xref: /linux/drivers/net/ethernet/intel/ice/ice_virtchnl.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 		     u32 driver_caps)
374 {
375 	if (ice_is_eswitch_mode_switchdev(vf->pf))
376 		/* In switchdev setting VLAN from VF isn't supported */
377 		return 0;
378 
379 	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 		/* VLAN offloads based on current device configuration */
381 		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 		 * these two conditions, which amounts to guest VLAN filtering
385 		 * and offloads being based on the inner VLAN or the
386 		 * inner/single VLAN respectively and don't allow VF to
387 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 		 */
389 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 			return VIRTCHNL_VF_OFFLOAD_VLAN;
391 		} else if (!ice_is_dvm_ena(hw) &&
392 			   !ice_vf_is_port_vlan_ena(vf)) {
393 			/* configure backward compatible support for VFs that
394 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 			 * configured in SVM, and no port VLAN is configured
396 			 */
397 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 			return VIRTCHNL_VF_OFFLOAD_VLAN;
399 		} else if (ice_is_dvm_ena(hw)) {
400 			/* configure software offloaded VLAN support when DVM
401 			 * is enabled, but no port VLAN is enabled
402 			 */
403 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 		}
405 	}
406 
407 	return 0;
408 }
409 
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 	struct virtchnl_vf_resource *vfres = NULL;
421 	struct ice_hw *hw = &vf->pf->hw;
422 	struct ice_vsi *vsi;
423 	int len = 0;
424 	int ret;
425 
426 	if (ice_check_vf_init(vf)) {
427 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 		goto err;
429 	}
430 
431 	len = virtchnl_struct_size(vfres, vsi_res, 0);
432 
433 	vfres = kzalloc(len, GFP_KERNEL);
434 	if (!vfres) {
435 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 		len = 0;
437 		goto err;
438 	}
439 	if (VF_IS_V11(&vf->vf_ver))
440 		vf->driver_caps = *(u32 *)msg;
441 	else
442 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 				  VIRTCHNL_VF_OFFLOAD_VLAN;
444 
445 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 	vsi = ice_get_vf_vsi(vf);
447 	if (!vsi) {
448 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449 		goto err;
450 	}
451 
452 	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453 						    vf->driver_caps);
454 
455 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457 
458 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460 
461 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463 
464 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
465 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
466 
467 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
468 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
469 
470 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
471 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
472 
473 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
474 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
475 
476 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
477 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
478 
479 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
480 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
481 
482 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
483 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
484 
485 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
486 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
487 
488 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
489 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
490 
491 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
492 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
493 
494 	vfres->num_vsis = 1;
495 	/* Tx and Rx queue are equal for VF */
496 	vfres->num_queue_pairs = vsi->num_txq;
497 	vfres->max_vectors = vf->num_msix;
498 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
499 	vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
500 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
501 
502 	vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
503 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
504 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
505 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
506 			vf->hw_lan_addr);
507 
508 	/* match guest capabilities */
509 	vf->driver_caps = vfres->vf_cap_flags;
510 
511 	ice_vc_set_caps_allowlist(vf);
512 	ice_vc_set_working_allowlist(vf);
513 
514 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
515 
516 err:
517 	/* send the response back to the VF */
518 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
519 				    (u8 *)vfres, len);
520 
521 	kfree(vfres);
522 	return ret;
523 }
524 
525 /**
526  * ice_vc_reset_vf_msg
527  * @vf: pointer to the VF info
528  *
529  * called from the VF to reset itself,
530  * unlike other virtchnl messages, PF driver
531  * doesn't send the response back to the VF
532  */
533 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
534 {
535 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
536 		ice_reset_vf(vf, 0);
537 }
538 
539 /**
540  * ice_vc_isvalid_vsi_id
541  * @vf: pointer to the VF info
542  * @vsi_id: VF relative VSI ID
543  *
544  * check for the valid VSI ID
545  */
546 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
547 {
548 	return vsi_id == ICE_VF_VSI_ID;
549 }
550 
551 /**
552  * ice_vc_isvalid_q_id
553  * @vsi: VSI to check queue ID against
554  * @qid: VSI relative queue ID
555  *
556  * check for the valid queue ID
557  */
558 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
559 {
560 	/* allocated Tx and Rx queues should be always equal for VF VSI */
561 	return qid < vsi->alloc_txq;
562 }
563 
564 /**
565  * ice_vc_isvalid_ring_len
566  * @ring_len: length of ring
567  *
568  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
569  * or zero
570  */
571 static bool ice_vc_isvalid_ring_len(u16 ring_len)
572 {
573 	return ring_len == 0 ||
574 	       (ring_len >= ICE_MIN_NUM_DESC &&
575 		ring_len <= ICE_MAX_NUM_DESC &&
576 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
577 }
578 
579 /**
580  * ice_vc_validate_pattern
581  * @vf: pointer to the VF info
582  * @proto: virtchnl protocol headers
583  *
584  * validate the pattern is supported or not.
585  *
586  * Return: true on success, false on error.
587  */
588 bool
589 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
590 {
591 	bool is_ipv4 = false;
592 	bool is_ipv6 = false;
593 	bool is_udp = false;
594 	u16 ptype = -1;
595 	int i = 0;
596 
597 	while (i < proto->count &&
598 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
599 		switch (proto->proto_hdr[i].type) {
600 		case VIRTCHNL_PROTO_HDR_ETH:
601 			ptype = ICE_PTYPE_MAC_PAY;
602 			break;
603 		case VIRTCHNL_PROTO_HDR_IPV4:
604 			ptype = ICE_PTYPE_IPV4_PAY;
605 			is_ipv4 = true;
606 			break;
607 		case VIRTCHNL_PROTO_HDR_IPV6:
608 			ptype = ICE_PTYPE_IPV6_PAY;
609 			is_ipv6 = true;
610 			break;
611 		case VIRTCHNL_PROTO_HDR_UDP:
612 			if (is_ipv4)
613 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
614 			else if (is_ipv6)
615 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
616 			is_udp = true;
617 			break;
618 		case VIRTCHNL_PROTO_HDR_TCP:
619 			if (is_ipv4)
620 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
621 			else if (is_ipv6)
622 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
623 			break;
624 		case VIRTCHNL_PROTO_HDR_SCTP:
625 			if (is_ipv4)
626 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
627 			else if (is_ipv6)
628 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
629 			break;
630 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
631 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
632 			if (is_ipv4)
633 				ptype = ICE_MAC_IPV4_GTPU;
634 			else if (is_ipv6)
635 				ptype = ICE_MAC_IPV6_GTPU;
636 			goto out;
637 		case VIRTCHNL_PROTO_HDR_L2TPV3:
638 			if (is_ipv4)
639 				ptype = ICE_MAC_IPV4_L2TPV3;
640 			else if (is_ipv6)
641 				ptype = ICE_MAC_IPV6_L2TPV3;
642 			goto out;
643 		case VIRTCHNL_PROTO_HDR_ESP:
644 			if (is_ipv4)
645 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
646 						ICE_MAC_IPV4_ESP;
647 			else if (is_ipv6)
648 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
649 						ICE_MAC_IPV6_ESP;
650 			goto out;
651 		case VIRTCHNL_PROTO_HDR_AH:
652 			if (is_ipv4)
653 				ptype = ICE_MAC_IPV4_AH;
654 			else if (is_ipv6)
655 				ptype = ICE_MAC_IPV6_AH;
656 			goto out;
657 		case VIRTCHNL_PROTO_HDR_PFCP:
658 			if (is_ipv4)
659 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
660 			else if (is_ipv6)
661 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
662 			goto out;
663 		default:
664 			break;
665 		}
666 		i++;
667 	}
668 
669 out:
670 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
671 }
672 
673 /**
674  * ice_vc_parse_rss_cfg - parses hash fields and headers from
675  * a specific virtchnl RSS cfg
676  * @hw: pointer to the hardware
677  * @rss_cfg: pointer to the virtchnl RSS cfg
678  * @hash_cfg: pointer to the HW hash configuration
679  *
680  * Return true if all the protocol header and hash fields in the RSS cfg could
681  * be parsed, else return false
682  *
683  * This function parses the virtchnl RSS cfg to be the intended
684  * hash fields and the intended header for RSS configuration
685  */
686 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
687 				 struct virtchnl_rss_cfg *rss_cfg,
688 				 struct ice_rss_hash_cfg *hash_cfg)
689 {
690 	const struct ice_vc_hash_field_match_type *hf_list;
691 	const struct ice_vc_hdr_match_type *hdr_list;
692 	int i, hf_list_len, hdr_list_len;
693 	u32 *addl_hdrs = &hash_cfg->addl_hdrs;
694 	u64 *hash_flds = &hash_cfg->hash_flds;
695 
696 	/* set outer layer RSS as default */
697 	hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
698 
699 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
700 		hash_cfg->symm = true;
701 	else
702 		hash_cfg->symm = false;
703 
704 	hf_list = ice_vc_hash_field_list;
705 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
706 	hdr_list = ice_vc_hdr_list;
707 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
708 
709 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
710 		struct virtchnl_proto_hdr *proto_hdr =
711 					&rss_cfg->proto_hdrs.proto_hdr[i];
712 		bool hdr_found = false;
713 		int j;
714 
715 		/* Find matched ice headers according to virtchnl headers. */
716 		for (j = 0; j < hdr_list_len; j++) {
717 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
718 
719 			if (proto_hdr->type == hdr_map.vc_hdr) {
720 				*addl_hdrs |= hdr_map.ice_hdr;
721 				hdr_found = true;
722 			}
723 		}
724 
725 		if (!hdr_found)
726 			return false;
727 
728 		/* Find matched ice hash fields according to
729 		 * virtchnl hash fields.
730 		 */
731 		for (j = 0; j < hf_list_len; j++) {
732 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
733 
734 			if (proto_hdr->type == hf_map.vc_hdr &&
735 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
736 				*hash_flds |= hf_map.ice_hash_field;
737 				break;
738 			}
739 		}
740 	}
741 
742 	return true;
743 }
744 
745 /**
746  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
747  * RSS offloads
748  * @caps: VF driver negotiated capabilities
749  *
750  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
751  * else return false
752  */
753 static bool ice_vf_adv_rss_offload_ena(u32 caps)
754 {
755 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
756 }
757 
758 /**
759  * ice_vc_handle_rss_cfg
760  * @vf: pointer to the VF info
761  * @msg: pointer to the message buffer
762  * @add: add a RSS config if true, otherwise delete a RSS config
763  *
764  * This function adds/deletes a RSS config
765  */
766 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
767 {
768 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
769 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
770 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
771 	struct device *dev = ice_pf_to_dev(vf->pf);
772 	struct ice_hw *hw = &vf->pf->hw;
773 	struct ice_vsi *vsi;
774 
775 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
776 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
777 			vf->vf_id);
778 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
779 		goto error_param;
780 	}
781 
782 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
783 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
784 			vf->vf_id);
785 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
786 		goto error_param;
787 	}
788 
789 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
790 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
791 		goto error_param;
792 	}
793 
794 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
795 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
796 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
797 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
798 			vf->vf_id);
799 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
800 		goto error_param;
801 	}
802 
803 	vsi = ice_get_vf_vsi(vf);
804 	if (!vsi) {
805 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
806 		goto error_param;
807 	}
808 
809 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
810 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
811 		goto error_param;
812 	}
813 
814 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
815 		struct ice_vsi_ctx *ctx;
816 		u8 lut_type, hash_type;
817 		int status;
818 
819 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
820 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
821 				ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
822 
823 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
824 		if (!ctx) {
825 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
826 			goto error_param;
827 		}
828 
829 		ctx->info.q_opt_rss =
830 			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
831 			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
832 
833 		/* Preserve existing queueing option setting */
834 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
835 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
836 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
837 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
838 
839 		ctx->info.valid_sections =
840 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
841 
842 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
843 		if (status) {
844 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
845 				status, ice_aq_str(hw->adminq.sq_last_status));
846 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
847 		} else {
848 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
849 		}
850 
851 		kfree(ctx);
852 	} else {
853 		struct ice_rss_hash_cfg cfg;
854 
855 		/* Only check for none raw pattern case */
856 		if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
857 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
858 			goto error_param;
859 		}
860 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
861 		cfg.hash_flds = ICE_HASH_INVALID;
862 		cfg.hdr_type = ICE_RSS_ANY_HEADERS;
863 
864 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
865 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
866 			goto error_param;
867 		}
868 
869 		if (add) {
870 			if (ice_add_rss_cfg(hw, vsi, &cfg)) {
871 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
872 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
873 					vsi->vsi_num, v_ret);
874 			}
875 		} else {
876 			int status;
877 
878 			status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
879 			/* We just ignore -ENOENT, because if two configurations
880 			 * share the same profile remove one of them actually
881 			 * removes both, since the profile is deleted.
