1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice_base.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_flow.h" 11 #include "ice_eswitch.h" 12 #include "ice_virtchnl_allowlist.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_vf_vsi_vlan_ops.h" 15 #include "ice_vlan.h" 16 17 /** 18 * ice_free_vf_entries - Free all VF entries from the hash table 19 * @pf: pointer to the PF structure 20 * 21 * Iterate over the VF hash table, removing and releasing all VF entries. 22 * Called during VF teardown or as cleanup during failed VF initialization. 23 */ 24 static void ice_free_vf_entries(struct ice_pf *pf) 25 { 26 struct ice_vfs *vfs = &pf->vfs; 27 struct hlist_node *tmp; 28 struct ice_vf *vf; 29 unsigned int bkt; 30 31 /* Remove all VFs from the hash table and release their main 32 * reference. Once all references to the VF are dropped, ice_put_vf() 33 * will call ice_release_vf which will remove the VF memory. 34 */ 35 lockdep_assert_held(&vfs->table_lock); 36 37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { 38 hash_del_rcu(&vf->entry); 39 ice_put_vf(vf); 40 } 41 } 42 43 /** 44 * ice_free_vf_res - Free a VF's resources 45 * @vf: pointer to the VF info 46 */ 47 static void ice_free_vf_res(struct ice_vf *vf) 48 { 49 struct ice_pf *pf = vf->pf; 50 int i, last_vector_idx; 51 52 /* First, disable VF's configuration API to prevent OS from 53 * accessing the VF's VSI after it's freed or invalidated. 54 */ 55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states); 56 ice_vf_fdir_exit(vf); 57 /* free VF control VSI */ 58 if (vf->ctrl_vsi_idx != ICE_NO_VSI) 59 ice_vf_ctrl_vsi_release(vf); 60 61 /* free VSI and disconnect it from the parent uplink */ 62 if (vf->lan_vsi_idx != ICE_NO_VSI) { 63 ice_vf_vsi_release(vf); 64 vf->num_mac = 0; 65 } 66 67 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1; 68 69 /* clear VF MDD event information */ 70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); 71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); 72 73 /* Disable interrupts so that VF starts in a known state */ 74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { 75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); 76 ice_flush(&pf->hw); 77 } 78 /* reset some of the state variables keeping track of the resources */ 79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); 80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); 81 } 82 83 /** 84 * ice_dis_vf_mappings 85 * @vf: pointer to the VF structure 86 */ 87 static void ice_dis_vf_mappings(struct ice_vf *vf) 88 { 89 struct ice_pf *pf = vf->pf; 90 struct ice_vsi *vsi; 91 struct device *dev; 92 int first, last, v; 93 struct ice_hw *hw; 94 95 hw = &pf->hw; 96 vsi = ice_get_vf_vsi(vf); 97 if (WARN_ON(!vsi)) 98 return; 99 100 dev = ice_pf_to_dev(pf); 101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0); 102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); 103 104 first = vf->first_vector_idx; 105 last = first + vf->num_msix - 1; 106 for (v = first; v <= last; v++) { 107 u32 reg; 108 109 reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) | 110 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 111 wr32(hw, GLINT_VECT2FUNC(v), reg); 112 } 113 114 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) 115 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); 116 else 117 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 118 119 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) 120 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); 121 else 122 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 123 } 124 125 /** 126 * ice_sriov_free_msix_res - Reset/free any used MSIX resources 127 * @pf: pointer to the PF structure 128 * 129 * Since no MSIX entries are taken from the pf->irq_tracker then just clear 130 * the pf->sriov_base_vector. 131 * 132 * Returns 0 on success, and -EINVAL on error. 133 */ 134 static int ice_sriov_free_msix_res(struct ice_pf *pf) 135 { 136 if (!pf) 137 return -EINVAL; 138 139 bitmap_free(pf->sriov_irq_bm); 140 pf->sriov_irq_size = 0; 141 pf->sriov_base_vector = 0; 142 143 return 0; 144 } 145 146 /** 147 * ice_free_vfs - Free all VFs 148 * @pf: pointer to the PF structure 149 */ 150 void ice_free_vfs(struct ice_pf *pf) 151 { 152 struct device *dev = ice_pf_to_dev(pf); 153 struct ice_vfs *vfs = &pf->vfs; 154 struct ice_hw *hw = &pf->hw; 155 struct ice_vf *vf; 156 unsigned int bkt; 157 158 if (!ice_has_vfs(pf)) 159 return; 160 161 while (test_and_set_bit(ICE_VF_DIS, pf->state)) 162 usleep_range(1000, 2000); 163 164 /* Disable IOV before freeing resources. This lets any VF drivers 165 * running in the host get themselves cleaned up before we yank 166 * the carpet out from underneath their feet. 167 */ 168 if (!pci_vfs_assigned(pf->pdev)) 169 pci_disable_sriov(pf->pdev); 170 else 171 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); 172 173 mutex_lock(&vfs->table_lock); 174 175 ice_for_each_vf(pf, bkt, vf) { 176 mutex_lock(&vf->cfg_lock); 177 178 ice_eswitch_detach_vf(pf, vf); 179 ice_dis_vf_qs(vf); 180 181 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { 182 /* disable VF qp mappings and set VF disable state */ 183 ice_dis_vf_mappings(vf); 184 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 185 ice_free_vf_res(vf); 186 } 187 188 if (!pci_vfs_assigned(pf->pdev)) { 189 u32 reg_idx, bit_idx; 190 191 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 192 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 193 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 194 } 195 196 /* clear malicious info since the VF is getting released */ 197 list_del(&vf->mbx_info.list_entry); 198 199 mutex_unlock(&vf->cfg_lock); 200 } 201 202 if (ice_sriov_free_msix_res(pf)) 203 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); 204 205 vfs->num_qps_per = 0; 206 ice_free_vf_entries(pf); 207 208 mutex_unlock(&vfs->table_lock); 209 210 clear_bit(ICE_VF_DIS, pf->state); 211 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 212 } 213 214 /** 215 * ice_vf_vsi_setup - Set up a VF VSI 216 * @vf: VF to setup VSI for 217 * 218 * Returns pointer to the successfully allocated VSI struct on success, 219 * otherwise returns NULL on failure. 