xref: /linux/drivers/net/ethernet/intel/ice/ice_virtchnl.c (revision 1a562c0d44974d3cf89c6cc5c34c708c08af420e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 		     u32 driver_caps)
374 {
375 	if (ice_is_eswitch_mode_switchdev(vf->pf))
376 		/* In switchdev setting VLAN from VF isn't supported */
377 		return 0;
378 
379 	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 		/* VLAN offloads based on current device configuration */
381 		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 		 * these two conditions, which amounts to guest VLAN filtering
385 		 * and offloads being based on the inner VLAN or the
386 		 * inner/single VLAN respectively and don't allow VF to
387 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 		 */
389 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 			return VIRTCHNL_VF_OFFLOAD_VLAN;
391 		} else if (!ice_is_dvm_ena(hw) &&
392 			   !ice_vf_is_port_vlan_ena(vf)) {
393 			/* configure backward compatible support for VFs that
394 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 			 * configured in SVM, and no port VLAN is configured
396 			 */
397 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 			return VIRTCHNL_VF_OFFLOAD_VLAN;
399 		} else if (ice_is_dvm_ena(hw)) {
400 			/* configure software offloaded VLAN support when DVM
401 			 * is enabled, but no port VLAN is enabled
402 			 */
403 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 		}
405 	}
406 
407 	return 0;
408 }
409 
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 	struct virtchnl_vf_resource *vfres = NULL;
421 	struct ice_hw *hw = &vf->pf->hw;
422 	struct ice_vsi *vsi;
423 	int len = 0;
424 	int ret;
425 
426 	if (ice_check_vf_init(vf)) {
427 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 		goto err;
429 	}
430 
431 	len = virtchnl_struct_size(vfres, vsi_res, 0);
432 
433 	vfres = kzalloc(len, GFP_KERNEL);
434 	if (!vfres) {
435 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 		len = 0;
437 		goto err;
438 	}
439 	if (VF_IS_V11(&vf->vf_ver))
440 		vf->driver_caps = *(u32 *)msg;
441 	else
442 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
444 				  VIRTCHNL_VF_OFFLOAD_VLAN;
445 
446 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
447 	vsi = ice_get_vf_vsi(vf);
448 	if (!vsi) {
449 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
450 		goto err;
451 	}
452 
453 	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
454 						    vf->driver_caps);
455 
456 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
457 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
458 	} else {
459 		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
460 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
461 		else
462 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
463 	}
464 
465 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
466 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
467 
468 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
469 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
470 
471 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
472 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
473 
474 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
475 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
476 
477 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
478 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
479 
480 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
481 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
482 
483 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
484 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
485 
486 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
487 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
488 
489 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
490 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
491 
492 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
493 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
494 
495 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
496 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
497 
498 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
499 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
500 
501 	vfres->num_vsis = 1;
502 	/* Tx and Rx queue are equal for VF */
503 	vfres->num_queue_pairs = vsi->num_txq;
504 	vfres->max_vectors = vf->num_msix;
505 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
506 	vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
507 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
508 
509 	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
510 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
511 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
512 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
513 			vf->hw_lan_addr);
514 
515 	/* match guest capabilities */
516 	vf->driver_caps = vfres->vf_cap_flags;
517 
518 	ice_vc_set_caps_allowlist(vf);
519 	ice_vc_set_working_allowlist(vf);
520 
521 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
522 
523 err:
524 	/* send the response back to the VF */
525 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
526 				    (u8 *)vfres, len);
527 
528 	kfree(vfres);
529 	return ret;
530 }
531 
532 /**
533  * ice_vc_reset_vf_msg
534  * @vf: pointer to the VF info
535  *
536  * called from the VF to reset itself,
537  * unlike other virtchnl messages, PF driver
538  * doesn't send the response back to the VF
539  */
540 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
541 {
542 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
543 		ice_reset_vf(vf, 0);
544 }
545 
546 /**
547  * ice_vc_isvalid_vsi_id
548  * @vf: pointer to the VF info
549  * @vsi_id: VF relative VSI ID
550  *
551  * check for the valid VSI ID
552  */
553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
554 {
555 	struct ice_pf *pf = vf->pf;
556 	struct ice_vsi *vsi;
557 
558 	vsi = ice_find_vsi(pf, vsi_id);
559 
560 	return (vsi && (vsi->vf == vf));
561 }
562 
563 /**
564  * ice_vc_isvalid_q_id
565  * @vf: pointer to the VF info
566  * @vsi_id: VSI ID
567  * @qid: VSI relative queue ID
568  *
569  * check for the valid queue ID
570  */
571 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
572 {
573 	struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
574 	/* allocated Tx and Rx queues should be always equal for VF VSI */
575 	return (vsi && (qid < vsi->alloc_txq));
576 }
577 
578 /**
579  * ice_vc_isvalid_ring_len
580  * @ring_len: length of ring
581  *
582  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
583  * or zero
584  */
585 static bool ice_vc_isvalid_ring_len(u16 ring_len)
586 {
587 	return ring_len == 0 ||
588 	       (ring_len >= ICE_MIN_NUM_DESC &&
589 		ring_len <= ICE_MAX_NUM_DESC &&
590 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
591 }
592 
593 /**
594  * ice_vc_validate_pattern
595  * @vf: pointer to the VF info
596  * @proto: virtchnl protocol headers
597  *
598  * validate the pattern is supported or not.
599  *
600  * Return: true on success, false on error.
601  */
602 bool
603 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
604 {
605 	bool is_ipv4 = false;
606 	bool is_ipv6 = false;
607 	bool is_udp = false;
608 	u16 ptype = -1;
609 	int i = 0;
610 
611 	while (i < proto->count &&
612 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
613 		switch (proto->proto_hdr[i].type) {
614 		case VIRTCHNL_PROTO_HDR_ETH:
615 			ptype = ICE_PTYPE_MAC_PAY;
616 			break;
617 		case VIRTCHNL_PROTO_HDR_IPV4:
618 			ptype = ICE_PTYPE_IPV4_PAY;
619 			is_ipv4 = true;
620 			break;
621 		case VIRTCHNL_PROTO_HDR_IPV6:
622 			ptype = ICE_PTYPE_IPV6_PAY;
623 			is_ipv6 = true;
624 			break;
625 		case VIRTCHNL_PROTO_HDR_UDP:
626 			if (is_ipv4)
627 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
628 			else if (is_ipv6)
629 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
630 			is_udp = true;
631 			break;
632 		case VIRTCHNL_PROTO_HDR_TCP:
633 			if (is_ipv4)
634 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
635 			else if (is_ipv6)
636 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
637 			break;
638 		case VIRTCHNL_PROTO_HDR_SCTP:
639 			if (is_ipv4)
640 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
641 			else if (is_ipv6)
642 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
643 			break;
644 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
645 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
646 			if (is_ipv4)
647 				ptype = ICE_MAC_IPV4_GTPU;
648 			else if (is_ipv6)
649 				ptype = ICE_MAC_IPV6_GTPU;
650 			goto out;
651 		case VIRTCHNL_PROTO_HDR_L2TPV3:
652 			if (is_ipv4)
653 				ptype = ICE_MAC_IPV4_L2TPV3;
654 			else if (is_ipv6)
655 				ptype = ICE_MAC_IPV6_L2TPV3;
656 			goto out;
657 		case VIRTCHNL_PROTO_HDR_ESP:
658 			if (is_ipv4)
659 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
660 						ICE_MAC_IPV4_ESP;
661 			else if (is_ipv6)
662 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
663 						ICE_MAC_IPV6_ESP;
664 			goto out;
665 		case VIRTCHNL_PROTO_HDR_AH:
666 			if (is_ipv4)
667 				ptype = ICE_MAC_IPV4_AH;
668 			else if (is_ipv6)
669 				ptype = ICE_MAC_IPV6_AH;
670 			goto out;
671 		case VIRTCHNL_PROTO_HDR_PFCP:
672 			if (is_ipv4)
673 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
674 			else if (is_ipv6)
675 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
676 			goto out;
677 		default:
678 			break;
679 		}
680 		i++;
681 	}
682 
683 out:
684 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
685 }
686 
687 /**
688  * ice_vc_parse_rss_cfg - parses hash fields and headers from
689  * a specific virtchnl RSS cfg
690  * @hw: pointer to the hardware
691  * @rss_cfg: pointer to the virtchnl RSS cfg
692  * @hash_cfg: pointer to the HW hash configuration
693  *
694  * Return true if all the protocol header and hash fields in the RSS cfg could
695  * be parsed, else return false
696  *
697  * This function parses the virtchnl RSS cfg to be the intended
698  * hash fields and the intended header for RSS configuration
699  */
700 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
701 				 struct virtchnl_rss_cfg *rss_cfg,
702 				 struct ice_rss_hash_cfg *hash_cfg)
703 {
704 	const struct ice_vc_hash_field_match_type *hf_list;
705 	const struct ice_vc_hdr_match_type *hdr_list;
706 	int i, hf_list_len, hdr_list_len;
707 	u32 *addl_hdrs = &hash_cfg->addl_hdrs;
708 	u64 *hash_flds = &hash_cfg->hash_flds;
709 
710 	/* set outer layer RSS as default */
711 	hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
712 
713 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
714 		hash_cfg->symm = true;
715 	else
716 		hash_cfg->symm = false;
717 
718 	hf_list = ice_vc_hash_field_list;
719 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
720 	hdr_list = ice_vc_hdr_list;
721 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
722 
723 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
724 		struct virtchnl_proto_hdr *proto_hdr =
725 					&rss_cfg->proto_hdrs.proto_hdr[i];
726 		bool hdr_found = false;
727 		int j;
728 
729 		/* Find matched ice headers according to virtchnl headers. */
730 		for (j = 0; j < hdr_list_len; j++) {
731 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
732 
733 			if (proto_hdr->type == hdr_map.vc_hdr) {
734 				*addl_hdrs |= hdr_map.ice_hdr;
735 				hdr_found = true;
736 			}
737 		}
738 
739 		if (!hdr_found)
740 			return false;
741 
742 		/* Find matched ice hash fields according to
743 		 * virtchnl hash fields.
744 		 */
745 		for (j = 0; j < hf_list_len; j++) {
746 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
747 
748 			if (proto_hdr->type == hf_map.vc_hdr &&
749 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
750 				*hash_flds |= hf_map.ice_hash_field;
751 				break;
752 			}
753 		}
754 	}
755 
756 	return true;
757 }
758 
759 /**
760  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
761  * RSS offloads
762  * @caps: VF driver negotiated capabilities
763  *
764  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
765  * else return false
766  */
767 static bool ice_vf_adv_rss_offload_ena(u32 caps)
768 {
769 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
770 }
771 
772 /**
773  * ice_vc_handle_rss_cfg
774  * @vf: pointer to the VF info
775  * @msg: pointer to the message buffer
776  * @add: add a RSS config if true, otherwise delete a RSS config
777  *
778  * This function adds/deletes a RSS config
779  */
780 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
781 {
782 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
783 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
784 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
785 	struct device *dev = ice_pf_to_dev(vf->pf);
786 	struct ice_hw *hw = &vf->pf->hw;
787 	struct ice_vsi *vsi;
788 
789 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
790 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
791 			vf->vf_id);
792 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
793 		goto error_param;
794 	}
795 
796 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
797 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
798 			vf->vf_id);
799 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
800 		goto error_param;
801 	}
802 
803 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
804 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
805 		goto error_param;
806 	}
807 
808 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
809 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
810 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
811 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
812 			vf->vf_id);
813 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
814 		goto error_param;
815 	}
816 
817 	vsi = ice_get_vf_vsi(vf);
818 	if (!vsi) {
819 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
820 		goto error_param;
821 	}
822 
823 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
824 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
825 		goto error_param;
826 	}
827 
828 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
829 		struct ice_vsi_ctx *ctx;
830 		u8 lut_type, hash_type;
831 		int status;
832 
833 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
834 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
835 				ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
836 
837 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
838 		if (!ctx) {
839 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
840 			goto error_param;
841 		}
842 
843 		ctx->info.q_opt_rss =
844 			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
845 			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
846 
847 		/* Preserve existing queueing option setting */
848 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
849 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
850 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
851 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
852 
853 		ctx->info.valid_sections =
854 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
855 
856 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
857 		if (status) {
858 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
859 				status, ice_aq_str(hw->adminq.sq_last_status));
860 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
861 		} else {
862 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
863 		}
864 
865 		kfree(ctx);
866 	} else {
867 		struct ice_rss_hash_cfg cfg;
868 
869 		/* Only check for none raw pattern case */
870 		if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
871 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
872 			goto error_param;
873 		}
874 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
875 		cfg.hash_flds = ICE_HASH_INVALID;
876 		cfg.hdr_type = ICE_RSS_ANY_HEADERS;
877 
878 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
879 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
880 			goto error_param;
881 		}
882 
883 		if (add) {
884 			if (ice_add_rss_cfg(hw, vsi, &cfg)) {
885 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
886 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
887 					vsi->vsi_num, v_ret);
888 			}
889 		} else {
890 			int status;
891 
892 			status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
893 			/* We just ignore -ENOENT, because if two configurations
894 			 * share the same profile remove one of them actually
895 			 * removes both, since the profile is deleted.
