1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != LIBIE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 libie_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_VLAN; 444 445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 446 vsi = ice_get_vf_vsi(vf); 447 if (!vsi) { 448 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 449 goto err; 450 } 451 452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 453 vf->driver_caps); 454 455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) 456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 457 458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 460 461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 463 464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 && 465 vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 485 486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC; 488 489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 491 492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 494 495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 497 498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_QOS) 499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_QOS; 500 501 if (vf->driver_caps & VIRTCHNL_VF_CAP_PTP) 502 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_PTP; 503 504 vfres->num_vsis = 1; 505 /* Tx and Rx queue are equal for VF */ 506 vfres->num_queue_pairs = vsi->num_txq; 507 vfres->max_vectors = vf->num_msix; 508 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 509 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 510 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 511 512 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID; 513 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 514 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 515 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 516 vf->hw_lan_addr); 517 518 /* match guest capabilities */ 519 vf->driver_caps = vfres->vf_cap_flags; 520 521 ice_vc_set_caps_allowlist(vf); 522 ice_vc_set_working_allowlist(vf); 523 524 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 525 526 err: 527 /* send the response back to the VF */ 528 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 529 (u8 *)vfres, len); 530 531 kfree(vfres); 532 return ret; 533 } 534 535 /** 536 * ice_vc_reset_vf_msg 537 * @vf: pointer to the VF info 538 * 539 * called from the VF to reset itself, 540 * unlike other virtchnl messages, PF driver 541 * doesn't send the response back to the VF 542 */ 543 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 544 { 545 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 546 ice_reset_vf(vf, 0); 547 } 548 549 /** 550 * ice_vc_isvalid_vsi_id 551 * @vf: pointer to the VF info 552 * @vsi_id: VF relative VSI ID 553 * 554 * check for the valid VSI ID 555 */ 556 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 557 { 558 return vsi_id == ICE_VF_VSI_ID; 559 } 560 561 /** 562 * ice_vc_isvalid_q_id 563 * @vsi: VSI to check queue ID against 564 * @qid: VSI relative queue ID 565 * 566 * check for the valid queue ID 567 */ 568 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u16 qid) 569 { 570 /* allocated Tx and Rx queues should be always equal for VF VSI */ 571 return qid < vsi->alloc_txq; 572 } 573 574 /** 575 * ice_vc_isvalid_ring_len 576 * @ring_len: length of ring 577 * 578 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 579 * or zero 580 */ 581 static bool ice_vc_isvalid_ring_len(u16 ring_len) 582 { 583 return ring_len == 0 || 584 (ring_len >= ICE_MIN_NUM_DESC && 585 ring_len <= ICE_MAX_NUM_DESC && 586 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 587 } 588 589 /** 590 * ice_vc_validate_pattern 591 * @vf: pointer to the VF info 592 * @proto: virtchnl protocol headers 593 * 594 * validate the pattern is supported or not. 595 * 596 * Return: true on success, false on error. 597 */ 598 bool 599 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 600 { 601 bool is_ipv4 = false; 602 bool is_ipv6 = false; 603 bool is_udp = false; 604 u16 ptype = -1; 605 int i = 0; 606 607 while (i < proto->count && 608 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 609 switch (proto->proto_hdr[i].type) { 610 case VIRTCHNL_PROTO_HDR_ETH: 611 ptype = ICE_PTYPE_MAC_PAY; 612 break; 613 case VIRTCHNL_PROTO_HDR_IPV4: 614 ptype = ICE_PTYPE_IPV4_PAY; 615 is_ipv4 = true; 616 break; 617 case VIRTCHNL_PROTO_HDR_IPV6: 618 ptype = ICE_PTYPE_IPV6_PAY; 619 is_ipv6 = true; 620 break; 621 case VIRTCHNL_PROTO_HDR_UDP: 622 if (is_ipv4) 623 ptype = ICE_PTYPE_IPV4_UDP_PAY; 624 else if (is_ipv6) 625 ptype = ICE_PTYPE_IPV6_UDP_PAY; 626 is_udp = true; 627 break; 628 case VIRTCHNL_PROTO_HDR_TCP: 629 if (is_ipv4) 630 ptype = ICE_PTYPE_IPV4_TCP_PAY; 631 else if (is_ipv6) 632 ptype = ICE_PTYPE_IPV6_TCP_PAY; 633 break; 634 case VIRTCHNL_PROTO_HDR_SCTP: 635 if (is_ipv4) 636 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 637 else if (is_ipv6) 638 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 639 break; 640 case VIRTCHNL_PROTO_HDR_GTPU_IP: 641 case VIRTCHNL_PROTO_HDR_GTPU_EH: 642 if (is_ipv4) 643 ptype = ICE_MAC_IPV4_GTPU; 644 else if (is_ipv6) 645 ptype = ICE_MAC_IPV6_GTPU; 646 goto out; 647 case VIRTCHNL_PROTO_HDR_L2TPV3: 648 if (is_ipv4) 649 ptype = ICE_MAC_IPV4_L2TPV3; 650 else if (is_ipv6) 651 ptype = ICE_MAC_IPV6_L2TPV3; 652 goto out; 653 case VIRTCHNL_PROTO_HDR_ESP: 654 if (is_ipv4) 655 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 656 ICE_MAC_IPV4_ESP; 657 else if (is_ipv6) 658 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 659 ICE_MAC_IPV6_ESP; 660 goto out; 661 case VIRTCHNL_PROTO_HDR_AH: 662 if (is_ipv4) 663 ptype = ICE_MAC_IPV4_AH; 664 else if (is_ipv6) 665 ptype = ICE_MAC_IPV6_AH; 666 goto out; 667 case VIRTCHNL_PROTO_HDR_PFCP: 668 if (is_ipv4) 669 ptype = ICE_MAC_IPV4_PFCP_SESSION; 670 else if (is_ipv6) 671 ptype = ICE_MAC_IPV6_PFCP_SESSION; 672 goto out; 673 default: 674 break; 675 } 676 i++; 677 } 678 679 out: 680 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 681 } 682 683 /** 684 * ice_vc_parse_rss_cfg - parses hash fields and headers from 685 * a specific virtchnl RSS cfg 686 * @hw: pointer to the hardware 687 * @rss_cfg: pointer to the virtchnl RSS cfg 688 * @hash_cfg: pointer to the HW hash configuration 689 * 690 * Return true if all the protocol header and hash fields in the RSS cfg could 691 * be parsed, else return false 692 * 693 * This function parses the virtchnl RSS cfg to be the intended 694 * hash fields and the intended header for RSS configuration 695 */ 696 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw, 697 struct virtchnl_rss_cfg *rss_cfg, 698 struct ice_rss_hash_cfg *hash_cfg) 699 { 700 const struct ice_vc_hash_field_match_type *hf_list; 701 const struct ice_vc_hdr_match_type *hdr_list; 702 int i, hf_list_len, hdr_list_len; 703 u32 *addl_hdrs = &hash_cfg->addl_hdrs; 704 u64 *hash_flds = &hash_cfg->hash_flds; 705 706 /* set outer layer RSS as default */ 707 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS; 708 709 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 710 hash_cfg->symm = true; 711 else 712 hash_cfg->symm = false; 713 714 hf_list = ice_vc_hash_field_list; 715 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 716 hdr_list = ice_vc_hdr_list; 717 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 718 719 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 720 struct virtchnl_proto_hdr *proto_hdr = 721 &rss_cfg->proto_hdrs.proto_hdr[i]; 722 bool hdr_found = false; 723 int j; 724 725 /* Find matched ice headers according to virtchnl headers. */ 726 for (j = 0; j < hdr_list_len; j++) { 727 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 728 729 if (proto_hdr->type == hdr_map.vc_hdr) { 730 *addl_hdrs |= hdr_map.ice_hdr; 731 hdr_found = true; 732 } 733 } 734 735 if (!hdr_found) 736 return false; 737 738 /* Find matched ice hash fields according to 739 * virtchnl hash fields. 740 */ 741 for (j = 0; j < hf_list_len; j++) { 742 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 743 744 if (proto_hdr->type == hf_map.vc_hdr && 745 proto_hdr->field_selector == hf_map.vc_hash_field) { 746 *hash_flds |= hf_map.ice_hash_field; 747 break; 748 } 749 } 750 } 751 752 return true; 753 } 754 755 /** 756 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 757 * RSS offloads 758 * @caps: VF driver negotiated capabilities 759 * 760 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 761 * else return false 762 */ 763 static bool ice_vf_adv_rss_offload_ena(u32 caps) 764 { 765 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 766 } 767 768 /** 769 * ice_vc_handle_rss_cfg 770 * @vf: pointer to the VF info 771 * @msg: pointer to the message buffer 772 * @add: add a RSS config if true, otherwise delete a RSS config 773 * 774 * This function adds/deletes a RSS config 775 */ 776 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 777 { 778 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 779 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 780 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 781 struct device *dev = ice_pf_to_dev(vf->pf); 782 struct ice_hw *hw = &vf->pf->hw; 783 struct ice_vsi *vsi; 784 785 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 786 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 787 vf->vf_id); 788 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 789 goto error_param; 790 } 791 792 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 793 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 794 vf->vf_id); 795 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 796 goto error_param; 797 } 798 799 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 800 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 801 goto error_param; 802 } 803 804 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 805 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 806 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 807 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 808 vf->vf_id); 809 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 810 goto error_param; 811 } 812 813 vsi = ice_get_vf_vsi(vf); 814 if (!vsi) { 815 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 816 goto error_param; 817 } 818 819 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 820 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 821 goto error_param; 822 } 823 824 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 825 struct ice_vsi_ctx *ctx; 826 u8 lut_type, hash_type; 827 int status; 828 829 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 830 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR : 831 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 832 833 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 834 if (!ctx) { 835 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 836 goto error_param; 837 } 838 839 ctx->info.q_opt_rss = 840 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 841 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 842 843 /* Preserve existing queueing option setting */ 844 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 845 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 846 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 847 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 848 849 ctx->info.valid_sections = 850 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 851 852 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 853 if (status) { 854 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 855 status, libie_aq_str(hw->adminq.sq_last_status)); 856 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 857 } else { 858 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 859 } 860 861 kfree(ctx); 862 } else { 863 struct ice_rss_hash_cfg cfg; 864 865 /* Only check for none raw pattern case */ 866 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 867 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 868 goto error_param; 869 } 870 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 871 cfg.hash_flds = ICE_HASH_INVALID; 872 cfg.hdr_type = ICE_RSS_ANY_HEADERS; 873 874 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) { 875 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 876 goto error_param; 877 } 878 879 if (add) { 880 if (ice_add_rss_cfg(hw, vsi, &cfg)) { 881 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 882 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 883 vsi->vsi_num, v_ret); 884 } 885 } else { 886 int status; 887 888 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg); 889 /* We just ignore -ENOENT, because if two configurations 890 * share the same profile remove one of them actually 891 * removes both, since the profile is deleted. 892 */ 893 if (status && status != -ENOENT) { 894 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 895 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 896 vf->vf_id, status); 897 } 898 } 899 } 900 901 error_param: 902 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 903 } 904 905 /** 906 * ice_vc_config_rss_key 907 * @vf: pointer to the VF info 908 * @msg: pointer to the msg buffer 909 * 910 * Configure the VF's RSS key 911 */ 912 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 913 { 914 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 915 struct virtchnl_rss_key *vrk = 916 (struct virtchnl_rss_key *)msg; 917 struct ice_vsi *vsi; 918 919 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 920 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 921 goto error_param; 922 } 923 924 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 925 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 926 goto error_param; 927 } 928 929 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 930 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 931 goto error_param; 932 } 933 934 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 935 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 936 goto error_param; 937 } 938 939 vsi = ice_get_vf_vsi(vf); 940 if (!vsi) { 941 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 942 goto error_param; 943 } 944 945 if (ice_set_rss_key(vsi, vrk->key)) 946 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 947 error_param: 948 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 949 NULL, 0); 950 } 951 952 /** 953 * ice_vc_config_rss_lut 954 * @vf: pointer to the VF info 955 * @msg: pointer to the msg buffer 956 * 957 * Configure the VF's RSS LUT 958 */ 959 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 960 { 961 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 962 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 963 struct ice_vsi *vsi; 964 965 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 966 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 967 goto error_param; 968 } 969 970 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 971 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 972 goto error_param; 973 } 974 975 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 976 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 977 goto error_param; 978 } 979 980 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 981 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 982 goto error_param; 983 } 984 985 vsi = ice_get_vf_vsi(vf); 986 if (!vsi) { 987 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 988 goto error_param; 989 } 990 991 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 992 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 993 error_param: 994 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 995 NULL, 0); 996 } 997 998 /** 999 * ice_vc_config_rss_hfunc 1000 * @vf: pointer to the VF info 1001 * @msg: pointer to the msg buffer 1002 * 1003 * Configure the VF's RSS Hash function 1004 */ 1005 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg) 1006 { 1007 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg; 1008 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1009 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1010 struct ice_vsi *vsi; 1011 1012 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1013 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1014 goto error_param; 1015 } 1016 1017 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) { 1018 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1019 goto error_param; 1020 } 1021 1022 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 1023 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1024 goto error_param; 1025 } 1026 1027 vsi = ice_get_vf_vsi(vf); 1028 if (!vsi) { 1029 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1030 goto error_param; 1031 } 1032 1033 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 1034 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ; 1035 1036 if (ice_set_rss_hfunc(vsi, hfunc)) 1037 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1038 error_param: 1039 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret, 1040 NULL, 0); 1041 } 1042 1043 /** 1044 * ice_vc_get_qos_caps - Get current QoS caps from PF 1045 * @vf: pointer to the VF info 1046 * 1047 * Get VF's QoS capabilities, such as TC number, arbiter and 1048 * bandwidth from PF. 1049 * 1050 * Return: 0 on success or negative error value. 