1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice_base.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_flow.h" 11 #include "ice_eswitch.h" 12 #include "ice_virtchnl_allowlist.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_vf_vsi_vlan_ops.h" 15 #include "ice_vlan.h" 16 17 /** 18 * ice_free_vf_entries - Free all VF entries from the hash table 19 * @pf: pointer to the PF structure 20 * 21 * Iterate over the VF hash table, removing and releasing all VF entries. 22 * Called during VF teardown or as cleanup during failed VF initialization. 23 */ 24 static void ice_free_vf_entries(struct ice_pf *pf) 25 { 26 struct ice_vfs *vfs = &pf->vfs; 27 struct hlist_node *tmp; 28 struct ice_vf *vf; 29 unsigned int bkt; 30 31 /* Remove all VFs from the hash table and release their main 32 * reference. Once all references to the VF are dropped, ice_put_vf() 33 * will call ice_release_vf which will remove the VF memory. 34 */ 35 lockdep_assert_held(&vfs->table_lock); 36 37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { 38 hash_del_rcu(&vf->entry); 39 ice_deinitialize_vf_entry(vf); 40 ice_put_vf(vf); 41 } 42 } 43 44 /** 45 * ice_free_vf_res - Free a VF's resources 46 * @vf: pointer to the VF info 47 */ 48 static void ice_free_vf_res(struct ice_vf *vf) 49 { 50 struct ice_pf *pf = vf->pf; 51 int i, last_vector_idx; 52 53 /* First, disable VF's configuration API to prevent OS from 54 * accessing the VF's VSI after it's freed or invalidated. 55 */ 56 clear_bit(ICE_VF_STATE_INIT, vf->vf_states); 57 ice_vf_fdir_exit(vf); 58 /* free VF control VSI */ 59 if (vf->ctrl_vsi_idx != ICE_NO_VSI) 60 ice_vf_ctrl_vsi_release(vf); 61 62 /* free VSI and disconnect it from the parent uplink */ 63 if (vf->lan_vsi_idx != ICE_NO_VSI) { 64 ice_vf_vsi_release(vf); 65 vf->num_mac = 0; 66 } 67 68 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1; 69 70 /* clear VF MDD event information */ 71 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); 72 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); 73 74 /* Disable interrupts so that VF starts in a known state */ 75 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { 76 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); 77 ice_flush(&pf->hw); 78 } 79 /* reset some of the state variables keeping track of the resources */ 80 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); 81 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); 82 } 83 84 /** 85 * ice_dis_vf_mappings 86 * @vf: pointer to the VF structure 87 */ 88 static void ice_dis_vf_mappings(struct ice_vf *vf) 89 { 90 struct ice_pf *pf = vf->pf; 91 struct ice_vsi *vsi; 92 struct device *dev; 93 int first, last, v; 94 struct ice_hw *hw; 95 96 hw = &pf->hw; 97 vsi = ice_get_vf_vsi(vf); 98 if (WARN_ON(!vsi)) 99 return; 100 101 dev = ice_pf_to_dev(pf); 102 wr32(hw, VPINT_ALLOC(vf->vf_id), 0); 103 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); 104 105 first = vf->first_vector_idx; 106 last = first + vf->num_msix - 1; 107 for (v = first; v <= last; v++) { 108 u32 reg; 109 110 reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) | 111 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 112 wr32(hw, GLINT_VECT2FUNC(v), reg); 113 } 114 115 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) 116 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); 117 else 118 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 119 120 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) 121 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); 122 else 123 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 124 } 125 126 /** 127 * ice_sriov_free_msix_res - Reset/free any used MSIX resources 128 * @pf: pointer to the PF structure 129 * 130 * Since no MSIX entries are taken from the pf->irq_tracker then just clear 131 * the pf->sriov_base_vector. 132 * 133 * Returns 0 on success, and -EINVAL on error. 134 */ 135 static int ice_sriov_free_msix_res(struct ice_pf *pf) 136 { 137 if (!pf) 138 return -EINVAL; 139 140 bitmap_free(pf->sriov_irq_bm); 141 pf->sriov_irq_size = 0; 142 pf->sriov_base_vector = 0; 143 144 return 0; 145 } 146 147 /** 148 * ice_free_vfs - Free all VFs 149 * @pf: pointer to the PF structure 150 */ 151 void ice_free_vfs(struct ice_pf *pf) 152 { 153 struct device *dev = ice_pf_to_dev(pf); 154 struct ice_vfs *vfs = &pf->vfs; 155 struct ice_hw *hw = &pf->hw; 156 struct ice_vf *vf; 157 unsigned int bkt; 158 159 if (!ice_has_vfs(pf)) 160 return; 161 162 while (test_and_set_bit(ICE_VF_DIS, pf->state)) 163 usleep_range(1000, 2000); 164 165 /* Disable IOV before freeing resources. This lets any VF drivers 166 * running in the host get themselves cleaned up before we yank 167 * the carpet out from underneath their feet. 168 */ 169 if (!pci_vfs_assigned(pf->pdev)) 170 pci_disable_sriov(pf->pdev); 171 else 172 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); 173 174 mutex_lock(&vfs->table_lock); 175 176 ice_for_each_vf(pf, bkt, vf) { 177 mutex_lock(&vf->cfg_lock); 178 179 ice_eswitch_detach_vf(pf, vf); 180 ice_dis_vf_qs(vf); 181 182 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { 183 /* disable VF qp mappings and set VF disable state */ 184 ice_dis_vf_mappings(vf); 185 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 186 ice_free_vf_res(vf); 187 } 188 189 if (!pci_vfs_assigned(pf->pdev)) { 190 u32 reg_idx, bit_idx; 191 192 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 193 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 194 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 195 } 196 197 mutex_unlock(&vf->cfg_lock); 198 } 199 200 if (ice_sriov_free_msix_res(pf)) 201 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); 202 203 vfs->num_qps_per = 0; 204 ice_free_vf_entries(pf); 205 206 mutex_unlock(&vfs->table_lock); 207 208 clear_bit(ICE_VF_DIS, pf->state); 209 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 210 } 211 212 /** 213 * ice_vf_vsi_setup - Set up a VF VSI 214 * @vf: VF to setup VSI for 215 * 216 * Returns pointer to the successfully allocated VSI struct on success, 217 * otherwise returns NULL on failure. 218 */ 219 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) 220 { 221 struct ice_vsi_cfg_params params = {}; 222 struct ice_pf *pf = vf->pf; 223 struct ice_vsi *vsi; 224 225 params.type = ICE_VSI_VF; 226 params.port_info = ice_vf_get_port_info(vf); 227 params.vf = vf; 228 params.flags = ICE_VSI_FLAG_INIT; 229 230 vsi = ice_vsi_setup(pf, ¶ms); 231 232 if (!vsi) { 233 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); 234 ice_vf_invalidate_vsi(vf); 235 return NULL; 236 } 237 238 vf->lan_vsi_idx = vsi->idx; 239 240 return vsi; 241 } 242 243 244 /** 245 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware 246 * @vf: VF to enable MSIX mappings for 247 * 248 * Some of the registers need to be indexed/configured using hardware global 249 * device values and other registers need 0-based values, which represent PF 250 * based values. 