1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice_base.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_flow.h" 11 #include "ice_eswitch.h" 12 #include "ice_virtchnl_allowlist.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_vf_vsi_vlan_ops.h" 15 #include "ice_vlan.h" 16 17 /** 18 * ice_free_vf_entries - Free all VF entries from the hash table 19 * @pf: pointer to the PF structure 20 * 21 * Iterate over the VF hash table, removing and releasing all VF entries. 22 * Called during VF teardown or as cleanup during failed VF initialization. 23 */ 24 static void ice_free_vf_entries(struct ice_pf *pf) 25 { 26 struct ice_vfs *vfs = &pf->vfs; 27 struct hlist_node *tmp; 28 struct ice_vf *vf; 29 unsigned int bkt; 30 31 /* Remove all VFs from the hash table and release their main 32 * reference. Once all references to the VF are dropped, ice_put_vf() 33 * will call ice_release_vf which will remove the VF memory. 34 */ 35 lockdep_assert_held(&vfs->table_lock); 36 37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { 38 hash_del_rcu(&vf->entry); 39 ice_deinitialize_vf_entry(vf); 40 ice_put_vf(vf); 41 } 42 } 43 44 /** 45 * ice_free_vf_res - Free a VF's resources 46 * @vf: pointer to the VF info 47 */ 48 static void ice_free_vf_res(struct ice_vf *vf) 49 { 50 struct ice_pf *pf = vf->pf; 51 int i, last_vector_idx; 52 53 /* First, disable VF's configuration API to prevent OS from 54 * accessing the VF's VSI after it's freed or invalidated. 55 */ 56 clear_bit(ICE_VF_STATE_INIT, vf->vf_states); 57 ice_vf_fdir_exit(vf); 58 /* free VF control VSI */ 59 if (vf->ctrl_vsi_idx != ICE_NO_VSI) 60 ice_vf_ctrl_vsi_release(vf); 61 62 /* free VSI and disconnect it from the parent uplink */ 63 if (vf->lan_vsi_idx != ICE_NO_VSI) { 64 ice_vf_vsi_release(vf); 65 vf->num_mac = 0; 66 vf->num_mac_lldp = 0; 67 } 68 69 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1; 70 71 /* clear VF MDD event information */ 72 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); 73 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); 74 75 /* Disable interrupts so that VF starts in a known state */ 76 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { 77 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); 78 ice_flush(&pf->hw); 79 } 80 /* reset some of the state variables keeping track of the resources */ 81 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); 82 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); 83 } 84 85 /** 86 * ice_dis_vf_mappings 87 * @vf: pointer to the VF structure 88 */ 89 static void ice_dis_vf_mappings(struct ice_vf *vf) 90 { 91 struct ice_pf *pf = vf->pf; 92 struct ice_vsi *vsi; 93 struct device *dev; 94 int first, last, v; 95 struct ice_hw *hw; 96 97 hw = &pf->hw; 98 vsi = ice_get_vf_vsi(vf); 99 if (WARN_ON(!vsi)) 100 return; 101 102 dev = ice_pf_to_dev(pf); 103 wr32(hw, VPINT_ALLOC(vf->vf_id), 0); 104 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); 105 106 first = vf->first_vector_idx; 107 last = first + vf->num_msix - 1; 108 for (v = first; v <= last; v++) { 109 u32 reg; 110 111 reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) | 112 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 113 wr32(hw, GLINT_VECT2FUNC(v), reg); 114 } 115 116 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) 117 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); 118 else 119 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 120 121 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) 122 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); 123 else 124 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 125 } 126 127 /** 128 * ice_free_vfs - Free all VFs 129 * @pf: pointer to the PF structure 130 */ 131 void ice_free_vfs(struct ice_pf *pf) 132 { 133 struct device *dev = ice_pf_to_dev(pf); 134 struct ice_vfs *vfs = &pf->vfs; 135 struct ice_hw *hw = &pf->hw; 136 struct ice_vf *vf; 137 unsigned int bkt; 138 139 if (!ice_has_vfs(pf)) 140 return; 141 142 while (test_and_set_bit(ICE_VF_DIS, pf->state)) 143 usleep_range(1000, 2000); 144 145 /* Disable IOV before freeing resources. This lets any VF drivers 146 * running in the host get themselves cleaned up before we yank 147 * the carpet out from underneath their feet. 148 */ 149 if (!pci_vfs_assigned(pf->pdev)) 150 pci_disable_sriov(pf->pdev); 151 else 152 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); 153 154 mutex_lock(&vfs->table_lock); 155 156 ice_for_each_vf(pf, bkt, vf) { 157 mutex_lock(&vf->cfg_lock); 158 159 ice_eswitch_detach_vf(pf, vf); 160 ice_dis_vf_qs(vf); 161 ice_virt_free_irqs(pf, vf->first_vector_idx, vf->num_msix); 162 163 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { 164 /* disable VF qp mappings and set VF disable state */ 165 ice_dis_vf_mappings(vf); 166 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 167 ice_free_vf_res(vf); 168 } 169 170 if (!pci_vfs_assigned(pf->pdev)) { 171 u32 reg_idx, bit_idx; 172 173 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 174 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 175 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 176 } 177 178 mutex_unlock(&vf->cfg_lock); 179 } 180 181 vfs->num_qps_per = 0; 182 ice_free_vf_entries(pf); 183 184 mutex_unlock(&vfs->table_lock); 185 186 clear_bit(ICE_VF_DIS, pf->state); 187 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 188 } 189 190 /** 191 * ice_vf_vsi_setup - Set up a VF VSI 192 * @vf: VF to setup VSI for 193 * 194 * Returns pointer to the successfully allocated VSI struct on success, 195 * otherwise returns NULL on failure. 196 */ 197 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) 198 { 199 struct ice_vsi_cfg_params params = {}; 200 struct ice_pf *pf = vf->pf; 201 struct ice_vsi *vsi; 202 203 params.type = ICE_VSI_VF; 204 params.port_info = ice_vf_get_port_info(vf); 205 params.vf = vf; 206 params.flags = ICE_VSI_FLAG_INIT; 207 208 vsi = ice_vsi_setup(pf, ¶ms); 209 210 if (!vsi) { 211 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); 212 ice_vf_invalidate_vsi(vf); 213 return NULL; 214 } 215 216 vf->lan_vsi_idx = vsi->idx; 217 218 return vsi; 219 } 220 221 222 /** 223 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware 224 * @vf: VF to enable MSIX mappings for 225 * 226 * Some of the registers need to be indexed/configured using hardware global 227 * device values and other registers need 0-based values, which represent PF 228 * based values. 