896 			 */
897 			if (status && status != -ENOENT) {
898 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
899 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
900 					vf->vf_id, status);
901 			}
902 		}
903 	}
904 
905 error_param:
906 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
907 }
908 
909 /**
910  * ice_vc_config_rss_key
911  * @vf: pointer to the VF info
912  * @msg: pointer to the msg buffer
913  *
914  * Configure the VF's RSS key
915  */
916 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
917 {
918 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
919 	struct virtchnl_rss_key *vrk =
920 		(struct virtchnl_rss_key *)msg;
921 	struct ice_vsi *vsi;
922 
923 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
924 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
925 		goto error_param;
926 	}
927 
928 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
929 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
930 		goto error_param;
931 	}
932 
933 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
934 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
935 		goto error_param;
936 	}
937 
938 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
939 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
940 		goto error_param;
941 	}
942 
943 	vsi = ice_get_vf_vsi(vf);
944 	if (!vsi) {
945 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
946 		goto error_param;
947 	}
948 
949 	if (ice_set_rss_key(vsi, vrk->key))
950 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
951 error_param:
952 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
953 				     NULL, 0);
954 }
955 
956 /**
957  * ice_vc_config_rss_lut
958  * @vf: pointer to the VF info
959  * @msg: pointer to the msg buffer
960  *
961  * Configure the VF's RSS LUT
962  */
963 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
964 {
965 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
966 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
967 	struct ice_vsi *vsi;
968 
969 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
970 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
971 		goto error_param;
972 	}
973 
974 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
975 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
976 		goto error_param;
977 	}
978 
979 	if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
980 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
981 		goto error_param;
982 	}
983 
984 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
985 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
986 		goto error_param;
987 	}
988 
989 	vsi = ice_get_vf_vsi(vf);
990 	if (!vsi) {
991 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
992 		goto error_param;
993 	}
994 
995 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
996 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
997 error_param:
998 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
999 				     NULL, 0);
1000 }
1001 
1002 /**
1003  * ice_vc_config_rss_hfunc
1004  * @vf: pointer to the VF info
1005  * @msg: pointer to the msg buffer
1006  *
1007  * Configure the VF's RSS Hash function
1008  */
1009 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1010 {
1011 	struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1012 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1013 	u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1014 	struct ice_vsi *vsi;
1015 
1016 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1017 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1018 		goto error_param;
1019 	}
1020 
1021 	if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1022 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1023 		goto error_param;
1024 	}
1025 
1026 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1027 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1028 		goto error_param;
1029 	}
1030 
1031 	vsi = ice_get_vf_vsi(vf);
1032 	if (!vsi) {
1033 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1034 		goto error_param;
1035 	}
1036 
1037 	if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1038 		hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1039 
1040 	if (ice_set_rss_hfunc(vsi, hfunc))
1041 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1042 error_param:
1043 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1044 				     NULL, 0);
1045 }
1046 
1047 /**
1048  * ice_vc_cfg_promiscuous_mode_msg
1049  * @vf: pointer to the VF info
1050  * @msg: pointer to the msg buffer
1051  *
1052  * called from the VF to configure VF VSIs promiscuous mode
1053  */
1054 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1055 {
1056 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1057 	bool rm_promisc, alluni = false, allmulti = false;
1058 	struct virtchnl_promisc_info *info =
1059 	    (struct virtchnl_promisc_info *)msg;
1060 	struct ice_vsi_vlan_ops *vlan_ops;
1061 	int mcast_err = 0, ucast_err = 0;
1062 	struct ice_pf *pf = vf->pf;
1063 	struct ice_vsi *vsi;
1064 	u8 mcast_m, ucast_m;
1065 	struct device *dev;
1066 	int ret = 0;
1067 
1068 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1069 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1070 		goto error_param;
1071 	}
1072 
1073 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1074 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1075 		goto error_param;
1076 	}
1077 
1078 	vsi = ice_get_vf_vsi(vf);
1079 	if (!vsi) {
1080 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1081 		goto error_param;
1082 	}
1083 
1084 	dev = ice_pf_to_dev(pf);
1085 	if (!ice_is_vf_trusted(vf)) {
1086 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1087 			vf->vf_id);
1088 		/* Leave v_ret alone, lie to the VF on purpose. */
1089 		goto error_param;
1090 	}
1091 
1092 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1093 		alluni = true;
1094 
1095 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1096 		allmulti = true;
1097 
1098 	rm_promisc = !allmulti && !alluni;
1099 
1100 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1101 	if (rm_promisc)
1102 		ret = vlan_ops->ena_rx_filtering(vsi);
1103 	else
1104 		ret = vlan_ops->dis_rx_filtering(vsi);
1105 	if (ret) {
1106 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1107 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1108 		goto error_param;
1109 	}
1110 
1111 	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1112 
1113 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1114 		if (alluni) {
1115 			/* in this case we're turning on promiscuous mode */
1116 			ret = ice_set_dflt_vsi(vsi);
1117 		} else {
1118 			/* in this case we're turning off promiscuous mode */
1119 			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1120 				ret = ice_clear_dflt_vsi(vsi);
1121 		}
1122 
1123 		/* in this case we're turning on/off only
1124 		 * allmulticast
1125 		 */
1126 		if (allmulti)
1127 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1128 		else
1129 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1130 
1131 		if (ret) {
1132 			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1133 				vf->vf_id, ret);
1134 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1135 			goto error_param;
1136 		}
1137 	} else {
1138 		if (alluni)
1139 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1140 		else
1141 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1142 
1143 		if (allmulti)
1144 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1145 		else
1146 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1147 
1148 		if (ucast_err || mcast_err)
1149 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1150 	}
1151 
1152 	if (!mcast_err) {
1153 		if (allmulti &&
1154 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1155 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1156 				 vf->vf_id);
1157 		else if (!allmulti &&
1158 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1159 					    vf->vf_states))
1160 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1161 				 vf->vf_id);
1162 	} else {
1163 		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1164 			vf->vf_id, mcast_err);
1165 	}
1166 
1167 	if (!ucast_err) {
1168 		if (alluni &&
1169 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1170 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1171 				 vf->vf_id);
1172 		else if (!alluni &&
1173 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1174 					    vf->vf_states))
1175 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1176 				 vf->vf_id);
1177 	} else {
1178 		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1179 			vf->vf_id, ucast_err);
1180 	}
1181 
1182 error_param:
1183 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1184 				     v_ret, NULL, 0);
1185 }
1186 
1187 /**
1188  * ice_vc_get_stats_msg
1189  * @vf: pointer to the VF info
1190  * @msg: pointer to the msg buffer
1191  *
1192  * called from the VF to get VSI stats
1193  */
1194 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1195 {
1196 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1197 	struct virtchnl_queue_select *vqs =
1198 		(struct virtchnl_queue_select *)msg;
1199 	struct ice_eth_stats stats = { 0 };
1200 	struct ice_vsi *vsi;
1201 
1202 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1203 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1204 		goto error_param;
1205 	}
1206 
1207 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1208 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1209 		goto error_param;
1210 	}
1211 
1212 	vsi = ice_get_vf_vsi(vf);
1213 	if (!vsi) {
1214 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1215 		goto error_param;
1216 	}
1217 
1218 	ice_update_eth_stats(vsi);
1219 
1220 	stats = vsi->eth_stats;
1221 
1222 error_param:
1223 	/* send the response to the VF */
1224 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1225 				     (u8 *)&stats, sizeof(stats));
1226 }
1227 
1228 /**
1229  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1230  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1231  *
1232  * Return true on successful validation, else false
1233  */
1234 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1235 {
1236 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1237 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1238 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1239 		return false;
1240 
1241 	return true;
1242 }
1243 
1244 /**
1245  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1246  * @vsi: VSI of the VF to configure
1247  * @q_idx: VF queue index used to determine the queue in the PF's space
1248  */
1249 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1250 {
1251 	struct ice_hw *hw = &vsi->back->hw;
1252 	u32 pfq = vsi->txq_map[q_idx];
1253 	u32 reg;
1254 
1255 	reg = rd32(hw, QINT_TQCTL(pfq));
1256 
1257 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1258 	 * this is most likely a poll mode VF driver, so don't enable an
1259 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1260 	 */
1261 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1262 		return;
1263 
1264 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1265 }
1266 
1267 /**
1268  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1269  * @vsi: VSI of the VF to configure
1270  * @q_idx: VF queue index used to determine the queue in the PF's space
1271  */
1272 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1273 {
1274 	struct ice_hw *hw = &vsi->back->hw;
1275 	u32 pfq = vsi->rxq_map[q_idx];
1276 	u32 reg;
1277 
1278 	reg = rd32(hw, QINT_RQCTL(pfq));
1279 
1280 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1281 	 * this is most likely a poll mode VF driver, so don't enable an
1282 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1283 	 */
1284 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1285 		return;
1286 
1287 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1288 }
1289 
1290 /**
1291  * ice_vc_ena_qs_msg
1292  * @vf: pointer to the VF info
1293  * @msg: pointer to the msg buffer
1294  *
1295  * called from the VF to enable all or specific queue(s)
1296  */
1297 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1298 {
1299 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1300 	struct virtchnl_queue_select *vqs =
1301 	    (struct virtchnl_queue_select *)msg;
1302 	struct ice_vsi *vsi;
1303 	unsigned long q_map;
1304 	u16 vf_q_id;
1305 
1306 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1307 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1308 		goto error_param;
1309 	}
1310 
1311 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1312 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1313 		goto error_param;
1314 	}
1315 
1316 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1317 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1318 		goto error_param;
1319 	}
1320 
1321 	vsi = ice_get_vf_vsi(vf);
1322 	if (!vsi) {
1323 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1324 		goto error_param;
1325 	}
1326 
1327 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1328 	 * Tx queue group list was configured and the context bits were
1329 	 * programmed using ice_vsi_cfg_txqs
1330 	 */
1331 	q_map = vqs->rx_queues;
1332 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1333 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1334 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1335 			goto error_param;
1336 		}
1337 
1338 		/* Skip queue if enabled */
1339 		if (test_bit(vf_q_id, vf->rxq_ena))
1340 			continue;
1341 
1342 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1343 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1344 				vf_q_id, vsi->vsi_num);
1345 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1346 			goto error_param;
1347 		}
1348 
1349 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1350 		set_bit(vf_q_id, vf->rxq_ena);
1351 	}
1352 
1353 	q_map = vqs->tx_queues;
1354 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1355 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1356 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1357 			goto error_param;
1358 		}
1359 
1360 		/* Skip queue if enabled */
1361 		if (test_bit(vf_q_id, vf->txq_ena))
1362 			continue;
1363 
1364 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1365 		set_bit(vf_q_id, vf->txq_ena);
1366 	}
1367 
1368 	/* Set flag to indicate that queues are enabled */
1369 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1370 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1371 
1372 error_param:
1373 	/* send the response to the VF */
1374 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1375 				     NULL, 0);
1376 }
1377 
1378 /**
1379  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1380  * @vf: VF to disable queue for
1381  * @vsi: VSI for the VF
1382  * @q_id: VF relative (0-based) queue ID
1383  *
1384  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1385  * disabled then clear q_id bit in the enabled queues bitmap and return
1386  * success. Otherwise return error.