1051 */ 1052 static int ice_vc_get_qos_caps(struct ice_vf *vf) 1053 { 1054 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1055 struct virtchnl_qos_cap_list *cap_list = NULL; 1056 u8 tc_prio[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1057 struct virtchnl_qos_cap_elem *cfg = NULL; 1058 struct ice_vsi_ctx *vsi_ctx; 1059 struct ice_pf *pf = vf->pf; 1060 struct ice_port_info *pi; 1061 struct ice_vsi *vsi; 1062 u8 numtc, tc; 1063 u16 len = 0; 1064 int ret, i; 1065 1066 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1067 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1068 goto err; 1069 } 1070 1071 vsi = ice_get_vf_vsi(vf); 1072 if (!vsi) { 1073 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1074 goto err; 1075 } 1076 1077 pi = pf->hw.port_info; 1078 numtc = vsi->tc_cfg.numtc; 1079 1080 vsi_ctx = ice_get_vsi_ctx(pi->hw, vf->lan_vsi_idx); 1081 if (!vsi_ctx) { 1082 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1083 goto err; 1084 } 1085 1086 len = struct_size(cap_list, cap, numtc); 1087 cap_list = kzalloc(len, GFP_KERNEL); 1088 if (!cap_list) { 1089 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 1090 len = 0; 1091 goto err; 1092 } 1093 1094 cap_list->vsi_id = vsi->vsi_num; 1095 cap_list->num_elem = numtc; 1096 1097 /* Store the UP2TC configuration from DCB to a user priority bitmap 1098 * of each TC. Each element of prio_of_tc represents one TC. Each 1099 * bitmap indicates the user priorities belong to this TC. 1100 */ 1101 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 1102 tc = pi->qos_cfg.local_dcbx_cfg.etscfg.prio_table[i]; 1103 tc_prio[tc] |= BIT(i); 1104 } 1105 1106 for (i = 0; i < numtc; i++) { 1107 cfg = &cap_list->cap[i]; 1108 cfg->tc_num = i; 1109 cfg->tc_prio = tc_prio[i]; 1110 cfg->arbiter = pi->qos_cfg.local_dcbx_cfg.etscfg.tsatable[i]; 1111 cfg->weight = VIRTCHNL_STRICT_WEIGHT; 1112 cfg->type = VIRTCHNL_BW_SHAPER; 1113 cfg->shaper.committed = vsi_ctx->sched.bw_t_info[i].cir_bw.bw; 1114 cfg->shaper.peak = vsi_ctx->sched.bw_t_info[i].eir_bw.bw; 1115 } 1116 1117 err: 1118 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_QOS_CAPS, v_ret, 1119 (u8 *)cap_list, len); 1120 kfree(cap_list); 1121 return ret; 1122 } 1123 1124 /** 1125 * ice_vf_cfg_qs_bw - Configure per queue bandwidth 1126 * @vf: pointer to the VF info 1127 * @num_queues: number of queues to be configured 1128 * 1129 * Configure per queue bandwidth. 1130 * 1131 * Return: 0 on success or negative error value. 1132 */ 1133 static int ice_vf_cfg_qs_bw(struct ice_vf *vf, u16 num_queues) 1134 { 1135 struct ice_hw *hw = &vf->pf->hw; 1136 struct ice_vsi *vsi; 1137 int ret; 1138 u16 i; 1139 1140 vsi = ice_get_vf_vsi(vf); 1141 if (!vsi) 1142 return -EINVAL; 1143 1144 for (i = 0; i < num_queues; i++) { 1145 u32 p_rate, min_rate; 1146 u8 tc; 1147 1148 p_rate = vf->qs_bw[i].peak; 1149 min_rate = vf->qs_bw[i].committed; 1150 tc = vf->qs_bw[i].tc; 1151 if (p_rate) 1152 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc, 1153 vf->qs_bw[i].queue_id, 1154 ICE_MAX_BW, p_rate); 1155 else 1156 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc, 1157 vf->qs_bw[i].queue_id, 1158 ICE_MAX_BW); 1159 if (ret) 1160 return ret; 1161 1162 if (min_rate) 1163 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc, 1164 vf->qs_bw[i].queue_id, 1165 ICE_MIN_BW, min_rate); 1166 else 1167 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc, 1168 vf->qs_bw[i].queue_id, 1169 ICE_MIN_BW); 1170 1171 if (ret) 1172 return ret; 1173 } 1174 1175 return 0; 1176 } 1177 1178 /** 1179 * ice_vf_cfg_q_quanta_profile - Configure quanta profile 1180 * @vf: pointer to the VF info 1181 * @quanta_prof_idx: pointer to the quanta profile index 1182 * @quanta_size: quanta size to be set 1183 * 1184 * This function chooses available quanta profile and configures the register. 1185 * The quanta profile is evenly divided by the number of device ports, and then 1186 * available to the specific PF and VFs. The first profile for each PF is a 1187 * reserved default profile. Only quanta size of the rest unused profile can be 1188 * modified. 1189 * 1190 * Return: 0 on success or negative error value. 1191 */ 1192 static int ice_vf_cfg_q_quanta_profile(struct ice_vf *vf, u16 quanta_size, 1193 u16 *quanta_prof_idx) 1194 { 1195 const u16 n_desc = calc_quanta_desc(quanta_size); 1196 struct ice_hw *hw = &vf->pf->hw; 1197 const u16 n_cmd = 2 * n_desc; 1198 struct ice_pf *pf = vf->pf; 1199 u16 per_pf, begin_id; 1200 u8 n_used; 1201 u32 reg; 1202 1203 begin_id = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / hw->dev_caps.num_funcs * 1204 hw->logical_pf_id; 1205 1206 if (quanta_size == ICE_DFLT_QUANTA) { 1207 *quanta_prof_idx = begin_id; 1208 } else { 1209 per_pf = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / 1210 hw->dev_caps.num_funcs; 1211 n_used = pf->num_quanta_prof_used; 1212 if (n_used < per_pf) { 1213 *quanta_prof_idx = begin_id + 1 + n_used; 1214 pf->num_quanta_prof_used++; 1215 } else { 1216 return -EINVAL; 1217 } 1218 } 1219 1220 reg = FIELD_PREP(GLCOMM_QUANTA_PROF_QUANTA_SIZE_M, quanta_size) | 1221 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_CMD_M, n_cmd) | 1222 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_DESC_M, n_desc); 1223 wr32(hw, GLCOMM_QUANTA_PROF(*quanta_prof_idx), reg); 1224 1225 return 0; 1226 } 1227 1228 /** 1229 * ice_vc_cfg_promiscuous_mode_msg 1230 * @vf: pointer to the VF info 1231 * @msg: pointer to the msg buffer 1232 * 1233 * called from the VF to configure VF VSIs promiscuous mode 1234 */ 1235 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 1236 { 1237 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1238 bool rm_promisc, alluni = false, allmulti = false; 1239 struct virtchnl_promisc_info *info = 1240 (struct virtchnl_promisc_info *)msg; 1241 struct ice_vsi_vlan_ops *vlan_ops; 1242 int mcast_err = 0, ucast_err = 0; 1243 struct ice_pf *pf = vf->pf; 1244 struct ice_vsi *vsi; 1245 u8 mcast_m, ucast_m; 1246 struct device *dev; 1247 int ret = 0; 1248 1249 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1250 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1251 goto error_param; 1252 } 1253 1254 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1255 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1256 goto error_param; 1257 } 1258 1259 vsi = ice_get_vf_vsi(vf); 1260 if (!vsi) { 1261 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1262 goto error_param; 1263 } 1264 1265 dev = ice_pf_to_dev(pf); 1266 if (!ice_is_vf_trusted(vf)) { 1267 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1268 vf->vf_id); 1269 /* Leave v_ret alone, lie to the VF on purpose. */ 1270 goto error_param; 1271 } 1272 1273 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1274 alluni = true; 1275 1276 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1277 allmulti = true; 1278 1279 rm_promisc = !allmulti && !alluni; 1280 1281 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1282 if (rm_promisc) 1283 ret = vlan_ops->ena_rx_filtering(vsi); 1284 else 1285 ret = vlan_ops->dis_rx_filtering(vsi); 1286 if (ret) { 1287 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1288 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1289 goto error_param; 1290 } 1291 1292 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1293 1294 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1295 if (alluni) { 1296 /* in this case we're turning on promiscuous mode */ 1297 ret = ice_set_dflt_vsi(vsi); 1298 } else { 1299 /* in this case we're turning off promiscuous mode */ 1300 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1301 ret = ice_clear_dflt_vsi(vsi); 1302 } 1303 1304 /* in this case we're turning on/off only 1305 * allmulticast 1306 */ 1307 if (allmulti) 1308 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1309 else 1310 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1311 1312 if (ret) { 1313 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1314 vf->vf_id, ret); 1315 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1316 goto error_param; 1317 } 1318 } else { 1319 if (alluni) 1320 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1321 else 1322 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1323 1324 if (allmulti) 1325 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1326 else 1327 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1328 1329 if (ucast_err || mcast_err) 1330 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1331 } 1332 1333 if (!mcast_err) { 1334 if (allmulti && 1335 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1336 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1337 vf->vf_id); 1338 else if (!allmulti && 1339 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1340 vf->vf_states)) 1341 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1342 vf->vf_id); 1343 } else { 1344 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1345 vf->vf_id, mcast_err); 1346 } 1347 1348 if (!ucast_err) { 1349 if (alluni && 1350 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1351 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1352 vf->vf_id); 1353 else if (!alluni && 1354 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1355 vf->vf_states)) 1356 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1357 vf->vf_id); 1358 } else { 1359 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1360 vf->vf_id, ucast_err); 1361 } 1362 1363 error_param: 1364 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1365 v_ret, NULL, 0); 1366 } 1367 1368 /** 1369 * ice_vc_get_stats_msg 1370 * @vf: pointer to the VF info 1371 * @msg: pointer to the msg buffer 1372 * 1373 * called from the VF to get VSI stats 1374 */ 1375 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1376 { 1377 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1378 struct virtchnl_queue_select *vqs = 1379 (struct virtchnl_queue_select *)msg; 1380 struct ice_eth_stats stats = { 0 }; 1381 struct ice_vsi *vsi; 1382 1383 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1384 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1385 goto error_param; 1386 } 1387 1388 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1389 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1390 goto error_param; 1391 } 1392 1393 vsi = ice_get_vf_vsi(vf); 1394 if (!vsi) { 1395 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1396 goto error_param; 1397 } 1398 1399 ice_update_eth_stats(vsi); 1400 1401 stats = vsi->eth_stats; 1402 1403 error_param: 1404 /* send the response to the VF */ 1405 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1406 (u8 *)&stats, sizeof(stats)); 1407 } 1408 1409 /** 1410 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1411 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1412 * 1413 * Return true on successful validation, else false 1414 */ 1415 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1416 { 1417 if ((!vqs->rx_queues && !vqs->tx_queues) || 1418 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1419 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1420 return false; 1421 1422 return true; 1423 } 1424 1425 /** 1426 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1427 * @vsi: VSI of the VF to configure 1428 * @q_idx: VF queue index used to determine the queue in the PF's space 1429 */ 1430 void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1431 { 1432 struct ice_hw *hw = &vsi->back->hw; 1433 u32 pfq = vsi->txq_map[q_idx]; 1434 u32 reg; 1435 1436 reg = rd32(hw, QINT_TQCTL(pfq)); 1437 1438 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1439 * this is most likely a poll mode VF driver, so don't enable an 1440 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1441 */ 1442 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1443 return; 1444 1445 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1446 } 1447 1448 /** 1449 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1450 * @vsi: VSI of the VF to configure 1451 * @q_idx: VF queue index used to determine the queue in the PF's space 1452 */ 1453 void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1454 { 1455 struct ice_hw *hw = &vsi->back->hw; 1456 u32 pfq = vsi->rxq_map[q_idx]; 1457 u32 reg; 1458 1459 reg = rd32(hw, QINT_RQCTL(pfq)); 1460 1461 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1462 * this is most likely a poll mode VF driver, so don't enable an 1463 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1464 */ 1465 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1466 return; 1467 1468 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1469 } 1470 1471 /** 1472 * ice_vc_ena_qs_msg 1473 * @vf: pointer to the VF info 1474 * @msg: pointer to the msg buffer 1475 * 1476 * called from the VF to enable all or specific queue(s) 1477 */ 1478 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1479 { 1480 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1481 struct virtchnl_queue_select *vqs = 1482 (struct virtchnl_queue_select *)msg; 1483 struct ice_vsi *vsi; 1484 unsigned long q_map; 1485 u16 vf_q_id; 1486 1487 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1488 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1489 goto error_param; 1490 } 1491 1492 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1493 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1494 goto error_param; 1495 } 1496 1497 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1498 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1499 goto error_param; 1500 } 1501 1502 vsi = ice_get_vf_vsi(vf); 1503 if (!vsi) { 1504 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1505 goto error_param; 1506 } 1507 1508 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1509 * Tx queue group list was configured and the context bits were 1510 * programmed using ice_vsi_cfg_txqs 1511 */ 1512 q_map = vqs->rx_queues; 1513 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1514 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1515 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1516 goto error_param; 1517 } 1518 1519 /* Skip queue if enabled */ 1520 if (test_bit(vf_q_id, vf->rxq_ena)) 1521 continue; 1522 1523 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1524 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1525 vf_q_id, vsi->vsi_num); 1526 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1527 goto error_param; 1528 } 1529 1530 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1531 set_bit(vf_q_id, vf->rxq_ena); 1532 } 1533 1534 q_map = vqs->tx_queues; 1535 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1536 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1537 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1538 goto error_param; 1539 } 1540 1541 /* Skip queue if enabled */ 1542 if (test_bit(vf_q_id, vf->txq_ena)) 1543 continue; 1544 1545 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1546 set_bit(vf_q_id, vf->txq_ena); 1547 } 1548 1549 /* Set flag to indicate that queues are enabled */ 1550 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1551 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1552 1553 error_param: 1554 /* send the response to the VF */ 1555 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1556 NULL, 0); 1557 } 1558 1559 /** 1560 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1561 * @vf: VF to disable queue for 1562 * @vsi: VSI for the VF 1563 * @q_id: VF relative (0-based) queue ID 1564 * 1565 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1566 * disabled then clear q_id bit in the enabled queues bitmap and return 1567 * success. Otherwise return error. 