xref: /linux/drivers/net/ethernet/intel/ice/ice_sriov.c (revision fcab107abe1ab5be9dbe874baa722372da8f4f73)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16 
17 /**
18  * ice_free_vf_entries - Free all VF entries from the hash table
19  * @pf: pointer to the PF structure
20  *
21  * Iterate over the VF hash table, removing and releasing all VF entries.
22  * Called during VF teardown or as cleanup during failed VF initialization.
23  */
24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 	struct ice_vfs *vfs = &pf->vfs;
27 	struct hlist_node *tmp;
28 	struct ice_vf *vf;
29 	unsigned int bkt;
30 
31 	/* Remove all VFs from the hash table and release their main
32 	 * reference. Once all references to the VF are dropped, ice_put_vf()
33 	 * will call ice_release_vf which will remove the VF memory.
34 	 */
35 	lockdep_assert_held(&vfs->table_lock);
36 
37 	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 		hash_del_rcu(&vf->entry);
39 		ice_deinitialize_vf_entry(vf);
40 		ice_put_vf(vf);
41 	}
42 }
43 
44 /**
45  * ice_free_vf_res - Free a VF's resources
46  * @vf: pointer to the VF info
47  */
48 static void ice_free_vf_res(struct ice_vf *vf)
49 {
50 	struct ice_pf *pf = vf->pf;
51 	int i, last_vector_idx;
52 
53 	/* First, disable VF's configuration API to prevent OS from
54 	 * accessing the VF's VSI after it's freed or invalidated.
55 	 */
56 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
57 	ice_vf_fdir_exit(vf);
58 	/* free VF control VSI */
59 	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
60 		ice_vf_ctrl_vsi_release(vf);
61 
62 	/* free VSI and disconnect it from the parent uplink */
63 	if (vf->lan_vsi_idx != ICE_NO_VSI) {
64 		ice_vf_vsi_release(vf);
65 		vf->num_mac = 0;
66 		vf->num_mac_lldp = 0;
67 	}
68 
69 	last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
70 
71 	/* clear VF MDD event information */
72 	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
73 	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
74 
75 	/* Disable interrupts so that VF starts in a known state */
76 	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
77 		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
78 		ice_flush(&pf->hw);
79 	}
80 	/* reset some of the state variables keeping track of the resources */
81 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
82 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
83 }
84 
85 /**
86  * ice_dis_vf_mappings
87  * @vf: pointer to the VF structure
88  */
89 static void ice_dis_vf_mappings(struct ice_vf *vf)
90 {
91 	struct ice_pf *pf = vf->pf;
92 	struct ice_vsi *vsi;
93 	struct device *dev;
94 	int first, last, v;
95 	struct ice_hw *hw;
96 
97 	hw = &pf->hw;
98 	vsi = ice_get_vf_vsi(vf);
99 	if (WARN_ON(!vsi))
100 		return;
101 
102 	dev = ice_pf_to_dev(pf);
103 	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
104 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
105 
106 	first = vf->first_vector_idx;
107 	last = first + vf->num_msix - 1;
108 	for (v = first; v <= last; v++) {
109 		u32 reg;
110 
111 		reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) |
112 		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
113 		wr32(hw, GLINT_VECT2FUNC(v), reg);
114 	}
115 
116 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
117 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
118 	else
119 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
120 
121 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
122 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
123 	else
124 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
125 }
126 
127 /**
128  * ice_free_vfs - Free all VFs
129  * @pf: pointer to the PF structure
130  */
131 void ice_free_vfs(struct ice_pf *pf)
132 {
133 	struct device *dev = ice_pf_to_dev(pf);
134 	struct ice_vfs *vfs = &pf->vfs;
135 	struct ice_hw *hw = &pf->hw;
136 	struct ice_vf *vf;
137 	unsigned int bkt;
138 
139 	if (!ice_has_vfs(pf))
140 		return;
141 
142 	while (test_and_set_bit(ICE_VF_DIS, pf->state))
143 		usleep_range(1000, 2000);
144 
145 	/* Disable IOV before freeing resources. This lets any VF drivers
146 	 * running in the host get themselves cleaned up before we yank
147 	 * the carpet out from underneath their feet.
148 	 */
149 	if (!pci_vfs_assigned(pf->pdev))
150 		pci_disable_sriov(pf->pdev);
151 	else
152 		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
153 
154 	mutex_lock(&vfs->table_lock);
155 
156 	ice_for_each_vf(pf, bkt, vf) {
157 		mutex_lock(&vf->cfg_lock);
158 
159 		ice_eswitch_detach_vf(pf, vf);
160 		ice_dis_vf_qs(vf);
161 		ice_virt_free_irqs(pf, vf->first_vector_idx, vf->num_msix);
162 
163 		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
164 			/* disable VF qp mappings and set VF disable state */
165 			ice_dis_vf_mappings(vf);
166 			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
167 			ice_free_vf_res(vf);
168 		}
169 
170 		if (!pci_vfs_assigned(pf->pdev)) {
171 			u32 reg_idx, bit_idx;
172 
173 			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
174 			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
175 			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
176 		}
177 
178 		mutex_unlock(&vf->cfg_lock);
179 	}
180 
181 	vfs->num_qps_per = 0;
182 	ice_free_vf_entries(pf);
183 
184 	mutex_unlock(&vfs->table_lock);
185 
186 	clear_bit(ICE_VF_DIS, pf->state);
187 	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
188 }
189 
190 /**
191  * ice_vf_vsi_setup - Set up a VF VSI
192  * @vf: VF to setup VSI for
193  *
194  * Returns pointer to the successfully allocated VSI struct on success,
195  * otherwise returns NULL on failure.
196  */
197 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
198 {
199 	struct ice_vsi_cfg_params params = {};
200 	struct ice_pf *pf = vf->pf;
201 	struct ice_vsi *vsi;
202 
203 	params.type = ICE_VSI_VF;
204 	params.port_info = ice_vf_get_port_info(vf);
205 	params.vf = vf;
206 	params.flags = ICE_VSI_FLAG_INIT;
207 
208 	vsi = ice_vsi_setup(pf, &params);
209 
210 	if (!vsi) {
211 		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
212 		ice_vf_invalidate_vsi(vf);
213 		return NULL;
214 	}
215 
216 	vf->lan_vsi_idx = vsi->idx;
217 
218 	return vsi;
219 }
220 
221 
222 /**
223  * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
224  * @vf: VF to enable MSIX mappings for
225  *
226  * Some of the registers need to be indexed/configured using hardware global
227  * device values and other registers need 0-based values, which represent PF
228  * based values.