251 */ 252 static void ice_ena_vf_msix_mappings(struct ice_vf *vf) 253 { 254 int device_based_first_msix, device_based_last_msix; 255 int pf_based_first_msix, pf_based_last_msix, v; 256 struct ice_pf *pf = vf->pf; 257 int device_based_vf_id; 258 struct ice_hw *hw; 259 u32 reg; 260 261 hw = &pf->hw; 262 pf_based_first_msix = vf->first_vector_idx; 263 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1; 264 265 device_based_first_msix = pf_based_first_msix + 266 pf->hw.func_caps.common_cap.msix_vector_first_id; 267 device_based_last_msix = 268 (device_based_first_msix + vf->num_msix) - 1; 269 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; 270 271 reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) | 272 FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) | 273 VPINT_ALLOC_VALID_M; 274 wr32(hw, VPINT_ALLOC(vf->vf_id), reg); 275 276 reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) | 277 FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) | 278 VPINT_ALLOC_PCI_VALID_M; 279 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); 280 281 /* map the interrupts to its functions */ 282 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { 283 reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) | 284 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 285 wr32(hw, GLINT_VECT2FUNC(v), reg); 286 } 287 288 /* Map mailbox interrupt to VF MSI-X vector 0 */ 289 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); 290 } 291 292 /** 293 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF 294 * @vf: VF to enable the mappings for 295 * @max_txq: max Tx queues allowed on the VF's VSI 296 * @max_rxq: max Rx queues allowed on the VF's VSI 297 */ 298 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) 299 { 300 struct device *dev = ice_pf_to_dev(vf->pf); 301 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 302 struct ice_hw *hw = &vf->pf->hw; 303 u32 reg; 304 305 if (WARN_ON(!vsi)) 306 return; 307 308 /* set regardless of mapping mode */ 309 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); 310 311 /* VF Tx queues allocation */ 312 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { 313 /* set the VF PF Tx queue range 314 * VFNUMQ value should be set to (number of queues - 1). A value 315 * of 0 means 1 queue and a value of 255 means 256 queues 316 */ 317 reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) | 318 FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1); 319 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); 320 } else { 321 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 322 } 323 324 /* set regardless of mapping mode */ 325 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); 326 327 /* VF Rx queues allocation */ 328 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { 329 /* set the VF PF Rx queue range 330 * VFNUMQ value should be set to (number of queues - 1). A value 331 * of 0 means 1 queue and a value of 255 means 256 queues 332 */ 333 reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) | 334 FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1); 335 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); 336 } else { 337 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 338 } 339 } 340 341 /** 342 * ice_ena_vf_mappings - enable VF MSIX and queue mapping 343 * @vf: pointer to the VF structure 344 */ 345 static void ice_ena_vf_mappings(struct ice_vf *vf) 346 { 347 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 348 349 if (WARN_ON(!vsi)) 350 return; 351 352 ice_ena_vf_msix_mappings(vf); 353 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); 354 } 355 356 /** 357 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space 358 * @vf: VF to calculate the register index for 359 * @q_vector: a q_vector associated to the VF 360 */ 361 void ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) 362 { 363 if (!vf || !q_vector) 364 return; 365 366 /* always add one to account for the OICR being the first MSIX */ 367 q_vector->vf_reg_idx = q_vector->v_idx + ICE_NONQ_VECS_VF; 368 q_vector->reg_idx = vf->first_vector_idx + q_vector->vf_reg_idx; 369 } 370 371 /** 372 * ice_sriov_set_msix_res - Set any used MSIX resources 373 * @pf: pointer to PF structure 374 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs 375 * 376 * This function allows SR-IOV resources to be taken from the end of the PF's 377 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We 378 * just set the pf->sriov_base_vector and return success. 379 * 380 * If there are not enough resources available, return an error. This should 381 * always be caught by ice_set_per_vf_res(). 382 * 383 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors 384 * in the PF's space available for SR-IOV. 385 */ 386 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) 387 { 388 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 389 int vectors_used = ice_get_max_used_msix_vector(pf); 390 int sriov_base_vector; 391 392 sriov_base_vector = total_vectors - num_msix_needed; 393 394 /* make sure we only grab irq_tracker entries from the list end and 395 * that we have enough available MSIX vectors 396 */ 397 if (sriov_base_vector < vectors_used) 398 return -EINVAL; 399 400 pf->sriov_base_vector = sriov_base_vector; 401 402 return 0; 403 } 404 405 /** 406 * ice_set_per_vf_res - check if vectors and queues are available 407 * @pf: pointer to the PF structure 408 * @num_vfs: the number of SR-IOV VFs being configured 409 * 410 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we 411 * get more vectors and can enable more queues per VF. Note that this does not 412 * grab any vectors from the SW pool already allocated. Also note, that all 413 * vector counts include one for each VF's miscellaneous interrupt vector 414 * (i.e. OICR). 415 * 416 * Minimum VFs - 2 vectors, 1 queue pair 417 * Small VFs - 5 vectors, 4 queue pairs 418 * Medium VFs - 17 vectors, 16 queue pairs 419 * 420 * Second, determine number of queue pairs per VF by starting with a pre-defined 421 * maximum each VF supports. If this is not possible, then we adjust based on 422 * queue pairs available on the device. 423 * 424 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used 425 * by each VF during VF initialization and reset. 