1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16
17 /**
18 * ice_free_vf_entries - Free all VF entries from the hash table
19 * @pf: pointer to the PF structure
20 *
21 * Iterate over the VF hash table, removing and releasing all VF entries.
22 * Called during VF teardown or as cleanup during failed VF initialization.
23 */
ice_free_vf_entries(struct ice_pf * pf)24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 struct ice_vfs *vfs = &pf->vfs;
27 struct hlist_node *tmp;
28 struct ice_vf *vf;
29 unsigned int bkt;
30
31 /* Remove all VFs from the hash table and release their main
32 * reference. Once all references to the VF are dropped, ice_put_vf()
33 * will call ice_release_vf which will remove the VF memory.
34 */
35 lockdep_assert_held(&vfs->table_lock);
36
37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 hash_del_rcu(&vf->entry);
39 ice_put_vf(vf);
40 }
41 }
42
43 /**
44 * ice_free_vf_res - Free a VF's resources
45 * @vf: pointer to the VF info
46 */
ice_free_vf_res(struct ice_vf * vf)47 static void ice_free_vf_res(struct ice_vf *vf)
48 {
49 struct ice_pf *pf = vf->pf;
50 int i, last_vector_idx;
51
52 /* First, disable VF's configuration API to prevent OS from
53 * accessing the VF's VSI after it's freed or invalidated.
54 */
55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
56 ice_vf_fdir_exit(vf);
57 /* free VF control VSI */
58 if (vf->ctrl_vsi_idx != ICE_NO_VSI)
59 ice_vf_ctrl_vsi_release(vf);
60
61 /* free VSI and disconnect it from the parent uplink */
62 if (vf->lan_vsi_idx != ICE_NO_VSI) {
63 ice_vf_vsi_release(vf);
64 vf->num_mac = 0;
65 }
66
67 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
68
69 /* clear VF MDD event information */
70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
72
73 /* Disable interrupts so that VF starts in a known state */
74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
76 ice_flush(&pf->hw);
77 }
78 /* reset some of the state variables keeping track of the resources */
79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
81 }
82
83 /**
84 * ice_dis_vf_mappings
85 * @vf: pointer to the VF structure
86 */
ice_dis_vf_mappings(struct ice_vf * vf)87 static void ice_dis_vf_mappings(struct ice_vf *vf)
88 {
89 struct ice_pf *pf = vf->pf;
90 struct ice_vsi *vsi;
91 struct device *dev;
92 int first, last, v;
93 struct ice_hw *hw;
94
95 hw = &pf->hw;
96 vsi = ice_get_vf_vsi(vf);
97 if (WARN_ON(!vsi))
98 return;
99
100 dev = ice_pf_to_dev(pf);
101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
103
104 first = vf->first_vector_idx;
105 last = first + vf->num_msix - 1;
106 for (v = first; v <= last; v++) {
107 u32 reg;
108
109 reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) |
110 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
111 wr32(hw, GLINT_VECT2FUNC(v), reg);
112 }
113
114 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
115 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
116 else
117 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
118
119 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
120 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
121 else
122 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
123 }
124
125 /**
126 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
127 * @pf: pointer to the PF structure
128 *
129 * Since no MSIX entries are taken from the pf->irq_tracker then just clear
130 * the pf->sriov_base_vector.
131 *
132 * Returns 0 on success, and -EINVAL on error.
133 */
ice_sriov_free_msix_res(struct ice_pf * pf)134 static int ice_sriov_free_msix_res(struct ice_pf *pf)
135 {
136 if (!pf)
137 return -EINVAL;
138
139 bitmap_free(pf->sriov_irq_bm);
140 pf->sriov_irq_size = 0;
141 pf->sriov_base_vector = 0;
142
143 return 0;
144 }
145
146 /**
147 * ice_free_vfs - Free all VFs
148 * @pf: pointer to the PF structure
149 */
ice_free_vfs(struct ice_pf * pf)150 void ice_free_vfs(struct ice_pf *pf)
151 {
152 struct device *dev = ice_pf_to_dev(pf);
153 struct ice_vfs *vfs = &pf->vfs;
154 struct ice_hw *hw = &pf->hw;
155 struct ice_vf *vf;
156 unsigned int bkt;
157
158 if (!ice_has_vfs(pf))
159 return;
160
161 while (test_and_set_bit(ICE_VF_DIS, pf->state))
162 usleep_range(1000, 2000);
163
164 /* Disable IOV before freeing resources. This lets any VF drivers
165 * running in the host get themselves cleaned up before we yank
166 * the carpet out from underneath their feet.
167 */
168 if (!pci_vfs_assigned(pf->pdev))
169 pci_disable_sriov(pf->pdev);
170 else
171 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
172
173 mutex_lock(&vfs->table_lock);
174
175 ice_for_each_vf(pf, bkt, vf) {
176 mutex_lock(&vf->cfg_lock);
177
178 ice_eswitch_detach_vf(pf, vf);
179 ice_dis_vf_qs(vf);
180
181 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
182 /* disable VF qp mappings and set VF disable state */
183 ice_dis_vf_mappings(vf);
184 set_bit(ICE_VF_STATE_DIS, vf->vf_states);
185 ice_free_vf_res(vf);
186 }
187
188 if (!pci_vfs_assigned(pf->pdev)) {
189 u32 reg_idx, bit_idx;
190
191 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
192 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
193 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
194 }
195
196 /* clear malicious info since the VF is getting released */
197 list_del(&vf->mbx_info.list_entry);
198
199 mutex_unlock(&vf->cfg_lock);
200 }
201
202 if (ice_sriov_free_msix_res(pf))
203 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
204
205 vfs->num_qps_per = 0;
206 ice_free_vf_entries(pf);
207
208 mutex_unlock(&vfs->table_lock);
209
210 clear_bit(ICE_VF_DIS, pf->state);
211 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
212 }
213
214 /**
215 * ice_vf_vsi_setup - Set up a VF VSI
216 * @vf: VF to setup VSI for
217 *
218 * Returns pointer to the successfully allocated VSI struct on success,
219 * otherwise returns NULL on failure.
220 */
ice_vf_vsi_setup(struct ice_vf * vf)221 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
222 {
223 struct ice_vsi_cfg_params params = {};
224 struct ice_pf *pf = vf->pf;
225 struct ice_vsi *vsi;
226
227 params.type = ICE_VSI_VF;
228 params.port_info = ice_vf_get_port_info(vf);
229 params.vf = vf;
230 params.flags = ICE_VSI_FLAG_INIT;
231
232 vsi = ice_vsi_setup(pf, ¶ms);
233
234 if (!vsi) {
235 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
236 ice_vf_invalidate_vsi(vf);
237 return NULL;
238 }
239
240 vf->lan_vsi_idx = vsi->idx;
241
242 return vsi;
243 }
244
245
246 /**
247 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
248 * @vf: VF to enable MSIX mappings for
249 *
250 * Some of the registers need to be indexed/configured using hardware global
251 * device values and other registers need 0-based values, which represent PF
252 * based values.