220 */ 221 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) 222 { 223 struct ice_vsi_cfg_params params = {}; 224 struct ice_pf *pf = vf->pf; 225 struct ice_vsi *vsi; 226 227 params.type = ICE_VSI_VF; 228 params.port_info = ice_vf_get_port_info(vf); 229 params.vf = vf; 230 params.flags = ICE_VSI_FLAG_INIT; 231 232 vsi = ice_vsi_setup(pf, ¶ms); 233 234 if (!vsi) { 235 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); 236 ice_vf_invalidate_vsi(vf); 237 return NULL; 238 } 239 240 vf->lan_vsi_idx = vsi->idx; 241 242 return vsi; 243 } 244 245 246 /** 247 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware 248 * @vf: VF to enable MSIX mappings for 249 * 250 * Some of the registers need to be indexed/configured using hardware global 251 * device values and other registers need 0-based values, which represent PF 252 * based values. 253 */ 254 static void ice_ena_vf_msix_mappings(struct ice_vf *vf) 255 { 256 int device_based_first_msix, device_based_last_msix; 257 int pf_based_first_msix, pf_based_last_msix, v; 258 struct ice_pf *pf = vf->pf; 259 int device_based_vf_id; 260 struct ice_hw *hw; 261 u32 reg; 262 263 hw = &pf->hw; 264 pf_based_first_msix = vf->first_vector_idx; 265 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1; 266 267 device_based_first_msix = pf_based_first_msix + 268 pf->hw.func_caps.common_cap.msix_vector_first_id; 269 device_based_last_msix = 270 (device_based_first_msix + vf->num_msix) - 1; 271 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; 272 273 reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) | 274 FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) | 275 VPINT_ALLOC_VALID_M; 276 wr32(hw, VPINT_ALLOC(vf->vf_id), reg); 277 278 reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) | 279 FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) | 280 VPINT_ALLOC_PCI_VALID_M; 281 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); 282 283 /* map the interrupts to its functions */ 284 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { 285 reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) | 286 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 287 wr32(hw, GLINT_VECT2FUNC(v), reg); 288 } 289 290 /* Map mailbox interrupt to VF MSI-X vector 0 */ 291 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); 292 } 293 294 /** 295 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF 296 * @vf: VF to enable the mappings for 297 * @max_txq: max Tx queues allowed on the VF's VSI 298 * @max_rxq: max Rx queues allowed on the VF's VSI 299 */ 300 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) 301 { 302 struct device *dev = ice_pf_to_dev(vf->pf); 303 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 304 struct ice_hw *hw = &vf->pf->hw; 305 u32 reg; 306 307 if (WARN_ON(!vsi)) 308 return; 309 310 /* set regardless of mapping mode */ 311 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); 312 313 /* VF Tx queues allocation */ 314 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { 315 /* set the VF PF Tx queue range 316 * VFNUMQ value should be set to (number of queues - 1). A value 317 * of 0 means 1 queue and a value of 255 means 256 queues 318 */ 319 reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) | 320 FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1); 321 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); 322 } else { 323 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 324 } 325 326 /* set regardless of mapping mode */ 327 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); 328 329 /* VF Rx queues allocation */ 330 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { 331 /* set the VF PF Rx queue range 332 * VFNUMQ value should be set to (number of queues - 1). A value 333 * of 0 means 1 queue and a value of 255 means 256 queues 334 */ 335 reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) | 336 FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1); 337 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); 338 } else { 339 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 340 } 341 } 342 343 /** 344 * ice_ena_vf_mappings - enable VF MSIX and queue mapping 345 * @vf: pointer to the VF structure 346 */ 347 static void ice_ena_vf_mappings(struct ice_vf *vf) 348 { 349 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 350 351 if (WARN_ON(!vsi)) 352 return; 353 354 ice_ena_vf_msix_mappings(vf); 355 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); 356 } 357 358 /** 359 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space 360 * @vf: VF to calculate the register index for 361 * @q_vector: a q_vector associated to the VF 362 */ 363 void ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) 364 { 365 if (!vf || !q_vector) 366 return; 367 368 /* always add one to account for the OICR being the first MSIX */ 369 q_vector->vf_reg_idx = q_vector->v_idx + ICE_NONQ_VECS_VF; 370 q_vector->reg_idx = vf->first_vector_idx + q_vector->vf_reg_idx; 371 } 372 373 /** 374 * ice_sriov_set_msix_res - Set any used MSIX resources 375 * @pf: pointer to PF structure 376 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs 377 * 378 * This function allows SR-IOV resources to be taken from the end of the PF's 379 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We 380 * just set the pf->sriov_base_vector and return success. 381 * 382 * If there are not enough resources available, return an error. This should 383 * always be caught by ice_set_per_vf_res(). 