xref: /linux/drivers/net/ethernet/intel/ice/ice_sriov.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16 
17 /**
18  * ice_free_vf_entries - Free all VF entries from the hash table
19  * @pf: pointer to the PF structure
20  *
21  * Iterate over the VF hash table, removing and releasing all VF entries.
22  * Called during VF teardown or as cleanup during failed VF initialization.
23  */
24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 	struct ice_vfs *vfs = &pf->vfs;
27 	struct hlist_node *tmp;
28 	struct ice_vf *vf;
29 	unsigned int bkt;
30 
31 	/* Remove all VFs from the hash table and release their main
32 	 * reference. Once all references to the VF are dropped, ice_put_vf()
33 	 * will call ice_release_vf which will remove the VF memory.
34 	 */
35 	lockdep_assert_held(&vfs->table_lock);
36 
37 	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 		hash_del_rcu(&vf->entry);
39 		ice_put_vf(vf);
40 	}
41 }
42 
43 /**
44  * ice_free_vf_res - Free a VF's resources
45  * @vf: pointer to the VF info
46  */
47 static void ice_free_vf_res(struct ice_vf *vf)
48 {
49 	struct ice_pf *pf = vf->pf;
50 	int i, last_vector_idx;
51 
52 	/* First, disable VF's configuration API to prevent OS from
53 	 * accessing the VF's VSI after it's freed or invalidated.
54 	 */
55 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
56 	ice_vf_fdir_exit(vf);
57 	/* free VF control VSI */
58 	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
59 		ice_vf_ctrl_vsi_release(vf);
60 
61 	/* free VSI and disconnect it from the parent uplink */
62 	if (vf->lan_vsi_idx != ICE_NO_VSI) {
63 		ice_vf_vsi_release(vf);
64 		vf->num_mac = 0;
65 	}
66 
67 	last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
68 
69 	/* clear VF MDD event information */
70 	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
71 	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
72 
73 	/* Disable interrupts so that VF starts in a known state */
74 	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
75 		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
76 		ice_flush(&pf->hw);
77 	}
78 	/* reset some of the state variables keeping track of the resources */
79 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
80 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
81 }
82 
83 /**
84  * ice_dis_vf_mappings
85  * @vf: pointer to the VF structure
86  */
87 static void ice_dis_vf_mappings(struct ice_vf *vf)
88 {
89 	struct ice_pf *pf = vf->pf;
90 	struct ice_vsi *vsi;
91 	struct device *dev;
92 	int first, last, v;
93 	struct ice_hw *hw;
94 
95 	hw = &pf->hw;
96 	vsi = ice_get_vf_vsi(vf);
97 	if (WARN_ON(!vsi))
98 		return;
99 
100 	dev = ice_pf_to_dev(pf);
101 	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
102 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
103 
104 	first = vf->first_vector_idx;
105 	last = first + vf->num_msix - 1;
106 	for (v = first; v <= last; v++) {
107 		u32 reg;
108 
109 		reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) |
110 		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
111 		wr32(hw, GLINT_VECT2FUNC(v), reg);
112 	}
113 
114 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
115 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
116 	else
117 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
118 
119 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
120 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
121 	else
122 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
123 }
124 
125 /**
126  * ice_sriov_free_msix_res - Reset/free any used MSIX resources
127  * @pf: pointer to the PF structure
128  *
129  * Since no MSIX entries are taken from the pf->irq_tracker then just clear
130  * the pf->sriov_base_vector.
131  *
132  * Returns 0 on success, and -EINVAL on error.
133  */
134 static int ice_sriov_free_msix_res(struct ice_pf *pf)
135 {
136 	if (!pf)
137 		return -EINVAL;
138 
139 	bitmap_free(pf->sriov_irq_bm);
140 	pf->sriov_irq_size = 0;
141 	pf->sriov_base_vector = 0;
142 
143 	return 0;
144 }
145 
146 /**
147  * ice_free_vfs - Free all VFs
148  * @pf: pointer to the PF structure
149  */
150 void ice_free_vfs(struct ice_pf *pf)
151 {
152 	struct device *dev = ice_pf_to_dev(pf);
153 	struct ice_vfs *vfs = &pf->vfs;
154 	struct ice_hw *hw = &pf->hw;
155 	struct ice_vf *vf;
156 	unsigned int bkt;
157 
158 	if (!ice_has_vfs(pf))
159 		return;
160 
161 	while (test_and_set_bit(ICE_VF_DIS, pf->state))
162 		usleep_range(1000, 2000);
163 
164 	/* Disable IOV before freeing resources. This lets any VF drivers
165 	 * running in the host get themselves cleaned up before we yank
166 	 * the carpet out from underneath their feet.
167 	 */
168 	if (!pci_vfs_assigned(pf->pdev))
169 		pci_disable_sriov(pf->pdev);
170 	else
171 		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
172 
173 	ice_eswitch_reserve_cp_queues(pf, -ice_get_num_vfs(pf));
174 
175 	mutex_lock(&vfs->table_lock);
176 
177 	ice_for_each_vf(pf, bkt, vf) {
178 		mutex_lock(&vf->cfg_lock);
179 
180 		ice_eswitch_detach(pf, vf);
181 		ice_dis_vf_qs(vf);
182 
183 		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
184 			/* disable VF qp mappings and set VF disable state */
185 			ice_dis_vf_mappings(vf);
186 			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
187 			ice_free_vf_res(vf);
188 		}
189 
190 		if (!pci_vfs_assigned(pf->pdev)) {
191 			u32 reg_idx, bit_idx;
192 
193 			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
194 			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
195 			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
196 		}
197 
198 		/* clear malicious info since the VF is getting released */
199 		list_del(&vf->mbx_info.list_entry);
200 
201 		mutex_unlock(&vf->cfg_lock);
202 	}
203 
204 	if (ice_sriov_free_msix_res(pf))
205 		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
206 
207 	vfs->num_qps_per = 0;
208 	ice_free_vf_entries(pf);
209 
210 	mutex_unlock(&vfs->table_lock);
211 
212 	clear_bit(ICE_VF_DIS, pf->state);
213 	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
214 }
215 
216 /**
217  * ice_vf_vsi_setup - Set up a VF VSI
218  * @vf: VF to setup VSI for
219  *
220  * Returns pointer to the successfully allocated VSI struct on success,
221  * otherwise returns NULL on failure.
222  */
223 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
224 {
225 	struct ice_vsi_cfg_params params = {};
226 	struct ice_pf *pf = vf->pf;
227 	struct ice_vsi *vsi;
228 
229 	params.type = ICE_VSI_VF;
230 	params.pi = ice_vf_get_port_info(vf);
231 	params.vf = vf;
232 	params.flags = ICE_VSI_FLAG_INIT;
233 
234 	vsi = ice_vsi_setup(pf, &params);
235 
236 	if (!vsi) {
237 		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
238 		ice_vf_invalidate_vsi(vf);
239 		return NULL;
240 	}
241 
242 	vf->lan_vsi_idx = vsi->idx;
243 
244 	return vsi;
245 }
246 
247 
248 /**
249  * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
250  * @vf: VF to enable MSIX mappings for
251  *
252  * Some of the registers need to be indexed/configured using hardware global
253  * device values and other registers need 0-based values, which represent PF
254  * based values.