229 */ 230 static void ice_ena_vf_msix_mappings(struct ice_vf *vf) 231 { 232 int device_based_first_msix, device_based_last_msix; 233 int pf_based_first_msix, pf_based_last_msix, v; 234 struct ice_pf *pf = vf->pf; 235 int device_based_vf_id; 236 struct ice_hw *hw; 237 u32 reg; 238 239 hw = &pf->hw; 240 pf_based_first_msix = vf->first_vector_idx; 241 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1; 242 243 device_based_first_msix = pf_based_first_msix + 244 pf->hw.func_caps.common_cap.msix_vector_first_id; 245 device_based_last_msix = 246 (device_based_first_msix + vf->num_msix) - 1; 247 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; 248 249 reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) | 250 FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) | 251 VPINT_ALLOC_VALID_M; 252 wr32(hw, VPINT_ALLOC(vf->vf_id), reg); 253 254 reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) | 255 FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) | 256 VPINT_ALLOC_PCI_VALID_M; 257 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); 258 259 /* map the interrupts to its functions */ 260 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { 261 reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) | 262 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 263 wr32(hw, GLINT_VECT2FUNC(v), reg); 264 } 265 266 /* Map mailbox interrupt to VF MSI-X vector 0 */ 267 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); 268 } 269 270 /** 271 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF 272 * @vf: VF to enable the mappings for 273 * @max_txq: max Tx queues allowed on the VF's VSI 274 * @max_rxq: max Rx queues allowed on the VF's VSI 275 */ 276 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) 277 { 278 struct device *dev = ice_pf_to_dev(vf->pf); 279 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 280 struct ice_hw *hw = &vf->pf->hw; 281 u32 reg; 282 283 if (WARN_ON(!vsi)) 284 return; 285 286 /* set regardless of mapping mode */ 287 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); 288 289 /* VF Tx queues allocation */ 290 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { 291 /* set the VF PF Tx queue range 292 * VFNUMQ value should be set to (number of queues - 1). A value 293 * of 0 means 1 queue and a value of 255 means 256 queues 294 */ 295 reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) | 296 FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1); 297 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); 298 } else { 299 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 300 } 301 302 /* set regardless of mapping mode */ 303 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); 304 305 /* VF Rx queues allocation */ 306 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { 307 /* set the VF PF Rx queue range 308 * VFNUMQ value should be set to (number of queues - 1). A value 309 * of 0 means 1 queue and a value of 255 means 256 queues 310 */ 311 reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) | 312 FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1); 313 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); 314 } else { 315 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 316 } 317 } 318 319 /** 320 * ice_ena_vf_mappings - enable VF MSIX and queue mapping 321 * @vf: pointer to the VF structure 322 */ 323 static void ice_ena_vf_mappings(struct ice_vf *vf) 324 { 325 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 326 327 if (WARN_ON(!vsi)) 328 return; 329 330 ice_ena_vf_msix_mappings(vf); 331 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); 332 } 333 334 /** 335 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space 336 * @vf: VF to calculate the register index for 337 * @q_vector: a q_vector associated to the VF 338 */ 339 void ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) 340 { 341 if (!vf || !q_vector) 342 return; 343 344 /* always add one to account for the OICR being the first MSIX */ 345 q_vector->vf_reg_idx = q_vector->v_idx + ICE_NONQ_VECS_VF; 346 q_vector->reg_idx = vf->first_vector_idx + q_vector->vf_reg_idx; 347 } 348 349 /** 350 * ice_set_per_vf_res - check if vectors and queues are available 351 * @pf: pointer to the PF structure 352 * @num_vfs: the number of SR-IOV VFs being configured 353 * 354 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we 355 * get more vectors and can enable more queues per VF. Note that this does not 356 * grab any vectors from the SW pool already allocated. Also note, that all 357 * vector counts include one for each VF's miscellaneous interrupt vector 358 * (i.e. OICR). 359 * 360 * Minimum VFs - 2 vectors, 1 queue pair 361 * Small VFs - 5 vectors, 4 queue pairs 362 * Medium VFs - 17 vectors, 16 queue pairs 363 * 364 * Second, determine number of queue pairs per VF by starting with a pre-defined 365 * maximum each VF supports. If this is not possible, then we adjust based on 366 * queue pairs available on the device. 367 * 368 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used 369 * by each VF during VF initialization and reset. 370 */ 371 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) 372 { 373 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; 374 int msix_avail_per_vf, msix_avail_for_sriov; 375 struct device *dev = ice_pf_to_dev(pf); 376 377 lockdep_assert_held(&pf->vfs.table_lock); 378 379 if (!num_vfs) 380 return -EINVAL; 381 382 /* determine MSI-X resources per VF */ 383 msix_avail_for_sriov = pf->virt_irq_tracker.num_entries; 384 msix_avail_per_vf = msix_avail_for_sriov / num_vfs; 385 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { 386 num_msix_per_vf = ICE_NUM_VF_MSIX_MED; 387 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { 388 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; 389 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { 390 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; 391 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { 392 num_msix_per_vf = ICE_MIN_INTR_PER_VF; 393 } else { 394 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", 395 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, 396 num_vfs); 397 return -ENOSPC; 398 } 399 400 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 401 ICE_MAX_RSS_QS_PER_VF); 402 avail_qs = ice_get_avail_txq_count(pf) / num_vfs; 403 if (!avail_qs) 404 num_txq = 0; 405 else if (num_txq > avail_qs) 406 num_txq = rounddown_pow_of_two(avail_qs); 407 408 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 409 ICE_MAX_RSS_QS_PER_VF); 410 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; 411 if (!avail_qs) 412 num_rxq = 0; 413 else if (num_rxq > avail_qs) 414 num_rxq = rounddown_pow_of_two(avail_qs); 415 416 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { 417 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", 418 ICE_MIN_QS_PER_VF, num_vfs); 419 return -ENOSPC; 420 } 421 422 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ 423 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); 424 pf->vfs.num_msix_per = num_msix_per_vf; 425 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", 426 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); 427 428 return 0; 429 } 430 431 /** 432 * ice_init_vf_vsi_res - initialize/setup VF VSI resources 433 * @vf: VF to initialize/setup the VSI for 434 * 435 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the 436 * VF VSI's broadcast filter and is only used during initial VF creation. 