xref: /linux/drivers/net/ethernet/intel/ice/ice_sriov.c (revision e53b20598f394e37951d6355f1c88ae01165b53f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16 
17 /**
18  * ice_free_vf_entries - Free all VF entries from the hash table
19  * @pf: pointer to the PF structure
20  *
21  * Iterate over the VF hash table, removing and releasing all VF entries.
22  * Called during VF teardown or as cleanup during failed VF initialization.
23  */
24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 	struct ice_vfs *vfs = &pf->vfs;
27 	struct hlist_node *tmp;
28 	struct ice_vf *vf;
29 	unsigned int bkt;
30 
31 	/* Remove all VFs from the hash table and release their main
32 	 * reference. Once all references to the VF are dropped, ice_put_vf()
33 	 * will call ice_release_vf which will remove the VF memory.
34 	 */
35 	lockdep_assert_held(&vfs->table_lock);
36 
37 	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 		hash_del_rcu(&vf->entry);
39 		ice_put_vf(vf);
40 	}
41 }
42 
43 /**
44  * ice_vf_vsi_release - invalidate the VF's VSI after freeing it
45  * @vf: invalidate this VF's VSI after freeing it
46  */
47 static void ice_vf_vsi_release(struct ice_vf *vf)
48 {
49 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
50 
51 	if (WARN_ON(!vsi))
52 		return;
53 
54 	ice_vsi_release(vsi);
55 	ice_vf_invalidate_vsi(vf);
56 }
57 
58 /**
59  * ice_free_vf_res - Free a VF's resources
60  * @vf: pointer to the VF info
61  */
62 static void ice_free_vf_res(struct ice_vf *vf)
63 {
64 	struct ice_pf *pf = vf->pf;
65 	int i, last_vector_idx;
66 
67 	/* First, disable VF's configuration API to prevent OS from
68 	 * accessing the VF's VSI after it's freed or invalidated.
69 	 */
70 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
71 	ice_vf_fdir_exit(vf);
72 	/* free VF control VSI */
73 	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
74 		ice_vf_ctrl_vsi_release(vf);
75 
76 	/* free VSI and disconnect it from the parent uplink */
77 	if (vf->lan_vsi_idx != ICE_NO_VSI) {
78 		ice_vf_vsi_release(vf);
79 		vf->num_mac = 0;
80 	}
81 
82 	last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1;
83 
84 	/* clear VF MDD event information */
85 	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
86 	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
87 
88 	/* Disable interrupts so that VF starts in a known state */
89 	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
90 		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
91 		ice_flush(&pf->hw);
92 	}
93 	/* reset some of the state variables keeping track of the resources */
94 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
95 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
96 }
97 
98 /**
99  * ice_dis_vf_mappings
100  * @vf: pointer to the VF structure
101  */
102 static void ice_dis_vf_mappings(struct ice_vf *vf)
103 {
104 	struct ice_pf *pf = vf->pf;
105 	struct ice_vsi *vsi;
106 	struct device *dev;
107 	int first, last, v;
108 	struct ice_hw *hw;
109 
110 	hw = &pf->hw;
111 	vsi = ice_get_vf_vsi(vf);
112 	if (WARN_ON(!vsi))
113 		return;
114 
115 	dev = ice_pf_to_dev(pf);
116 	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
117 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
118 
119 	first = vf->first_vector_idx;
120 	last = first + pf->vfs.num_msix_per - 1;
121 	for (v = first; v <= last; v++) {
122 		u32 reg;
123 
124 		reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
125 			GLINT_VECT2FUNC_IS_PF_M) |
126 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
127 			GLINT_VECT2FUNC_PF_NUM_M));
128 		wr32(hw, GLINT_VECT2FUNC(v), reg);
129 	}
130 
131 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
132 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
133 	else
134 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
135 
136 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
137 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
138 	else
139 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
140 }
141 
142 /**
143  * ice_sriov_free_msix_res - Reset/free any used MSIX resources
144  * @pf: pointer to the PF structure
145  *
146  * Since no MSIX entries are taken from the pf->irq_tracker then just clear
147  * the pf->sriov_base_vector.
148  *
149  * Returns 0 on success, and -EINVAL on error.
150  */
151 static int ice_sriov_free_msix_res(struct ice_pf *pf)
152 {
153 	struct ice_res_tracker *res;
154 
155 	if (!pf)
156 		return -EINVAL;
157 
158 	res = pf->irq_tracker;
159 	if (!res)
160 		return -EINVAL;
161 
162 	/* give back irq_tracker resources used */
163 	WARN_ON(pf->sriov_base_vector < res->num_entries);
164 
165 	pf->sriov_base_vector = 0;
166 
167 	return 0;
168 }
169 
170 /**
171  * ice_free_vfs - Free all VFs
172  * @pf: pointer to the PF structure
173  */
174 void ice_free_vfs(struct ice_pf *pf)
175 {
176 	struct device *dev = ice_pf_to_dev(pf);
177 	struct ice_vfs *vfs = &pf->vfs;
178 	struct ice_hw *hw = &pf->hw;
179 	struct ice_vf *vf;
180 	unsigned int bkt;
181 
182 	if (!ice_has_vfs(pf))
183 		return;
184 
185 	while (test_and_set_bit(ICE_VF_DIS, pf->state))
186 		usleep_range(1000, 2000);
187 
188 	/* Disable IOV before freeing resources. This lets any VF drivers
189 	 * running in the host get themselves cleaned up before we yank
190 	 * the carpet out from underneath their feet.
191 	 */
192 	if (!pci_vfs_assigned(pf->pdev))
193 		pci_disable_sriov(pf->pdev);
194 	else
195 		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
196 
197 	mutex_lock(&vfs->table_lock);
198 
199 	ice_eswitch_release(pf);
200 
201 	ice_for_each_vf(pf, bkt, vf) {
202 		mutex_lock(&vf->cfg_lock);
203 
204 		ice_dis_vf_qs(vf);
205 
206 		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
207 			/* disable VF qp mappings and set VF disable state */
208 			ice_dis_vf_mappings(vf);
209 			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
210 			ice_free_vf_res(vf);
211 		}
212 
213 		if (!pci_vfs_assigned(pf->pdev)) {
214 			u32 reg_idx, bit_idx;
215 
216 			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
217 			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
218 			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
219 		}
220 
221 		/* clear malicious info since the VF is getting released */
222 		if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->vfs.malvfs,
223 					ICE_MAX_SRIOV_VFS, vf->vf_id))
224 			dev_dbg(dev, "failed to clear malicious VF state for VF %u\n",
225 				vf->vf_id);
226 
227 		mutex_unlock(&vf->cfg_lock);
228 	}
229 
230 	if (ice_sriov_free_msix_res(pf))
231 		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
232 
233 	vfs->num_qps_per = 0;
234 	ice_free_vf_entries(pf);
235 
236 	mutex_unlock(&vfs->table_lock);
237 
238 	clear_bit(ICE_VF_DIS, pf->state);
239 	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
240 }
241 
242 /**
243  * ice_vf_vsi_setup - Set up a VF VSI
244  * @vf: VF to setup VSI for
245  *
246  * Returns pointer to the successfully allocated VSI struct on success,
247  * otherwise returns NULL on failure.