1568 */ 1569 int ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1570 { 1571 struct ice_txq_meta txq_meta = { 0 }; 1572 struct ice_tx_ring *ring; 1573 int err; 1574 1575 if (!test_bit(q_id, vf->txq_ena)) 1576 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1577 q_id, vsi->vsi_num); 1578 1579 ring = vsi->tx_rings[q_id]; 1580 if (!ring) 1581 return -EINVAL; 1582 1583 ice_fill_txq_meta(vsi, ring, &txq_meta); 1584 1585 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1586 if (err) { 1587 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1588 q_id, vsi->vsi_num); 1589 return err; 1590 } 1591 1592 /* Clear enabled queues flag */ 1593 clear_bit(q_id, vf->txq_ena); 1594 1595 return 0; 1596 } 1597 1598 /** 1599 * ice_vc_dis_qs_msg 1600 * @vf: pointer to the VF info 1601 * @msg: pointer to the msg buffer 1602 * 1603 * called from the VF to disable all or specific queue(s) 1604 */ 1605 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1606 { 1607 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1608 struct virtchnl_queue_select *vqs = 1609 (struct virtchnl_queue_select *)msg; 1610 struct ice_vsi *vsi; 1611 unsigned long q_map; 1612 u16 vf_q_id; 1613 1614 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1615 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1616 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1617 goto error_param; 1618 } 1619 1620 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1621 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1622 goto error_param; 1623 } 1624 1625 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1626 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1627 goto error_param; 1628 } 1629 1630 vsi = ice_get_vf_vsi(vf); 1631 if (!vsi) { 1632 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1633 goto error_param; 1634 } 1635 1636 if (vqs->tx_queues) { 1637 q_map = vqs->tx_queues; 1638 1639 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1640 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1641 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1642 goto error_param; 1643 } 1644 1645 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1646 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1647 goto error_param; 1648 } 1649 } 1650 } 1651 1652 q_map = vqs->rx_queues; 1653 /* speed up Rx queue disable by batching them if possible */ 1654 if (q_map && 1655 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1656 if (ice_vsi_stop_all_rx_rings(vsi)) { 1657 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1658 vsi->vsi_num); 1659 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1660 goto error_param; 1661 } 1662 1663 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1664 } else if (q_map) { 1665 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1666 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1667 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1668 goto error_param; 1669 } 1670 1671 /* Skip queue if not enabled */ 1672 if (!test_bit(vf_q_id, vf->rxq_ena)) 1673 continue; 1674 1675 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1676 true)) { 1677 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1678 vf_q_id, vsi->vsi_num); 1679 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1680 goto error_param; 1681 } 1682 1683 /* Clear enabled queues flag */ 1684 clear_bit(vf_q_id, vf->rxq_ena); 1685 } 1686 } 1687 1688 /* Clear enabled queues flag */ 1689 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1690 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1691 1692 error_param: 1693 /* send the response to the VF */ 1694 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1695 NULL, 0); 1696 } 1697 1698 /** 1699 * ice_cfg_interrupt 1700 * @vf: pointer to the VF info 1701 * @vsi: the VSI being configured 1702 * @map: vector map for mapping vectors to queues 1703 * @q_vector: structure for interrupt vector 1704 * configure the IRQ to queue map 1705 */ 1706 static enum virtchnl_status_code 1707 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, 1708 struct virtchnl_vector_map *map, 1709 struct ice_q_vector *q_vector) 1710 { 1711 u16 vsi_q_id, vsi_q_id_idx; 1712 unsigned long qmap; 1713 1714 q_vector->num_ring_rx = 0; 1715 q_vector->num_ring_tx = 0; 1716 1717 qmap = map->rxq_map; 1718 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1719 vsi_q_id = vsi_q_id_idx; 1720 1721 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1722 return VIRTCHNL_STATUS_ERR_PARAM; 1723 1724 q_vector->num_ring_rx++; 1725 q_vector->rx.itr_idx = map->rxitr_idx; 1726 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1727 ice_cfg_rxq_interrupt(vsi, vsi_q_id, 1728 q_vector->vf_reg_idx, 1729 q_vector->rx.itr_idx); 1730 } 1731 1732 qmap = map->txq_map; 1733 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1734 vsi_q_id = vsi_q_id_idx; 1735 1736 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1737 return VIRTCHNL_STATUS_ERR_PARAM; 1738 1739 q_vector->num_ring_tx++; 1740 q_vector->tx.itr_idx = map->txitr_idx; 1741 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1742 ice_cfg_txq_interrupt(vsi, vsi_q_id, 1743 q_vector->vf_reg_idx, 1744 q_vector->tx.itr_idx); 1745 } 1746 1747 return VIRTCHNL_STATUS_SUCCESS; 1748 } 1749 1750 /** 1751 * ice_vc_cfg_irq_map_msg 1752 * @vf: pointer to the VF info 1753 * @msg: pointer to the msg buffer 1754 * 1755 * called from the VF to configure the IRQ to queue map 1756 */ 1757 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1758 { 1759 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1760 u16 num_q_vectors_mapped, vsi_id, vector_id; 1761 struct virtchnl_irq_map_info *irqmap_info; 1762 struct virtchnl_vector_map *map; 1763 struct ice_vsi *vsi; 1764 int i; 1765 1766 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1767 num_q_vectors_mapped = irqmap_info->num_vectors; 1768 1769 /* Check to make sure number of VF vectors mapped is not greater than 1770 * number of VF vectors originally allocated, and check that 1771 * there is actually at least a single VF queue vector mapped 1772 */ 1773 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1774 vf->num_msix < num_q_vectors_mapped || 1775 !num_q_vectors_mapped) { 1776 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1777 goto error_param; 1778 } 1779 1780 vsi = ice_get_vf_vsi(vf); 1781 if (!vsi) { 1782 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1783 goto error_param; 1784 } 1785 1786 for (i = 0; i < num_q_vectors_mapped; i++) { 1787 struct ice_q_vector *q_vector; 1788 1789 map = &irqmap_info->vecmap[i]; 1790 1791 vector_id = map->vector_id; 1792 vsi_id = map->vsi_id; 1793 /* vector_id is always 0-based for each VF, and can never be 1794 * larger than or equal to the max allowed interrupts per VF 1795 */ 1796 if (!(vector_id < vf->num_msix) || 1797 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1798 (!vector_id && (map->rxq_map || map->txq_map))) { 1799 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1800 goto error_param; 1801 } 1802 1803 /* No need to map VF miscellaneous or rogue vector */ 1804 if (!vector_id) 1805 continue; 1806 1807 /* Subtract non queue vector from vector_id passed by VF 1808 * to get actual number of VSI queue vector array index 1809 */ 1810 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1811 if (!q_vector) { 1812 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1813 goto error_param; 1814 } 1815 1816 /* lookout for the invalid queue index */ 1817 v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector); 1818 if (v_ret) 1819 goto error_param; 1820 } 1821 1822 error_param: 1823 /* send the response to the VF */ 1824 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1825 NULL, 0); 1826 } 1827 1828 /** 1829 * ice_vc_cfg_q_bw - Configure per queue bandwidth 1830 * @vf: pointer to the VF info 1831 * @msg: pointer to the msg buffer which holds the command descriptor 1832 * 1833 * Configure VF queues bandwidth. 1834 * 1835 * Return: 0 on success or negative error value. 1836 */ 1837 static int ice_vc_cfg_q_bw(struct ice_vf *vf, u8 *msg) 1838 { 1839 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1840 struct virtchnl_queues_bw_cfg *qbw = 1841 (struct virtchnl_queues_bw_cfg *)msg; 1842 struct ice_vsi *vsi; 1843 u16 i; 1844 1845 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1846 !ice_vc_isvalid_vsi_id(vf, qbw->vsi_id)) { 1847 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1848 goto err; 1849 } 1850 1851 vsi = ice_get_vf_vsi(vf); 1852 if (!vsi) { 1853 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1854 goto err; 1855 } 1856 1857 if (qbw->num_queues > ICE_MAX_RSS_QS_PER_VF || 1858 qbw->num_queues > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1859 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n", 1860 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1861 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1862 goto err; 1863 } 1864 1865 for (i = 0; i < qbw->num_queues; i++) { 1866 if (qbw->cfg[i].shaper.peak != 0 && vf->max_tx_rate != 0 && 1867 qbw->cfg[i].shaper.peak > vf->max_tx_rate) { 1868 dev_warn(ice_pf_to_dev(vf->pf), "The maximum queue %d rate limit configuration may not take effect because the maximum TX rate for VF-%d is %d\n", 1869 qbw->cfg[i].queue_id, vf->vf_id, 1870 vf->max_tx_rate); 1871 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1872 goto err; 1873 } 1874 if (qbw->cfg[i].shaper.committed != 0 && vf->min_tx_rate != 0 && 1875 qbw->cfg[i].shaper.committed < vf->min_tx_rate) { 1876 dev_warn(ice_pf_to_dev(vf->pf), "The minimum queue %d rate limit configuration may not take effect because the minimum TX rate for VF-%d is %d\n", 1877 qbw->cfg[i].queue_id, vf->vf_id, 1878 vf->min_tx_rate); 1879 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1880 goto err; 1881 } 1882 if (qbw->cfg[i].queue_id > vf->num_vf_qs) { 1883 dev_warn(ice_pf_to_dev(vf->pf), "VF-%d trying to configure invalid queue_id\n", 1884 vf->vf_id); 1885 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1886 goto err; 1887 } 1888 if (qbw->cfg[i].tc >= ICE_MAX_TRAFFIC_CLASS) { 1889 dev_warn(ice_pf_to_dev(vf->pf), "VF-%d trying to configure a traffic class higher than allowed\n", 1890 vf->vf_id); 1891 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1892 goto err; 1893 } 1894 } 1895 1896 for (i = 0; i < qbw->num_queues; i++) { 1897 vf->qs_bw[i].queue_id = qbw->cfg[i].queue_id; 1898 vf->qs_bw[i].peak = qbw->cfg[i].shaper.peak; 1899 vf->qs_bw[i].committed = qbw->cfg[i].shaper.committed; 1900 vf->qs_bw[i].tc = qbw->cfg[i].tc; 1901 } 1902 1903 if (ice_vf_cfg_qs_bw(vf, qbw->num_queues)) 1904 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1905 1906 err: 1907 /* send the response to the VF */ 1908 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUEUE_BW, 1909 v_ret, NULL, 0); 1910 } 1911 1912 /** 1913 * ice_vc_cfg_q_quanta - Configure per queue quanta 1914 * @vf: pointer to the VF info 1915 * @msg: pointer to the msg buffer which holds the command descriptor 1916 * 1917 * Configure VF queues quanta. 1918 * 1919 * Return: 0 on success or negative error value. 1920 */ 1921 static int ice_vc_cfg_q_quanta(struct ice_vf *vf, u8 *msg) 1922 { 1923 u16 quanta_prof_id, quanta_size, start_qid, num_queues, end_qid, i; 1924 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1925 struct virtchnl_quanta_cfg *qquanta = 1926 (struct virtchnl_quanta_cfg *)msg; 1927 struct ice_vsi *vsi; 1928 int ret; 1929 1930 start_qid = qquanta->queue_select.start_queue_id; 1931 num_queues = qquanta->queue_select.num_queues; 1932 1933 if (check_add_overflow(start_qid, num_queues, &end_qid)) { 1934 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1935 goto err; 1936 } 1937 1938 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1939 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1940 goto err; 1941 } 1942 1943 vsi = ice_get_vf_vsi(vf); 1944 if (!vsi) { 1945 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1946 goto err; 1947 } 1948 1949 if (end_qid > ICE_MAX_RSS_QS_PER_VF || 1950 end_qid > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1951 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n", 1952 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1953 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1954 goto err; 1955 } 1956 1957 quanta_size = qquanta->quanta_size; 1958 if (quanta_size > ICE_MAX_QUANTA_SIZE || 1959 quanta_size < ICE_MIN_QUANTA_SIZE) { 1960 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1961 goto err; 1962 } 1963 1964 if (quanta_size % 64) { 1965 dev_err(ice_pf_to_dev(vf->pf), "quanta size should be the product of 64\n"); 1966 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1967 goto err; 1968 } 1969 1970 ret = ice_vf_cfg_q_quanta_profile(vf, quanta_size, 1971 &quanta_prof_id); 1972 if (ret) { 1973 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 1974 goto err; 1975 } 1976 1977 for (i = start_qid; i < end_qid; i++) 1978 vsi->tx_rings[i]->quanta_prof_id = quanta_prof_id; 1979 1980 err: 1981 /* send the response to the VF */ 1982 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUANTA, 1983 v_ret, NULL, 0); 1984 } 1985 1986 /** 1987 * ice_vc_cfg_qs_msg 1988 * @vf: pointer to the VF info 1989 * @msg: pointer to the msg buffer 1990 * 1991 * called from the VF to configure the Rx/Tx queues 1992 */ 1993 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1994 { 1995 struct virtchnl_vsi_queue_config_info *qci = 1996 (struct virtchnl_vsi_queue_config_info *)msg; 1997 struct virtchnl_queue_pair_info *qpi; 1998 struct ice_pf *pf = vf->pf; 1999 struct ice_vsi *vsi; 2000 int i = -1, q_idx; 2001 bool ena_ts; 2002 u8 act_prt; 2003 2004 mutex_lock(&pf->lag_mutex); 2005 act_prt = ice_lag_prepare_vf_reset(pf->lag); 2006 2007 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 2008 goto error_param; 2009 2010 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 2011 goto error_param; 2012 2013 vsi = ice_get_vf_vsi(vf); 2014 if (!vsi) 2015 goto error_param; 2016 2017 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 2018 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 2019 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 2020 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 2021 goto error_param; 2022 } 2023 2024 for (i = 0; i < qci->num_queue_pairs; i++) { 2025 if (!qci->qpair[i].rxq.crc_disable) 2026 continue; 2027 2028 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) || 2029 vf->vlan_strip_ena) 2030 goto error_param; 2031 } 2032 2033 for (i = 0; i < qci->num_queue_pairs; i++) { 2034 qpi = &qci->qpair[i]; 2035 if (qpi->txq.vsi_id != qci->vsi_id || 2036 qpi->rxq.vsi_id != qci->vsi_id || 2037 qpi->rxq.queue_id != qpi->txq.queue_id || 2038 qpi->txq.headwb_enabled || 2039 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 2040 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 2041 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) { 2042 goto error_param; 2043 } 2044 2045 q_idx = qpi->rxq.queue_id; 2046 2047 /* make sure selected "q_idx" is in valid range of queues 2048 * for selected "vsi" 2049 */ 2050 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 2051 goto error_param; 2052 } 2053 2054 /* copy Tx queue info from VF into VSI */ 2055 if (qpi->txq.ring_len > 0) { 2056 vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr; 2057 vsi->tx_rings[q_idx]->count = qpi->txq.ring_len; 2058 2059 /* Disable any existing queue first */ 2060 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 2061 goto error_param; 2062 2063 /* Configure a queue with the requested settings */ 2064 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 2065 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 2066 vf->vf_id, q_idx); 2067 goto error_param; 2068 } 2069 } 2070 2071 /* copy Rx queue info from VF into VSI */ 2072 if (qpi->rxq.ring_len > 0) { 2073 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 2074 struct ice_rx_ring *ring = vsi->rx_rings[q_idx]; 2075 u32 rxdid; 2076 2077 ring->dma = qpi->rxq.dma_ring_addr; 2078 ring->count = qpi->rxq.ring_len; 2079 2080 if (qpi->rxq.crc_disable) 2081 ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 2082 else 2083 ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 2084 2085 if (qpi->rxq.databuffer_size != 0 && 2086 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 2087 qpi->rxq.databuffer_size < 1024)) 2088 goto error_param; 2089 ring->rx_buf_len = qpi->rxq.databuffer_size; 2090 if (qpi->rxq.max_pkt_size > max_frame_size || 2091 qpi->rxq.max_pkt_size < 64) 2092 goto error_param; 2093 2094 ring->max_frame = qpi->rxq.max_pkt_size; 2095 /* add space for the port VLAN since the VF driver is 2096 * not expected to account for it in the MTU 2097 * calculation 2098 */ 2099 if (ice_vf_is_port_vlan_ena(vf)) 2100 ring->max_frame += VLAN_HLEN; 2101 2102 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 2103 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 2104 vf->vf_id, q_idx); 2105 goto error_param; 2106 } 2107 2108 /* If Rx flex desc is supported, select RXDID for Rx 2109 * queues. Otherwise, use legacy 32byte descriptor 2110 * format. Legacy 16byte descriptor is not supported. 