1387  */
1388 static int
1389 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1390 {
1391 	struct ice_txq_meta txq_meta = { 0 };
1392 	struct ice_tx_ring *ring;
1393 	int err;
1394 
1395 	if (!test_bit(q_id, vf->txq_ena))
1396 		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1397 			q_id, vsi->vsi_num);
1398 
1399 	ring = vsi->tx_rings[q_id];
1400 	if (!ring)
1401 		return -EINVAL;
1402 
1403 	ice_fill_txq_meta(vsi, ring, &txq_meta);
1404 
1405 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1406 	if (err) {
1407 		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1408 			q_id, vsi->vsi_num);
1409 		return err;
1410 	}
1411 
1412 	/* Clear enabled queues flag */
1413 	clear_bit(q_id, vf->txq_ena);
1414 
1415 	return 0;
1416 }
1417 
1418 /**
1419  * ice_vc_dis_qs_msg
1420  * @vf: pointer to the VF info
1421  * @msg: pointer to the msg buffer
1422  *
1423  * called from the VF to disable all or specific queue(s)
1424  */
1425 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1426 {
1427 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1428 	struct virtchnl_queue_select *vqs =
1429 	    (struct virtchnl_queue_select *)msg;
1430 	struct ice_vsi *vsi;
1431 	unsigned long q_map;
1432 	u16 vf_q_id;
1433 
1434 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1435 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1436 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1437 		goto error_param;
1438 	}
1439 
1440 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1441 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1442 		goto error_param;
1443 	}
1444 
1445 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1446 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1447 		goto error_param;
1448 	}
1449 
1450 	vsi = ice_get_vf_vsi(vf);
1451 	if (!vsi) {
1452 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1453 		goto error_param;
1454 	}
1455 
1456 	if (vqs->tx_queues) {
1457 		q_map = vqs->tx_queues;
1458 
1459 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1460 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1461 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1462 				goto error_param;
1463 			}
1464 
1465 			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1466 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1467 				goto error_param;
1468 			}
1469 		}
1470 	}
1471 
1472 	q_map = vqs->rx_queues;
1473 	/* speed up Rx queue disable by batching them if possible */
1474 	if (q_map &&
1475 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1476 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1477 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1478 				vsi->vsi_num);
1479 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1480 			goto error_param;
1481 		}
1482 
1483 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1484 	} else if (q_map) {
1485 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1486 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1487 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1488 				goto error_param;
1489 			}
1490 
1491 			/* Skip queue if not enabled */
1492 			if (!test_bit(vf_q_id, vf->rxq_ena))
1493 				continue;
1494 
1495 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1496 						     true)) {
1497 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1498 					vf_q_id, vsi->vsi_num);
1499 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1500 				goto error_param;
1501 			}
1502 
1503 			/* Clear enabled queues flag */
1504 			clear_bit(vf_q_id, vf->rxq_ena);
1505 		}
1506 	}
1507 
1508 	/* Clear enabled queues flag */
1509 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1510 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1511 
1512 error_param:
1513 	/* send the response to the VF */
1514 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1515 				     NULL, 0);
1516 }
1517 
1518 /**
1519  * ice_cfg_interrupt
1520  * @vf: pointer to the VF info
1521  * @vsi: the VSI being configured
1522  * @vector_id: vector ID
1523  * @map: vector map for mapping vectors to queues
1524  * @q_vector: structure for interrupt vector
1525  * configure the IRQ to queue map
1526  */
1527 static int
1528 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1529 		  struct virtchnl_vector_map *map,
1530 		  struct ice_q_vector *q_vector)
1531 {
1532 	u16 vsi_q_id, vsi_q_id_idx;
1533 	unsigned long qmap;
1534 
1535 	q_vector->num_ring_rx = 0;
1536 	q_vector->num_ring_tx = 0;
1537 
1538 	qmap = map->rxq_map;
1539 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1540 		vsi_q_id = vsi_q_id_idx;
1541 
1542 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1543 			return VIRTCHNL_STATUS_ERR_PARAM;
1544 
1545 		q_vector->num_ring_rx++;
1546 		q_vector->rx.itr_idx = map->rxitr_idx;
1547 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1548 		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1549 				      q_vector->rx.itr_idx);
1550 	}
1551 
1552 	qmap = map->txq_map;
1553 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1554 		vsi_q_id = vsi_q_id_idx;
1555 
1556 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1557 			return VIRTCHNL_STATUS_ERR_PARAM;
1558 
1559 		q_vector->num_ring_tx++;
1560 		q_vector->tx.itr_idx = map->txitr_idx;
1561 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1562 		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1563 				      q_vector->tx.itr_idx);
1564 	}
1565 
1566 	return VIRTCHNL_STATUS_SUCCESS;
1567 }
1568 
1569 /**
1570  * ice_vc_cfg_irq_map_msg
1571  * @vf: pointer to the VF info
1572  * @msg: pointer to the msg buffer
1573  *
1574  * called from the VF to configure the IRQ to queue map
1575  */
1576 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1577 {
1578 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1579 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1580 	struct virtchnl_irq_map_info *irqmap_info;
1581 	struct virtchnl_vector_map *map;
1582 	struct ice_vsi *vsi;
1583 	int i;
1584 
1585 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1586 	num_q_vectors_mapped = irqmap_info->num_vectors;
1587 
1588 	/* Check to make sure number of VF vectors mapped is not greater than
1589 	 * number of VF vectors originally allocated, and check that
1590 	 * there is actually at least a single VF queue vector mapped
1591 	 */
1592 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1593 	    vf->num_msix < num_q_vectors_mapped ||
1594 	    !num_q_vectors_mapped) {
1595 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1596 		goto error_param;
1597 	}
1598 
1599 	vsi = ice_get_vf_vsi(vf);
1600 	if (!vsi) {
1601 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1602 		goto error_param;
1603 	}
1604 
1605 	for (i = 0; i < num_q_vectors_mapped; i++) {
1606 		struct ice_q_vector *q_vector;
1607 
1608 		map = &irqmap_info->vecmap[i];
1609 
1610 		vector_id = map->vector_id;
1611 		vsi_id = map->vsi_id;
1612 		/* vector_id is always 0-based for each VF, and can never be
1613 		 * larger than or equal to the max allowed interrupts per VF
1614 		 */
1615 		if (!(vector_id < vf->num_msix) ||
1616 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1617 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1618 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1619 			goto error_param;
1620 		}
1621 
1622 		/* No need to map VF miscellaneous or rogue vector */
1623 		if (!vector_id)
1624 			continue;
1625 
1626 		/* Subtract non queue vector from vector_id passed by VF
1627 		 * to get actual number of VSI queue vector array index
1628 		 */
1629 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1630 		if (!q_vector) {
1631 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1632 			goto error_param;
1633 		}
1634 
1635 		/* lookout for the invalid queue index */
1636 		v_ret = (enum virtchnl_status_code)
1637 			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1638 		if (v_ret)
1639 			goto error_param;
1640 	}
1641 
1642 error_param:
1643 	/* send the response to the VF */
1644 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1645 				     NULL, 0);
1646 }
1647 
1648 /**
1649  * ice_vc_cfg_qs_msg
1650  * @vf: pointer to the VF info
1651  * @msg: pointer to the msg buffer
1652  *
1653  * called from the VF to configure the Rx/Tx queues
1654  */
1655 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1656 {
1657 	struct virtchnl_vsi_queue_config_info *qci =
1658 	    (struct virtchnl_vsi_queue_config_info *)msg;
1659 	struct virtchnl_queue_pair_info *qpi;
1660 	struct ice_pf *pf = vf->pf;
1661 	struct ice_lag *lag;
1662 	struct ice_vsi *vsi;
1663 	u8 act_prt, pri_prt;
1664 	int i = -1, q_idx;
1665 
1666 	lag = pf->lag;
1667 	mutex_lock(&pf->lag_mutex);
1668 	act_prt = ICE_LAG_INVALID_PORT;
1669 	pri_prt = pf->hw.port_info->lport;
1670 	if (lag && lag->bonded && lag->primary) {
1671 		act_prt = lag->active_port;
1672 		if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1673 		    lag->upper_netdev)
1674 			ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1675 		else
1676 			act_prt = ICE_LAG_INVALID_PORT;
1677 	}
1678 
1679 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1680 		goto error_param;
1681 
1682 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1683 		goto error_param;
1684 
1685 	vsi = ice_get_vf_vsi(vf);
1686 	if (!vsi)
1687 		goto error_param;
1688 
1689 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1690 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1691 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1692 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1693 		goto error_param;
1694 	}
1695 
1696 	for (i = 0; i < qci->num_queue_pairs; i++) {
1697 		if (!qci->qpair[i].rxq.crc_disable)
1698 			continue;
1699 
1700 		if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1701 		    vf->vlan_strip_ena)
1702 			goto error_param;
1703 	}
1704 
1705 	for (i = 0; i < qci->num_queue_pairs; i++) {
1706 		qpi = &qci->qpair[i];
1707 		if (qpi->txq.vsi_id != qci->vsi_id ||
1708 		    qpi->rxq.vsi_id != qci->vsi_id ||
1709 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1710 		    qpi->txq.headwb_enabled ||
1711 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1712 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1713 		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1714 			goto error_param;
1715 		}
1716 
1717 		q_idx = qpi->rxq.queue_id;
1718 
1719 		/* make sure selected "q_idx" is in valid range of queues
1720 		 * for selected "vsi"
1721 		 */
1722 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1723 			goto error_param;
1724 		}
1725 
1726 		/* copy Tx queue info from VF into VSI */
1727 		if (qpi->txq.ring_len > 0) {
1728 			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1729 			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1730 
1731 			/* Disable any existing queue first */
1732 			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1733 				goto error_param;
1734 
1735 			/* Configure a queue with the requested settings */
1736 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1737 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1738 					 vf->vf_id, i);
1739 				goto error_param;
1740 			}
1741 		}
1742 
1743 		/* copy Rx queue info from VF into VSI */
1744 		if (qpi->rxq.ring_len > 0) {
1745 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1746 			u32 rxdid;
1747 
1748 			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1749 			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1750 
1751 			if (qpi->rxq.crc_disable)
1752 				vsi->rx_rings[q_idx]->flags |=
1753 					ICE_RX_FLAGS_CRC_STRIP_DIS;
1754 			else
1755 				vsi->rx_rings[q_idx]->flags &=
1756 					~ICE_RX_FLAGS_CRC_STRIP_DIS;
1757 
1758 			if (qpi->rxq.databuffer_size != 0 &&
1759 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1760 			     qpi->rxq.databuffer_size < 1024))
1761 				goto error_param;
1762 			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1763 			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1764 			if (qpi->rxq.max_pkt_size > max_frame_size ||
1765 			    qpi->rxq.max_pkt_size < 64)
1766 				goto error_param;
1767 
1768 			vsi->max_frame = qpi->rxq.max_pkt_size;
1769 			/* add space for the port VLAN since the VF driver is
1770 			 * not expected to account for it in the MTU
1771 			 * calculation
1772 			 */
1773 			if (ice_vf_is_port_vlan_ena(vf))
1774 				vsi->max_frame += VLAN_HLEN;
1775 
1776 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1777 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1778 					 vf->vf_id, i);
1779 				goto error_param;
1780 			}
1781 
1782 			/* If Rx flex desc is supported, select RXDID for Rx
1783 			 * queues. Otherwise, use legacy 32byte descriptor
1784 			 * format. Legacy 16byte descriptor is not supported.
1785 			 * If this RXDID is selected, return error.