437 */ 438 static int ice_init_vf_vsi_res(struct ice_vf *vf) 439 { 440 struct ice_pf *pf = vf->pf; 441 struct ice_vsi *vsi; 442 int err; 443 444 vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix); 445 if (vf->first_vector_idx < 0) 446 return -ENOMEM; 447 448 vsi = ice_vf_vsi_setup(vf); 449 if (!vsi) 450 return -ENOMEM; 451 452 err = ice_vf_init_host_cfg(vf, vsi); 453 if (err) 454 goto release_vsi; 455 456 return 0; 457 458 release_vsi: 459 ice_vf_vsi_release(vf); 460 return err; 461 } 462 463 /** 464 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV 465 * @pf: PF the VFs are associated with 466 */ 467 static int ice_start_vfs(struct ice_pf *pf) 468 { 469 struct ice_hw *hw = &pf->hw; 470 unsigned int bkt, it_cnt; 471 struct ice_vf *vf; 472 int retval; 473 474 lockdep_assert_held(&pf->vfs.table_lock); 475 476 it_cnt = 0; 477 ice_for_each_vf(pf, bkt, vf) { 478 vf->vf_ops->clear_reset_trigger(vf); 479 480 retval = ice_init_vf_vsi_res(vf); 481 if (retval) { 482 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", 483 vf->vf_id, retval); 484 goto teardown; 485 } 486 487 retval = ice_eswitch_attach_vf(pf, vf); 488 if (retval) { 489 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d", 490 vf->vf_id, retval); 491 ice_vf_vsi_release(vf); 492 goto teardown; 493 } 494 495 set_bit(ICE_VF_STATE_INIT, vf->vf_states); 496 ice_ena_vf_mappings(vf); 497 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 498 it_cnt++; 499 } 500 501 ice_flush(hw); 502 return 0; 503 504 teardown: 505 ice_for_each_vf(pf, bkt, vf) { 506 if (it_cnt == 0) 507 break; 508 509 ice_dis_vf_mappings(vf); 510 ice_vf_vsi_release(vf); 511 it_cnt--; 512 } 513 514 return retval; 515 } 516 517 /** 518 * ice_sriov_free_vf - Free VF memory after all references are dropped 519 * @vf: pointer to VF to free 520 * 521 * Called by ice_put_vf through ice_release_vf once the last reference to a VF 522 * structure has been dropped. 523 */ 524 static void ice_sriov_free_vf(struct ice_vf *vf) 525 { 526 mutex_destroy(&vf->cfg_lock); 527 528 kfree_rcu(vf, rcu); 529 } 530 531 /** 532 * ice_sriov_clear_reset_state - clears VF Reset status register 533 * @vf: the vf to configure 534 */ 535 static void ice_sriov_clear_reset_state(struct ice_vf *vf) 536 { 537 struct ice_hw *hw = &vf->pf->hw; 538 539 /* Clear the reset status register so that VF immediately sees that 540 * the device is resetting, even if hardware hasn't yet gotten around 541 * to clearing VFGEN_RSTAT for us. 542 */ 543 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); 544 } 545 546 /** 547 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers 548 * @vf: the vf to configure 549 */ 550 static void ice_sriov_clear_mbx_register(struct ice_vf *vf) 551 { 552 struct ice_pf *pf = vf->pf; 553 554 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); 555 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); 556 } 557 558 /** 559 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF 560 * @vf: pointer to VF structure 561 * @is_vflr: true if reset occurred due to VFLR 562 * 563 * Trigger and cleanup after a VF reset for a SR-IOV VF. 564 */ 565 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) 566 { 567 struct ice_pf *pf = vf->pf; 568 u32 reg, reg_idx, bit_idx; 569 unsigned int vf_abs_id, i; 570 struct device *dev; 571 struct ice_hw *hw; 572 573 dev = ice_pf_to_dev(pf); 574 hw = &pf->hw; 575 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; 576 577 /* In the case of a VFLR, HW has already reset the VF and we just need 578 * to clean up. Otherwise we must first trigger the reset using the 579 * VFRTRIG register. 580 */ 581 if (!is_vflr) { 582 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 583 reg |= VPGEN_VFRTRIG_VFSWR_M; 584 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 585 } 586 587 /* clear the VFLR bit in GLGEN_VFLRSTAT */ 588 reg_idx = (vf_abs_id) / 32; 589 bit_idx = (vf_abs_id) % 32; 590 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 591 ice_flush(hw); 592 593 wr32(hw, PF_PCI_CIAA, 594 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); 595 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { 596 reg = rd32(hw, PF_PCI_CIAD); 597 /* no transactions pending so stop polling */ 598 if ((reg & VF_TRANS_PENDING_M) == 0) 599 break; 600 601 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); 602 udelay(ICE_PCI_CIAD_WAIT_DELAY_US); 603 } 604 } 605 606 /** 607 * ice_sriov_poll_reset_status - poll SRIOV VF reset status 608 * @vf: pointer to VF structure 609 * 610 * Returns true when reset is successful, else returns false 611 */ 612 static bool ice_sriov_poll_reset_status(struct ice_vf *vf) 613 { 614 struct ice_pf *pf = vf->pf; 615 unsigned int i; 616 u32 reg; 617 618 for (i = 0; i < 10; i++) { 619 /* VF reset requires driver to first reset the VF and then 620 * poll the status register to make sure that the reset 621 * completed successfully. 