384 * 385 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors 386 * in the PF's space available for SR-IOV. 387 */ 388 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) 389 { 390 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 391 int vectors_used = ice_get_max_used_msix_vector(pf); 392 int sriov_base_vector; 393 394 sriov_base_vector = total_vectors - num_msix_needed; 395 396 /* make sure we only grab irq_tracker entries from the list end and 397 * that we have enough available MSIX vectors 398 */ 399 if (sriov_base_vector < vectors_used) 400 return -EINVAL; 401 402 pf->sriov_base_vector = sriov_base_vector; 403 404 return 0; 405 } 406 407 /** 408 * ice_set_per_vf_res - check if vectors and queues are available 409 * @pf: pointer to the PF structure 410 * @num_vfs: the number of SR-IOV VFs being configured 411 * 412 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we 413 * get more vectors and can enable more queues per VF. Note that this does not 414 * grab any vectors from the SW pool already allocated. Also note, that all 415 * vector counts include one for each VF's miscellaneous interrupt vector 416 * (i.e. OICR). 417 * 418 * Minimum VFs - 2 vectors, 1 queue pair 419 * Small VFs - 5 vectors, 4 queue pairs 420 * Medium VFs - 17 vectors, 16 queue pairs 421 * 422 * Second, determine number of queue pairs per VF by starting with a pre-defined 423 * maximum each VF supports. If this is not possible, then we adjust based on 424 * queue pairs available on the device. 425 * 426 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used 427 * by each VF during VF initialization and reset. 428 */ 429 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) 430 { 431 int vectors_used = ice_get_max_used_msix_vector(pf); 432 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; 433 int msix_avail_per_vf, msix_avail_for_sriov; 434 struct device *dev = ice_pf_to_dev(pf); 435 int err; 436 437 lockdep_assert_held(&pf->vfs.table_lock); 438 439 if (!num_vfs) 440 return -EINVAL; 441 442 /* determine MSI-X resources per VF */ 443 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - 444 vectors_used; 445 msix_avail_per_vf = msix_avail_for_sriov / num_vfs; 446 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { 447 num_msix_per_vf = ICE_NUM_VF_MSIX_MED; 448 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { 449 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; 450 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { 451 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; 452 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { 453 num_msix_per_vf = ICE_MIN_INTR_PER_VF; 454 } else { 455 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", 456 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, 457 num_vfs); 458 return -ENOSPC; 459 } 460 461 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 462 ICE_MAX_RSS_QS_PER_VF); 463 avail_qs = ice_get_avail_txq_count(pf) / num_vfs; 464 if (!avail_qs) 465 num_txq = 0; 466 else if (num_txq > avail_qs) 467 num_txq = rounddown_pow_of_two(avail_qs); 468 469 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 470 ICE_MAX_RSS_QS_PER_VF); 471 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; 472 if (!avail_qs) 473 num_rxq = 0; 474 else if (num_rxq > avail_qs) 475 num_rxq = rounddown_pow_of_two(avail_qs); 476 477 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { 478 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", 479 ICE_MIN_QS_PER_VF, num_vfs); 480 return -ENOSPC; 481 } 482 483 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); 484 if (err) { 485 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", 486 num_vfs, err); 487 return err; 488 } 489 490 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ 491 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); 492 pf->vfs.num_msix_per = num_msix_per_vf; 493 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", 494 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); 495 496 return 0; 497 } 498 499 /** 500 * ice_sriov_get_irqs - get irqs for SR-IOV usacase 501 * @pf: pointer to PF structure 502 * @needed: number of irqs to get 503 * 504 * This returns the first MSI-X vector index in PF space that is used by this 505 * VF. This index is used when accessing PF relative registers such as 506 * GLINT_VECT2FUNC and GLINT_DYN_CTL. 507 * This will always be the OICR index in the AVF driver so any functionality 508 * using vf->first_vector_idx for queue configuration_id: id of VF which will 509 * use this irqs 510 * 511 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are 512 * allocated from the end of global irq index. First bit in sriov_irq_bm means 513 * last irq index etc. It simplifies extension of SRIOV vectors. 514 * They will be always located from sriov_base_vector to the last irq 515 * index. While increasing/decreasing sriov_base_vector can be moved. 516 */ 517 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed) 518 { 519 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm, 520 pf->sriov_irq_size, 0, needed, 0); 521 /* conversion from number in bitmap to global irq index */ 522 int index = pf->sriov_irq_size - res - needed; 523 524 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector) 525 return -ENOENT; 526 527 bitmap_set(pf->sriov_irq_bm, res, needed); 528 return index; 529 } 530 531 /** 532 * ice_sriov_free_irqs - free irqs used by the VF 533 * @pf: pointer to PF structure 534 * @vf: pointer to VF structure 535 */ 536 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf) 537 { 538 /* Move back from first vector index to first index in bitmap */ 539 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix; 540 541 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix); 542 vf->first_vector_idx = 0; 543 } 544 545 /** 546 * ice_init_vf_vsi_res - initialize/setup VF VSI resources 547 * @vf: VF to initialize/setup the VSI for 548 * 549 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the 550 * VF VSI's broadcast filter and is only used during initial VF creation. 