253 */
ice_ena_vf_msix_mappings(struct ice_vf * vf)254 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
255 {
256 int device_based_first_msix, device_based_last_msix;
257 int pf_based_first_msix, pf_based_last_msix, v;
258 struct ice_pf *pf = vf->pf;
259 int device_based_vf_id;
260 struct ice_hw *hw;
261 u32 reg;
262
263 hw = &pf->hw;
264 pf_based_first_msix = vf->first_vector_idx;
265 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
266
267 device_based_first_msix = pf_based_first_msix +
268 pf->hw.func_caps.common_cap.msix_vector_first_id;
269 device_based_last_msix =
270 (device_based_first_msix + vf->num_msix) - 1;
271 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
272
273 reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) |
274 FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) |
275 VPINT_ALLOC_VALID_M;
276 wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
277
278 reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) |
279 FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) |
280 VPINT_ALLOC_PCI_VALID_M;
281 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
282
283 /* map the interrupts to its functions */
284 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
285 reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) |
286 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
287 wr32(hw, GLINT_VECT2FUNC(v), reg);
288 }
289
290 /* Map mailbox interrupt to VF MSI-X vector 0 */
291 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
292 }
293
294 /**
295 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
296 * @vf: VF to enable the mappings for
297 * @max_txq: max Tx queues allowed on the VF's VSI
298 * @max_rxq: max Rx queues allowed on the VF's VSI
299 */
ice_ena_vf_q_mappings(struct ice_vf * vf,u16 max_txq,u16 max_rxq)300 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
301 {
302 struct device *dev = ice_pf_to_dev(vf->pf);
303 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
304 struct ice_hw *hw = &vf->pf->hw;
305 u32 reg;
306
307 if (WARN_ON(!vsi))
308 return;
309
310 /* set regardless of mapping mode */
311 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
312
313 /* VF Tx queues allocation */
314 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
315 /* set the VF PF Tx queue range
316 * VFNUMQ value should be set to (number of queues - 1). A value
317 * of 0 means 1 queue and a value of 255 means 256 queues
318 */
319 reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) |
320 FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1);
321 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
322 } else {
323 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
324 }
325
326 /* set regardless of mapping mode */
327 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
328
329 /* VF Rx queues allocation */
330 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
331 /* set the VF PF Rx queue range
332 * VFNUMQ value should be set to (number of queues - 1). A value
333 * of 0 means 1 queue and a value of 255 means 256 queues
334 */
335 reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) |
336 FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1);
337 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
338 } else {
339 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
340 }
341 }
342
343 /**
344 * ice_ena_vf_mappings - enable VF MSIX and queue mapping
345 * @vf: pointer to the VF structure
346 */
ice_ena_vf_mappings(struct ice_vf * vf)347 static void ice_ena_vf_mappings(struct ice_vf *vf)
348 {
349 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
350
351 if (WARN_ON(!vsi))
352 return;
353
354 ice_ena_vf_msix_mappings(vf);
355 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
356 }
357
358 /**
359 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
360 * @vf: VF to calculate the register index for
361 * @q_vector: a q_vector associated to the VF
362 */
ice_calc_vf_reg_idx(struct ice_vf * vf,struct ice_q_vector * q_vector)363 void ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
364 {
365 if (!vf || !q_vector)
366 return;
367
368 /* always add one to account for the OICR being the first MSIX */
369 q_vector->vf_reg_idx = q_vector->v_idx + ICE_NONQ_VECS_VF;
370 q_vector->reg_idx = vf->first_vector_idx + q_vector->vf_reg_idx;
371 }
372
373 /**
374 * ice_sriov_set_msix_res - Set any used MSIX resources
375 * @pf: pointer to PF structure
376 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
377 *
378 * This function allows SR-IOV resources to be taken from the end of the PF's
379 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
380 * just set the pf->sriov_base_vector and return success.
381 *
382 * If there are not enough resources available, return an error. This should
383 * always be caught by ice_set_per_vf_res().
384 *
385 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
386 * in the PF's space available for SR-IOV.
387 */
ice_sriov_set_msix_res(struct ice_pf * pf,u16 num_msix_needed)388 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
389 {
390 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
391 int vectors_used = ice_get_max_used_msix_vector(pf);
392 int sriov_base_vector;
393
394 sriov_base_vector = total_vectors - num_msix_needed;
395
396 /* make sure we only grab irq_tracker entries from the list end and
397 * that we have enough available MSIX vectors
398 */
399 if (sriov_base_vector < vectors_used)
400 return -EINVAL;
401
402 pf->sriov_base_vector = sriov_base_vector;
403
404 return 0;
405 }
406
407 /**
408 * ice_set_per_vf_res - check if vectors and queues are available
409 * @pf: pointer to the PF structure
410 * @num_vfs: the number of SR-IOV VFs being configured
411 *
412 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
413 * get more vectors and can enable more queues per VF. Note that this does not
414 * grab any vectors from the SW pool already allocated. Also note, that all
415 * vector counts include one for each VF's miscellaneous interrupt vector
416 * (i.e. OICR).
417 *
418 * Minimum VFs - 2 vectors, 1 queue pair
419 * Small VFs - 5 vectors, 4 queue pairs
420 * Medium VFs - 17 vectors, 16 queue pairs
421 *
422 * Second, determine number of queue pairs per VF by starting with a pre-defined
423 * maximum each VF supports. If this is not possible, then we adjust based on
424 * queue pairs available on the device.
425 *
426 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
427 * by each VF during VF initialization and reset.
428 */
ice_set_per_vf_res(struct ice_pf * pf,u16 num_vfs)429 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
430 {
431 int vectors_used = ice_get_max_used_msix_vector(pf);
432 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
433 int msix_avail_per_vf, msix_avail_for_sriov;
434 struct device *dev = ice_pf_to_dev(pf);
435 int err;
436
437 lockdep_assert_held(&pf->vfs.table_lock);
438
439 if (!num_vfs)
440 return -EINVAL;
441
442 /* determine MSI-X resources per VF */
443 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
444 vectors_used;
445 msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
446 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
447 num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
448 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
449 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
450 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
451 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
452 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
453 num_msix_per_vf = ICE_MIN_INTR_PER_VF;
454 } else {
455 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
456 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
457 num_vfs);
458 return -ENOSPC;
459 }
460
461 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
462 ICE_MAX_RSS_QS_PER_VF);
463 avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
464 if (!avail_qs)
465 num_txq = 0;
466 else if (num_txq > avail_qs)
467 num_txq = rounddown_pow_of_two(avail_qs);
468
469 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
470 ICE_MAX_RSS_QS_PER_VF);
471 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
472 if (!avail_qs)
473 num_rxq = 0;
474 else if (num_rxq > avail_qs)
475 num_rxq = rounddown_pow_of_two(avail_qs);
476
477 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
478 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
479 ICE_MIN_QS_PER_VF, num_vfs);
480 return -ENOSPC;
481 }
482
483 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
484 if (err) {
485 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
486 num_vfs, err);
487 return err;
488 }
489
490 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */
491 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
492 pf->vfs.num_msix_per = num_msix_per_vf;
493 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
494 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
495
496 return 0;
497 }
498
499 /**
500 * ice_sriov_get_irqs - get irqs for SR-IOV usacase
501 * @pf: pointer to PF structure
502 * @needed: number of irqs to get
503 *
504 * This returns the first MSI-X vector index in PF space that is used by this
505 * VF. This index is used when accessing PF relative registers such as
506 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
507 * This will always be the OICR index in the AVF driver so any functionality
508 * using vf->first_vector_idx for queue configuration_id: id of VF which will
509 * use this irqs
510 *
511 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are
512 * allocated from the end of global irq index. First bit in sriov_irq_bm means
513 * last irq index etc. It simplifies extension of SRIOV vectors.
514 * They will be always located from sriov_base_vector to the last irq
515 * index. While increasing/decreasing sriov_base_vector can be moved.