1786 			 */
1787 			if (vf->driver_caps &
1788 			    VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1789 				rxdid = qpi->rxq.rxdid;
1790 				if (!(BIT(rxdid) & pf->supported_rxdids))
1791 					goto error_param;
1792 			} else {
1793 				rxdid = ICE_RXDID_LEGACY_1;
1794 			}
1795 
1796 			ice_write_qrxflxp_cntxt(&vsi->back->hw,
1797 						vsi->rxq_map[q_idx],
1798 						rxdid, 0x03, false);
1799 		}
1800 	}
1801 
1802 	if (lag && lag->bonded && lag->primary &&
1803 	    act_prt != ICE_LAG_INVALID_PORT)
1804 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1805 	mutex_unlock(&pf->lag_mutex);
1806 
1807 	/* send the response to the VF */
1808 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1809 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1810 error_param:
1811 	/* disable whatever we can */
1812 	for (; i >= 0; i--) {
1813 		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1814 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1815 				vf->vf_id, i);
1816 		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1817 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1818 				vf->vf_id, i);
1819 	}
1820 
1821 	if (lag && lag->bonded && lag->primary &&
1822 	    act_prt != ICE_LAG_INVALID_PORT)
1823 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1824 	mutex_unlock(&pf->lag_mutex);
1825 
1826 	ice_lag_move_new_vf_nodes(vf);
1827 
1828 	/* send the response to the VF */
1829 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1830 				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1831 }
1832 
1833 /**
1834  * ice_can_vf_change_mac
1835  * @vf: pointer to the VF info
1836  *
1837  * Return true if the VF is allowed to change its MAC filters, false otherwise
1838  */
1839 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1840 {
1841 	/* If the VF MAC address has been set administratively (via the
1842 	 * ndo_set_vf_mac command), then deny permission to the VF to
1843 	 * add/delete unicast MAC addresses, unless the VF is trusted
1844 	 */
1845 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1846 		return false;
1847 
1848 	return true;
1849 }
1850 
1851 /**
1852  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1853  * @vc_ether_addr: used to extract the type
1854  */
1855 static u8
1856 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1857 {
1858 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1859 }
1860 
1861 /**
1862  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1863  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1864  */
1865 static bool
1866 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1867 {
1868 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1869 
1870 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1871 }
1872 
1873 /**
1874  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1875  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1876  *
1877  * This function should only be called when the MAC address in
1878  * virtchnl_ether_addr is a valid unicast MAC
1879  */
1880 static bool
1881 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1882 {
1883 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1884 
1885 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1886 }
1887 
1888 /**
1889  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1890  * @vf: VF to update
1891  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1892  */
1893 static void
1894 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1895 {
1896 	u8 *mac_addr = vc_ether_addr->addr;
1897 
1898 	if (!is_valid_ether_addr(mac_addr))
1899 		return;
1900 
1901 	/* only allow legacy VF drivers to set the device and hardware MAC if it
1902 	 * is zero and allow new VF drivers to set the hardware MAC if the type
1903 	 * was correctly specified over VIRTCHNL
1904 	 */
1905 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1906 	     is_zero_ether_addr(vf->hw_lan_addr)) ||
1907 	    ice_is_vc_addr_primary(vc_ether_addr)) {
1908 		ether_addr_copy(vf->dev_lan_addr, mac_addr);
1909 		ether_addr_copy(vf->hw_lan_addr, mac_addr);
1910 	}
1911 
1912 	/* hardware and device MACs are already set, but its possible that the
1913 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1914 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1915 	 * away for the legacy VF driver case as it will be updated in the
1916 	 * delete flow for this case
1917 	 */
1918 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1919 		ether_addr_copy(vf->legacy_last_added_umac.addr,
1920 				mac_addr);
1921 		vf->legacy_last_added_umac.time_modified = jiffies;
1922 	}
1923 }
1924 
1925 /**
1926  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1927  * @vf: pointer to the VF info
1928  * @vsi: pointer to the VF's VSI
1929  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1930  */
1931 static int
1932 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1933 		    struct virtchnl_ether_addr *vc_ether_addr)
1934 {
1935 	struct device *dev = ice_pf_to_dev(vf->pf);
1936 	u8 *mac_addr = vc_ether_addr->addr;
1937 	int ret;
1938 
1939 	/* device MAC already added */
1940 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1941 		return 0;
1942 
1943 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1944 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1945 		return -EPERM;
1946 	}
1947 
1948 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1949 	if (ret == -EEXIST) {
1950 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1951 			vf->vf_id);
1952 		/* don't return since we might need to update
1953 		 * the primary MAC in ice_vfhw_mac_add() below
1954 		 */
1955 	} else if (ret) {
1956 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1957 			mac_addr, vf->vf_id, ret);
1958 		return ret;
1959 	} else {
1960 		vf->num_mac++;
1961 	}
1962 
1963 	ice_vfhw_mac_add(vf, vc_ether_addr);
1964 
1965 	return ret;
1966 }
1967 
1968 /**
1969  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1970  * @last_added_umac: structure used to check expiration
1971  */
1972 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1973 {
1974 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1975 	return time_is_before_jiffies(last_added_umac->time_modified +
1976 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1977 }
1978 
1979 /**
1980  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1981  * @vf: VF to update
1982  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1983  *
1984  * only update cached hardware MAC for legacy VF drivers on delete
1985  * because we cannot guarantee order/type of MAC from the VF driver
1986  */
1987 static void
1988 ice_update_legacy_cached_mac(struct ice_vf *vf,
1989 			     struct virtchnl_ether_addr *vc_ether_addr)
1990 {
1991 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1992 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1993 		return;
1994 
1995 	ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1996 	ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1997 }
1998 
1999 /**
2000  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
2001  * @vf: VF to update
2002  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
2003  */
2004 static void
2005 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2006 {
2007 	u8 *mac_addr = vc_ether_addr->addr;
2008 
2009 	if (!is_valid_ether_addr(mac_addr) ||
2010 	    !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2011 		return;
2012 
2013 	/* allow the device MAC to be repopulated in the add flow and don't
2014 	 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2015 	 * to be persistent on VM reboot and across driver unload/load, which
2016 	 * won't work if we clear the hardware MAC here
2017 	 */
2018 	eth_zero_addr(vf->dev_lan_addr);
2019 
2020 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
2021 }
2022 
2023 /**
2024  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2025  * @vf: pointer to the VF info
2026  * @vsi: pointer to the VF's VSI
2027  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2028  */
2029 static int
2030 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2031 		    struct virtchnl_ether_addr *vc_ether_addr)
2032 {
2033 	struct device *dev = ice_pf_to_dev(vf->pf);
2034 	u8 *mac_addr = vc_ether_addr->addr;
2035 	int status;
2036 
2037 	if (!ice_can_vf_change_mac(vf) &&
2038 	    ether_addr_equal(vf->dev_lan_addr, mac_addr))
2039 		return 0;
2040 
2041 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2042 	if (status == -ENOENT) {
2043 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2044 			vf->vf_id);
2045 		return -ENOENT;
2046 	} else if (status) {
2047 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2048 			mac_addr, vf->vf_id, status);
2049 		return -EIO;
2050 	}
2051 
2052 	ice_vfhw_mac_del(vf, vc_ether_addr);
2053 
2054 	vf->num_mac--;
2055 
2056 	return 0;
2057 }
2058 
2059 /**
2060  * ice_vc_handle_mac_addr_msg
2061  * @vf: pointer to the VF info
2062  * @msg: pointer to the msg buffer
2063  * @set: true if MAC filters are being set, false otherwise
2064  *
2065  * add guest MAC address filter
2066  */
2067 static int
2068 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2069 {
2070 	int (*ice_vc_cfg_mac)
2071 		(struct ice_vf *vf, struct ice_vsi *vsi,
2072 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
2073 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2074 	struct virtchnl_ether_addr_list *al =
2075 	    (struct virtchnl_ether_addr_list *)msg;
2076 	struct ice_pf *pf = vf->pf;
2077 	enum virtchnl_ops vc_op;
2078 	struct ice_vsi *vsi;
2079 	int i;
2080 
2081 	if (set) {
2082 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2083 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
2084 	} else {
2085 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2086 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
2087 	}
2088 
2089 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2090 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2091 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2092 		goto handle_mac_exit;
2093 	}
2094 
2095 	/* If this VF is not privileged, then we can't add more than a
2096 	 * limited number of addresses. Check to make sure that the
2097 	 * additions do not push us over the limit.
2098 	 */
2099 	if (set && !ice_is_vf_trusted(vf) &&
2100 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2101 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2102 			vf->vf_id);
2103 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2104 		goto handle_mac_exit;
2105 	}
2106 
2107 	vsi = ice_get_vf_vsi(vf);
2108 	if (!vsi) {
2109 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2110 		goto handle_mac_exit;
2111 	}
2112 
2113 	for (i = 0; i < al->num_elements; i++) {
2114 		u8 *mac_addr = al->list[i].addr;
2115 		int result;
2116 
2117 		if (is_broadcast_ether_addr(mac_addr) ||
2118 		    is_zero_ether_addr(mac_addr))
2119 			continue;
2120 
2121 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2122 		if (result == -EEXIST || result == -ENOENT) {
2123 			continue;
2124 		} else if (result) {
2125 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2126 			goto handle_mac_exit;
2127 		}
2128 	}
2129 
2130 handle_mac_exit:
2131 	/* send the response to the VF */
2132 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2133 }
2134 
2135 /**
2136  * ice_vc_add_mac_addr_msg
2137  * @vf: pointer to the VF info
2138  * @msg: pointer to the msg buffer
2139  *
2140  * add guest MAC address filter
2141  */
2142 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2143 {
2144 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2145 }
2146 
2147 /**
2148  * ice_vc_del_mac_addr_msg
2149  * @vf: pointer to the VF info
2150  * @msg: pointer to the msg buffer
2151  *
2152  * remove guest MAC address filter
2153  */
2154 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2155 {
2156 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2157 }
2158 
2159 /**
2160  * ice_vc_request_qs_msg
2161  * @vf: pointer to the VF info
2162  * @msg: pointer to the msg buffer
2163  *
2164  * VFs get a default number of queues but can use this message to request a
2165  * different number. If the request is successful, PF will reset the VF and
2166  * return 0. If unsuccessful, PF will send message informing VF of number of
2167  * available queue pairs via virtchnl message response to VF.
2168  */
2169 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2170 {
2171 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2172 	struct virtchnl_vf_res_request *vfres =
2173 		(struct virtchnl_vf_res_request *)msg;
2174 	u16 req_queues = vfres->num_queue_pairs;
2175 	struct ice_pf *pf = vf->pf;
2176 	u16 max_allowed_vf_queues;
2177 	u16 tx_rx_queue_left;
2178 	struct device *dev;
2179 	u16 cur_queues;
2180 
2181 	dev = ice_pf_to_dev(pf);
2182 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2183 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2184 		goto error_param;
2185 	}
2186 
2187 	cur_queues = vf->num_vf_qs;
2188 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2189 				 ice_get_avail_rxq_count(pf));
2190 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2191 	if (!req_queues) {
2192 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2193 			vf->vf_id);
2194 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2195 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2196 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2197 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2198 	} else if (req_queues > cur_queues &&
2199 		   req_queues - cur_queues > tx_rx_queue_left) {
2200 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2201 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2202 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2203 					       ICE_MAX_RSS_QS_PER_VF);
2204 	} else {
2205 		/* request is successful, then reset VF */
2206 		vf->num_req_qs = req_queues;
2207 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2208 		dev_info(dev, "VF %d granted request of %u queues.\n",
2209 			 vf->vf_id, req_queues);
2210 		return 0;
2211 	}
2212 
2213 error_param:
2214 	/* send the response to the VF */
2215 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2216 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2217 }
2218 
2219 /**
2220  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2221  * @caps: VF driver negotiated capabilities
2222  *
2223  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2224  */
2225 static bool ice_vf_vlan_offload_ena(u32 caps)
2226 {
2227 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2228 }
2229 
2230 /**
2231  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2232  * @vf: VF used to determine if VLAN promiscuous config is allowed
2233  */
2234 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2235 {
2236 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2237 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2238 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2239 		return true;
2240 
2241 	return false;
2242 }
2243 
2244 /**
2245  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2246  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2247  * @vlan: VLAN used to enable VLAN promiscuous
2248  *
2249  * This function should only be called if VLAN promiscuous mode is allowed,
2250  * which can be determined via ice_is_vlan_promisc_allowed().
2251  */
2252 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2253 {
2254 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2255 	int status;
2256 
2257 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2258 					  vlan->vid);
2259 	if (status && status != -EEXIST)
2260 		return status;
2261 
2262 	return 0;
2263 }
2264 
2265 /**
2266  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2267  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2268  * @vlan: VLAN used to disable VLAN promiscuous
2269  *
2270  * This function should only be called if VLAN promiscuous mode is allowed,
2271  * which can be determined via ice_is_vlan_promisc_allowed().
2272  */
2273 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2274 {
2275 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2276 	int status;
2277 
2278 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2279 					    vlan->vid);
2280 	if (status && status != -ENOENT)
2281 		return status;
2282 
2283 	return 0;
2284 }
2285 
2286 /**
2287  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2288  * @vf: VF to check against
2289  * @vsi: VF's VSI
2290  *
2291  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2292  * wants to, so return false.