229  */
230 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
231 {
232 	int device_based_first_msix, device_based_last_msix;
233 	int pf_based_first_msix, pf_based_last_msix, v;
234 	struct ice_pf *pf = vf->pf;
235 	int device_based_vf_id;
236 	struct ice_hw *hw;
237 	u32 reg;
238 
239 	hw = &pf->hw;
240 	pf_based_first_msix = vf->first_vector_idx;
241 	pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
242 
243 	device_based_first_msix = pf_based_first_msix +
244 		pf->hw.func_caps.common_cap.msix_vector_first_id;
245 	device_based_last_msix =
246 		(device_based_first_msix + vf->num_msix) - 1;
247 	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
248 
249 	reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) |
250 	      FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) |
251 	      VPINT_ALLOC_VALID_M;
252 	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
253 
254 	reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) |
255 	      FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) |
256 	      VPINT_ALLOC_PCI_VALID_M;
257 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
258 
259 	/* map the interrupts to its functions */
260 	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
261 		reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) |
262 		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
263 		wr32(hw, GLINT_VECT2FUNC(v), reg);
264 	}
265 
266 	/* Map mailbox interrupt to VF MSI-X vector 0 */
267 	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
268 }
269 
270 /**
271  * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
272  * @vf: VF to enable the mappings for
273  * @max_txq: max Tx queues allowed on the VF's VSI
274  * @max_rxq: max Rx queues allowed on the VF's VSI
275  */
276 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
277 {
278 	struct device *dev = ice_pf_to_dev(vf->pf);
279 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
280 	struct ice_hw *hw = &vf->pf->hw;
281 	u32 reg;
282 
283 	if (WARN_ON(!vsi))
284 		return;
285 
286 	/* set regardless of mapping mode */
287 	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
288 
289 	/* VF Tx queues allocation */
290 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
291 		/* set the VF PF Tx queue range
292 		 * VFNUMQ value should be set to (number of queues - 1). A value
293 		 * of 0 means 1 queue and a value of 255 means 256 queues
294 		 */
295 		reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) |
296 		      FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1);
297 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
298 	} else {
299 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
300 	}
301 
302 	/* set regardless of mapping mode */
303 	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
304 
305 	/* VF Rx queues allocation */
306 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
307 		/* set the VF PF Rx queue range
308 		 * VFNUMQ value should be set to (number of queues - 1). A value
309 		 * of 0 means 1 queue and a value of 255 means 256 queues
310 		 */
311 		reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) |
312 		      FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1);
313 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
314 	} else {
315 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
316 	}
317 }
318 
319 /**
320  * ice_ena_vf_mappings - enable VF MSIX and queue mapping
321  * @vf: pointer to the VF structure
322  */
323 static void ice_ena_vf_mappings(struct ice_vf *vf)
324 {
325 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
326 
327 	if (WARN_ON(!vsi))
328 		return;
329 
330 	ice_ena_vf_msix_mappings(vf);
331 	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
332 }
333 
334 /**
335  * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
336  * @vf: VF to calculate the register index for
337  * @q_vector: a q_vector associated to the VF
338  */
339 void ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
340 {
341 	if (!vf || !q_vector)
342 		return;
343 
344 	/* always add one to account for the OICR being the first MSIX */
345 	q_vector->vf_reg_idx = q_vector->v_idx + ICE_NONQ_VECS_VF;
346 	q_vector->reg_idx = vf->first_vector_idx + q_vector->vf_reg_idx;
347 }
348 
349 /**
350  * ice_set_per_vf_res - check if vectors and queues are available
351  * @pf: pointer to the PF structure
352  * @num_vfs: the number of SR-IOV VFs being configured
353  *
354  * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
355  * get more vectors and can enable more queues per VF. Note that this does not
356  * grab any vectors from the SW pool already allocated. Also note, that all
357  * vector counts include one for each VF's miscellaneous interrupt vector
358  * (i.e. OICR).
359  *
360  * Minimum VFs - 2 vectors, 1 queue pair
361  * Small VFs - 5 vectors, 4 queue pairs
362  * Medium VFs - 17 vectors, 16 queue pairs
363  *
364  * Second, determine number of queue pairs per VF by starting with a pre-defined
365  * maximum each VF supports. If this is not possible, then we adjust based on
366  * queue pairs available on the device.
367  *
368  * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
369  * by each VF during VF initialization and reset.
370  */
371 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
372 {
373 	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
374 	int msix_avail_per_vf, msix_avail_for_sriov;
375 	struct device *dev = ice_pf_to_dev(pf);
376 
377 	lockdep_assert_held(&pf->vfs.table_lock);
378 
379 	if (!num_vfs)
380 		return -EINVAL;
381 
382 	/* determine MSI-X resources per VF */
383 	msix_avail_for_sriov = pf->virt_irq_tracker.num_entries;
384 	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
385 	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
386 		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
387 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
388 		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
389 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
390 		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
391 	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
392 		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
393 	} else {
394 		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
395 			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
396 			num_vfs);
397 		return -ENOSPC;
398 	}
399 
400 	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
401 			ICE_MAX_RSS_QS_PER_VF);
402 	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
403 	if (!avail_qs)
404 		num_txq = 0;
405 	else if (num_txq > avail_qs)
406 		num_txq = rounddown_pow_of_two(avail_qs);
407 
408 	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
409 			ICE_MAX_RSS_QS_PER_VF);
410 	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
411 	if (!avail_qs)
412 		num_rxq = 0;
413 	else if (num_rxq > avail_qs)
414 		num_rxq = rounddown_pow_of_two(avail_qs);
415 
416 	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
417 		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
418 			ICE_MIN_QS_PER_VF, num_vfs);
419 		return -ENOSPC;
420 	}
421 
422 	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
423 	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
424 	pf->vfs.num_msix_per = num_msix_per_vf;
425 	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
426 		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
427 
428 	return 0;
429 }
430 
431 /**
432  * ice_init_vf_vsi_res - initialize/setup VF VSI resources
433  * @vf: VF to initialize/setup the VSI for
434  *
435  * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
436  * VF VSI's broadcast filter and is only used during initial VF creation.