248  */
249 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
250 {
251 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
252 	struct ice_pf *pf = vf->pf;
253 	struct ice_vsi *vsi;
254 
255 	vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf, NULL);
256 
257 	if (!vsi) {
258 		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
259 		ice_vf_invalidate_vsi(vf);
260 		return NULL;
261 	}
262 
263 	vf->lan_vsi_idx = vsi->idx;
264 	vf->lan_vsi_num = vsi->vsi_num;
265 
266 	return vsi;
267 }
268 
269 /**
270  * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
271  * @pf: pointer to PF structure
272  * @vf: pointer to VF that the first MSIX vector index is being calculated for
273  *
274  * This returns the first MSIX vector index in PF space that is used by this VF.
275  * This index is used when accessing PF relative registers such as
276  * GLINT_VECT2FUNC and GLINT_DYN_CTL.
277  * This will always be the OICR index in the AVF driver so any functionality
278  * using vf->first_vector_idx for queue configuration will have to increment by
279  * 1 to avoid meddling with the OICR index.
280  */
281 static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
282 {
283 	return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per;
284 }
285 
286 /**
287  * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
288  * @vf: VF to enable MSIX mappings for
289  *
290  * Some of the registers need to be indexed/configured using hardware global
291  * device values and other registers need 0-based values, which represent PF
292  * based values.
293  */
294 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
295 {
296 	int device_based_first_msix, device_based_last_msix;
297 	int pf_based_first_msix, pf_based_last_msix, v;
298 	struct ice_pf *pf = vf->pf;
299 	int device_based_vf_id;
300 	struct ice_hw *hw;
301 	u32 reg;
302 
303 	hw = &pf->hw;
304 	pf_based_first_msix = vf->first_vector_idx;
305 	pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1;
306 
307 	device_based_first_msix = pf_based_first_msix +
308 		pf->hw.func_caps.common_cap.msix_vector_first_id;
309 	device_based_last_msix =
310 		(device_based_first_msix + pf->vfs.num_msix_per) - 1;
311 	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
312 
313 	reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
314 		VPINT_ALLOC_FIRST_M) |
315 	       ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
316 		VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
317 	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
318 
319 	reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
320 		 & VPINT_ALLOC_PCI_FIRST_M) |
321 	       ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
322 		VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
323 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
324 
325 	/* map the interrupts to its functions */
326 	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
327 		reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
328 			GLINT_VECT2FUNC_VF_NUM_M) |
329 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
330 			GLINT_VECT2FUNC_PF_NUM_M));
331 		wr32(hw, GLINT_VECT2FUNC(v), reg);
332 	}
333 
334 	/* Map mailbox interrupt to VF MSI-X vector 0 */
335 	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
336 }
337 
338 /**
339  * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
340  * @vf: VF to enable the mappings for
341  * @max_txq: max Tx queues allowed on the VF's VSI
342  * @max_rxq: max Rx queues allowed on the VF's VSI
343  */
344 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
345 {
346 	struct device *dev = ice_pf_to_dev(vf->pf);
347 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
348 	struct ice_hw *hw = &vf->pf->hw;
349 	u32 reg;
350 
351 	if (WARN_ON(!vsi))
352 		return;
353 
354 	/* set regardless of mapping mode */
355 	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
356 
357 	/* VF Tx queues allocation */
358 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
359 		/* set the VF PF Tx queue range
360 		 * VFNUMQ value should be set to (number of queues - 1). A value
361 		 * of 0 means 1 queue and a value of 255 means 256 queues
362 		 */
363 		reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
364 			VPLAN_TX_QBASE_VFFIRSTQ_M) |
365 		       (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
366 			VPLAN_TX_QBASE_VFNUMQ_M));
367 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
368 	} else {
369 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
370 	}
371 
372 	/* set regardless of mapping mode */
373 	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
374 
375 	/* VF Rx queues allocation */
376 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
377 		/* set the VF PF Rx queue range
378 		 * VFNUMQ value should be set to (number of queues - 1). A value
379 		 * of 0 means 1 queue and a value of 255 means 256 queues
380 		 */
381 		reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
382 			VPLAN_RX_QBASE_VFFIRSTQ_M) |
383 		       (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
384 			VPLAN_RX_QBASE_VFNUMQ_M));
385 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
386 	} else {
387 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
388 	}
389 }
390 
391 /**
392  * ice_ena_vf_mappings - enable VF MSIX and queue mapping
393  * @vf: pointer to the VF structure
394  */
395 static void ice_ena_vf_mappings(struct ice_vf *vf)
396 {
397 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
398 
399 	if (WARN_ON(!vsi))
400 		return;
401 
402 	ice_ena_vf_msix_mappings(vf);
403 	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
404 }
405 
406 /**
407  * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
408  * @vf: VF to calculate the register index for
409  * @q_vector: a q_vector associated to the VF
410  */
411 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
412 {
413 	struct ice_pf *pf;
414 
415 	if (!vf || !q_vector)
416 		return -EINVAL;
417 
418 	pf = vf->pf;
419 
420 	/* always add one to account for the OICR being the first MSIX */
421 	return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id +
422 		q_vector->v_idx + 1;
423 }
424 
425 /**
426  * ice_get_max_valid_res_idx - Get the max valid resource index
427  * @res: pointer to the resource to find the max valid index for
428  *
429  * Start from the end of the ice_res_tracker and return right when we find the
430  * first res->list entry with the ICE_RES_VALID_BIT set. This function is only
431  * valid for SR-IOV because it is the only consumer that manipulates the
432  * res->end and this is always called when res->end is set to res->num_entries.
433  */
434 static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
435 {
436 	int i;
437 
438 	if (!res)
439 		return -EINVAL;
440 
441 	for (i = res->num_entries - 1; i >= 0; i--)
442 		if (res->list[i] & ICE_RES_VALID_BIT)
443 			return i;
444 
445 	return 0;
446 }
447 
448 /**
449  * ice_sriov_set_msix_res - Set any used MSIX resources
450  * @pf: pointer to PF structure
451  * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
452  *
453  * This function allows SR-IOV resources to be taken from the end of the PF's
454  * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
455  * just set the pf->sriov_base_vector and return success.
456  *
457  * If there are not enough resources available, return an error. This should
458  * always be caught by ice_set_per_vf_res().
459  *
460  * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
461  * in the PF's space available for SR-IOV.
462  */
463 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
464 {
465 	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
466 	int vectors_used = pf->irq_tracker->num_entries;
467 	int sriov_base_vector;
468 
469 	sriov_base_vector = total_vectors - num_msix_needed;
470 
471 	/* make sure we only grab irq_tracker entries from the list end and
472 	 * that we have enough available MSIX vectors
473 	 */
474 	if (sriov_base_vector < vectors_used)
475 		return -EINVAL;
476 
477 	pf->sriov_base_vector = sriov_base_vector;
478 
479 	return 0;
480 }
481 
482 /**
483  * ice_set_per_vf_res - check if vectors and queues are available
484  * @pf: pointer to the PF structure
485  * @num_vfs: the number of SR-IOV VFs being configured
486  *
487  * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
488  * get more vectors and can enable more queues per VF. Note that this does not
489  * grab any vectors from the SW pool already allocated. Also note, that all
490  * vector counts include one for each VF's miscellaneous interrupt vector
491  * (i.e. OICR).
492  *
493  * Minimum VFs - 2 vectors, 1 queue pair
494  * Small VFs - 5 vectors, 4 queue pairs
495  * Medium VFs - 17 vectors, 16 queue pairs
496  *
497  * Second, determine number of queue pairs per VF by starting with a pre-defined
498  * maximum each VF supports. If this is not possible, then we adjust based on
499  * queue pairs available on the device.
