx_data *mbxdata) 4020 { 4021 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 4022 s16 vf_id = le16_to_cpu(event->desc.retval); 4023 const struct ice_virtchnl_ops *ops; 4024 u16 msglen = event->msg_len; 4025 u8 *msg = event->msg_buf; 4026 struct ice_vf *vf = NULL; 4027 struct device *dev; 4028 int err = 0; 4029 4030 dev = ice_pf_to_dev(pf); 4031 4032 vf = ice_get_vf_by_id(pf, vf_id); 4033 if (!vf) { 4034 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 4035 vf_id, v_opcode, msglen); 4036 return; 4037 } 4038 4039 mutex_lock(&vf->cfg_lock); 4040 4041 /* Check if the VF is trying to overflow the mailbox */ 4042 if (ice_is_malicious_vf(vf, mbxdata)) 4043 goto finish; 4044 4045 /* Check if VF is disabled. */ 4046 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 4047 err = -EPERM; 4048 goto error_handler; 4049 } 4050 4051 ops = vf->virtchnl_ops; 4052 4053 /* Perform basic checks on the msg */ 4054 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 4055 if (err) { 4056 if (err == VIRTCHNL_STATUS_ERR_PARAM) 4057 err = -EPERM; 4058 else 4059 err = -EINVAL; 4060 } 4061 4062 error_handler: 4063 if (err) { 4064 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 4065 NULL, 0); 4066 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 4067 vf_id, v_opcode, msglen, err); 4068 goto finish; 4069 } 4070 4071 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 4072 ice_vc_send_msg_to_vf(vf, v_opcode, 4073 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 4074 0); 4075 goto finish; 4076 } 4077 4078 switch (v_opcode) { 4079 case VIRTCHNL_OP_VERSION: 4080 err = ops->get_ver_msg(vf, msg); 4081 break; 4082 case VIRTCHNL_OP_GET_VF_RESOURCES: 4083 err = ops->get_vf_res_msg(vf, msg); 4084 if (ice_vf_init_vlan_stripping(vf)) 4085 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 4086 vf->vf_id); 4087 ice_vc_notify_vf_link_state(vf); 4088 break; 4089 case VIRTCHNL_OP_RESET_VF: 4090 ops->reset_vf(vf); 4091 break; 4092 case VIRTCHNL_OP_ADD_ETH_ADDR: 4093 err = ops->add_mac_addr_msg(vf, msg); 4094 break; 4095 case VIRTCHNL_OP_DEL_ETH_ADDR: 4096 err = ops->del_mac_addr_msg(vf, msg); 4097 break; 4098 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 4099 err = ops->cfg_qs_msg(vf, msg); 4100 break; 4101 case VIRTCHNL_OP_ENABLE_QUEUES: 4102 err = ops->ena_qs_msg(vf, msg); 4103 ice_vc_notify_vf_link_state(vf); 4104 break; 4105 case VIRTCHNL_OP_DISABLE_QUEUES: 4106 err = ops->dis_qs_msg(vf, msg); 4107 break; 4108 case VIRTCHNL_OP_REQUEST_QUEUES: 4109 err = ops->request_qs_msg(vf, msg); 4110 break; 4111 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 4112 err = ops->cfg_irq_map_msg(vf, msg); 4113 break; 4114 case VIRTCHNL_OP_CONFIG_RSS_KEY: 4115 err = ops->config_rss_key(vf, msg); 4116 break; 4117 case VIRTCHNL_OP_CONFIG_RSS_LUT: 4118 err = ops->config_rss_lut(vf, msg); 4119 break; 4120 case VIRTCHNL_OP_CONFIG_RSS_HFUNC: 4121 err = ops->config_rss_hfunc(vf, msg); 4122 break; 4123 case VIRTCHNL_OP_GET_STATS: 4124 err = ops->get_stats_msg(vf, msg); 4125 break; 4126 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 4127 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4128 break; 4129 case VIRTCHNL_OP_ADD_VLAN: 4130 err = ops->add_vlan_msg(vf, msg); 4131 break; 4132 case VIRTCHNL_OP_DEL_VLAN: 4133 err = ops->remove_vlan_msg(vf, msg); 4134 break; 4135 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4136 err = ops->query_rxdid(vf); 4137 break; 4138 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4139 err = ops->get_rss_hena(vf); 4140 break; 4141 case VIRTCHNL_OP_SET_RSS_HENA: 4142 err = ops->set_rss_hena_msg(vf, msg); 4143 break; 4144 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4145 err = ops->ena_vlan_stripping(vf); 4146 break; 4147 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4148 err = ops->dis_vlan_stripping(vf); 4149 break; 4150 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4151 err = ops->add_fdir_fltr_msg(vf, msg); 4152 break; 4153 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4154 err = ops->del_fdir_fltr_msg(vf, msg); 4155 break; 4156 case VIRTCHNL_OP_ADD_RSS_CFG: 4157 err = ops->handle_rss_cfg_msg(vf, msg, true); 4158 break; 4159 case VIRTCHNL_OP_DEL_RSS_CFG: 4160 err = ops->handle_rss_cfg_msg(vf, msg, false); 4161 break; 4162 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4163 err = ops->get_offload_vlan_v2_caps(vf); 4164 break; 4165 case VIRTCHNL_OP_ADD_VLAN_V2: 4166 err = ops->add_vlan_v2_msg(vf, msg); 4167 break; 4168 case VIRTCHNL_OP_DEL_VLAN_V2: 4169 err = ops->remove_vlan_v2_msg(vf, msg); 4170 break; 4171 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4172 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4173 break; 4174 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4175 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4176 break; 4177 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4178 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4179 break; 4180 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4181 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4182 break; 4183 case VIRTCHNL_OP_UNKNOWN: 4184 default: 4185 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4186 vf_id); 4187 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4188 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4189 NULL, 0); 4190 break; 4191 } 4192 if (err) { 4193 /* Helper function cares less about error return values here 4194 * as it is busy with pending work. 4195 */ 4196 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4197 vf_id, v_opcode, err); 4198 } 4199 4200 finish: 4201 mutex_unlock(&vf->cfg_lock); 4202 ice_put_vf(vf); 4203 } 4204