2111 * If this RXDID is selected, return error. 2112 */ 2113 if (vf->driver_caps & 2114 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 2115 rxdid = qpi->rxq.rxdid; 2116 if (!(BIT(rxdid) & pf->supported_rxdids)) 2117 goto error_param; 2118 } else { 2119 rxdid = ICE_RXDID_LEGACY_1; 2120 } 2121 2122 ena_ts = ((vf->driver_caps & 2123 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) && 2124 (vf->driver_caps & VIRTCHNL_VF_CAP_PTP) && 2125 (qpi->rxq.flags & VIRTCHNL_PTP_RX_TSTAMP)); 2126 2127 ice_write_qrxflxp_cntxt(&vsi->back->hw, 2128 vsi->rxq_map[q_idx], rxdid, 2129 ICE_RXDID_PRIO, ena_ts); 2130 } 2131 } 2132 2133 ice_lag_complete_vf_reset(pf->lag, act_prt); 2134 mutex_unlock(&pf->lag_mutex); 2135 2136 /* send the response to the VF */ 2137 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 2138 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 2139 error_param: 2140 /* disable whatever we can */ 2141 for (; i >= 0; i--) { 2142 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 2143 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 2144 vf->vf_id, i); 2145 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 2146 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 2147 vf->vf_id, i); 2148 } 2149 2150 ice_lag_complete_vf_reset(pf->lag, act_prt); 2151 mutex_unlock(&pf->lag_mutex); 2152 2153 ice_lag_move_new_vf_nodes(vf); 2154 2155 /* send the response to the VF */ 2156 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 2157 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 2158 } 2159 2160 /** 2161 * ice_can_vf_change_mac 2162 * @vf: pointer to the VF info 2163 * 2164 * Return true if the VF is allowed to change its MAC filters, false otherwise 2165 */ 2166 static bool ice_can_vf_change_mac(struct ice_vf *vf) 2167 { 2168 /* If the VF MAC address has been set administratively (via the 2169 * ndo_set_vf_mac command), then deny permission to the VF to 2170 * add/delete unicast MAC addresses, unless the VF is trusted 2171 */ 2172 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 2173 return false; 2174 2175 return true; 2176 } 2177 2178 /** 2179 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 2180 * @vc_ether_addr: used to extract the type 2181 */ 2182 static u8 2183 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 2184 { 2185 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 2186 } 2187 2188 /** 2189 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 2190 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 2191 */ 2192 static bool 2193 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 2194 { 2195 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 2196 2197 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 2198 } 2199 2200 /** 2201 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 2202 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 2203 * 2204 * This function should only be called when the MAC address in 2205 * virtchnl_ether_addr is a valid unicast MAC 2206 */ 2207 static bool 2208 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 2209 { 2210 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 2211 2212 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 2213 } 2214 2215 /** 2216 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 2217 * @vf: VF to update 2218 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 2219 */ 2220 static void 2221 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 2222 { 2223 u8 *mac_addr = vc_ether_addr->addr; 2224 2225 if (!is_valid_ether_addr(mac_addr)) 2226 return; 2227 2228 /* only allow legacy VF drivers to set the device and hardware MAC if it 2229 * is zero and allow new VF drivers to set the hardware MAC if the type 2230 * was correctly specified over VIRTCHNL 2231 */ 2232 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 2233 is_zero_ether_addr(vf->hw_lan_addr)) || 2234 ice_is_vc_addr_primary(vc_ether_addr)) { 2235 ether_addr_copy(vf->dev_lan_addr, mac_addr); 2236 ether_addr_copy(vf->hw_lan_addr, mac_addr); 2237 } 2238 2239 /* hardware and device MACs are already set, but its possible that the 2240 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 2241 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 2242 * away for the legacy VF driver case as it will be updated in the 2243 * delete flow for this case 2244 */ 2245 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 2246 ether_addr_copy(vf->legacy_last_added_umac.addr, 2247 mac_addr); 2248 vf->legacy_last_added_umac.time_modified = jiffies; 2249 } 2250 } 2251 2252 /** 2253 * ice_is_mc_lldp_eth_addr - check if the given MAC is a multicast LLDP address 2254 * @mac: address to check 2255 * 2256 * Return: true if the address is one of the three possible LLDP multicast 2257 * addresses, false otherwise. 2258 */ 2259 static bool ice_is_mc_lldp_eth_addr(const u8 *mac) 2260 { 2261 const u8 lldp_mac_base[] = {0x01, 0x80, 0xc2, 0x00, 0x00}; 2262 2263 if (memcmp(mac, lldp_mac_base, sizeof(lldp_mac_base))) 2264 return false; 2265 2266 return (mac[5] == 0x0e || mac[5] == 0x03 || mac[5] == 0x00); 2267 } 2268 2269 /** 2270 * ice_vc_can_add_mac - check if the VF is allowed to add a given MAC 2271 * @vf: a VF to add the address to 2272 * @mac: address to check 2273 * 2274 * Return: true if the VF is allowed to add such MAC address, false otherwise. 2275 */ 2276 static bool ice_vc_can_add_mac(const struct ice_vf *vf, const u8 *mac) 2277 { 2278 struct device *dev = ice_pf_to_dev(vf->pf); 2279 2280 if (is_unicast_ether_addr(mac) && 2281 !ice_can_vf_change_mac((struct ice_vf *)vf)) { 2282 dev_err(dev, 2283 "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 2284 return false; 2285 } 2286 2287 if (!vf->trusted && ice_is_mc_lldp_eth_addr(mac)) { 2288 dev_warn(dev, 2289 "An untrusted VF %u is attempting to configure an LLDP multicast address\n", 2290 vf->vf_id); 2291 return false; 2292 } 2293 2294 return true; 2295 } 2296 2297 /** 2298 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 2299 * @vf: pointer to the VF info 2300 * @vsi: pointer to the VF's VSI 2301 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 2302 */ 2303 static int 2304 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 2305 struct virtchnl_ether_addr *vc_ether_addr) 2306 { 2307 struct device *dev = ice_pf_to_dev(vf->pf); 2308 u8 *mac_addr = vc_ether_addr->addr; 2309 int ret; 2310 2311 /* device MAC already added */ 2312 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 2313 return 0; 2314 2315 if (!ice_vc_can_add_mac(vf, mac_addr)) 2316 return -EPERM; 2317 2318 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 2319 if (ret == -EEXIST) { 2320 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 2321 vf->vf_id); 2322 /* don't return since we might need to update 2323 * the primary MAC in ice_vfhw_mac_add() below 2324 */ 2325 } else if (ret) { 2326 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 2327 mac_addr, vf->vf_id, ret); 2328 return ret; 2329 } else { 2330 vf->num_mac++; 2331 if (ice_is_mc_lldp_eth_addr(mac_addr)) 2332 ice_vf_update_mac_lldp_num(vf, vsi, true); 2333 } 2334 2335 ice_vfhw_mac_add(vf, vc_ether_addr); 2336 2337 return ret; 2338 } 2339 2340 /** 2341 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 2342 * @last_added_umac: structure used to check expiration 2343 */ 2344 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 2345 { 2346 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 2347 return time_is_before_jiffies(last_added_umac->time_modified + 2348 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 2349 } 2350 2351 /** 2352 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 2353 * @vf: VF to update 2354 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 2355 * 2356 * only update cached hardware MAC for legacy VF drivers on delete 2357 * because we cannot guarantee order/type of MAC from the VF driver 2358 */ 2359 static void 2360 ice_update_legacy_cached_mac(struct ice_vf *vf, 2361 struct virtchnl_ether_addr *vc_ether_addr) 2362 { 2363 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 2364 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 2365 return; 2366 2367 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 2368 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 2369 } 2370 2371 /** 2372 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 2373 * @vf: VF to update 2374 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 2375 */ 2376 static void 2377 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 2378 { 2379 u8 *mac_addr = vc_ether_addr->addr; 2380 2381 if (!is_valid_ether_addr(mac_addr) || 2382 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2383 return; 2384 2385 /* allow the device MAC to be repopulated in the add flow and don't 2386 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 2387 * to be persistent on VM reboot and across driver unload/load, which 2388 * won't work if we clear the hardware MAC here 2389 */ 2390 eth_zero_addr(vf->dev_lan_addr); 2391 2392 ice_update_legacy_cached_mac(vf, vc_ether_addr); 2393 } 2394 2395 /** 2396 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 2397 * @vf: pointer to the VF info 2398 * @vsi: pointer to the VF's VSI 2399 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 2400 */ 2401 static int 2402 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 2403 struct virtchnl_ether_addr *vc_ether_addr) 2404 { 2405 struct device *dev = ice_pf_to_dev(vf->pf); 2406 u8 *mac_addr = vc_ether_addr->addr; 2407 int status; 2408 2409 if (!ice_can_vf_change_mac(vf) && 2410 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2411 return 0; 2412 2413 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 2414 if (status == -ENOENT) { 2415 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 2416 vf->vf_id); 2417 return -ENOENT; 2418 } else if (status) { 2419 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 2420 mac_addr, vf->vf_id, status); 2421 return -EIO; 2422 } 2423 2424 ice_vfhw_mac_del(vf, vc_ether_addr); 2425 2426 vf->num_mac--; 2427 if (ice_is_mc_lldp_eth_addr(mac_addr)) 2428 ice_vf_update_mac_lldp_num(vf, vsi, false); 2429 2430 return 0; 2431 } 2432 2433 /** 2434 * ice_vc_handle_mac_addr_msg 2435 * @vf: pointer to the VF info 2436 * @msg: pointer to the msg buffer 2437 * @set: true if MAC filters are being set, false otherwise 2438 * 2439 * add guest MAC address filter 2440 */ 2441 static int 2442 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 2443 { 2444 int (*ice_vc_cfg_mac) 2445 (struct ice_vf *vf, struct ice_vsi *vsi, 2446 struct virtchnl_ether_addr *virtchnl_ether_addr); 2447 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2448 struct virtchnl_ether_addr_list *al = 2449 (struct virtchnl_ether_addr_list *)msg; 2450 struct ice_pf *pf = vf->pf; 2451 enum virtchnl_ops vc_op; 2452 struct ice_vsi *vsi; 2453 int i; 2454 2455 if (set) { 2456 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 2457 ice_vc_cfg_mac = ice_vc_add_mac_addr; 2458 } else { 2459 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 2460 ice_vc_cfg_mac = ice_vc_del_mac_addr; 2461 } 2462 2463 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2464 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2465 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2466 goto handle_mac_exit; 2467 } 2468 2469 /* If this VF is not privileged, then we can't add more than a 2470 * limited number of addresses. Check to make sure that the 2471 * additions do not push us over the limit. 2472 */ 2473 if (set && !ice_is_vf_trusted(vf) && 2474 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2475 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2476 vf->vf_id); 2477 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2478 goto handle_mac_exit; 2479 } 2480 2481 vsi = ice_get_vf_vsi(vf); 2482 if (!vsi) { 2483 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2484 goto handle_mac_exit; 2485 } 2486 2487 for (i = 0; i < al->num_elements; i++) { 2488 u8 *mac_addr = al->list[i].addr; 2489 int result; 2490 2491 if (is_broadcast_ether_addr(mac_addr) || 2492 is_zero_ether_addr(mac_addr)) 2493 continue; 2494 2495 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2496 if (result == -EEXIST || result == -ENOENT) { 2497 continue; 2498 } else if (result) { 2499 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2500 goto handle_mac_exit; 2501 } 2502 } 2503 2504 handle_mac_exit: 2505 /* send the response to the VF */ 2506 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2507 } 2508 2509 /** 2510 * ice_vc_add_mac_addr_msg 2511 * @vf: pointer to the VF info 2512 * @msg: pointer to the msg buffer 2513 * 2514 * add guest MAC address filter 2515 */ 2516 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2517 { 2518 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2519 } 2520 2521 /** 2522 * ice_vc_del_mac_addr_msg 2523 * @vf: pointer to the VF info 2524 * @msg: pointer to the msg buffer 2525 * 2526 * remove guest MAC address filter 2527 */ 2528 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2529 { 2530 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2531 } 2532 2533 /** 2534 * ice_vc_request_qs_msg 2535 * @vf: pointer to the VF info 2536 * @msg: pointer to the msg buffer 2537 * 2538 * VFs get a default number of queues but can use this message to request a 2539 * different number. If the request is successful, PF will reset the VF and 2540 * return 0. If unsuccessful, PF will send message informing VF of number of 2541 * available queue pairs via virtchnl message response to VF. 2542 */ 2543 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2544 { 2545 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2546 struct virtchnl_vf_res_request *vfres = 2547 (struct virtchnl_vf_res_request *)msg; 2548 u16 req_queues = vfres->num_queue_pairs; 2549 struct ice_pf *pf = vf->pf; 2550 u16 max_allowed_vf_queues; 2551 u16 tx_rx_queue_left; 2552 struct device *dev; 2553 u16 cur_queues; 2554 2555 dev = ice_pf_to_dev(pf); 2556 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2557 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2558 goto error_param; 2559 } 2560 2561 cur_queues = vf->num_vf_qs; 2562 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2563 ice_get_avail_rxq_count(pf)); 2564 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2565 if (!req_queues) { 2566 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2567 vf->vf_id); 2568 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2569 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2570 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2571 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2572 } else if (req_queues > cur_queues && 2573 req_queues - cur_queues > tx_rx_queue_left) { 2574 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2575 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2576 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2577 ICE_MAX_RSS_QS_PER_VF); 2578 } else { 2579 /* request is successful, then reset VF */ 2580 vf->num_req_qs = req_queues; 2581 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2582 dev_info(dev, "VF %d granted request of %u queues.