516 */
ice_sriov_get_irqs(struct ice_pf * pf,u16 needed)517 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed)
518 {
519 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm,
520 pf->sriov_irq_size, 0, needed, 0);
521 /* conversion from number in bitmap to global irq index */
522 int index = pf->sriov_irq_size - res - needed;
523
524 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector)
525 return -ENOENT;
526
527 bitmap_set(pf->sriov_irq_bm, res, needed);
528 return index;
529 }
530
531 /**
532 * ice_sriov_free_irqs - free irqs used by the VF
533 * @pf: pointer to PF structure
534 * @vf: pointer to VF structure
535 */
ice_sriov_free_irqs(struct ice_pf * pf,struct ice_vf * vf)536 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf)
537 {
538 /* Move back from first vector index to first index in bitmap */
539 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix;
540
541 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix);
542 vf->first_vector_idx = 0;
543 }
544
545 /**
546 * ice_init_vf_vsi_res - initialize/setup VF VSI resources
547 * @vf: VF to initialize/setup the VSI for
548 *
549 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
550 * VF VSI's broadcast filter and is only used during initial VF creation.
551 */
ice_init_vf_vsi_res(struct ice_vf * vf)552 static int ice_init_vf_vsi_res(struct ice_vf *vf)
553 {
554 struct ice_pf *pf = vf->pf;
555 struct ice_vsi *vsi;
556 int err;
557
558 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
559 if (vf->first_vector_idx < 0)
560 return -ENOMEM;
561
562 vsi = ice_vf_vsi_setup(vf);
563 if (!vsi)
564 return -ENOMEM;
565
566 err = ice_vf_init_host_cfg(vf, vsi);
567 if (err)
568 goto release_vsi;
569
570 return 0;
571
572 release_vsi:
573 ice_vf_vsi_release(vf);
574 return err;
575 }
576
577 /**
578 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
579 * @pf: PF the VFs are associated with
580 */
ice_start_vfs(struct ice_pf * pf)581 static int ice_start_vfs(struct ice_pf *pf)
582 {
583 struct ice_hw *hw = &pf->hw;
584 unsigned int bkt, it_cnt;
585 struct ice_vf *vf;
586 int retval;
587
588 lockdep_assert_held(&pf->vfs.table_lock);
589
590 it_cnt = 0;
591 ice_for_each_vf(pf, bkt, vf) {
592 vf->vf_ops->clear_reset_trigger(vf);
593
594 retval = ice_init_vf_vsi_res(vf);
595 if (retval) {
596 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
597 vf->vf_id, retval);
598 goto teardown;
599 }
600
601 retval = ice_eswitch_attach_vf(pf, vf);
602 if (retval) {
603 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d",
604 vf->vf_id, retval);
605 ice_vf_vsi_release(vf);
606 goto teardown;
607 }
608
609 set_bit(ICE_VF_STATE_INIT, vf->vf_states);
610 ice_ena_vf_mappings(vf);
611 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
612 it_cnt++;
613 }
614
615 ice_flush(hw);
616 return 0;
617
618 teardown:
619 ice_for_each_vf(pf, bkt, vf) {
620 if (it_cnt == 0)
621 break;
622
623 ice_dis_vf_mappings(vf);
624 ice_vf_vsi_release(vf);
625 it_cnt--;
626 }
627
628 return retval;
629 }
630
631 /**
632 * ice_sriov_free_vf - Free VF memory after all references are dropped
633 * @vf: pointer to VF to free
634 *
635 * Called by ice_put_vf through ice_release_vf once the last reference to a VF
636 * structure has been dropped.
637 */
ice_sriov_free_vf(struct ice_vf * vf)638 static void ice_sriov_free_vf(struct ice_vf *vf)
639 {
640 mutex_destroy(&vf->cfg_lock);
641
642 kfree_rcu(vf, rcu);
643 }
644
645 /**
646 * ice_sriov_clear_reset_state - clears VF Reset status register
647 * @vf: the vf to configure
648 */
ice_sriov_clear_reset_state(struct ice_vf * vf)649 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
650 {
651 struct ice_hw *hw = &vf->pf->hw;
652
653 /* Clear the reset status register so that VF immediately sees that
654 * the device is resetting, even if hardware hasn't yet gotten around
655 * to clearing VFGEN_RSTAT for us.
656 */
657 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
658 }
659
660 /**
661 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
662 * @vf: the vf to configure
663 */
ice_sriov_clear_mbx_register(struct ice_vf * vf)664 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
665 {
666 struct ice_pf *pf = vf->pf;
667
668 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
669 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
670 }
671
672 /**
673 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
674 * @vf: pointer to VF structure
675 * @is_vflr: true if reset occurred due to VFLR
676 *
677 * Trigger and cleanup after a VF reset for a SR-IOV VF.
678 */
ice_sriov_trigger_reset_register(struct ice_vf * vf,bool is_vflr)679 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
680 {
681 struct ice_pf *pf = vf->pf;
682 u32 reg, reg_idx, bit_idx;
683 unsigned int vf_abs_id, i;
684 struct device *dev;
685 struct ice_hw *hw;
686
687 dev = ice_pf_to_dev(pf);
688 hw = &pf->hw;
689 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
690
691 /* In the case of a VFLR, HW has already reset the VF and we just need
692 * to clean up. Otherwise we must first trigger the reset using the
693 * VFRTRIG register.
694 */
695 if (!is_vflr) {
696 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
697 reg |= VPGEN_VFRTRIG_VFSWR_M;
698 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
699 }
700
701 /* clear the VFLR bit in GLGEN_VFLRSTAT */
702 reg_idx = (vf_abs_id) / 32;
703 bit_idx = (vf_abs_id) % 32;
704 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
705 ice_flush(hw);
706
707 wr32(hw, PF_PCI_CIAA,
708 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
709 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
710 reg = rd32(hw, PF_PCI_CIAD);
711 /* no transactions pending so stop polling */
712 if ((reg & VF_TRANS_PENDING_M) == 0)
713 break;
714
715 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
716 udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
717 }
718 }
719
720 /**
721 * ice_sriov_poll_reset_status - poll SRIOV VF reset status
722 * @vf: pointer to VF structure
723 *
724 * Returns true when reset is successful, else returns false
725 */
ice_sriov_poll_reset_status(struct ice_vf * vf)726 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
727 {
728 struct ice_pf *pf = vf->pf;
729 unsigned int i;
730 u32 reg;
731
732 for (i = 0; i < 10; i++) {
733 /* VF reset requires driver to first reset the VF and then
734 * poll the status register to make sure that the reset
735 * completed successfully.