437  */
438 static int ice_init_vf_vsi_res(struct ice_vf *vf)
439 {
440 	struct ice_pf *pf = vf->pf;
441 	struct ice_vsi *vsi;
442 	int err;
443 
444 	vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix);
445 	if (vf->first_vector_idx < 0)
446 		return -ENOMEM;
447 
448 	vsi = ice_vf_vsi_setup(vf);
449 	if (!vsi)
450 		return -ENOMEM;
451 
452 	err = ice_vf_init_host_cfg(vf, vsi);
453 	if (err)
454 		goto release_vsi;
455 
456 	return 0;
457 
458 release_vsi:
459 	ice_vf_vsi_release(vf);
460 	return err;
461 }
462 
463 /**
464  * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
465  * @pf: PF the VFs are associated with
466  */
467 static int ice_start_vfs(struct ice_pf *pf)
468 {
469 	struct ice_hw *hw = &pf->hw;
470 	unsigned int bkt, it_cnt;
471 	struct ice_vf *vf;
472 	int retval;
473 
474 	lockdep_assert_held(&pf->vfs.table_lock);
475 
476 	it_cnt = 0;
477 	ice_for_each_vf(pf, bkt, vf) {
478 		vf->vf_ops->clear_reset_trigger(vf);
479 
480 		retval = ice_init_vf_vsi_res(vf);
481 		if (retval) {
482 			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
483 				vf->vf_id, retval);
484 			goto teardown;
485 		}
486 
487 		retval = ice_eswitch_attach_vf(pf, vf);
488 		if (retval) {
489 			dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d",
490 				vf->vf_id, retval);
491 			ice_vf_vsi_release(vf);
492 			goto teardown;
493 		}
494 
495 		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
496 		ice_ena_vf_mappings(vf);
497 		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
498 		it_cnt++;
499 	}
500 
501 	ice_flush(hw);
502 	return 0;
503 
504 teardown:
505 	ice_for_each_vf(pf, bkt, vf) {
506 		if (it_cnt == 0)
507 			break;
508 
509 		ice_dis_vf_mappings(vf);
510 		ice_vf_vsi_release(vf);
511 		it_cnt--;
512 	}
513 
514 	return retval;
515 }
516 
517 /**
518  * ice_sriov_free_vf - Free VF memory after all references are dropped
519  * @vf: pointer to VF to free
520  *
521  * Called by ice_put_vf through ice_release_vf once the last reference to a VF
522  * structure has been dropped.
523  */
524 static void ice_sriov_free_vf(struct ice_vf *vf)
525 {
526 	mutex_destroy(&vf->cfg_lock);
527 
528 	kfree_rcu(vf, rcu);
529 }
530 
531 /**
532  * ice_sriov_clear_reset_state - clears VF Reset status register
533  * @vf: the vf to configure
534  */
535 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
536 {
537 	struct ice_hw *hw = &vf->pf->hw;
538 
539 	/* Clear the reset status register so that VF immediately sees that
540 	 * the device is resetting, even if hardware hasn't yet gotten around
541 	 * to clearing VFGEN_RSTAT for us.
542 	 */
543 	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
544 }
545 
546 /**
547  * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
548  * @vf: the vf to configure
549  */
550 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
551 {
552 	struct ice_pf *pf = vf->pf;
553 
554 	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
555 	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
556 }
557 
558 /**
559  * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
560  * @vf: pointer to VF structure
561  * @is_vflr: true if reset occurred due to VFLR
562  *
563  * Trigger and cleanup after a VF reset for a SR-IOV VF.
564  */
565 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
566 {
567 	struct ice_pf *pf = vf->pf;
568 	u32 reg, reg_idx, bit_idx;
569 	unsigned int vf_abs_id, i;
570 	struct device *dev;
571 	struct ice_hw *hw;
572 
573 	dev = ice_pf_to_dev(pf);
574 	hw = &pf->hw;
575 	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
576 
577 	/* In the case of a VFLR, HW has already reset the VF and we just need
578 	 * to clean up. Otherwise we must first trigger the reset using the
579 	 * VFRTRIG register.
580 	 */
581 	if (!is_vflr) {
582 		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
583 		reg |= VPGEN_VFRTRIG_VFSWR_M;
584 		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
585 	}
586 
587 	/* clear the VFLR bit in GLGEN_VFLRSTAT */
588 	reg_idx = (vf_abs_id) / 32;
589 	bit_idx = (vf_abs_id) % 32;
590 	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
591 	ice_flush(hw);
592 
593 	wr32(hw, PF_PCI_CIAA,
594 	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
595 	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
596 		reg = rd32(hw, PF_PCI_CIAD);
597 		/* no transactions pending so stop polling */
598 		if ((reg & VF_TRANS_PENDING_M) == 0)
599 			break;
600 
601 		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
602 		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
603 	}
604 }
605 
606 /**
607  * ice_sriov_poll_reset_status - poll SRIOV VF reset status
608  * @vf: pointer to VF structure
609  *
610  * Returns true when reset is successful, else returns false
611  */
612 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
613 {
614 	struct ice_pf *pf = vf->pf;
615 	unsigned int i;
616 	u32 reg;
617 
618 	for (i = 0; i < 10; i++) {
619 		/* VF reset requires driver to first reset the VF and then
620 		 * poll the status register to make sure that the reset
621 		 * completed successfully.
622 		 */
623 		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
624 		if (reg & VPGEN_VFRSTAT_VFRD_M)
625 			return true;
626 
627 		/* only sleep if the reset is not done */
628 		usleep_range(10, 20);
629 	}
630 	return false;
631 }
632 
633 /**
634  * ice_sriov_clear_reset_trigger - enable VF to access hardware
635  * @vf: VF to enabled hardware access for
636  */
637 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
638 {
639 	struct ice_hw *hw = &vf->pf->hw;
640 	u32 reg;
641 
642 	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
643 	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
644 	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
645 	ice_flush(hw);
646 }
647 
648 /**
649  * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
650  * @vf: VF to perform tasks on
651  */
652 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
653 {
654 	ice_ena_vf_mappings(vf);
655 	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
656 }
657 
658 static const struct ice_vf_ops ice_sriov_vf_ops = {
659 	.reset_type = ICE_VF_RESET,
660 	.free = ice_sriov_free_vf,
661 	.clear_reset_state = ice_sriov_clear_reset_state,
662 	.clear_mbx_register = ice_sriov_clear_mbx_register,
663 	.trigger_reset_register = ice_sriov_trigger_reset_register,
664 	.poll_reset_status = ice_sriov_poll_reset_status,
665 	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
666 	.irq_close = NULL,
667 	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
668 };
669 
670 /**
671  * ice_create_vf_entries - Allocate and insert VF entries
672  * @pf: pointer to the PF structure
673  * @num_vfs: the number of VFs to allocate
674  *
675  * Allocate new VF entries and insert them into the hash table. Set some
676  * basic default fields for initializing the new VFs.
677  *
678  * After this function exits, the hash table will have num_vfs entries
679  * inserted.
680  *
681  * Returns 0 on success or an integer error code on failure.
682  */
683 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
684 {
685 	struct pci_dev *pdev = pf->pdev;
686 	struct ice_vfs *vfs = &pf->vfs;
687 	struct pci_dev *vfdev = NULL;
688 	struct ice_vf *vf;
689 	u16 vf_pdev_id;
690 	int err, pos;
691 
692 	lockdep_assert_held(&vfs->table_lock);
693 
694 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
695 	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
696 
697 	for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
698 		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
699 		if (!vf) {
700 			err = -ENOMEM;
701 			goto err_free_entries;
702 		}
703 		kref_init(&vf->refcnt);
704 
705 		vf->pf = pf;
706 		vf->vf_id = vf_id;
707 
708 		/* set sriov vf ops for VFs created during SRIOV flow */
709 		vf->vf_ops = &ice_sriov_vf_ops;
710 
711 		ice_initialize_vf_entry(vf);
712 
713 		do {
714 			vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
715 		} while (vfdev && vfdev->physfn != pdev);
716 		vf->vfdev = vfdev;
717 		vf->vf_sw_id = pf->first_sw;
718 
719 		pci_dev_get(vfdev);
720 
721 		hash_add_rcu(vfs->table, &vf->entry, vf_id);
722 	}
723 
724 	/* Decrement of refcount done by pci_get_device() inside the loop does
725 	 * not touch the last iteration's vfdev, so it has to be done manually
726 	 * to balance pci_dev_get() added within the loop.