426 */ 427 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) 428 { 429 int vectors_used = ice_get_max_used_msix_vector(pf); 430 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; 431 int msix_avail_per_vf, msix_avail_for_sriov; 432 struct device *dev = ice_pf_to_dev(pf); 433 int err; 434 435 lockdep_assert_held(&pf->vfs.table_lock); 436 437 if (!num_vfs) 438 return -EINVAL; 439 440 /* determine MSI-X resources per VF */ 441 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - 442 vectors_used; 443 msix_avail_per_vf = msix_avail_for_sriov / num_vfs; 444 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { 445 num_msix_per_vf = ICE_NUM_VF_MSIX_MED; 446 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { 447 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; 448 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { 449 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; 450 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { 451 num_msix_per_vf = ICE_MIN_INTR_PER_VF; 452 } else { 453 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", 454 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, 455 num_vfs); 456 return -ENOSPC; 457 } 458 459 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 460 ICE_MAX_RSS_QS_PER_VF); 461 avail_qs = ice_get_avail_txq_count(pf) / num_vfs; 462 if (!avail_qs) 463 num_txq = 0; 464 else if (num_txq > avail_qs) 465 num_txq = rounddown_pow_of_two(avail_qs); 466 467 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 468 ICE_MAX_RSS_QS_PER_VF); 469 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; 470 if (!avail_qs) 471 num_rxq = 0; 472 else if (num_rxq > avail_qs) 473 num_rxq = rounddown_pow_of_two(avail_qs); 474 475 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { 476 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", 477 ICE_MIN_QS_PER_VF, num_vfs); 478 return -ENOSPC; 479 } 480 481 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); 482 if (err) { 483 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", 484 num_vfs, err); 485 return err; 486 } 487 488 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ 489 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); 490 pf->vfs.num_msix_per = num_msix_per_vf; 491 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", 492 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); 493 494 return 0; 495 } 496 497 /** 498 * ice_sriov_get_irqs - get irqs for SR-IOV usacase 499 * @pf: pointer to PF structure 500 * @needed: number of irqs to get 501 * 502 * This returns the first MSI-X vector index in PF space that is used by this 503 * VF. This index is used when accessing PF relative registers such as 504 * GLINT_VECT2FUNC and GLINT_DYN_CTL. 505 * This will always be the OICR index in the AVF driver so any functionality 506 * using vf->first_vector_idx for queue configuration_id: id of VF which will 507 * use this irqs 508 * 509 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are 510 * allocated from the end of global irq index. First bit in sriov_irq_bm means 511 * last irq index etc. It simplifies extension of SRIOV vectors. 512 * They will be always located from sriov_base_vector to the last irq 513 * index. While increasing/decreasing sriov_base_vector can be moved. 514 */ 515 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed) 516 { 517 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm, 518 pf->sriov_irq_size, 0, needed, 0); 519 /* conversion from number in bitmap to global irq index */ 520 int index = pf->sriov_irq_size - res - needed; 521 522 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector) 523 return -ENOENT; 524 525 bitmap_set(pf->sriov_irq_bm, res, needed); 526 return index; 527 } 528 529 /** 530 * ice_sriov_free_irqs - free irqs used by the VF 531 * @pf: pointer to PF structure 532 * @vf: pointer to VF structure 533 */ 534 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf) 535 { 536 /* Move back from first vector index to first index in bitmap */ 537 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix; 538 539 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix); 540 vf->first_vector_idx = 0; 541 } 542 543 /** 544 * ice_init_vf_vsi_res - initialize/setup VF VSI resources 545 * @vf: VF to initialize/setup the VSI for 546 * 547 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the 548 * VF VSI's broadcast filter and is only used during initial VF creation. 549 */ 550 static int ice_init_vf_vsi_res(struct ice_vf *vf) 551 { 552 struct ice_pf *pf = vf->pf; 553 struct ice_vsi *vsi; 554 int err; 555 556 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 557 if (vf->first_vector_idx < 0) 558 return -ENOMEM; 559 560 vsi = ice_vf_vsi_setup(vf); 561 if (!vsi) 562 return -ENOMEM; 563 564 err = ice_vf_init_host_cfg(vf, vsi); 565 if (err) 566 goto release_vsi; 567 568 return 0; 569 570 release_vsi: 571 ice_vf_vsi_release(vf); 572 return err; 573 } 574 575 /** 576 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV 577 * @pf: PF the VFs are associated with 578 */ 579 static int ice_start_vfs(struct ice_pf *pf) 580 { 581 struct ice_hw *hw = &pf->hw; 582 unsigned int bkt, it_cnt; 583 struct ice_vf *vf; 584 int retval; 585 586 lockdep_assert_held(&pf->vfs.table_lock); 587 588 it_cnt = 0; 589 ice_for_each_vf(pf, bkt, vf) { 590 vf->vf_ops->clear_reset_trigger(vf); 591 592 retval = ice_init_vf_vsi_res(vf); 593 if (retval) { 594 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", 595 vf->vf_id, retval); 596 goto teardown; 597 } 598 599 retval = ice_eswitch_attach_vf(pf, vf); 600 if (retval) { 601 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d", 602 vf->vf_id, retval); 603 ice_vf_vsi_release(vf); 604 goto teardown; 605 } 606 607 set_bit(ICE_VF_STATE_INIT, vf->vf_states); 608 ice_ena_vf_mappings(vf); 609 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 610 it_cnt++; 611 } 612 613 ice_flush(hw); 614 return 0; 615 616 teardown: 617 ice_for_each_vf(pf, bkt, vf) { 618 if (it_cnt == 0) 619 break; 620 621 ice_dis_vf_mappings(vf); 622 ice_vf_vsi_release(vf); 623 it_cnt--; 624 } 625 626 return retval; 627 } 628 629 /** 630 * ice_sriov_free_vf - Free VF memory after all references are dropped 631 * @vf: pointer to VF to free 632 * 633 * Called by ice_put_vf through ice_release_vf once the last reference to a VF 634 * structure has been dropped. 635 */ 636 static void ice_sriov_free_vf(struct ice_vf *vf) 637 { 638 mutex_destroy(&vf->cfg_lock); 639 640 kfree_rcu(vf, rcu); 641 } 642 643 /** 644 * ice_sriov_clear_reset_state - clears VF Reset status register 645 * @vf: the vf to configure 646 */ 647 static void ice_sriov_clear_reset_state(struct ice_vf *vf) 648 { 649 struct ice_hw *hw = &vf->pf->hw; 650 651 /* Clear the reset status register so that VF immediately sees that 652 * the device is resetting, even if hardware hasn't yet gotten around 653 * to clearing VFGEN_RSTAT for us. 654 */ 655 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); 656 } 657 658 /** 659 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers 660 * @vf: the vf to configure 661 */ 662 static void ice_sriov_clear_mbx_register(struct ice_vf *vf) 663 { 664 struct ice_pf *pf = vf->pf; 665 666 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); 667 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); 668 } 669 670 /** 671 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF 672 * @vf: pointer to VF structure 673 * @is_vflr: true if reset occurred due to VFLR 674 * 675 * Trigger and cleanup after a VF reset for a SR-IOV VF. 676 */ 677 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) 678 { 679 struct ice_pf *pf = vf->pf; 680 u32 reg, reg_idx, bit_idx; 681 unsigned int vf_abs_id, i; 682 struct device *dev; 683 struct ice_hw *hw; 684 685 dev = ice_pf_to_dev(pf); 686 hw = &pf->hw; 687 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; 688 689 /* In the case of a VFLR, HW has already reset the VF and we just need 690 * to clean up. Otherwise we must first trigger the reset using the 691 * VFRTRIG register. 