736 */
737 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
738 if (reg & VPGEN_VFRSTAT_VFRD_M)
739 return true;
740
741 /* only sleep if the reset is not done */
742 usleep_range(10, 20);
743 }
744 return false;
745 }
746
747 /**
748 * ice_sriov_clear_reset_trigger - enable VF to access hardware
749 * @vf: VF to enabled hardware access for
750 */
ice_sriov_clear_reset_trigger(struct ice_vf * vf)751 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
752 {
753 struct ice_hw *hw = &vf->pf->hw;
754 u32 reg;
755
756 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
757 reg &= ~VPGEN_VFRTRIG_VFSWR_M;
758 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
759 ice_flush(hw);
760 }
761
762 /**
763 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
764 * @vf: VF to perform tasks on
765 */
ice_sriov_post_vsi_rebuild(struct ice_vf * vf)766 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
767 {
768 ice_ena_vf_mappings(vf);
769 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
770 }
771
772 static const struct ice_vf_ops ice_sriov_vf_ops = {
773 .reset_type = ICE_VF_RESET,
774 .free = ice_sriov_free_vf,
775 .clear_reset_state = ice_sriov_clear_reset_state,
776 .clear_mbx_register = ice_sriov_clear_mbx_register,
777 .trigger_reset_register = ice_sriov_trigger_reset_register,
778 .poll_reset_status = ice_sriov_poll_reset_status,
779 .clear_reset_trigger = ice_sriov_clear_reset_trigger,
780 .irq_close = NULL,
781 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
782 };
783
784 /**
785 * ice_create_vf_entries - Allocate and insert VF entries
786 * @pf: pointer to the PF structure
787 * @num_vfs: the number of VFs to allocate
788 *
789 * Allocate new VF entries and insert them into the hash table. Set some
790 * basic default fields for initializing the new VFs.
791 *
792 * After this function exits, the hash table will have num_vfs entries
793 * inserted.
794 *
795 * Returns 0 on success or an integer error code on failure.
796 */
ice_create_vf_entries(struct ice_pf * pf,u16 num_vfs)797 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
798 {
799 struct pci_dev *pdev = pf->pdev;
800 struct ice_vfs *vfs = &pf->vfs;
801 struct pci_dev *vfdev = NULL;
802 struct ice_vf *vf;
803 u16 vf_pdev_id;
804 int err, pos;
805
806 lockdep_assert_held(&vfs->table_lock);
807
808 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
809 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
810
811 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
812 vf = kzalloc(sizeof(*vf), GFP_KERNEL);
813 if (!vf) {
814 err = -ENOMEM;
815 goto err_free_entries;
816 }
817 kref_init(&vf->refcnt);
818
819 vf->pf = pf;
820 vf->vf_id = vf_id;
821
822 /* set sriov vf ops for VFs created during SRIOV flow */
823 vf->vf_ops = &ice_sriov_vf_ops;
824
825 ice_initialize_vf_entry(vf);
826
827 do {
828 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
829 } while (vfdev && vfdev->physfn != pdev);
830 vf->vfdev = vfdev;
831 vf->vf_sw_id = pf->first_sw;
832
833 pci_dev_get(vfdev);
834
835 hash_add_rcu(vfs->table, &vf->entry, vf_id);
836 }
837
838 /* Decrement of refcount done by pci_get_device() inside the loop does
839 * not touch the last iteration's vfdev, so it has to be done manually
840 * to balance pci_dev_get() added within the loop.
841 */
842 pci_dev_put(vfdev);
843
844 return 0;
845
846 err_free_entries:
847 ice_free_vf_entries(pf);
848 return err;
849 }
850
851 /**
852 * ice_ena_vfs - enable VFs so they are ready to be used
853 * @pf: pointer to the PF structure
854 * @num_vfs: number of VFs to enable
855 */
ice_ena_vfs(struct ice_pf * pf,u16 num_vfs)856 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
857 {
858 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
859 struct device *dev = ice_pf_to_dev(pf);
860 struct ice_hw *hw = &pf->hw;
861 int ret;
862
863 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL);
864 if (!pf->sriov_irq_bm)
865 return -ENOMEM;
866 pf->sriov_irq_size = total_vectors;
867
868 /* Disable global interrupt 0 so we don't try to handle the VFLR. */
869 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
870 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
871 set_bit(ICE_OICR_INTR_DIS, pf->state);
872 ice_flush(hw);
873
874 ret = pci_enable_sriov(pf->pdev, num_vfs);
875 if (ret)
876 goto err_unroll_intr;
877
878 mutex_lock(&pf->vfs.table_lock);
879
880 ret = ice_set_per_vf_res(pf, num_vfs);
881 if (ret) {
882 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
883 num_vfs, ret);
884 goto err_unroll_sriov;
885 }
886
887 ret = ice_create_vf_entries(pf, num_vfs);
888 if (ret) {
889 dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
890 num_vfs);
891 goto err_unroll_sriov;
892 }
893
894 ret = ice_start_vfs(pf);
895 if (ret) {
896 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
897 ret = -EAGAIN;
898 goto err_unroll_vf_entries;
899 }
900
901 clear_bit(ICE_VF_DIS, pf->state);
902
903 /* rearm global interrupts */
904 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
905 ice_irq_dynamic_ena(hw, NULL, NULL);
906
907 mutex_unlock(&pf->vfs.table_lock);
908
909 return 0;
910
911 err_unroll_vf_entries:
912 ice_free_vf_entries(pf);
913 err_unroll_sriov:
914 mutex_unlock(&pf->vfs.table_lock);
915 pci_disable_sriov(pf->pdev);
916 err_unroll_intr:
917 /* rearm interrupts here */
918 ice_irq_dynamic_ena(hw, NULL, NULL);
919 clear_bit(ICE_OICR_INTR_DIS, pf->state);
920 bitmap_free(pf->sriov_irq_bm);
921 return ret;
922 }
923
924 /**
925 * ice_pci_sriov_ena - Enable or change number of VFs
926 * @pf: pointer to the PF structure
927 * @num_vfs: number of VFs to allocate
928 *
929 * Returns 0 on success and negative on failure
930 */
ice_pci_sriov_ena(struct ice_pf * pf,int num_vfs)931 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
932 {
933 struct device *dev = ice_pf_to_dev(pf);
934 int err;
935
936 if (!num_vfs) {
937 ice_free_vfs(pf);
938 return 0;
939 }
940
941 if (num_vfs > pf->vfs.num_supported) {
942 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
943 num_vfs, pf->vfs.num_supported);
944 return -EOPNOTSUPP;
945 }
946
947 dev_info(dev, "Enabling %d VFs\n", num_vfs);
948 err = ice_ena_vfs(pf, num_vfs);
949 if (err) {
950 dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
951 return err;
952 }
953
954 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
955 return 0;
956 }
957
958 /**
959 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
960 * @pf: PF to enabled SR-IOV on
961 */
ice_check_sriov_allowed(struct ice_pf * pf)962 static int ice_check_sriov_allowed(struct ice_pf *pf)
963 {
964 struct device *dev = ice_pf_to_dev(pf);
965
966 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
967 dev_err(dev, "This device is not capable of SR-IOV\n");
968 return -EOPNOTSUPP;
969 }
970
971 if (ice_is_safe_mode(pf)) {
972 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
973 return -EOPNOTSUPP;
974 }
975
976 if (!ice_pf_state_is_nominal(pf)) {
977 dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
978 return -EBUSY;
979 }
980
981 return 0;
982 }
983
984 /**
985 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
986 * @pdev: pointer to pci_dev struct
987 *
988 * The function is called via sysfs ops
989 */
ice_sriov_get_vf_total_msix(struct pci_dev * pdev)990 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
991 {
992 struct ice_pf *pf = pci_get_drvdata(pdev);
993
994 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf);
995 }
996
ice_sriov_move_base_vector(struct ice_pf * pf,int move)997 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move)
998 {
999 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf))
1000 return -ENOMEM;
1001
1002 pf->sriov_base_vector -= move;
1003 return 0;
1004 }
1005
ice_sriov_remap_vectors(struct ice_pf * pf,u16 restricted_id)1006 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
1007 {
1008 u16 vf_ids[ICE_MAX_SRIOV_VFS];
1009 struct ice_vf *tmp_vf;
1010 int to_remap = 0, bkt;
1011
1012 /* For better irqs usage try to remap irqs of VFs
1013 * that aren't running yet
1014 */
1015 ice_for_each_vf(pf, bkt, tmp_vf) {
1016 /* skip VF which is changing the number of MSI-X */
1017 if (restricted_id == tmp_vf->vf_id ||
1018 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
1019 continue;
1020
1021 ice_dis_vf_mappings(tmp_vf);
1022 ice_sriov_free_irqs(pf, tmp_vf);
1023
1024 vf_ids[to_remap] = tmp_vf->vf_id;
1025 to_remap += 1;
1026 }
1027
1028 for (int i = 0; i < to_remap; i++) {
1029 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
1030 if (!tmp_vf)
1031 continue;
1032
1033 tmp_vf->first_vector_idx =
1034 ice_sriov_get_irqs(pf, tmp_vf->num_msix);
1035 /* there is no need to rebuild VSI as we are only changing the
1036 * vector indexes not amount of MSI-X or queues
1037 */
1038 ice_ena_vf_mappings(tmp_vf);
1039 ice_put_vf(tmp_vf);
1040 }
1041 }
1042
1043 /**
1044 * ice_sriov_set_msix_vec_count
1045 * @vf_dev: pointer to pci_dev struct of VF device
1046 * @msix_vec_count: new value for MSI-X amount on this VF
1047 *
1048 * Set requested MSI-X, queues and registers for @vf_dev.