882 			 */
883 			if (status && status != -ENOENT) {
884 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
885 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
886 					vf->vf_id, status);
887 			}
888 		}
889 	}
890 
891 error_param:
892 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
893 }
894 
895 /**
896  * ice_vc_config_rss_key
897  * @vf: pointer to the VF info
898  * @msg: pointer to the msg buffer
899  *
900  * Configure the VF's RSS key
901  */
902 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
903 {
904 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
905 	struct virtchnl_rss_key *vrk =
906 		(struct virtchnl_rss_key *)msg;
907 	struct ice_vsi *vsi;
908 
909 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
910 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
911 		goto error_param;
912 	}
913 
914 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
915 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
916 		goto error_param;
917 	}
918 
919 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
920 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
921 		goto error_param;
922 	}
923 
924 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
925 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
926 		goto error_param;
927 	}
928 
929 	vsi = ice_get_vf_vsi(vf);
930 	if (!vsi) {
931 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
932 		goto error_param;
933 	}
934 
935 	if (ice_set_rss_key(vsi, vrk->key))
936 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
937 error_param:
938 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
939 				     NULL, 0);
940 }
941 
942 /**
943  * ice_vc_config_rss_lut
944  * @vf: pointer to the VF info
945  * @msg: pointer to the msg buffer
946  *
947  * Configure the VF's RSS LUT
948  */
949 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
950 {
951 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
952 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
953 	struct ice_vsi *vsi;
954 
955 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
956 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
957 		goto error_param;
958 	}
959 
960 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
961 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
962 		goto error_param;
963 	}
964 
965 	if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
966 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
967 		goto error_param;
968 	}
969 
970 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
971 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
972 		goto error_param;
973 	}
974 
975 	vsi = ice_get_vf_vsi(vf);
976 	if (!vsi) {
977 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
978 		goto error_param;
979 	}
980 
981 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
982 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
983 error_param:
984 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
985 				     NULL, 0);
986 }
987 
988 /**
989  * ice_vc_config_rss_hfunc
990  * @vf: pointer to the VF info
991  * @msg: pointer to the msg buffer
992  *
993  * Configure the VF's RSS Hash function
994  */
995 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
996 {
997 	struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
998 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
999 	u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1000 	struct ice_vsi *vsi;
1001 
1002 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1003 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1004 		goto error_param;
1005 	}
1006 
1007 	if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1008 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1009 		goto error_param;
1010 	}
1011 
1012 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1013 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1014 		goto error_param;
1015 	}
1016 
1017 	vsi = ice_get_vf_vsi(vf);
1018 	if (!vsi) {
1019 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1020 		goto error_param;
1021 	}
1022 
1023 	if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1024 		hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1025 
1026 	if (ice_set_rss_hfunc(vsi, hfunc))
1027 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1028 error_param:
1029 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1030 				     NULL, 0);
1031 }
1032 
1033 /**
1034  * ice_vc_cfg_promiscuous_mode_msg
1035  * @vf: pointer to the VF info
1036  * @msg: pointer to the msg buffer
1037  *
1038  * called from the VF to configure VF VSIs promiscuous mode
1039  */
1040 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1041 {
1042 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1043 	bool rm_promisc, alluni = false, allmulti = false;
1044 	struct virtchnl_promisc_info *info =
1045 	    (struct virtchnl_promisc_info *)msg;
1046 	struct ice_vsi_vlan_ops *vlan_ops;
1047 	int mcast_err = 0, ucast_err = 0;
1048 	struct ice_pf *pf = vf->pf;
1049 	struct ice_vsi *vsi;
1050 	u8 mcast_m, ucast_m;
1051 	struct device *dev;
1052 	int ret = 0;
1053 
1054 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1055 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1056 		goto error_param;
1057 	}
1058 
1059 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1060 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1061 		goto error_param;
1062 	}
1063 
1064 	vsi = ice_get_vf_vsi(vf);
1065 	if (!vsi) {
1066 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1067 		goto error_param;
1068 	}
1069 
1070 	dev = ice_pf_to_dev(pf);
1071 	if (!ice_is_vf_trusted(vf)) {
1072 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1073 			vf->vf_id);
1074 		/* Leave v_ret alone, lie to the VF on purpose. */
1075 		goto error_param;
1076 	}
1077 
1078 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1079 		alluni = true;
1080 
1081 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1082 		allmulti = true;
1083 
1084 	rm_promisc = !allmulti && !alluni;
1085 
1086 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1087 	if (rm_promisc)
1088 		ret = vlan_ops->ena_rx_filtering(vsi);
1089 	else
1090 		ret = vlan_ops->dis_rx_filtering(vsi);
1091 	if (ret) {
1092 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1093 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1094 		goto error_param;
1095 	}
1096 
1097 	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1098 
1099 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1100 		if (alluni) {
1101 			/* in this case we're turning on promiscuous mode */
1102 			ret = ice_set_dflt_vsi(vsi);
1103 		} else {
1104 			/* in this case we're turning off promiscuous mode */
1105 			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1106 				ret = ice_clear_dflt_vsi(vsi);
1107 		}
1108 
1109 		/* in this case we're turning on/off only
1110 		 * allmulticast
1111 		 */
1112 		if (allmulti)
1113 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1114 		else
1115 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1116 
1117 		if (ret) {
1118 			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1119 				vf->vf_id, ret);
1120 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1121 			goto error_param;
1122 		}
1123 	} else {
1124 		if (alluni)
1125 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1126 		else
1127 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1128 
1129 		if (allmulti)
1130 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1131 		else
1132 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1133 
1134 		if (ucast_err || mcast_err)
1135 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1136 	}
1137 
1138 	if (!mcast_err) {
1139 		if (allmulti &&
1140 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1141 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1142 				 vf->vf_id);
1143 		else if (!allmulti &&
1144 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1145 					    vf->vf_states))
1146 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1147 				 vf->vf_id);
1148 	} else {
1149 		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1150 			vf->vf_id, mcast_err);
1151 	}
1152 
1153 	if (!ucast_err) {
1154 		if (alluni &&
1155 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1156 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1157 				 vf->vf_id);
1158 		else if (!alluni &&
1159 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1160 					    vf->vf_states))
1161 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1162 				 vf->vf_id);
1163 	} else {
1164 		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1165 			vf->vf_id, ucast_err);
1166 	}
1167 
1168 error_param:
1169 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1170 				     v_ret, NULL, 0);
1171 }
1172 
1173 /**
1174  * ice_vc_get_stats_msg
1175  * @vf: pointer to the VF info
1176  * @msg: pointer to the msg buffer
1177  *
1178  * called from the VF to get VSI stats
1179  */
1180 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1181 {
1182 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1183 	struct virtchnl_queue_select *vqs =
1184 		(struct virtchnl_queue_select *)msg;
1185 	struct ice_eth_stats stats = { 0 };
1186 	struct ice_vsi *vsi;
1187 
1188 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1189 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1190 		goto error_param;
1191 	}
1192 
1193 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1194 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1195 		goto error_param;
1196 	}
1197 
1198 	vsi = ice_get_vf_vsi(vf);
1199 	if (!vsi) {
1200 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1201 		goto error_param;
1202 	}
1203 
1204 	ice_update_eth_stats(vsi);
1205 
1206 	stats = vsi->eth_stats;
1207 
1208 error_param:
1209 	/* send the response to the VF */
1210 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1211 				     (u8 *)&stats, sizeof(stats));
1212 }
1213 
1214 /**
1215  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1216  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1217  *
1218  * Return true on successful validation, else false
1219  */
1220 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1221 {
1222 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1223 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1224 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1225 		return false;
1226 
1227 	return true;
1228 }
1229 
1230 /**
1231  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1232  * @vsi: VSI of the VF to configure
1233  * @q_idx: VF queue index used to determine the queue in the PF's space
1234  */
1235 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1236 {
1237 	struct ice_hw *hw = &vsi->back->hw;
1238 	u32 pfq = vsi->txq_map[q_idx];
1239 	u32 reg;
1240 
1241 	reg = rd32(hw, QINT_TQCTL(pfq));
1242 
1243 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1244 	 * this is most likely a poll mode VF driver, so don't enable an
1245 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1246 	 */
1247 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1248 		return;
1249 
1250 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1251 }
1252 
1253 /**
1254  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1255  * @vsi: VSI of the VF to configure
1256  * @q_idx: VF queue index used to determine the queue in the PF's space
1257  */
1258 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1259 {
1260 	struct ice_hw *hw = &vsi->back->hw;
1261 	u32 pfq = vsi->rxq_map[q_idx];
1262 	u32 reg;
1263 
1264 	reg = rd32(hw, QINT_RQCTL(pfq));
1265 
1266 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1267 	 * this is most likely a poll mode VF driver, so don't enable an
1268 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1269 	 */
1270 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1271 		return;
1272 
1273 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1274 }
1275 
1276 /**
1277  * ice_vc_ena_qs_msg
1278  * @vf: pointer to the VF info
1279  * @msg: pointer to the msg buffer
1280  *
1281  * called from the VF to enable all or specific queue(s)
1282  */
1283 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1284 {
1285 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1286 	struct virtchnl_queue_select *vqs =
1287 	    (struct virtchnl_queue_select *)msg;
1288 	struct ice_vsi *vsi;
1289 	unsigned long q_map;
1290 	u16 vf_q_id;
1291 
1292 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1293 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1294 		goto error_param;
1295 	}
1296 
1297 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1298 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1299 		goto error_param;
1300 	}
1301 
1302 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1303 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1304 		goto error_param;
1305 	}
1306 
1307 	vsi = ice_get_vf_vsi(vf);
1308 	if (!vsi) {
1309 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1310 		goto error_param;
1311 	}
1312 
1313 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1314 	 * Tx queue group list was configured and the context bits were
1315 	 * programmed using ice_vsi_cfg_txqs
1316 	 */
1317 	q_map = vqs->rx_queues;
1318 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1319 		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1320 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1321 			goto error_param;
1322 		}
1323 
1324 		/* Skip queue if enabled */
1325 		if (test_bit(vf_q_id, vf->rxq_ena))
1326 			continue;
1327 
1328 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1329 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1330 				vf_q_id, vsi->vsi_num);
1331 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1332 			goto error_param;
1333 		}
1334 
1335 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1336 		set_bit(vf_q_id, vf->rxq_ena);
1337 	}
1338 
1339 	q_map = vqs->tx_queues;
1340 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1341 		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1342 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1343 			goto error_param;
1344 		}
1345 
1346 		/* Skip queue if enabled */
1347 		if (test_bit(vf_q_id, vf->txq_ena))
1348 			continue;
1349 
1350 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1351 		set_bit(vf_q_id, vf->txq_ena);
1352 	}
1353 
1354 	/* Set flag to indicate that queues are enabled */
1355 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1356 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1357 
1358 error_param:
1359 	/* send the response to the VF */
1360 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1361 				     NULL, 0);
1362 }
1363 
1364 /**
1365  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1366  * @vf: VF to disable queue for
1367  * @vsi: VSI for the VF
1368  * @q_id: VF relative (0-based) queue ID
1369  *
1370  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1371  * disabled then clear q_id bit in the enabled queues bitmap and return
1372  * success. Otherwise return error.