692 */ 693 if (!is_vflr) { 694 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 695 reg |= VPGEN_VFRTRIG_VFSWR_M; 696 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 697 } 698 699 /* clear the VFLR bit in GLGEN_VFLRSTAT */ 700 reg_idx = (vf_abs_id) / 32; 701 bit_idx = (vf_abs_id) % 32; 702 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 703 ice_flush(hw); 704 705 wr32(hw, PF_PCI_CIAA, 706 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); 707 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { 708 reg = rd32(hw, PF_PCI_CIAD); 709 /* no transactions pending so stop polling */ 710 if ((reg & VF_TRANS_PENDING_M) == 0) 711 break; 712 713 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); 714 udelay(ICE_PCI_CIAD_WAIT_DELAY_US); 715 } 716 } 717 718 /** 719 * ice_sriov_poll_reset_status - poll SRIOV VF reset status 720 * @vf: pointer to VF structure 721 * 722 * Returns true when reset is successful, else returns false 723 */ 724 static bool ice_sriov_poll_reset_status(struct ice_vf *vf) 725 { 726 struct ice_pf *pf = vf->pf; 727 unsigned int i; 728 u32 reg; 729 730 for (i = 0; i < 10; i++) { 731 /* VF reset requires driver to first reset the VF and then 732 * poll the status register to make sure that the reset 733 * completed successfully. 734 */ 735 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); 736 if (reg & VPGEN_VFRSTAT_VFRD_M) 737 return true; 738 739 /* only sleep if the reset is not done */ 740 usleep_range(10, 20); 741 } 742 return false; 743 } 744 745 /** 746 * ice_sriov_clear_reset_trigger - enable VF to access hardware 747 * @vf: VF to enabled hardware access for 748 */ 749 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) 750 { 751 struct ice_hw *hw = &vf->pf->hw; 752 u32 reg; 753 754 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 755 reg &= ~VPGEN_VFRTRIG_VFSWR_M; 756 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 757 ice_flush(hw); 758 } 759 760 /** 761 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt 762 * @vf: VF to perform tasks on 763 */ 764 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) 765 { 766 ice_ena_vf_mappings(vf); 767 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 768 } 769 770 static const struct ice_vf_ops ice_sriov_vf_ops = { 771 .reset_type = ICE_VF_RESET, 772 .free = ice_sriov_free_vf, 773 .clear_reset_state = ice_sriov_clear_reset_state, 774 .clear_mbx_register = ice_sriov_clear_mbx_register, 775 .trigger_reset_register = ice_sriov_trigger_reset_register, 776 .poll_reset_status = ice_sriov_poll_reset_status, 777 .clear_reset_trigger = ice_sriov_clear_reset_trigger, 778 .irq_close = NULL, 779 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, 780 }; 781 782 /** 783 * ice_create_vf_entries - Allocate and insert VF entries 784 * @pf: pointer to the PF structure 785 * @num_vfs: the number of VFs to allocate 786 * 787 * Allocate new VF entries and insert them into the hash table. Set some 788 * basic default fields for initializing the new VFs. 789 * 790 * After this function exits, the hash table will have num_vfs entries 791 * inserted. 792 * 793 * Returns 0 on success or an integer error code on failure. 794 */ 795 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) 796 { 797 struct pci_dev *pdev = pf->pdev; 798 struct ice_vfs *vfs = &pf->vfs; 799 struct pci_dev *vfdev = NULL; 800 struct ice_vf *vf; 801 u16 vf_pdev_id; 802 int err, pos; 803 804 lockdep_assert_held(&vfs->table_lock); 805 806 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 807 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id); 808 809 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) { 810 vf = kzalloc(sizeof(*vf), GFP_KERNEL); 811 if (!vf) { 812 err = -ENOMEM; 813 goto err_free_entries; 814 } 815 kref_init(&vf->refcnt); 816 817 vf->pf = pf; 818 vf->vf_id = vf_id; 819 820 /* set sriov vf ops for VFs created during SRIOV flow */ 821 vf->vf_ops = &ice_sriov_vf_ops; 822 823 ice_initialize_vf_entry(vf); 824 825 do { 826 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev); 827 } while (vfdev && vfdev->physfn != pdev); 828 vf->vfdev = vfdev; 829 vf->vf_sw_id = pf->first_sw; 830 831 pci_dev_get(vfdev); 832 833 hash_add_rcu(vfs->table, &vf->entry, vf_id); 834 } 835 836 /* Decrement of refcount done by pci_get_device() inside the loop does 837 * not touch the last iteration's vfdev, so it has to be done manually 838 * to balance pci_dev_get() added within the loop. 839 */ 840 pci_dev_put(vfdev); 841 842 return 0; 843 844 err_free_entries: 845 ice_free_vf_entries(pf); 846 return err; 847 } 848 849 /** 850 * ice_ena_vfs - enable VFs so they are ready to be used 851 * @pf: pointer to the PF structure 852 * @num_vfs: number of VFs to enable 853 */ 854 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) 855 { 856 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 857 struct device *dev = ice_pf_to_dev(pf); 858 struct ice_hw *hw = &pf->hw; 859 int ret; 860 861 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL); 862 if (!pf->sriov_irq_bm) 863 return -ENOMEM; 864 pf->sriov_irq_size = total_vectors; 865 866 /* Disable global interrupt 0 so we don't try to handle the VFLR. */ 867 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 868 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 869 set_bit(ICE_OICR_INTR_DIS, pf->state); 870 ice_flush(hw); 871 872 ret = pci_enable_sriov(pf->pdev, num_vfs); 873 if (ret) 874 goto err_unroll_intr; 875 876 mutex_lock(&pf->vfs.table_lock); 877 878 ret = ice_set_per_vf_res(pf, num_vfs); 879 if (ret) { 880 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", 881 num_vfs, ret); 882 goto err_unroll_sriov; 883 } 884 885 ret = ice_create_vf_entries(pf, num_vfs); 886 if (ret) { 887 dev_err(dev, "Failed to allocate VF entries for %d VFs\n", 888 num_vfs); 889 goto err_unroll_sriov; 890 } 891 892 ret = ice_start_vfs(pf); 893 if (ret) { 894 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); 895 ret = -EAGAIN; 896 goto err_unroll_vf_entries; 897 } 898 899 clear_bit(ICE_VF_DIS, pf->state); 900 901 /* rearm global interrupts */ 902 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) 903 ice_irq_dynamic_ena(hw, NULL, NULL); 904 905 mutex_unlock(&pf->vfs.table_lock); 906 907 return 0; 908 909 err_unroll_vf_entries: 910 ice_free_vf_entries(pf); 911 err_unroll_sriov: 912 mutex_unlock(&pf->vfs.table_lock); 913 pci_disable_sriov(pf->pdev); 914 err_unroll_intr: 915 /* rearm interrupts here */ 916 ice_irq_dynamic_ena(hw, NULL, NULL); 917 clear_bit(ICE_OICR_INTR_DIS, pf->state); 918 bitmap_free(pf->sriov_irq_bm); 919 return ret; 920 } 921 922 /** 923 * ice_pci_sriov_ena - Enable or change number of VFs 924 * @pf: pointer to the PF structure 925 * @num_vfs: number of VFs to allocate 926 * 927 * Returns 0 on success and negative on failure 928 */ 929 