500  *
501  * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
502  * by each VF during VF initialization and reset.
503  */
504 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
505 {
506 	int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
507 	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
508 	int msix_avail_per_vf, msix_avail_for_sriov;
509 	struct device *dev = ice_pf_to_dev(pf);
510 	int err;
511 
512 	lockdep_assert_held(&pf->vfs.table_lock);
513 
514 	if (!num_vfs)
515 		return -EINVAL;
516 
517 	if (max_valid_res_idx < 0)
518 		return -ENOSPC;
519 
520 	/* determine MSI-X resources per VF */
521 	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
522 		pf->irq_tracker->num_entries;
523 	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
524 	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
525 		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
526 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
527 		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
528 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
529 		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
530 	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
531 		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
532 	} else {
533 		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
534 			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
535 			num_vfs);
536 		return -ENOSPC;
537 	}
538 
539 	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
540 			ICE_MAX_RSS_QS_PER_VF);
541 	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
542 	if (!avail_qs)
543 		num_txq = 0;
544 	else if (num_txq > avail_qs)
545 		num_txq = rounddown_pow_of_two(avail_qs);
546 
547 	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
548 			ICE_MAX_RSS_QS_PER_VF);
549 	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
550 	if (!avail_qs)
551 		num_rxq = 0;
552 	else if (num_rxq > avail_qs)
553 		num_rxq = rounddown_pow_of_two(avail_qs);
554 
555 	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
556 		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
557 			ICE_MIN_QS_PER_VF, num_vfs);
558 		return -ENOSPC;
559 	}
560 
561 	err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
562 	if (err) {
563 		dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
564 			num_vfs, err);
565 		return err;
566 	}
567 
568 	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
569 	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
570 	pf->vfs.num_msix_per = num_msix_per_vf;
571 	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
572 		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
573 
574 	return 0;
575 }
576 
577 /**
578  * ice_init_vf_vsi_res - initialize/setup VF VSI resources
579  * @vf: VF to initialize/setup the VSI for
580  *
581  * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
582  * VF VSI's broadcast filter and is only used during initial VF creation.
583  */
584 static int ice_init_vf_vsi_res(struct ice_vf *vf)
585 {
586 	struct ice_vsi_vlan_ops *vlan_ops;
587 	struct ice_pf *pf = vf->pf;
588 	u8 broadcast[ETH_ALEN];
589 	struct ice_vsi *vsi;
590 	struct device *dev;
591 	int err;
592 
593 	vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
594 
595 	dev = ice_pf_to_dev(pf);
596 	vsi = ice_vf_vsi_setup(vf);
597 	if (!vsi)
598 		return -ENOMEM;
599 
600 	err = ice_vsi_add_vlan_zero(vsi);
601 	if (err) {
602 		dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n",
603 			 vf->vf_id);
604 		goto release_vsi;
605 	}
606 
607 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
608 	err = vlan_ops->ena_rx_filtering(vsi);
609 	if (err) {
610 		dev_warn(dev, "Failed to enable Rx VLAN filtering for VF %d\n",
611 			 vf->vf_id);
612 		goto release_vsi;
613 	}
614 
615 	eth_broadcast_addr(broadcast);
616 	err = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
617 	if (err) {
618 		dev_err(dev, "Failed to add broadcast MAC filter for VF %d, error %d\n",
619 			vf->vf_id, err);
620 		goto release_vsi;
621 	}
622 
623 	err = ice_vsi_apply_spoofchk(vsi, vf->spoofchk);
624 	if (err) {
625 		dev_warn(dev, "Failed to initialize spoofchk setting for VF %d\n",
626 			 vf->vf_id);
627 		goto release_vsi;
628 	}
629 
630 	vf->num_mac = 1;
631 
632 	return 0;
633 
634 release_vsi:
635 	ice_vf_vsi_release(vf);
636 	return err;
637 }
638 
639 /**
640  * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
641  * @pf: PF the VFs are associated with
642  */
643 static int ice_start_vfs(struct ice_pf *pf)
644 {
645 	struct ice_hw *hw = &pf->hw;
646 	unsigned int bkt, it_cnt;
647 	struct ice_vf *vf;
648 	int retval;
649 
650 	lockdep_assert_held(&pf->vfs.table_lock);
651 
652 	it_cnt = 0;
653 	ice_for_each_vf(pf, bkt, vf) {
654 		vf->vf_ops->clear_reset_trigger(vf);
655 
656 		retval = ice_init_vf_vsi_res(vf);
657 		if (retval) {
658 			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
659 				vf->vf_id, retval);
660 			goto teardown;
661 		}
662 
663 		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
664 		ice_ena_vf_mappings(vf);
665 		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
666 		it_cnt++;
667 	}
668 
669 	ice_flush(hw);
670 	return 0;
671 
672 teardown:
673 	ice_for_each_vf(pf, bkt, vf) {
674 		if (it_cnt == 0)
675 			break;
676 
677 		ice_dis_vf_mappings(vf);
678 		ice_vf_vsi_release(vf);
679 		it_cnt--;
680 	}
681 
682 	return retval;
683 }
684 
685 /**
686  * ice_sriov_free_vf - Free VF memory after all references are dropped
687  * @vf: pointer to VF to free
688  *
689  * Called by ice_put_vf through ice_release_vf once the last reference to a VF
690  * structure has been dropped.
691  */
692 static void ice_sriov_free_vf(struct ice_vf *vf)
693 {
694 	mutex_destroy(&vf->cfg_lock);
695 
696 	kfree_rcu(vf, rcu);
697 }
698 
699 /**
700  * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
701  * @vf: the vf to configure
702  */
703 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
704 {
705 	struct ice_pf *pf = vf->pf;
706 
707 	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
708 	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
709 }
710 
711 /**
712  * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
713  * @vf: pointer to VF structure
714  * @is_vflr: true if reset occurred due to VFLR
715  *
716  * Trigger and cleanup after a VF reset for a SR-IOV VF.
717  */
718 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
719 {
720 	struct ice_pf *pf = vf->pf;
721 	u32 reg, reg_idx, bit_idx;
722 	unsigned int vf_abs_id, i;
723 	struct device *dev;
724 	struct ice_hw *hw;
725 
726 	dev = ice_pf_to_dev(pf);
727 	hw = &pf->hw;
728 	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
729 
730 	/* In the case of a VFLR, HW has already reset the VF and we just need
731 	 * to clean up. Otherwise we must first trigger the reset using the
732 	 * VFRTRIG register.
733 	 */
734 	if (!is_vflr) {
735 		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
736 		reg |= VPGEN_VFRTRIG_VFSWR_M;
737 		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
738 	}
739 
740 	/* clear the VFLR bit in GLGEN_VFLRSTAT */
741 	reg_idx = (vf_abs_id) / 32;
742 	bit_idx = (vf_abs_id) % 32;
743 	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
744 	ice_flush(hw);
745 
746 	wr32(hw, PF_PCI_CIAA,
747 	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
748 	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
749 		reg = rd32(hw, PF_PCI_CIAD);
750 		/* no transactions pending so stop polling */
751 		if ((reg & VF_TRANS_PENDING_M) == 0)
752 			break;
753 
754 		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
755 		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
756 	}
757 }
758 
759 /**
760  * ice_sriov_poll_reset_status - poll SRIOV VF reset status
761  * @vf: pointer to VF structure
762  *
763  * Returns true when reset is successful, else returns false
764  */
765 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
766 {
767 	struct ice_pf *pf = vf->pf;
768 	unsigned int i;
769 	u32 reg;
770 
771 	for (i = 0; i < 10; i++) {
772 		/* VF reset requires driver to first reset the VF and then
773 		 * poll the status register to make sure that the reset
774 		 * completed successfully.