2293  *
2294  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2295  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2296  */
2297 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2298 {
2299 	if (ice_is_vf_trusted(vf))
2300 		return false;
2301 
2302 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2303 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2304 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2305 }
2306 
2307 /**
2308  * ice_vc_process_vlan_msg
2309  * @vf: pointer to the VF info
2310  * @msg: pointer to the msg buffer
2311  * @add_v: Add VLAN if true, otherwise delete VLAN
2312  *
2313  * Process virtchnl op to add or remove programmed guest VLAN ID
2314  */
2315 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2316 {
2317 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2318 	struct virtchnl_vlan_filter_list *vfl =
2319 	    (struct virtchnl_vlan_filter_list *)msg;
2320 	struct ice_pf *pf = vf->pf;
2321 	bool vlan_promisc = false;
2322 	struct ice_vsi *vsi;
2323 	struct device *dev;
2324 	int status = 0;
2325 	int i;
2326 
2327 	dev = ice_pf_to_dev(pf);
2328 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2329 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2330 		goto error_param;
2331 	}
2332 
2333 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2334 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2335 		goto error_param;
2336 	}
2337 
2338 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2339 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2340 		goto error_param;
2341 	}
2342 
2343 	for (i = 0; i < vfl->num_elements; i++) {
2344 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2345 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2346 			dev_err(dev, "invalid VF VLAN id %d\n",
2347 				vfl->vlan_id[i]);
2348 			goto error_param;
2349 		}
2350 	}
2351 
2352 	vsi = ice_get_vf_vsi(vf);
2353 	if (!vsi) {
2354 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2355 		goto error_param;
2356 	}
2357 
2358 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2359 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2360 			 vf->vf_id);
2361 		/* There is no need to let VF know about being not trusted,
2362 		 * so we can just return success message here
2363 		 */
2364 		goto error_param;
2365 	}
2366 
2367 	/* in DVM a VF can add/delete inner VLAN filters when
2368 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2369 	 */
2370 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2371 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2372 		goto error_param;
2373 	}
2374 
2375 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2376 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2377 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2378 	 */
2379 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2380 		!ice_is_dvm_ena(&pf->hw) &&
2381 		!ice_vf_is_port_vlan_ena(vf);
2382 
2383 	if (add_v) {
2384 		for (i = 0; i < vfl->num_elements; i++) {
2385 			u16 vid = vfl->vlan_id[i];
2386 			struct ice_vlan vlan;
2387 
2388 			if (ice_vf_has_max_vlans(vf, vsi)) {
2389 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2390 					 vf->vf_id);
2391 				/* There is no need to let VF know about being
2392 				 * not trusted, so we can just return success
2393 				 * message here as well.
2394 				 */
2395 				goto error_param;
2396 			}
2397 
2398 			/* we add VLAN 0 by default for each VF so we can enable
2399 			 * Tx VLAN anti-spoof without triggering MDD events so
2400 			 * we don't need to add it again here
2401 			 */
2402 			if (!vid)
2403 				continue;
2404 
2405 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2406 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2407 			if (status) {
2408 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2409 				goto error_param;
2410 			}
2411 
2412 			/* Enable VLAN filtering on first non-zero VLAN */
2413 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2414 				if (vf->spoofchk) {
2415 					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2416 					if (status) {
2417 						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2418 						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2419 							vid, status);
2420 						goto error_param;
2421 					}
2422 				}
2423 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2424 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2425 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2426 						vid, status);
2427 					goto error_param;
2428 				}
2429 			} else if (vlan_promisc) {
2430 				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2431 				if (status) {
2432 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2433 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2434 						vid, status);
2435 				}
2436 			}
2437 		}
2438 	} else {
2439 		/* In case of non_trusted VF, number of VLAN elements passed
2440 		 * to PF for removal might be greater than number of VLANs
2441 		 * filter programmed for that VF - So, use actual number of
2442 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2443 		 * removing VLAN that doesn't exist, which result to sending
2444 		 * erroneous failed message back to the VF
2445 		 */
2446 		int num_vf_vlan;
2447 
2448 		num_vf_vlan = vsi->num_vlan;
2449 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2450 			u16 vid = vfl->vlan_id[i];
2451 			struct ice_vlan vlan;
2452 
2453 			/* we add VLAN 0 by default for each VF so we can enable
2454 			 * Tx VLAN anti-spoof without triggering MDD events so
2455 			 * we don't want a VIRTCHNL request to remove it
2456 			 */
2457 			if (!vid)
2458 				continue;
2459 
2460 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2461 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2462 			if (status) {
2463 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2464 				goto error_param;
2465 			}
2466 
2467 			/* Disable VLAN filtering when only VLAN 0 is left */
2468 			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2469 				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2470 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2471 			}
2472 
2473 			if (vlan_promisc)
2474 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2475 		}
2476 	}
2477 
2478 error_param:
2479 	/* send the response to the VF */
2480 	if (add_v)
2481 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2482 					     NULL, 0);
2483 	else
2484 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2485 					     NULL, 0);
2486 }
2487 
2488 /**
2489  * ice_vc_add_vlan_msg
2490  * @vf: pointer to the VF info
2491  * @msg: pointer to the msg buffer
2492  *
2493  * Add and program guest VLAN ID
2494  */
2495 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2496 {
2497 	return ice_vc_process_vlan_msg(vf, msg, true);
2498 }
2499 
2500 /**
2501  * ice_vc_remove_vlan_msg
2502  * @vf: pointer to the VF info
2503  * @msg: pointer to the msg buffer
2504  *
2505  * remove programmed guest VLAN ID
2506  */
2507 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2508 {
2509 	return ice_vc_process_vlan_msg(vf, msg, false);
2510 }
2511 
2512 /**
2513  * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2514  * @vsi: pointer to the VF VSI info
2515  */
2516 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2517 {
2518 	unsigned int i;
2519 
2520 	ice_for_each_alloc_rxq(vsi, i)
2521 		if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2522 			return true;
2523 
2524 	return false;
2525 }
2526 
2527 /**
2528  * ice_vc_ena_vlan_stripping
2529  * @vf: pointer to the VF info
2530  *
2531  * Enable VLAN header stripping for a given VF
2532  */
2533 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2534 {
2535 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2536 	struct ice_vsi *vsi;
2537 
2538 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2539 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2540 		goto error_param;
2541 	}
2542 
2543 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2544 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2545 		goto error_param;
2546 	}
2547 
2548 	vsi = ice_get_vf_vsi(vf);
2549 	if (!vsi) {
2550 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2551 		goto error_param;
2552 	}
2553 
2554 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2555 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2556 	else
2557 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2558 
2559 error_param:
2560 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2561 				     v_ret, NULL, 0);
2562 }
2563 
2564 /**
2565  * ice_vc_dis_vlan_stripping
2566  * @vf: pointer to the VF info
2567  *
2568  * Disable VLAN header stripping for a given VF
2569  */
2570 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2571 {
2572 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2573 	struct ice_vsi *vsi;
2574 
2575 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2576 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2577 		goto error_param;
2578 	}
2579 
2580 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2581 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2582 		goto error_param;
2583 	}
2584 
2585 	vsi = ice_get_vf_vsi(vf);
2586 	if (!vsi) {
2587 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2588 		goto error_param;
2589 	}
2590 
2591 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2592 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2593 	else
2594 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2595 
2596 error_param:
2597 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2598 				     v_ret, NULL, 0);
2599 }
2600 
2601 /**
2602  * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2603  * @vf: pointer to the VF info
2604  */
2605 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2606 {
2607 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2608 	struct virtchnl_rss_hena *vrh = NULL;
2609 	int len = 0, ret;
2610 
2611 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2612 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2613 		goto err;
2614 	}
2615 
2616 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2617 		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2618 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2619 		goto err;
2620 	}
2621 
2622 	len = sizeof(struct virtchnl_rss_hena);
2623 	vrh = kzalloc(len, GFP_KERNEL);
2624 	if (!vrh) {
2625 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2626 		len = 0;
2627 		goto err;
2628 	}
2629 
2630 	vrh->hena = ICE_DEFAULT_RSS_HENA;
2631 err:
2632 	/* send the response back to the VF */
2633 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2634 				    (u8 *)vrh, len);
2635 	kfree(vrh);
2636 	return ret;
2637 }
2638 
2639 /**
2640  * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2641  * @vf: pointer to the VF info
2642  * @msg: pointer to the msg buffer
2643  */
2644 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2645 {
2646 	struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2647 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2648 	struct ice_pf *pf = vf->pf;
2649 	struct ice_vsi *vsi;
2650 	struct device *dev;
2651 	int status;
2652 
2653 	dev = ice_pf_to_dev(pf);
2654 
2655 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2656 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2657 		goto err;
2658 	}
2659 
2660 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2661 		dev_err(dev, "RSS not supported by PF\n");
2662 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2663 		goto err;
2664 	}
2665 
2666 	vsi = ice_get_vf_vsi(vf);
2667 	if (!vsi) {
2668 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2669 		goto err;
2670 	}
2671 
2672 	/* clear all previously programmed RSS configuration to allow VF drivers
2673 	 * the ability to customize the RSS configuration and/or completely
2674 	 * disable RSS
2675 	 */
2676 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2677 	if (status && !vrh->hena) {
2678 		/* only report failure to clear the current RSS configuration if
2679 		 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2680 		 */
2681 		v_ret = ice_err_to_virt_err(status);
2682 		goto err;
2683 	} else if (status) {
2684 		/* allow the VF to update the RSS configuration even on failure
2685 		 * to clear the current RSS confguration in an attempt to keep
2686 		 * RSS in a working state
2687 		 */
2688 		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2689 			 vf->vf_id);
2690 	}
2691 
2692 	if (vrh->hena) {
2693 		status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
2694 		v_ret = ice_err_to_virt_err(status);
2695 	}
2696 
2697 	/* send the response to the VF */
2698 err:
2699 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2700 				     NULL, 0);
2701 }
2702 
2703 /**
2704  * ice_vc_query_rxdid - query RXDID supported by DDP package
2705  * @vf: pointer to VF info
2706  *
2707  * Called from VF to query a bitmap of supported flexible
2708  * descriptor RXDIDs of a DDP package.
2709  */
2710 static int ice_vc_query_rxdid(struct ice_vf *vf)
2711 {
2712 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2713 	struct virtchnl_supported_rxdids *rxdid = NULL;
2714 	struct ice_hw *hw = &vf->pf->hw;
2715 	struct ice_pf *pf = vf->pf;
2716 	int len = 0;
2717 	int ret, i;
2718 	u32 regval;
2719 
2720 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2721 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2722 		goto err;
2723 	}
2724 
2725 	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2726 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2727 		goto err;
2728 	}
2729 
2730 	len = sizeof(struct virtchnl_supported_rxdids);
2731 	rxdid = kzalloc(len, GFP_KERNEL);
2732 	if (!rxdid) {
2733 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2734 		len = 0;
2735 		goto err;
2736 	}
2737 
2738 	/* RXDIDs supported by DDP package can be read from the register
2739 	 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2740 	 * is not listed in DDP package, add it in the bitmap manually.
2741 	 * Legacy 16byte descriptor is not supported.
2742 	 */
2743 	rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2744 
2745 	for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2746 		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2747 		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2748 			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2749 			rxdid->supported_rxdids |= BIT(i);
2750 	}
2751 
2752 	pf->supported_rxdids = rxdid->supported_rxdids;
2753 
2754 err:
2755 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2756 				    v_ret, (u8 *)rxdid, len);
2757 	kfree(rxdid);
2758 	return ret;
2759 }
2760 
2761 /**
2762  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2763  * @vf: VF to enable/disable VLAN stripping for on initialization
2764  *
2765  * Set the default for VLAN stripping based on whether a port VLAN is configured
2766  * and the current VLAN mode of the device.
2767  */
2768 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2769 {
2770 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2771 
2772 	vf->vlan_strip_ena = 0;
2773 
2774 	if (!vsi)
2775 		return -EINVAL;
2776 
2777 	/* don't modify stripping if port VLAN is configured in SVM since the
2778 	 * port VLAN is based on the inner/single VLAN in SVM
2779 	 */
2780 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2781 		return 0;
2782 
2783 	if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2784 		int err;
2785 
2786 		err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2787 		if (!err)
2788 			vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2789 		return err;
2790 	}
2791 
2792 	return vsi->inner_vlan_ops.dis_stripping(vsi);
2793 }
2794 
2795 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2796 {
2797 	if (vf->trusted)
2798 		return VLAN_N_VID;
2799 	else
2800 		return ICE_MAX_VLAN_PER_VF;
2801 }
2802 
2803 /**
2804  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2805  * @vf: VF that being checked for
2806  *
2807  * When the device is in double VLAN mode, check whether or not the outer VLAN
2808  * is allowed.