255  */
256 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
257 {
258 	int device_based_first_msix, device_based_last_msix;
259 	int pf_based_first_msix, pf_based_last_msix, v;
260 	struct ice_pf *pf = vf->pf;
261 	int device_based_vf_id;
262 	struct ice_hw *hw;
263 	u32 reg;
264 
265 	hw = &pf->hw;
266 	pf_based_first_msix = vf->first_vector_idx;
267 	pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
268 
269 	device_based_first_msix = pf_based_first_msix +
270 		pf->hw.func_caps.common_cap.msix_vector_first_id;
271 	device_based_last_msix =
272 		(device_based_first_msix + vf->num_msix) - 1;
273 	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
274 
275 	reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) |
276 	      FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) |
277 	      VPINT_ALLOC_VALID_M;
278 	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
279 
280 	reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) |
281 	      FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) |
282 	      VPINT_ALLOC_PCI_VALID_M;
283 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
284 
285 	/* map the interrupts to its functions */
286 	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
287 		reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) |
288 		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
289 		wr32(hw, GLINT_VECT2FUNC(v), reg);
290 	}
291 
292 	/* Map mailbox interrupt to VF MSI-X vector 0 */
293 	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
294 }
295 
296 /**
297  * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
298  * @vf: VF to enable the mappings for
299  * @max_txq: max Tx queues allowed on the VF's VSI
300  * @max_rxq: max Rx queues allowed on the VF's VSI
301  */
302 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
303 {
304 	struct device *dev = ice_pf_to_dev(vf->pf);
305 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
306 	struct ice_hw *hw = &vf->pf->hw;
307 	u32 reg;
308 
309 	if (WARN_ON(!vsi))
310 		return;
311 
312 	/* set regardless of mapping mode */
313 	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
314 
315 	/* VF Tx queues allocation */
316 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
317 		/* set the VF PF Tx queue range
318 		 * VFNUMQ value should be set to (number of queues - 1). A value
319 		 * of 0 means 1 queue and a value of 255 means 256 queues
320 		 */
321 		reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) |
322 		      FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1);
323 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
324 	} else {
325 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
326 	}
327 
328 	/* set regardless of mapping mode */
329 	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
330 
331 	/* VF Rx queues allocation */
332 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
333 		/* set the VF PF Rx queue range
334 		 * VFNUMQ value should be set to (number of queues - 1). A value
335 		 * of 0 means 1 queue and a value of 255 means 256 queues
336 		 */
337 		reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) |
338 		      FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1);
339 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
340 	} else {
341 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
342 	}
343 }
344 
345 /**
346  * ice_ena_vf_mappings - enable VF MSIX and queue mapping
347  * @vf: pointer to the VF structure
348  */
349 static void ice_ena_vf_mappings(struct ice_vf *vf)
350 {
351 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
352 
353 	if (WARN_ON(!vsi))
354 		return;
355 
356 	ice_ena_vf_msix_mappings(vf);
357 	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
358 }
359 
360 /**
361  * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
362  * @vf: VF to calculate the register index for
363  * @q_vector: a q_vector associated to the VF
364  */
365 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
366 {
367 	if (!vf || !q_vector)
368 		return -EINVAL;
369 
370 	/* always add one to account for the OICR being the first MSIX */
371 	return vf->first_vector_idx + q_vector->v_idx + 1;
372 }
373 
374 /**
375  * ice_sriov_set_msix_res - Set any used MSIX resources
376  * @pf: pointer to PF structure
377  * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
378  *
379  * This function allows SR-IOV resources to be taken from the end of the PF's
380  * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
381  * just set the pf->sriov_base_vector and return success.
382  *
383  * If there are not enough resources available, return an error. This should
384  * always be caught by ice_set_per_vf_res().
385  *
386  * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
387  * in the PF's space available for SR-IOV.
388  */
389 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
390 {
391 	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
392 	int vectors_used = ice_get_max_used_msix_vector(pf);
393 	int sriov_base_vector;
394 
395 	sriov_base_vector = total_vectors - num_msix_needed;
396 
397 	/* make sure we only grab irq_tracker entries from the list end and
398 	 * that we have enough available MSIX vectors
399 	 */
400 	if (sriov_base_vector < vectors_used)
401 		return -EINVAL;
402 
403 	pf->sriov_base_vector = sriov_base_vector;
404 
405 	return 0;
406 }
407 
408 /**
409  * ice_set_per_vf_res - check if vectors and queues are available
410  * @pf: pointer to the PF structure
411  * @num_vfs: the number of SR-IOV VFs being configured
412  *
413  * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
414  * get more vectors and can enable more queues per VF. Note that this does not
415  * grab any vectors from the SW pool already allocated. Also note, that all
416  * vector counts include one for each VF's miscellaneous interrupt vector
417  * (i.e. OICR).
418  *
419  * Minimum VFs - 2 vectors, 1 queue pair
420  * Small VFs - 5 vectors, 4 queue pairs
421  * Medium VFs - 17 vectors, 16 queue pairs
422  *
423  * Second, determine number of queue pairs per VF by starting with a pre-defined
424  * maximum each VF supports. If this is not possible, then we adjust based on
425  * queue pairs available on the device.
426  *
427  * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
428  * by each VF during VF initialization and reset.
429  */
430 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
431 {
432 	int vectors_used = ice_get_max_used_msix_vector(pf);
433 	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
434 	int msix_avail_per_vf, msix_avail_for_sriov;
435 	struct device *dev = ice_pf_to_dev(pf);
436 	int err;
437 
438 	lockdep_assert_held(&pf->vfs.table_lock);
439 
440 	if (!num_vfs)
441 		return -EINVAL;
442 
443 	/* determine MSI-X resources per VF */
444 	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
445 		vectors_used;
446 	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
447 	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
448 		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
449 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
450 		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
451 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
452 		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
453 	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
454 		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
455 	} else {
456 		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
457 			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
458 			num_vfs);
459 		return -ENOSPC;
460 	}
461 
462 	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
463 			ICE_MAX_RSS_QS_PER_VF);
464 	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
465 	if (!avail_qs)
466 		num_txq = 0;
467 	else if (num_txq > avail_qs)
468 		num_txq = rounddown_pow_of_two(avail_qs);
469 
470 	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
471 			ICE_MAX_RSS_QS_PER_VF);
472 	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
473 	if (!avail_qs)
474 		num_rxq = 0;
475 	else if (num_rxq > avail_qs)
476 		num_rxq = rounddown_pow_of_two(avail_qs);
477 
478 	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
479 		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
480 			ICE_MIN_QS_PER_VF, num_vfs);
481 		return -ENOSPC;
482 	}
483 
484 	err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
485 	if (err) {
486 		dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
487 			num_vfs, err);
488 		return err;
489 	}
490 
491 	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
492 	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
493 	pf->vfs.num_msix_per = num_msix_per_vf;
494 	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
495 		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
496 
497 	return 0;
498 }
499 
500 /**
501  * ice_sriov_get_irqs - get irqs for SR-IOV usacase
502  * @pf: pointer to PF structure
503  * @needed: number of irqs to get
504  *
505  * This returns the first MSI-X vector index in PF space that is used by this
506  * VF. This index is used when accessing PF relative registers such as
507  * GLINT_VECT2FUNC and GLINT_DYN_CTL.