775 		 */
776 		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
777 		if (reg & VPGEN_VFRSTAT_VFRD_M)
778 			return true;
779 
780 		/* only sleep if the reset is not done */
781 		usleep_range(10, 20);
782 	}
783 	return false;
784 }
785 
786 /**
787  * ice_sriov_clear_reset_trigger - enable VF to access hardware
788  * @vf: VF to enabled hardware access for
789  */
790 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
791 {
792 	struct ice_hw *hw = &vf->pf->hw;
793 	u32 reg;
794 
795 	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
796 	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
797 	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
798 	ice_flush(hw);
799 }
800 
801 /**
802  * ice_sriov_vsi_rebuild - release and rebuild VF's VSI
803  * @vf: VF to release and setup the VSI for
804  *
805  * This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF
806  * configuration change, etc.).
807  */
808 static int ice_sriov_vsi_rebuild(struct ice_vf *vf)
809 {
810 	struct ice_pf *pf = vf->pf;
811 
812 	ice_vf_vsi_release(vf);
813 	if (!ice_vf_vsi_setup(vf)) {
814 		dev_err(ice_pf_to_dev(pf),
815 			"Failed to release and setup the VF%u's VSI\n",
816 			vf->vf_id);
817 		return -ENOMEM;
818 	}
819 
820 	return 0;
821 }
822 
823 /**
824  * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
825  * @vf: VF to perform tasks on
826  */
827 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
828 {
829 	ice_vf_rebuild_host_cfg(vf);
830 	ice_vf_set_initialized(vf);
831 	ice_ena_vf_mappings(vf);
832 	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
833 }
834 
835 static const struct ice_vf_ops ice_sriov_vf_ops = {
836 	.reset_type = ICE_VF_RESET,
837 	.free = ice_sriov_free_vf,
838 	.clear_mbx_register = ice_sriov_clear_mbx_register,
839 	.trigger_reset_register = ice_sriov_trigger_reset_register,
840 	.poll_reset_status = ice_sriov_poll_reset_status,
841 	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
842 	.vsi_rebuild = ice_sriov_vsi_rebuild,
843 	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
844 };
845 
846 /**
847  * ice_create_vf_entries - Allocate and insert VF entries
848  * @pf: pointer to the PF structure
849  * @num_vfs: the number of VFs to allocate
850  *
851  * Allocate new VF entries and insert them into the hash table. Set some
852  * basic default fields for initializing the new VFs.
853  *
854  * After this function exits, the hash table will have num_vfs entries
855  * inserted.
856  *
857  * Returns 0 on success or an integer error code on failure.
858  */
859 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
860 {
861 	struct ice_vfs *vfs = &pf->vfs;
862 	struct ice_vf *vf;
863 	u16 vf_id;
864 	int err;
865 
866 	lockdep_assert_held(&vfs->table_lock);
867 
868 	for (vf_id = 0; vf_id < num_vfs; vf_id++) {
869 		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
870 		if (!vf) {
871 			err = -ENOMEM;
872 			goto err_free_entries;
873 		}
874 		kref_init(&vf->refcnt);
875 
876 		vf->pf = pf;
877 		vf->vf_id = vf_id;
878 
879 		/* set sriov vf ops for VFs created during SRIOV flow */
880 		vf->vf_ops = &ice_sriov_vf_ops;
881 
882 		vf->vf_sw_id = pf->first_sw;
883 		/* assign default capabilities */
884 		vf->spoofchk = true;
885 		vf->num_vf_qs = pf->vfs.num_qps_per;
886 		ice_vc_set_default_allowlist(vf);
887 
888 		/* ctrl_vsi_idx will be set to a valid value only when VF
889 		 * creates its first fdir rule.
890 		 */
891 		ice_vf_ctrl_invalidate_vsi(vf);
892 		ice_vf_fdir_init(vf);
893 
894 		ice_virtchnl_set_dflt_ops(vf);
895 
896 		mutex_init(&vf->cfg_lock);
897 
898 		hash_add_rcu(vfs->table, &vf->entry, vf_id);
899 	}
900 
901 	return 0;
902 
903 err_free_entries:
904 	ice_free_vf_entries(pf);
905 	return err;
906 }
907 
908 /**
909  * ice_ena_vfs - enable VFs so they are ready to be used
910  * @pf: pointer to the PF structure
911  * @num_vfs: number of VFs to enable
912  */
913 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
914 {
915 	struct device *dev = ice_pf_to_dev(pf);
916 	struct ice_hw *hw = &pf->hw;
917 	int ret;
918 
919 	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
920 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
921 	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
922 	set_bit(ICE_OICR_INTR_DIS, pf->state);
923 	ice_flush(hw);
924 
925 	ret = pci_enable_sriov(pf->pdev, num_vfs);
926 	if (ret)
927 		goto err_unroll_intr;
928 
929 	mutex_lock(&pf->vfs.table_lock);
930 
931 	ret = ice_set_per_vf_res(pf, num_vfs);
932 	if (ret) {
933 		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
934 			num_vfs, ret);
935 		goto err_unroll_sriov;
936 	}
937 
938 	ret = ice_create_vf_entries(pf, num_vfs);
939 	if (ret) {
940 		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
941 			num_vfs);
942 		goto err_unroll_sriov;
943 	}
944 
945 	ret = ice_start_vfs(pf);
946 	if (ret) {
947 		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
948 		ret = -EAGAIN;
949 		goto err_unroll_vf_entries;
950 	}
951 
952 	clear_bit(ICE_VF_DIS, pf->state);
953 
954 	ret = ice_eswitch_configure(pf);
955 	if (ret) {
956 		dev_err(dev, "Failed to configure eswitch, err %d\n", ret);
957 		goto err_unroll_sriov;
958 	}
959 
960 	/* rearm global interrupts */
961 	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
962 		ice_irq_dynamic_ena(hw, NULL, NULL);
963 
964 	mutex_unlock(&pf->vfs.table_lock);
965 
966 	return 0;
967 
968 err_unroll_vf_entries:
969 	ice_free_vf_entries(pf);
970 err_unroll_sriov:
971 	mutex_unlock(&pf->vfs.table_lock);
972 	pci_disable_sriov(pf->pdev);
973 err_unroll_intr:
974 	/* rearm interrupts here */
975 	ice_irq_dynamic_ena(hw, NULL, NULL);
976 	clear_bit(ICE_OICR_INTR_DIS, pf->state);
977 	return ret;
978 }
979 
980 /**
981  * ice_pci_sriov_ena - Enable or change number of VFs
982  * @pf: pointer to the PF structure
983  * @num_vfs: number of VFs to allocate
984  *
985  * Returns 0 on success and negative on failure
986  */
987 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
988 {
989 	int pre_existing_vfs = pci_num_vf(pf->pdev);
990 	struct device *dev = ice_pf_to_dev(pf);
991 	int err;
992 
993 	if (pre_existing_vfs && pre_existing_vfs != num_vfs)
994 		ice_free_vfs(pf);
995 	else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
996 		return 0;
997 
998 	if (num_vfs > pf->vfs.num_supported) {
999 		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
1000 			num_vfs, pf->vfs.num_supported);
1001 		return -EOPNOTSUPP;
1002 	}
1003 
1004 	dev_info(dev, "Enabling %d VFs\n", num_vfs);
1005 	err = ice_ena_vfs(pf, num_vfs);
1006 	if (err) {
1007 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
1008 		return err;
1009 	}
1010 
1011 	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
1012 	return 0;
1013 }
1014 
1015 /**
1016  * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
1017  * @pf: PF to enabled SR-IOV on
1018  */
1019 static int ice_check_sriov_allowed(struct ice_pf *pf)
1020 {
1021 	struct device *dev = ice_pf_to_dev(pf);
1022 
1023 	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
1024 		dev_err(dev, "This device is not capable of SR-IOV\n");
1025 		return -EOPNOTSUPP;
1026 	}
1027 
1028 	if (ice_is_safe_mode(pf)) {
1029 		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
1030 		return -EOPNOTSUPP;
1031 	}
1032 
1033 	if (!ice_pf_state_is_nominal(pf)) {
1034 		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
1035 		return -EBUSY;
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 /**
1042  * ice_sriov_configure - Enable or change number of VFs via sysfs
1043  * @pdev: pointer to a pci_dev structure
1044  * @num_vfs: number of VFs to allocate or 0 to free VFs
1045  *
1046  * This function is called when the user updates the number of VFs in sysfs. On
1047  * success return whatever num_vfs was set to by the caller. Return negative on
1048  * failure.