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) 930 { 931 struct device *dev = ice_pf_to_dev(pf); 932 int err; 933 934 if (!num_vfs) { 935 ice_free_vfs(pf); 936 return 0; 937 } 938 939 if (num_vfs > pf->vfs.num_supported) { 940 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", 941 num_vfs, pf->vfs.num_supported); 942 return -EOPNOTSUPP; 943 } 944 945 dev_info(dev, "Enabling %d VFs\n", num_vfs); 946 err = ice_ena_vfs(pf, num_vfs); 947 if (err) { 948 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 949 return err; 950 } 951 952 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 953 return 0; 954 } 955 956 /** 957 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks 958 * @pf: PF to enabled SR-IOV on 959 */ 960 static int ice_check_sriov_allowed(struct ice_pf *pf) 961 { 962 struct device *dev = ice_pf_to_dev(pf); 963 964 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { 965 dev_err(dev, "This device is not capable of SR-IOV\n"); 966 return -EOPNOTSUPP; 967 } 968 969 if (ice_is_safe_mode(pf)) { 970 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); 971 return -EOPNOTSUPP; 972 } 973 974 if (!ice_pf_state_is_nominal(pf)) { 975 dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); 976 return -EBUSY; 977 } 978 979 return 0; 980 } 981 982 /** 983 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs 984 * @pdev: pointer to pci_dev struct 985 * 986 * The function is called via sysfs ops 987 */ 988 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev) 989 { 990 struct ice_pf *pf = pci_get_drvdata(pdev); 991 992 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf); 993 } 994 995 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move) 996 { 997 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf)) 998 return -ENOMEM; 999 1000 pf->sriov_base_vector -= move; 1001 return 0; 1002 } 1003 1004 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id) 1005 { 1006 u16 vf_ids[ICE_MAX_SRIOV_VFS]; 1007 struct ice_vf *tmp_vf; 1008 int to_remap = 0, bkt; 1009 1010 /* For better irqs usage try to remap irqs of VFs 1011 * that aren't running yet 1012 */ 1013 ice_for_each_vf(pf, bkt, tmp_vf) { 1014 /* skip VF which is changing the number of MSI-X */ 1015 if (restricted_id == tmp_vf->vf_id || 1016 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states)) 1017 continue; 1018 1019 ice_dis_vf_mappings(tmp_vf); 1020 ice_sriov_free_irqs(pf, tmp_vf); 1021 1022 vf_ids[to_remap] = tmp_vf->vf_id; 1023 to_remap += 1; 1024 } 1025 1026 for (int i = 0; i < to_remap; i++) { 1027 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]); 1028 if (!tmp_vf) 1029 continue; 1030 1031 tmp_vf->first_vector_idx = 1032 ice_sriov_get_irqs(pf, tmp_vf->num_msix); 1033 /* there is no need to rebuild VSI as we are only changing the 1034 * vector indexes not amount of MSI-X or queues 1035 */ 1036 ice_ena_vf_mappings(tmp_vf); 1037 ice_put_vf(tmp_vf); 1038 } 1039 } 1040 1041 /** 1042 * ice_sriov_set_msix_vec_count 1043 * @vf_dev: pointer to pci_dev struct of VF device 1044 * @msix_vec_count: new value for MSI-X amount on this VF 1045 * 1046 * Set requested MSI-X, queues and registers for @vf_dev. 1047 * 1048 * First do some sanity checks like if there are any VFs, if the new value 1049 * is correct etc. Then disable old mapping (MSI-X and queues registers), change 1050 * MSI-X and queues, rebuild VSI and enable new mapping. 1051 * 1052 * If it is possible (driver not binded to VF) try to remap also other VFs to 1053 * linearize irqs register usage. 1054 */ 1055 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count) 1056 { 1057 struct pci_dev *pdev = pci_physfn(vf_dev); 1058 struct ice_pf *pf = pci_get_drvdata(pdev); 1059 u16 prev_msix, prev_queues, queues; 1060 bool needs_rebuild = false; 1061 struct ice_vsi *vsi; 1062 struct ice_vf *vf; 1063 int id; 1064 1065 if (!ice_get_num_vfs(pf)) 1066 return -ENOENT; 1067 1068 if (!msix_vec_count) 1069 return 0; 1070 1071 queues = msix_vec_count; 1072 /* add 1 MSI-X for OICR */ 1073 msix_vec_count += 1; 1074 1075 if (queues > min(ice_get_avail_txq_count(pf), 1076 ice_get_avail_rxq_count(pf))) 1077 return -EINVAL; 1078 1079 if (msix_vec_count < ICE_MIN_INTR_PER_VF) 1080 return -EINVAL; 1081 1082 /* Transition of PCI VF function number to function_id */ 1083 for (id = 0; id < pci_num_vf(pdev); id++) { 1084 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id)) 1085 break; 1086 } 1087 1088 if (id == pci_num_vf(pdev)) 1089 return -ENOENT; 1090 1091 vf = ice_get_vf_by_id(pf, id); 1092 1093 if (!vf) 1094 return -ENOENT; 1095 1096 vsi = ice_get_vf_vsi(vf); 1097 if (!vsi) { 1098 ice_put_vf(vf); 1099 return -ENOENT; 1100 } 1101 1102 prev_msix = vf->num_msix; 1103 prev_queues = vf->num_vf_qs; 1104 1105 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) { 1106 ice_put_vf(vf); 1107 return -ENOSPC; 1108 } 1109 1110 ice_dis_vf_mappings(vf); 1111 ice_sriov_free_irqs(pf, vf); 1112 1113 /* Remap all VFs beside the one is now configured */ 1114 ice_sriov_remap_vectors(pf, vf->vf_id); 1115 1116 vf->num_msix = msix_vec_count; 1117 vf->num_vf_qs = queues; 1118 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1119 if (vf->first_vector_idx < 0) 1120 goto unroll; 1121 1122 vsi->req_txq = queues; 1123 vsi->req_rxq = queues; 1124 1125 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 1126 /* Try to rebuild with previous values */ 1127 needs_rebuild = true; 1128 goto unroll; 1129 } 1130 1131 dev_info(ice_pf_to_dev(pf), 1132 "Changing VF %d resources to %d vectors and %d queues\n", 1133 vf->vf_id, vf->num_msix, vf->num_vf_qs); 1134 1135 ice_ena_vf_mappings(vf); 1136 ice_put_vf(vf); 1137 1138 return 0; 1139 1140 unroll: 1141 dev_info(ice_pf_to_dev(pf), 1142 "Can't set %d vectors on VF %d, falling back to %d\n", 1143 vf->num_msix, vf->vf_id, prev_msix); 1144 1145 vf->num_msix = prev_msix; 1146 vf->num_vf_qs = prev_queues; 1147 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1148 if (vf->first_vector_idx < 0) { 1149 ice_put_vf(vf); 1150 return -EINVAL; 1151 } 1152 1153 if (needs_rebuild) { 1154 vsi->req_txq = prev_queues; 1155 vsi->req_rxq = prev_queues; 1156 1157 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 1158 } 1159 1160 ice_ena_vf_mappings(vf); 1161 ice_put_vf(vf); 1162 1163 return -EINVAL; 1164 } 1165 1166 /** 1167 * ice_sriov_configure - Enable or change number of VFs via sysfs 1168 * @pdev: pointer to a pci_dev structure 1169 * @num_vfs: number of VFs to allocate or 0 to free VFs 1170 * 1171 * This function is called when the user updates the number of VFs in sysfs. On 1172 * success return whatever num_vfs was set to by the caller. Return negative on 1173 * failure. 