622 */ 623 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); 624 if (reg & VPGEN_VFRSTAT_VFRD_M) 625 return true; 626 627 /* only sleep if the reset is not done */ 628 usleep_range(10, 20); 629 } 630 return false; 631 } 632 633 /** 634 * ice_sriov_clear_reset_trigger - enable VF to access hardware 635 * @vf: VF to enabled hardware access for 636 */ 637 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) 638 { 639 struct ice_hw *hw = &vf->pf->hw; 640 u32 reg; 641 642 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 643 reg &= ~VPGEN_VFRTRIG_VFSWR_M; 644 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 645 ice_flush(hw); 646 } 647 648 /** 649 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt 650 * @vf: VF to perform tasks on 651 */ 652 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) 653 { 654 ice_ena_vf_mappings(vf); 655 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 656 } 657 658 static const struct ice_vf_ops ice_sriov_vf_ops = { 659 .reset_type = ICE_VF_RESET, 660 .free = ice_sriov_free_vf, 661 .clear_reset_state = ice_sriov_clear_reset_state, 662 .clear_mbx_register = ice_sriov_clear_mbx_register, 663 .trigger_reset_register = ice_sriov_trigger_reset_register, 664 .poll_reset_status = ice_sriov_poll_reset_status, 665 .clear_reset_trigger = ice_sriov_clear_reset_trigger, 666 .irq_close = NULL, 667 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, 668 }; 669 670 /** 671 * ice_create_vf_entries - Allocate and insert VF entries 672 * @pf: pointer to the PF structure 673 * @num_vfs: the number of VFs to allocate 674 * 675 * Allocate new VF entries and insert them into the hash table. Set some 676 * basic default fields for initializing the new VFs. 677 * 678 * After this function exits, the hash table will have num_vfs entries 679 * inserted. 680 * 681 * Returns 0 on success or an integer error code on failure. 682 */ 683 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) 684 { 685 struct pci_dev *pdev = pf->pdev; 686 struct ice_vfs *vfs = &pf->vfs; 687 struct pci_dev *vfdev = NULL; 688 struct ice_vf *vf; 689 u16 vf_pdev_id; 690 int err, pos; 691 692 lockdep_assert_held(&vfs->table_lock); 693 694 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 695 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id); 696 697 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) { 698 vf = kzalloc(sizeof(*vf), GFP_KERNEL); 699 if (!vf) { 700 err = -ENOMEM; 701 goto err_free_entries; 702 } 703 kref_init(&vf->refcnt); 704 705 vf->pf = pf; 706 vf->vf_id = vf_id; 707 708 /* set sriov vf ops for VFs created during SRIOV flow */ 709 vf->vf_ops = &ice_sriov_vf_ops; 710 711 ice_initialize_vf_entry(vf); 712 713 do { 714 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev); 715 } while (vfdev && vfdev->physfn != pdev); 716 vf->vfdev = vfdev; 717 vf->vf_sw_id = pf->first_sw; 718 719 pci_dev_get(vfdev); 720 721 hash_add_rcu(vfs->table, &vf->entry, vf_id); 722 } 723 724 /* Decrement of refcount done by pci_get_device() inside the loop does 725 * not touch the last iteration's vfdev, so it has to be done manually 726 * to balance pci_dev_get() added within the loop. 727 */ 728 pci_dev_put(vfdev); 729 730 return 0; 731 732 err_free_entries: 733 ice_free_vf_entries(pf); 734 return err; 735 } 736 737 /** 738 * ice_ena_vfs - enable VFs so they are ready to be used 739 * @pf: pointer to the PF structure 740 * @num_vfs: number of VFs to enable 741 */ 742 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) 743 { 744 struct device *dev = ice_pf_to_dev(pf); 745 struct ice_hw *hw = &pf->hw; 746 int ret; 747 748 /* Disable global interrupt 0 so we don't try to handle the VFLR. */ 749 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 750 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 751 set_bit(ICE_OICR_INTR_DIS, pf->state); 752 ice_flush(hw); 753 754 ret = pci_enable_sriov(pf->pdev, num_vfs); 755 if (ret) 756 goto err_unroll_intr; 757 758 mutex_lock(&pf->vfs.table_lock); 759 760 ret = ice_set_per_vf_res(pf, num_vfs); 761 if (ret) { 762 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", 763 num_vfs, ret); 764 goto err_unroll_sriov; 765 } 766 767 ret = ice_create_vf_entries(pf, num_vfs); 768 if (ret) { 769 dev_err(dev, "Failed to allocate VF entries for %d VFs\n", 770 num_vfs); 771 goto err_unroll_sriov; 772 } 773 774 ret = ice_start_vfs(pf); 775 if (ret) { 776 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); 777 ret = -EAGAIN; 778 goto err_unroll_vf_entries; 779 } 780 781 clear_bit(ICE_VF_DIS, pf->state); 782 783 /* rearm global interrupts */ 784 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) 785 ice_irq_dynamic_ena(hw, NULL, NULL); 786 787 mutex_unlock(&pf->vfs.table_lock); 788 789 return 0; 790 791 err_unroll_vf_entries: 792 ice_free_vf_entries(pf); 793 err_unroll_sriov: 794 mutex_unlock(&pf->vfs.table_lock); 795 pci_disable_sriov(pf->pdev); 796 err_unroll_intr: 797 /* rearm interrupts here */ 798 ice_irq_dynamic_ena(hw, NULL, NULL); 799 clear_bit(ICE_OICR_INTR_DIS, pf->state); 800 return ret; 801 } 802 803 /** 804 * ice_pci_sriov_ena - Enable or change number of VFs 805 * @pf: pointer to the PF structure 806 * @num_vfs: number of VFs to allocate 807 * 808 * Returns 0 on success and negative on failure 809 */ 810 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) 811 { 812 struct device *dev = ice_pf_to_dev(pf); 813 int err; 814 815 if (!num_vfs) { 816 ice_free_vfs(pf); 817 return 0; 818 } 819 820 if (num_vfs > pf->vfs.num_supported) { 821 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", 822 num_vfs, pf->vfs.num_supported); 823 return -EOPNOTSUPP; 824 } 825 826 dev_info(dev, "Enabling %d VFs\n", num_vfs); 827 err = ice_ena_vfs(pf, num_vfs); 828 if (err) { 829 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 830 return err; 831 } 832 833 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 834 return 0; 835 } 836 837 /** 838 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks 839 * @pf: PF to enabled SR-IOV on 840 */ 841 static int ice_check_sriov_allowed(struct ice_pf *pf) 842 { 843 struct device *dev = ice_pf_to_dev(pf); 844 845 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { 846 dev_err(dev, "This device is not capable of SR-IOV\n"); 847 return -EOPNOTSUPP; 848 } 849 850 if (ice_is_safe_mode(pf)) { 851 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); 852 return -EOPNOTSUPP; 853 } 854 855 if (!ice_pf_state_is_nominal(pf)) { 856 dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); 857 return -EBUSY; 858 } 859 860 return 0; 861 } 862 863 /** 864 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs 865 * @pdev: pointer to pci_dev struct 866 * 867 * The function is called via sysfs ops 868 */ 869 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev) 870 { 871 struct ice_pf *pf = pci_get_drvdata(pdev); 872 873 return pf->virt_irq_tracker.num_entries; 874 } 875 876 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id) 877 { 878 u16 vf_ids[ICE_MAX_SRIOV_VFS]; 879 struct ice_vf *tmp_vf; 880 int to_remap = 0, bkt; 881 882 /* For better irqs usage try to remap irqs of VFs 883 * that aren't running yet 