\n", 2583 vf->vf_id, req_queues); 2584 return 0; 2585 } 2586 2587 error_param: 2588 /* send the response to the VF */ 2589 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2590 v_ret, (u8 *)vfres, sizeof(*vfres)); 2591 } 2592 2593 /** 2594 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2595 * @caps: VF driver negotiated capabilities 2596 * 2597 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2598 */ 2599 static bool ice_vf_vlan_offload_ena(u32 caps) 2600 { 2601 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2602 } 2603 2604 /** 2605 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2606 * @vf: VF used to determine if VLAN promiscuous config is allowed 2607 */ 2608 bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2609 { 2610 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2611 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2612 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2613 return true; 2614 2615 return false; 2616 } 2617 2618 /** 2619 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2620 * @vf: VF to enable VLAN promisc on 2621 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2622 * @vlan: VLAN used to enable VLAN promiscuous 2623 * 2624 * This function should only be called if VLAN promiscuous mode is allowed, 2625 * which can be determined via ice_is_vlan_promisc_allowed(). 2626 */ 2627 int ice_vf_ena_vlan_promisc(struct ice_vf *vf, struct ice_vsi *vsi, 2628 struct ice_vlan *vlan) 2629 { 2630 u8 promisc_m = 0; 2631 int status; 2632 2633 if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 2634 promisc_m |= ICE_UCAST_VLAN_PROMISC_BITS; 2635 if (test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 2636 promisc_m |= ICE_MCAST_VLAN_PROMISC_BITS; 2637 2638 if (!promisc_m) 2639 return 0; 2640 2641 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2642 vlan->vid); 2643 if (status && status != -EEXIST) 2644 return status; 2645 2646 return 0; 2647 } 2648 2649 /** 2650 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2651 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2652 * @vlan: VLAN used to disable VLAN promiscuous 2653 * 2654 * This function should only be called if VLAN promiscuous mode is allowed, 2655 * which can be determined via ice_is_vlan_promisc_allowed(). 2656 */ 2657 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2658 { 2659 u8 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS | ICE_MCAST_VLAN_PROMISC_BITS; 2660 int status; 2661 2662 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2663 vlan->vid); 2664 if (status && status != -ENOENT) 2665 return status; 2666 2667 return 0; 2668 } 2669 2670 /** 2671 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2672 * @vf: VF to check against 2673 * @vsi: VF's VSI 2674 * 2675 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2676 * wants to, so return false. 2677 * 2678 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2679 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2680 */ 2681 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2682 { 2683 if (ice_is_vf_trusted(vf)) 2684 return false; 2685 2686 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2687 return ((ice_vsi_num_non_zero_vlans(vsi) + 2688 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2689 } 2690 2691 /** 2692 * ice_vc_process_vlan_msg 2693 * @vf: pointer to the VF info 2694 * @msg: pointer to the msg buffer 2695 * @add_v: Add VLAN if true, otherwise delete VLAN 2696 * 2697 * Process virtchnl op to add or remove programmed guest VLAN ID 2698 */ 2699 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2700 { 2701 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2702 struct virtchnl_vlan_filter_list *vfl = 2703 (struct virtchnl_vlan_filter_list *)msg; 2704 struct ice_pf *pf = vf->pf; 2705 bool vlan_promisc = false; 2706 struct ice_vsi *vsi; 2707 struct device *dev; 2708 int status = 0; 2709 int i; 2710 2711 dev = ice_pf_to_dev(pf); 2712 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2713 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2714 goto error_param; 2715 } 2716 2717 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2718 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2719 goto error_param; 2720 } 2721 2722 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2723 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2724 goto error_param; 2725 } 2726 2727 for (i = 0; i < vfl->num_elements; i++) { 2728 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2729 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2730 dev_err(dev, "invalid VF VLAN id %d\n", 2731 vfl->vlan_id[i]); 2732 goto error_param; 2733 } 2734 } 2735 2736 vsi = ice_get_vf_vsi(vf); 2737 if (!vsi) { 2738 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2739 goto error_param; 2740 } 2741 2742 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2743 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2744 vf->vf_id); 2745 /* There is no need to let VF know about being not trusted, 2746 * so we can just return success message here 2747 */ 2748 goto error_param; 2749 } 2750 2751 /* in DVM a VF can add/delete inner VLAN filters when 2752 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2753 */ 2754 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2755 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2756 goto error_param; 2757 } 2758 2759 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2760 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2761 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2762 */ 2763 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2764 !ice_is_dvm_ena(&pf->hw) && 2765 !ice_vf_is_port_vlan_ena(vf); 2766 2767 if (add_v) { 2768 for (i = 0; i < vfl->num_elements; i++) { 2769 u16 vid = vfl->vlan_id[i]; 2770 struct ice_vlan vlan; 2771 2772 if (ice_vf_has_max_vlans(vf, vsi)) { 2773 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2774 vf->vf_id); 2775 /* There is no need to let VF know about being 2776 * not trusted, so we can just return success 2777 * message here as well. 2778 */ 2779 goto error_param; 2780 } 2781 2782 /* we add VLAN 0 by default for each VF so we can enable 2783 * Tx VLAN anti-spoof without triggering MDD events so 2784 * we don't need to add it again here 2785 */ 2786 if (!vid) 2787 continue; 2788 2789 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2790 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2791 if (status) { 2792 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2793 goto error_param; 2794 } 2795 2796 /* Enable VLAN filtering on first non-zero VLAN */ 2797 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2798 if (vf->spoofchk) { 2799 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2800 if (status) { 2801 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2802 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2803 vid, status); 2804 goto error_param; 2805 } 2806 } 2807 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2808 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2809 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2810 vid, status); 2811 goto error_param; 2812 } 2813 } else if (vlan_promisc) { 2814 status = ice_vf_ena_vlan_promisc(vf, vsi, &vlan); 2815 if (status) { 2816 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2817 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2818 vid, status); 2819 } 2820 } 2821 } 2822 } else { 2823 /* In case of non_trusted VF, number of VLAN elements passed 2824 * to PF for removal might be greater than number of VLANs 2825 * filter programmed for that VF - So, use actual number of 2826 * VLANS added earlier with add VLAN opcode. In order to avoid 2827 * removing VLAN that doesn't exist, which result to sending 2828 * erroneous failed message back to the VF 2829 */ 2830 int num_vf_vlan; 2831 2832 num_vf_vlan = vsi->num_vlan; 2833 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2834 u16 vid = vfl->vlan_id[i]; 2835 struct ice_vlan vlan; 2836 2837 /* we add VLAN 0 by default for each VF so we can enable 2838 * Tx VLAN anti-spoof without triggering MDD events so 2839 * we don't want a VIRTCHNL request to remove it 2840 */ 2841 if (!vid) 2842 continue; 2843 2844 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2845 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2846 if (status) { 2847 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2848 goto error_param; 2849 } 2850 2851 /* Disable VLAN filtering when only VLAN 0 is left */ 2852 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2853 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2854 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2855 } 2856 2857 if (vlan_promisc) 2858 ice_vf_dis_vlan_promisc(vsi, &vlan); 2859 } 2860 } 2861 2862 error_param: 2863 /* send the response to the VF */ 2864 if (add_v) 2865 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2866 NULL, 0); 2867 else 2868 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2869 NULL, 0); 2870 } 2871 2872 /** 2873 * ice_vc_add_vlan_msg 2874 * @vf: pointer to the VF info 2875 * @msg: pointer to the msg buffer 2876 * 2877 * Add and program guest VLAN ID 2878 */ 2879 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2880 { 2881 return ice_vc_process_vlan_msg(vf, msg, true); 2882 } 2883 2884 /** 2885 * ice_vc_remove_vlan_msg 2886 * @vf: pointer to the VF info 2887 * @msg: pointer to the msg buffer 2888 * 2889 * remove programmed guest VLAN ID 2890 */ 2891 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2892 { 2893 return ice_vc_process_vlan_msg(vf, msg, false); 2894 } 2895 2896 /** 2897 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not 2898 * @vsi: pointer to the VF VSI info 2899 */ 2900 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi) 2901 { 2902 unsigned int i; 2903 2904 ice_for_each_alloc_rxq(vsi, i) 2905 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS) 2906 return true; 2907 2908 return false; 2909 } 2910 2911 /** 2912 * ice_vc_ena_vlan_stripping 2913 * @vf: pointer to the VF info 2914 * 2915 * Enable VLAN header stripping for a given VF 2916 */ 2917 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2918 { 2919 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2920 struct ice_vsi *vsi; 2921 2922 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2923 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2924 goto error_param; 2925 } 2926 2927 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2928 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2929 goto error_param; 2930 } 2931 2932 vsi = ice_get_vf_vsi(vf); 2933 if (!vsi) { 2934 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2935 goto error_param; 2936 } 2937 2938 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2939 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2940 else 2941 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2942 2943 error_param: 2944 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2945 v_ret, NULL, 0); 2946 } 2947 2948 /** 2949 * ice_vc_dis_vlan_stripping 2950 * @vf: pointer to the VF info 2951 * 2952 * Disable VLAN header stripping for a given VF 2953 */ 2954 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2955 { 2956 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2957 struct ice_vsi *vsi; 2958 2959 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2960 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2961 goto error_param; 2962 } 2963 2964 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2965 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2966 goto error_param; 2967 } 2968 2969 vsi = ice_get_vf_vsi(vf); 2970 if (!vsi) { 2971 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2972 goto error_param; 2973 } 2974 2975 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2976 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2977 else 2978 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 2979 2980 error_param: 2981 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2982 v_ret, NULL, 0); 2983 } 2984 2985 /** 2986 * ice_vc_get_rss_hashcfg - return the RSS Hash configuration 2987 * @vf: pointer to the VF info 2988 */ 2989 static int ice_vc_get_rss_hashcfg(struct ice_vf *vf) 2990 { 2991 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2992 struct virtchnl_rss_hashcfg *vrh = NULL; 2993 int len = 0, ret; 2994 2995 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2996 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2997 goto err; 2998 } 2999 3000 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 3001 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 3002 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3003 goto err; 3004 } 3005 3006 len = sizeof(struct virtchnl_rss_hashcfg); 3007 vrh = kzalloc(len, GFP_KERNEL); 3008 if (!vrh) { 3009 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 3010 len = 0; 3011 goto err; 3012 } 3013 3014 vrh->hashcfg = ICE_DEFAULT_RSS_HASHCFG; 3015 err: 3016 /* send the response back to the VF */ 3017 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HASHCFG_CAPS, v_ret, 3018 (u8 *)vrh, len); 3019 kfree(vrh); 3020 return ret; 3021 } 3022 3023 /** 3024 * ice_vc_set_rss_hashcfg - set RSS Hash configuration bits for the VF 3025 * @vf: pointer to the VF info 3026 * @msg: pointer to the msg buffer 3027 */ 3028 static int ice_vc_set_rss_hashcfg(struct ice_vf *vf, u8 *msg) 3029 { 3030 struct virtchnl_rss_hashcfg *vrh = (struct virtchnl_rss_hashcfg *)msg; 3031 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3032 struct ice_pf *pf = vf->pf; 3033 struct ice_vsi *vsi; 3034 struct device *dev; 3035 int status; 3036 3037 dev = ice_pf_to_dev(pf); 3038 3039 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3040 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3041 goto err; 3042 } 3043 3044 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3045 dev_err(dev, "RSS not supported by PF\n"); 3046 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3047 goto err; 3048 } 3049 3050 vsi = ice_get_vf_vsi(vf); 3051 if (!vsi) { 3052 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3053 goto err; 3054 } 3055 3056 /* clear all previously programmed RSS configuration to allow VF drivers 3057 * the ability to customize the RSS configuration and/or completely 3058 * disable RSS 3059 */ 3060 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 3061 if (status && !vrh->hashcfg) { 3062 /* only report failure to clear the current RSS configuration if 3063 * that was clearly the VF's intention (i.e. vrh->hashcfg = 0) 3064 */ 3065 v_ret = ice_err_to_virt_err(status); 3066 goto err; 3067 } else if (status) { 3068 /* allow the VF to update the RSS configuration even on failure 3069 * to clear the current RSS confguration in an attempt to keep 3070 * RSS in a working state 3071 */ 3072 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 3073 vf->vf_id); 3074 } 3075 3076 if (vrh->hashcfg) { 3077 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hashcfg); 3078 v_ret = ice_err_to_virt_err(status); 3079 } 3080 3081 /* save the requested VF configuration */ 3082 if (!v_ret) 3083 vf->rss_hashcfg = vrh->hashcfg; 3084 3085 /* send the response to the VF */ 3086 err: 3087 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HASHCFG, v_ret, 3088 NULL, 0); 3089 } 3090 3091 /** 3092 * ice_vc_query_rxdid - query RXDID supported by DDP package 3093 * @vf: pointer to VF info 3094 * 3095 * Called from VF to query a bitmap of supported flexible 3096 * descriptor RXDIDs of a DDP package. 