1373  */
1374 static int
1375 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1376 {
1377 	struct ice_txq_meta txq_meta = { 0 };
1378 	struct ice_tx_ring *ring;
1379 	int err;
1380 
1381 	if (!test_bit(q_id, vf->txq_ena))
1382 		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1383 			q_id, vsi->vsi_num);
1384 
1385 	ring = vsi->tx_rings[q_id];
1386 	if (!ring)
1387 		return -EINVAL;
1388 
1389 	ice_fill_txq_meta(vsi, ring, &txq_meta);
1390 
1391 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1392 	if (err) {
1393 		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1394 			q_id, vsi->vsi_num);
1395 		return err;
1396 	}
1397 
1398 	/* Clear enabled queues flag */
1399 	clear_bit(q_id, vf->txq_ena);
1400 
1401 	return 0;
1402 }
1403 
1404 /**
1405  * ice_vc_dis_qs_msg
1406  * @vf: pointer to the VF info
1407  * @msg: pointer to the msg buffer
1408  *
1409  * called from the VF to disable all or specific queue(s)
1410  */
1411 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1412 {
1413 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1414 	struct virtchnl_queue_select *vqs =
1415 	    (struct virtchnl_queue_select *)msg;
1416 	struct ice_vsi *vsi;
1417 	unsigned long q_map;
1418 	u16 vf_q_id;
1419 
1420 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1421 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1422 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1423 		goto error_param;
1424 	}
1425 
1426 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1427 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1428 		goto error_param;
1429 	}
1430 
1431 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1432 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1433 		goto error_param;
1434 	}
1435 
1436 	vsi = ice_get_vf_vsi(vf);
1437 	if (!vsi) {
1438 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1439 		goto error_param;
1440 	}
1441 
1442 	if (vqs->tx_queues) {
1443 		q_map = vqs->tx_queues;
1444 
1445 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1446 			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1447 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1448 				goto error_param;
1449 			}
1450 
1451 			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1452 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1453 				goto error_param;
1454 			}
1455 		}
1456 	}
1457 
1458 	q_map = vqs->rx_queues;
1459 	/* speed up Rx queue disable by batching them if possible */
1460 	if (q_map &&
1461 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1462 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1463 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1464 				vsi->vsi_num);
1465 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1466 			goto error_param;
1467 		}
1468 
1469 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1470 	} else if (q_map) {
1471 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1472 			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1473 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1474 				goto error_param;
1475 			}
1476 
1477 			/* Skip queue if not enabled */
1478 			if (!test_bit(vf_q_id, vf->rxq_ena))
1479 				continue;
1480 
1481 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1482 						     true)) {
1483 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1484 					vf_q_id, vsi->vsi_num);
1485 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1486 				goto error_param;
1487 			}
1488 
1489 			/* Clear enabled queues flag */
1490 			clear_bit(vf_q_id, vf->rxq_ena);
1491 		}
1492 	}
1493 
1494 	/* Clear enabled queues flag */
1495 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1496 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1497 
1498 error_param:
1499 	/* send the response to the VF */
1500 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1501 				     NULL, 0);
1502 }
1503 
1504 /**
1505  * ice_cfg_interrupt
1506  * @vf: pointer to the VF info
1507  * @vsi: the VSI being configured
1508  * @map: vector map for mapping vectors to queues
1509  * @q_vector: structure for interrupt vector
1510  * configure the IRQ to queue map
1511  */
1512 static enum virtchnl_status_code
1513 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi,
1514 		  struct virtchnl_vector_map *map,
1515 		  struct ice_q_vector *q_vector)
1516 {
1517 	u16 vsi_q_id, vsi_q_id_idx;
1518 	unsigned long qmap;
1519 
1520 	q_vector->num_ring_rx = 0;
1521 	q_vector->num_ring_tx = 0;
1522 
1523 	qmap = map->rxq_map;
1524 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1525 		vsi_q_id = vsi_q_id_idx;
1526 
1527 		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1528 			return VIRTCHNL_STATUS_ERR_PARAM;
1529 
1530 		q_vector->num_ring_rx++;
1531 		q_vector->rx.itr_idx = map->rxitr_idx;
1532 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1533 		ice_cfg_rxq_interrupt(vsi, vsi_q_id,
1534 				      q_vector->vf_reg_idx,
1535 				      q_vector->rx.itr_idx);
1536 	}
1537 
1538 	qmap = map->txq_map;
1539 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1540 		vsi_q_id = vsi_q_id_idx;
1541 
1542 		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1543 			return VIRTCHNL_STATUS_ERR_PARAM;
1544 
1545 		q_vector->num_ring_tx++;
1546 		q_vector->tx.itr_idx = map->txitr_idx;
1547 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1548 		ice_cfg_txq_interrupt(vsi, vsi_q_id,
1549 				      q_vector->vf_reg_idx,
1550 				      q_vector->tx.itr_idx);
1551 	}
1552 
1553 	return VIRTCHNL_STATUS_SUCCESS;
1554 }
1555 
1556 /**
1557  * ice_vc_cfg_irq_map_msg
1558  * @vf: pointer to the VF info
1559  * @msg: pointer to the msg buffer
1560  *
1561  * called from the VF to configure the IRQ to queue map
1562  */
1563 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1564 {
1565 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1566 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1567 	struct virtchnl_irq_map_info *irqmap_info;
1568 	struct virtchnl_vector_map *map;
1569 	struct ice_vsi *vsi;
1570 	int i;
1571 
1572 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1573 	num_q_vectors_mapped = irqmap_info->num_vectors;
1574 
1575 	/* Check to make sure number of VF vectors mapped is not greater than
1576 	 * number of VF vectors originally allocated, and check that
1577 	 * there is actually at least a single VF queue vector mapped
1578 	 */
1579 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1580 	    vf->num_msix < num_q_vectors_mapped ||
1581 	    !num_q_vectors_mapped) {
1582 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1583 		goto error_param;
1584 	}
1585 
1586 	vsi = ice_get_vf_vsi(vf);
1587 	if (!vsi) {
1588 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1589 		goto error_param;
1590 	}
1591 
1592 	for (i = 0; i < num_q_vectors_mapped; i++) {
1593 		struct ice_q_vector *q_vector;
1594 
1595 		map = &irqmap_info->vecmap[i];
1596 
1597 		vector_id = map->vector_id;
1598 		vsi_id = map->vsi_id;
1599 		/* vector_id is always 0-based for each VF, and can never be
1600 		 * larger than or equal to the max allowed interrupts per VF
1601 		 */
1602 		if (!(vector_id < vf->num_msix) ||
1603 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1604 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1605 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1606 			goto error_param;
1607 		}
1608 
1609 		/* No need to map VF miscellaneous or rogue vector */
1610 		if (!vector_id)
1611 			continue;
1612 
1613 		/* Subtract non queue vector from vector_id passed by VF
1614 		 * to get actual number of VSI queue vector array index
1615 		 */
1616 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1617 		if (!q_vector) {
1618 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1619 			goto error_param;
1620 		}
1621 
1622 		/* lookout for the invalid queue index */
1623 		v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector);
1624 		if (v_ret)
1625 			goto error_param;
1626 	}
1627 
1628 error_param:
1629 	/* send the response to the VF */
1630 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1631 				     NULL, 0);
1632 }
1633 
1634 /**
1635  * ice_vc_cfg_qs_msg
1636  * @vf: pointer to the VF info
1637  * @msg: pointer to the msg buffer
1638  *
1639  * called from the VF to configure the Rx/Tx queues
1640  */
1641 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1642 {
1643 	struct virtchnl_vsi_queue_config_info *qci =
1644 	    (struct virtchnl_vsi_queue_config_info *)msg;
1645 	struct virtchnl_queue_pair_info *qpi;
1646 	struct ice_pf *pf = vf->pf;
1647 	struct ice_lag *lag;
1648 	struct ice_vsi *vsi;
1649 	u8 act_prt, pri_prt;
1650 	int i = -1, q_idx;
1651 
1652 	lag = pf->lag;
1653 	mutex_lock(&pf->lag_mutex);
1654 	act_prt = ICE_LAG_INVALID_PORT;
1655 	pri_prt = pf->hw.port_info->lport;
1656 	if (lag && lag->bonded && lag->primary) {
1657 		act_prt = lag->active_port;
1658 		if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1659 		    lag->upper_netdev)
1660 			ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1661 		else
1662 			act_prt = ICE_LAG_INVALID_PORT;
1663 	}
1664 
1665 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1666 		goto error_param;
1667 
1668 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1669 		goto error_param;
1670 
1671 	vsi = ice_get_vf_vsi(vf);
1672 	if (!vsi)
1673 		goto error_param;
1674 
1675 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1676 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1677 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1678 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1679 		goto error_param;
1680 	}
1681 
1682 	for (i = 0; i < qci->num_queue_pairs; i++) {
1683 		if (!qci->qpair[i].rxq.crc_disable)
1684 			continue;
1685 
1686 		if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1687 		    vf->vlan_strip_ena)
1688 			goto error_param;
1689 	}
1690 
1691 	for (i = 0; i < qci->num_queue_pairs; i++) {
1692 		qpi = &qci->qpair[i];
1693 		if (qpi->txq.vsi_id != qci->vsi_id ||
1694 		    qpi->rxq.vsi_id != qci->vsi_id ||
1695 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1696 		    qpi->txq.headwb_enabled ||
1697 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1698 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1699 		    !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
1700 			goto error_param;
1701 		}
1702 
1703 		q_idx = qpi->rxq.queue_id;
1704 
1705 		/* make sure selected "q_idx" is in valid range of queues
1706 		 * for selected "vsi"
1707 		 */
1708 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1709 			goto error_param;
1710 		}
1711 
1712 		/* copy Tx queue info from VF into VSI */
1713 		if (qpi->txq.ring_len > 0) {
1714 			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1715 			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1716 
1717 			/* Disable any existing queue first */
1718 			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1719 				goto error_param;
1720 
1721 			/* Configure a queue with the requested settings */
1722 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1723 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1724 					 vf->vf_id, i);
1725 				goto error_param;
1726 			}
1727 		}
1728 
1729 		/* copy Rx queue info from VF into VSI */
1730 		if (qpi->rxq.ring_len > 0) {
1731 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1732 			u32 rxdid;
1733 
1734 			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1735 			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1736 
1737 			if (qpi->rxq.crc_disable)
1738 				vsi->rx_rings[q_idx]->flags |=
1739 					ICE_RX_FLAGS_CRC_STRIP_DIS;
1740 			else
1741 				vsi->rx_rings[q_idx]->flags &=
1742 					~ICE_RX_FLAGS_CRC_STRIP_DIS;
1743 
1744 			if (qpi->rxq.databuffer_size != 0 &&
1745 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1746 			     qpi->rxq.databuffer_size < 1024))
1747 				goto error_param;
1748 			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1749 			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1750 			if (qpi->rxq.max_pkt_size > max_frame_size ||
1751 			    qpi->rxq.max_pkt_size < 64)
1752 				goto error_param;
1753 
1754 			vsi->max_frame = qpi->rxq.max_pkt_size;
1755 			/* add space for the port VLAN since the VF driver is
1756 			 * not expected to account for it in the MTU
1757 			 * calculation
1758 			 */
1759 			if (ice_vf_is_port_vlan_ena(vf))
1760 				vsi->max_frame += VLAN_HLEN;
1761 
1762 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1763 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1764 					 vf->vf_id, i);
1765 				goto error_param;
1766 			}
1767 
1768 			/* If Rx flex desc is supported, select RXDID for Rx
1769 			 * queues. Otherwise, use legacy 32byte descriptor
1770 			 * format. Legacy 16byte descriptor is not supported.
1771 			 * If this RXDID is selected, return error.