884 */ 885 ice_for_each_vf(pf, bkt, tmp_vf) { 886 /* skip VF which is changing the number of MSI-X */ 887 if (restricted_id == tmp_vf->vf_id || 888 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states)) 889 continue; 890 891 ice_dis_vf_mappings(tmp_vf); 892 ice_virt_free_irqs(pf, tmp_vf->first_vector_idx, 893 tmp_vf->num_msix); 894 895 vf_ids[to_remap] = tmp_vf->vf_id; 896 to_remap += 1; 897 } 898 899 for (int i = 0; i < to_remap; i++) { 900 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]); 901 if (!tmp_vf) 902 continue; 903 904 tmp_vf->first_vector_idx = 905 ice_virt_get_irqs(pf, tmp_vf->num_msix); 906 /* there is no need to rebuild VSI as we are only changing the 907 * vector indexes not amount of MSI-X or queues 908 */ 909 ice_ena_vf_mappings(tmp_vf); 910 ice_put_vf(tmp_vf); 911 } 912 } 913 914 /** 915 * ice_sriov_set_msix_vec_count 916 * @vf_dev: pointer to pci_dev struct of VF device 917 * @msix_vec_count: new value for MSI-X amount on this VF 918 * 919 * Set requested MSI-X, queues and registers for @vf_dev. 920 * 921 * First do some sanity checks like if there are any VFs, if the new value 922 * is correct etc. Then disable old mapping (MSI-X and queues registers), change 923 * MSI-X and queues, rebuild VSI and enable new mapping. 924 * 925 * If it is possible (driver not binded to VF) try to remap also other VFs to 926 * linearize irqs register usage. 927 */ 928 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count) 929 { 930 struct pci_dev *pdev = pci_physfn(vf_dev); 931 struct ice_pf *pf = pci_get_drvdata(pdev); 932 u16 prev_msix, prev_queues, queues; 933 bool needs_rebuild = false; 934 struct ice_vsi *vsi; 935 struct ice_vf *vf; 936 int id; 937 938 if (!ice_get_num_vfs(pf)) 939 return -ENOENT; 940 941 if (!msix_vec_count) 942 return 0; 943 944 queues = msix_vec_count; 945 /* add 1 MSI-X for OICR */ 946 msix_vec_count += 1; 947 948 if (queues > min(ice_get_avail_txq_count(pf), 949 ice_get_avail_rxq_count(pf))) 950 return -EINVAL; 951 952 if (msix_vec_count < ICE_MIN_INTR_PER_VF) 953 return -EINVAL; 954 955 /* Transition of PCI VF function number to function_id */ 956 for (id = 0; id < pci_num_vf(pdev); id++) { 957 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id)) 958 break; 959 } 960 961 if (id == pci_num_vf(pdev)) 962 return -ENOENT; 963 964 vf = ice_get_vf_by_id(pf, id); 965 966 if (!vf) 967 return -ENOENT; 968 969 vsi = ice_get_vf_vsi(vf); 970 if (!vsi) { 971 ice_put_vf(vf); 972 return -ENOENT; 973 } 974 975 prev_msix = vf->num_msix; 976 prev_queues = vf->num_vf_qs; 977 978 ice_dis_vf_mappings(vf); 979 ice_virt_free_irqs(pf, vf->first_vector_idx, vf->num_msix); 980 981 /* Remap all VFs beside the one is now configured */ 982 ice_sriov_remap_vectors(pf, vf->vf_id); 983 984 vf->num_msix = msix_vec_count; 985 vf->num_vf_qs = queues; 986 vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix); 987 if (vf->first_vector_idx < 0) 988 goto unroll; 989 990 vsi->req_txq = queues; 991 vsi->req_rxq = queues; 992 993 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 994 /* Try to rebuild with previous values */ 995 needs_rebuild = true; 996 goto unroll; 997 } 998 999 dev_info(ice_pf_to_dev(pf), 1000 "Changing VF %d resources to %d vectors and %d queues\n", 1001 vf->vf_id, vf->num_msix, vf->num_vf_qs); 1002 1003 ice_ena_vf_mappings(vf); 1004 ice_put_vf(vf); 1005 1006 return 0; 1007 1008 unroll: 1009 dev_info(ice_pf_to_dev(pf), 1010 "Can't set %d vectors on VF %d, falling back to %d\n", 1011 vf->num_msix, vf->vf_id, prev_msix); 1012 1013 vf->num_msix = prev_msix; 1014 vf->num_vf_qs = prev_queues; 1015 1016 vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix); 1017 if (vf->first_vector_idx < 0) { 1018 ice_put_vf(vf); 1019 return -EINVAL; 1020 } 1021 1022 if (needs_rebuild) { 1023 vsi->req_txq = prev_queues; 1024 vsi->req_rxq = prev_queues; 1025 1026 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 1027 } 1028 1029 ice_ena_vf_mappings(vf); 1030 ice_put_vf(vf); 1031 1032 return -EINVAL; 1033 } 1034 1035 /** 1036 * ice_sriov_configure - Enable or change number of VFs via sysfs 1037 * @pdev: pointer to a pci_dev structure 1038 * @num_vfs: number of VFs to allocate or 0 to free VFs 1039 * 1040 * This function is called when the user updates the number of VFs in sysfs. On 1041 * success return whatever num_vfs was set to by the caller. Return negative on 1042 * failure. 1043 */ 1044 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) 1045 { 1046 struct ice_pf *pf = pci_get_drvdata(pdev); 1047 struct device *dev = ice_pf_to_dev(pf); 1048 int err; 1049 1050 err = ice_check_sriov_allowed(pf); 1051 if (err) 1052 return err; 1053 1054 if (!num_vfs) { 1055 if (!pci_vfs_assigned(pdev)) { 1056 ice_free_vfs(pf); 1057 return 0; 1058 } 1059 1060 dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); 1061 return -EBUSY; 1062 } 1063 1064 err = ice_pci_sriov_ena(pf, num_vfs); 1065 if (err) 1066 return err; 1067 1068 return num_vfs; 1069 } 1070 1071 /** 1072 * ice_process_vflr_event - Free VF resources via IRQ calls 1073 * @pf: pointer to the PF structure 1074 * 1075 * called from the VFLR IRQ handler to 1076 * free up VF resources and state variables 1077 */ 1078 void ice_process_vflr_event(struct ice_pf *pf) 1079 { 1080 struct ice_hw *hw = &pf->hw; 1081 struct ice_vf *vf; 1082 unsigned int bkt; 1083 u32 reg; 1084 1085 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 1086 !ice_has_vfs(pf)) 1087 return; 1088 1089 mutex_lock(&pf->vfs.table_lock); 1090 ice_for_each_vf(pf, bkt, vf) { 1091 u32 reg_idx, bit_idx; 1092 1093 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 1094 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 1095 /* read GLGEN_VFLRSTAT register to find out the flr VFs */ 1096 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); 1097 if (reg & BIT(bit_idx)) 1098 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ 1099 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 1100 } 1101 mutex_unlock(&pf->vfs.table_lock); 1102 } 1103 1104 /** 1105 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in 1106 * @pf: PF used to index all VFs 1107 * @pfq: queue index relative to the PF's function space 1108 * 1109 * If no VF is found who owns the pfq then return NULL, otherwise return a 1110 * pointer to the VF who owns the pfq 1111 * 1112 * If this function returns non-NULL, it acquires a reference count of the VF 1113 * structure. The caller is responsible for calling ice_put_vf() to drop this 1114 * reference. 