1049  */
1050 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1051 {
1052 	struct ice_pf *pf = pci_get_drvdata(pdev);
1053 	struct device *dev = ice_pf_to_dev(pf);
1054 	int err;
1055 
1056 	err = ice_check_sriov_allowed(pf);
1057 	if (err)
1058 		return err;
1059 
1060 	if (!num_vfs) {
1061 		if (!pci_vfs_assigned(pdev)) {
1062 			ice_free_vfs(pf);
1063 			ice_mbx_deinit_snapshot(&pf->hw);
1064 			if (pf->lag)
1065 				ice_enable_lag(pf->lag);
1066 			return 0;
1067 		}
1068 
1069 		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1070 		return -EBUSY;
1071 	}
1072 
1073 	err = ice_mbx_init_snapshot(&pf->hw, num_vfs);
1074 	if (err)
1075 		return err;
1076 
1077 	err = ice_pci_sriov_ena(pf, num_vfs);
1078 	if (err) {
1079 		ice_mbx_deinit_snapshot(&pf->hw);
1080 		return err;
1081 	}
1082 
1083 	if (pf->lag)
1084 		ice_disable_lag(pf->lag);
1085 	return num_vfs;
1086 }
1087 
1088 /**
1089  * ice_process_vflr_event - Free VF resources via IRQ calls
1090  * @pf: pointer to the PF structure
1091  *
1092  * called from the VFLR IRQ handler to
1093  * free up VF resources and state variables
1094  */
1095 void ice_process_vflr_event(struct ice_pf *pf)
1096 {
1097 	struct ice_hw *hw = &pf->hw;
1098 	struct ice_vf *vf;
1099 	unsigned int bkt;
1100 	u32 reg;
1101 
1102 	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1103 	    !ice_has_vfs(pf))
1104 		return;
1105 
1106 	mutex_lock(&pf->vfs.table_lock);
1107 	ice_for_each_vf(pf, bkt, vf) {
1108 		u32 reg_idx, bit_idx;
1109 
1110 		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1111 		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1112 		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1113 		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1114 		if (reg & BIT(bit_idx))
1115 			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1116 			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1117 	}
1118 	mutex_unlock(&pf->vfs.table_lock);
1119 }
1120 
1121 /**
1122  * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1123  * @pf: PF used to index all VFs
1124  * @pfq: queue index relative to the PF's function space
1125  *
1126  * If no VF is found who owns the pfq then return NULL, otherwise return a
1127  * pointer to the VF who owns the pfq
1128  *
1129  * If this function returns non-NULL, it acquires a reference count of the VF
1130  * structure. The caller is responsible for calling ice_put_vf() to drop this
1131  * reference.
1132  */
1133 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1134 {
1135 	struct ice_vf *vf;
1136 	unsigned int bkt;
1137 
1138 	rcu_read_lock();
1139 	ice_for_each_vf_rcu(pf, bkt, vf) {
1140 		struct ice_vsi *vsi;
1141 		u16 rxq_idx;
1142 
1143 		vsi = ice_get_vf_vsi(vf);
1144 		if (!vsi)
1145 			continue;
1146 
1147 		ice_for_each_rxq(vsi, rxq_idx)
1148 			if (vsi->rxq_map[rxq_idx] == pfq) {
1149 				struct ice_vf *found;
1150 
1151 				if (kref_get_unless_zero(&vf->refcnt))
1152 					found = vf;
1153 				else
1154 					found = NULL;
1155 				rcu_read_unlock();
1156 				return found;
1157 			}
1158 	}
1159 	rcu_read_unlock();
1160 
1161 	return NULL;
1162 }
1163 
1164 /**
1165  * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1166  * @pf: PF used for conversion
1167  * @globalq: global queue index used to convert to PF space queue index
1168  */
1169 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1170 {
1171 	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1172 }
1173 
1174 /**
1175  * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1176  * @pf: PF that the LAN overflow event happened on
1177  * @event: structure holding the event information for the LAN overflow event
1178  *
1179  * Determine if the LAN overflow event was caused by a VF queue. If it was not
1180  * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1181  * reset on the offending VF.