551 */ 552 static int ice_init_vf_vsi_res(struct ice_vf *vf) 553 { 554 struct ice_pf *pf = vf->pf; 555 struct ice_vsi *vsi; 556 int err; 557 558 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 559 if (vf->first_vector_idx < 0) 560 return -ENOMEM; 561 562 vsi = ice_vf_vsi_setup(vf); 563 if (!vsi) 564 return -ENOMEM; 565 566 err = ice_vf_init_host_cfg(vf, vsi); 567 if (err) 568 goto release_vsi; 569 570 return 0; 571 572 release_vsi: 573 ice_vf_vsi_release(vf); 574 return err; 575 } 576 577 /** 578 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV 579 * @pf: PF the VFs are associated with 580 */ 581 static int ice_start_vfs(struct ice_pf *pf) 582 { 583 struct ice_hw *hw = &pf->hw; 584 unsigned int bkt, it_cnt; 585 struct ice_vf *vf; 586 int retval; 587 588 lockdep_assert_held(&pf->vfs.table_lock); 589 590 it_cnt = 0; 591 ice_for_each_vf(pf, bkt, vf) { 592 vf->vf_ops->clear_reset_trigger(vf); 593 594 retval = ice_init_vf_vsi_res(vf); 595 if (retval) { 596 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", 597 vf->vf_id, retval); 598 goto teardown; 599 } 600 601 retval = ice_eswitch_attach_vf(pf, vf); 602 if (retval) { 603 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d", 604 vf->vf_id, retval); 605 ice_vf_vsi_release(vf); 606 goto teardown; 607 } 608 609 set_bit(ICE_VF_STATE_INIT, vf->vf_states); 610 ice_ena_vf_mappings(vf); 611 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 612 it_cnt++; 613 } 614 615 ice_flush(hw); 616 return 0; 617 618 teardown: 619 ice_for_each_vf(pf, bkt, vf) { 620 if (it_cnt == 0) 621 break; 622 623 ice_dis_vf_mappings(vf); 624 ice_vf_vsi_release(vf); 625 it_cnt--; 626 } 627 628 return retval; 629 } 630 631 /** 632 * ice_sriov_free_vf - Free VF memory after all references are dropped 633 * @vf: pointer to VF to free 634 * 635 * Called by ice_put_vf through ice_release_vf once the last reference to a VF 636 * structure has been dropped. 637 */ 638 static void ice_sriov_free_vf(struct ice_vf *vf) 639 { 640 mutex_destroy(&vf->cfg_lock); 641 642 kfree_rcu(vf, rcu); 643 } 644 645 /** 646 * ice_sriov_clear_reset_state - clears VF Reset status register 647 * @vf: the vf to configure 648 */ 649 static void ice_sriov_clear_reset_state(struct ice_vf *vf) 650 { 651 struct ice_hw *hw = &vf->pf->hw; 652 653 /* Clear the reset status register so that VF immediately sees that 654 * the device is resetting, even if hardware hasn't yet gotten around 655 * to clearing VFGEN_RSTAT for us. 656 */ 657 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); 658 } 659 660 /** 661 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers 662 * @vf: the vf to configure 663 */ 664 static void ice_sriov_clear_mbx_register(struct ice_vf *vf) 665 { 666 struct ice_pf *pf = vf->pf; 667 668 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); 669 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); 670 } 671 672 /** 673 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF 674 * @vf: pointer to VF structure 675 * @is_vflr: true if reset occurred due to VFLR 676 * 677 * Trigger and cleanup after a VF reset for a SR-IOV VF. 678 */ 679 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) 680 { 681 struct ice_pf *pf = vf->pf; 682 u32 reg, reg_idx, bit_idx; 683 unsigned int vf_abs_id, i; 684 struct device *dev; 685 struct ice_hw *hw; 686 687 dev = ice_pf_to_dev(pf); 688 hw = &pf->hw; 689 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; 690 691 /* In the case of a VFLR, HW has already reset the VF and we just need 692 * to clean up. Otherwise we must first trigger the reset using the 693 * VFRTRIG register. 694 */ 695 if (!is_vflr) { 696 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 697 reg |= VPGEN_VFRTRIG_VFSWR_M; 698 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 699 } 700 701 /* clear the VFLR bit in GLGEN_VFLRSTAT */ 702 reg_idx = (vf_abs_id) / 32; 703 bit_idx = (vf_abs_id) % 32; 704 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 705 ice_flush(hw); 706 707 wr32(hw, PF_PCI_CIAA, 708 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); 709 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { 710 reg = rd32(hw, PF_PCI_CIAD); 711 /* no transactions pending so stop polling */ 712 if ((reg & VF_TRANS_PENDING_M) == 0) 713 break; 714 715 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); 716 udelay(ICE_PCI_CIAD_WAIT_DELAY_US); 717 } 718 } 719 720 /** 721 * ice_sriov_poll_reset_status - poll SRIOV VF reset status 722 * @vf: pointer to VF structure 723 * 724 * Returns true when reset is successful, else returns false 725 */ 726 static bool ice_sriov_poll_reset_status(struct ice_vf *vf) 727 { 728 struct ice_pf *pf = vf->pf; 729 unsigned int i; 730 u32 reg; 731 732 for (i = 0; i < 10; i++) { 733 /* VF reset requires driver to first reset the VF and then 734 * poll the status register to make sure that the reset 735 * completed successfully. 736 */ 737 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); 738 if (reg & VPGEN_VFRSTAT_VFRD_M) 739 return true; 740 741 /* only sleep if the reset is not done */ 742 usleep_range(10, 20); 743 } 744 return false; 745 } 746 747 /** 748 * ice_sriov_clear_reset_trigger - enable VF to access hardware 749 * @vf: VF to enabled hardware access for 750 */ 751 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) 752 { 753 struct ice_hw *hw = &vf->pf->hw; 754 u32 reg; 755 756 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 757 reg &= ~VPGEN_VFRTRIG_VFSWR_M; 758 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 759 ice_flush(hw); 760 } 761 762 /** 763 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt 764 * @vf: VF to perform tasks on 765 */ 766 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) 767 { 768 ice_ena_vf_mappings(vf); 769 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 770 } 771 772 static const struct ice_vf_ops ice_sriov_vf_ops = { 773 .reset_type = ICE_VF_RESET, 774 .free = ice_sriov_free_vf, 775 .clear_reset_state = ice_sriov_clear_reset_state, 776 .clear_mbx_register = ice_sriov_clear_mbx_register, 777 .trigger_reset_register = ice_sriov_trigger_reset_register, 778 .poll_reset_status = ice_sriov_poll_reset_status, 779 .clear_reset_trigger = ice_sriov_clear_reset_trigger, 780 .irq_close = NULL, 781 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, 782 }; 783 784 /** 785 * ice_create_vf_entries - Allocate and insert VF entries 786 * @pf: pointer to the PF structure 787 * @num_vfs: the number of VFs to allocate 788 * 789 * Allocate new VF entries and insert them into the hash table. Set some 790 * basic default fields for initializing the new VFs. 791 * 792 * After this function exits, the hash table will have num_vfs entries 793 * inserted. 