1049 *
1050 * First do some sanity checks like if there are any VFs, if the new value
1051 * is correct etc. Then disable old mapping (MSI-X and queues registers), change
1052 * MSI-X and queues, rebuild VSI and enable new mapping.
1053 *
1054 * If it is possible (driver not binded to VF) try to remap also other VFs to
1055 * linearize irqs register usage.
1056 */
ice_sriov_set_msix_vec_count(struct pci_dev * vf_dev,int msix_vec_count)1057 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
1058 {
1059 struct pci_dev *pdev = pci_physfn(vf_dev);
1060 struct ice_pf *pf = pci_get_drvdata(pdev);
1061 u16 prev_msix, prev_queues, queues;
1062 bool needs_rebuild = false;
1063 struct ice_vsi *vsi;
1064 struct ice_vf *vf;
1065 int id;
1066
1067 if (!ice_get_num_vfs(pf))
1068 return -ENOENT;
1069
1070 if (!msix_vec_count)
1071 return 0;
1072
1073 queues = msix_vec_count;
1074 /* add 1 MSI-X for OICR */
1075 msix_vec_count += 1;
1076
1077 if (queues > min(ice_get_avail_txq_count(pf),
1078 ice_get_avail_rxq_count(pf)))
1079 return -EINVAL;
1080
1081 if (msix_vec_count < ICE_MIN_INTR_PER_VF)
1082 return -EINVAL;
1083
1084 /* Transition of PCI VF function number to function_id */
1085 for (id = 0; id < pci_num_vf(pdev); id++) {
1086 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id))
1087 break;
1088 }
1089
1090 if (id == pci_num_vf(pdev))
1091 return -ENOENT;
1092
1093 vf = ice_get_vf_by_id(pf, id);
1094
1095 if (!vf)
1096 return -ENOENT;
1097
1098 vsi = ice_get_vf_vsi(vf);
1099 if (!vsi) {
1100 ice_put_vf(vf);
1101 return -ENOENT;
1102 }
1103
1104 prev_msix = vf->num_msix;
1105 prev_queues = vf->num_vf_qs;
1106
1107 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) {
1108 ice_put_vf(vf);
1109 return -ENOSPC;
1110 }
1111
1112 ice_dis_vf_mappings(vf);
1113 ice_sriov_free_irqs(pf, vf);
1114
1115 /* Remap all VFs beside the one is now configured */
1116 ice_sriov_remap_vectors(pf, vf->vf_id);
1117
1118 vf->num_msix = msix_vec_count;
1119 vf->num_vf_qs = queues;
1120 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1121 if (vf->first_vector_idx < 0)
1122 goto unroll;
1123
1124 vsi->req_txq = queues;
1125 vsi->req_rxq = queues;
1126
1127 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
1128 /* Try to rebuild with previous values */
1129 needs_rebuild = true;
1130 goto unroll;
1131 }
1132
1133 dev_info(ice_pf_to_dev(pf),
1134 "Changing VF %d resources to %d vectors and %d queues\n",
1135 vf->vf_id, vf->num_msix, vf->num_vf_qs);
1136
1137 ice_ena_vf_mappings(vf);
1138 ice_put_vf(vf);
1139
1140 return 0;
1141
1142 unroll:
1143 dev_info(ice_pf_to_dev(pf),
1144 "Can't set %d vectors on VF %d, falling back to %d\n",
1145 vf->num_msix, vf->vf_id, prev_msix);
1146
1147 vf->num_msix = prev_msix;
1148 vf->num_vf_qs = prev_queues;
1149 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1150 if (vf->first_vector_idx < 0) {
1151 ice_put_vf(vf);
1152 return -EINVAL;
1153 }
1154
1155 if (needs_rebuild) {
1156 vsi->req_txq = prev_queues;
1157 vsi->req_rxq = prev_queues;
1158
1159 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
1160 }
1161
1162 ice_ena_vf_mappings(vf);
1163 ice_put_vf(vf);
1164
1165 return -EINVAL;
1166 }
1167
1168 /**
1169 * ice_sriov_configure - Enable or change number of VFs via sysfs
1170 * @pdev: pointer to a pci_dev structure
1171 * @num_vfs: number of VFs to allocate or 0 to free VFs
1172 *
1173 * This function is called when the user updates the number of VFs in sysfs. On
1174 * success return whatever num_vfs was set to by the caller. Return negative on
1175 * failure.
1176 */
ice_sriov_configure(struct pci_dev * pdev,int num_vfs)1177 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1178 {
1179 struct ice_pf *pf = pci_get_drvdata(pdev);
1180 struct device *dev = ice_pf_to_dev(pf);
1181 int err;
1182
1183 err = ice_check_sriov_allowed(pf);
1184 if (err)
1185 return err;
1186
1187 if (!num_vfs) {
1188 if (!pci_vfs_assigned(pdev)) {
1189 ice_free_vfs(pf);
1190 return 0;
1191 }
1192
1193 dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1194 return -EBUSY;
1195 }
1196
1197 err = ice_pci_sriov_ena(pf, num_vfs);
1198 if (err)
1199 return err;
1200
1201 return num_vfs;
1202 }
1203
1204 /**
1205 * ice_process_vflr_event - Free VF resources via IRQ calls
1206 * @pf: pointer to the PF structure
1207 *
1208 * called from the VFLR IRQ handler to
1209 * free up VF resources and state variables
1210 */
ice_process_vflr_event(struct ice_pf * pf)1211 void ice_process_vflr_event(struct ice_pf *pf)
1212 {
1213 struct ice_hw *hw = &pf->hw;
1214 struct ice_vf *vf;
1215 unsigned int bkt;
1216 u32 reg;
1217
1218 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1219 !ice_has_vfs(pf))
1220 return;
1221
1222 mutex_lock(&pf->vfs.table_lock);
1223 ice_for_each_vf(pf, bkt, vf) {
1224 u32 reg_idx, bit_idx;
1225
1226 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1227 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1228 /* read GLGEN_VFLRSTAT register to find out the flr VFs */
1229 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1230 if (reg & BIT(bit_idx))
1231 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1232 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1233 }
1234 mutex_unlock(&pf->vfs.table_lock);
1235 }
1236
1237 /**
1238 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1239 * @pf: PF used to index all VFs
1240 * @pfq: queue index relative to the PF's function space
1241 *
1242 * If no VF is found who owns the pfq then return NULL, otherwise return a
1243 * pointer to the VF who owns the pfq
1244 *
1245 * If this function returns non-NULL, it acquires a reference count of the VF
1246 * structure. The caller is responsible for calling ice_put_vf() to drop this
1247 * reference.