1772 			 */
1773 			if (vf->driver_caps &
1774 			    VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1775 				rxdid = qpi->rxq.rxdid;
1776 				if (!(BIT(rxdid) & pf->supported_rxdids))
1777 					goto error_param;
1778 			} else {
1779 				rxdid = ICE_RXDID_LEGACY_1;
1780 			}
1781 
1782 			ice_write_qrxflxp_cntxt(&vsi->back->hw,
1783 						vsi->rxq_map[q_idx],
1784 						rxdid, 0x03, false);
1785 		}
1786 	}
1787 
1788 	if (lag && lag->bonded && lag->primary &&
1789 	    act_prt != ICE_LAG_INVALID_PORT)
1790 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1791 	mutex_unlock(&pf->lag_mutex);
1792 
1793 	/* send the response to the VF */
1794 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1795 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1796 error_param:
1797 	/* disable whatever we can */
1798 	for (; i >= 0; i--) {
1799 		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1800 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1801 				vf->vf_id, i);
1802 		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1803 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1804 				vf->vf_id, i);
1805 	}
1806 
1807 	if (lag && lag->bonded && lag->primary &&
1808 	    act_prt != ICE_LAG_INVALID_PORT)
1809 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1810 	mutex_unlock(&pf->lag_mutex);
1811 
1812 	ice_lag_move_new_vf_nodes(vf);
1813 
1814 	/* send the response to the VF */
1815 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1816 				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1817 }
1818 
1819 /**
1820  * ice_can_vf_change_mac
1821  * @vf: pointer to the VF info
1822  *
1823  * Return true if the VF is allowed to change its MAC filters, false otherwise
1824  */
1825 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1826 {
1827 	/* If the VF MAC address has been set administratively (via the
1828 	 * ndo_set_vf_mac command), then deny permission to the VF to
1829 	 * add/delete unicast MAC addresses, unless the VF is trusted
1830 	 */
1831 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1832 		return false;
1833 
1834 	return true;
1835 }
1836 
1837 /**
1838  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1839  * @vc_ether_addr: used to extract the type
1840  */
1841 static u8
1842 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1843 {
1844 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1845 }
1846 
1847 /**
1848  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1849  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1850  */
1851 static bool
1852 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1853 {
1854 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1855 
1856 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1857 }
1858 
1859 /**
1860  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1861  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1862  *
1863  * This function should only be called when the MAC address in
1864  * virtchnl_ether_addr is a valid unicast MAC
1865  */
1866 static bool
1867 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1868 {
1869 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1870 
1871 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1872 }
1873 
1874 /**
1875  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1876  * @vf: VF to update
1877  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1878  */
1879 static void
1880 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1881 {
1882 	u8 *mac_addr = vc_ether_addr->addr;
1883 
1884 	if (!is_valid_ether_addr(mac_addr))
1885 		return;
1886 
1887 	/* only allow legacy VF drivers to set the device and hardware MAC if it
1888 	 * is zero and allow new VF drivers to set the hardware MAC if the type
1889 	 * was correctly specified over VIRTCHNL
1890 	 */
1891 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1892 	     is_zero_ether_addr(vf->hw_lan_addr)) ||
1893 	    ice_is_vc_addr_primary(vc_ether_addr)) {
1894 		ether_addr_copy(vf->dev_lan_addr, mac_addr);
1895 		ether_addr_copy(vf->hw_lan_addr, mac_addr);
1896 	}
1897 
1898 	/* hardware and device MACs are already set, but its possible that the
1899 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1900 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1901 	 * away for the legacy VF driver case as it will be updated in the
1902 	 * delete flow for this case
1903 	 */
1904 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1905 		ether_addr_copy(vf->legacy_last_added_umac.addr,
1906 				mac_addr);
1907 		vf->legacy_last_added_umac.time_modified = jiffies;
1908 	}
1909 }
1910 
1911 /**
1912  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1913  * @vf: pointer to the VF info
1914  * @vsi: pointer to the VF's VSI
1915  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1916  */
1917 static int
1918 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1919 		    struct virtchnl_ether_addr *vc_ether_addr)
1920 {
1921 	struct device *dev = ice_pf_to_dev(vf->pf);
1922 	u8 *mac_addr = vc_ether_addr->addr;
1923 	int ret;
1924 
1925 	/* device MAC already added */
1926 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1927 		return 0;
1928 
1929 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1930 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1931 		return -EPERM;
1932 	}
1933 
1934 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1935 	if (ret == -EEXIST) {
1936 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1937 			vf->vf_id);
1938 		/* don't return since we might need to update
1939 		 * the primary MAC in ice_vfhw_mac_add() below
1940 		 */
1941 	} else if (ret) {
1942 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1943 			mac_addr, vf->vf_id, ret);
1944 		return ret;
1945 	} else {
1946 		vf->num_mac++;
1947 	}
1948 
1949 	ice_vfhw_mac_add(vf, vc_ether_addr);
1950 
1951 	return ret;
1952 }
1953 
1954 /**
1955  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1956  * @last_added_umac: structure used to check expiration
1957  */
1958 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1959 {
1960 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1961 	return time_is_before_jiffies(last_added_umac->time_modified +
1962 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1963 }
1964 
1965 /**
1966  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1967  * @vf: VF to update
1968  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1969  *
1970  * only update cached hardware MAC for legacy VF drivers on delete
1971  * because we cannot guarantee order/type of MAC from the VF driver
1972  */
1973 static void
1974 ice_update_legacy_cached_mac(struct ice_vf *vf,
1975 			     struct virtchnl_ether_addr *vc_ether_addr)
1976 {
1977 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1978 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1979 		return;
1980 
1981 	ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1982 	ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1983 }
1984 
1985 /**
1986  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1987  * @vf: VF to update
1988  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1989  */
1990 static void
1991 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1992 {
1993 	u8 *mac_addr = vc_ether_addr->addr;
1994 
1995 	if (!is_valid_ether_addr(mac_addr) ||
1996 	    !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1997 		return;
1998 
1999 	/* allow the device MAC to be repopulated in the add flow and don't
2000 	 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2001 	 * to be persistent on VM reboot and across driver unload/load, which
2002 	 * won't work if we clear the hardware MAC here
2003 	 */
2004 	eth_zero_addr(vf->dev_lan_addr);
2005 
2006 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
2007 }
2008 
2009 /**
2010  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2011  * @vf: pointer to the VF info
2012  * @vsi: pointer to the VF's VSI
2013  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2014  */
2015 static int
2016 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2017 		    struct virtchnl_ether_addr *vc_ether_addr)
2018 {
2019 	struct device *dev = ice_pf_to_dev(vf->pf);
2020 	u8 *mac_addr = vc_ether_addr->addr;
2021 	int status;
2022 
2023 	if (!ice_can_vf_change_mac(vf) &&
2024 	    ether_addr_equal(vf->dev_lan_addr, mac_addr))
2025 		return 0;
2026 
2027 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2028 	if (status == -ENOENT) {
2029 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2030 			vf->vf_id);
2031 		return -ENOENT;
2032 	} else if (status) {
2033 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2034 			mac_addr, vf->vf_id, status);
2035 		return -EIO;
2036 	}
2037 
2038 	ice_vfhw_mac_del(vf, vc_ether_addr);
2039 
2040 	vf->num_mac--;
2041 
2042 	return 0;
2043 }
2044 
2045 /**
2046  * ice_vc_handle_mac_addr_msg
2047  * @vf: pointer to the VF info
2048  * @msg: pointer to the msg buffer
2049  * @set: true if MAC filters are being set, false otherwise
2050  *
2051  * add guest MAC address filter
2052  */
2053 static int
2054 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2055 {
2056 	int (*ice_vc_cfg_mac)
2057 		(struct ice_vf *vf, struct ice_vsi *vsi,
2058 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
2059 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2060 	struct virtchnl_ether_addr_list *al =
2061 	    (struct virtchnl_ether_addr_list *)msg;
2062 	struct ice_pf *pf = vf->pf;
2063 	enum virtchnl_ops vc_op;
2064 	struct ice_vsi *vsi;
2065 	int i;
2066 
2067 	if (set) {
2068 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2069 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
2070 	} else {
2071 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2072 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
2073 	}
2074 
2075 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2076 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2077 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2078 		goto handle_mac_exit;
2079 	}
2080 
2081 	/* If this VF is not privileged, then we can't add more than a
2082 	 * limited number of addresses. Check to make sure that the
2083 	 * additions do not push us over the limit.
2084 	 */
2085 	if (set && !ice_is_vf_trusted(vf) &&
2086 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2087 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2088 			vf->vf_id);
2089 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2090 		goto handle_mac_exit;
2091 	}
2092 
2093 	vsi = ice_get_vf_vsi(vf);
2094 	if (!vsi) {
2095 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2096 		goto handle_mac_exit;
2097 	}
2098 
2099 	for (i = 0; i < al->num_elements; i++) {
2100 		u8 *mac_addr = al->list[i].addr;
2101 		int result;
2102 
2103 		if (is_broadcast_ether_addr(mac_addr) ||
2104 		    is_zero_ether_addr(mac_addr))
2105 			continue;
2106 
2107 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2108 		if (result == -EEXIST || result == -ENOENT) {
2109 			continue;
2110 		} else if (result) {
2111 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2112 			goto handle_mac_exit;
2113 		}
2114 	}
2115 
2116 handle_mac_exit:
2117 	/* send the response to the VF */
2118 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2119 }
2120 
2121 /**
2122  * ice_vc_add_mac_addr_msg
2123  * @vf: pointer to the VF info
2124  * @msg: pointer to the msg buffer
2125  *
2126  * add guest MAC address filter
2127  */
2128 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2129 {
2130 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2131 }
2132 
2133 /**
2134  * ice_vc_del_mac_addr_msg
2135  * @vf: pointer to the VF info
2136  * @msg: pointer to the msg buffer
2137  *
2138  * remove guest MAC address filter
2139  */
2140 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2141 {
2142 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2143 }
2144 
2145 /**
2146  * ice_vc_request_qs_msg
2147  * @vf: pointer to the VF info
2148  * @msg: pointer to the msg buffer
2149  *
2150  * VFs get a default number of queues but can use this message to request a
2151  * different number. If the request is successful, PF will reset the VF and
2152  * return 0. If unsuccessful, PF will send message informing VF of number of
2153  * available queue pairs via virtchnl message response to VF.
2154  */
2155 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2156 {
2157 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2158 	struct virtchnl_vf_res_request *vfres =
2159 		(struct virtchnl_vf_res_request *)msg;
2160 	u16 req_queues = vfres->num_queue_pairs;
2161 	struct ice_pf *pf = vf->pf;
2162 	u16 max_allowed_vf_queues;
2163 	u16 tx_rx_queue_left;
2164 	struct device *dev;
2165 	u16 cur_queues;
2166 
2167 	dev = ice_pf_to_dev(pf);
2168 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2169 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2170 		goto error_param;
2171 	}
2172 
2173 	cur_queues = vf->num_vf_qs;
2174 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2175 				 ice_get_avail_rxq_count(pf));
2176 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2177 	if (!req_queues) {
2178 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2179 			vf->vf_id);
2180 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2181 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2182 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2183 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2184 	} else if (req_queues > cur_queues &&
2185 		   req_queues - cur_queues > tx_rx_queue_left) {
2186 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2187 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2188 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2189 					       ICE_MAX_RSS_QS_PER_VF);
2190 	} else {
2191 		/* request is successful, then reset VF */
2192 		vf->num_req_qs = req_queues;
2193 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2194 		dev_info(dev, "VF %d granted request of %u queues.\n",
2195 			 vf->vf_id, req_queues);
2196 		return 0;
2197 	}
2198 
2199 error_param:
2200 	/* send the response to the VF */
2201 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2202 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2203 }
2204 
2205 /**
2206  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2207  * @caps: VF driver negotiated capabilities
2208  *
2209  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2210  */
2211 static bool ice_vf_vlan_offload_ena(u32 caps)
2212 {
2213 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2214 }
2215 
2216 /**
2217  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2218  * @vf: VF used to determine if VLAN promiscuous config is allowed
2219  */
2220 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2221 {
2222 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2223 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2224 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2225 		return true;
2226 
2227 	return false;
2228 }
2229 
2230 /**
2231  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2232  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2233  * @vlan: VLAN used to enable VLAN promiscuous
2234  *
2235  * This function should only be called if VLAN promiscuous mode is allowed,
2236  * which can be determined via ice_is_vlan_promisc_allowed().
2237  */
2238 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2239 {
2240 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2241 	int status;
2242 
2243 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2244 					  vlan->vid);
2245 	if (status && status != -EEXIST)
2246 		return status;
2247 
2248 	return 0;
2249 }
2250 
2251 /**
2252  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2253  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2254  * @vlan: VLAN used to disable VLAN promiscuous
2255  *
2256  * This function should only be called if VLAN promiscuous mode is allowed,
2257  * which can be determined via ice_is_vlan_promisc_allowed().
2258  */
2259 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2260 {
2261 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2262 	int status;
2263 
2264 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2265 					    vlan->vid);
2266 	if (status && status != -ENOENT)
2267 		return status;
2268 
2269 	return 0;
2270 }
2271 
2272 /**
2273  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2274  * @vf: VF to check against
2275  * @vsi: VF's VSI
2276  *
2277  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2278  * wants to, so return false.