794 * 795 * Returns 0 on success or an integer error code on failure. 796 */ 797 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) 798 { 799 struct pci_dev *pdev = pf->pdev; 800 struct ice_vfs *vfs = &pf->vfs; 801 struct pci_dev *vfdev = NULL; 802 struct ice_vf *vf; 803 u16 vf_pdev_id; 804 int err, pos; 805 806 lockdep_assert_held(&vfs->table_lock); 807 808 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 809 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id); 810 811 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) { 812 vf = kzalloc(sizeof(*vf), GFP_KERNEL); 813 if (!vf) { 814 err = -ENOMEM; 815 goto err_free_entries; 816 } 817 kref_init(&vf->refcnt); 818 819 vf->pf = pf; 820 vf->vf_id = vf_id; 821 822 /* set sriov vf ops for VFs created during SRIOV flow */ 823 vf->vf_ops = &ice_sriov_vf_ops; 824 825 ice_initialize_vf_entry(vf); 826 827 do { 828 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev); 829 } while (vfdev && vfdev->physfn != pdev); 830 vf->vfdev = vfdev; 831 vf->vf_sw_id = pf->first_sw; 832 833 pci_dev_get(vfdev); 834 835 hash_add_rcu(vfs->table, &vf->entry, vf_id); 836 } 837 838 /* Decrement of refcount done by pci_get_device() inside the loop does 839 * not touch the last iteration's vfdev, so it has to be done manually 840 * to balance pci_dev_get() added within the loop. 841 */ 842 pci_dev_put(vfdev); 843 844 return 0; 845 846 err_free_entries: 847 ice_free_vf_entries(pf); 848 return err; 849 } 850 851 /** 852 * ice_ena_vfs - enable VFs so they are ready to be used 853 * @pf: pointer to the PF structure 854 * @num_vfs: number of VFs to enable 855 */ 856 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) 857 { 858 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 859 struct device *dev = ice_pf_to_dev(pf); 860 struct ice_hw *hw = &pf->hw; 861 int ret; 862 863 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL); 864 if (!pf->sriov_irq_bm) 865 return -ENOMEM; 866 pf->sriov_irq_size = total_vectors; 867 868 /* Disable global interrupt 0 so we don't try to handle the VFLR. */ 869 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 870 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 871 set_bit(ICE_OICR_INTR_DIS, pf->state); 872 ice_flush(hw); 873 874 ret = pci_enable_sriov(pf->pdev, num_vfs); 875 if (ret) 876 goto err_unroll_intr; 877 878 mutex_lock(&pf->vfs.table_lock); 879 880 ret = ice_set_per_vf_res(pf, num_vfs); 881 if (ret) { 882 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", 883 num_vfs, ret); 884 goto err_unroll_sriov; 885 } 886 887 ret = ice_create_vf_entries(pf, num_vfs); 888 if (ret) { 889 dev_err(dev, "Failed to allocate VF entries for %d VFs\n", 890 num_vfs); 891 goto err_unroll_sriov; 892 } 893 894 ret = ice_start_vfs(pf); 895 if (ret) { 896 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); 897 ret = -EAGAIN; 898 goto err_unroll_vf_entries; 899 } 900 901 clear_bit(ICE_VF_DIS, pf->state); 902 903 /* rearm global interrupts */ 904 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) 905 ice_irq_dynamic_ena(hw, NULL, NULL); 906 907 mutex_unlock(&pf->vfs.table_lock); 908 909 return 0; 910 911 err_unroll_vf_entries: 912 ice_free_vf_entries(pf); 913 err_unroll_sriov: 914 mutex_unlock(&pf->vfs.table_lock); 915 pci_disable_sriov(pf->pdev); 916 err_unroll_intr: 917 /* rearm interrupts here */ 918 ice_irq_dynamic_ena(hw, NULL, NULL); 919 clear_bit(ICE_OICR_INTR_DIS, pf->state); 920 bitmap_free(pf->sriov_irq_bm); 921 return ret; 922 } 923 924 /** 925 * ice_pci_sriov_ena - Enable or change number of VFs 926 * @pf: pointer to the PF structure 927 * @num_vfs: number of VFs to allocate 928 * 929 * Returns 0 on success and negative on failure 930 */ 931 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) 932 { 933 struct device *dev = ice_pf_to_dev(pf); 934 int err; 935 936 if (!num_vfs) { 937 ice_free_vfs(pf); 938 return 0; 939 } 940 941 if (num_vfs > pf->vfs.num_supported) { 942 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", 943 num_vfs, pf->vfs.num_supported); 944 return -EOPNOTSUPP; 945 } 946 947 dev_info(dev, "Enabling %d VFs\n", num_vfs); 948 err = ice_ena_vfs(pf, num_vfs); 949 if (err) { 950 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 951 return err; 952 } 953 954 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 955 return 0; 956 } 957 958 /** 959 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks 960 * @pf: PF to enabled SR-IOV on 961 */ 962 static int ice_check_sriov_allowed(struct ice_pf *pf) 963 { 964 struct device *dev = ice_pf_to_dev(pf); 965 966 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { 967 dev_err(dev, "This device is not capable of SR-IOV\n"); 968 return -EOPNOTSUPP; 969 } 970 971 if (ice_is_safe_mode(pf)) { 972 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); 973 return -EOPNOTSUPP; 974 } 975 976 if (!ice_pf_state_is_nominal(pf)) { 977 dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); 978 return -EBUSY; 979 } 980 981 return 0; 982 } 983 984 /** 985 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs 986 * @pdev: pointer to pci_dev struct 987 * 988 * The function is called via sysfs ops 989 */ 990 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev) 991 { 992 struct ice_pf *pf = pci_get_drvdata(pdev); 993 994 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf); 995 } 996 997 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move) 998 { 999 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf)) 1000 return -ENOMEM; 1001 1002 pf->sriov_base_vector -= move; 1003 return 0; 1004 } 1005 1006 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id) 1007 { 1008 u16 vf_ids[ICE_MAX_SRIOV_VFS]; 1009 struct ice_vf *tmp_vf; 1010 int to_remap = 0, bkt; 1011 1012 /* For better irqs usage try to remap irqs of VFs 1013 * that aren't