2809  */
2810 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2811 {
2812 	if (ice_vf_is_port_vlan_ena(vf))
2813 		return true;
2814 
2815 	return false;
2816 }
2817 
2818 /**
2819  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2820  * @vf: VF that capabilities are being set for
2821  * @caps: VLAN capabilities to populate
2822  *
2823  * Determine VLAN capabilities support based on whether a port VLAN is
2824  * configured. If a port VLAN is configured then the VF should use the inner
2825  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2826  * capabilies.
2827  */
2828 static void
2829 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2830 {
2831 	struct virtchnl_vlan_supported_caps *supported_caps;
2832 
2833 	if (ice_vf_outer_vlan_not_allowed(vf)) {
2834 		/* until support for inner VLAN filtering is added when a port
2835 		 * VLAN is configured, only support software offloaded inner
2836 		 * VLANs when a port VLAN is confgured in DVM
2837 		 */
2838 		supported_caps = &caps->filtering.filtering_support;
2839 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2840 
2841 		supported_caps = &caps->offloads.stripping_support;
2842 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2843 					VIRTCHNL_VLAN_TOGGLE |
2844 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2845 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2846 
2847 		supported_caps = &caps->offloads.insertion_support;
2848 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2849 					VIRTCHNL_VLAN_TOGGLE |
2850 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2851 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2852 
2853 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2854 		caps->offloads.ethertype_match =
2855 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2856 	} else {
2857 		supported_caps = &caps->filtering.filtering_support;
2858 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2859 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2860 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2861 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2862 					VIRTCHNL_VLAN_ETHERTYPE_AND;
2863 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2864 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2865 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2866 
2867 		supported_caps = &caps->offloads.stripping_support;
2868 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2869 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2870 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2871 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2872 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2873 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2874 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2875 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2876 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2877 
2878 		supported_caps = &caps->offloads.insertion_support;
2879 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2880 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2881 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2882 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2883 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2884 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2885 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2886 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2887 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2888 
2889 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2890 
2891 		caps->offloads.ethertype_match =
2892 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2893 	}
2894 
2895 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2896 }
2897 
2898 /**
2899  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2900  * @vf: VF that capabilities are being set for
2901  * @caps: VLAN capabilities to populate
2902  *
2903  * Determine VLAN capabilities support based on whether a port VLAN is
2904  * configured. If a port VLAN is configured then the VF does not have any VLAN
2905  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2906  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2907  * VLAN fitlering and offload capabilities.
2908  */
2909 static void
2910 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2911 {
2912 	struct virtchnl_vlan_supported_caps *supported_caps;
2913 
2914 	if (ice_vf_is_port_vlan_ena(vf)) {
2915 		supported_caps = &caps->filtering.filtering_support;
2916 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2917 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2918 
2919 		supported_caps = &caps->offloads.stripping_support;
2920 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2921 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2922 
2923 		supported_caps = &caps->offloads.insertion_support;
2924 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2925 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2926 
2927 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2928 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2929 		caps->filtering.max_filters = 0;
2930 	} else {
2931 		supported_caps = &caps->filtering.filtering_support;
2932 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2933 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2934 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2935 
2936 		supported_caps = &caps->offloads.stripping_support;
2937 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2938 					VIRTCHNL_VLAN_TOGGLE |
2939 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2940 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2941 
2942 		supported_caps = &caps->offloads.insertion_support;
2943 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2944 					VIRTCHNL_VLAN_TOGGLE |
2945 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2946 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2947 
2948 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2949 		caps->offloads.ethertype_match =
2950 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2951 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2952 	}
2953 }
2954 
2955 /**
2956  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2957  * @vf: VF to determine VLAN capabilities for
2958  *
2959  * This will only be called if the VF and PF successfully negotiated
2960  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2961  *
2962  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2963  * is configured or not.
2964  */
2965 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2966 {
2967 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2968 	struct virtchnl_vlan_caps *caps = NULL;
2969 	int err, len = 0;
2970 
2971 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2972 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2973 		goto out;
2974 	}
2975 
2976 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2977 	if (!caps) {
2978 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2979 		goto out;
2980 	}
2981 	len = sizeof(*caps);
2982 
2983 	if (ice_is_dvm_ena(&vf->pf->hw))
2984 		ice_vc_set_dvm_caps(vf, caps);
2985 	else
2986 		ice_vc_set_svm_caps(vf, caps);
2987 
2988 	/* store negotiated caps to prevent invalid VF messages */
2989 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2990 
2991 out:
2992 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2993 				    v_ret, (u8 *)caps, len);
2994 	kfree(caps);
2995 	return err;
2996 }
2997 
2998 /**
2999  * ice_vc_validate_vlan_tpid - validate VLAN TPID
3000  * @filtering_caps: negotiated/supported VLAN filtering capabilities
3001  * @tpid: VLAN TPID used for validation
3002  *
3003  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
3004  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
3005  */
3006 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
3007 {
3008 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
3009 
3010 	switch (tpid) {
3011 	case ETH_P_8021Q:
3012 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3013 		break;
3014 	case ETH_P_8021AD:
3015 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3016 		break;
3017 	case ETH_P_QINQ1:
3018 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3019 		break;
3020 	}
3021 
3022 	if (!(filtering_caps & vlan_ethertype))
3023 		return false;
3024 
3025 	return true;
3026 }
3027 
3028 /**
3029  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3030  * @vc_vlan: virtchnl_vlan to validate
3031  *
3032  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3033  * false. Otherwise return true.
3034  */
3035 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3036 {
3037 	if (!vc_vlan->tci || !vc_vlan->tpid)
3038 		return false;
3039 
3040 	return true;
3041 }
3042 
3043 /**
3044  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3045  * @vfc: negotiated/supported VLAN filtering capabilities
3046  * @vfl: VLAN filter list from VF to validate
3047  *
3048  * Validate all of the filters in the VLAN filter list from the VF. If any of
3049  * the checks fail then return false. Otherwise return true.
3050  */
3051 static bool
3052 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3053 				 struct virtchnl_vlan_filter_list_v2 *vfl)
3054 {
3055 	u16 i;
3056 
3057 	if (!vfl->num_elements)
3058 		return false;
3059 
3060 	for (i = 0; i < vfl->num_elements; i++) {
3061 		struct virtchnl_vlan_supported_caps *filtering_support =
3062 			&vfc->filtering_support;
3063 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3064 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
3065 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
3066 
3067 		if ((ice_vc_is_valid_vlan(outer) &&
3068 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3069 		    (ice_vc_is_valid_vlan(inner) &&
3070 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3071 			return false;
3072 
3073 		if ((outer->tci_mask &&
3074 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3075 		    (inner->tci_mask &&
3076 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3077 			return false;
3078 
3079 		if (((outer->tci & VLAN_PRIO_MASK) &&
3080 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3081 		    ((inner->tci & VLAN_PRIO_MASK) &&
3082 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3083 			return false;
3084 
3085 		if ((ice_vc_is_valid_vlan(outer) &&
3086 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
3087 						outer->tpid)) ||
3088 		    (ice_vc_is_valid_vlan(inner) &&
3089 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
3090 						inner->tpid)))
3091 			return false;
3092 	}
3093 
3094 	return true;
3095 }
3096 
3097 /**
3098  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3099  * @vc_vlan: struct virtchnl_vlan to transform
3100  */
3101 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3102 {
3103 	struct ice_vlan vlan = { 0 };
3104 
3105 	vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3106 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3107 	vlan.tpid = vc_vlan->tpid;
3108 
3109 	return vlan;
3110 }
3111 
3112 /**
3113  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3114  * @vsi: VF's VSI used to perform the action
3115  * @vlan_action: function to perform the action with (i.e. add/del)
3116  * @vlan: VLAN filter to perform the action with
3117  */
3118 static int
3119 ice_vc_vlan_action(struct ice_vsi *vsi,
3120 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3121 		   struct ice_vlan *vlan)
3122 {
3123 	int err;
3124 
3125 	err = vlan_action(vsi, vlan);
3126 	if (err)
3127 		return err;
3128 
3129 	return 0;
3130 }
3131 
3132 /**
3133  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3134  * @vf: VF used to delete the VLAN(s)
3135  * @vsi: VF's VSI used to delete the VLAN(s)
3136  * @vfl: virthchnl filter list used to delete the filters
3137  */
3138 static int
3139 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3140 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3141 {
3142 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3143 	int err;
3144 	u16 i;
3145 
3146 	for (i = 0; i < vfl->num_elements; i++) {
3147 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3148 		struct virtchnl_vlan *vc_vlan;
3149 
3150 		vc_vlan = &vlan_fltr->outer;
3151 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3152 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3153 
3154 			err = ice_vc_vlan_action(vsi,
3155 						 vsi->outer_vlan_ops.del_vlan,
3156 						 &vlan);
3157 			if (err)
3158 				return err;
3159 
3160 			if (vlan_promisc)
3161 				ice_vf_dis_vlan_promisc(vsi, &vlan);
3162 
3163 			/* Disable VLAN filtering when only VLAN 0 is left */
3164 			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3165 				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3166 				if (err)
3167 					return err;
3168 			}
3169 		}
3170 
3171 		vc_vlan = &vlan_fltr->inner;
3172 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3173 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3174 
3175 			err = ice_vc_vlan_action(vsi,
3176 						 vsi->inner_vlan_ops.del_vlan,
3177 						 &vlan);
3178 			if (err)
3179 				return err;
3180 
3181 			/* no support for VLAN promiscuous on inner VLAN unless
3182 			 * we are in Single VLAN Mode (SVM)
3183 			 */
3184 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3185 				if (vlan_promisc)
3186 					ice_vf_dis_vlan_promisc(vsi, &vlan);
3187 
3188 				/* Disable VLAN filtering when only VLAN 0 is left */
3189 				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3190 					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3191 					if (err)
3192 						return err;
3193 				}
3194 			}
3195 		}
3196 	}
3197 
3198 	return 0;
3199 }
3200 
3201 /**
3202  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3203  * @vf: VF the message was received from
3204  * @msg: message received from the VF
3205  */
3206 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3207 {
3208 	struct virtchnl_vlan_filter_list_v2 *vfl =
3209 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3210 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3211 	struct ice_vsi *vsi;
3212 
3213 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3214 					      vfl)) {
3215 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3216 		goto out;
3217 	}
3218 
3219 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3220 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3221 		goto out;
3222 	}
3223 
3224 	vsi = ice_get_vf_vsi(vf);
3225 	if (!vsi) {
3226 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3227 		goto out;
3228 	}
3229 
3230 	if (ice_vc_del_vlans(vf, vsi, vfl))
3231 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3232 
3233 out:
3234 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3235 				     0);
3236 }
3237 
3238 /**
3239  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3240  * @vf: VF used to add the VLAN(s)
3241  * @vsi: VF's VSI used to add the VLAN(s)
3242  * @vfl: virthchnl filter list used to add the filters
3243  */
3244 static int
3245 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3246 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3247 {
3248 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3249 	int err;
3250 	u16 i;
3251 
3252 	for (i = 0; i < vfl->num_elements; i++) {
3253 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3254 		struct virtchnl_vlan *vc_vlan;
3255 
3256 		vc_vlan = &vlan_fltr->outer;
3257 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3258 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3259 
3260 			err = ice_vc_vlan_action(vsi,
3261 						 vsi->outer_vlan_ops.add_vlan,
3262 						 &vlan);
3263 			if (err)
3264 				return err;
3265 
3266 			if (vlan_promisc) {
3267 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3268 				if (err)
3269 					return err;
3270 			}
3271 
3272 			/* Enable VLAN filtering on first non-zero VLAN */
3273 			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3274 				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3275 				if (err)
3276 					return err;
3277 			}
3278 		}
3279 
3280 		vc_vlan = &vlan_fltr->inner;
3281 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3282 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3283 
3284 			err = ice_vc_vlan_action(vsi,
3285 						 vsi->inner_vlan_ops.add_vlan,
3286 						 &vlan);
3287 			if (err)
3288 				return err;
3289 
3290 			/* no support for VLAN promiscuous on inner VLAN unless
3291 			 * we are in Single VLAN Mode (SVM)
3292 			 */
3293 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3294 				if (vlan_promisc) {
3295 					err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3296 					if (err)
3297 						return err;
3298 				}
3299 
3300 				/* Enable VLAN filtering on first non-zero VLAN */
3301 				if (vf->spoofchk && vlan.vid) {
3302 					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3303 					if (err)
3304 						return err;
3305 				}
3306 			}
3307 		}
3308 	}
3309 
3310 	return 0;
3311 }
3312 
3313 /**
3314  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3315  * @vsi: VF VSI used to get number of existing VLAN filters
3316  * @vfc: negotiated/supported VLAN filtering capabilities
3317  * @vfl: VLAN filter list from VF to validate
3318  *
3319  * Validate all of the filters in the VLAN filter list from the VF during the
3320  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3321  * Otherwise return true.