2279  *
2280  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2281  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2282  */
2283 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2284 {
2285 	if (ice_is_vf_trusted(vf))
2286 		return false;
2287 
2288 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2289 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2290 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2291 }
2292 
2293 /**
2294  * ice_vc_process_vlan_msg
2295  * @vf: pointer to the VF info
2296  * @msg: pointer to the msg buffer
2297  * @add_v: Add VLAN if true, otherwise delete VLAN
2298  *
2299  * Process virtchnl op to add or remove programmed guest VLAN ID
2300  */
2301 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2302 {
2303 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2304 	struct virtchnl_vlan_filter_list *vfl =
2305 	    (struct virtchnl_vlan_filter_list *)msg;
2306 	struct ice_pf *pf = vf->pf;
2307 	bool vlan_promisc = false;
2308 	struct ice_vsi *vsi;
2309 	struct device *dev;
2310 	int status = 0;
2311 	int i;
2312 
2313 	dev = ice_pf_to_dev(pf);
2314 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2315 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2316 		goto error_param;
2317 	}
2318 
2319 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2320 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2321 		goto error_param;
2322 	}
2323 
2324 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2325 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2326 		goto error_param;
2327 	}
2328 
2329 	for (i = 0; i < vfl->num_elements; i++) {
2330 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2331 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2332 			dev_err(dev, "invalid VF VLAN id %d\n",
2333 				vfl->vlan_id[i]);
2334 			goto error_param;
2335 		}
2336 	}
2337 
2338 	vsi = ice_get_vf_vsi(vf);
2339 	if (!vsi) {
2340 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2341 		goto error_param;
2342 	}
2343 
2344 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2345 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2346 			 vf->vf_id);
2347 		/* There is no need to let VF know about being not trusted,
2348 		 * so we can just return success message here
2349 		 */
2350 		goto error_param;
2351 	}
2352 
2353 	/* in DVM a VF can add/delete inner VLAN filters when
2354 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2355 	 */
2356 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2357 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2358 		goto error_param;
2359 	}
2360 
2361 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2362 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2363 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2364 	 */
2365 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2366 		!ice_is_dvm_ena(&pf->hw) &&
2367 		!ice_vf_is_port_vlan_ena(vf);
2368 
2369 	if (add_v) {
2370 		for (i = 0; i < vfl->num_elements; i++) {
2371 			u16 vid = vfl->vlan_id[i];
2372 			struct ice_vlan vlan;
2373 
2374 			if (ice_vf_has_max_vlans(vf, vsi)) {
2375 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2376 					 vf->vf_id);
2377 				/* There is no need to let VF know about being
2378 				 * not trusted, so we can just return success
2379 				 * message here as well.
2380 				 */
2381 				goto error_param;
2382 			}
2383 
2384 			/* we add VLAN 0 by default for each VF so we can enable
2385 			 * Tx VLAN anti-spoof without triggering MDD events so
2386 			 * we don't need to add it again here
2387 			 */
2388 			if (!vid)
2389 				continue;
2390 
2391 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2392 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2393 			if (status) {
2394 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2395 				goto error_param;
2396 			}
2397 
2398 			/* Enable VLAN filtering on first non-zero VLAN */
2399 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2400 				if (vf->spoofchk) {
2401 					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2402 					if (status) {
2403 						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2404 						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2405 							vid, status);
2406 						goto error_param;
2407 					}
2408 				}
2409 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2410 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2411 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2412 						vid, status);
2413 					goto error_param;
2414 				}
2415 			} else if (vlan_promisc) {
2416 				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2417 				if (status) {
2418 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2419 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2420 						vid, status);
2421 				}
2422 			}
2423 		}
2424 	} else {
2425 		/* In case of non_trusted VF, number of VLAN elements passed
2426 		 * to PF for removal might be greater than number of VLANs
2427 		 * filter programmed for that VF - So, use actual number of
2428 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2429 		 * removing VLAN that doesn't exist, which result to sending
2430 		 * erroneous failed message back to the VF
2431 		 */
2432 		int num_vf_vlan;
2433 
2434 		num_vf_vlan = vsi->num_vlan;
2435 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2436 			u16 vid = vfl->vlan_id[i];
2437 			struct ice_vlan vlan;
2438 
2439 			/* we add VLAN 0 by default for each VF so we can enable
2440 			 * Tx VLAN anti-spoof without triggering MDD events so
2441 			 * we don't want a VIRTCHNL request to remove it
2442 			 */
2443 			if (!vid)
2444 				continue;
2445 
2446 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2447 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2448 			if (status) {
2449 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2450 				goto error_param;
2451 			}
2452 
2453 			/* Disable VLAN filtering when only VLAN 0 is left */
2454 			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2455 				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2456 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2457 			}
2458 
2459 			if (vlan_promisc)
2460 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2461 		}
2462 	}
2463 
2464 error_param:
2465 	/* send the response to the VF */
2466 	if (add_v)
2467 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2468 					     NULL, 0);
2469 	else
2470 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2471 					     NULL, 0);
2472 }
2473 
2474 /**
2475  * ice_vc_add_vlan_msg
2476  * @vf: pointer to the VF info
2477  * @msg: pointer to the msg buffer
2478  *
2479  * Add and program guest VLAN ID
2480  */
2481 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2482 {
2483 	return ice_vc_process_vlan_msg(vf, msg, true);
2484 }
2485 
2486 /**
2487  * ice_vc_remove_vlan_msg
2488  * @vf: pointer to the VF info
2489  * @msg: pointer to the msg buffer
2490  *
2491  * remove programmed guest VLAN ID
2492  */
2493 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2494 {
2495 	return ice_vc_process_vlan_msg(vf, msg, false);
2496 }
2497 
2498 /**
2499  * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2500  * @vsi: pointer to the VF VSI info
2501  */
2502 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2503 {
2504 	unsigned int i;
2505 
2506 	ice_for_each_alloc_rxq(vsi, i)
2507 		if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2508 			return true;
2509 
2510 	return false;
2511 }
2512 
2513 /**
2514  * ice_vc_ena_vlan_stripping
2515  * @vf: pointer to the VF info
2516  *
2517  * Enable VLAN header stripping for a given VF
2518  */
2519 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2520 {
2521 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2522 	struct ice_vsi *vsi;
2523 
2524 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2525 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2526 		goto error_param;
2527 	}
2528 
2529 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2530 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2531 		goto error_param;
2532 	}
2533 
2534 	vsi = ice_get_vf_vsi(vf);
2535 	if (!vsi) {
2536 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2537 		goto error_param;
2538 	}
2539 
2540 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2541 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2542 	else
2543 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2544 
2545 error_param:
2546 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2547 				     v_ret, NULL, 0);
2548 }
2549 
2550 /**
2551  * ice_vc_dis_vlan_stripping
2552  * @vf: pointer to the VF info
2553  *
2554  * Disable VLAN header stripping for a given VF
2555  */
2556 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2557 {
2558 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2559 	struct ice_vsi *vsi;
2560 
2561 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2562 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2563 		goto error_param;
2564 	}
2565 
2566 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2567 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2568 		goto error_param;
2569 	}
2570 
2571 	vsi = ice_get_vf_vsi(vf);
2572 	if (!vsi) {
2573 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2574 		goto error_param;
2575 	}
2576 
2577 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2578 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2579 	else
2580 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2581 
2582 error_param:
2583 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2584 				     v_ret, NULL, 0);
2585 }
2586 
2587 /**
2588  * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2589  * @vf: pointer to the VF info
2590  */
2591 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2592 {
2593 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2594 	struct virtchnl_rss_hena *vrh = NULL;
2595 	int len = 0, ret;
2596 
2597 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2598 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2599 		goto err;
2600 	}
2601 
2602 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2603 		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2604 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2605 		goto err;
2606 	}
2607 
2608 	len = sizeof(struct virtchnl_rss_hena);
2609 	vrh = kzalloc(len, GFP_KERNEL);
2610 	if (!vrh) {
2611 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2612 		len = 0;
2613 		goto err;
2614 	}
2615 
2616 	vrh->hena = ICE_DEFAULT_RSS_HENA;
2617 err:
2618 	/* send the response back to the VF */
2619 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2620 				    (u8 *)vrh, len);
2621 	kfree(vrh);
2622 	return ret;
2623 }
2624 
2625 /**
2626  * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2627  * @vf: pointer to the VF info
2628  * @msg: pointer to the msg buffer
2629  */
2630 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2631 {
2632 	struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2633 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2634 	struct ice_pf *pf = vf->pf;
2635 	struct ice_vsi *vsi;
2636 	struct device *dev;
2637 	int status;
2638 
2639 	dev = ice_pf_to_dev(pf);
2640 
2641 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2642 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2643 		goto err;
2644 	}
2645 
2646 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2647 		dev_err(dev, "RSS not supported by PF\n");
2648 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2649 		goto err;
2650 	}
2651 
2652 	vsi = ice_get_vf_vsi(vf);
2653 	if (!vsi) {
2654 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2655 		goto err;
2656 	}
2657 
2658 	/* clear all previously programmed RSS configuration to allow VF drivers
2659 	 * the ability to customize the RSS configuration and/or completely
2660 	 * disable RSS
2661 	 */
2662 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2663 	if (status && !vrh->hena) {
2664 		/* only report failure to clear the current RSS configuration if
2665 		 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2666 		 */
2667 		v_ret = ice_err_to_virt_err(status);
2668 		goto err;
2669 	} else if (status) {
2670 		/* allow the VF to update the RSS configuration even on failure
2671 		 * to clear the current RSS confguration in an attempt to keep
2672 		 * RSS in a working state
2673 		 */
2674 		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2675 			 vf->vf_id);
2676 	}
2677 
2678 	if (vrh->hena) {
2679 		status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
2680 		v_ret = ice_err_to_virt_err(status);
2681 	}
2682 
2683 	/* send the response to the VF */
2684 err:
2685 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2686 				     NULL, 0);
2687 }
2688 
2689 /**
2690  * ice_vc_query_rxdid - query RXDID supported by DDP package
2691  * @vf: pointer to VF info
2692  *
2693  * Called from VF to query a bitmap of supported flexible
2694  * descriptor RXDIDs of a DDP package.
2695  */
2696 static int ice_vc_query_rxdid(struct ice_vf *vf)
2697 {
2698 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2699 	struct virtchnl_supported_rxdids *rxdid = NULL;
2700 	struct ice_hw *hw = &vf->pf->hw;
2701 	struct ice_pf *pf = vf->pf;
2702 	int len = 0;
2703 	int ret, i;
2704 	u32 regval;
2705 
2706 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2707 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2708 		goto err;
2709 	}
2710 
2711 	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2712 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2713 		goto err;
2714 	}
2715 
2716 	len = sizeof(struct virtchnl_supported_rxdids);
2717 	rxdid = kzalloc(len, GFP_KERNEL);
2718 	if (!rxdid) {
2719 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2720 		len = 0;
2721 		goto err;
2722 	}
2723 
2724 	/* RXDIDs supported by DDP package can be read from the register
2725 	 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2726 	 * is not listed in DDP package, add it in the bitmap manually.
2727 	 * Legacy 16byte descriptor is not supported.
2728 	 */
2729 	rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2730 
2731 	for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2732 		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2733 		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2734 			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2735 			rxdid->supported_rxdids |= BIT(i);
2736 	}
2737 
2738 	pf->supported_rxdids = rxdid->supported_rxdids;
2739 
2740 err:
2741 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2742 				    v_ret, (u8 *)rxdid, len);
2743 	kfree(rxdid);
2744 	return ret;
2745 }
2746 
2747 /**
2748  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2749  * @vf: VF to enable/disable VLAN stripping for on initialization
2750  *
2751  * Set the default for VLAN stripping based on whether a port VLAN is configured
2752  * and the current VLAN mode of the device.
2753  */
2754 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2755 {
2756 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2757 
2758 	vf->vlan_strip_ena = 0;
2759 
2760 	if (!vsi)
2761 		return -EINVAL;
2762 
2763 	/* don't modify stripping if port VLAN is configured in SVM since the
2764 	 * port VLAN is based on the inner/single VLAN in SVM
2765 	 */
2766 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2767 		return 0;
2768 
2769 	if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2770 		int err;
2771 
2772 		err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2773 		if (!err)
2774 			vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2775 		return err;
2776 	}
2777 
2778 	return vsi->inner_vlan_ops.dis_stripping(vsi);
2779 }
2780 
2781 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2782 {
2783 	if (vf->trusted)
2784 		return VLAN_N_VID;
2785 	else
2786 		return ICE_MAX_VLAN_PER_VF;
2787 }
2788 
2789 /**
2790  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2791  * @vf: VF that being checked for
2792  *
2793  * When the device is in double VLAN mode, check whether or not the outer VLAN
2794  * is allowed.