508  * This will always be the OICR index in the AVF driver so any functionality
509  * using vf->first_vector_idx for queue configuration_id: id of VF which will
510  * use this irqs
511  *
512  * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are
513  * allocated from the end of global irq index. First bit in sriov_irq_bm means
514  * last irq index etc. It simplifies extension of SRIOV vectors.
515  * They will be always located from sriov_base_vector to the last irq
516  * index. While increasing/decreasing sriov_base_vector can be moved.
517  */
518 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed)
519 {
520 	int res = bitmap_find_next_zero_area(pf->sriov_irq_bm,
521 					     pf->sriov_irq_size, 0, needed, 0);
522 	/* conversion from number in bitmap to global irq index */
523 	int index = pf->sriov_irq_size - res - needed;
524 
525 	if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector)
526 		return -ENOENT;
527 
528 	bitmap_set(pf->sriov_irq_bm, res, needed);
529 	return index;
530 }
531 
532 /**
533  * ice_sriov_free_irqs - free irqs used by the VF
534  * @pf: pointer to PF structure
535  * @vf: pointer to VF structure
536  */
537 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf)
538 {
539 	/* Move back from first vector index to first index in bitmap */
540 	int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix;
541 
542 	bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix);
543 	vf->first_vector_idx = 0;
544 }
545 
546 /**
547  * ice_init_vf_vsi_res - initialize/setup VF VSI resources
548  * @vf: VF to initialize/setup the VSI for
549  *
550  * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
551  * VF VSI's broadcast filter and is only used during initial VF creation.
552  */
553 static int ice_init_vf_vsi_res(struct ice_vf *vf)
554 {
555 	struct ice_pf *pf = vf->pf;
556 	struct ice_vsi *vsi;
557 	int err;
558 
559 	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
560 	if (vf->first_vector_idx < 0)
561 		return -ENOMEM;
562 
563 	vsi = ice_vf_vsi_setup(vf);
564 	if (!vsi)
565 		return -ENOMEM;
566 
567 	err = ice_vf_init_host_cfg(vf, vsi);
568 	if (err)
569 		goto release_vsi;
570 
571 	return 0;
572 
573 release_vsi:
574 	ice_vf_vsi_release(vf);
575 	return err;
576 }
577 
578 /**
579  * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
580  * @pf: PF the VFs are associated with
581  */
582 static int ice_start_vfs(struct ice_pf *pf)
583 {
584 	struct ice_hw *hw = &pf->hw;
585 	unsigned int bkt, it_cnt;
586 	struct ice_vf *vf;
587 	int retval;
588 
589 	lockdep_assert_held(&pf->vfs.table_lock);
590 
591 	it_cnt = 0;
592 	ice_for_each_vf(pf, bkt, vf) {
593 		vf->vf_ops->clear_reset_trigger(vf);
594 
595 		retval = ice_init_vf_vsi_res(vf);
596 		if (retval) {
597 			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
598 				vf->vf_id, retval);
599 			goto teardown;
600 		}
601 
602 		retval = ice_eswitch_attach(pf, vf);
603 		if (retval) {
604 			dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d",
605 				vf->vf_id, retval);
606 			ice_vf_vsi_release(vf);
607 			goto teardown;
608 		}
609 
610 		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
611 		ice_ena_vf_mappings(vf);
612 		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
613 		it_cnt++;
614 	}
615 
616 	ice_flush(hw);
617 	return 0;
618 
619 teardown:
620 	ice_for_each_vf(pf, bkt, vf) {
621 		if (it_cnt == 0)
622 			break;
623 
624 		ice_dis_vf_mappings(vf);
625 		ice_vf_vsi_release(vf);
626 		it_cnt--;
627 	}
628 
629 	return retval;
630 }
631 
632 /**
633  * ice_sriov_free_vf - Free VF memory after all references are dropped
634  * @vf: pointer to VF to free
635  *
636  * Called by ice_put_vf through ice_release_vf once the last reference to a VF
637  * structure has been dropped.
638  */
639 static void ice_sriov_free_vf(struct ice_vf *vf)
640 {
641 	mutex_destroy(&vf->cfg_lock);
642 
643 	kfree_rcu(vf, rcu);
644 }
645 
646 /**
647  * ice_sriov_clear_reset_state - clears VF Reset status register
648  * @vf: the vf to configure
649  */
650 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
651 {
652 	struct ice_hw *hw = &vf->pf->hw;
653 
654 	/* Clear the reset status register so that VF immediately sees that
655 	 * the device is resetting, even if hardware hasn't yet gotten around
656 	 * to clearing VFGEN_RSTAT for us.
657 	 */
658 	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
659 }
660 
661 /**
662  * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
663  * @vf: the vf to configure
664  */
665 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
666 {
667 	struct ice_pf *pf = vf->pf;
668 
669 	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
670 	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
671 }
672 
673 /**
674  * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
675  * @vf: pointer to VF structure
676  * @is_vflr: true if reset occurred due to VFLR
677  *
678  * Trigger and cleanup after a VF reset for a SR-IOV VF.
679  */
680 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
681 {
682 	struct ice_pf *pf = vf->pf;
683 	u32 reg, reg_idx, bit_idx;
684 	unsigned int vf_abs_id, i;
685 	struct device *dev;
686 	struct ice_hw *hw;
687 
688 	dev = ice_pf_to_dev(pf);
689 	hw = &pf->hw;
690 	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
691 
692 	/* In the case of a VFLR, HW has already reset the VF and we just need
693 	 * to clean up. Otherwise we must first trigger the reset using the
694 	 * VFRTRIG register.
695 	 */
696 	if (!is_vflr) {
697 		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
698 		reg |= VPGEN_VFRTRIG_VFSWR_M;
699 		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
700 	}
701 
702 	/* clear the VFLR bit in GLGEN_VFLRSTAT */
703 	reg_idx = (vf_abs_id) / 32;
704 	bit_idx = (vf_abs_id) % 32;
705 	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
706 	ice_flush(hw);
707 
708 	wr32(hw, PF_PCI_CIAA,
709 	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
710 	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
711 		reg = rd32(hw, PF_PCI_CIAD);
712 		/* no transactions pending so stop polling */
713 		if ((reg & VF_TRANS_PENDING_M) == 0)
714 			break;
715 
716 		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
717 		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
718 	}
719 }
720 
721 /**
722  * ice_sriov_poll_reset_status - poll SRIOV VF reset status
723  * @vf: pointer to VF structure
724  *
725  * Returns true when reset is successful, else returns false
726  */
727 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
728 {
729 	struct ice_pf *pf = vf->pf;
730 	unsigned int i;
731 	u32 reg;
732 
733 	for (i = 0; i < 10; i++) {
734 		/* VF reset requires driver to first reset the VF and then
735 		 * poll the status register to make sure that the reset
736 		 * completed successfully.