3322  */
3323 static bool
3324 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3325 				     struct virtchnl_vlan_filtering_caps *vfc,
3326 				     struct virtchnl_vlan_filter_list_v2 *vfl)
3327 {
3328 	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3329 		vfl->num_elements;
3330 
3331 	if (num_requested_filters > vfc->max_filters)
3332 		return false;
3333 
3334 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3335 }
3336 
3337 /**
3338  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3339  * @vf: VF the message was received from
3340  * @msg: message received from the VF
3341  */
3342 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3343 {
3344 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3345 	struct virtchnl_vlan_filter_list_v2 *vfl =
3346 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3347 	struct ice_vsi *vsi;
3348 
3349 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3350 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3351 		goto out;
3352 	}
3353 
3354 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3355 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3356 		goto out;
3357 	}
3358 
3359 	vsi = ice_get_vf_vsi(vf);
3360 	if (!vsi) {
3361 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3362 		goto out;
3363 	}
3364 
3365 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3366 						  &vf->vlan_v2_caps.filtering,
3367 						  vfl)) {
3368 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3369 		goto out;
3370 	}
3371 
3372 	if (ice_vc_add_vlans(vf, vsi, vfl))
3373 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3374 
3375 out:
3376 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3377 				     0);
3378 }
3379 
3380 /**
3381  * ice_vc_valid_vlan_setting - validate VLAN setting
3382  * @negotiated_settings: negotiated VLAN settings during VF init
3383  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3384  */
3385 static bool
3386 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3387 {
3388 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3389 		return false;
3390 
3391 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3392 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3393 	 */
3394 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3395 	    hweight32(ethertype_setting) > 1)
3396 		return false;
3397 
3398 	/* ability to modify the VLAN setting was not negotiated */
3399 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3400 		return false;
3401 
3402 	return true;
3403 }
3404 
3405 /**
3406  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3407  * @caps: negotiated VLAN settings during VF init
3408  * @msg: message to validate
3409  *
3410  * Used to validate any VLAN virtchnl message sent as a
3411  * virtchnl_vlan_setting structure. Validates the message against the
3412  * negotiated/supported caps during VF driver init.
3413  */
3414 static bool
3415 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3416 			      struct virtchnl_vlan_setting *msg)
3417 {
3418 	if ((!msg->outer_ethertype_setting &&
3419 	     !msg->inner_ethertype_setting) ||
3420 	    (!caps->outer && !caps->inner))
3421 		return false;
3422 
3423 	if (msg->outer_ethertype_setting &&
3424 	    !ice_vc_valid_vlan_setting(caps->outer,
3425 				       msg->outer_ethertype_setting))
3426 		return false;
3427 
3428 	if (msg->inner_ethertype_setting &&
3429 	    !ice_vc_valid_vlan_setting(caps->inner,
3430 				       msg->inner_ethertype_setting))
3431 		return false;
3432 
3433 	return true;
3434 }
3435 
3436 /**
3437  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3438  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3439  * @tpid: VLAN TPID to populate
3440  */
3441 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3442 {
3443 	switch (ethertype_setting) {
3444 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3445 		*tpid = ETH_P_8021Q;
3446 		break;
3447 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3448 		*tpid = ETH_P_8021AD;
3449 		break;
3450 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3451 		*tpid = ETH_P_QINQ1;
3452 		break;
3453 	default:
3454 		*tpid = 0;
3455 		return -EINVAL;
3456 	}
3457 
3458 	return 0;
3459 }
3460 
3461 /**
3462  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3463  * @vsi: VF's VSI used to enable the VLAN offload
3464  * @ena_offload: function used to enable the VLAN offload
3465  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3466  */
3467 static int
3468 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3469 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3470 			u32 ethertype_setting)
3471 {
3472 	u16 tpid;
3473 	int err;
3474 
3475 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3476 	if (err)
3477 		return err;
3478 
3479 	err = ena_offload(vsi, tpid);
3480 	if (err)
3481 		return err;
3482 
3483 	return 0;
3484 }
3485 
3486 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3487 #define ICE_L2TSEL_BIT_OFFSET		23
3488 enum ice_l2tsel {
3489 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3490 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3491 };
3492 
3493 /**
3494  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3495  * @vsi: VSI used to update l2tsel on
3496  * @l2tsel: l2tsel setting requested
3497  *
3498  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3499  * This will modify which descriptor field the first offloaded VLAN will be
3500  * stripped into.
3501  */
3502 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3503 {
3504 	struct ice_hw *hw = &vsi->back->hw;
3505 	u32 l2tsel_bit;
3506 	int i;
3507 
3508 	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3509 		l2tsel_bit = 0;
3510 	else
3511 		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3512 
3513 	for (i = 0; i < vsi->alloc_rxq; i++) {
3514 		u16 pfq = vsi->rxq_map[i];
3515 		u32 qrx_context_offset;
3516 		u32 regval;
3517 
3518 		qrx_context_offset =
3519 			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3520 
3521 		regval = rd32(hw, qrx_context_offset);
3522 		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3523 		regval |= l2tsel_bit;
3524 		wr32(hw, qrx_context_offset, regval);
3525 	}
3526 }
3527 
3528 /**
3529  * ice_vc_ena_vlan_stripping_v2_msg
3530  * @vf: VF the message was received from
3531  * @msg: message received from the VF
3532  *
3533  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3534  */
3535 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3536 {
3537 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3538 	struct virtchnl_vlan_supported_caps *stripping_support;
3539 	struct virtchnl_vlan_setting *strip_msg =
3540 		(struct virtchnl_vlan_setting *)msg;
3541 	u32 ethertype_setting;
3542 	struct ice_vsi *vsi;
3543 
3544 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3545 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3546 		goto out;
3547 	}
3548 
3549 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3550 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3551 		goto out;
3552 	}
3553 
3554 	vsi = ice_get_vf_vsi(vf);
3555 	if (!vsi) {
3556 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3557 		goto out;
3558 	}
3559 
3560 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3561 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3562 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3563 		goto out;
3564 	}
3565 
3566 	if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3567 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3568 		goto out;
3569 	}
3570 
3571 	ethertype_setting = strip_msg->outer_ethertype_setting;
3572 	if (ethertype_setting) {
3573 		if (ice_vc_ena_vlan_offload(vsi,
3574 					    vsi->outer_vlan_ops.ena_stripping,
3575 					    ethertype_setting)) {
3576 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3577 			goto out;
3578 		} else {
3579 			enum ice_l2tsel l2tsel =
3580 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3581 
3582 			/* PF tells the VF that the outer VLAN tag is always
3583 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3584 			 * inner is always extracted to
3585 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3586 			 * support outer stripping so the first tag always ends
3587 			 * up in L2TAG2_2ND and the second/inner tag, if
3588 			 * enabled, is extracted in L2TAG1.
3589 			 */
3590 			ice_vsi_update_l2tsel(vsi, l2tsel);
3591 
3592 			vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3593 		}
3594 	}
3595 
3596 	ethertype_setting = strip_msg->inner_ethertype_setting;
3597 	if (ethertype_setting &&
3598 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3599 				    ethertype_setting)) {
3600 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3601 		goto out;
3602 	}
3603 
3604 	if (ethertype_setting)
3605 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3606 
3607 out:
3608 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3609 				     v_ret, NULL, 0);
3610 }
3611 
3612 /**
3613  * ice_vc_dis_vlan_stripping_v2_msg
3614  * @vf: VF the message was received from
3615  * @msg: message received from the VF
3616  *
3617  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3618  */
3619 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3620 {
3621 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3622 	struct virtchnl_vlan_supported_caps *stripping_support;
3623 	struct virtchnl_vlan_setting *strip_msg =
3624 		(struct virtchnl_vlan_setting *)msg;
3625 	u32 ethertype_setting;
3626 	struct ice_vsi *vsi;
3627 
3628 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3629 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3630 		goto out;
3631 	}
3632 
3633 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3634 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3635 		goto out;
3636 	}
3637 
3638 	vsi = ice_get_vf_vsi(vf);
3639 	if (!vsi) {
3640 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3641 		goto out;
3642 	}
3643 
3644 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3645 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3646 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3647 		goto out;
3648 	}
3649 
3650 	ethertype_setting = strip_msg->outer_ethertype_setting;
3651 	if (ethertype_setting) {
3652 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3653 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3654 			goto out;
3655 		} else {
3656 			enum ice_l2tsel l2tsel =
3657 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3658 
3659 			/* PF tells the VF that the outer VLAN tag is always
3660 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3661 			 * inner is always extracted to
3662 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3663 			 * support inner stripping while outer stripping is
3664 			 * disabled so that the first and only tag is extracted
3665 			 * in L2TAG1.
3666 			 */
3667 			ice_vsi_update_l2tsel(vsi, l2tsel);
3668 
3669 			vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3670 		}
3671 	}
3672 
3673 	ethertype_setting = strip_msg->inner_ethertype_setting;
3674 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3675 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3676 		goto out;
3677 	}
3678 
3679 	if (ethertype_setting)
3680 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3681 
3682 out:
3683 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3684 				     v_ret, NULL, 0);
3685 }
3686 
3687 /**
3688  * ice_vc_ena_vlan_insertion_v2_msg
3689  * @vf: VF the message was received from
3690  * @msg: message received from the VF
3691  *
3692  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3693  */
3694 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3695 {
3696 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3697 	struct virtchnl_vlan_supported_caps *insertion_support;
3698 	struct virtchnl_vlan_setting *insertion_msg =
3699 		(struct virtchnl_vlan_setting *)msg;
3700 	u32 ethertype_setting;
3701 	struct ice_vsi *vsi;
3702 
3703 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3704 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3705 		goto out;
3706 	}
3707 
3708 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3709 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3710 		goto out;
3711 	}
3712 
3713 	vsi = ice_get_vf_vsi(vf);
3714 	if (!vsi) {
3715 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3716 		goto out;
3717 	}
3718 
3719 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3720 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3721 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3722 		goto out;
3723 	}
3724 
3725 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3726 	if (ethertype_setting &&
3727 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3728 				    ethertype_setting)) {
3729 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3730 		goto out;
3731 	}
3732 
3733 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3734 	if (ethertype_setting &&
3735 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3736 				    ethertype_setting)) {
3737 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3738 		goto out;
3739 	}
3740 
3741 out:
3742 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3743 				     v_ret, NULL, 0);
3744 }
3745 
3746 /**
3747  * ice_vc_dis_vlan_insertion_v2_msg
3748  * @vf: VF the message was received from
3749  * @msg: message received from the VF
3750  *
3751  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3752  */
3753 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3754 {
3755 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3756 	struct virtchnl_vlan_supported_caps *insertion_support;
3757 	struct virtchnl_vlan_setting *insertion_msg =
3758 		(struct virtchnl_vlan_setting *)msg;
3759 	u32 ethertype_setting;
3760 	struct ice_vsi *vsi;
3761 
3762 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3763 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3764 		goto out;
3765 	}
3766 
3767 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3768 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3769 		goto out;
3770 	}
3771 
3772 	vsi = ice_get_vf_vsi(vf);
3773 	if (!vsi) {
3774 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3775 		goto out;
3776 	}
3777 
3778 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3779 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3780 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3781 		goto out;
3782 	}
3783 
3784 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3785 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3786 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3787 		goto out;
3788 	}
3789 
3790 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3791 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3792 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3793 		goto out;
3794 	}
3795 
3796 out:
3797 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3798 				     v_ret, NULL, 0);
3799 }
3800 
3801 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3802 	.get_ver_msg = ice_vc_get_ver_msg,
3803 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3804 	.reset_vf = ice_vc_reset_vf_msg,
3805 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3806 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3807 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3808 	.ena_qs_msg = ice_vc_ena_qs_msg,
3809 	.dis_qs_msg = ice_vc_dis_qs_msg,
3810 	.request_qs_msg = ice_vc_request_qs_msg,
3811 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3812 	.config_rss_key = ice_vc_config_rss_key,
3813 	.config_rss_lut = ice_vc_config_rss_lut,
3814 	.config_rss_hfunc = ice_vc_config_rss_hfunc,
3815 	.get_stats_msg = ice_vc_get_stats_msg,
3816 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3817 	.add_vlan_msg = ice_vc_add_vlan_msg,
3818 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3819 	.query_rxdid = ice_vc_query_rxdid,
3820 	.get_rss_hena = ice_vc_get_rss_hena,
3821 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3822 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3823 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3824 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3825 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3826 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3827 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3828 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3829 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3830 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3831 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3832 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3833 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3834 };
3835 
3836 /**
3837  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3838  * @vf: the VF to switch ops
3839  */
3840 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3841 {
3842 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3843 }
3844 
3845 /**
3846  * ice_vc_repr_add_mac
3847  * @vf: pointer to VF
3848  * @msg: virtchannel message
3849  *
3850  * When port representors are created, we do not add MAC rule
3851  * to firmware, we store it so that PF could report same
3852  * MAC as VF.