2795  */
2796 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2797 {
2798 	if (ice_vf_is_port_vlan_ena(vf))
2799 		return true;
2800 
2801 	return false;
2802 }
2803 
2804 /**
2805  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2806  * @vf: VF that capabilities are being set for
2807  * @caps: VLAN capabilities to populate
2808  *
2809  * Determine VLAN capabilities support based on whether a port VLAN is
2810  * configured. If a port VLAN is configured then the VF should use the inner
2811  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2812  * capabilies.
2813  */
2814 static void
2815 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2816 {
2817 	struct virtchnl_vlan_supported_caps *supported_caps;
2818 
2819 	if (ice_vf_outer_vlan_not_allowed(vf)) {
2820 		/* until support for inner VLAN filtering is added when a port
2821 		 * VLAN is configured, only support software offloaded inner
2822 		 * VLANs when a port VLAN is confgured in DVM
2823 		 */
2824 		supported_caps = &caps->filtering.filtering_support;
2825 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2826 
2827 		supported_caps = &caps->offloads.stripping_support;
2828 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2829 					VIRTCHNL_VLAN_TOGGLE |
2830 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2831 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2832 
2833 		supported_caps = &caps->offloads.insertion_support;
2834 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2835 					VIRTCHNL_VLAN_TOGGLE |
2836 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2837 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2838 
2839 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2840 		caps->offloads.ethertype_match =
2841 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2842 	} else {
2843 		supported_caps = &caps->filtering.filtering_support;
2844 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2845 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2846 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2847 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2848 					VIRTCHNL_VLAN_ETHERTYPE_AND;
2849 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2850 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2851 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2852 
2853 		supported_caps = &caps->offloads.stripping_support;
2854 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2855 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2856 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2857 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2858 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2859 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2860 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2861 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2862 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2863 
2864 		supported_caps = &caps->offloads.insertion_support;
2865 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2866 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2867 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2868 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2869 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2870 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2871 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2872 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2873 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2874 
2875 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2876 
2877 		caps->offloads.ethertype_match =
2878 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2879 	}
2880 
2881 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2882 }
2883 
2884 /**
2885  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2886  * @vf: VF that capabilities are being set for
2887  * @caps: VLAN capabilities to populate
2888  *
2889  * Determine VLAN capabilities support based on whether a port VLAN is
2890  * configured. If a port VLAN is configured then the VF does not have any VLAN
2891  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2892  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2893  * VLAN fitlering and offload capabilities.
2894  */
2895 static void
2896 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2897 {
2898 	struct virtchnl_vlan_supported_caps *supported_caps;
2899 
2900 	if (ice_vf_is_port_vlan_ena(vf)) {
2901 		supported_caps = &caps->filtering.filtering_support;
2902 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2903 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2904 
2905 		supported_caps = &caps->offloads.stripping_support;
2906 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2907 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2908 
2909 		supported_caps = &caps->offloads.insertion_support;
2910 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2911 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2912 
2913 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2914 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2915 		caps->filtering.max_filters = 0;
2916 	} else {
2917 		supported_caps = &caps->filtering.filtering_support;
2918 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2919 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2920 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2921 
2922 		supported_caps = &caps->offloads.stripping_support;
2923 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2924 					VIRTCHNL_VLAN_TOGGLE |
2925 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2926 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2927 
2928 		supported_caps = &caps->offloads.insertion_support;
2929 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2930 					VIRTCHNL_VLAN_TOGGLE |
2931 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2932 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2933 
2934 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2935 		caps->offloads.ethertype_match =
2936 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2937 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2938 	}
2939 }
2940 
2941 /**
2942  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2943  * @vf: VF to determine VLAN capabilities for
2944  *
2945  * This will only be called if the VF and PF successfully negotiated
2946  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2947  *
2948  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2949  * is configured or not.
2950  */
2951 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2952 {
2953 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2954 	struct virtchnl_vlan_caps *caps = NULL;
2955 	int err, len = 0;
2956 
2957 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2958 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2959 		goto out;
2960 	}
2961 
2962 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2963 	if (!caps) {
2964 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2965 		goto out;
2966 	}
2967 	len = sizeof(*caps);
2968 
2969 	if (ice_is_dvm_ena(&vf->pf->hw))
2970 		ice_vc_set_dvm_caps(vf, caps);
2971 	else
2972 		ice_vc_set_svm_caps(vf, caps);
2973 
2974 	/* store negotiated caps to prevent invalid VF messages */
2975 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2976 
2977 out:
2978 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2979 				    v_ret, (u8 *)caps, len);
2980 	kfree(caps);
2981 	return err;
2982 }
2983 
2984 /**
2985  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2986  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2987  * @tpid: VLAN TPID used for validation
2988  *
2989  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2990  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2991  */
2992 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2993 {
2994 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2995 
2996 	switch (tpid) {
2997 	case ETH_P_8021Q:
2998 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2999 		break;
3000 	case ETH_P_8021AD:
3001 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3002 		break;
3003 	case ETH_P_QINQ1:
3004 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3005 		break;
3006 	}
3007 
3008 	if (!(filtering_caps & vlan_ethertype))
3009 		return false;
3010 
3011 	return true;
3012 }
3013 
3014 /**
3015  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3016  * @vc_vlan: virtchnl_vlan to validate
3017  *
3018  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3019  * false. Otherwise return true.
3020  */
3021 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3022 {
3023 	if (!vc_vlan->tci || !vc_vlan->tpid)
3024 		return false;
3025 
3026 	return true;
3027 }
3028 
3029 /**
3030  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3031  * @vfc: negotiated/supported VLAN filtering capabilities
3032  * @vfl: VLAN filter list from VF to validate
3033  *
3034  * Validate all of the filters in the VLAN filter list from the VF. If any of
3035  * the checks fail then return false. Otherwise return true.
3036  */
3037 static bool
3038 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3039 				 struct virtchnl_vlan_filter_list_v2 *vfl)
3040 {
3041 	u16 i;
3042 
3043 	if (!vfl->num_elements)
3044 		return false;
3045 
3046 	for (i = 0; i < vfl->num_elements; i++) {
3047 		struct virtchnl_vlan_supported_caps *filtering_support =
3048 			&vfc->filtering_support;
3049 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3050 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
3051 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
3052 
3053 		if ((ice_vc_is_valid_vlan(outer) &&
3054 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3055 		    (ice_vc_is_valid_vlan(inner) &&
3056 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3057 			return false;
3058 
3059 		if ((outer->tci_mask &&
3060 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3061 		    (inner->tci_mask &&
3062 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3063 			return false;
3064 
3065 		if (((outer->tci & VLAN_PRIO_MASK) &&
3066 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3067 		    ((inner->tci & VLAN_PRIO_MASK) &&
3068 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3069 			return false;
3070 
3071 		if ((ice_vc_is_valid_vlan(outer) &&
3072 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
3073 						outer->tpid)) ||
3074 		    (ice_vc_is_valid_vlan(inner) &&
3075 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
3076 						inner->tpid)))
3077 			return false;
3078 	}
3079 
3080 	return true;
3081 }
3082 
3083 /**
3084  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3085  * @vc_vlan: struct virtchnl_vlan to transform
3086  */
3087 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3088 {
3089 	struct ice_vlan vlan = { 0 };
3090 
3091 	vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3092 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3093 	vlan.tpid = vc_vlan->tpid;
3094 
3095 	return vlan;
3096 }
3097 
3098 /**
3099  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3100  * @vsi: VF's VSI used to perform the action
3101  * @vlan_action: function to perform the action with (i.e. add/del)
3102  * @vlan: VLAN filter to perform the action with
3103  */
3104 static int
3105 ice_vc_vlan_action(struct ice_vsi *vsi,
3106 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3107 		   struct ice_vlan *vlan)
3108 {
3109 	int err;
3110 
3111 	err = vlan_action(vsi, vlan);
3112 	if (err)
3113 		return err;
3114 
3115 	return 0;
3116 }
3117 
3118 /**
3119  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3120  * @vf: VF used to delete the VLAN(s)
3121  * @vsi: VF's VSI used to delete the VLAN(s)
3122  * @vfl: virthchnl filter list used to delete the filters
3123  */
3124 static int
3125 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3126 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3127 {
3128 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3129 	int err;
3130 	u16 i;
3131 
3132 	for (i = 0; i < vfl->num_elements; i++) {
3133 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3134 		struct virtchnl_vlan *vc_vlan;
3135 
3136 		vc_vlan = &vlan_fltr->outer;
3137 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3138 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3139 
3140 			err = ice_vc_vlan_action(vsi,
3141 						 vsi->outer_vlan_ops.del_vlan,
3142 						 &vlan);
3143 			if (err)
3144 				return err;
3145 
3146 			if (vlan_promisc)
3147 				ice_vf_dis_vlan_promisc(vsi, &vlan);
3148 
3149 			/* Disable VLAN filtering when only VLAN 0 is left */
3150 			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3151 				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3152 				if (err)
3153 					return err;
3154 			}
3155 		}
3156 
3157 		vc_vlan = &vlan_fltr->inner;
3158 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3159 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3160 
3161 			err = ice_vc_vlan_action(vsi,
3162 						 vsi->inner_vlan_ops.del_vlan,
3163 						 &vlan);
3164 			if (err)
3165 				return err;
3166 
3167 			/* no support for VLAN promiscuous on inner VLAN unless
3168 			 * we are in Single VLAN Mode (SVM)
3169 			 */
3170 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3171 				if (vlan_promisc)
3172 					ice_vf_dis_vlan_promisc(vsi, &vlan);
3173 
3174 				/* Disable VLAN filtering when only VLAN 0 is left */
3175 				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3176 					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3177 					if (err)
3178 						return err;
3179 				}
3180 			}
3181 		}
3182 	}
3183 
3184 	return 0;
3185 }
3186 
3187 /**
3188  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3189  * @vf: VF the message was received from
3190  * @msg: message received from the VF
3191  */
3192 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3193 {
3194 	struct virtchnl_vlan_filter_list_v2 *vfl =
3195 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3196 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3197 	struct ice_vsi *vsi;
3198 
3199 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3200 					      vfl)) {
3201 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3202 		goto out;
3203 	}
3204 
3205 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3206 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3207 		goto out;
3208 	}
3209 
3210 	vsi = ice_get_vf_vsi(vf);
3211 	if (!vsi) {
3212 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3213 		goto out;
3214 	}
3215 
3216 	if (ice_vc_del_vlans(vf, vsi, vfl))
3217 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3218 
3219 out:
3220 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3221 				     0);
3222 }
3223 
3224 /**
3225  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3226  * @vf: VF used to add the VLAN(s)
3227  * @vsi: VF's VSI used to add the VLAN(s)
3228  * @vfl: virthchnl filter list used to add the filters
3229  */
3230 static int
3231 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3232 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3233 {
3234 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3235 	int err;
3236 	u16 i;
3237 
3238 	for (i = 0; i < vfl->num_elements; i++) {
3239 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3240 		struct virtchnl_vlan *vc_vlan;
3241 
3242 		vc_vlan = &vlan_fltr->outer;
3243 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3244 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3245 
3246 			err = ice_vc_vlan_action(vsi,
3247 						 vsi->outer_vlan_ops.add_vlan,
3248 						 &vlan);
3249 			if (err)
3250 				return err;
3251 
3252 			if (vlan_promisc) {
3253 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3254 				if (err)
3255 					return err;
3256 			}
3257 
3258 			/* Enable VLAN filtering on first non-zero VLAN */
3259 			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3260 				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3261 				if (err)
3262 					return err;
3263 			}
3264 		}
3265 
3266 		vc_vlan = &vlan_fltr->inner;
3267 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3268 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3269 
3270 			err = ice_vc_vlan_action(vsi,
3271 						 vsi->inner_vlan_ops.add_vlan,
3272 						 &vlan);
3273 			if (err)
3274 				return err;
3275 
3276 			/* no support for VLAN promiscuous on inner VLAN unless
3277 			 * we are in Single VLAN Mode (SVM)
3278 			 */
3279 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3280 				if (vlan_promisc) {
3281 					err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3282 					if (err)
3283 						return err;
3284 				}
3285 
3286 				/* Enable VLAN filtering on first non-zero VLAN */
3287 				if (vf->spoofchk && vlan.vid) {
3288 					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3289 					if (err)
3290 						return err;
3291 				}
3292 			}
3293 		}
3294 	}
3295 
3296 	return 0;
3297 }
3298 
3299 /**
3300  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3301  * @vsi: VF VSI used to get number of existing VLAN filters
3302  * @vfc: negotiated/supported VLAN filtering capabilities
3303  * @vfl: VLAN filter list from VF to validate
3304  *
3305  * Validate all of the filters in the VLAN filter list from the VF during the
3306  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3307  * Otherwise return true.