1115 */ 1116 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) 1117 { 1118 struct ice_vf *vf; 1119 unsigned int bkt; 1120 1121 rcu_read_lock(); 1122 ice_for_each_vf_rcu(pf, bkt, vf) { 1123 struct ice_vsi *vsi; 1124 u16 rxq_idx; 1125 1126 vsi = ice_get_vf_vsi(vf); 1127 if (!vsi) 1128 continue; 1129 1130 ice_for_each_rxq(vsi, rxq_idx) 1131 if (vsi->rxq_map[rxq_idx] == pfq) { 1132 struct ice_vf *found; 1133 1134 if (kref_get_unless_zero(&vf->refcnt)) 1135 found = vf; 1136 else 1137 found = NULL; 1138 rcu_read_unlock(); 1139 return found; 1140 } 1141 } 1142 rcu_read_unlock(); 1143 1144 return NULL; 1145 } 1146 1147 /** 1148 * ice_globalq_to_pfq - convert from global queue index to PF space queue index 1149 * @pf: PF used for conversion 1150 * @globalq: global queue index used to convert to PF space queue index 1151 */ 1152 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) 1153 { 1154 return globalq - pf->hw.func_caps.common_cap.rxq_first_id; 1155 } 1156 1157 /** 1158 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF 1159 * @pf: PF that the LAN overflow event happened on 1160 * @event: structure holding the event information for the LAN overflow event 1161 * 1162 * Determine if the LAN overflow event was caused by a VF queue. If it was not 1163 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a 1164 * reset on the offending VF. 1165 */ 1166 void 1167 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1168 { 1169 u32 gldcb_rtctq, queue; 1170 struct ice_vf *vf; 1171 1172 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); 1173 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); 1174 1175 /* event returns device global Rx queue number */ 1176 queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq); 1177 1178 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); 1179 if (!vf) 1180 return; 1181 1182 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1183 ice_put_vf(vf); 1184 } 1185 1186 /** 1187 * ice_set_vf_spoofchk 1188 * @netdev: network interface device structure 1189 * @vf_id: VF identifier 1190 * @ena: flag to enable or disable feature 1191 * 1192 * Enable or disable VF spoof checking 1193 */ 1194 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) 1195 { 1196 struct ice_netdev_priv *np = netdev_priv(netdev); 1197 struct ice_pf *pf = np->vsi->back; 1198 struct ice_vsi *vf_vsi; 1199 struct device *dev; 1200 struct ice_vf *vf; 1201 int ret; 1202 1203 dev = ice_pf_to_dev(pf); 1204 1205 vf = ice_get_vf_by_id(pf, vf_id); 1206 if (!vf) 1207 return -EINVAL; 1208 1209 ret = ice_check_vf_ready_for_cfg(vf); 1210 if (ret) 1211 goto out_put_vf; 1212 1213 vf_vsi = ice_get_vf_vsi(vf); 1214 if (!vf_vsi) { 1215 netdev_err(netdev, "VSI %d for VF %d is null\n", 1216 vf->lan_vsi_idx, vf->vf_id); 1217 ret = -EINVAL; 1218 goto out_put_vf; 1219 } 1220 1221 if (vf_vsi->type != ICE_VSI_VF) { 1222 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", 1223 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); 1224 ret = -ENODEV; 1225 goto out_put_vf; 1226 } 1227 1228 if (ena == vf->spoofchk) { 1229 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); 1230 ret = 0; 1231 goto out_put_vf; 1232 } 1233 1234 ret = ice_vsi_apply_spoofchk(vf_vsi, ena); 1235 if (ret) 1236 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", 1237 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); 1238 else 1239 vf->spoofchk = ena; 1240 1241 out_put_vf: 1242 ice_put_vf(vf); 1243 return ret; 1244 } 1245 1246 /** 1247 * ice_get_vf_cfg 1248 * @netdev: network interface device structure 1249 * @vf_id: VF identifier 1250 * @ivi: VF configuration structure 1251 * 1252 * return VF configuration 1253 */ 1254 int 1255 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) 1256 { 1257 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1258 struct ice_vf *vf; 1259 int ret; 1260 1261 vf = ice_get_vf_by_id(pf, vf_id); 1262 if (!vf) 1263 return -EINVAL; 1264 1265 ret = ice_check_vf_ready_for_cfg(vf); 1266 if (ret) 1267 goto out_put_vf; 1268 1269 ivi->vf = vf_id; 1270 ether_addr_copy(ivi->mac, vf->hw_lan_addr); 1271 1272 /* VF configuration for VLAN and applicable QoS */ 1273 ivi->vlan = ice_vf_get_port_vlan_id(vf); 1274 ivi->qos = ice_vf_get_port_vlan_prio(vf); 1275 if (ice_vf_is_port_vlan_ena(vf)) 1276 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); 1277 1278 ivi->trusted = vf->trusted; 1279 ivi->spoofchk = vf->spoofchk; 1280 if (!vf->link_forced) 1281 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 1282 else if (vf->link_up) 1283 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 1284 else 1285 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 1286 ivi->max_tx_rate = vf->max_tx_rate; 1287 ivi->min_tx_rate = vf->min_tx_rate; 1288 1289 out_put_vf: 1290 ice_put_vf(vf); 1291 return ret; 1292 } 1293 1294 /** 1295 * __ice_set_vf_mac - program VF MAC address 1296 * @pf: PF to be configure 1297 * @vf_id: VF identifier 1298 * @mac: MAC address 1299 * 1300 * program VF MAC address 1301 * Return: zero on success or an error code on failure 1302 */ 1303 int __ice_set_vf_mac(struct ice_pf *pf, u16 vf_id, const u8 *mac) 1304 { 1305 struct device *dev; 1306 struct ice_vf *vf; 1307 int ret; 1308 1309 dev = ice_pf_to_dev(pf); 1310 if (is_multicast_ether_addr(mac)) { 1311 dev_err(dev, "%pM not a valid unicast address\n", mac); 1312 return -EINVAL; 1313 } 1314 1315 vf = ice_get_vf_by_id(pf, vf_id); 1316 if (!vf) 1317 return -EINVAL; 1318 1319 /* nothing left to do, unicast MAC already set */ 1320 if (ether_addr_equal(vf->dev_lan_addr, mac) && 1321 ether_addr_equal(vf->hw_lan_addr, mac)) { 1322 ret = 0; 1323 goto out_put_vf; 1324 } 1325 1326 ret = ice_check_vf_ready_for_cfg(vf); 1327 if (ret) 1328 goto out_put_vf; 1329 1330 mutex_lock(&vf->cfg_lock); 1331 1332 /* VF is notified of its new MAC via the PF's response to the 1333 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset 1334 */ 1335 ether_addr_copy(vf->dev_lan_addr, mac); 1336 ether_addr_copy(vf->hw_lan_addr, mac); 1337 if (is_zero_ether_addr(mac)) { 1338 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ 1339 vf->pf_set_mac = false; 1340 dev_info(dev, "Removing MAC on VF %d. VF driver will be reinitialized\n", 1341 vf->vf_id); 1342 } else { 1343 /* PF will add MAC rule for the VF */ 1344 vf->pf_set_mac = true; 1345 dev_info(dev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", 1346 mac, vf_id); 1347 } 1348 1349 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1350 mutex_unlock(&vf->cfg_lock); 