1174 */ 1175 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) 1176 { 1177 struct ice_pf *pf = pci_get_drvdata(pdev); 1178 struct device *dev = ice_pf_to_dev(pf); 1179 int err; 1180 1181 err = ice_check_sriov_allowed(pf); 1182 if (err) 1183 return err; 1184 1185 if (!num_vfs) { 1186 if (!pci_vfs_assigned(pdev)) { 1187 ice_free_vfs(pf); 1188 return 0; 1189 } 1190 1191 dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); 1192 return -EBUSY; 1193 } 1194 1195 err = ice_pci_sriov_ena(pf, num_vfs); 1196 if (err) 1197 return err; 1198 1199 return num_vfs; 1200 } 1201 1202 /** 1203 * ice_process_vflr_event - Free VF resources via IRQ calls 1204 * @pf: pointer to the PF structure 1205 * 1206 * called from the VFLR IRQ handler to 1207 * free up VF resources and state variables 1208 */ 1209 void ice_process_vflr_event(struct ice_pf *pf) 1210 { 1211 struct ice_hw *hw = &pf->hw; 1212 struct ice_vf *vf; 1213 unsigned int bkt; 1214 u32 reg; 1215 1216 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 1217 !ice_has_vfs(pf)) 1218 return; 1219 1220 mutex_lock(&pf->vfs.table_lock); 1221 ice_for_each_vf(pf, bkt, vf) { 1222 u32 reg_idx, bit_idx; 1223 1224 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 1225 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 1226 /* read GLGEN_VFLRSTAT register to find out the flr VFs */ 1227 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); 1228 if (reg & BIT(bit_idx)) 1229 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ 1230 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 1231 } 1232 mutex_unlock(&pf->vfs.table_lock); 1233 } 1234 1235 /** 1236 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in 1237 * @pf: PF used to index all VFs 1238 * @pfq: queue index relative to the PF's function space 1239 * 1240 * If no VF is found who owns the pfq then return NULL, otherwise return a 1241 * pointer to the VF who owns the pfq 1242 * 1243 * If this function returns non-NULL, it acquires a reference count of the VF 1244 * structure. The caller is responsible for calling ice_put_vf() to drop this 1245 * reference. 1246 */ 1247 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) 1248 { 1249 struct ice_vf *vf; 1250 unsigned int bkt; 1251 1252 rcu_read_lock(); 1253 ice_for_each_vf_rcu(pf, bkt, vf) { 1254 struct ice_vsi *vsi; 1255 u16 rxq_idx; 1256 1257 vsi = ice_get_vf_vsi(vf); 1258 if (!vsi) 1259 continue; 1260 1261 ice_for_each_rxq(vsi, rxq_idx) 1262 if (vsi->rxq_map[rxq_idx] == pfq) { 1263 struct ice_vf *found; 1264 1265 if (kref_get_unless_zero(&vf->refcnt)) 1266 found = vf; 1267 else 1268 found = NULL; 1269 rcu_read_unlock(); 1270 return found; 1271 } 1272 } 1273 rcu_read_unlock(); 1274 1275 return NULL; 1276 } 1277 1278 /** 1279 * ice_globalq_to_pfq - convert from global queue index to PF space queue index 1280 * @pf: PF used for conversion 1281 * @globalq: global queue index used to convert to PF space queue index 1282 */ 1283 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) 1284 { 1285 return globalq - pf->hw.func_caps.common_cap.rxq_first_id; 1286 } 1287 1288 /** 1289 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF 1290 * @pf: PF that the LAN overflow event happened on 1291 * @event: structure holding the event information for the LAN overflow event 1292 * 1293 * Determine if the LAN overflow event was caused by a VF queue. If it was not 1294 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a 1295 * reset on the offending VF. 1296 */ 1297 void 1298 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1299 { 1300 u32 gldcb_rtctq, queue; 1301 struct ice_vf *vf; 1302 1303 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); 1304 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); 1305 1306 /* event returns device global Rx queue number */ 1307 queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq); 1308 1309 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); 1310 if (!vf) 1311 return; 1312 1313 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1314 ice_put_vf(vf); 1315 } 1316 1317 /** 1318 * ice_set_vf_spoofchk 1319 * @netdev: network interface device structure 1320 * @vf_id: VF identifier 1321 * @ena: flag to enable or disable feature 1322 * 1323 * Enable or disable VF spoof checking 1324 */ 1325 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) 1326 { 1327 struct ice_netdev_priv *np = netdev_priv(netdev); 1328 struct ice_pf *pf = np->vsi->back; 1329 struct ice_vsi *vf_vsi; 1330 struct device *dev; 1331 struct ice_vf *vf; 1332 int ret; 1333 1334 dev = ice_pf_to_dev(pf); 1335 1336 vf = ice_get_vf_by_id(pf, vf_id); 1337 if (!vf) 1338 return -EINVAL; 1339 1340 ret = ice_check_vf_ready_for_cfg(vf); 1341 if (ret) 1342 goto out_put_vf; 1343 1344 vf_vsi = ice_get_vf_vsi(vf); 1345 if (!vf_vsi) { 1346 netdev_err(netdev, "VSI %d for VF %d is null\n", 1347 vf->lan_vsi_idx, vf->vf_id); 1348 ret = -EINVAL; 1349 goto out_put_vf; 1350 } 1351 1352 if (vf_vsi->type != ICE_VSI_VF) { 1353 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", 1354 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); 1355 ret = -ENODEV; 1356 goto out_put_vf; 1357 } 1358 1359 if (ena == vf->spoofchk) { 1360 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); 1361 ret = 0; 1362 goto out_put_vf; 1363 } 1364 1365 ret = ice_vsi_apply_spoofchk(vf_vsi, ena); 1366 if (ret) 1367 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", 1368 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); 1369 else 1370 vf->spoofchk = ena; 1371 1372 out_put_vf: 1373 ice_put_vf(vf); 1374 return ret; 1375 } 1376 1377 /** 1378 * ice_get_vf_cfg 1379 * @netdev: network interface device structure 1380 * @vf_id: VF identifier 1381 * @ivi: VF configuration structure 1382 * 1383 * return VF configuration 1384 */ 1385 int 1386 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) 1387 { 1388 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1389 struct ice_vf *vf; 1390 int ret; 1391 1392 vf = ice_get_vf_by_id(pf, vf_id); 1393 if (!vf) 1394 return -EINVAL; 1395 1396 ret = ice_check_vf_ready_for_cfg(vf); 1397 if (ret) 1398 goto out_put_vf; 1399 1400 ivi->vf = vf_id; 1401 ether_addr_copy(ivi->mac, vf->hw_lan_addr); 1402 1403 /* VF configuration for VLAN and applicable QoS */ 1404 ivi->vlan = ice_vf_get_port_vlan_id(vf); 1405 ivi->qos = ice_vf_get_port_vlan_prio(vf); 1406 if (ice_vf_is_port_vlan_ena(vf)) 1407 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); 1408 1409 ivi->trusted = vf->trusted; 1410 ivi->spoofchk = vf->spoofchk; 1411 if (!vf->link_forced) 1412 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 1413 else if (vf->link_up) 1414 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 1415 else 1416 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 1417 ivi->max_tx_rate = vf->max_tx_rate; 1418 ivi->min_tx_rate = vf->min_tx_rate; 1419 1420 out_put_vf: 1421 ice_put_vf(vf); 1422 return ret; 1423 } 1424 1425 /** 1426 * __ice_set_vf_mac - program VF MAC address 1427 * @pf: PF to be configure 1428 * @vf_id: VF identifier 1429 * @mac: MAC address 1430 * 1431 * program VF MAC address 1432 * Return: zero on success or an error code on failure 1433 */ 1434 int __ice_set_vf_mac(struct ice_pf *pf, u16 vf_id, const u8 *mac) 1435 { 1436 struct device *dev; 1437 struct ice_vf *vf; 1438 int ret; 1439 1440 dev = ice_pf_to_dev(pf); 1441 if (is_multicast_ether_addr(mac)) { 1442 dev_err(dev, "%pM not a valid