3308  */
3309 static bool
3310 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3311 				     struct virtchnl_vlan_filtering_caps *vfc,
3312 				     struct virtchnl_vlan_filter_list_v2 *vfl)
3313 {
3314 	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3315 		vfl->num_elements;
3316 
3317 	if (num_requested_filters > vfc->max_filters)
3318 		return false;
3319 
3320 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3321 }
3322 
3323 /**
3324  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3325  * @vf: VF the message was received from
3326  * @msg: message received from the VF
3327  */
3328 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3329 {
3330 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3331 	struct virtchnl_vlan_filter_list_v2 *vfl =
3332 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3333 	struct ice_vsi *vsi;
3334 
3335 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3336 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3337 		goto out;
3338 	}
3339 
3340 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3341 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3342 		goto out;
3343 	}
3344 
3345 	vsi = ice_get_vf_vsi(vf);
3346 	if (!vsi) {
3347 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3348 		goto out;
3349 	}
3350 
3351 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3352 						  &vf->vlan_v2_caps.filtering,
3353 						  vfl)) {
3354 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3355 		goto out;
3356 	}
3357 
3358 	if (ice_vc_add_vlans(vf, vsi, vfl))
3359 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3360 
3361 out:
3362 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3363 				     0);
3364 }
3365 
3366 /**
3367  * ice_vc_valid_vlan_setting - validate VLAN setting
3368  * @negotiated_settings: negotiated VLAN settings during VF init
3369  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3370  */
3371 static bool
3372 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3373 {
3374 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3375 		return false;
3376 
3377 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3378 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3379 	 */
3380 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3381 	    hweight32(ethertype_setting) > 1)
3382 		return false;
3383 
3384 	/* ability to modify the VLAN setting was not negotiated */
3385 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3386 		return false;
3387 
3388 	return true;
3389 }
3390 
3391 /**
3392  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3393  * @caps: negotiated VLAN settings during VF init
3394  * @msg: message to validate
3395  *
3396  * Used to validate any VLAN virtchnl message sent as a
3397  * virtchnl_vlan_setting structure. Validates the message against the
3398  * negotiated/supported caps during VF driver init.
3399  */
3400 static bool
3401 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3402 			      struct virtchnl_vlan_setting *msg)
3403 {
3404 	if ((!msg->outer_ethertype_setting &&
3405 	     !msg->inner_ethertype_setting) ||
3406 	    (!caps->outer && !caps->inner))
3407 		return false;
3408 
3409 	if (msg->outer_ethertype_setting &&
3410 	    !ice_vc_valid_vlan_setting(caps->outer,
3411 				       msg->outer_ethertype_setting))
3412 		return false;
3413 
3414 	if (msg->inner_ethertype_setting &&
3415 	    !ice_vc_valid_vlan_setting(caps->inner,
3416 				       msg->inner_ethertype_setting))
3417 		return false;
3418 
3419 	return true;
3420 }
3421 
3422 /**
3423  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3424  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3425  * @tpid: VLAN TPID to populate
3426  */
3427 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3428 {
3429 	switch (ethertype_setting) {
3430 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3431 		*tpid = ETH_P_8021Q;
3432 		break;
3433 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3434 		*tpid = ETH_P_8021AD;
3435 		break;
3436 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3437 		*tpid = ETH_P_QINQ1;
3438 		break;
3439 	default:
3440 		*tpid = 0;
3441 		return -EINVAL;
3442 	}
3443 
3444 	return 0;
3445 }
3446 
3447 /**
3448  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3449  * @vsi: VF's VSI used to enable the VLAN offload
3450  * @ena_offload: function used to enable the VLAN offload
3451  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3452  */
3453 static int
3454 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3455 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3456 			u32 ethertype_setting)
3457 {
3458 	u16 tpid;
3459 	int err;
3460 
3461 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3462 	if (err)
3463 		return err;
3464 
3465 	err = ena_offload(vsi, tpid);
3466 	if (err)
3467 		return err;
3468 
3469 	return 0;
3470 }
3471 
3472 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3473 #define ICE_L2TSEL_BIT_OFFSET		23
3474 enum ice_l2tsel {
3475 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3476 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3477 };
3478 
3479 /**
3480  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3481  * @vsi: VSI used to update l2tsel on
3482  * @l2tsel: l2tsel setting requested
3483  *
3484  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3485  * This will modify which descriptor field the first offloaded VLAN will be
3486  * stripped into.
3487  */
3488 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3489 {
3490 	struct ice_hw *hw = &vsi->back->hw;
3491 	u32 l2tsel_bit;
3492 	int i;
3493 
3494 	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3495 		l2tsel_bit = 0;
3496 	else
3497 		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3498 
3499 	for (i = 0; i < vsi->alloc_rxq; i++) {
3500 		u16 pfq = vsi->rxq_map[i];
3501 		u32 qrx_context_offset;
3502 		u32 regval;
3503 
3504 		qrx_context_offset =
3505 			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3506 
3507 		regval = rd32(hw, qrx_context_offset);
3508 		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3509 		regval |= l2tsel_bit;
3510 		wr32(hw, qrx_context_offset, regval);
3511 	}
3512 }
3513 
3514 /**
3515  * ice_vc_ena_vlan_stripping_v2_msg
3516  * @vf: VF the message was received from
3517  * @msg: message received from the VF
3518  *
3519  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3520  */
3521 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3522 {
3523 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3524 	struct virtchnl_vlan_supported_caps *stripping_support;
3525 	struct virtchnl_vlan_setting *strip_msg =
3526 		(struct virtchnl_vlan_setting *)msg;
3527 	u32 ethertype_setting;
3528 	struct ice_vsi *vsi;
3529 
3530 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3531 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3532 		goto out;
3533 	}
3534 
3535 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3536 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3537 		goto out;
3538 	}
3539 
3540 	vsi = ice_get_vf_vsi(vf);
3541 	if (!vsi) {
3542 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3543 		goto out;
3544 	}
3545 
3546 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3547 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3548 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3549 		goto out;
3550 	}
3551 
3552 	if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3553 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3554 		goto out;
3555 	}
3556 
3557 	ethertype_setting = strip_msg->outer_ethertype_setting;
3558 	if (ethertype_setting) {
3559 		if (ice_vc_ena_vlan_offload(vsi,
3560 					    vsi->outer_vlan_ops.ena_stripping,
3561 					    ethertype_setting)) {
3562 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3563 			goto out;
3564 		} else {
3565 			enum ice_l2tsel l2tsel =
3566 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3567 
3568 			/* PF tells the VF that the outer VLAN tag is always
3569 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3570 			 * inner is always extracted to
3571 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3572 			 * support outer stripping so the first tag always ends
3573 			 * up in L2TAG2_2ND and the second/inner tag, if
3574 			 * enabled, is extracted in L2TAG1.
3575 			 */
3576 			ice_vsi_update_l2tsel(vsi, l2tsel);
3577 
3578 			vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3579 		}
3580 	}
3581 
3582 	ethertype_setting = strip_msg->inner_ethertype_setting;
3583 	if (ethertype_setting &&
3584 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3585 				    ethertype_setting)) {
3586 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3587 		goto out;
3588 	}
3589 
3590 	if (ethertype_setting)
3591 		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3592 
3593 out:
3594 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3595 				     v_ret, NULL, 0);
3596 }
3597 
3598 /**
3599  * ice_vc_dis_vlan_stripping_v2_msg
3600  * @vf: VF the message was received from
3601  * @msg: message received from the VF
3602  *
3603  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3604  */
3605 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3606 {
3607 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3608 	struct virtchnl_vlan_supported_caps *stripping_support;
3609 	struct virtchnl_vlan_setting *strip_msg =
3610 		(struct virtchnl_vlan_setting *)msg;
3611 	u32 ethertype_setting;
3612 	struct ice_vsi *vsi;
3613 
3614 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3615 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3616 		goto out;
3617 	}
3618 
3619 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3620 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3621 		goto out;
3622 	}
3623 
3624 	vsi = ice_get_vf_vsi(vf);
3625 	if (!vsi) {
3626 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3627 		goto out;
3628 	}
3629 
3630 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3631 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3632 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3633 		goto out;
3634 	}
3635 
3636 	ethertype_setting = strip_msg->outer_ethertype_setting;
3637 	if (ethertype_setting) {
3638 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3639 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3640 			goto out;
3641 		} else {
3642 			enum ice_l2tsel l2tsel =
3643 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3644 
3645 			/* PF tells the VF that the outer VLAN tag is always
3646 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3647 			 * inner is always extracted to
3648 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3649 			 * support inner stripping while outer stripping is
3650 			 * disabled so that the first and only tag is extracted
3651 			 * in L2TAG1.
3652 			 */
3653 			ice_vsi_update_l2tsel(vsi, l2tsel);
3654 
3655 			vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3656 		}
3657 	}
3658 
3659 	ethertype_setting = strip_msg->inner_ethertype_setting;
3660 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3661 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3662 		goto out;
3663 	}
3664 
3665 	if (ethertype_setting)
3666 		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3667 
3668 out:
3669 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3670 				     v_ret, NULL, 0);
3671 }
3672 
3673 /**
3674  * ice_vc_ena_vlan_insertion_v2_msg
3675  * @vf: VF the message was received from
3676  * @msg: message received from the VF
3677  *
3678  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3679  */
3680 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3681 {
3682 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3683 	struct virtchnl_vlan_supported_caps *insertion_support;
3684 	struct virtchnl_vlan_setting *insertion_msg =
3685 		(struct virtchnl_vlan_setting *)msg;
3686 	u32 ethertype_setting;
3687 	struct ice_vsi *vsi;
3688 
3689 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3690 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3691 		goto out;
3692 	}
3693 
3694 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3695 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3696 		goto out;
3697 	}
3698 
3699 	vsi = ice_get_vf_vsi(vf);
3700 	if (!vsi) {
3701 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3702 		goto out;
3703 	}
3704 
3705 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3706 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3707 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3708 		goto out;
3709 	}
3710 
3711 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3712 	if (ethertype_setting &&
3713 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3714 				    ethertype_setting)) {
3715 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3716 		goto out;
3717 	}
3718 
3719 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3720 	if (ethertype_setting &&
3721 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3722 				    ethertype_setting)) {
3723 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3724 		goto out;
3725 	}
3726 
3727 out:
3728 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3729 				     v_ret, NULL, 0);
3730 }
3731 
3732 /**
3733  * ice_vc_dis_vlan_insertion_v2_msg
3734  * @vf: VF the message was received from
3735  * @msg: message received from the VF
3736  *
3737  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3738  */
3739 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3740 {
3741 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3742 	struct virtchnl_vlan_supported_caps *insertion_support;
3743 	struct virtchnl_vlan_setting *insertion_msg =
3744 		(struct virtchnl_vlan_setting *)msg;
3745 	u32 ethertype_setting;
3746 	struct ice_vsi *vsi;
3747 
3748 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3749 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3750 		goto out;
3751 	}
3752 
3753 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3754 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3755 		goto out;
3756 	}
3757 
3758 	vsi = ice_get_vf_vsi(vf);
3759 	if (!vsi) {
3760 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3761 		goto out;
3762 	}
3763 
3764 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3765 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3766 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3767 		goto out;
3768 	}
3769 
3770 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3771 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3772 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3773 		goto out;
3774 	}
3775 
3776 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3777 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3778 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3779 		goto out;
3780 	}
3781 
3782 out:
3783 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3784 				     v_ret, NULL, 0);
3785 }
3786 
3787 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3788 	.get_ver_msg = ice_vc_get_ver_msg,
3789 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3790 	.reset_vf = ice_vc_reset_vf_msg,
3791 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3792 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3793 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3794 	.ena_qs_msg = ice_vc_ena_qs_msg,
3795 	.dis_qs_msg = ice_vc_dis_qs_msg,
3796 	.request_qs_msg = ice_vc_request_qs_msg,
3797 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3798 	.config_rss_key = ice_vc_config_rss_key,
3799 	.config_rss_lut = ice_vc_config_rss_lut,
3800 	.config_rss_hfunc = ice_vc_config_rss_hfunc,
3801 	.get_stats_msg = ice_vc_get_stats_msg,
3802 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3803 	.add_vlan_msg = ice_vc_add_vlan_msg,
3804 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3805 	.query_rxdid = ice_vc_query_rxdid,
3806 	.get_rss_hena = ice_vc_get_rss_hena,
3807 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3808 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3809 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3810 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3811 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3812 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3813 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3814 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3815 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3816 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3817 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3818 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3819 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3820 };
3821 
3822 /**
3823  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3824  * @vf: the VF to switch ops
3825  */
3826 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3827 {
3828 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3829 }
3830 
3831 /**
3832  * ice_vc_repr_add_mac
3833  * @vf: pointer to VF
3834  * @msg: virtchannel message
3835  *
3836  * When port representors are created, we do not add MAC rule
3837  * to firmware, we store it so that PF could report same
3838  * MAC as VF.