running yet 1014 */ 1015 ice_for_each_vf(pf, bkt, tmp_vf) { 1016 /* skip VF which is changing the number of MSI-X */ 1017 if (restricted_id == tmp_vf->vf_id || 1018 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states)) 1019 continue; 1020 1021 ice_dis_vf_mappings(tmp_vf); 1022 ice_sriov_free_irqs(pf, tmp_vf); 1023 1024 vf_ids[to_remap] = tmp_vf->vf_id; 1025 to_remap += 1; 1026 } 1027 1028 for (int i = 0; i < to_remap; i++) { 1029 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]); 1030 if (!tmp_vf) 1031 continue; 1032 1033 tmp_vf->first_vector_idx = 1034 ice_sriov_get_irqs(pf, tmp_vf->num_msix); 1035 /* there is no need to rebuild VSI as we are only changing the 1036 * vector indexes not amount of MSI-X or queues 1037 */ 1038 ice_ena_vf_mappings(tmp_vf); 1039 ice_put_vf(tmp_vf); 1040 } 1041 } 1042 1043 /** 1044 * ice_sriov_set_msix_vec_count 1045 * @vf_dev: pointer to pci_dev struct of VF device 1046 * @msix_vec_count: new value for MSI-X amount on this VF 1047 * 1048 * Set requested MSI-X, queues and registers for @vf_dev. 1049 * 1050 * First do some sanity checks like if there are any VFs, if the new value 1051 * is correct etc. Then disable old mapping (MSI-X and queues registers), change 1052 * MSI-X and queues, rebuild VSI and enable new mapping. 1053 * 1054 * If it is possible (driver not binded to VF) try to remap also other VFs to 1055 * linearize irqs register usage. 1056 */ 1057 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count) 1058 { 1059 struct pci_dev *pdev = pci_physfn(vf_dev); 1060 struct ice_pf *pf = pci_get_drvdata(pdev); 1061 u16 prev_msix, prev_queues, queues; 1062 bool needs_rebuild = false; 1063 struct ice_vsi *vsi; 1064 struct ice_vf *vf; 1065 int id; 1066 1067 if (!ice_get_num_vfs(pf)) 1068 return -ENOENT; 1069 1070 if (!msix_vec_count) 1071 return 0; 1072 1073 queues = msix_vec_count; 1074 /* add 1 MSI-X for OICR */ 1075 msix_vec_count += 1; 1076 1077 if (queues > min(ice_get_avail_txq_count(pf), 1078 ice_get_avail_rxq_count(pf))) 1079 return -EINVAL; 1080 1081 if (msix_vec_count < ICE_MIN_INTR_PER_VF) 1082 return -EINVAL; 1083 1084 /* Transition of PCI VF function number to function_id */ 1085 for (id = 0; id < pci_num_vf(pdev); id++) { 1086 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id)) 1087 break; 1088 } 1089 1090 if (id == pci_num_vf(pdev)) 1091 return -ENOENT; 1092 1093 vf = ice_get_vf_by_id(pf, id); 1094 1095 if (!vf) 1096 return -ENOENT; 1097 1098 vsi = ice_get_vf_vsi(vf); 1099 if (!vsi) 1100 return -ENOENT; 1101 1102 prev_msix = vf->num_msix; 1103 prev_queues = vf->num_vf_qs; 1104 1105 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) { 1106 ice_put_vf(vf); 1107 return -ENOSPC; 1108 } 1109 1110 ice_dis_vf_mappings(vf); 1111 ice_sriov_free_irqs(pf, vf); 1112 1113 /* Remap all VFs beside the one is now configured */ 1114 ice_sriov_remap_vectors(pf, vf->vf_id); 1115 1116 vf->num_msix = msix_vec_count; 1117 vf->num_vf_qs = queues; 1118 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1119 if (vf->first_vector_idx < 0) 1120 goto unroll; 1121 1122 if (ice_vf_reconfig_vsi(vf) || ice_vf_init_host_cfg(vf, vsi)) { 1123 /* Try to rebuild with previous values */ 1124 needs_rebuild = true; 1125 goto unroll; 1126 } 1127 1128 dev_info(ice_pf_to_dev(pf), 1129 "Changing VF %d resources to %d vectors and %d queues\n", 1130 vf->vf_id, vf->num_msix, vf->num_vf_qs); 1131 1132 ice_ena_vf_mappings(vf); 1133 ice_put_vf(vf); 1134 1135 return 0; 1136 1137 unroll: 1138 dev_info(ice_pf_to_dev(pf), 1139 "Can't set %d vectors on VF %d, falling back to %d\n", 1140 vf->num_msix, vf->vf_id, prev_msix); 1141 1142 vf->num_msix = prev_msix; 1143 vf->num_vf_qs = prev_queues; 1144 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1145 if (vf->first_vector_idx < 0) 1146 return -EINVAL; 1147 1148 if (needs_rebuild) { 1149 ice_vf_reconfig_vsi(vf); 1150 ice_vf_init_host_cfg(vf, vsi); 1151 } 1152 1153 ice_ena_vf_mappings(vf); 1154 ice_put_vf(vf); 1155 1156 return -EINVAL; 1157 } 1158 1159 /** 1160 * ice_sriov_configure - Enable or change number of VFs via sysfs 1161 * @pdev: pointer to a pci_dev structure 1162 * @num_vfs: number of VFs to allocate or 0 to free VFs 1163 * 1164 * This function is called when the user updates the number of VFs in sysfs. On 1165 * success return whatever num_vfs was set to by the caller. Return negative on 1166 * failure. 1167 */ 1168 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) 1169 { 1170 struct ice_pf *pf = pci_get_drvdata(pdev); 1171 struct device *dev = ice_pf_to_dev(pf); 1172 int err; 1173 1174 err = ice_check_sriov_allowed(pf); 1175 if (err) 1176 return err; 1177 1178 if (!num_vfs) { 1179 if (!pci_vfs_assigned(pdev)) { 1180 ice_free_vfs(pf); 1181 return 0; 1182 } 1183 1184 dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); 1185 return -EBUSY; 1186 } 1187 1188 err = ice_pci_sriov_ena(pf, num_vfs); 1189 if (err) 1190 return err; 1191 1192 return num_vfs; 1193 } 1194 1195 /** 1196 * ice_process_vflr_event - Free VF resources via IRQ calls 1197 * @pf: pointer to the PF structure 1198 * 1199 * called from the VFLR IRQ handler to 1200 * free up VF resources and state variables 1201 */ 1202 void ice_process_vflr_event(struct ice_pf *pf) 1203 { 1204 struct ice_hw *hw = &pf->hw; 1205 struct ice_vf *vf; 1206 unsigned int bkt; 1207 u32 reg; 1208 1209 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 1210 !ice_has_vfs(pf)) 1211 return; 1212 1213 mutex_lock(&pf->vfs.table_lock); 1214 ice_for_each_vf(pf, bkt, vf) { 1215 u32 reg_idx, bit_idx; 1216 1217 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 1218 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 1219 /* read GLGEN_VFLRSTAT register to find out the flr VFs */ 1220 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); 1221 if (reg & BIT(bit_idx)) 1222 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ 1223 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 1224 } 1225 mutex_unlock(&pf->vfs.table_lock); 1226 } 1227 1228 /** 1229 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in 1230 * @pf: PF used to index all VFs 1231 * @pfq: queue index relative to the PF's function space 1232 * 1233 * If no VF is found who owns the pfq then return NULL, otherwise return a 1234 * pointer to the VF who owns the pfq 1235 * 1236 * If this function returns non-NULL, it acquires a reference count of the VF 1237 * structure. The caller is responsible for calling ice_put_vf() to drop this 1238 * reference. 