727 	 */
728 	pci_dev_put(vfdev);
729 
730 	return 0;
731 
732 err_free_entries:
733 	ice_free_vf_entries(pf);
734 	return err;
735 }
736 
737 /**
738  * ice_ena_vfs - enable VFs so they are ready to be used
739  * @pf: pointer to the PF structure
740  * @num_vfs: number of VFs to enable
741  */
742 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
743 {
744 	struct device *dev = ice_pf_to_dev(pf);
745 	struct ice_hw *hw = &pf->hw;
746 	int ret;
747 
748 	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
749 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
750 	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
751 	set_bit(ICE_OICR_INTR_DIS, pf->state);
752 	ice_flush(hw);
753 
754 	ret = pci_enable_sriov(pf->pdev, num_vfs);
755 	if (ret)
756 		goto err_unroll_intr;
757 
758 	mutex_lock(&pf->vfs.table_lock);
759 
760 	ret = ice_set_per_vf_res(pf, num_vfs);
761 	if (ret) {
762 		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
763 			num_vfs, ret);
764 		goto err_unroll_sriov;
765 	}
766 
767 	ret = ice_create_vf_entries(pf, num_vfs);
768 	if (ret) {
769 		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
770 			num_vfs);
771 		goto err_unroll_sriov;
772 	}
773 
774 	ret = ice_start_vfs(pf);
775 	if (ret) {
776 		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
777 		ret = -EAGAIN;
778 		goto err_unroll_vf_entries;
779 	}
780 
781 	clear_bit(ICE_VF_DIS, pf->state);
782 
783 	/* rearm global interrupts */
784 	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
785 		ice_irq_dynamic_ena(hw, NULL, NULL);
786 
787 	mutex_unlock(&pf->vfs.table_lock);
788 
789 	return 0;
790 
791 err_unroll_vf_entries:
792 	ice_free_vf_entries(pf);
793 err_unroll_sriov:
794 	mutex_unlock(&pf->vfs.table_lock);
795 	pci_disable_sriov(pf->pdev);
796 err_unroll_intr:
797 	/* rearm interrupts here */
798 	ice_irq_dynamic_ena(hw, NULL, NULL);
799 	clear_bit(ICE_OICR_INTR_DIS, pf->state);
800 	return ret;
801 }
802 
803 /**
804  * ice_pci_sriov_ena - Enable or change number of VFs
805  * @pf: pointer to the PF structure
806  * @num_vfs: number of VFs to allocate
807  *
808  * Returns 0 on success and negative on failure
809  */
810 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
811 {
812 	struct device *dev = ice_pf_to_dev(pf);
813 	int err;
814 
815 	if (!num_vfs) {
816 		ice_free_vfs(pf);
817 		return 0;
818 	}
819 
820 	if (num_vfs > pf->vfs.num_supported) {
821 		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
822 			num_vfs, pf->vfs.num_supported);
823 		return -EOPNOTSUPP;
824 	}
825 
826 	dev_info(dev, "Enabling %d VFs\n", num_vfs);
827 	err = ice_ena_vfs(pf, num_vfs);
828 	if (err) {
829 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
830 		return err;
831 	}
832 
833 	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
834 	return 0;
835 }
836 
837 /**
838  * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
839  * @pf: PF to enabled SR-IOV on
840  */
841 static int ice_check_sriov_allowed(struct ice_pf *pf)
842 {
843 	struct device *dev = ice_pf_to_dev(pf);
844 
845 	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
846 		dev_err(dev, "This device is not capable of SR-IOV\n");
847 		return -EOPNOTSUPP;
848 	}
849 
850 	if (ice_is_safe_mode(pf)) {
851 		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
852 		return -EOPNOTSUPP;
853 	}
854 
855 	if (!ice_pf_state_is_nominal(pf)) {
856 		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
857 		return -EBUSY;
858 	}
859 
860 	return 0;
861 }
862 
863 /**
864  * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
865  * @pdev: pointer to pci_dev struct
866  *
867  * The function is called via sysfs ops
868  */
869 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
870 {
871 	struct ice_pf *pf = pci_get_drvdata(pdev);
872 
873 	return pf->virt_irq_tracker.num_entries;
874 }
875 
876 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
877 {
878 	u16 vf_ids[ICE_MAX_SRIOV_VFS];
879 	struct ice_vf *tmp_vf;
880 	int to_remap = 0, bkt;
881 
882 	/* For better irqs usage try to remap irqs of VFs
883 	 * that aren't running yet
884 	 */
885 	ice_for_each_vf(pf, bkt, tmp_vf) {
886 		/* skip VF which is changing the number of MSI-X */
887 		if (restricted_id == tmp_vf->vf_id ||
888 		    test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
889 			continue;
890 
891 		ice_dis_vf_mappings(tmp_vf);
892 		ice_virt_free_irqs(pf, tmp_vf->first_vector_idx,
893 				   tmp_vf->num_msix);
894 
895 		vf_ids[to_remap] = tmp_vf->vf_id;
896 		to_remap += 1;
897 	}
898 
899 	for (int i = 0; i < to_remap; i++) {
900 		tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
901 		if (!tmp_vf)
902 			continue;
903 
904 		tmp_vf->first_vector_idx =
905 			ice_virt_get_irqs(pf, tmp_vf->num_msix);
906 		/* there is no need to rebuild VSI as we are only changing the
907 		 * vector indexes not amount of MSI-X or queues
908 		 */
909 		ice_ena_vf_mappings(tmp_vf);
910 		ice_put_vf(tmp_vf);
911 	}
912 }
913 
914 /**
915  * ice_sriov_set_msix_vec_count
916  * @vf_dev: pointer to pci_dev struct of VF device
917  * @msix_vec_count: new value for MSI-X amount on this VF
918  *
919  * Set requested MSI-X, queues and registers for @vf_dev.
920  *
921  * First do some sanity checks like if there are any VFs, if the new value
922  * is correct etc. Then disable old mapping (MSI-X and queues registers), change
923  * MSI-X and queues, rebuild VSI and enable new mapping.
924  *
925  * If it is possible (driver not binded to VF) try to remap also other VFs to
926  * linearize irqs register usage.