1248 */
ice_get_vf_from_pfq(struct ice_pf * pf,u16 pfq)1249 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1250 {
1251 struct ice_vf *vf;
1252 unsigned int bkt;
1253
1254 rcu_read_lock();
1255 ice_for_each_vf_rcu(pf, bkt, vf) {
1256 struct ice_vsi *vsi;
1257 u16 rxq_idx;
1258
1259 vsi = ice_get_vf_vsi(vf);
1260 if (!vsi)
1261 continue;
1262
1263 ice_for_each_rxq(vsi, rxq_idx)
1264 if (vsi->rxq_map[rxq_idx] == pfq) {
1265 struct ice_vf *found;
1266
1267 if (kref_get_unless_zero(&vf->refcnt))
1268 found = vf;
1269 else
1270 found = NULL;
1271 rcu_read_unlock();
1272 return found;
1273 }
1274 }
1275 rcu_read_unlock();
1276
1277 return NULL;
1278 }
1279
1280 /**
1281 * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1282 * @pf: PF used for conversion
1283 * @globalq: global queue index used to convert to PF space queue index
1284 */
ice_globalq_to_pfq(struct ice_pf * pf,u32 globalq)1285 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1286 {
1287 return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1288 }
1289
1290 /**
1291 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1292 * @pf: PF that the LAN overflow event happened on
1293 * @event: structure holding the event information for the LAN overflow event
1294 *
1295 * Determine if the LAN overflow event was caused by a VF queue. If it was not
1296 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1297 * reset on the offending VF.
1298 */
1299 void
ice_vf_lan_overflow_event(struct ice_pf * pf,struct ice_rq_event_info * event)1300 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1301 {
1302 u32 gldcb_rtctq, queue;
1303 struct ice_vf *vf;
1304
1305 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1306 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1307
1308 /* event returns device global Rx queue number */
1309 queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq);
1310
1311 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1312 if (!vf)
1313 return;
1314
1315 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1316 ice_put_vf(vf);
1317 }
1318
1319 /**
1320 * ice_set_vf_spoofchk
1321 * @netdev: network interface device structure
1322 * @vf_id: VF identifier
1323 * @ena: flag to enable or disable feature
1324 *
1325 * Enable or disable VF spoof checking
1326 */
ice_set_vf_spoofchk(struct net_device * netdev,int vf_id,bool ena)1327 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1328 {
1329 struct ice_netdev_priv *np = netdev_priv(netdev);
1330 struct ice_pf *pf = np->vsi->back;
1331 struct ice_vsi *vf_vsi;
1332 struct device *dev;
1333 struct ice_vf *vf;
1334 int ret;
1335
1336 dev = ice_pf_to_dev(pf);
1337
1338 vf = ice_get_vf_by_id(pf, vf_id);
1339 if (!vf)
1340 return -EINVAL;
1341
1342 ret = ice_check_vf_ready_for_cfg(vf);
1343 if (ret)
1344 goto out_put_vf;
1345
1346 vf_vsi = ice_get_vf_vsi(vf);
1347 if (!vf_vsi) {
1348 netdev_err(netdev, "VSI %d for VF %d is null\n",
1349 vf->lan_vsi_idx, vf->vf_id);
1350 ret = -EINVAL;
1351 goto out_put_vf;
1352 }
1353
1354 if (vf_vsi->type != ICE_VSI_VF) {
1355 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1356 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1357 ret = -ENODEV;
1358 goto out_put_vf;
1359 }
1360
1361 if (ena == vf->spoofchk) {
1362 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1363 ret = 0;
1364 goto out_put_vf;
1365 }
1366
1367 ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1368 if (ret)
1369 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1370 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1371 else
1372 vf->spoofchk = ena;
1373
1374 out_put_vf:
1375 ice_put_vf(vf);
1376 return ret;
1377 }
1378
1379 /**
1380 * ice_get_vf_cfg
1381 * @netdev: network interface device structure
1382 * @vf_id: VF identifier
1383 * @ivi: VF configuration structure
1384 *
1385 * return VF configuration
1386 */
1387 int
ice_get_vf_cfg(struct net_device * netdev,int vf_id,struct ifla_vf_info * ivi)1388 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1389 {
1390 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1391 struct ice_vf *vf;
1392 int ret;
1393
1394 vf = ice_get_vf_by_id(pf, vf_id);
1395 if (!vf)
1396 return -EINVAL;
1397
1398 ret = ice_check_vf_ready_for_cfg(vf);
1399 if (ret)
1400 goto out_put_vf;
1401
1402 ivi->vf = vf_id;
1403 ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1404
1405 /* VF configuration for VLAN and applicable QoS */
1406 ivi->vlan = ice_vf_get_port_vlan_id(vf);
1407 ivi->qos = ice_vf_get_port_vlan_prio(vf);
1408 if (ice_vf_is_port_vlan_ena(vf))
1409 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1410
1411 ivi->trusted = vf->trusted;
1412 ivi->spoofchk = vf->spoofchk;
1413 if (!vf->link_forced)
1414 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1415 else if (vf->link_up)
1416 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1417 else
1418 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1419 ivi->max_tx_rate = vf->max_tx_rate;
1420 ivi->min_tx_rate = vf->min_tx_rate;
1421
1422 out_put_vf:
1423 ice_put_vf(vf);
1424 return ret;
1425 }
1426
1427 /**
1428 * __ice_set_vf_mac - program VF MAC address
1429 * @pf: PF to be configure
1430 * @vf_id: VF identifier
1431 * @mac: MAC address
1432 *
1433 * program VF MAC address
1434 * Return: zero on success or an error code on failure
1435 */
__ice_set_vf_mac(struct ice_pf * pf,u16 vf_id,const u8 * mac)1436 int __ice_set_vf_mac(struct ice_pf *pf, u16 vf_id, const u8 *mac)
1437 {
1438 struct device *dev;
1439 struct ice_vf *vf;
1440 int ret;
1441
1442 dev = ice_pf_to_dev(pf);
1443 if (is_multicast_ether_addr(mac)) {
1444 dev_err(dev, "%pM not a valid unicast address\n", mac);
1445 return -EINVAL;
1446 }
1447
1448 vf = ice_get_vf_by_id(pf, vf_id);
1449 if (!vf)
1450 return -EINVAL;
1451
1452 /* nothing left to do, unicast MAC already set */
1453 if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1454 ether_addr_equal(vf->hw_lan_addr, mac)) {
1455 ret = 0;
1456 goto out_put_vf;
1457 }
1458
1459 ret = ice_check_vf_ready_for_cfg(vf);
1460 if (ret)
1461 goto out_put_vf;
1462
1463 mutex_lock(&vf->cfg_lock);
1464
1465 /* VF is notified of its new MAC via the PF's response to the
1466 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1467 */
1468 ether_addr_copy(vf->dev_lan_addr, mac);
1469 ether_addr_copy(vf->hw_lan_addr, mac);
1470 if (is_zero_ether_addr(mac)) {
1471 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1472 vf->pf_set_mac = false;
1473 dev_info(dev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1474 vf->vf_id);
1475 } else {
1476 /* PF will add MAC rule for the VF */
1477 vf->pf_set_mac = true;
1478 dev_info(dev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1479 mac, vf_id);
1480 }
1481
1482 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1483 mutex_unlock(&vf->cfg_lock);
1484
1485 out_put_vf:
1486 ice_put_vf(vf);
1487 return ret;
1488 }
1489
1490 /**
1491 * ice_set_vf_mac - .ndo_set_vf_mac handler
1492 * @netdev: network interface device structure
1493 * @vf_id: VF identifier
1494 * @mac: MAC address
1495 *
1496 * program VF MAC address
1497 * Return: zero on success or an error code on failure
1498 */
ice_set_vf_mac(struct net_device * netdev,int vf_id,u8 * mac)1499 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1500 {
1501 return __ice_set_vf_mac(ice_netdev_to_pf(netdev), vf_id, mac);
1502 }
1503
1504 /**
1505 * ice_set_vf_trust
1506 * @netdev: network interface device structure
1507 * @vf_id: VF identifier
1508 * @trusted: Boolean value to enable/disable trusted VF