1239 */ 1240 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) 1241 { 1242 struct ice_vf *vf; 1243 unsigned int bkt; 1244 1245 rcu_read_lock(); 1246 ice_for_each_vf_rcu(pf, bkt, vf) { 1247 struct ice_vsi *vsi; 1248 u16 rxq_idx; 1249 1250 vsi = ice_get_vf_vsi(vf); 1251 if (!vsi) 1252 continue; 1253 1254 ice_for_each_rxq(vsi, rxq_idx) 1255 if (vsi->rxq_map[rxq_idx] == pfq) { 1256 struct ice_vf *found; 1257 1258 if (kref_get_unless_zero(&vf->refcnt)) 1259 found = vf; 1260 else 1261 found = NULL; 1262 rcu_read_unlock(); 1263 return found; 1264 } 1265 } 1266 rcu_read_unlock(); 1267 1268 return NULL; 1269 } 1270 1271 /** 1272 * ice_globalq_to_pfq - convert from global queue index to PF space queue index 1273 * @pf: PF used for conversion 1274 * @globalq: global queue index used to convert to PF space queue index 1275 */ 1276 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) 1277 { 1278 return globalq - pf->hw.func_caps.common_cap.rxq_first_id; 1279 } 1280 1281 /** 1282 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF 1283 * @pf: PF that the LAN overflow event happened on 1284 * @event: structure holding the event information for the LAN overflow event 1285 * 1286 * Determine if the LAN overflow event was caused by a VF queue. If it was not 1287 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a 1288 * reset on the offending VF. 1289 */ 1290 void 1291 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1292 { 1293 u32 gldcb_rtctq, queue; 1294 struct ice_vf *vf; 1295 1296 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); 1297 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); 1298 1299 /* event returns device global Rx queue number */ 1300 queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq); 1301 1302 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); 1303 if (!vf) 1304 return; 1305 1306 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1307 ice_put_vf(vf); 1308 } 1309 1310 /** 1311 * ice_set_vf_spoofchk 1312 * @netdev: network interface device structure 1313 * @vf_id: VF identifier 1314 * @ena: flag to enable or disable feature 1315 * 1316 * Enable or disable VF spoof checking 1317 */ 1318 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) 1319 { 1320 struct ice_netdev_priv *np = netdev_priv(netdev); 1321 struct ice_pf *pf = np->vsi->back; 1322 struct ice_vsi *vf_vsi; 1323 struct device *dev; 1324 struct ice_vf *vf; 1325 int ret; 1326 1327 dev = ice_pf_to_dev(pf); 1328 1329 vf = ice_get_vf_by_id(pf, vf_id); 1330 if (!vf) 1331 return -EINVAL; 1332 1333 ret = ice_check_vf_ready_for_cfg(vf); 1334 if (ret) 1335 goto out_put_vf; 1336 1337 vf_vsi = ice_get_vf_vsi(vf); 1338 if (!vf_vsi) { 1339 netdev_err(netdev, "VSI %d for VF %d is null\n", 1340 vf->lan_vsi_idx, vf->vf_id); 1341 ret = -EINVAL; 1342 goto out_put_vf; 1343 } 1344 1345 if (vf_vsi->type != ICE_VSI_VF) { 1346 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", 1347 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); 1348 ret = -ENODEV; 1349 goto out_put_vf; 1350 } 1351 1352 if (ena == vf->spoofchk) { 1353 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); 1354 ret = 0; 1355 goto out_put_vf; 1356 } 1357 1358 ret = ice_vsi_apply_spoofchk(vf_vsi, ena); 1359 if (ret) 1360 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", 1361 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); 1362 else 1363 vf->spoofchk = ena; 1364 1365 out_put_vf: 1366 ice_put_vf(vf); 1367 return ret; 1368 } 1369 1370 /** 1371 * ice_get_vf_cfg 1372 * @netdev: network interface device structure 1373 * @vf_id: VF identifier 1374 * @ivi: VF configuration structure 1375 * 1376 * return VF configuration 1377 */ 1378 int 1379 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) 1380 { 1381 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1382 struct ice_vf *vf; 1383 int ret; 1384 1385 vf = ice_get_vf_by_id(pf, vf_id); 1386 if (!vf) 1387 return -EINVAL; 1388 1389 ret = ice_check_vf_ready_for_cfg(vf); 1390 if (ret) 1391 goto out_put_vf; 1392 1393 ivi->vf = vf_id; 1394 ether_addr_copy(ivi->mac, vf->hw_lan_addr); 1395 1396 /* VF configuration for VLAN and applicable QoS */ 1397 ivi->vlan = ice_vf_get_port_vlan_id(vf); 1398 ivi->qos = ice_vf_get_port_vlan_prio(vf); 1399 if (ice_vf_is_port_vlan_ena(vf)) 1400 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); 1401 1402 ivi->trusted = vf->trusted; 1403 ivi->spoofchk = vf->spoofchk; 1404 if (!vf->link_forced) 1405 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 1406 else if (vf->link_up) 1407 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 1408 else 1409 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 1410 ivi->max_tx_rate = vf->max_tx_rate; 1411 ivi->min_tx_rate = vf->min_tx_rate; 1412 1413 out_put_vf: 1414 ice_put_vf(vf); 1415 return ret; 1416 } 1417 1418 /** 1419 * __ice_set_vf_mac - program VF MAC address 1420 * @pf: PF to be configure 1421 * @vf_id: VF identifier 1422 * @mac: MAC address 1423 * 1424 * program VF MAC address 1425 * Return: zero on success or an error code on failure 1426 */ 1427 int __ice_set_vf_mac(struct ice_pf *pf, u16 vf_id, const u8 *mac) 1428 { 1429 struct device *dev; 1430 struct ice_vf *vf; 1431 int ret; 1432 1433 dev = ice_pf_to_dev(pf); 1434 if (is_multicast_ether_addr(mac)) { 1435 dev_err(dev, "%pM not a valid unicast address\n", mac); 1436 return -EINVAL; 1437 } 1438 1439 vf = ice_get_vf_by_id(pf, vf_id); 1440 if (!vf) 1441 return -EINVAL; 1442 1443 /* nothing left to do, unicast MAC already set */ 1444 if (ether_addr_equal(vf->dev_lan_addr, mac) && 1445 ether_addr_equal(vf->hw_lan_addr, mac)) { 1446 ret = 0; 1447 goto out_put_vf; 