3853  */
3854 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3855 {
3856 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3857 	struct virtchnl_ether_addr_list *al =
3858 	    (struct virtchnl_ether_addr_list *)msg;
3859 	struct ice_vsi *vsi;
3860 	struct ice_pf *pf;
3861 	int i;
3862 
3863 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3864 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3865 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3866 		goto handle_mac_exit;
3867 	}
3868 
3869 	pf = vf->pf;
3870 
3871 	vsi = ice_get_vf_vsi(vf);
3872 	if (!vsi) {
3873 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3874 		goto handle_mac_exit;
3875 	}
3876 
3877 	for (i = 0; i < al->num_elements; i++) {
3878 		u8 *mac_addr = al->list[i].addr;
3879 
3880 		if (!is_unicast_ether_addr(mac_addr) ||
3881 		    ether_addr_equal(mac_addr, vf->hw_lan_addr))
3882 			continue;
3883 
3884 		if (vf->pf_set_mac) {
3885 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3886 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3887 			goto handle_mac_exit;
3888 		}
3889 
3890 		ice_vfhw_mac_add(vf, &al->list[i]);
3891 		vf->num_mac++;
3892 		break;
3893 	}
3894 
3895 handle_mac_exit:
3896 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3897 				     v_ret, NULL, 0);
3898 }
3899 
3900 /**
3901  * ice_vc_repr_del_mac - response with success for deleting MAC
3902  * @vf: pointer to VF
3903  * @msg: virtchannel message
3904  *
3905  * Respond with success to not break normal VF flow.
3906  * For legacy VF driver try to update cached MAC address.
3907  */
3908 static int
3909 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3910 {
3911 	struct virtchnl_ether_addr_list *al =
3912 		(struct virtchnl_ether_addr_list *)msg;
3913 
3914 	ice_update_legacy_cached_mac(vf, &al->list[0]);
3915 
3916 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3917 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3918 }
3919 
3920 static int
3921 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3922 {
3923 	dev_dbg(ice_pf_to_dev(vf->pf),
3924 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3925 		vf->vf_id);
3926 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3927 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3928 				     NULL, 0);
3929 }
3930 
3931 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3932 	.get_ver_msg = ice_vc_get_ver_msg,
3933 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3934 	.reset_vf = ice_vc_reset_vf_msg,
3935 	.add_mac_addr_msg = ice_vc_repr_add_mac,
3936 	.del_mac_addr_msg = ice_vc_repr_del_mac,
3937 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3938 	.ena_qs_msg = ice_vc_ena_qs_msg,
3939 	.dis_qs_msg = ice_vc_dis_qs_msg,
3940 	.request_qs_msg = ice_vc_request_qs_msg,
3941 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3942 	.config_rss_key = ice_vc_config_rss_key,
3943 	.config_rss_lut = ice_vc_config_rss_lut,
3944 	.config_rss_hfunc = ice_vc_config_rss_hfunc,
3945 	.get_stats_msg = ice_vc_get_stats_msg,
3946 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3947 	.add_vlan_msg = ice_vc_add_vlan_msg,
3948 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3949 	.query_rxdid = ice_vc_query_rxdid,
3950 	.get_rss_hena = ice_vc_get_rss_hena,
3951 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3952 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3953 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3954 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3955 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3956 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3957 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3958 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3959 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3960 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3961 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3962 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3963 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3964 };
3965 
3966 /**
3967  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3968  * @vf: the VF to switch ops
3969  */
3970 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3971 {
3972 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3973 }
3974 
3975 /**
3976  * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3977  * @vf: the VF to check
3978  * @mbxdata: data about the state of the mailbox
3979  *
3980  * Detect if a given VF might be malicious and attempting to overflow the PF
3981  * mailbox. If so, log a warning message and ignore this event.
3982  */
3983 static bool
3984 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3985 {
3986 	bool report_malvf = false;
3987 	struct device *dev;
3988 	struct ice_pf *pf;
3989 	int status;
3990 
3991 	pf = vf->pf;
3992 	dev = ice_pf_to_dev(pf);
3993 
3994 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3995 		return vf->mbx_info.malicious;
3996 
3997 	/* check to see if we have a newly malicious VF */
3998 	status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3999 					  &report_malvf);
4000 	if (status)
4001 		dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
4002 				     vf->vf_id, vf->dev_lan_addr, status);
4003 
4004 	if (report_malvf) {
4005 		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
4006 		u8 zero_addr[ETH_ALEN] = {};
4007 
4008 		dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
4009 			 vf->dev_lan_addr,
4010 			 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4011 	}
4012 
4013 	return vf->mbx_info.malicious;
4014 }
4015 
4016 /**
4017  * ice_vc_process_vf_msg - Process request from VF
4018  * @pf: pointer to the PF structure
4019  * @event: pointer to the AQ event
4020  * @mbxdata: information used to detect VF attempting mailbox overflow
4021  *
4022  * called from the common asq/arq handler to
4023  * process request from VF
4024  */
4025 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4026 			   struct ice_mbx_data *mbxdata)
4027 {
4028 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4029 	s16 vf_id = le16_to_cpu(event->desc.retval);
4030 	const struct ice_virtchnl_ops *ops;
4031 	u16 msglen = event->msg_len;
4032 	u8 *msg = event->msg_buf;
4033 	struct ice_vf *vf = NULL;
4034 	struct device *dev;
4035 	int err = 0;
4036 
4037 	dev = ice_pf_to_dev(pf);
4038 
4039 	vf = ice_get_vf_by_id(pf, vf_id);
4040 	if (!vf) {
4041 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4042 			vf_id, v_opcode, msglen);
4043 		return;
4044 	}
4045 
4046 	mutex_lock(&vf->cfg_lock);
4047 
4048 	/* Check if the VF is trying to overflow the mailbox */
4049 	if (ice_is_malicious_vf(vf, mbxdata))
4050 		goto finish;
4051 
4052 	/* Check if VF is disabled. */
4053 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4054 		err = -EPERM;
4055 		goto error_handler;
4056 	}
4057 
4058 	ops = vf->virtchnl_ops;
4059 
4060 	/* Perform basic checks on the msg */
4061 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4062 	if (err) {
4063 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
4064 			err = -EPERM;
4065 		else
4066 			err = -EINVAL;
4067 	}
4068 
4069 error_handler:
4070 	if (err) {
4071 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4072 				      NULL, 0);
4073 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4074 			vf_id, v_opcode, msglen, err);
4075 		goto finish;
4076 	}
4077 
4078 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4079 		ice_vc_send_msg_to_vf(vf, v_opcode,
4080 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4081 				      0);
4082 		goto finish;
4083 	}
4084 
4085 	switch (v_opcode) {
4086 	case VIRTCHNL_OP_VERSION:
4087 		err = ops->get_ver_msg(vf, msg);
4088 		break;
4089 	case VIRTCHNL_OP_GET_VF_RESOURCES:
4090 		err = ops->get_vf_res_msg(vf, msg);
4091 		if (ice_vf_init_vlan_stripping(vf))
4092 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4093 				vf->vf_id);
4094 		ice_vc_notify_vf_link_state(vf);
4095 		break;
4096 	case VIRTCHNL_OP_RESET_VF:
4097 		ops->reset_vf(vf);
4098 		break;
4099 	case VIRTCHNL_OP_ADD_ETH_ADDR:
4100 		err = ops->add_mac_addr_msg(vf, msg);
4101 		break;
4102 	case VIRTCHNL_OP_DEL_ETH_ADDR:
4103 		err = ops->del_mac_addr_msg(vf, msg);
4104 		break;
4105 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4106 		err = ops->cfg_qs_msg(vf, msg);
4107 		break;
4108 	case VIRTCHNL_OP_ENABLE_QUEUES:
4109 		err = ops->ena_qs_msg(vf, msg);
4110 		ice_vc_notify_vf_link_state(vf);
4111 		break;
4112 	case VIRTCHNL_OP_DISABLE_QUEUES:
4113 		err = ops->dis_qs_msg(vf, msg);
4114 		break;
4115 	case VIRTCHNL_OP_REQUEST_QUEUES:
4116 		err = ops->request_qs_msg(vf, msg);
4117 		break;
4118 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4119 		err = ops->cfg_irq_map_msg(vf, msg);
4120 		break;
4121 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
4122 		err = ops->config_rss_key(vf, msg);
4123 		break;
4124 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
4125 		err = ops->config_rss_lut(vf, msg);
4126 		break;
4127 	case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4128 		err = ops->config_rss_hfunc(vf, msg);
4129 		break;
4130 	case VIRTCHNL_OP_GET_STATS:
4131 		err = ops->get_stats_msg(vf, msg);
4132 		break;
4133 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4134 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
4135 		break;
4136 	case VIRTCHNL_OP_ADD_VLAN:
4137 		err = ops->add_vlan_msg(vf, msg);
4138 		break;
4139 	case VIRTCHNL_OP_DEL_VLAN:
4140 		err = ops->remove_vlan_msg(vf, msg);
4141 		break;
4142 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4143 		err = ops->query_rxdid(vf);
4144 		break;
4145 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4146 		err = ops->get_rss_hena(vf);
4147 		break;
4148 	case VIRTCHNL_OP_SET_RSS_HENA:
4149 		err = ops->set_rss_hena_msg(vf, msg);
4150 		break;
4151 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4152 		err = ops->ena_vlan_stripping(vf);
4153 		break;
4154 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4155 		err = ops->dis_vlan_stripping(vf);
4156 		break;
4157 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4158 		err = ops->add_fdir_fltr_msg(vf, msg);
4159 		break;
4160 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4161 		err = ops->del_fdir_fltr_msg(vf, msg);
4162 		break;
4163 	case VIRTCHNL_OP_ADD_RSS_CFG:
4164 		err = ops->handle_rss_cfg_msg(vf, msg, true);
4165 		break;
4166 	case VIRTCHNL_OP_DEL_RSS_CFG:
4167 		err = ops->handle_rss_cfg_msg(vf, msg, false);
4168 		break;
4169 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4170 		err = ops->get_offload_vlan_v2_caps(vf);
4171 		break;
4172 	case VIRTCHNL_OP_ADD_VLAN_V2:
4173 		err = ops->add_vlan_v2_msg(vf, msg);
4174 		break;
4175 	case VIRTCHNL_OP_DEL_VLAN_V2:
4176 		err = ops->remove_vlan_v2_msg(vf, msg);
4177 		break;
4178 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4179 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4180 		break;
4181 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4182 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4183 		break;
4184 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4185 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4186 		break;
4187 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4188 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4189 		break;
4190 	case VIRTCHNL_OP_UNKNOWN:
4191 	default:
4192 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4193 			vf_id);
4194 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4195 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4196 					    NULL, 0);
4197 		break;
4198 	}
4199 	if (err) {
4200 		/* Helper function cares less about error return values here
4201 		 * as it is busy with pending work.
4202 		 */
4203 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4204 			 vf_id, v_opcode, err);
4205 	}
4206 
4207 finish:
4208 	mutex_unlock(&vf->cfg_lock);
4209 	ice_put_vf(vf);
4210 }
4211