737 		 */
738 		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
739 		if (reg & VPGEN_VFRSTAT_VFRD_M)
740 			return true;
741 
742 		/* only sleep if the reset is not done */
743 		usleep_range(10, 20);
744 	}
745 	return false;
746 }
747 
748 /**
749  * ice_sriov_clear_reset_trigger - enable VF to access hardware
750  * @vf: VF to enabled hardware access for
751  */
752 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
753 {
754 	struct ice_hw *hw = &vf->pf->hw;
755 	u32 reg;
756 
757 	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
758 	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
759 	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
760 	ice_flush(hw);
761 }
762 
763 /**
764  * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
765  * @vf: VF to perform tasks on
766  */
767 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
768 {
769 	ice_ena_vf_mappings(vf);
770 	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
771 }
772 
773 static const struct ice_vf_ops ice_sriov_vf_ops = {
774 	.reset_type = ICE_VF_RESET,
775 	.free = ice_sriov_free_vf,
776 	.clear_reset_state = ice_sriov_clear_reset_state,
777 	.clear_mbx_register = ice_sriov_clear_mbx_register,
778 	.trigger_reset_register = ice_sriov_trigger_reset_register,
779 	.poll_reset_status = ice_sriov_poll_reset_status,
780 	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
781 	.irq_close = NULL,
782 	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
783 };
784 
785 /**
786  * ice_create_vf_entries - Allocate and insert VF entries
787  * @pf: pointer to the PF structure
788  * @num_vfs: the number of VFs to allocate
789  *
790  * Allocate new VF entries and insert them into the hash table. Set some
791  * basic default fields for initializing the new VFs.
792  *
793  * After this function exits, the hash table will have num_vfs entries
794  * inserted.
795  *
796  * Returns 0 on success or an integer error code on failure.
797  */
798 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
799 {
800 	struct pci_dev *pdev = pf->pdev;
801 	struct ice_vfs *vfs = &pf->vfs;
802 	struct pci_dev *vfdev = NULL;
803 	struct ice_vf *vf;
804 	u16 vf_pdev_id;
805 	int err, pos;
806 
807 	lockdep_assert_held(&vfs->table_lock);
808 
809 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
810 	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
811 
812 	for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
813 		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
814 		if (!vf) {
815 			err = -ENOMEM;
816 			goto err_free_entries;
817 		}
818 		kref_init(&vf->refcnt);
819 
820 		vf->pf = pf;
821 		vf->vf_id = vf_id;
822 
823 		/* set sriov vf ops for VFs created during SRIOV flow */
824 		vf->vf_ops = &ice_sriov_vf_ops;
825 
826 		ice_initialize_vf_entry(vf);
827 
828 		do {
829 			vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
830 		} while (vfdev && vfdev->physfn != pdev);
831 		vf->vfdev = vfdev;
832 		vf->vf_sw_id = pf->first_sw;
833 
834 		pci_dev_get(vfdev);
835 
836 		/* set default number of MSI-X */
837 		vf->num_msix = pf->vfs.num_msix_per;
838 		vf->num_vf_qs = pf->vfs.num_qps_per;
839 		ice_vc_set_default_allowlist(vf);
840 
841 		hash_add_rcu(vfs->table, &vf->entry, vf_id);
842 	}
843 
844 	/* Decrement of refcount done by pci_get_device() inside the loop does
845 	 * not touch the last iteration's vfdev, so it has to be done manually
846 	 * to balance pci_dev_get() added within the loop.
847 	 */
848 	pci_dev_put(vfdev);
849 
850 	return 0;
851 
852 err_free_entries:
853 	ice_free_vf_entries(pf);
854 	return err;
855 }
856 
857 /**
858  * ice_ena_vfs - enable VFs so they are ready to be used
859  * @pf: pointer to the PF structure
860  * @num_vfs: number of VFs to enable
861  */
862 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
863 {
864 	int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
865 	struct device *dev = ice_pf_to_dev(pf);
866 	struct ice_hw *hw = &pf->hw;
867 	int ret;
868 
869 	pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL);
870 	if (!pf->sriov_irq_bm)
871 		return -ENOMEM;
872 	pf->sriov_irq_size = total_vectors;
873 
874 	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
875 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
876 	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
877 	set_bit(ICE_OICR_INTR_DIS, pf->state);
878 	ice_flush(hw);
879 
880 	ret = pci_enable_sriov(pf->pdev, num_vfs);
881 	if (ret)
882 		goto err_unroll_intr;
883 
884 	mutex_lock(&pf->vfs.table_lock);
885 
886 	ret = ice_set_per_vf_res(pf, num_vfs);
887 	if (ret) {
888 		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
889 			num_vfs, ret);
890 		goto err_unroll_sriov;
891 	}
892 
893 	ret = ice_create_vf_entries(pf, num_vfs);
894 	if (ret) {
895 		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
896 			num_vfs);
897 		goto err_unroll_sriov;
898 	}
899 
900 	ice_eswitch_reserve_cp_queues(pf, num_vfs);
901 	ret = ice_start_vfs(pf);
902 	if (ret) {
903 		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
904 		ret = -EAGAIN;
905 		goto err_unroll_vf_entries;
906 	}
907 
908 	clear_bit(ICE_VF_DIS, pf->state);
909 
910 	/* rearm global interrupts */
911 	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
912 		ice_irq_dynamic_ena(hw, NULL, NULL);
913 
914 	mutex_unlock(&pf->vfs.table_lock);
915 
916 	return 0;
917 
918 err_unroll_vf_entries:
919 	ice_free_vf_entries(pf);
920 err_unroll_sriov:
921 	mutex_unlock(&pf->vfs.table_lock);
922 	pci_disable_sriov(pf->pdev);
923 err_unroll_intr:
924 	/* rearm interrupts here */
925 	ice_irq_dynamic_ena(hw, NULL, NULL);
926 	clear_bit(ICE_OICR_INTR_DIS, pf->state);
927 	bitmap_free(pf->sriov_irq_bm);
928 	return ret;
929 }
930 
931 /**
932  * ice_pci_sriov_ena - Enable or change number of VFs
933  * @pf: pointer to the PF structure
934  * @num_vfs: number of VFs to allocate
935  *
936  * Returns 0 on success and negative on failure
937  */
938 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
939 {
940 	struct device *dev = ice_pf_to_dev(pf);
941 	int err;
942 
943 	if (!num_vfs) {
944 		ice_free_vfs(pf);
945 		return 0;
946 	}
947 
948 	if (num_vfs > pf->vfs.num_supported) {
949 		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
950 			num_vfs, pf->vfs.num_supported);
951 		return -EOPNOTSUPP;
952 	}
953 