1509 *
1510 * Enable or disable a given VF as trusted
1511 */
ice_set_vf_trust(struct net_device * netdev,int vf_id,bool trusted)1512 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1513 {
1514 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1515 struct ice_vf *vf;
1516 int ret;
1517
1518 vf = ice_get_vf_by_id(pf, vf_id);
1519 if (!vf)
1520 return -EINVAL;
1521
1522 if (ice_is_eswitch_mode_switchdev(pf)) {
1523 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1524 return -EOPNOTSUPP;
1525 }
1526
1527 ret = ice_check_vf_ready_for_cfg(vf);
1528 if (ret)
1529 goto out_put_vf;
1530
1531 /* Check if already trusted */
1532 if (trusted == vf->trusted) {
1533 ret = 0;
1534 goto out_put_vf;
1535 }
1536
1537 mutex_lock(&vf->cfg_lock);
1538
1539 vf->trusted = trusted;
1540 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1541 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1542 vf_id, trusted ? "" : "un");
1543
1544 mutex_unlock(&vf->cfg_lock);
1545
1546 out_put_vf:
1547 ice_put_vf(vf);
1548 return ret;
1549 }
1550
1551 /**
1552 * ice_set_vf_link_state
1553 * @netdev: network interface device structure
1554 * @vf_id: VF identifier
1555 * @link_state: required link state
1556 *
1557 * Set VF's link state, irrespective of physical link state status
1558 */
ice_set_vf_link_state(struct net_device * netdev,int vf_id,int link_state)1559 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1560 {
1561 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1562 struct ice_vf *vf;
1563 int ret;
1564
1565 vf = ice_get_vf_by_id(pf, vf_id);
1566 if (!vf)
1567 return -EINVAL;
1568
1569 ret = ice_check_vf_ready_for_cfg(vf);
1570 if (ret)
1571 goto out_put_vf;
1572
1573 switch (link_state) {
1574 case IFLA_VF_LINK_STATE_AUTO:
1575 vf->link_forced = false;
1576 break;
1577 case IFLA_VF_LINK_STATE_ENABLE:
1578 vf->link_forced = true;
1579 vf->link_up = true;
1580 break;
1581 case IFLA_VF_LINK_STATE_DISABLE:
1582 vf->link_forced = true;
1583 vf->link_up = false;
1584 break;
1585 default:
1586 ret = -EINVAL;
1587 goto out_put_vf;
1588 }
1589
1590 ice_vc_notify_vf_link_state(vf);
1591
1592 out_put_vf:
1593 ice_put_vf(vf);
1594 return ret;
1595 }
1596
1597 /**
1598 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1599 * @pf: PF associated with VFs
1600 */
ice_calc_all_vfs_min_tx_rate(struct ice_pf * pf)1601 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1602 {
1603 struct ice_vf *vf;
1604 unsigned int bkt;
1605 int rate = 0;
1606
1607 rcu_read_lock();
1608 ice_for_each_vf_rcu(pf, bkt, vf)
1609 rate += vf->min_tx_rate;
1610 rcu_read_unlock();
1611
1612 return rate;
1613 }
1614
1615 /**
1616 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1617 * @vf: VF trying to configure min_tx_rate
1618 * @min_tx_rate: min Tx rate in Mbps
1619 *
1620 * Check if the min_tx_rate being passed in will cause oversubscription of total
1621 * min_tx_rate based on the current link speed and all other VFs configured
1622 * min_tx_rate
1623 *
1624 * Return true if the passed min_tx_rate would cause oversubscription, else
1625 * return false
1626 */
1627 static bool
ice_min_tx_rate_oversubscribed(struct ice_vf * vf,int min_tx_rate)1628 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1629 {
1630 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1631 int all_vfs_min_tx_rate;
1632 int link_speed_mbps;
1633
1634 if (WARN_ON(!vsi))
1635 return false;
1636
1637 link_speed_mbps = ice_get_link_speed_mbps(vsi);
1638 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1639
1640 /* this VF's previous rate is being overwritten */
1641 all_vfs_min_tx_rate -= vf->min_tx_rate;
1642
1643 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1644 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1645 min_tx_rate, vf->vf_id,
1646 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1647 link_speed_mbps);
1648 return true;
1649 }
1650
1651 return false;
1652 }
1653
1654 /**
1655 * ice_set_vf_bw - set min/max VF bandwidth
1656 * @netdev: network interface device structure
1657 * @vf_id: VF identifier
1658 * @min_tx_rate: Minimum Tx rate in Mbps
1659 * @max_tx_rate: Maximum Tx rate in Mbps
1660 */
1661 int
ice_set_vf_bw(struct net_device * netdev,int vf_id,int min_tx_rate,int max_tx_rate)1662 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1663 int max_tx_rate)
1664 {
1665 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1666 struct ice_vsi *vsi;
1667 struct device *dev;
1668 struct ice_vf *vf;
1669 int ret;
1670
1671 dev = ice_pf_to_dev(pf);
1672
1673 vf = ice_get_vf_by_id(pf, vf_id);
1674 if (!vf)
1675 return -EINVAL;
1676
1677 ret = ice_check_vf_ready_for_cfg(vf);
1678 if (ret)
1679 goto out_put_vf;
1680
1681 vsi = ice_get_vf_vsi(vf);
1682 if (!vsi) {
1683 ret = -EINVAL;
1684 goto out_put_vf;
1685 }
1686
1687 if (min_tx_rate && ice_is_dcb_active(pf)) {
1688 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1689 ret = -EOPNOTSUPP;
1690 goto out_put_vf;
1691 }
1692
1693 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1694 ret = -EINVAL;
1695 goto out_put_vf;
1696 }
1697
1698 if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1699 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1700 if (ret) {
1701 dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1702 vf->vf_id);
1703 goto out_put_vf;
1704 }
1705
1706 vf->min_tx_rate = min_tx_rate;
1707 }
1708
1709 if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1710 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1711 if (ret) {
1712 dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1713 vf->vf_id);
1714 goto out_put_vf;
1715 }
1716
1717 vf->max_tx_rate = max_tx_rate;
1718 }
1719
1720 out_put_vf:
1721 ice_put_vf(vf);
1722 return ret;
1723 }
1724
1725 /**
1726 * ice_get_vf_stats - populate some stats for the VF
1727 * @netdev: the netdev of the PF
1728 * @vf_id: the host OS identifier (0-255)
1729 * @vf_stats: pointer to the OS memory to be initialized
1730 */
ice_get_vf_stats(struct net_device * netdev,int vf_id,struct ifla_vf_stats * vf_stats)1731 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1732 struct ifla_vf_stats *vf_stats)
1733 {
1734 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1735 struct ice_eth_stats *stats;
1736 struct ice_vsi *vsi;
1737 struct ice_vf *vf;
1738 int ret;
1739
1740 vf = ice_get_vf_by_id(pf, vf_id);
1741 if (!vf)
1742 return -EINVAL;
1743
1744 ret = ice_check_vf_ready_for_cfg(vf);
1745 if (ret)
1746 goto out_put_vf;
1747
1748 vsi = ice_get_vf_vsi(vf);
1749 if (!vsi) {
1750 ret = -EINVAL;
1751 goto out_put_vf;
1752 }
1753
1754 ice_update_eth_stats(vsi);
1755 stats = &vsi->eth_stats;
1756
1757 memset(vf_stats, 0, sizeof(*vf_stats));
1758
1759 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1760 stats->rx_multicast;
1761 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1762 stats->tx_multicast;
1763 vf_stats->rx_bytes = stats->rx_bytes;
1764 vf_stats->tx_bytes = stats->tx_bytes;
1765 vf_stats->broadcast = stats->rx_broadcast;
1766 vf_stats->multicast = stats->rx_multicast;
1767 vf_stats->rx_dropped = stats->rx_discards;
1768 vf_stats->tx_dropped = stats->tx_discards;
1769
1770 out_put_vf:
1771 ice_put_vf(vf);
1772 return ret;
1773 }
1774
1775 /**
1776 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1777 * @hw: hardware structure used to check the VLAN mode
1778 * @vlan_proto: VLAN TPID being checked
1779 *
1780 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1781 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1782 * Mode (SVM), then only ETH_P_8021Q is supported.