1182  */
1183 void
1184 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1185 {
1186 	u32 gldcb_rtctq, queue;
1187 	struct ice_vf *vf;
1188 
1189 	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1190 	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1191 
1192 	/* event returns device global Rx queue number */
1193 	queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
1194 		GLDCB_RTCTQ_RXQNUM_S;
1195 
1196 	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1197 	if (!vf)
1198 		return;
1199 
1200 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1201 	ice_put_vf(vf);
1202 }
1203 
1204 /**
1205  * ice_set_vf_spoofchk
1206  * @netdev: network interface device structure
1207  * @vf_id: VF identifier
1208  * @ena: flag to enable or disable feature
1209  *
1210  * Enable or disable VF spoof checking
1211  */
1212 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1213 {
1214 	struct ice_netdev_priv *np = netdev_priv(netdev);
1215 	struct ice_pf *pf = np->vsi->back;
1216 	struct ice_vsi *vf_vsi;
1217 	struct device *dev;
1218 	struct ice_vf *vf;
1219 	int ret;
1220 
1221 	dev = ice_pf_to_dev(pf);
1222 
1223 	vf = ice_get_vf_by_id(pf, vf_id);
1224 	if (!vf)
1225 		return -EINVAL;
1226 
1227 	ret = ice_check_vf_ready_for_cfg(vf);
1228 	if (ret)
1229 		goto out_put_vf;
1230 
1231 	vf_vsi = ice_get_vf_vsi(vf);
1232 	if (!vf_vsi) {
1233 		netdev_err(netdev, "VSI %d for VF %d is null\n",
1234 			   vf->lan_vsi_idx, vf->vf_id);
1235 		ret = -EINVAL;
1236 		goto out_put_vf;
1237 	}
1238 
1239 	if (vf_vsi->type != ICE_VSI_VF) {
1240 		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1241 			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1242 		ret = -ENODEV;
1243 		goto out_put_vf;
1244 	}
1245 
1246 	if (ena == vf->spoofchk) {
1247 		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1248 		ret = 0;
1249 		goto out_put_vf;
1250 	}
1251 
1252 	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1253 	if (ret)
1254 		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1255 			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1256 	else
1257 		vf->spoofchk = ena;
1258 
1259 out_put_vf:
1260 	ice_put_vf(vf);
1261 	return ret;
1262 }
1263 
1264 /**
1265  * ice_get_vf_cfg
1266  * @netdev: network interface device structure
1267  * @vf_id: VF identifier
1268  * @ivi: VF configuration structure
1269  *
1270  * return VF configuration
1271  */
1272 int
1273 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1274 {
1275 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1276 	struct ice_vf *vf;
1277 	int ret;
1278 
1279 	vf = ice_get_vf_by_id(pf, vf_id);
1280 	if (!vf)
1281 		return -EINVAL;
1282 
1283 	ret = ice_check_vf_ready_for_cfg(vf);
1284 	if (ret)
1285 		goto out_put_vf;
1286 
1287 	ivi->vf = vf_id;
1288 	ether_addr_copy(ivi->mac, vf->hw_lan_addr.addr);
1289 
1290 	/* VF configuration for VLAN and applicable QoS */
1291 	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1292 	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1293 	if (ice_vf_is_port_vlan_ena(vf))
1294 		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1295 
1296 	ivi->trusted = vf->trusted;
1297 	ivi->spoofchk = vf->spoofchk;
1298 	if (!vf->link_forced)
1299 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1300 	else if (vf->link_up)
1301 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1302 	else
1303 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1304 	ivi->max_tx_rate = vf->max_tx_rate;
1305 	ivi->min_tx_rate = vf->min_tx_rate;
1306 
1307 out_put_vf:
1308 	ice_put_vf(vf);
1309 	return ret;
1310 }
1311 
1312 /**
1313  * ice_unicast_mac_exists - check if the unicast MAC exists on the PF's switch
1314  * @pf: PF used to reference the switch's rules
1315  * @umac: unicast MAC to compare against existing switch rules
1316  *
1317  * Return true on the first/any match, else return false
1318  */
1319 static bool ice_unicast_mac_exists(struct ice_pf *pf, u8 *umac)
1320 {
1321 	struct ice_sw_recipe *mac_recipe_list =
1322 		&pf->hw.switch_info->recp_list[ICE_SW_LKUP_MAC];
1323 	struct ice_fltr_mgmt_list_entry *list_itr;
1324 	struct list_head *rule_head;
1325 	struct mutex *rule_lock; /* protect MAC filter list access */
1326 
1327 	rule_head = &mac_recipe_list->filt_rules;
1328 	rule_lock = &mac_recipe_list->filt_rule_lock;
1329 
1330 	mutex_lock(rule_lock);
1331 	list_for_each_entry(list_itr, rule_head, list_entry) {
1332 		u8 *existing_mac = &list_itr->fltr_info.l_data.mac.mac_addr[0];
1333 
1334 		if (ether_addr_equal(existing_mac, umac)) {
1335 			mutex_unlock(rule_lock);
1336 			return true;
1337 		}
1338 	}
1339 
1340 	mutex_unlock(rule_lock);
1341 
1342 	return false;
1343 }
1344 
1345 /**
1346  * ice_set_vf_mac
1347  * @netdev: network interface device structure
1348  * @vf_id: VF identifier
1349  * @mac: MAC address
1350  *
1351  * program VF MAC address
1352  */
1353 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1354 {
1355 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1356 	struct ice_vf *vf;
1357 	int ret;
1358 
1359 	if (is_multicast_ether_addr(mac)) {
1360 		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1361 		return -EINVAL;
1362 	}
1363 
1364 	vf = ice_get_vf_by_id(pf, vf_id);
1365 	if (!vf)
1366 		return -EINVAL;
1367 
1368 	/* nothing left to do, unicast MAC already set */
1369 	if (ether_addr_equal(vf->dev_lan_addr.addr, mac) &&
1370 	    ether_addr_equal(vf->hw_lan_addr.addr, mac)) {
1371 		ret = 0;
1372 		goto out_put_vf;
1373 	}
1374 
1375 	ret = ice_check_vf_ready_for_cfg(vf);
1376 	if (ret)
1377 		goto out_put_vf;
1378 
1379 	if (ice_unicast_mac_exists(pf, mac)) {
1380 		netdev_err(netdev, "Unicast MAC %pM already exists on this PF. Preventing setting VF %u unicast MAC address to %pM\n",
1381 			   mac, vf_id, mac);
1382 		ret = -EINVAL;
1383 		goto out_put_vf;
1384 	}
1385 
1386 	mutex_lock(&vf->cfg_lock);
1387 
1388 	/* VF is notified of its new MAC via the PF's response to the
1389 	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1390 	 */
1391 	ether_addr_copy(vf->dev_lan_addr.addr, mac);
1392 	ether_addr_copy(vf->hw_lan_addr.addr, mac);
1393 	if (is_zero_ether_addr(mac)) {
1394 		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1395 		vf->pf_set_mac = false;
1396 		netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1397 			    vf->vf_id);
1398 	} else {
1399 		/* PF will add MAC rule for the VF */
1400 		vf->pf_set_mac = true;
1401 		netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1402 			    mac, vf_id);
1403 	}
1404 
1405 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1406 	mutex_unlock(&vf->cfg_lock);
1407 
1408 out_put_vf:
1409 	ice_put_vf(vf);
1410 	return ret;
1411 }
1412 
1413 /**
1414  * ice_set_vf_trust
1415  * @netdev: network interface device structure
1416  * @vf_id: VF identifier
1417  * @trusted: Boolean value to enable/disable trusted VF
1418  *
1419  * Enable or disable a given VF as trusted
1420  */
1421 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1422 {
1423 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1424 	struct ice_vf *vf;
1425 	int ret;
1426 
1427 	if (ice_is_eswitch_mode_switchdev(pf)) {
1428 		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1429 		return -EOPNOTSUPP;
1430 	}
1431 
1432 	vf = ice_get_vf_by_id(pf, vf_id);
1433 	if (!vf)
1434 		return -EINVAL;