954 	dev_info(dev, "Enabling %d VFs\n", num_vfs);
955 	err = ice_ena_vfs(pf, num_vfs);
956 	if (err) {
957 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
958 		return err;
959 	}
960 
961 	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
962 	return 0;
963 }
964 
965 /**
966  * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
967  * @pf: PF to enabled SR-IOV on
968  */
969 static int ice_check_sriov_allowed(struct ice_pf *pf)
970 {
971 	struct device *dev = ice_pf_to_dev(pf);
972 
973 	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
974 		dev_err(dev, "This device is not capable of SR-IOV\n");
975 		return -EOPNOTSUPP;
976 	}
977 
978 	if (ice_is_safe_mode(pf)) {
979 		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
980 		return -EOPNOTSUPP;
981 	}
982 
983 	if (!ice_pf_state_is_nominal(pf)) {
984 		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
985 		return -EBUSY;
986 	}
987 
988 	return 0;
989 }
990 
991 /**
992  * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
993  * @pdev: pointer to pci_dev struct
994  *
995  * The function is called via sysfs ops
996  */
997 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
998 {
999 	struct ice_pf *pf = pci_get_drvdata(pdev);
1000 
1001 	return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf);
1002 }
1003 
1004 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move)
1005 {
1006 	if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf))
1007 		return -ENOMEM;
1008 
1009 	pf->sriov_base_vector -= move;
1010 	return 0;
1011 }
1012 
1013 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
1014 {
1015 	u16 vf_ids[ICE_MAX_SRIOV_VFS];
1016 	struct ice_vf *tmp_vf;
1017 	int to_remap = 0, bkt;
1018 
1019 	/* For better irqs usage try to remap irqs of VFs
1020 	 * that aren't running yet
1021 	 */
1022 	ice_for_each_vf(pf, bkt, tmp_vf) {
1023 		/* skip VF which is changing the number of MSI-X */
1024 		if (restricted_id == tmp_vf->vf_id ||
1025 		    test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
1026 			continue;
1027 
1028 		ice_dis_vf_mappings(tmp_vf);
1029 		ice_sriov_free_irqs(pf, tmp_vf);
1030 
1031 		vf_ids[to_remap] = tmp_vf->vf_id;
1032 		to_remap += 1;
1033 	}
1034 
1035 	for (int i = 0; i < to_remap; i++) {
1036 		tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
1037 		if (!tmp_vf)
1038 			continue;
1039 
1040 		tmp_vf->first_vector_idx =
1041 			ice_sriov_get_irqs(pf, tmp_vf->num_msix);
1042 		/* there is no need to rebuild VSI as we are only changing the
1043 		 * vector indexes not amount of MSI-X or queues
1044 		 */
1045 		ice_ena_vf_mappings(tmp_vf);
1046 		ice_put_vf(tmp_vf);
1047 	}
1048 }
1049 
1050 /**
1051  * ice_sriov_set_msix_vec_count
1052  * @vf_dev: pointer to pci_dev struct of VF device
1053  * @msix_vec_count: new value for MSI-X amount on this VF
1054  *
1055  * Set requested MSI-X, queues and registers for @vf_dev.
1056  *
1057  * First do some sanity checks like if there are any VFs, if the new value
1058  * is correct etc. Then disable old mapping (MSI-X and queues registers), change
1059  * MSI-X and queues, rebuild VSI and enable new mapping.
1060  *
1061  * If it is possible (driver not binded to VF) try to remap also other VFs to
1062  * linearize irqs register usage.
1063  */
1064 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
1065 {
1066 	struct pci_dev *pdev = pci_physfn(vf_dev);
1067 	struct ice_pf *pf = pci_get_drvdata(pdev);
1068 	u16 prev_msix, prev_queues, queues;
1069 	bool needs_rebuild = false;
1070 	struct ice_vsi *vsi;
1071 	struct ice_vf *vf;
1072 	int id;
1073 
1074 	if (!ice_get_num_vfs(pf))
1075 		return -ENOENT;
1076 
1077 	if (!msix_vec_count)
1078 		return 0;
1079 
1080 	queues = msix_vec_count;
1081 	/* add 1 MSI-X for OICR */
1082 	msix_vec_count += 1;
1083 
1084 	if (queues > min(ice_get_avail_txq_count(pf),
1085 			 ice_get_avail_rxq_count(pf)))
1086 		return -EINVAL;
1087 
1088 	if (msix_vec_count < ICE_MIN_INTR_PER_VF)
1089 		return -EINVAL;
1090 
1091 	/* Transition of PCI VF function number to function_id */
1092 	for (id = 0; id < pci_num_vf(pdev); id++) {
1093 		if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id))
1094 			break;
1095 	}
1096 
1097 	if (id == pci_num_vf(pdev))
1098 		return -ENOENT;
1099 
1100 	vf = ice_get_vf_by_id(pf, id);
1101 
1102 	if (!vf)
1103 		return -ENOENT;
1104 
1105 	vsi = ice_get_vf_vsi(vf);
1106 	if (!vsi)
1107 		return -ENOENT;
1108 
1109 	prev_msix = vf->num_msix;
1110 	prev_queues = vf->num_vf_qs;
1111 
1112 	if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) {
1113 		ice_put_vf(vf);
1114 		return -ENOSPC;
1115 	}
1116 
1117 	ice_dis_vf_mappings(vf);
1118 	ice_sriov_free_irqs(pf, vf);
1119 
1120 	/* Remap all VFs beside the one is now configured */
1121 	ice_sriov_remap_vectors(pf, vf->vf_id);
1122 
1123 	vf->num_msix = msix_vec_count;
1124 	vf->num_vf_qs = queues;
1125 	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1126 	if (vf->first_vector_idx < 0)
1127 		goto unroll;
1128 
1129 	if (ice_vf_reconfig_vsi(vf) || ice_vf_init_host_cfg(vf, vsi)) {
1130 		/* Try to rebuild with previous values */
1131 		needs_rebuild = true;
1132 		goto unroll;
1133 	}
1134 
1135 	dev_info(ice_pf_to_dev(pf),
1136 		 "Changing VF %d resources to %d vectors and %d queues\n",
1137 		 vf->vf_id, vf->num_msix, vf->num_vf_qs);
1138 
1139 	ice_ena_vf_mappings(vf);
1140 	ice_put_vf(vf);
1141 
1142 	return 0;
1143 
1144 unroll:
1145 	dev_info(ice_pf_to_dev(pf),
1146 		 "Can't set %d vectors on VF %d, falling back to %d\n",
1147 		 vf->num_msix, vf->vf_id, prev_msix);
1148 
1149 	vf->num_msix = prev_msix;
1150 	vf->num_vf_qs = prev_queues;
1151 	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1152 	if (vf->first_vector_idx < 0)
1153 		return -EINVAL;
1154 
1155 	if (needs_rebuild) {
1156 		ice_vf_reconfig_vsi(vf);
1157 		ice_vf_init_host_cfg(vf, vsi);
1158 	}
1159 
1160 	ice_ena_vf_mappings(vf);
1161 	ice_put_vf(vf);
1162 
1163 	return -EINVAL;
1164 }
1165 
1166 /**
1167  * ice_sriov_configure - Enable or change number of VFs via sysfs
1168  * @pdev: pointer to a pci_dev structure
1169  * @num_vfs: number of VFs to allocate or 0 to free VFs
1170  *
1171  * This function is called when the user updates the number of VFs in sysfs. On
1172  * success return whatever num_vfs was set to by the caller. Return negative on
1173  * failure.