927  */
928 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
929 {
930 	struct pci_dev *pdev = pci_physfn(vf_dev);
931 	struct ice_pf *pf = pci_get_drvdata(pdev);
932 	u16 prev_msix, prev_queues, queues;
933 	bool needs_rebuild = false;
934 	struct ice_vsi *vsi;
935 	struct ice_vf *vf;
936 	int id;
937 
938 	if (!ice_get_num_vfs(pf))
939 		return -ENOENT;
940 
941 	if (!msix_vec_count)
942 		return 0;
943 
944 	queues = msix_vec_count;
945 	/* add 1 MSI-X for OICR */
946 	msix_vec_count += 1;
947 
948 	if (queues > min(ice_get_avail_txq_count(pf),
949 			 ice_get_avail_rxq_count(pf)))
950 		return -EINVAL;
951 
952 	if (msix_vec_count < ICE_MIN_INTR_PER_VF)
953 		return -EINVAL;
954 
955 	/* Transition of PCI VF function number to function_id */
956 	for (id = 0; id < pci_num_vf(pdev); id++) {
957 		if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id))
958 			break;
959 	}
960 
961 	if (id == pci_num_vf(pdev))
962 		return -ENOENT;
963 
964 	vf = ice_get_vf_by_id(pf, id);
965 
966 	if (!vf)
967 		return -ENOENT;
968 
969 	vsi = ice_get_vf_vsi(vf);
970 	if (!vsi) {
971 		ice_put_vf(vf);
972 		return -ENOENT;
973 	}
974 
975 	prev_msix = vf->num_msix;
976 	prev_queues = vf->num_vf_qs;
977 
978 	ice_dis_vf_mappings(vf);
979 	ice_virt_free_irqs(pf, vf->first_vector_idx, vf->num_msix);
980 
981 	/* Remap all VFs beside the one is now configured */
982 	ice_sriov_remap_vectors(pf, vf->vf_id);
983 
984 	vf->num_msix = msix_vec_count;
985 	vf->num_vf_qs = queues;
986 	vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix);
987 	if (vf->first_vector_idx < 0)
988 		goto unroll;
989 
990 	vsi->req_txq = queues;
991 	vsi->req_rxq = queues;
992 
993 	if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
994 		/* Try to rebuild with previous values */
995 		needs_rebuild = true;
996 		goto unroll;
997 	}
998 
999 	dev_info(ice_pf_to_dev(pf),
1000 		 "Changing VF %d resources to %d vectors and %d queues\n",
1001 		 vf->vf_id, vf->num_msix, vf->num_vf_qs);
1002 
1003 	ice_ena_vf_mappings(vf);
1004 	ice_put_vf(vf);
1005 
1006 	return 0;
1007 
1008 unroll:
1009 	dev_info(ice_pf_to_dev(pf),
1010 		 "Can't set %d vectors on VF %d, falling back to %d\n",
1011 		 vf->num_msix, vf->vf_id, prev_msix);
1012 
1013 	vf->num_msix = prev_msix;
1014 	vf->num_vf_qs = prev_queues;
1015 
1016 	vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix);
1017 	if (vf->first_vector_idx < 0) {
1018 		ice_put_vf(vf);
1019 		return -EINVAL;
1020 	}
1021 
1022 	if (needs_rebuild) {
1023 		vsi->req_txq = prev_queues;
1024 		vsi->req_rxq = prev_queues;
1025 
1026 		ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
1027 	}
1028 
1029 	ice_ena_vf_mappings(vf);
1030 	ice_put_vf(vf);
1031 
1032 	return -EINVAL;
1033 }
1034 
1035 /**
1036  * ice_sriov_configure - Enable or change number of VFs via sysfs
1037  * @pdev: pointer to a pci_dev structure
1038  * @num_vfs: number of VFs to allocate or 0 to free VFs
1039  *
1040  * This function is called when the user updates the number of VFs in sysfs. On
1041  * success return whatever num_vfs was set to by the caller. Return negative on
1042  * failure.
1043  */
1044 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1045 {
1046 	struct ice_pf *pf = pci_get_drvdata(pdev);
1047 	struct device *dev = ice_pf_to_dev(pf);
1048 	int err;
1049 
1050 	err = ice_check_sriov_allowed(pf);
1051 	if (err)
1052 		return err;
1053 
1054 	if (!num_vfs) {
1055 		if (!pci_vfs_assigned(pdev)) {
1056 			ice_free_vfs(pf);
1057 			return 0;
1058 		}
1059 
1060 		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1061 		return -EBUSY;
1062 	}
1063 
1064 	err = ice_pci_sriov_ena(pf, num_vfs);
1065 	if (err)
1066 		return err;
1067 
1068 	return num_vfs;
1069 }
1070 
1071 /**
1072  * ice_process_vflr_event - Free VF resources via IRQ calls
1073  * @pf: pointer to the PF structure
1074  *
1075  * called from the VFLR IRQ handler to
1076  * free up VF resources and state variables
1077  */
1078 void ice_process_vflr_event(struct ice_pf *pf)
1079 {
1080 	struct ice_hw *hw = &pf->hw;
1081 	struct ice_vf *vf;
1082 	unsigned int bkt;
1083 	u32 reg;
1084 
1085 	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1086 	    !ice_has_vfs(pf))
1087 		return;
1088 
1089 	mutex_lock(&pf->vfs.table_lock);
1090 	ice_for_each_vf(pf, bkt, vf) {
1091 		u32 reg_idx, bit_idx;
1092 
1093 		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1094 		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1095 		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1096 		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1097 		if (reg & BIT(bit_idx))
1098 			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1099 			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1100 	}
1101 	mutex_unlock(&pf->vfs.table_lock);
1102 }
1103 
1104 /**
1105  * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1106  * @pf: PF used to index all VFs
1107  * @pfq: queue index relative to the PF's function space
1108  *
1109  * If no VF is found who owns the pfq then return NULL, otherwise return a
1110  * pointer to the VF who owns the pfq
1111  *
1112  * If this function returns non-NULL, it acquires a reference count of the VF
1113  * structure. The caller is responsible for calling ice_put_vf() to drop this
1114  * reference.
1115  */
1116 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1117 {
1118 	struct ice_vf *vf;
1119 	unsigned int bkt;
1120 
1121 	rcu_read_lock();
1122 	ice_for_each_vf_rcu(pf, bkt, vf) {
1123 		struct ice_vsi *vsi;
1124 		u16 rxq_idx;
1125 
1126 		vsi = ice_get_vf_vsi(vf);
1127 		if (!vsi)
1128 			continue;
1129 
1130 		ice_for_each_rxq(vsi, rxq_idx)
1131 			if (vsi->rxq_map[rxq_idx] == pfq) {
1132 				struct ice_vf *found;
1133 
1134 				if (kref_get_unless_zero(&vf->refcnt))
1135 					found = vf;
1136 				else
1137 					found = NULL;
1138 				rcu_read_unlock();
1139 				return found;
1140 			}
1141 	}
1142 	rcu_read_unlock();
1143 
1144 	return NULL;
1145 }
1146 
1147 /**
1148  * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1149  * @pf: PF used for conversion
1150  * @globalq: global queue index used to convert to PF space queue index
1151  */
1152 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1153 {
1154 	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1155 }
1156 
1157 /**
1158  * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1159  * @pf: PF that the LAN overflow event happened on
1160  * @event: structure holding the event information for the LAN overflow event
1161  *
1162  * Determine if the LAN overflow event was caused by a VF queue. If it was not
1163  * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1164  * reset on the offending VF.