1435 
1436 	ret = ice_check_vf_ready_for_cfg(vf);
1437 	if (ret)
1438 		goto out_put_vf;
1439 
1440 	/* Check if already trusted */
1441 	if (trusted == vf->trusted) {
1442 		ret = 0;
1443 		goto out_put_vf;
1444 	}
1445 
1446 	mutex_lock(&vf->cfg_lock);
1447 
1448 	vf->trusted = trusted;
1449 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1450 	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1451 		 vf_id, trusted ? "" : "un");
1452 
1453 	mutex_unlock(&vf->cfg_lock);
1454 
1455 out_put_vf:
1456 	ice_put_vf(vf);
1457 	return ret;
1458 }
1459 
1460 /**
1461  * ice_set_vf_link_state
1462  * @netdev: network interface device structure
1463  * @vf_id: VF identifier
1464  * @link_state: required link state
1465  *
1466  * Set VF's link state, irrespective of physical link state status
1467  */
1468 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1469 {
1470 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1471 	struct ice_vf *vf;
1472 	int ret;
1473 
1474 	vf = ice_get_vf_by_id(pf, vf_id);
1475 	if (!vf)
1476 		return -EINVAL;
1477 
1478 	ret = ice_check_vf_ready_for_cfg(vf);
1479 	if (ret)
1480 		goto out_put_vf;
1481 
1482 	switch (link_state) {
1483 	case IFLA_VF_LINK_STATE_AUTO:
1484 		vf->link_forced = false;
1485 		break;
1486 	case IFLA_VF_LINK_STATE_ENABLE:
1487 		vf->link_forced = true;
1488 		vf->link_up = true;
1489 		break;
1490 	case IFLA_VF_LINK_STATE_DISABLE:
1491 		vf->link_forced = true;
1492 		vf->link_up = false;
1493 		break;
1494 	default:
1495 		ret = -EINVAL;
1496 		goto out_put_vf;
1497 	}
1498 
1499 	ice_vc_notify_vf_link_state(vf);
1500 
1501 out_put_vf:
1502 	ice_put_vf(vf);
1503 	return ret;
1504 }
1505 
1506 /**
1507  * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1508  * @pf: PF associated with VFs
1509  */
1510 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1511 {
1512 	struct ice_vf *vf;
1513 	unsigned int bkt;
1514 	int rate = 0;
1515 
1516 	rcu_read_lock();
1517 	ice_for_each_vf_rcu(pf, bkt, vf)
1518 		rate += vf->min_tx_rate;
1519 	rcu_read_unlock();
1520 
1521 	return rate;
1522 }
1523 
1524 /**
1525  * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1526  * @vf: VF trying to configure min_tx_rate
1527  * @min_tx_rate: min Tx rate in Mbps
1528  *
1529  * Check if the min_tx_rate being passed in will cause oversubscription of total
1530  * min_tx_rate based on the current link speed and all other VFs configured
1531  * min_tx_rate
1532  *
1533  * Return true if the passed min_tx_rate would cause oversubscription, else
1534  * return false
1535  */
1536 static bool
1537 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1538 {
1539 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1540 	int all_vfs_min_tx_rate;
1541 	int link_speed_mbps;
1542 
1543 	if (WARN_ON(!vsi))
1544 		return false;
1545 
1546 	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1547 	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1548 
1549 	/* this VF's previous rate is being overwritten */
1550 	all_vfs_min_tx_rate -= vf->min_tx_rate;
1551 
1552 	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1553 		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1554 			min_tx_rate, vf->vf_id,
1555 			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1556 			link_speed_mbps);
1557 		return true;
1558 	}
1559 
1560 	return false;
1561 }
1562 
1563 /**
1564  * ice_set_vf_bw - set min/max VF bandwidth
1565  * @netdev: network interface device structure
1566  * @vf_id: VF identifier
1567  * @min_tx_rate: Minimum Tx rate in Mbps
1568  * @max_tx_rate: Maximum Tx rate in Mbps
1569  */
1570 int
1571 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1572 	      int max_tx_rate)
1573 {
1574 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1575 	struct ice_vsi *vsi;
1576 	struct device *dev;
1577 	struct ice_vf *vf;
1578 	int ret;
1579 
1580 	dev = ice_pf_to_dev(pf);
1581 
1582 	vf = ice_get_vf_by_id(pf, vf_id);
1583 	if (!vf)
1584 		return -EINVAL;
1585 
1586 	ret = ice_check_vf_ready_for_cfg(vf);
1587 	if (ret)
1588 		goto out_put_vf;
1589 
1590 	vsi = ice_get_vf_vsi(vf);
1591 	if (!vsi) {
1592 		ret = -EINVAL;
1593 		goto out_put_vf;
1594 	}
1595 
1596 	/* when max_tx_rate is zero that means no max Tx rate limiting, so only
1597 	 * check if max_tx_rate is non-zero
1598 	 */
1599 	if (max_tx_rate && min_tx_rate > max_tx_rate) {
1600 		dev_err(dev, "Cannot set min Tx rate %d Mbps greater than max Tx rate %d Mbps\n",
1601 			min_tx_rate, max_tx_rate);
1602 		ret = -EINVAL;
1603 		goto out_put_vf;
1604 	}
1605 
1606 	if (min_tx_rate && ice_is_dcb_active(pf)) {
1607 		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1608 		ret = -EOPNOTSUPP;
1609 		goto out_put_vf;
1610 	}
1611 
1612 	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1613 		ret = -EINVAL;
1614 		goto out_put_vf;
1615 	}
1616 
1617 	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1618 		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1619 		if (ret) {
1620 			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1621 				vf->vf_id);
1622 			goto out_put_vf;
1623 		}
1624 
1625 		vf->min_tx_rate = min_tx_rate;
1626 	}
1627 
1628 	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1629 		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1630 		if (ret) {
1631 			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1632 				vf->vf_id);
1633 			goto out_put_vf;
1634 		}
1635 
1636 		vf->max_tx_rate = max_tx_rate;
1637 	}
1638 
1639 out_put_vf:
1640 	ice_put_vf(vf);
1641 	return ret;
1642 }
1643 
1644 /**
1645  * ice_get_vf_stats - populate some stats for the VF
1646  * @netdev: the netdev of the PF
1647  * @vf_id: the host OS identifier (0-255)
1648  * @vf_stats: pointer to the OS memory to be initialized
1649  */
1650 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1651 		     struct ifla_vf_stats *vf_stats)
1652 {
1653 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1654 	struct ice_eth_stats *stats;
1655 	struct ice_vsi *vsi;
1656 	struct ice_vf *vf;
1657 	int ret;
1658 
1659 	vf = ice_get_vf_by_id(pf, vf_id);
1660 	if (!vf)
1661 		return -EINVAL;
1662 
1663 	ret = ice_check_vf_ready_for_cfg(vf);
1664 	if (ret)
1665 		goto out_put_vf;
1666 
1667 	vsi = ice_get_vf_vsi(vf);
1668 	if (!vsi) {
1669 		ret = -EINVAL;
1670 		goto out_put_vf;
1671 	}
1672 
1673 	ice_update_eth_stats(vsi);
1674 	stats = &vsi->eth_stats;
1675 
1676 	memset(vf_stats, 0, sizeof(*vf_stats));
1677 
1678 	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1679 		stats->rx_multicast;
1680 	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1681 		stats->tx_multicast;
1682 	vf_stats->rx_bytes   = stats->rx_bytes;
1683 	vf_stats->tx_bytes   = stats->tx_bytes;
1684 	vf_stats->broadcast  = stats->rx_broadcast;
1685 	vf_stats->multicast  = stats->rx_multicast;
1686 	vf_stats->rx_dropped = stats->rx_discards;
1687 	vf_stats->tx_dropped = stats->tx_discards;
1688 
1689 out_put_vf:
1690 	ice_put_vf(vf);
1691 	return ret;
1692 }
1693 
1694 /**
1695  * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1696  * @hw: hardware structure used to check the VLAN mode
1697  * @vlan_proto: VLAN TPID being checked
1698  *
1699  * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1700  * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1701  * Mode (SVM), then only ETH_P_8021Q is supported.