unicast address\n", mac); 1443 return -EINVAL; 1444 } 1445 1446 vf = ice_get_vf_by_id(pf, vf_id); 1447 if (!vf) 1448 return -EINVAL; 1449 1450 /* nothing left to do, unicast MAC already set */ 1451 if (ether_addr_equal(vf->dev_lan_addr, mac) && 1452 ether_addr_equal(vf->hw_lan_addr, mac)) { 1453 ret = 0; 1454 goto out_put_vf; 1455 } 1456 1457 ret = ice_check_vf_ready_for_cfg(vf); 1458 if (ret) 1459 goto out_put_vf; 1460 1461 mutex_lock(&vf->cfg_lock); 1462 1463 /* VF is notified of its new MAC via the PF's response to the 1464 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset 1465 */ 1466 ether_addr_copy(vf->dev_lan_addr, mac); 1467 ether_addr_copy(vf->hw_lan_addr, mac); 1468 if (is_zero_ether_addr(mac)) { 1469 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ 1470 vf->pf_set_mac = false; 1471 dev_info(dev, "Removing MAC on VF %d. VF driver will be reinitialized\n", 1472 vf->vf_id); 1473 } else { 1474 /* PF will add MAC rule for the VF */ 1475 vf->pf_set_mac = true; 1476 dev_info(dev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", 1477 mac, vf_id); 1478 } 1479 1480 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1481 mutex_unlock(&vf->cfg_lock); 1482 1483 out_put_vf: 1484 ice_put_vf(vf); 1485 return ret; 1486 } 1487 1488 /** 1489 * ice_set_vf_mac - .ndo_set_vf_mac handler 1490 * @netdev: network interface device structure 1491 * @vf_id: VF identifier 1492 * @mac: MAC address 1493 * 1494 * program VF MAC address 1495 * Return: zero on success or an error code on failure 1496 */ 1497 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 1498 { 1499 return __ice_set_vf_mac(ice_netdev_to_pf(netdev), vf_id, mac); 1500 } 1501 1502 /** 1503 * ice_set_vf_trust 1504 * @netdev: network interface device structure 1505 * @vf_id: VF identifier 1506 * @trusted: Boolean value to enable/disable trusted VF 1507 * 1508 * Enable or disable a given VF as trusted 1509 */ 1510 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) 1511 { 1512 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1513 struct ice_vf *vf; 1514 int ret; 1515 1516 vf = ice_get_vf_by_id(pf, vf_id); 1517 if (!vf) 1518 return -EINVAL; 1519 1520 if (ice_is_eswitch_mode_switchdev(pf)) { 1521 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); 1522 return -EOPNOTSUPP; 1523 } 1524 1525 ret = ice_check_vf_ready_for_cfg(vf); 1526 if (ret) 1527 goto out_put_vf; 1528 1529 /* Check if already trusted */ 1530 if (trusted == vf->trusted) { 1531 ret = 0; 1532 goto out_put_vf; 1533 } 1534 1535 mutex_lock(&vf->cfg_lock); 1536 1537 vf->trusted = trusted; 1538 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1539 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", 1540 vf_id, trusted ? "" : "un"); 1541 1542 mutex_unlock(&vf->cfg_lock); 1543 1544 out_put_vf: 1545 ice_put_vf(vf); 1546 return ret; 1547 } 1548 1549 /** 1550 * ice_set_vf_link_state 1551 * @netdev: network interface device structure 1552 * @vf_id: VF identifier 1553 * @link_state: required link state 1554 * 1555 * Set VF's link state, irrespective of physical link state status 1556 */ 1557 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) 1558 { 1559 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1560 struct ice_vf *vf; 1561 int ret; 1562 1563 vf = ice_get_vf_by_id(pf, vf_id); 1564 if (!vf) 1565 return -EINVAL; 1566 1567 ret = ice_check_vf_ready_for_cfg(vf); 1568 if (ret) 1569 goto out_put_vf; 1570 1571 switch (link_state) { 1572 case IFLA_VF_LINK_STATE_AUTO: 1573 vf->link_forced = false; 1574 break; 1575 case IFLA_VF_LINK_STATE_ENABLE: 1576 vf->link_forced = true; 1577 vf->link_up = true; 1578 break; 1579 case IFLA_VF_LINK_STATE_DISABLE: 1580 vf->link_forced = true; 1581 vf->link_up = false; 1582 break; 1583 default: 1584 ret = -EINVAL; 1585 goto out_put_vf; 1586 } 1587 1588 ice_vc_notify_vf_link_state(vf); 1589 1590 out_put_vf: 1591 ice_put_vf(vf); 1592 return ret; 1593 } 1594 1595 /** 1596 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs 1597 * @pf: PF associated with VFs 1598 */ 1599 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) 1600 { 1601 struct ice_vf *vf; 1602 unsigned int bkt; 1603 int rate = 0; 1604 1605 rcu_read_lock(); 1606 ice_for_each_vf_rcu(pf, bkt, vf) 1607 rate += vf->min_tx_rate; 1608 rcu_read_unlock(); 1609 1610 return rate; 1611 } 1612 1613 /** 1614 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription 1615 * @vf: VF trying to configure min_tx_rate 1616 * @min_tx_rate: min Tx rate in Mbps 1617 * 1618 * Check if the min_tx_rate being passed in will cause oversubscription of total 1619 * min_tx_rate based on the current link speed and all other VFs configured 1620 * min_tx_rate 1621 * 1622 * Return true if the passed min_tx_rate would cause oversubscription, else 1623 * return false 1624 */ 1625 static bool 1626 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) 1627 { 1628 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 1629 int all_vfs_min_tx_rate; 1630 int link_speed_mbps; 1631 1632 if (WARN_ON(!vsi)) 1633 return false; 1634 1635 link_speed_mbps = ice_get_link_speed_mbps(vsi); 1636 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); 1637 1638 /* this VF's previous rate is being overwritten */ 1639 all_vfs_min_tx_rate -= vf->min_tx_rate; 1640 1641 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { 1642 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", 1643 min_tx_rate, vf->vf_id, 1644 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, 1645 link_speed_mbps); 1646 return true; 1647 } 1648 1649 return false; 1650 } 1651 1652 /** 1653 * ice_set_vf_bw - set min/max VF bandwidth 1654 * @netdev: network interface device structure 1655 * @vf_id: VF identifier 1656 * @min_tx_rate: Minimum Tx rate in Mbps 1657 * @max_tx_rate: Maximum Tx rate in Mbps 1658 */ 1659 int 1660 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, 1661 int max_tx_rate) 1662 { 1663 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1664 struct ice_vsi *vsi; 1665 struct device *dev; 1666 struct ice_vf *vf; 1667 int ret; 1668 1669 dev = ice_pf_to_dev(pf); 1670 1671 vf = ice_get_vf_by_id(pf, vf_id); 1672 if (!vf) 1673 return -EINVAL; 1674 1675 ret = ice_check_vf_ready_for_cfg(vf); 1676 if (ret) 1677 goto out_put_vf; 1678 1679 vsi = ice_get_vf_vsi(vf); 1680 if (!vsi) { 1681 ret = -EINVAL; 1682 goto out_put_vf; 1683 } 1684 1685 if (min_tx_rate && ice_is_dcb_active(pf)) { 1686 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); 1687 ret = -EOPNOTSUPP; 1688 goto out_put_vf; 1689 } 1690 1691 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { 1692 ret = -EINVAL; 1693 goto out_put_vf; 1694 } 1695 1696 if (vf->min_tx_rate != (unsigned int)min_tx_rate) { 1697 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); 1698 if (ret) { 1699 dev_err(dev, "Unable to set min-tx-rate for VF %d\n", 1700 vf->vf_id); 1701 goto out_put_vf; 1702 } 1703 1704 vf->min_tx_rate = min_tx_rate; 1705 } 1706 1707 if (vf->max_tx_rate != (unsigned int)max_tx_rate) { 1708 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); 