1174  */
1175 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1176 {
1177 	struct ice_pf *pf = pci_get_drvdata(pdev);
1178 	struct device *dev = ice_pf_to_dev(pf);
1179 	int err;
1180 
1181 	err = ice_check_sriov_allowed(pf);
1182 	if (err)
1183 		return err;
1184 
1185 	if (!num_vfs) {
1186 		if (!pci_vfs_assigned(pdev)) {
1187 			ice_free_vfs(pf);
1188 			return 0;
1189 		}
1190 
1191 		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1192 		return -EBUSY;
1193 	}
1194 
1195 	err = ice_pci_sriov_ena(pf, num_vfs);
1196 	if (err)
1197 		return err;
1198 
1199 	return num_vfs;
1200 }
1201 
1202 /**
1203  * ice_process_vflr_event - Free VF resources via IRQ calls
1204  * @pf: pointer to the PF structure
1205  *
1206  * called from the VFLR IRQ handler to
1207  * free up VF resources and state variables
1208  */
1209 void ice_process_vflr_event(struct ice_pf *pf)
1210 {
1211 	struct ice_hw *hw = &pf->hw;
1212 	struct ice_vf *vf;
1213 	unsigned int bkt;
1214 	u32 reg;
1215 
1216 	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1217 	    !ice_has_vfs(pf))
1218 		return;
1219 
1220 	mutex_lock(&pf->vfs.table_lock);
1221 	ice_for_each_vf(pf, bkt, vf) {
1222 		u32 reg_idx, bit_idx;
1223 
1224 		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1225 		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1226 		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1227 		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1228 		if (reg & BIT(bit_idx))
1229 			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1230 			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1231 	}
1232 	mutex_unlock(&pf->vfs.table_lock);
1233 }
1234 
1235 /**
1236  * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1237  * @pf: PF used to index all VFs
1238  * @pfq: queue index relative to the PF's function space
1239  *
1240  * If no VF is found who owns the pfq then return NULL, otherwise return a
1241  * pointer to the VF who owns the pfq
1242  *
1243  * If this function returns non-NULL, it acquires a reference count of the VF
1244  * structure. The caller is responsible for calling ice_put_vf() to drop this
1245  * reference.
1246  */
1247 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1248 {
1249 	struct ice_vf *vf;
1250 	unsigned int bkt;
1251 
1252 	rcu_read_lock();
1253 	ice_for_each_vf_rcu(pf, bkt, vf) {
1254 		struct ice_vsi *vsi;
1255 		u16 rxq_idx;
1256 
1257 		vsi = ice_get_vf_vsi(vf);
1258 		if (!vsi)
1259 			continue;
1260 
1261 		ice_for_each_rxq(vsi, rxq_idx)
1262 			if (vsi->rxq_map[rxq_idx] == pfq) {
1263 				struct ice_vf *found;
1264 
1265 				if (kref_get_unless_zero(&vf->refcnt))
1266 					found = vf;
1267 				else
1268 					found = NULL;
1269 				rcu_read_unlock();
1270 				return found;
1271 			}
1272 	}
1273 	rcu_read_unlock();
1274 
1275 	return NULL;
1276 }
1277 
1278 /**
1279  * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1280  * @pf: PF used for conversion
1281  * @globalq: global queue index used to convert to PF space queue index
1282  */
1283 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1284 {
1285 	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1286 }
1287 
1288 /**
1289  * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1290  * @pf: PF that the LAN overflow event happened on
1291  * @event: structure holding the event information for the LAN overflow event
1292  *
1293  * Determine if the LAN overflow event was caused by a VF queue. If it was not
1294  * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1295  * reset on the offending VF.
1296  */
1297 void
1298 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1299 {
1300 	u32 gldcb_rtctq, queue;
1301 	struct ice_vf *vf;
1302 
1303 	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1304 	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1305 
1306 	/* event returns device global Rx queue number */
1307 	queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq);
1308 
1309 	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1310 	if (!vf)
1311 		return;
1312 
1313 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1314 	ice_put_vf(vf);
1315 }
1316 
1317 /**
1318  * ice_set_vf_spoofchk
1319  * @netdev: network interface device structure
1320  * @vf_id: VF identifier
1321  * @ena: flag to enable or disable feature
1322  *
1323  * Enable or disable VF spoof checking
1324  */
1325 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1326 {
1327 	struct ice_netdev_priv *np = netdev_priv(netdev);
1328 	struct ice_pf *pf = np->vsi->back;
1329 	struct ice_vsi *vf_vsi;
1330 	struct device *dev;
1331 	struct ice_vf *vf;
1332 	int ret;
1333 
1334 	dev = ice_pf_to_dev(pf);
1335 
1336 	vf = ice_get_vf_by_id(pf, vf_id);
1337 	if (!vf)
1338 		return -EINVAL;
1339 
1340 	ret = ice_check_vf_ready_for_cfg(vf);
1341 	if (ret)
1342 		goto out_put_vf;
1343 
1344 	vf_vsi = ice_get_vf_vsi(vf);
1345 	if (!vf_vsi) {
1346 		netdev_err(netdev, "VSI %d for VF %d is null\n",
1347 			   vf->lan_vsi_idx, vf->vf_id);
1348 		ret = -EINVAL;
1349 		goto out_put_vf;
1350 	}
1351 
1352 	if (vf_vsi->type != ICE_VSI_VF) {
1353 		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1354 			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1355 		ret = -ENODEV;
1356 		goto out_put_vf;
1357 	}
1358 
1359 	if (ena == vf->spoofchk) {
1360 		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1361 		ret = 0;
1362 		goto out_put_vf;
1363 	}
1364 
1365 	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1366 	if (ret)
1367 		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1368 			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1369 	else
1370 		vf->spoofchk = ena;
1371 
1372 out_put_vf:
1373 	ice_put_vf(vf);
1374 	return ret;
1375 }
1376 
1377 /**
1378  * ice_get_vf_cfg
1379  * @netdev: network interface device structure
1380  * @vf_id: VF identifier
1381  * @ivi: VF configuration structure
1382  *
1383  * return VF configuration
1384  */
1385 int
1386 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1387 {
1388 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1389 	struct ice_vf *vf;
1390 	int ret;
1391 
1392 	vf = ice_get_vf_by_id(pf, vf_id);
1393 	if (!vf)
1394 		return -EINVAL;
1395 
1396 	ret = ice_check_vf_ready_for_cfg(vf);
1397 	if (ret)
1398 		goto out_put_vf;
1399 
1400 	ivi->vf = vf_id;
1401 	ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1402 
1403 	/* VF configuration for VLAN and applicable QoS */
1404 	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1405 	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1406 	if (ice_vf_is_port_vlan_ena(vf))
1407 		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1408 
1409 	ivi->trusted = vf->trusted;
1410 	ivi->spoofchk = vf->spoofchk;
1411 	if (!vf->link_forced)
1412 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1413 	else if (vf->link_up)
1414 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1415 	else
1416 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1417 	ivi->max_tx_rate = vf->max_tx_rate;
1418 	ivi->min_tx_rate = vf->min_tx_rate;
1419 
1420 out_put_vf:
1421 	ice_put_vf(vf);