1702  */
1703 static bool
1704 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1705 {
1706 	bool is_supported = false;
1707 
1708 	switch (vlan_proto) {
1709 	case ETH_P_8021Q:
1710 		is_supported = true;
1711 		break;
1712 	case ETH_P_8021AD:
1713 		if (ice_is_dvm_ena(hw))
1714 			is_supported = true;
1715 		break;
1716 	}
1717 
1718 	return is_supported;
1719 }
1720 
1721 /**
1722  * ice_set_vf_port_vlan
1723  * @netdev: network interface device structure
1724  * @vf_id: VF identifier
1725  * @vlan_id: VLAN ID being set
1726  * @qos: priority setting
1727  * @vlan_proto: VLAN protocol
1728  *
1729  * program VF Port VLAN ID and/or QoS
1730  */
1731 int
1732 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1733 		     __be16 vlan_proto)
1734 {
1735 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1736 	u16 local_vlan_proto = ntohs(vlan_proto);
1737 	struct device *dev;
1738 	struct ice_vf *vf;
1739 	int ret;
1740 
1741 	dev = ice_pf_to_dev(pf);
1742 
1743 	if (vlan_id >= VLAN_N_VID || qos > 7) {
1744 		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1745 			vf_id, vlan_id, qos);
1746 		return -EINVAL;
1747 	}
1748 
1749 	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1750 		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1751 			local_vlan_proto);
1752 		return -EPROTONOSUPPORT;
1753 	}
1754 
1755 	vf = ice_get_vf_by_id(pf, vf_id);
1756 	if (!vf)
1757 		return -EINVAL;
1758 
1759 	ret = ice_check_vf_ready_for_cfg(vf);
1760 	if (ret)
1761 		goto out_put_vf;
1762 
1763 	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1764 	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1765 	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1766 		/* duplicate request, so just return success */
1767 		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1768 			vlan_id, qos, local_vlan_proto);
1769 		ret = 0;
1770 		goto out_put_vf;
1771 	}
1772 
1773 	mutex_lock(&vf->cfg_lock);
1774 
1775 	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1776 	if (ice_vf_is_port_vlan_ena(vf))
1777 		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1778 			 vlan_id, qos, local_vlan_proto, vf_id);
1779 	else
1780 		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1781 
1782 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1783 	mutex_unlock(&vf->cfg_lock);
1784 
1785 out_put_vf:
1786 	ice_put_vf(vf);
1787 	return ret;
1788 }
1789 
1790 /**
1791  * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1792  * @vf: pointer to the VF structure
1793  */
1794 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1795 {
1796 	struct ice_pf *pf = vf->pf;
1797 	struct device *dev;
1798 
1799 	dev = ice_pf_to_dev(pf);
1800 
1801 	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1802 		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1803 		 vf->dev_lan_addr.addr,
1804 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1805 			  ? "on" : "off");
1806 }
1807 
1808 /**
1809  * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1810  * @pf: pointer to the PF structure
1811  *
1812  * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1813  */
1814 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1815 {
1816 	struct device *dev = ice_pf_to_dev(pf);
1817 	struct ice_hw *hw = &pf->hw;
1818 	struct ice_vf *vf;
1819 	unsigned int bkt;
1820 
1821 	/* check that there are pending MDD events to print */
1822 	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1823 		return;
1824 
1825 	/* VF MDD event logs are rate limited to one second intervals */
1826 	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1827 		return;
1828 
1829 	pf->vfs.last_printed_mdd_jiffies = jiffies;
1830 
1831 	mutex_lock(&pf->vfs.table_lock);
1832 	ice_for_each_vf(pf, bkt, vf) {
1833 		/* only print Rx MDD event message if there are new events */
1834 		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1835 			vf->mdd_rx_events.last_printed =
1836 							vf->mdd_rx_events.count;
1837 			ice_print_vf_rx_mdd_event(vf);
1838 		}
1839 
1840 		/* only print Tx MDD event message if there are new events */
1841 		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1842 			vf->mdd_tx_events.last_printed =
1843 							vf->mdd_tx_events.count;
1844 
1845 			dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1846 				 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1847 				 vf->dev_lan_addr.addr);
1848 		}
1849 	}
1850 	mutex_unlock(&pf->vfs.table_lock);
1851 }
1852 
1853 /**
1854  * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1855  * @pdev: pointer to a pci_dev structure
1856  *
1857  * Called when recovering from a PF FLR to restore interrupt capability to
1858  * the VFs.
1859  */
1860 void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
1861 {
1862 	u16 vf_id;
1863 	int pos;
1864 
1865 	if (!pci_num_vf(pdev))
1866 		return;
1867 
1868 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1869 	if (pos) {
1870 		struct pci_dev *vfdev;
1871 
1872 		pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
1873 				     &vf_id);
1874 		vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
1875 		while (vfdev) {
1876 			if (vfdev->is_virtfn && vfdev->physfn == pdev)
1877 				pci_restore_msi_state(vfdev);
1878 			vfdev = pci_get_device(pdev->vendor, vf_id,
1879 					       vfdev);
1880 		}
1881 	}
1882 }
1883 
1884 /**
1885  * ice_is_malicious_vf - helper function to detect a malicious VF
1886  * @pf: ptr to struct ice_pf
1887  * @event: pointer to the AQ event
1888  * @num_msg_proc: the number of messages processed so far
1889  * @num_msg_pending: the number of messages peinding in admin queue
1890  */
1891 bool
1892 ice_is_malicious_vf(struct ice_pf *pf, struct ice_rq_event_info *event,
1893 		    u16 num_msg_proc, u16 num_msg_pending)
1894 {
1895 	s16 vf_id = le16_to_cpu(event->desc.retval);
1896 	struct device *dev = ice_pf_to_dev(pf);
1897 	struct ice_mbx_data mbxdata;
1898 	bool malvf = false;
1899 	struct ice_vf *vf;
1900 	int status;
1901 
1902 	vf = ice_get_vf_by_id(pf, vf_id);
1903 	if (!vf)
1904 		return false;
1905 
1906 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
1907 		goto out_put_vf;
1908 
1909 	mbxdata.num_msg_proc = num_msg_proc;
1910 	mbxdata.num_pending_arq = num_msg_pending;
1911 	mbxdata.max_num_msgs_mbx = pf->hw.mailboxq.num_rq_entries;
1912 #define ICE_MBX_OVERFLOW_WATERMARK 64
1913 	mbxdata.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1914 
1915 	/* check to see if we have a malicious VF */
1916 	status = ice_mbx_vf_state_handler(&pf->hw, &mbxdata, vf_id, &malvf);
1917 	if (status)
1918 		goto out_put_vf;
1919 
1920 	if (malvf) {
1921 		bool report_vf = false;
1922 
1923 		/* if the VF is malicious and we haven't let the user
1924 		 * know about it, then let them know now
1925 		 */
1926 		status = ice_mbx_report_malvf(&pf->hw, pf->vfs.malvfs,
1927 					      ICE_MAX_SRIOV_VFS, vf_id,
1928 					      &report_vf);
1929 		if (status)
1930 			dev_dbg(dev, "Error reporting malicious VF\n");
1931 
1932 		if (report_vf) {
1933 			struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
1934 
1935 			if (pf_vsi)
1936 				dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
1937 					 &vf->dev_lan_addr.addr[0],
1938 					 pf_vsi->netdev->dev_addr);
1939 		}
1940 	}
1941 
1942 out_put_vf:
1943 	ice_put_vf(vf);
1944 	return malvf;
1945 }
1946