1351 1352 out_put_vf: 1353 ice_put_vf(vf); 1354 return ret; 1355 } 1356 1357 /** 1358 * ice_set_vf_mac - .ndo_set_vf_mac handler 1359 * @netdev: network interface device structure 1360 * @vf_id: VF identifier 1361 * @mac: MAC address 1362 * 1363 * program VF MAC address 1364 * Return: zero on success or an error code on failure 1365 */ 1366 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 1367 { 1368 return __ice_set_vf_mac(ice_netdev_to_pf(netdev), vf_id, mac); 1369 } 1370 1371 /** 1372 * ice_set_vf_trust 1373 * @netdev: network interface device structure 1374 * @vf_id: VF identifier 1375 * @trusted: Boolean value to enable/disable trusted VF 1376 * 1377 * Enable or disable a given VF as trusted 1378 */ 1379 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) 1380 { 1381 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1382 struct ice_vf *vf; 1383 int ret; 1384 1385 vf = ice_get_vf_by_id(pf, vf_id); 1386 if (!vf) 1387 return -EINVAL; 1388 1389 if (ice_is_eswitch_mode_switchdev(pf)) { 1390 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); 1391 return -EOPNOTSUPP; 1392 } 1393 1394 ret = ice_check_vf_ready_for_cfg(vf); 1395 if (ret) 1396 goto out_put_vf; 1397 1398 /* Check if already trusted */ 1399 if (trusted == vf->trusted) { 1400 ret = 0; 1401 goto out_put_vf; 1402 } 1403 1404 mutex_lock(&vf->cfg_lock); 1405 1406 while (!trusted && vf->num_mac_lldp) 1407 ice_vf_update_mac_lldp_num(vf, ice_get_vf_vsi(vf), false); 1408 1409 vf->trusted = trusted; 1410 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1411 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", 1412 vf_id, trusted ? "" : "un"); 1413 1414 mutex_unlock(&vf->cfg_lock); 1415 1416 out_put_vf: 1417 ice_put_vf(vf); 1418 return ret; 1419 } 1420 1421 /** 1422 * ice_set_vf_link_state 1423 * @netdev: network interface device structure 1424 * @vf_id: VF identifier 1425 * @link_state: required link state 1426 * 1427 * Set VF's link state, irrespective of physical link state status 1428 */ 1429 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) 1430 { 1431 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1432 struct ice_vf *vf; 1433 int ret; 1434 1435 vf = ice_get_vf_by_id(pf, vf_id); 1436 if (!vf) 1437 return -EINVAL; 1438 1439 ret = ice_check_vf_ready_for_cfg(vf); 1440 if (ret) 1441 goto out_put_vf; 1442 1443 switch (link_state) { 1444 case IFLA_VF_LINK_STATE_AUTO: 1445 vf->link_forced = false; 1446 break; 1447 case IFLA_VF_LINK_STATE_ENABLE: 1448 vf->link_forced = true; 1449 vf->link_up = true; 1450 break; 1451 case IFLA_VF_LINK_STATE_DISABLE: 1452 vf->link_forced = true; 1453 vf->link_up = false; 1454 break; 1455 default: 1456 ret = -EINVAL; 1457 goto out_put_vf; 1458 } 1459 1460 ice_vc_notify_vf_link_state(vf); 1461 1462 out_put_vf: 1463 ice_put_vf(vf); 1464 return ret; 1465 } 1466 1467 /** 1468 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs 1469 * @pf: PF associated with VFs 1470 */ 1471 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) 1472 { 1473 struct ice_vf *vf; 1474 unsigned int bkt; 1475 int rate = 0; 1476 1477 rcu_read_lock(); 1478 ice_for_each_vf_rcu(pf, bkt, vf) 1479 rate += vf->min_tx_rate; 1480 rcu_read_unlock(); 1481 1482 return rate; 1483 } 1484 1485 /** 1486 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription 1487 * @vf: VF trying to configure min_tx_rate 1488 * @min_tx_rate: min Tx rate in Mbps 1489 * 1490 * Check if the min_tx_rate being passed in will cause oversubscription of total 1491 * min_tx_rate based on the current link speed and all other VFs configured 1492 * min_tx_rate 1493 * 1494 * Return true if the passed min_tx_rate would cause oversubscription, else 1495 * return false 1496 */ 1497 static bool 1498 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) 1499 { 1500 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 1501 int all_vfs_min_tx_rate; 1502 int link_speed_mbps; 1503 1504 if (WARN_ON(!vsi)) 1505 return false; 1506 1507 link_speed_mbps = ice_get_link_speed_mbps(vsi); 1508 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); 1509 1510 /* this VF's previous rate is being overwritten */ 1511 all_vfs_min_tx_rate -= vf->min_tx_rate; 1512 1513 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { 1514 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", 1515 min_tx_rate, vf->vf_id, 1516 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, 1517 link_speed_mbps); 1518 return true; 1519 } 1520 1521 return false; 1522 } 1523 1524 /** 1525 * ice_set_vf_bw - set min/max VF bandwidth 1526 * @netdev: network interface device structure 1527 * @vf_id: VF identifier 1528 * @min_tx_rate: Minimum Tx rate in Mbps 1529 * @max_tx_rate: Maximum Tx rate in Mbps 1530 */ 1531 int 1532 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, 1533 int max_tx_rate) 1534 { 1535 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1536 struct ice_vsi *vsi; 1537 struct device *dev; 1538 struct ice_vf *vf; 1539 int ret; 1540 1541 dev = ice_pf_to_dev(pf); 1542 1543 vf = ice_get_vf_by_id(pf, vf_id); 1544 if (!vf) 1545 return -EINVAL; 1546 1547 ret = ice_check_vf_ready_for_cfg(vf); 1548 if (ret) 1549 goto out_put_vf; 1550 1551 vsi = ice_get_vf_vsi(vf); 1552 if (!vsi) { 1553 ret = -EINVAL; 1554 goto out_put_vf; 1555 } 1556 1557 if (min_tx_rate && ice_is_dcb_active(pf)) { 1558 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); 1559 ret = -EOPNOTSUPP; 1560 goto out_put_vf; 1561 } 1562 1563 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { 1564 ret = -EINVAL; 1565 goto out_put_vf; 1566 } 1567 1568 if (vf->min_tx_rate != (unsigned int)min_tx_rate) { 1569 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); 1570 if (ret) { 1571 dev_err(dev, "Unable to set min-tx-rate for VF %d\n", 1572 vf->vf_id); 1573 goto out_put_vf; 1574 } 1575 1576 vf->min_tx_rate = min_tx_rate; 1577 } 1578 1579 if (vf->max_tx_rate != (unsigned int)max_tx_rate) { 1580 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); 1581 if (ret) { 1582 dev_err(dev, "Unable to set max-tx-rate for VF %d\n", 1583 vf->vf_id); 1584 goto out_put_vf; 1585 } 1586 1587 vf->max_tx_rate = max_tx_rate; 1588 } 1589 1590 out_put_vf: 1591 ice_put_vf(vf); 1592 return ret; 1593 } 1594 1595 /** 1596 * ice_get_vf_stats - populate some stats for the VF 1597 * @netdev: the netdev of the PF 1598 * @vf_id: the host OS identifier (0-255) 1599 * @vf_stats: pointer to the OS memory to be initialized 1600 */ 1601 int ice_get_vf_stats(struct net_device *netdev, int vf_id, 