1709 if (ret) { 1710 dev_err(dev, "Unable to set max-tx-rate for VF %d\n", 1711 vf->vf_id); 1712 goto out_put_vf; 1713 } 1714 1715 vf->max_tx_rate = max_tx_rate; 1716 } 1717 1718 out_put_vf: 1719 ice_put_vf(vf); 1720 return ret; 1721 } 1722 1723 /** 1724 * ice_get_vf_stats - populate some stats for the VF 1725 * @netdev: the netdev of the PF 1726 * @vf_id: the host OS identifier (0-255) 1727 * @vf_stats: pointer to the OS memory to be initialized 1728 */ 1729 int ice_get_vf_stats(struct net_device *netdev, int vf_id, 1730 struct ifla_vf_stats *vf_stats) 1731 { 1732 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1733 struct ice_eth_stats *stats; 1734 struct ice_vsi *vsi; 1735 struct ice_vf *vf; 1736 int ret; 1737 1738 vf = ice_get_vf_by_id(pf, vf_id); 1739 if (!vf) 1740 return -EINVAL; 1741 1742 ret = ice_check_vf_ready_for_cfg(vf); 1743 if (ret) 1744 goto out_put_vf; 1745 1746 vsi = ice_get_vf_vsi(vf); 1747 if (!vsi) { 1748 ret = -EINVAL; 1749 goto out_put_vf; 1750 } 1751 1752 ice_update_eth_stats(vsi); 1753 stats = &vsi->eth_stats; 1754 1755 memset(vf_stats, 0, sizeof(*vf_stats)); 1756 1757 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + 1758 stats->rx_multicast; 1759 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + 1760 stats->tx_multicast; 1761 vf_stats->rx_bytes = stats->rx_bytes; 1762 vf_stats->tx_bytes = stats->tx_bytes; 1763 vf_stats->broadcast = stats->rx_broadcast; 1764 vf_stats->multicast = stats->rx_multicast; 1765 vf_stats->rx_dropped = stats->rx_discards; 1766 vf_stats->tx_dropped = stats->tx_discards; 1767 1768 out_put_vf: 1769 ice_put_vf(vf); 1770 return ret; 1771 } 1772 1773 /** 1774 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported 1775 * @hw: hardware structure used to check the VLAN mode 1776 * @vlan_proto: VLAN TPID being checked 1777 * 1778 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q 1779 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN 1780 * Mode (SVM), then only ETH_P_8021Q is supported. 1781 */ 1782 static bool 1783 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) 1784 { 1785 bool is_supported = false; 1786 1787 switch (vlan_proto) { 1788 case ETH_P_8021Q: 1789 is_supported = true; 1790 break; 1791 case ETH_P_8021AD: 1792 if (ice_is_dvm_ena(hw)) 1793 is_supported = true; 1794 break; 1795 } 1796 1797 return is_supported; 1798 } 1799 1800 /** 1801 * ice_set_vf_port_vlan 1802 * @netdev: network interface device structure 1803 * @vf_id: VF identifier 1804 * @vlan_id: VLAN ID being set 1805 * @qos: priority setting 1806 * @vlan_proto: VLAN protocol 1807 * 1808 * program VF Port VLAN ID and/or QoS 1809 */ 1810 int 1811 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, 1812 __be16 vlan_proto) 1813 { 1814 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1815 u16 local_vlan_proto = ntohs(vlan_proto); 1816 struct device *dev; 1817 struct ice_vf *vf; 1818 int ret; 1819 1820 dev = ice_pf_to_dev(pf); 1821 1822 if (vlan_id >= VLAN_N_VID || qos > 7) { 1823 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", 1824 vf_id, vlan_id, qos); 1825 return -EINVAL; 1826 } 1827 1828 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { 1829 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", 1830 local_vlan_proto); 1831 return -EPROTONOSUPPORT; 1832 } 1833 1834 vf = ice_get_vf_by_id(pf, vf_id); 1835 if (!vf) 1836 return -EINVAL; 1837 1838 ret = ice_check_vf_ready_for_cfg(vf); 1839 if (ret) 1840 goto out_put_vf; 1841 1842 if (ice_vf_get_port_vlan_prio(vf) == qos && 1843 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && 1844 ice_vf_get_port_vlan_id(vf) == vlan_id) { 1845 /* duplicate request, so just return success */ 1846 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", 1847 vlan_id, qos, local_vlan_proto); 1848 ret = 0; 1849 goto out_put_vf; 1850 } 1851 1852 mutex_lock(&vf->cfg_lock); 1853 1854 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); 1855 if (ice_vf_is_port_vlan_ena(vf)) 1856 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", 1857 vlan_id, qos, local_vlan_proto, vf_id); 1858 else 1859 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); 1860 1861 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1862 mutex_unlock(&vf->cfg_lock); 1863 1864 out_put_vf: 1865 ice_put_vf(vf); 1866 return ret; 1867 } 1868 1869 /** 1870 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event 1871 * @vf: pointer to the VF structure 1872 */ 1873 void ice_print_vf_rx_mdd_event(struct ice_vf *vf) 1874 { 1875 struct ice_pf *pf = vf->pf; 1876 struct device *dev; 1877 1878 dev = ice_pf_to_dev(pf); 1879 1880 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1881 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, 1882 vf->dev_lan_addr, 1883 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1884 ? "on" : "off"); 1885 } 1886 1887 /** 1888 * ice_print_vf_tx_mdd_event - print VF Tx malicious driver detect event 1889 * @vf: pointer to the VF structure 1890 */ 1891 void ice_print_vf_tx_mdd_event(struct ice_vf *vf) 1892 { 1893 struct ice_pf *pf = vf->pf; 1894 struct device *dev; 1895 1896 dev = ice_pf_to_dev(pf); 1897 1898 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1899 vf->mdd_tx_events.count, pf->hw.pf_id, vf->vf_id, 1900 vf->dev_lan_addr, 1901 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1902 ? "on" : "off"); 1903 } 1904 1905 /** 1906 * ice_print_vfs_mdd_events - print VFs malicious driver detect event 1907 * @pf: pointer to the PF structure 1908 * 1909 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. 1910 */ 1911 void ice_print_vfs_mdd_events(struct ice_pf *pf) 1912 { 1913 struct ice_vf *vf; 1914 unsigned int bkt; 1915 1916 /* check that there are pending MDD events to print */ 1917 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) 1918 return; 1919 1920 /* VF MDD event logs are rate limited to one second intervals */ 1921 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) 1922 return; 1923 1924 pf->vfs.last_printed_mdd_jiffies = jiffies; 1925 1926 mutex_lock(&pf->vfs.table_lock); 1927 ice_for_each_vf(pf, bkt, vf) { 1928 /* only print Rx MDD event message if there are new events */ 1929 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 1930 vf->mdd_rx_events.last_printed = 1931 vf->mdd_rx_events.count; 1932 ice_print_vf_rx_mdd_event(vf); 1933 } 1934 1935 /* only print Tx MDD event message if there are new events */ 1936 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 1937 vf->mdd_tx_events.last_printed = 1938 vf->mdd_tx_events.count; 1939 ice_print_vf_tx_mdd_event(vf); 1940 } 1941 } 1942 mutex_unlock(&pf->vfs.table_lock); 1943 } 1944 1945 /** 1946 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR 1947 * @pf: pointer to the PF structure 1948 * 1949 * Called when recovering from a PF FLR to restore interrupt capability to 1950 * the VFs. 1951 */ 1952 void ice_restore_all_vfs_msi_state(struct ice_pf *pf) 1953 { 1954 struct ice_vf *vf; 1955 u32 bkt; 1956 1957 ice_for_each_vf(pf, bkt, vf) 1958 pci_restore_msi_state(vf->vfdev); 1959 } 1960