3097 */ 3098 static int ice_vc_query_rxdid(struct ice_vf *vf) 3099 { 3100 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3101 struct ice_pf *pf = vf->pf; 3102 u64 rxdid; 3103 3104 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3105 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3106 goto err; 3107 } 3108 3109 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 3110 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3111 goto err; 3112 } 3113 3114 rxdid = pf->supported_rxdids; 3115 3116 err: 3117 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 3118 v_ret, (u8 *)&rxdid, sizeof(rxdid)); 3119 } 3120 3121 /** 3122 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 3123 * @vf: VF to enable/disable VLAN stripping for on initialization 3124 * 3125 * Set the default for VLAN stripping based on whether a port VLAN is configured 3126 * and the current VLAN mode of the device. 3127 */ 3128 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 3129 { 3130 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 3131 3132 vf->vlan_strip_ena = 0; 3133 3134 if (!vsi) 3135 return -EINVAL; 3136 3137 /* don't modify stripping if port VLAN is configured in SVM since the 3138 * port VLAN is based on the inner/single VLAN in SVM 3139 */ 3140 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 3141 return 0; 3142 3143 if (ice_vf_vlan_offload_ena(vf->driver_caps)) { 3144 int err; 3145 3146 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 3147 if (!err) 3148 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3149 return err; 3150 } 3151 3152 return vsi->inner_vlan_ops.dis_stripping(vsi); 3153 } 3154 3155 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 3156 { 3157 if (vf->trusted) 3158 return VLAN_N_VID; 3159 else 3160 return ICE_MAX_VLAN_PER_VF; 3161 } 3162 3163 /** 3164 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 3165 * @vf: VF that being checked for 3166 * 3167 * When the device is in double VLAN mode, check whether or not the outer VLAN 3168 * is allowed. 3169 */ 3170 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 3171 { 3172 if (ice_vf_is_port_vlan_ena(vf)) 3173 return true; 3174 3175 return false; 3176 } 3177 3178 /** 3179 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 3180 * @vf: VF that capabilities are being set for 3181 * @caps: VLAN capabilities to populate 3182 * 3183 * Determine VLAN capabilities support based on whether a port VLAN is 3184 * configured. If a port VLAN is configured then the VF should use the inner 3185 * filtering/offload capabilities since the port VLAN is using the outer VLAN 3186 * capabilies. 3187 */ 3188 static void 3189 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 3190 { 3191 struct virtchnl_vlan_supported_caps *supported_caps; 3192 3193 if (ice_vf_outer_vlan_not_allowed(vf)) { 3194 /* until support for inner VLAN filtering is added when a port 3195 * VLAN is configured, only support software offloaded inner 3196 * VLANs when a port VLAN is confgured in DVM 3197 */ 3198 supported_caps = &caps->filtering.filtering_support; 3199 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3200 3201 supported_caps = &caps->offloads.stripping_support; 3202 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3203 VIRTCHNL_VLAN_TOGGLE | 3204 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3205 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3206 3207 supported_caps = &caps->offloads.insertion_support; 3208 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3209 VIRTCHNL_VLAN_TOGGLE | 3210 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3211 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3212 3213 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3214 caps->offloads.ethertype_match = 3215 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3216 } else { 3217 supported_caps = &caps->filtering.filtering_support; 3218 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3219 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3220 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3221 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3222 VIRTCHNL_VLAN_ETHERTYPE_AND; 3223 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3224 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3225 VIRTCHNL_VLAN_ETHERTYPE_9100; 3226 3227 supported_caps = &caps->offloads.stripping_support; 3228 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 3229 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3230 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3231 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 3232 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3233 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3234 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3235 VIRTCHNL_VLAN_ETHERTYPE_XOR | 3236 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 3237 3238 supported_caps = &caps->offloads.insertion_support; 3239 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 3240 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3241 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3242 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 3243 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3244 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3245 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3246 VIRTCHNL_VLAN_ETHERTYPE_XOR | 3247 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 3248 3249 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3250 3251 caps->offloads.ethertype_match = 3252 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3253 } 3254 3255 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 3256 } 3257 3258 /** 3259 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 3260 * @vf: VF that capabilities are being set for 3261 * @caps: VLAN capabilities to populate 3262 * 3263 * Determine VLAN capabilities support based on whether a port VLAN is 3264 * configured. If a port VLAN is configured then the VF does not have any VLAN 3265 * filtering or offload capabilities since the port VLAN is using the inner VLAN 3266 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 3267 * VLAN fitlering and offload capabilities. 3268 */ 3269 static void 3270 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 3271 { 3272 struct virtchnl_vlan_supported_caps *supported_caps; 3273 3274 if (ice_vf_is_port_vlan_ena(vf)) { 3275 supported_caps = &caps->filtering.filtering_support; 3276 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3277 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3278 3279 supported_caps = &caps->offloads.stripping_support; 3280 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3281 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3282 3283 supported_caps = &caps->offloads.insertion_support; 3284 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3285 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3286 3287 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 3288 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 3289 caps->filtering.max_filters = 0; 3290 } else { 3291 supported_caps = &caps->filtering.filtering_support; 3292 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 3293 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3294 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3295 3296 supported_caps = &caps->offloads.stripping_support; 3297 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3298 VIRTCHNL_VLAN_TOGGLE | 3299 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3300 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3301 3302 supported_caps = &caps->offloads.insertion_support; 3303 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3304 VIRTCHNL_VLAN_TOGGLE | 3305 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3306 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3307 3308 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3309 caps->offloads.ethertype_match = 3310 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3311 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 3312 } 3313 } 3314 3315 /** 3316 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 3317 * @vf: VF to determine VLAN capabilities for 3318 * 3319 * This will only be called if the VF and PF successfully negotiated 3320 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 3321 * 3322 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 3323 * is configured or not. 3324 */ 3325 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 3326 { 3327 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3328 struct virtchnl_vlan_caps *caps = NULL; 3329 int err, len = 0; 3330 3331 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3332 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3333 goto out; 3334 } 3335 3336 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 3337 if (!caps) { 3338 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 3339 goto out; 3340 } 3341 len = sizeof(*caps); 3342 3343 if (ice_is_dvm_ena(&vf->pf->hw)) 3344 ice_vc_set_dvm_caps(vf, caps); 3345 else 3346 ice_vc_set_svm_caps(vf, caps); 3347 3348 /* store negotiated caps to prevent invalid VF messages */ 3349 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 3350 3351 out: 3352 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 3353 v_ret, (u8 *)caps, len); 3354 kfree(caps); 3355 return err; 3356 } 3357 3358 /** 3359 * ice_vc_validate_vlan_tpid - validate VLAN TPID 3360 * @filtering_caps: negotiated/supported VLAN filtering capabilities 3361 * @tpid: VLAN TPID used for validation 3362 * 3363 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 3364 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 3365 */ 3366 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 3367 { 3368 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 3369 3370 switch (tpid) { 3371 case ETH_P_8021Q: 3372 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 3373 break; 3374 case ETH_P_8021AD: 3375 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 3376 break; 3377 case ETH_P_QINQ1: 3378 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 3379 break; 3380 } 3381 3382 if (!(filtering_caps & vlan_ethertype)) 3383 return false; 3384 3385 return true; 3386 } 3387 3388 /** 3389 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 3390 * @vc_vlan: virtchnl_vlan to validate 3391 * 3392 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 3393 * false. Otherwise return true. 3394 */ 3395 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 3396 { 3397 if (!vc_vlan->tci || !vc_vlan->tpid) 3398 return false; 3399 3400 return true; 3401 } 3402 3403 /** 3404 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 3405 * @vfc: negotiated/supported VLAN filtering capabilities 3406 * @vfl: VLAN filter list from VF to validate 3407 * 3408 * Validate all of the filters in the VLAN filter list from the VF. If any of 3409 * the checks fail then return false. Otherwise return true. 3410 */ 3411 static bool 3412 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 3413 struct virtchnl_vlan_filter_list_v2 *vfl) 3414 { 3415 u16 i; 3416 3417 if (!vfl->num_elements) 3418 return false; 3419 3420 for (i = 0; i < vfl->num_elements; i++) { 3421 struct virtchnl_vlan_supported_caps *filtering_support = 3422 &vfc->filtering_support; 3423 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3424 struct virtchnl_vlan *outer = &vlan_fltr->outer; 3425 struct virtchnl_vlan *inner = &vlan_fltr->inner; 3426 3427 if ((ice_vc_is_valid_vlan(outer) && 3428 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 3429 (ice_vc_is_valid_vlan(inner) && 3430 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 3431 return false; 3432 3433 if ((outer->tci_mask && 3434 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 3435 (inner->tci_mask && 3436 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 3437 return false; 3438 3439 if (((outer->tci & VLAN_PRIO_MASK) && 3440 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 3441 ((inner->tci & VLAN_PRIO_MASK) && 3442 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 3443 return false; 3444 3445 if ((ice_vc_is_valid_vlan(outer) && 3446 !ice_vc_validate_vlan_tpid(filtering_support->outer, 3447 outer->tpid)) || 3448 (ice_vc_is_valid_vlan(inner) && 3449 !ice_vc_validate_vlan_tpid(filtering_support->inner, 3450 inner->tpid))) 3451 return false; 3452 } 3453 3454 return true; 3455 } 3456 3457 /** 3458 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 3459 * @vc_vlan: struct virtchnl_vlan to transform 3460 */ 3461 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 3462 { 3463 struct ice_vlan vlan = { 0 }; 3464 3465 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci); 3466 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 3467 vlan.tpid = vc_vlan->tpid; 3468 3469 return vlan; 3470 } 3471 3472 /** 3473 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 3474 * @vsi: VF's VSI used to perform the action 3475 * @vlan_action: function to perform the action with (i.e. add/del) 3476 * @vlan: VLAN filter to perform the action with 3477 */ 3478 static int 3479 ice_vc_vlan_action(struct ice_vsi *vsi, 3480 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3481 struct ice_vlan *vlan) 3482 { 3483 int err; 3484 3485 err = vlan_action(vsi, vlan); 3486 if (err) 3487 return err; 3488 3489 return 0; 3490 } 3491 3492 /** 3493 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3494 * @vf: VF used to delete the VLAN(s) 3495 * @vsi: VF's VSI used to delete the VLAN(s) 3496 * @vfl: virthchnl filter list used to delete the filters 3497 */ 3498 static int 3499 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3500 struct virtchnl_vlan_filter_list_v2 *vfl) 3501 { 3502 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3503 int err; 3504 u16 i; 3505 3506 for (i = 0; i < vfl->num_elements; i++) { 3507 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3508 struct virtchnl_vlan *vc_vlan; 3509 3510 vc_vlan = &vlan_fltr->outer; 3511 if (ice_vc_is_valid_vlan(vc_vlan)) { 3512 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3513 3514 err = ice_vc_vlan_action(vsi, 3515 vsi->outer_vlan_ops.del_vlan, 3516 &vlan); 3517 if (err) 3518 return err; 3519 3520 if (vlan_promisc) 3521 ice_vf_dis_vlan_promisc(vsi, &vlan); 3522 3523 /* Disable VLAN filtering when only VLAN 0 is left */ 3524 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3525 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3526 if (err) 3527 return err; 3528 } 3529 } 3530 3531 vc_vlan = &vlan_fltr->inner; 3532 if (ice_vc_is_valid_vlan(vc_vlan)) { 3533 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3534 3535 err = ice_vc_vlan_action(vsi, 3536 vsi->inner_vlan_ops.del_vlan, 3537 &vlan); 3538 if (err) 3539 return err; 3540 3541 /* no support for VLAN promiscuous on inner VLAN unless 3542 * we are in Single VLAN Mode (SVM) 3543 */ 3544 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3545 if (vlan_promisc) 3546 ice_vf_dis_vlan_promisc(vsi, &vlan); 3547 3548 /* Disable VLAN filtering when only VLAN 0 is left */ 3549 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3550 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3551 if (err) 3552 return err; 3553 } 3554 } 3555 } 3556 } 3557 3558 return 0; 3559 } 3560 3561 /** 3562 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3563 * @vf: VF the message was received from 3564 * @msg: message received from the VF 3565 */ 3566 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3567 { 3568 struct virtchnl_vlan_filter_list_v2 *vfl = 3569 (struct virtchnl_vlan_filter_list_v2 *)msg; 3570 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3571 struct ice_vsi *vsi; 3572 3573 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3574 vfl)) { 3575 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3576 goto out; 3577 } 3578 3579 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3580 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3581 