1602 struct ifla_vf_stats *vf_stats) 1603 { 1604 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1605 struct ice_eth_stats *stats; 1606 struct ice_vsi *vsi; 1607 struct ice_vf *vf; 1608 int ret; 1609 1610 vf = ice_get_vf_by_id(pf, vf_id); 1611 if (!vf) 1612 return -EINVAL; 1613 1614 ret = ice_check_vf_ready_for_cfg(vf); 1615 if (ret) 1616 goto out_put_vf; 1617 1618 vsi = ice_get_vf_vsi(vf); 1619 if (!vsi) { 1620 ret = -EINVAL; 1621 goto out_put_vf; 1622 } 1623 1624 ice_update_eth_stats(vsi); 1625 stats = &vsi->eth_stats; 1626 1627 memset(vf_stats, 0, sizeof(*vf_stats)); 1628 1629 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + 1630 stats->rx_multicast; 1631 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + 1632 stats->tx_multicast; 1633 vf_stats->rx_bytes = stats->rx_bytes; 1634 vf_stats->tx_bytes = stats->tx_bytes; 1635 vf_stats->broadcast = stats->rx_broadcast; 1636 vf_stats->multicast = stats->rx_multicast; 1637 vf_stats->rx_dropped = stats->rx_discards; 1638 vf_stats->tx_dropped = stats->tx_discards; 1639 1640 out_put_vf: 1641 ice_put_vf(vf); 1642 return ret; 1643 } 1644 1645 /** 1646 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported 1647 * @hw: hardware structure used to check the VLAN mode 1648 * @vlan_proto: VLAN TPID being checked 1649 * 1650 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q 1651 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN 1652 * Mode (SVM), then only ETH_P_8021Q is supported. 1653 */ 1654 static bool 1655 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) 1656 { 1657 bool is_supported = false; 1658 1659 switch (vlan_proto) { 1660 case ETH_P_8021Q: 1661 is_supported = true; 1662 break; 1663 case ETH_P_8021AD: 1664 if (ice_is_dvm_ena(hw)) 1665 is_supported = true; 1666 break; 1667 } 1668 1669 return is_supported; 1670 } 1671 1672 /** 1673 * ice_set_vf_port_vlan 1674 * @netdev: network interface device structure 1675 * @vf_id: VF identifier 1676 * @vlan_id: VLAN ID being set 1677 * @qos: priority setting 1678 * @vlan_proto: VLAN protocol 1679 * 1680 * program VF Port VLAN ID and/or QoS 1681 */ 1682 int 1683 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, 1684 __be16 vlan_proto) 1685 { 1686 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1687 u16 local_vlan_proto = ntohs(vlan_proto); 1688 struct device *dev; 1689 struct ice_vf *vf; 1690 int ret; 1691 1692 dev = ice_pf_to_dev(pf); 1693 1694 if (vlan_id >= VLAN_N_VID || qos > 7) { 1695 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", 1696 vf_id, vlan_id, qos); 1697 return -EINVAL; 1698 } 1699 1700 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { 1701 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", 1702 local_vlan_proto); 1703 return -EPROTONOSUPPORT; 1704 } 1705 1706 vf = ice_get_vf_by_id(pf, vf_id); 1707 if (!vf) 1708 return -EINVAL; 1709 1710 ret = ice_check_vf_ready_for_cfg(vf); 1711 if (ret) 1712 goto out_put_vf; 1713 1714 if (ice_vf_get_port_vlan_prio(vf) == qos && 1715 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && 1716 ice_vf_get_port_vlan_id(vf) == vlan_id) { 1717 /* duplicate request, so just return success */ 1718 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", 1719 vlan_id, qos, local_vlan_proto); 1720 ret = 0; 1721 goto out_put_vf; 1722 } 1723 1724 mutex_lock(&vf->cfg_lock); 1725 1726 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); 1727 if (ice_vf_is_port_vlan_ena(vf)) 1728 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", 1729 vlan_id, qos, local_vlan_proto, vf_id); 1730 else 1731 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); 1732 1733 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1734 mutex_unlock(&vf->cfg_lock); 1735 1736 out_put_vf: 1737 ice_put_vf(vf); 1738 return ret; 1739 } 1740 1741 /** 1742 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event 1743 * @vf: pointer to the VF structure 1744 */ 1745 void ice_print_vf_rx_mdd_event(struct ice_vf *vf) 1746 { 1747 struct ice_pf *pf = vf->pf; 1748 struct device *dev; 1749 1750 dev = ice_pf_to_dev(pf); 1751 1752 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1753 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, 1754 vf->dev_lan_addr, 1755 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1756 ? "on" : "off"); 1757 } 1758 1759 /** 1760 * ice_print_vf_tx_mdd_event - print VF Tx malicious driver detect event 1761 * @vf: pointer to the VF structure 1762 */ 1763 void ice_print_vf_tx_mdd_event(struct ice_vf *vf) 1764 { 1765 struct ice_pf *pf = vf->pf; 1766 struct device *dev; 1767 1768 dev = ice_pf_to_dev(pf); 1769 1770 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1771 vf->mdd_tx_events.count, pf->hw.pf_id, vf->vf_id, 1772 vf->dev_lan_addr, 1773 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1774 ? "on" : "off"); 1775 } 1776 1777 /** 1778 * ice_print_vfs_mdd_events - print VFs malicious driver detect event 1779 * @pf: pointer to the PF structure 1780 * 1781 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. 1782 */ 1783 void ice_print_vfs_mdd_events(struct ice_pf *pf) 1784 { 1785 struct ice_vf *vf; 1786 unsigned int bkt; 1787 1788 /* check that there are pending MDD events to print */ 1789 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) 1790 return; 1791 1792 /* VF MDD event logs are rate limited to one second intervals */ 1793 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) 1794 return; 1795 1796 pf->vfs.last_printed_mdd_jiffies = jiffies; 1797 1798 mutex_lock(&pf->vfs.table_lock); 1799 ice_for_each_vf(pf, bkt, vf) { 1800 /* only print Rx MDD event message if there are new events */ 1801 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 1802 vf->mdd_rx_events.last_printed = 1803 vf->mdd_rx_events.count; 1804 ice_print_vf_rx_mdd_event(vf); 1805 } 1806 1807 /* only print Tx MDD event message if there are new events */ 1808 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 1809 vf->mdd_tx_events.last_printed = 1810 vf->mdd_tx_events.count; 1811 ice_print_vf_tx_mdd_event(vf); 1812 } 1813 } 1814 mutex_unlock(&pf->vfs.table_lock); 1815 } 1816 1817 /** 1818 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR 1819 * @pf: pointer to the PF structure 1820 * 1821 * Called when recovering from a PF FLR to restore interrupt capability to 1822 * the VFs. 1823 */ 1824 void ice_restore_all_vfs_msi_state(struct ice_pf *pf) 1825 { 1826 struct ice_vf *vf; 1827 u32 bkt; 1828 1829 ice_for_each_vf(pf, bkt, vf) 1830 pci_restore_msi_state(vf->vfdev); 1831 } 1832