1422 	return ret;
1423 }
1424 
1425 /**
1426  * ice_set_vf_mac
1427  * @netdev: network interface device structure
1428  * @vf_id: VF identifier
1429  * @mac: MAC address
1430  *
1431  * program VF MAC address
1432  */
1433 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1434 {
1435 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1436 	struct ice_vf *vf;
1437 	int ret;
1438 
1439 	if (is_multicast_ether_addr(mac)) {
1440 		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1441 		return -EINVAL;
1442 	}
1443 
1444 	vf = ice_get_vf_by_id(pf, vf_id);
1445 	if (!vf)
1446 		return -EINVAL;
1447 
1448 	/* nothing left to do, unicast MAC already set */
1449 	if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1450 	    ether_addr_equal(vf->hw_lan_addr, mac)) {
1451 		ret = 0;
1452 		goto out_put_vf;
1453 	}
1454 
1455 	ret = ice_check_vf_ready_for_cfg(vf);
1456 	if (ret)
1457 		goto out_put_vf;
1458 
1459 	mutex_lock(&vf->cfg_lock);
1460 
1461 	/* VF is notified of its new MAC via the PF's response to the
1462 	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1463 	 */
1464 	ether_addr_copy(vf->dev_lan_addr, mac);
1465 	ether_addr_copy(vf->hw_lan_addr, mac);
1466 	if (is_zero_ether_addr(mac)) {
1467 		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1468 		vf->pf_set_mac = false;
1469 		netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1470 			    vf->vf_id);
1471 	} else {
1472 		/* PF will add MAC rule for the VF */
1473 		vf->pf_set_mac = true;
1474 		netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1475 			    mac, vf_id);
1476 	}
1477 
1478 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1479 	mutex_unlock(&vf->cfg_lock);
1480 
1481 out_put_vf:
1482 	ice_put_vf(vf);
1483 	return ret;
1484 }
1485 
1486 /**
1487  * ice_set_vf_trust
1488  * @netdev: network interface device structure
1489  * @vf_id: VF identifier
1490  * @trusted: Boolean value to enable/disable trusted VF
1491  *
1492  * Enable or disable a given VF as trusted
1493  */
1494 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1495 {
1496 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1497 	struct ice_vf *vf;
1498 	int ret;
1499 
1500 	vf = ice_get_vf_by_id(pf, vf_id);
1501 	if (!vf)
1502 		return -EINVAL;
1503 
1504 	if (ice_is_eswitch_mode_switchdev(pf)) {
1505 		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1506 		return -EOPNOTSUPP;
1507 	}
1508 
1509 	ret = ice_check_vf_ready_for_cfg(vf);
1510 	if (ret)
1511 		goto out_put_vf;
1512 
1513 	/* Check if already trusted */
1514 	if (trusted == vf->trusted) {
1515 		ret = 0;
1516 		goto out_put_vf;
1517 	}
1518 
1519 	mutex_lock(&vf->cfg_lock);
1520 
1521 	vf->trusted = trusted;
1522 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1523 	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1524 		 vf_id, trusted ? "" : "un");
1525 
1526 	mutex_unlock(&vf->cfg_lock);
1527 
1528 out_put_vf:
1529 	ice_put_vf(vf);
1530 	return ret;
1531 }
1532 
1533 /**
1534  * ice_set_vf_link_state
1535  * @netdev: network interface device structure
1536  * @vf_id: VF identifier
1537  * @link_state: required link state
1538  *
1539  * Set VF's link state, irrespective of physical link state status
1540  */
1541 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1542 {
1543 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1544 	struct ice_vf *vf;
1545 	int ret;
1546 
1547 	vf = ice_get_vf_by_id(pf, vf_id);
1548 	if (!vf)
1549 		return -EINVAL;
1550 
1551 	ret = ice_check_vf_ready_for_cfg(vf);
1552 	if (ret)
1553 		goto out_put_vf;
1554 
1555 	switch (link_state) {
1556 	case IFLA_VF_LINK_STATE_AUTO:
1557 		vf->link_forced = false;
1558 		break;
1559 	case IFLA_VF_LINK_STATE_ENABLE:
1560 		vf->link_forced = true;
1561 		vf->link_up = true;
1562 		break;
1563 	case IFLA_VF_LINK_STATE_DISABLE:
1564 		vf->link_forced = true;
1565 		vf->link_up = false;
1566 		break;
1567 	default:
1568 		ret = -EINVAL;
1569 		goto out_put_vf;
1570 	}
1571 
1572 	ice_vc_notify_vf_link_state(vf);
1573 
1574 out_put_vf:
1575 	ice_put_vf(vf);
1576 	return ret;
1577 }
1578 
1579 /**
1580  * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1581  * @pf: PF associated with VFs
1582  */
1583 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1584 {
1585 	struct ice_vf *vf;
1586 	unsigned int bkt;
1587 	int rate = 0;
1588 
1589 	rcu_read_lock();
1590 	ice_for_each_vf_rcu(pf, bkt, vf)
1591 		rate += vf->min_tx_rate;
1592 	rcu_read_unlock();
1593 
1594 	return rate;
1595 }
1596 
1597 /**
1598  * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1599  * @vf: VF trying to configure min_tx_rate
1600  * @min_tx_rate: min Tx rate in Mbps
1601  *
1602  * Check if the min_tx_rate being passed in will cause oversubscription of total
1603  * min_tx_rate based on the current link speed and all other VFs configured
1604  * min_tx_rate
1605  *
1606  * Return true if the passed min_tx_rate would cause oversubscription, else
1607  * return false
1608  */
1609 static bool
1610 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1611 {
1612 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1613 	int all_vfs_min_tx_rate;
1614 	int link_speed_mbps;
1615 
1616 	if (WARN_ON(!vsi))
1617 		return false;
1618 
1619 	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1620 	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1621 
1622 	/* this VF's previous rate is being overwritten */
1623 	all_vfs_min_tx_rate -= vf->min_tx_rate;
1624 
1625 	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1626 		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1627 			min_tx_rate, vf->vf_id,
1628 			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1629 			link_speed_mbps);
1630 		return true;
1631 	}
1632 
1633 	return false;
1634 }
1635 
1636 /**
1637  * ice_set_vf_bw - set min/max VF bandwidth
1638  * @netdev: network interface device structure
1639  * @vf_id: VF identifier
1640  * @min_tx_rate: Minimum Tx rate in Mbps
1641  * @max_tx_rate: Maximum Tx rate in Mbps
1642  */
1643 int
1644 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1645 	      int max_tx_rate)
1646 {
1647 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1648 	struct ice_vsi *vsi;
1649 	struct device *dev;
1650 	struct ice_vf *vf;
1651 	int ret;
1652 
1653 	dev = ice_pf_to_dev(pf);
1654 
1655 	vf = ice_get_vf_by_id(pf, vf_id);
1656 	if (!vf)
1657 		return -EINVAL;
1658 
1659 	ret = ice_check_vf_ready_for_cfg(vf);
1660 	if (ret)
1661 		goto out_put_vf;
1662 
1663 	vsi = ice_get_vf_vsi(vf);
1664 	if (!vsi) {
1665 		ret = -EINVAL;
1666 		goto out_put_vf;
1667 	}
1668 
1669 	if (min_tx_rate && ice_is_dcb_active(pf)) {
1670 		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1671 		ret = -EOPNOTSUPP;
1672 		goto out_put_vf;
1673 	}
1674 
1675 	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1676 		ret = -EINVAL;
1677 		goto out_put_vf;
1678 	}
1679 
1680 	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1681 		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1682 		if (ret) {
1683 			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1684 				vf->vf_id);
1685 			goto out_put_vf;