goto out; 3582 } 3583 3584 vsi = ice_get_vf_vsi(vf); 3585 if (!vsi) { 3586 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3587 goto out; 3588 } 3589 3590 if (ice_vc_del_vlans(vf, vsi, vfl)) 3591 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3592 3593 out: 3594 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3595 0); 3596 } 3597 3598 /** 3599 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3600 * @vf: VF used to add the VLAN(s) 3601 * @vsi: VF's VSI used to add the VLAN(s) 3602 * @vfl: virthchnl filter list used to add the filters 3603 */ 3604 static int 3605 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3606 struct virtchnl_vlan_filter_list_v2 *vfl) 3607 { 3608 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3609 int err; 3610 u16 i; 3611 3612 for (i = 0; i < vfl->num_elements; i++) { 3613 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3614 struct virtchnl_vlan *vc_vlan; 3615 3616 vc_vlan = &vlan_fltr->outer; 3617 if (ice_vc_is_valid_vlan(vc_vlan)) { 3618 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3619 3620 err = ice_vc_vlan_action(vsi, 3621 vsi->outer_vlan_ops.add_vlan, 3622 &vlan); 3623 if (err) 3624 return err; 3625 3626 if (vlan_promisc) { 3627 err = ice_vf_ena_vlan_promisc(vf, vsi, &vlan); 3628 if (err) 3629 return err; 3630 } 3631 3632 /* Enable VLAN filtering on first non-zero VLAN */ 3633 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3634 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3635 if (err) 3636 return err; 3637 } 3638 } 3639 3640 vc_vlan = &vlan_fltr->inner; 3641 if (ice_vc_is_valid_vlan(vc_vlan)) { 3642 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3643 3644 err = ice_vc_vlan_action(vsi, 3645 vsi->inner_vlan_ops.add_vlan, 3646 &vlan); 3647 if (err) 3648 return err; 3649 3650 /* no support for VLAN promiscuous on inner VLAN unless 3651 * we are in Single VLAN Mode (SVM) 3652 */ 3653 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3654 if (vlan_promisc) { 3655 err = ice_vf_ena_vlan_promisc(vf, vsi, 3656 &vlan); 3657 if (err) 3658 return err; 3659 } 3660 3661 /* Enable VLAN filtering on first non-zero VLAN */ 3662 if (vf->spoofchk && vlan.vid) { 3663 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3664 if (err) 3665 return err; 3666 } 3667 } 3668 } 3669 } 3670 3671 return 0; 3672 } 3673 3674 /** 3675 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3676 * @vsi: VF VSI used to get number of existing VLAN filters 3677 * @vfc: negotiated/supported VLAN filtering capabilities 3678 * @vfl: VLAN filter list from VF to validate 3679 * 3680 * Validate all of the filters in the VLAN filter list from the VF during the 3681 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3682 * Otherwise return true. 3683 */ 3684 static bool 3685 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3686 struct virtchnl_vlan_filtering_caps *vfc, 3687 struct virtchnl_vlan_filter_list_v2 *vfl) 3688 { 3689 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3690 vfl->num_elements; 3691 3692 if (num_requested_filters > vfc->max_filters) 3693 return false; 3694 3695 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3696 } 3697 3698 /** 3699 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3700 * @vf: VF the message was received from 3701 * @msg: message received from the VF 3702 */ 3703 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3704 { 3705 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3706 struct virtchnl_vlan_filter_list_v2 *vfl = 3707 (struct virtchnl_vlan_filter_list_v2 *)msg; 3708 struct ice_vsi *vsi; 3709 3710 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3711 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3712 goto out; 3713 } 3714 3715 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3716 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3717 goto out; 3718 } 3719 3720 vsi = ice_get_vf_vsi(vf); 3721 if (!vsi) { 3722 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3723 goto out; 3724 } 3725 3726 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3727 &vf->vlan_v2_caps.filtering, 3728 vfl)) { 3729 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3730 goto out; 3731 } 3732 3733 if (ice_vc_add_vlans(vf, vsi, vfl)) 3734 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3735 3736 out: 3737 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3738 0); 3739 } 3740 3741 /** 3742 * ice_vc_valid_vlan_setting - validate VLAN setting 3743 * @negotiated_settings: negotiated VLAN settings during VF init 3744 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3745 */ 3746 static bool 3747 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3748 { 3749 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3750 return false; 3751 3752 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3753 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3754 */ 3755 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3756 hweight32(ethertype_setting) > 1) 3757 return false; 3758 3759 /* ability to modify the VLAN setting was not negotiated */ 3760 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3761 return false; 3762 3763 return true; 3764 } 3765 3766 /** 3767 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3768 * @caps: negotiated VLAN settings during VF init 3769 * @msg: message to validate 3770 * 3771 * Used to validate any VLAN virtchnl message sent as a 3772 * virtchnl_vlan_setting structure. Validates the message against the 3773 * negotiated/supported caps during VF driver init. 3774 */ 3775 static bool 3776 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3777 struct virtchnl_vlan_setting *msg) 3778 { 3779 if ((!msg->outer_ethertype_setting && 3780 !msg->inner_ethertype_setting) || 3781 (!caps->outer && !caps->inner)) 3782 return false; 3783 3784 if (msg->outer_ethertype_setting && 3785 !ice_vc_valid_vlan_setting(caps->outer, 3786 msg->outer_ethertype_setting)) 3787 return false; 3788 3789 if (msg->inner_ethertype_setting && 3790 !ice_vc_valid_vlan_setting(caps->inner, 3791 msg->inner_ethertype_setting)) 3792 return false; 3793 3794 return true; 3795 } 3796 3797 /** 3798 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3799 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3800 * @tpid: VLAN TPID to populate 3801 */ 3802 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3803 { 3804 switch (ethertype_setting) { 3805 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3806 *tpid = ETH_P_8021Q; 3807 break; 3808 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3809 *tpid = ETH_P_8021AD; 3810 break; 3811 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3812 *tpid = ETH_P_QINQ1; 3813 break; 3814 default: 3815 *tpid = 0; 3816 return -EINVAL; 3817 } 3818 3819 return 0; 3820 } 3821 3822 /** 3823 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3824 * @vsi: VF's VSI used to enable the VLAN offload 3825 * @ena_offload: function used to enable the VLAN offload 3826 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3827 */ 3828 static int 3829 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3830 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3831 u32 ethertype_setting) 3832 { 3833 u16 tpid; 3834 int err; 3835 3836 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3837 if (err) 3838 return err; 3839 3840 err = ena_offload(vsi, tpid); 3841 if (err) 3842 return err; 3843 3844 return 0; 3845 } 3846 3847 /** 3848 * ice_vc_ena_vlan_stripping_v2_msg 3849 * @vf: VF the message was received from 3850 * @msg: message received from the VF 3851 * 3852 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3853 */ 3854 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3855 { 3856 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3857 struct virtchnl_vlan_supported_caps *stripping_support; 3858 struct virtchnl_vlan_setting *strip_msg = 3859 (struct virtchnl_vlan_setting *)msg; 3860 u32 ethertype_setting; 3861 struct ice_vsi *vsi; 3862 3863 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3864 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3865 goto out; 3866 } 3867 3868 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3869 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3870 goto out; 3871 } 3872 3873 vsi = ice_get_vf_vsi(vf); 3874 if (!vsi) { 3875 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3876 goto out; 3877 } 3878 3879 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3880 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3881 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3882 goto out; 3883 } 3884 3885 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) { 3886 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3887 goto out; 3888 } 3889 3890 ethertype_setting = strip_msg->outer_ethertype_setting; 3891 if (ethertype_setting) { 3892 if (ice_vc_ena_vlan_offload(vsi, 3893 vsi->outer_vlan_ops.ena_stripping, 3894 ethertype_setting)) { 3895 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3896 goto out; 3897 } else { 3898 enum ice_l2tsel l2tsel = 3899 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3900 3901 /* PF tells the VF that the outer VLAN tag is always 3902 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3903 * inner is always extracted to 3904 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3905 * support outer stripping so the first tag always ends 3906 * up in L2TAG2_2ND and the second/inner tag, if 3907 * enabled, is extracted in L2TAG1. 3908 */ 3909 ice_vsi_update_l2tsel(vsi, l2tsel); 3910 3911 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA; 3912 } 3913 } 3914 3915 ethertype_setting = strip_msg->inner_ethertype_setting; 3916 if (ethertype_setting && 3917 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3918 ethertype_setting)) { 3919 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3920 goto out; 3921 } 3922 3923 if (ethertype_setting) 3924 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3925 3926 out: 3927 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3928 v_ret, NULL, 0); 3929 } 3930 3931 /** 3932 * ice_vc_dis_vlan_stripping_v2_msg 3933 * @vf: VF the message was received from 3934 * @msg: message received from the VF 3935 * 3936 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3937 */ 3938 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3939 { 3940 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3941 struct virtchnl_vlan_supported_caps *stripping_support; 3942 struct virtchnl_vlan_setting *strip_msg = 3943 (struct virtchnl_vlan_setting *)msg; 3944 u32 ethertype_setting; 3945 struct ice_vsi *vsi; 3946 3947 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3948 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3949 goto out; 3950 } 3951 3952 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3953 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3954 goto out; 3955 } 3956 3957 vsi = ice_get_vf_vsi(vf); 3958 if (!vsi) { 3959 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3960 goto out; 3961 } 3962 3963 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3964 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3965 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3966 goto out; 3967 } 3968 3969 ethertype_setting = strip_msg->outer_ethertype_setting; 3970 if (ethertype_setting) { 3971 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3972 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3973 goto out; 3974 } else { 3975 enum ice_l2tsel l2tsel = 3976 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3977 3978 /* PF tells the VF that the outer VLAN tag is always 3979 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3980 * inner is always extracted to 3981 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3982 * support inner stripping while outer stripping is 3983 * disabled so that the first and only tag is extracted 3984 * in L2TAG1. 3985 */ 3986 ice_vsi_update_l2tsel(vsi, l2tsel); 3987 3988 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA; 3989 } 3990 } 3991 3992 ethertype_setting = strip_msg->inner_ethertype_setting; 3993 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3994 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3995 goto out; 3996 } 3997 3998 if (ethertype_setting) 3999 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 4000 4001 out: 4002 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 4003 v_ret, NULL, 0); 4004 } 4005 4006 /** 4007 * ice_vc_ena_vlan_insertion_v2_msg 4008 * @vf: VF the message was received from 4009 * @msg: message received from the VF 4010 * 4011 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 4012 */ 4013 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 4014 { 4015 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4016 struct virtchnl_vlan_supported_caps *insertion_support; 4017 struct virtchnl_vlan_setting *insertion_msg = 4018 (struct virtchnl_vlan_setting *)msg; 4019 u32 ethertype_setting; 4020 struct ice_vsi *vsi; 4021 4022 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 4023 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4024 goto out; 4025 } 4026 4027 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 4028 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4029 goto out; 4030 } 4031 4032 vsi = ice_get_vf_vsi(vf); 4033 if (!vsi) { 4034 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4035 goto out; 4036 } 4037 4038 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 4039 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 4040 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4041 goto out; 4042 } 4043 4044 ethertype_setting = insertion_msg->outer_ethertype_setting; 4045 if (ethertype_setting && 4046 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 4047 ethertype_setting)) { 4048 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4049 goto out; 4050 } 4051 4052 ethertype_setting = insertion_msg->inner_ethertype_setting; 4053 if (ethertype_setting && 4054 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 4055 ethertype_setting)) { 4056 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4057 goto out; 4058 } 4059 4060 out: 4061 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 4062 v_ret, NULL, 0); 4063 } 4064 4065 /** 4066 * ice_vc_dis_vlan_insertion_v2_msg 4067 * @vf: VF the message was received from 4068 * @msg: message received from the VF 4069 * 4070 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 4071 */ 4072 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 4073 { 4074 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4075 struct virtchnl_vlan_supported_caps *insertion_support; 4076 struct virtchnl_vlan_setting *insertion_msg = 4077 (struct virtchnl_vlan_setting *)msg; 4078 u32 ethertype_setting; 4079 struct ice_vsi *vsi; 4080 4081 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 4082 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4083 goto out; 4084 } 4085 4086 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 4087 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4088 goto out; 4089 } 4090 4091 vsi = ice_get_vf_vsi(vf); 4092 if (!vsi) { 4093 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4094 goto out; 4095 } 4096 4097 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 4098 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 4099 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4100 goto out; 4101 } 4102 4103 ethertype_setting = insertion_msg->outer_ethertype_setting; 4104 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 4105 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4106 goto out; 4107 } 4108 4109 ethertype_setting = insertion_msg->inner_ethertype_setting; 4110 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 4111 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4112 goto out; 4113 } 4114 4115 out: 4116 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 4117 v_ret, NULL, 0); 4118 } 4119 4120 static int ice_vc_get_ptp_cap(struct ice_vf *vf, 4121 const struct virtchnl_ptp_caps *msg) 4122 { 4123 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4124 u32 caps = VIRTCHNL_1588_PTP_CAP_RX_TSTAMP | 4125 VIRTCHNL_1588_PTP_CAP_READ_PHC; 4126 4127 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 4128 goto err; 4129 4130 v_ret = VIRTCHNL_STATUS_SUCCESS; 4131 4132 if (msg->caps & caps) 4133 vf->ptp_caps = caps; 4134 4135 err: 4136 /* send the response back to the VF */ 4137 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_1588_PTP_GET_CAPS, v_ret, 4138 (u8 *)&vf->ptp_caps, 4139 sizeof(struct virtchnl_ptp_caps)); 4140 } 4141 4142 static int ice_vc_get_phc_time(struct ice_vf *vf) 4143 { 4144 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4145 struct virtchnl_phc_time *phc_time = NULL; 4146 struct ice_pf *pf = vf->pf; 4147 u32 len = 0; 4148 int ret; 4149 4150 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 4151 goto err; 4152 4153 v_ret = VIRTCHNL_STATUS_SUCCESS; 4154 4155 phc_time = kzalloc(sizeof(*phc_time), GFP_KERNEL); 4156 if (!phc_time) { 4157 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 4158 goto err; 4159 } 4160 4161 len = sizeof(*phc_time); 4162 4163 phc_time->time = ice_ptp_read_src_clk_reg(pf, NULL); 4164 4165 err: 4166 /* send the response back to the VF */ 4167 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_1588_PTP_GET_TIME, v_ret, 4168 (u8 *)phc_time, len); 4169 kfree(phc_time); 4170 return ret; 4171 } 4172 4173 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 4174 .get_ver_msg = ice_vc_get_ver_msg, 4175 .get_vf_res_msg = ice_vc_get_vf_res_msg, 4176 .reset_vf = ice_vc_reset_vf_msg, 4177 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 4178 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 4179 .cfg_qs_msg = ice_vc_cfg_qs_msg, 4180 .ena_qs_msg = ice_vc_ena_qs_msg, 4181 .dis_qs_msg = ice_vc_dis_qs_msg, 4182 .request_qs_msg = ice_vc_request_qs_msg, 4183 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 4184 .config_rss_key = ice_vc_config_rss_key, 4185 .config_rss_lut = ice_vc_config_rss_lut, 4186 .config_rss_hfunc = ice_vc_config_rss_hfunc, 4187 .get_stats_msg = ice_vc_get_stats_msg, 4188 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 4189 .add_vlan_msg = ice_vc_add_vlan_msg, 4190 .remove_vlan_msg = ice_vc_remove_vlan_msg, 4191 .query_rxdid = ice_vc_query_rxdid, 4192 .get_rss_hashcfg = ice_vc_get_rss_hashcfg, 4193 .set_rss_hashcfg = ice_vc_set_rss_hashcfg, 4194 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 4195 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 4196 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 4197 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 4198 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 4199 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 4200 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 4201 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 4202 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 4203 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 4204 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 4205 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 4206 .get_qos_caps = ice_vc_get_qos_caps, 4207 .cfg_q_bw = ice_vc_cfg_q_bw, 4208 .cfg_q_quanta = ice_vc_cfg_q_quanta, 4209 .get_ptp_cap = ice_vc_get_ptp_cap, 4210 .get_phc_time = ice_vc_get_phc_time, 4211 /* If you add a new op here please make sure to add it to 4212 * ice_virtchnl_repr_ops as well. 4213 */ 4214 }; 4215 4216 /** 4217 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 4218 * @vf: the VF to switch ops 4219 */ 4220 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 4221 { 4222 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 4223 } 4224 4225 /** 4226 * ice_vc_repr_add_mac 4227 * @vf: pointer to VF 4228 * @msg: virtchannel message 4229 * 4230 * When port representors are created, we do not add MAC rule 4231 * to firmware, we store it so that PF could report same 4232 * MAC as VF. 4233 */ 4234 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 4235 { 4236 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4237 struct virtchnl_ether_addr_list *al = 4238 (struct virtchnl_ether_addr_list *)msg; 4239 struct ice_vsi *vsi; 4240 struct ice_pf *pf; 4241 int i; 4242 4243 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 4244 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 4245 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4246 goto handle_mac_exit; 4247 } 4248 4249 pf = vf->pf; 4250 4251 vsi = ice_get_vf_vsi(vf); 4252 if (!vsi) { 4253 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4254 goto handle_mac_exit; 4255 } 4256 4257 for (i = 0; i < al->num_elements; i++) { 4258 u8 *mac_addr = al->list[i].addr; 4259 4260 if (!is_unicast_ether_addr(mac_addr) || 4261 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 4262 continue; 4263 4264 if (vf->pf_set_mac) { 4265 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 4266 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 4267 goto handle_mac_exit; 4268 } 4269 4270 ice_vfhw_mac_add(vf, &al->list[i]); 4271 break; 4272 } 4273 4274 handle_mac_exit: 4275 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 4276 v_ret, NULL, 0); 4277 } 4278 4279 /** 4280 * ice_vc_repr_del_mac - response with success for deleting MAC 4281 * @vf: pointer to VF 4282 * @msg: virtchannel message 4283 * 4284 * Respond with success to not break normal VF flow. 4285 * For legacy VF driver try to update cached MAC address. 4286 */ 4287 static int 4288 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 4289 { 4290 struct virtchnl_ether_addr_list *al = 4291 (struct virtchnl_ether_addr_list *)msg; 4292 4293 ice_update_legacy_cached_mac(vf, &al->list[0]); 4294 4295 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 4296 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 4297 } 4298 4299 static int 4300 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 4301 { 4302 dev_dbg(ice_pf_to_dev(vf->pf), 4303 "Can't config promiscuous mode in switchdev mode for VF %d\n", 4304 vf->vf_id); 4305 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 4306 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4307 NULL, 0); 4308 } 4309 4310 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 4311 .get_ver_msg = ice_vc_get_ver_msg, 4312 .get_vf_res_msg = ice_vc_get_vf_res_msg, 4313 .reset_vf = ice_vc_reset_vf_msg, 4314 .add_mac_addr_msg = ice_vc_repr_add_mac, 4315 .del_mac_addr_msg = ice_vc_repr_del_mac, 4316 .cfg_qs_msg = ice_vc_cfg_qs_msg, 4317 .ena_qs_msg = ice_vc_ena_qs_msg, 4318 .dis_qs_msg = ice_vc_dis_qs_msg, 4319 .request_qs_msg = ice_vc_request_qs_msg, 4320 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 4321 .config_rss_key = ice_vc_config_rss_key, 4322 .config_rss_lut = ice_vc_config_rss_lut, 4323 .config_rss_hfunc = ice_vc_config_rss_hfunc, 4324 .get_stats_msg = ice_vc_get_stats_msg, 4325 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 4326 .add_vlan_msg = ice_vc_add_vlan_msg, 4327 .remove_vlan_msg = ice_vc_remove_vlan_msg, 4328 .query_rxdid = ice_vc_query_rxdid, 4329 .get_rss_hashcfg = ice_vc_get_rss_hashcfg, 4330 .set_rss_hashcfg = ice_vc_set_rss_hashcfg, 4331 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 4332 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 4333 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 4334 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 4335 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 4336 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 4337 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 4338 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 4339 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 4340 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 4341 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 4342 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 4343 .get_qos_caps = ice_vc_get_qos_caps, 4344 .cfg_q_bw = ice_vc_cfg_q_bw, 4345 .cfg_q_quanta = ice_vc_cfg_q_quanta, 4346 .get_ptp_cap = ice_vc_get_ptp_cap, 4347 .get_phc_time = ice_vc_get_phc_time, 4348 }; 4349 4350 /** 4351 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 4352 * @vf: the VF to switch ops 4353 */ 4354 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 4355 { 4356 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 4357 } 4358 4359 /** 4360 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 4361 * @vf: the VF to check 4362 * @mbxdata: data about the state of the mailbox 4363 * 4364 * Detect if a given VF might be malicious and attempting to overflow the PF 4365 * mailbox. If so, log a warning message and ignore this event. 4366 */ 4367 static bool 4368 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 4369 { 4370 bool report_malvf = false; 4371 struct device *dev; 4372 struct ice_pf *pf; 4373 int status; 4374 4375 pf = vf->pf; 4376 dev = ice_pf_to_dev(pf); 4377 4378 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 4379 return vf->mbx_info.malicious; 4380 4381 /* check to see if we have a newly malicious VF */ 4382 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 4383 &report_malvf); 4384 if (status) 4385 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 4386 vf->vf_id, vf->dev_lan_addr, status); 4387 4388 if (report_malvf) { 4389 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 4390 u8 zero_addr[ETH_ALEN] = {}; 4391 4392 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 4393 vf->dev_lan_addr, 4394 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 4395 } 4396 4397 return vf->mbx_info.malicious; 4398 } 4399 4400 /** 4401 * ice_vc_process_vf_msg - Process request from VF 4402 * @pf: pointer to the PF structure 4403 * @event: pointer to the AQ event 4404 * @mbxdata: information used to detect VF attempting mailbox overflow 4405 * 4406 * Called from the common asq/arq handler to process request from VF. When this 4407 * flow is used for devices with hardware VF to PF message queue overflow 4408 * support (ICE_F_MBX_LIMIT) mbxdata is set to NULL and ice_is_malicious_vf 4409 * check is skipped. 4410 */ 4411 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 4412 struct ice_mbx_data *mbxdata) 4413 { 4414 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 4415 s16 vf_id = le16_to_cpu(event->desc.retval); 4416 const struct ice_virtchnl_ops *ops; 4417 u16 msglen = event->msg_len; 4418 u8 *msg = event->msg_buf; 4419 struct ice_vf *vf = NULL; 4420 struct device *dev; 4421 int err = 0; 4422 4423 dev = ice_pf_to_dev(pf); 4424 4425 vf = ice_get_vf_by_id(pf, vf_id); 4426 if (!vf) { 4427 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 4428 vf_id, v_opcode, msglen); 4429 return; 4430 } 4431 4432 mutex_lock(&vf->cfg_lock); 4433 4434 /* Check if the VF is trying to overflow the mailbox */ 4435 if (mbxdata && ice_is_malicious_vf(vf, mbxdata)) 4436 goto finish; 4437 4438 /* Check if VF is disabled. */ 4439 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 4440 err = -EPERM; 4441 goto error_handler; 4442 } 4443 4444 ops = vf->virtchnl_ops; 4445 4446 /* Perform basic checks on the msg */ 4447 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 4448 if (err) { 4449 if (err == VIRTCHNL_STATUS_ERR_PARAM) 4450 err = -EPERM; 4451 else 4452 err = -EINVAL; 4453 } 4454 4455 error_handler: 4456 if (err) { 4457 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 4458 NULL, 0); 4459 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 4460 vf_id, v_opcode, msglen, err); 4461 goto finish; 4462 } 4463 4464 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 4465 ice_vc_send_msg_to_vf(vf, v_opcode, 4466 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 4467 0); 4468 goto finish; 4469 } 4470 4471 switch (v_opcode) { 4472 case VIRTCHNL_OP_VERSION: 4473 err = ops->get_ver_msg(vf, msg); 4474 break; 4475 case VIRTCHNL_OP_GET_VF_RESOURCES: 4476 err = ops->get_vf_res_msg(vf, msg); 4477 if (ice_vf_init_vlan_stripping(vf)) 4478 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 4479 vf->vf_id); 4480 ice_vc_notify_vf_link_state(vf); 4481 break; 4482 case VIRTCHNL_OP_RESET_VF: 4483 ops->reset_vf(vf); 4484 break; 4485 case VIRTCHNL_OP_ADD_ETH_ADDR: 4486 err = ops->add_mac_addr_msg(vf, msg); 4487 break; 4488 case VIRTCHNL_OP_DEL_ETH_ADDR: 4489 err = ops->del_mac_addr_msg(vf, msg); 4490 break; 4491 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 4492 err = ops->cfg_qs_msg(vf, msg); 4493 break; 4494 case VIRTCHNL_OP_ENABLE_QUEUES: 4495 err = ops->ena_qs_msg(vf, msg); 4496 ice_vc_notify_vf_link_state(vf); 4497 break; 4498 case VIRTCHNL_OP_DISABLE_QUEUES: 4499 err = ops->dis_qs_msg(vf, msg); 4500 break; 4501 case VIRTCHNL_OP_REQUEST_QUEUES: 4502 err = ops->request_qs_msg(vf, msg); 4503 break; 4504 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 4505 err = ops->cfg_irq_map_msg(vf, msg); 4506 break; 4507 case VIRTCHNL_OP_CONFIG_RSS_KEY: 4508 err = ops->config_rss_key(vf, msg); 4509 break; 4510 case VIRTCHNL_OP_CONFIG_RSS_LUT: 4511 err = ops->config_rss_lut(vf, msg); 4512 break; 4513 case VIRTCHNL_OP_CONFIG_RSS_HFUNC: 4514 err = ops->config_rss_hfunc(vf, msg); 4515 break; 4516 case VIRTCHNL_OP_GET_STATS: 4517 err = ops->get_stats_msg(vf, msg); 4518 break; 4519 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 4520 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4521 break; 4522 case VIRTCHNL_OP_ADD_VLAN: 4523 err = ops->add_vlan_msg(vf, msg); 4524 break; 4525 case VIRTCHNL_OP_DEL_VLAN: 4526 err = ops->remove_vlan_msg(vf, msg); 4527 break; 4528 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4529 err = ops->query_rxdid(vf); 4530 break; 4531 case VIRTCHNL_OP_GET_RSS_HASHCFG_CAPS: 4532 err = ops->get_rss_hashcfg(vf); 4533 break; 4534 case VIRTCHNL_OP_SET_RSS_HASHCFG: 4535 err = ops->set_rss_hashcfg(vf, msg); 4536 break; 4537 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4538 err = ops->ena_vlan_stripping(vf); 4539 break; 4540 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4541 err = ops->dis_vlan_stripping(vf); 4542 break; 4543 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4544 err = ops->add_fdir_fltr_msg(vf, msg); 4545 break; 4546 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4547 err = ops->del_fdir_fltr_msg(vf, msg); 4548 break; 4549 case VIRTCHNL_OP_ADD_RSS_CFG: 4550 err = ops->handle_rss_cfg_msg(vf, msg, true); 4551 break; 4552 case VIRTCHNL_OP_DEL_RSS_CFG: 4553 err = ops->handle_rss_cfg_msg(vf, msg, false); 4554 break; 4555 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4556 err = ops->get_offload_vlan_v2_caps(vf); 4557 break; 4558 case VIRTCHNL_OP_ADD_VLAN_V2: 4559 err = ops->add_vlan_v2_msg(vf, msg); 4560 break; 4561 case VIRTCHNL_OP_DEL_VLAN_V2: 4562 err = ops->remove_vlan_v2_msg(vf, msg); 4563 break; 4564 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4565 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4566 break; 4567 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4568 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4569 break; 4570 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4571 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4572 break; 4573 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4574 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4575 break; 4576 case VIRTCHNL_OP_GET_QOS_CAPS: 4577 err = ops->get_qos_caps(vf); 4578 break; 4579 case VIRTCHNL_OP_CONFIG_QUEUE_BW: 4580 err = ops->cfg_q_bw(vf, msg); 4581 break; 4582 case VIRTCHNL_OP_CONFIG_QUANTA: 4583 err = ops->cfg_q_quanta(vf, msg); 4584 break; 4585 case VIRTCHNL_OP_1588_PTP_GET_CAPS: 4586 err = ops->get_ptp_cap(vf, (const void *)msg); 4587 break; 4588 case VIRTCHNL_OP_1588_PTP_GET_TIME: 4589 err = ops->get_phc_time(vf); 4590 break; 4591 case VIRTCHNL_OP_UNKNOWN: 4592 default: 4593 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4594 vf_id); 4595 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4596 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4597 NULL, 0); 4598 break; 4599 } 4600 if (err) { 4601 /* Helper function cares less about error return values here 4602 * as it is busy with pending work. 4603 */ 4604 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4605 vf_id, v_opcode, err); 4606 } 4607 4608 finish: 4609 mutex_unlock(&vf->cfg_lock); 4610 ice_put_vf(vf); 4611 } 4612