1165  */
1166 void
1167 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1168 {
1169 	u32 gldcb_rtctq, queue;
1170 	struct ice_vf *vf;
1171 
1172 	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1173 	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1174 
1175 	/* event returns device global Rx queue number */
1176 	queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq);
1177 
1178 	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1179 	if (!vf)
1180 		return;
1181 
1182 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1183 	ice_put_vf(vf);
1184 }
1185 
1186 /**
1187  * ice_set_vf_spoofchk
1188  * @netdev: network interface device structure
1189  * @vf_id: VF identifier
1190  * @ena: flag to enable or disable feature
1191  *
1192  * Enable or disable VF spoof checking
1193  */
1194 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1195 {
1196 	struct ice_netdev_priv *np = netdev_priv(netdev);
1197 	struct ice_pf *pf = np->vsi->back;
1198 	struct ice_vsi *vf_vsi;
1199 	struct device *dev;
1200 	struct ice_vf *vf;
1201 	int ret;
1202 
1203 	dev = ice_pf_to_dev(pf);
1204 
1205 	vf = ice_get_vf_by_id(pf, vf_id);
1206 	if (!vf)
1207 		return -EINVAL;
1208 
1209 	ret = ice_check_vf_ready_for_cfg(vf);
1210 	if (ret)
1211 		goto out_put_vf;
1212 
1213 	vf_vsi = ice_get_vf_vsi(vf);
1214 	if (!vf_vsi) {
1215 		netdev_err(netdev, "VSI %d for VF %d is null\n",
1216 			   vf->lan_vsi_idx, vf->vf_id);
1217 		ret = -EINVAL;
1218 		goto out_put_vf;
1219 	}
1220 
1221 	if (vf_vsi->type != ICE_VSI_VF) {
1222 		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1223 			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1224 		ret = -ENODEV;
1225 		goto out_put_vf;
1226 	}
1227 
1228 	if (ena == vf->spoofchk) {
1229 		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1230 		ret = 0;
1231 		goto out_put_vf;
1232 	}
1233 
1234 	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1235 	if (ret)
1236 		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1237 			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1238 	else
1239 		vf->spoofchk = ena;
1240 
1241 out_put_vf:
1242 	ice_put_vf(vf);
1243 	return ret;
1244 }
1245 
1246 /**
1247  * ice_get_vf_cfg
1248  * @netdev: network interface device structure
1249  * @vf_id: VF identifier
1250  * @ivi: VF configuration structure
1251  *
1252  * return VF configuration
1253  */
1254 int
1255 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1256 {
1257 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1258 	struct ice_vf *vf;
1259 	int ret;
1260 
1261 	vf = ice_get_vf_by_id(pf, vf_id);
1262 	if (!vf)
1263 		return -EINVAL;
1264 
1265 	ret = ice_check_vf_ready_for_cfg(vf);
1266 	if (ret)
1267 		goto out_put_vf;
1268 
1269 	ivi->vf = vf_id;
1270 	ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1271 
1272 	/* VF configuration for VLAN and applicable QoS */
1273 	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1274 	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1275 	if (ice_vf_is_port_vlan_ena(vf))
1276 		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1277 
1278 	ivi->trusted = vf->trusted;
1279 	ivi->spoofchk = vf->spoofchk;
1280 	if (!vf->link_forced)
1281 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1282 	else if (vf->link_up)
1283 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1284 	else
1285 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1286 	ivi->max_tx_rate = vf->max_tx_rate;
1287 	ivi->min_tx_rate = vf->min_tx_rate;
1288 
1289 out_put_vf:
1290 	ice_put_vf(vf);
1291 	return ret;
1292 }
1293 
1294 /**
1295  * __ice_set_vf_mac - program VF MAC address
1296  * @pf: PF to be configure
1297  * @vf_id: VF identifier
1298  * @mac: MAC address
1299  *
1300  * program VF MAC address
1301  * Return: zero on success or an error code on failure
1302  */
1303 int __ice_set_vf_mac(struct ice_pf *pf, u16 vf_id, const u8 *mac)
1304 {
1305 	struct device *dev;
1306 	struct ice_vf *vf;
1307 	int ret;
1308 
1309 	dev = ice_pf_to_dev(pf);
1310 	if (is_multicast_ether_addr(mac)) {
1311 		dev_err(dev, "%pM not a valid unicast address\n", mac);
1312 		return -EINVAL;
1313 	}
1314 
1315 	vf = ice_get_vf_by_id(pf, vf_id);
1316 	if (!vf)
1317 		return -EINVAL;
1318 
1319 	/* nothing left to do, unicast MAC already set */
1320 	if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1321 	    ether_addr_equal(vf->hw_lan_addr, mac)) {
1322 		ret = 0;
1323 		goto out_put_vf;
1324 	}
1325 
1326 	ret = ice_check_vf_ready_for_cfg(vf);
1327 	if (ret)
1328 		goto out_put_vf;
1329 
1330 	mutex_lock(&vf->cfg_lock);
1331 
1332 	/* VF is notified of its new MAC via the PF's response to the
1333 	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1334 	 */
1335 	ether_addr_copy(vf->dev_lan_addr, mac);
1336 	ether_addr_copy(vf->hw_lan_addr, mac);
1337 	if (is_zero_ether_addr(mac)) {
1338 		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1339 		vf->pf_set_mac = false;
1340 		dev_info(dev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1341 			 vf->vf_id);
1342 	} else {
1343 		/* PF will add MAC rule for the VF */
1344 		vf->pf_set_mac = true;
1345 		dev_info(dev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1346 			 mac, vf_id);
1347 	}
1348 
1349 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1350 	mutex_unlock(&vf->cfg_lock);
1351 
1352 out_put_vf:
1353 	ice_put_vf(vf);
1354 	return ret;
1355 }
1356 
1357 /**
1358  * ice_set_vf_mac - .ndo_set_vf_mac handler
1359  * @netdev: network interface device structure
1360  * @vf_id: VF identifier
1361  * @mac: MAC address
1362  *
1363  * program VF MAC address
1364  * Return: zero on success or an error code on failure
1365  */
1366 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1367 {
1368 	return __ice_set_vf_mac(ice_netdev_to_pf(netdev), vf_id, mac);
1369 }
1370 
1371 /**
1372  * ice_set_vf_trust
1373  * @netdev: network interface device structure
1374  * @vf_id: VF identifier
1375  * @trusted: Boolean value to enable/disable trusted VF
1376  *
1377  * Enable or disable a given VF as trusted
1378  */
1379 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1380 {
1381 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1382 	struct ice_vf *vf;
1383 	int ret;
1384 
1385 	vf = ice_get_vf_by_id(pf, vf_id);
1386 	if (!vf)
1387 		return -EINVAL;
1388 
1389 	if (ice_is_eswitch_mode_switchdev(pf)) {
1390 		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1391 		return -EOPNOTSUPP;
1392 	}
1393 
1394 	ret = ice_check_vf_ready_for_cfg(vf);
1395 	if (ret)
1396 		goto out_put_vf;
1397 
1398 	/* Check if already trusted */
1399 	if (trusted == vf->trusted) {
1400 		ret = 0;
1401 		goto out_put_vf;
1402 	}
1403 
1404 	mutex_lock(&vf->cfg_lock);
1405 
1406 	while (!trusted && vf->num_mac_lldp)