1783 */
1784 static bool
ice_is_supported_port_vlan_proto(struct ice_hw * hw,u16 vlan_proto)1785 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1786 {
1787 bool is_supported = false;
1788
1789 switch (vlan_proto) {
1790 case ETH_P_8021Q:
1791 is_supported = true;
1792 break;
1793 case ETH_P_8021AD:
1794 if (ice_is_dvm_ena(hw))
1795 is_supported = true;
1796 break;
1797 }
1798
1799 return is_supported;
1800 }
1801
1802 /**
1803 * ice_set_vf_port_vlan
1804 * @netdev: network interface device structure
1805 * @vf_id: VF identifier
1806 * @vlan_id: VLAN ID being set
1807 * @qos: priority setting
1808 * @vlan_proto: VLAN protocol
1809 *
1810 * program VF Port VLAN ID and/or QoS
1811 */
1812 int
ice_set_vf_port_vlan(struct net_device * netdev,int vf_id,u16 vlan_id,u8 qos,__be16 vlan_proto)1813 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1814 __be16 vlan_proto)
1815 {
1816 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1817 u16 local_vlan_proto = ntohs(vlan_proto);
1818 struct device *dev;
1819 struct ice_vf *vf;
1820 int ret;
1821
1822 dev = ice_pf_to_dev(pf);
1823
1824 if (vlan_id >= VLAN_N_VID || qos > 7) {
1825 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1826 vf_id, vlan_id, qos);
1827 return -EINVAL;
1828 }
1829
1830 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1831 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1832 local_vlan_proto);
1833 return -EPROTONOSUPPORT;
1834 }
1835
1836 vf = ice_get_vf_by_id(pf, vf_id);
1837 if (!vf)
1838 return -EINVAL;
1839
1840 ret = ice_check_vf_ready_for_cfg(vf);
1841 if (ret)
1842 goto out_put_vf;
1843
1844 if (ice_vf_get_port_vlan_prio(vf) == qos &&
1845 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1846 ice_vf_get_port_vlan_id(vf) == vlan_id) {
1847 /* duplicate request, so just return success */
1848 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1849 vlan_id, qos, local_vlan_proto);
1850 ret = 0;
1851 goto out_put_vf;
1852 }
1853
1854 mutex_lock(&vf->cfg_lock);
1855
1856 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1857 if (ice_vf_is_port_vlan_ena(vf))
1858 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1859 vlan_id, qos, local_vlan_proto, vf_id);
1860 else
1861 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1862
1863 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1864 mutex_unlock(&vf->cfg_lock);
1865
1866 out_put_vf:
1867 ice_put_vf(vf);
1868 return ret;
1869 }
1870
1871 /**
1872 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1873 * @vf: pointer to the VF structure
1874 */
ice_print_vf_rx_mdd_event(struct ice_vf * vf)1875 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1876 {
1877 struct ice_pf *pf = vf->pf;
1878 struct device *dev;
1879
1880 dev = ice_pf_to_dev(pf);
1881
1882 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1883 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1884 vf->dev_lan_addr,
1885 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1886 ? "on" : "off");
1887 }
1888
1889 /**
1890 * ice_print_vf_tx_mdd_event - print VF Tx malicious driver detect event
1891 * @vf: pointer to the VF structure
1892 */
ice_print_vf_tx_mdd_event(struct ice_vf * vf)1893 void ice_print_vf_tx_mdd_event(struct ice_vf *vf)
1894 {
1895 struct ice_pf *pf = vf->pf;
1896 struct device *dev;
1897
1898 dev = ice_pf_to_dev(pf);
1899
1900 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1901 vf->mdd_tx_events.count, pf->hw.pf_id, vf->vf_id,
1902 vf->dev_lan_addr,
1903 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1904 ? "on" : "off");
1905 }
1906
1907 /**
1908 * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1909 * @pf: pointer to the PF structure
1910 *
1911 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1912 */
ice_print_vfs_mdd_events(struct ice_pf * pf)1913 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1914 {
1915 struct ice_vf *vf;
1916 unsigned int bkt;
1917
1918 /* check that there are pending MDD events to print */
1919 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1920 return;
1921
1922 /* VF MDD event logs are rate limited to one second intervals */
1923 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1924 return;
1925
1926 pf->vfs.last_printed_mdd_jiffies = jiffies;
1927
1928 mutex_lock(&pf->vfs.table_lock);
1929 ice_for_each_vf(pf, bkt, vf) {
1930 /* only print Rx MDD event message if there are new events */
1931 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1932 vf->mdd_rx_events.last_printed =
1933 vf->mdd_rx_events.count;
1934 ice_print_vf_rx_mdd_event(vf);
1935 }
1936
1937 /* only print Tx MDD event message if there are new events */
1938 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1939 vf->mdd_tx_events.last_printed =
1940 vf->mdd_tx_events.count;
1941 ice_print_vf_tx_mdd_event(vf);
1942 }
1943 }
1944 mutex_unlock(&pf->vfs.table_lock);
1945 }
1946
1947 /**
1948 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1949 * @pf: pointer to the PF structure
1950 *
1951 * Called when recovering from a PF FLR to restore interrupt capability to
1952 * the VFs.
1953 */
ice_restore_all_vfs_msi_state(struct ice_pf * pf)1954 void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1955 {
1956 struct ice_vf *vf;
1957 u32 bkt;
1958
1959 ice_for_each_vf(pf, bkt, vf)
1960 pci_restore_msi_state(vf->vfdev);
1961 }
1962