1686 		}
1687 
1688 		vf->min_tx_rate = min_tx_rate;
1689 	}
1690 
1691 	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1692 		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1693 		if (ret) {
1694 			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1695 				vf->vf_id);
1696 			goto out_put_vf;
1697 		}
1698 
1699 		vf->max_tx_rate = max_tx_rate;
1700 	}
1701 
1702 out_put_vf:
1703 	ice_put_vf(vf);
1704 	return ret;
1705 }
1706 
1707 /**
1708  * ice_get_vf_stats - populate some stats for the VF
1709  * @netdev: the netdev of the PF
1710  * @vf_id: the host OS identifier (0-255)
1711  * @vf_stats: pointer to the OS memory to be initialized
1712  */
1713 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1714 		     struct ifla_vf_stats *vf_stats)
1715 {
1716 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1717 	struct ice_eth_stats *stats;
1718 	struct ice_vsi *vsi;
1719 	struct ice_vf *vf;
1720 	int ret;
1721 
1722 	vf = ice_get_vf_by_id(pf, vf_id);
1723 	if (!vf)
1724 		return -EINVAL;
1725 
1726 	ret = ice_check_vf_ready_for_cfg(vf);
1727 	if (ret)
1728 		goto out_put_vf;
1729 
1730 	vsi = ice_get_vf_vsi(vf);
1731 	if (!vsi) {
1732 		ret = -EINVAL;
1733 		goto out_put_vf;
1734 	}
1735 
1736 	ice_update_eth_stats(vsi);
1737 	stats = &vsi->eth_stats;
1738 
1739 	memset(vf_stats, 0, sizeof(*vf_stats));
1740 
1741 	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1742 		stats->rx_multicast;
1743 	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1744 		stats->tx_multicast;
1745 	vf_stats->rx_bytes   = stats->rx_bytes;
1746 	vf_stats->tx_bytes   = stats->tx_bytes;
1747 	vf_stats->broadcast  = stats->rx_broadcast;
1748 	vf_stats->multicast  = stats->rx_multicast;
1749 	vf_stats->rx_dropped = stats->rx_discards;
1750 	vf_stats->tx_dropped = stats->tx_discards;
1751 
1752 out_put_vf:
1753 	ice_put_vf(vf);
1754 	return ret;
1755 }
1756 
1757 /**
1758  * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1759  * @hw: hardware structure used to check the VLAN mode
1760  * @vlan_proto: VLAN TPID being checked
1761  *
1762  * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1763  * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1764  * Mode (SVM), then only ETH_P_8021Q is supported.
1765  */
1766 static bool
1767 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1768 {
1769 	bool is_supported = false;
1770 
1771 	switch (vlan_proto) {
1772 	case ETH_P_8021Q:
1773 		is_supported = true;
1774 		break;
1775 	case ETH_P_8021AD:
1776 		if (ice_is_dvm_ena(hw))
1777 			is_supported = true;
1778 		break;
1779 	}
1780 
1781 	return is_supported;
1782 }
1783 
1784 /**
1785  * ice_set_vf_port_vlan
1786  * @netdev: network interface device structure
1787  * @vf_id: VF identifier
1788  * @vlan_id: VLAN ID being set
1789  * @qos: priority setting
1790  * @vlan_proto: VLAN protocol
1791  *
1792  * program VF Port VLAN ID and/or QoS
1793  */
1794 int
1795 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1796 		     __be16 vlan_proto)
1797 {
1798 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1799 	u16 local_vlan_proto = ntohs(vlan_proto);
1800 	struct device *dev;
1801 	struct ice_vf *vf;
1802 	int ret;
1803 
1804 	dev = ice_pf_to_dev(pf);
1805 
1806 	if (vlan_id >= VLAN_N_VID || qos > 7) {
1807 		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1808 			vf_id, vlan_id, qos);
1809 		return -EINVAL;
1810 	}
1811 
1812 	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1813 		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1814 			local_vlan_proto);
1815 		return -EPROTONOSUPPORT;
1816 	}
1817 
1818 	vf = ice_get_vf_by_id(pf, vf_id);
1819 	if (!vf)
1820 		return -EINVAL;
1821 
1822 	ret = ice_check_vf_ready_for_cfg(vf);
1823 	if (ret)
1824 		goto out_put_vf;
1825 
1826 	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1827 	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1828 	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1829 		/* duplicate request, so just return success */
1830 		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1831 			vlan_id, qos, local_vlan_proto);
1832 		ret = 0;
1833 		goto out_put_vf;
1834 	}
1835 
1836 	mutex_lock(&vf->cfg_lock);
1837 
1838 	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1839 	if (ice_vf_is_port_vlan_ena(vf))
1840 		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1841 			 vlan_id, qos, local_vlan_proto, vf_id);
1842 	else
1843 		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1844 
1845 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1846 	mutex_unlock(&vf->cfg_lock);
1847 
1848 out_put_vf:
1849 	ice_put_vf(vf);
1850 	return ret;
1851 }
1852 
1853 /**
1854  * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1855  * @vf: pointer to the VF structure
1856  */
1857 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1858 {
1859 	struct ice_pf *pf = vf->pf;
1860 	struct device *dev;
1861 
1862 	dev = ice_pf_to_dev(pf);
1863 
1864 	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1865 		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1866 		 vf->dev_lan_addr,
1867 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1868 			  ? "on" : "off");
1869 }
1870 
1871 /**
1872  * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1873  * @pf: pointer to the PF structure
1874  *
1875  * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1876  */
1877 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1878 {
1879 	struct device *dev = ice_pf_to_dev(pf);
1880 	struct ice_hw *hw = &pf->hw;
1881 	struct ice_vf *vf;
1882 	unsigned int bkt;
1883 
1884 	/* check that there are pending MDD events to print */
1885 	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1886 		return;
1887 
1888 	/* VF MDD event logs are rate limited to one second intervals */
1889 	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1890 		return;
1891 
1892 	pf->vfs.last_printed_mdd_jiffies = jiffies;
1893 
1894 	mutex_lock(&pf->vfs.table_lock);
1895 	ice_for_each_vf(pf, bkt, vf) {
1896 		/* only print Rx MDD event message if there are new events */
1897 		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1898 			vf->mdd_rx_events.last_printed =
1899 							vf->mdd_rx_events.count;
1900 			ice_print_vf_rx_mdd_event(vf);
1901 		}
1902 
1903 		/* only print Tx MDD event message if there are new events */
1904 		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1905 			vf->mdd_tx_events.last_printed =
1906 							vf->mdd_tx_events.count;
1907 
1908 			dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1909 				 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1910 				 vf->dev_lan_addr);
1911 		}
1912 	}
1913 	mutex_unlock(&pf->vfs.table_lock);
1914 }
1915 
1916 /**
1917  * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1918  * @pf: pointer to the PF structure
1919  *
1920  * Called when recovering from a PF FLR to restore interrupt capability to
1921  * the VFs.
1922  */
1923 void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1924 {
1925 	struct ice_vf *vf;
1926 	u32 bkt;
1927 
1928 	ice_for_each_vf(pf, bkt, vf)
1929 		pci_restore_msi_state(vf->vfdev);
1930 }
1931