1407 		ice_vf_update_mac_lldp_num(vf, ice_get_vf_vsi(vf), false);
1408 
1409 	vf->trusted = trusted;
1410 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1411 	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1412 		 vf_id, trusted ? "" : "un");
1413 
1414 	mutex_unlock(&vf->cfg_lock);
1415 
1416 out_put_vf:
1417 	ice_put_vf(vf);
1418 	return ret;
1419 }
1420 
1421 /**
1422  * ice_set_vf_link_state
1423  * @netdev: network interface device structure
1424  * @vf_id: VF identifier
1425  * @link_state: required link state
1426  *
1427  * Set VF's link state, irrespective of physical link state status
1428  */
1429 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1430 {
1431 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1432 	struct ice_vf *vf;
1433 	int ret;
1434 
1435 	vf = ice_get_vf_by_id(pf, vf_id);
1436 	if (!vf)
1437 		return -EINVAL;
1438 
1439 	ret = ice_check_vf_ready_for_cfg(vf);
1440 	if (ret)
1441 		goto out_put_vf;
1442 
1443 	switch (link_state) {
1444 	case IFLA_VF_LINK_STATE_AUTO:
1445 		vf->link_forced = false;
1446 		break;
1447 	case IFLA_VF_LINK_STATE_ENABLE:
1448 		vf->link_forced = true;
1449 		vf->link_up = true;
1450 		break;
1451 	case IFLA_VF_LINK_STATE_DISABLE:
1452 		vf->link_forced = true;
1453 		vf->link_up = false;
1454 		break;
1455 	default:
1456 		ret = -EINVAL;
1457 		goto out_put_vf;
1458 	}
1459 
1460 	ice_vc_notify_vf_link_state(vf);
1461 
1462 out_put_vf:
1463 	ice_put_vf(vf);
1464 	return ret;
1465 }
1466 
1467 /**
1468  * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1469  * @pf: PF associated with VFs
1470  */
1471 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1472 {
1473 	struct ice_vf *vf;
1474 	unsigned int bkt;
1475 	int rate = 0;
1476 
1477 	rcu_read_lock();
1478 	ice_for_each_vf_rcu(pf, bkt, vf)
1479 		rate += vf->min_tx_rate;
1480 	rcu_read_unlock();
1481 
1482 	return rate;
1483 }
1484 
1485 /**
1486  * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1487  * @vf: VF trying to configure min_tx_rate
1488  * @min_tx_rate: min Tx rate in Mbps
1489  *
1490  * Check if the min_tx_rate being passed in will cause oversubscription of total
1491  * min_tx_rate based on the current link speed and all other VFs configured
1492  * min_tx_rate
1493  *
1494  * Return true if the passed min_tx_rate would cause oversubscription, else
1495  * return false
1496  */
1497 static bool
1498 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1499 {
1500 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1501 	int all_vfs_min_tx_rate;
1502 	int link_speed_mbps;
1503 
1504 	if (WARN_ON(!vsi))
1505 		return false;
1506 
1507 	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1508 	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1509 
1510 	/* this VF's previous rate is being overwritten */
1511 	all_vfs_min_tx_rate -= vf->min_tx_rate;
1512 
1513 	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1514 		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1515 			min_tx_rate, vf->vf_id,
1516 			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1517 			link_speed_mbps);
1518 		return true;
1519 	}
1520 
1521 	return false;
1522 }
1523 
1524 /**
1525  * ice_set_vf_bw - set min/max VF bandwidth
1526  * @netdev: network interface device structure
1527  * @vf_id: VF identifier
1528  * @min_tx_rate: Minimum Tx rate in Mbps
1529  * @max_tx_rate: Maximum Tx rate in Mbps
1530  */
1531 int
1532 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1533 	      int max_tx_rate)
1534 {
1535 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1536 	struct ice_vsi *vsi;
1537 	struct device *dev;
1538 	struct ice_vf *vf;
1539 	int ret;
1540 
1541 	dev = ice_pf_to_dev(pf);
1542 
1543 	vf = ice_get_vf_by_id(pf, vf_id);
1544 	if (!vf)
1545 		return -EINVAL;
1546 
1547 	ret = ice_check_vf_ready_for_cfg(vf);
1548 	if (ret)
1549 		goto out_put_vf;
1550 
1551 	vsi = ice_get_vf_vsi(vf);
1552 	if (!vsi) {
1553 		ret = -EINVAL;
1554 		goto out_put_vf;
1555 	}
1556 
1557 	if (min_tx_rate && ice_is_dcb_active(pf)) {
1558 		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1559 		ret = -EOPNOTSUPP;
1560 		goto out_put_vf;
1561 	}
1562 
1563 	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1564 		ret = -EINVAL;
1565 		goto out_put_vf;
1566 	}
1567 
1568 	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1569 		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1570 		if (ret) {
1571 			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1572 				vf->vf_id);
1573 			goto out_put_vf;
1574 		}
1575 
1576 		vf->min_tx_rate = min_tx_rate;
1577 	}
1578 
1579 	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1580 		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1581 		if (ret) {
1582 			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1583 				vf->vf_id);
1584 			goto out_put_vf;
1585 		}
1586 
1587 		vf->max_tx_rate = max_tx_rate;
1588 	}
1589 
1590 out_put_vf:
1591 	ice_put_vf(vf);
1592 	return ret;
1593 }
1594 
1595 /**
1596  * ice_get_vf_stats - populate some stats for the VF
1597  * @netdev: the netdev of the PF
1598  * @vf_id: the host OS identifier (0-255)
1599  * @vf_stats: pointer to the OS memory to be initialized
1600  */
1601 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1602 		     struct ifla_vf_stats *vf_stats)
1603 {
1604 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1605 	struct ice_eth_stats *stats;
1606 	struct ice_vsi *vsi;
1607 	struct ice_vf *vf;
1608 	int ret;
1609 
1610 	vf = ice_get_vf_by_id(pf, vf_id);
1611 	if (!vf)
1612 		return -EINVAL;
1613 
1614 	ret = ice_check_vf_ready_for_cfg(vf);
1615 	if (ret)
1616 		goto out_put_vf;
1617 
1618 	vsi = ice_get_vf_vsi(vf);
1619 	if (!vsi) {
1620 		ret = -EINVAL;
1621 		goto out_put_vf;
1622 	}
1623 
1624 	ice_update_eth_stats(vsi);
1625 	stats = &vsi->eth_stats;
1626 
1627 	memset(vf_stats, 0, sizeof(*vf_stats));
1628 
1629 	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1630 		stats->rx_multicast;
1631 	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1632 		stats->tx_multicast;
1633 	vf_stats->rx_bytes   = stats->rx_bytes;
1634 	vf_stats->tx_bytes   = stats->tx_bytes;
1635 	vf_stats->broadcast  = stats->rx_broadcast;
1636 	vf_stats->multicast  = stats->rx_multicast;
1637 	vf_stats->rx_dropped = stats->rx_discards;
1638 	vf_stats->tx_dropped = stats->tx_discards;
1639 
1640 out_put_vf:
1641 	ice_put_vf(vf);
1642 	return ret;
1643 }
1644 
1645 /**
1646  * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1647  * @hw: hardware structure used to check the VLAN mode
1648  * @vlan_proto: VLAN TPID being checked
1649  *
1650  * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1651  * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1652  * Mode (SVM), then only ETH_P_8021Q is supported.