3839  */
3840 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3841 {
3842 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3843 	struct virtchnl_ether_addr_list *al =
3844 	    (struct virtchnl_ether_addr_list *)msg;
3845 	struct ice_vsi *vsi;
3846 	struct ice_pf *pf;
3847 	int i;
3848 
3849 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3850 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3851 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3852 		goto handle_mac_exit;
3853 	}
3854 
3855 	pf = vf->pf;
3856 
3857 	vsi = ice_get_vf_vsi(vf);
3858 	if (!vsi) {
3859 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3860 		goto handle_mac_exit;
3861 	}
3862 
3863 	for (i = 0; i < al->num_elements; i++) {
3864 		u8 *mac_addr = al->list[i].addr;
3865 
3866 		if (!is_unicast_ether_addr(mac_addr) ||
3867 		    ether_addr_equal(mac_addr, vf->hw_lan_addr))
3868 			continue;
3869 
3870 		if (vf->pf_set_mac) {
3871 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3872 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3873 			goto handle_mac_exit;
3874 		}
3875 
3876 		ice_vfhw_mac_add(vf, &al->list[i]);
3877 		vf->num_mac++;
3878 		break;
3879 	}
3880 
3881 handle_mac_exit:
3882 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3883 				     v_ret, NULL, 0);
3884 }
3885 
3886 /**
3887  * ice_vc_repr_del_mac - response with success for deleting MAC
3888  * @vf: pointer to VF
3889  * @msg: virtchannel message
3890  *
3891  * Respond with success to not break normal VF flow.
3892  * For legacy VF driver try to update cached MAC address.
3893  */
3894 static int
3895 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3896 {
3897 	struct virtchnl_ether_addr_list *al =
3898 		(struct virtchnl_ether_addr_list *)msg;
3899 
3900 	ice_update_legacy_cached_mac(vf, &al->list[0]);
3901 
3902 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3903 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3904 }
3905 
3906 static int
3907 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3908 {
3909 	dev_dbg(ice_pf_to_dev(vf->pf),
3910 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3911 		vf->vf_id);
3912 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3913 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3914 				     NULL, 0);
3915 }
3916 
3917 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3918 	.get_ver_msg = ice_vc_get_ver_msg,
3919 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3920 	.reset_vf = ice_vc_reset_vf_msg,
3921 	.add_mac_addr_msg = ice_vc_repr_add_mac,
3922 	.del_mac_addr_msg = ice_vc_repr_del_mac,
3923 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3924 	.ena_qs_msg = ice_vc_ena_qs_msg,
3925 	.dis_qs_msg = ice_vc_dis_qs_msg,
3926 	.request_qs_msg = ice_vc_request_qs_msg,
3927 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3928 	.config_rss_key = ice_vc_config_rss_key,
3929 	.config_rss_lut = ice_vc_config_rss_lut,
3930 	.config_rss_hfunc = ice_vc_config_rss_hfunc,
3931 	.get_stats_msg = ice_vc_get_stats_msg,
3932 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3933 	.add_vlan_msg = ice_vc_add_vlan_msg,
3934 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3935 	.query_rxdid = ice_vc_query_rxdid,
3936 	.get_rss_hena = ice_vc_get_rss_hena,
3937 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3938 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3939 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3940 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3941 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3942 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3943 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3944 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3945 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3946 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3947 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3948 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3949 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3950 };
3951 
3952 /**
3953  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3954  * @vf: the VF to switch ops
3955  */
3956 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3957 {
3958 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3959 }
3960 
3961 /**
3962  * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3963  * @vf: the VF to check
3964  * @mbxdata: data about the state of the mailbox
3965  *
3966  * Detect if a given VF might be malicious and attempting to overflow the PF
3967  * mailbox. If so, log a warning message and ignore this event.
3968  */
3969 static bool
3970 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3971 {
3972 	bool report_malvf = false;
3973 	struct device *dev;
3974 	struct ice_pf *pf;
3975 	int status;
3976 
3977 	pf = vf->pf;
3978 	dev = ice_pf_to_dev(pf);
3979 
3980 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3981 		return vf->mbx_info.malicious;
3982 
3983 	/* check to see if we have a newly malicious VF */
3984 	status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3985 					  &report_malvf);
3986 	if (status)
3987 		dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3988 				     vf->vf_id, vf->dev_lan_addr, status);
3989 
3990 	if (report_malvf) {
3991 		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3992 		u8 zero_addr[ETH_ALEN] = {};
3993 
3994 		dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3995 			 vf->dev_lan_addr,
3996 			 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3997 	}
3998 
3999 	return vf->mbx_info.malicious;
4000 }
4001 
4002 /**
4003  * ice_vc_process_vf_msg - Process request from VF
4004  * @pf: pointer to the PF structure
4005  * @event: pointer to the AQ event
4006  * @mbxdata: information used to detect VF attempting mailbox overflow
4007  *
4008  * called from the common asq/arq handler to
4009  * process request from VF
4010  */
4011 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4012 			   struct ice_mbx_data *mbxdata)
4013 {
4014 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4015 	s16 vf_id = le16_to_cpu(event->desc.retval);
4016 	const struct ice_virtchnl_ops *ops;
4017 	u16 msglen = event->msg_len;
4018 	u8 *msg = event->msg_buf;
4019 	struct ice_vf *vf = NULL;
4020 	struct device *dev;
4021 	int err = 0;
4022 
4023 	dev = ice_pf_to_dev(pf);
4024 
4025 	vf = ice_get_vf_by_id(pf, vf_id);
4026 	if (!vf) {
4027 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4028 			vf_id, v_opcode, msglen);
4029 		return;
4030 	}
4031 
4032 	mutex_lock(&vf->cfg_lock);
4033 
4034 	/* Check if the VF is trying to overflow the mailbox */
4035 	if (ice_is_malicious_vf(vf, mbxdata))
4036 		goto finish;
4037 
4038 	/* Check if VF is disabled. */
4039 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4040 		err = -EPERM;
4041 		goto error_handler;
4042 	}
4043 
4044 	ops = vf->virtchnl_ops;
4045 
4046 	/* Perform basic checks on the msg */
4047 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4048 	if (err) {
4049 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
4050 			err = -EPERM;
4051 		else
4052 			err = -EINVAL;
4053 	}
4054 
4055 error_handler:
4056 	if (err) {
4057 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4058 				      NULL, 0);
4059 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4060 			vf_id, v_opcode, msglen, err);
4061 		goto finish;
4062 	}
4063 
4064 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4065 		ice_vc_send_msg_to_vf(vf, v_opcode,
4066 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4067 				      0);
4068 		goto finish;
4069 	}
4070 
4071 	switch (v_opcode) {
4072 	case VIRTCHNL_OP_VERSION:
4073 		err = ops->get_ver_msg(vf, msg);
4074 		break;
4075 	case VIRTCHNL_OP_GET_VF_RESOURCES:
4076 		err = ops->get_vf_res_msg(vf, msg);
4077 		if (ice_vf_init_vlan_stripping(vf))
4078 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4079 				vf->vf_id);
4080 		ice_vc_notify_vf_link_state(vf);
4081 		break;
4082 	case VIRTCHNL_OP_RESET_VF:
4083 		ops->reset_vf(vf);
4084 		break;
4085 	case VIRTCHNL_OP_ADD_ETH_ADDR:
4086 		err = ops->add_mac_addr_msg(vf, msg);
4087 		break;
4088 	case VIRTCHNL_OP_DEL_ETH_ADDR:
4089 		err = ops->del_mac_addr_msg(vf, msg);
4090 		break;
4091 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4092 		err = ops->cfg_qs_msg(vf, msg);
4093 		break;
4094 	case VIRTCHNL_OP_ENABLE_QUEUES:
4095 		err = ops->ena_qs_msg(vf, msg);
4096 		ice_vc_notify_vf_link_state(vf);
4097 		break;
4098 	case VIRTCHNL_OP_DISABLE_QUEUES:
4099 		err = ops->dis_qs_msg(vf, msg);
4100 		break;
4101 	case VIRTCHNL_OP_REQUEST_QUEUES:
4102 		err = ops->request_qs_msg(vf, msg);
4103 		break;
4104 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4105 		err = ops->cfg_irq_map_msg(vf, msg);
4106 		break;
4107 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
4108 		err = ops->config_rss_key(vf, msg);
4109 		break;
4110 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
4111 		err = ops->config_rss_lut(vf, msg);
4112 		break;
4113 	case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4114 		err = ops->config_rss_hfunc(vf, msg);
4115 		break;
4116 	case VIRTCHNL_OP_GET_STATS:
4117 		err = ops->get_stats_msg(vf, msg);
4118 		break;
4119 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4120 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
4121 		break;
4122 	case VIRTCHNL_OP_ADD_VLAN:
4123 		err = ops->add_vlan_msg(vf, msg);
4124 		break;
4125 	case VIRTCHNL_OP_DEL_VLAN:
4126 		err = ops->remove_vlan_msg(vf, msg);
4127 		break;
4128 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4129 		err = ops->query_rxdid(vf);
4130 		break;
4131 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4132 		err = ops->get_rss_hena(vf);
4133 		break;
4134 	case VIRTCHNL_OP_SET_RSS_HENA:
4135 		err = ops->set_rss_hena_msg(vf, msg);
4136 		break;
4137 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4138 		err = ops->ena_vlan_stripping(vf);
4139 		break;
4140 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4141 		err = ops->dis_vlan_stripping(vf);
4142 		break;
4143 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4144 		err = ops->add_fdir_fltr_msg(vf, msg);
4145 		break;
4146 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4147 		err = ops->del_fdir_fltr_msg(vf, msg);
4148 		break;
4149 	case VIRTCHNL_OP_ADD_RSS_CFG:
4150 		err = ops->handle_rss_cfg_msg(vf, msg, true);
4151 		break;
4152 	case VIRTCHNL_OP_DEL_RSS_CFG:
4153 		err = ops->handle_rss_cfg_msg(vf, msg, false);
4154 		break;
4155 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4156 		err = ops->get_offload_vlan_v2_caps(vf);
4157 		break;
4158 	case VIRTCHNL_OP_ADD_VLAN_V2:
4159 		err = ops->add_vlan_v2_msg(vf, msg);
4160 		break;
4161 	case VIRTCHNL_OP_DEL_VLAN_V2:
4162 		err = ops->remove_vlan_v2_msg(vf, msg);
4163 		break;
4164 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4165 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4166 		break;
4167 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4168 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4169 		break;
4170 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4171 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4172 		break;
4173 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4174 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4175 		break;
4176 	case VIRTCHNL_OP_UNKNOWN:
4177 	default:
4178 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4179 			vf_id);
4180 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4181 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4182 					    NULL, 0);
4183 		break;
4184 	}
4185 	if (err) {
4186 		/* Helper function cares less about error return values here
4187 		 * as it is busy with pending work.
4188 		 */
4189 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4190 			 vf_id, v_opcode, err);
4191 	}
4192 
4193 finish:
4194 	mutex_unlock(&vf->cfg_lock);
4195 	ice_put_vf(vf);
4196 }
4197