1653  */
1654 static bool
1655 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1656 {
1657 	bool is_supported = false;
1658 
1659 	switch (vlan_proto) {
1660 	case ETH_P_8021Q:
1661 		is_supported = true;
1662 		break;
1663 	case ETH_P_8021AD:
1664 		if (ice_is_dvm_ena(hw))
1665 			is_supported = true;
1666 		break;
1667 	}
1668 
1669 	return is_supported;
1670 }
1671 
1672 /**
1673  * ice_set_vf_port_vlan
1674  * @netdev: network interface device structure
1675  * @vf_id: VF identifier
1676  * @vlan_id: VLAN ID being set
1677  * @qos: priority setting
1678  * @vlan_proto: VLAN protocol
1679  *
1680  * program VF Port VLAN ID and/or QoS
1681  */
1682 int
1683 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1684 		     __be16 vlan_proto)
1685 {
1686 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1687 	u16 local_vlan_proto = ntohs(vlan_proto);
1688 	struct device *dev;
1689 	struct ice_vf *vf;
1690 	int ret;
1691 
1692 	dev = ice_pf_to_dev(pf);
1693 
1694 	if (vlan_id >= VLAN_N_VID || qos > 7) {
1695 		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1696 			vf_id, vlan_id, qos);
1697 		return -EINVAL;
1698 	}
1699 
1700 	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1701 		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1702 			local_vlan_proto);
1703 		return -EPROTONOSUPPORT;
1704 	}
1705 
1706 	vf = ice_get_vf_by_id(pf, vf_id);
1707 	if (!vf)
1708 		return -EINVAL;
1709 
1710 	ret = ice_check_vf_ready_for_cfg(vf);
1711 	if (ret)
1712 		goto out_put_vf;
1713 
1714 	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1715 	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1716 	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1717 		/* duplicate request, so just return success */
1718 		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1719 			vlan_id, qos, local_vlan_proto);
1720 		ret = 0;
1721 		goto out_put_vf;
1722 	}
1723 
1724 	mutex_lock(&vf->cfg_lock);
1725 
1726 	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1727 	if (ice_vf_is_port_vlan_ena(vf))
1728 		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1729 			 vlan_id, qos, local_vlan_proto, vf_id);
1730 	else
1731 		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1732 
1733 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1734 	mutex_unlock(&vf->cfg_lock);
1735 
1736 out_put_vf:
1737 	ice_put_vf(vf);
1738 	return ret;
1739 }
1740 
1741 /**
1742  * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1743  * @vf: pointer to the VF structure
1744  */
1745 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1746 {
1747 	struct ice_pf *pf = vf->pf;
1748 	struct device *dev;
1749 
1750 	dev = ice_pf_to_dev(pf);
1751 
1752 	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1753 		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1754 		 vf->dev_lan_addr,
1755 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1756 			  ? "on" : "off");
1757 }
1758 
1759 /**
1760  * ice_print_vf_tx_mdd_event - print VF Tx malicious driver detect event
1761  * @vf: pointer to the VF structure
1762  */
1763 void ice_print_vf_tx_mdd_event(struct ice_vf *vf)
1764 {
1765 	struct ice_pf *pf = vf->pf;
1766 	struct device *dev;
1767 
1768 	dev = ice_pf_to_dev(pf);
1769 
1770 	dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1771 		 vf->mdd_tx_events.count, pf->hw.pf_id, vf->vf_id,
1772 		 vf->dev_lan_addr,
1773 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1774 			  ? "on" : "off");
1775 }
1776 
1777 /**
1778  * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1779  * @pf: pointer to the PF structure
1780  *
1781  * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1782  */
1783 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1784 {
1785 	struct ice_vf *vf;
1786 	unsigned int bkt;
1787 
1788 	/* check that there are pending MDD events to print */
1789 	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1790 		return;
1791 
1792 	/* VF MDD event logs are rate limited to one second intervals */
1793 	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1794 		return;
1795 
1796 	pf->vfs.last_printed_mdd_jiffies = jiffies;
1797 
1798 	mutex_lock(&pf->vfs.table_lock);
1799 	ice_for_each_vf(pf, bkt, vf) {
1800 		/* only print Rx MDD event message if there are new events */
1801 		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1802 			vf->mdd_rx_events.last_printed =
1803 							vf->mdd_rx_events.count;
1804 			ice_print_vf_rx_mdd_event(vf);
1805 		}
1806 
1807 		/* only print Tx MDD event message if there are new events */
1808 		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1809 			vf->mdd_tx_events.last_printed =
1810 							vf->mdd_tx_events.count;
1811 			ice_print_vf_tx_mdd_event(vf);
1812 		}
1813 	}
1814 	mutex_unlock(&pf->vfs.table_lock);
1815 }
1816 
1817 /**
1818  * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1819  * @pf: pointer to the PF structure
1820  *
1821  * Called when recovering from a PF FLR to restore interrupt capability to
1822  * the VFs.
1823  */
1824 void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1825 {
1826 	struct ice_vf *vf;
1827 	u32 bkt;
1828 
1829 	ice_for_each_vf(pf, bkt, vf)
1830 		pci_restore_msi_state(vf->vfdev);
1831 }
1832