1448 } 1449 1450 ret = ice_check_vf_ready_for_cfg(vf); 1451 if (ret) 1452 goto out_put_vf; 1453 1454 mutex_lock(&vf->cfg_lock); 1455 1456 /* VF is notified of its new MAC via the PF's response to the 1457 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset 1458 */ 1459 ether_addr_copy(vf->dev_lan_addr, mac); 1460 ether_addr_copy(vf->hw_lan_addr, mac); 1461 if (is_zero_ether_addr(mac)) { 1462 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ 1463 vf->pf_set_mac = false; 1464 dev_info(dev, "Removing MAC on VF %d. VF driver will be reinitialized\n", 1465 vf->vf_id); 1466 } else { 1467 /* PF will add MAC rule for the VF */ 1468 vf->pf_set_mac = true; 1469 dev_info(dev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", 1470 mac, vf_id); 1471 } 1472 1473 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1474 mutex_unlock(&vf->cfg_lock); 1475 1476 out_put_vf: 1477 ice_put_vf(vf); 1478 return ret; 1479 } 1480 1481 /** 1482 * ice_set_vf_mac - .ndo_set_vf_mac handler 1483 * @netdev: network interface device structure 1484 * @vf_id: VF identifier 1485 * @mac: MAC address 1486 * 1487 * program VF MAC address 1488 * Return: zero on success or an error code on failure 1489 */ 1490 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 1491 { 1492 return __ice_set_vf_mac(ice_netdev_to_pf(netdev), vf_id, mac); 1493 } 1494 1495 /** 1496 * ice_set_vf_trust 1497 * @netdev: network interface device structure 1498 * @vf_id: VF identifier 1499 * @trusted: Boolean value to enable/disable trusted VF 1500 * 1501 * Enable or disable a given VF as trusted 1502 */ 1503 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) 1504 { 1505 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1506 struct ice_vf *vf; 1507 int ret; 1508 1509 vf = ice_get_vf_by_id(pf, vf_id); 1510 if (!vf) 1511 return -EINVAL; 1512 1513 if (ice_is_eswitch_mode_switchdev(pf)) { 1514 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); 1515 return -EOPNOTSUPP; 1516 } 1517 1518 ret = ice_check_vf_ready_for_cfg(vf); 1519 if (ret) 1520 goto out_put_vf; 1521 1522 /* Check if already trusted */ 1523 if (trusted == vf->trusted) { 1524 ret = 0; 1525 goto out_put_vf; 1526 } 1527 1528 mutex_lock(&vf->cfg_lock); 1529 1530 vf->trusted = trusted; 1531 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1532 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", 1533 vf_id, trusted ? "" : "un"); 1534 1535 mutex_unlock(&vf->cfg_lock); 1536 1537 out_put_vf: 1538 ice_put_vf(vf); 1539 return ret; 1540 } 1541 1542 /** 1543 * ice_set_vf_link_state 1544 * @netdev: network interface device structure 1545 * @vf_id: VF identifier 1546 * @link_state: required link state 1547 * 1548 * Set VF's link state, irrespective of physical link state status 1549 */ 1550 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) 1551 { 1552 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1553 struct ice_vf *vf; 1554 int ret; 1555 1556 vf = ice_get_vf_by_id(pf, vf_id); 1557 if (!vf) 1558 return -EINVAL; 1559 1560 ret = ice_check_vf_ready_for_cfg(vf); 1561 if (ret) 1562 goto out_put_vf; 1563 1564 switch (link_state) { 1565 case IFLA_VF_LINK_STATE_AUTO: 1566 vf->link_forced = false; 1567 break; 1568 case IFLA_VF_LINK_STATE_ENABLE: 1569 vf->link_forced = true; 1570 vf->link_up = true; 1571 break; 1572 case IFLA_VF_LINK_STATE_DISABLE: 1573 vf->link_forced = true; 1574 vf->link_up = false; 1575 break; 1576 default: 1577 ret = -EINVAL; 1578 goto out_put_vf; 1579 } 1580 1581 ice_vc_notify_vf_link_state(vf); 1582 1583 out_put_vf: 1584 ice_put_vf(vf); 1585 return ret; 1586 } 1587 1588 /** 1589 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs 1590 * @pf: PF associated with VFs 1591 */ 1592 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) 1593 { 1594 struct ice_vf *vf; 1595 unsigned int bkt; 1596 int rate = 0; 1597 1598 rcu_read_lock(); 1599 ice_for_each_vf_rcu(pf, bkt, vf) 1600 rate += vf->min_tx_rate; 1601 rcu_read_unlock(); 1602 1603 return rate; 1604 } 1605 1606 /** 1607 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription 1608 * @vf: VF trying to configure min_tx_rate 1609 * @min_tx_rate: min Tx rate in Mbps 1610 * 1611 * Check if the min_tx_rate being passed in will cause oversubscription of total 1612 * min_tx_rate based on the current link speed and all other VFs configured 1613 * min_tx_rate 1614 * 1615 * Return true if the passed min_tx_rate would cause oversubscription, else 1616 * return false 1617 */ 1618 static bool 1619 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) 1620 { 1621 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 1622 int all_vfs_min_tx_rate; 1623 int link_speed_mbps; 1624 1625 if (WARN_ON(!vsi)) 1626 return false; 1627 1628 link_speed_mbps = ice_get_link_speed_mbps(vsi); 1629 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); 1630 1631 /* this VF's previous rate is being overwritten */ 1632 all_vfs_min_tx_rate -= vf->min_tx_rate; 1633 1634 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { 1635 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", 1636 min_tx_rate, vf->vf_id, 1637 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, 1638 link_speed_mbps); 1639 return true; 1640 } 1641 1642 return false; 1643 } 1644 1645 /** 1646 * ice_set_vf_bw - set min/max VF bandwidth 1647 * @netdev: network interface device structure 1648 * @vf_id: VF identifier 1649 * @min_tx_rate: Minimum Tx rate in Mbps 1650 * @max_tx_rate: Maximum Tx rate in Mbps 1651 */ 1652 int 1653 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, 1654 int max_tx_rate) 1655 { 1656 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1657 struct ice_vsi *vsi; 1658 struct device *dev; 1659 struct ice_vf *vf; 1660 int ret; 1661 1662 dev = ice_pf_to_dev(pf); 1663 1664 vf = ice_get_vf_by_id(pf, vf_id); 1665 if (!vf) 1666 return -EINVAL; 1667 1668 ret = ice_check_vf_ready_for_cfg(vf); 1669 if (ret) 1670 goto out_put_vf; 1671 1672 vsi = ice_get_vf_vsi(vf); 1673 if (!vsi) { 1674 ret = -EINVAL; 1675 goto out_put_vf; 1676 } 1677 1678 if (min_tx_rate && ice_is_dcb_active(pf)) { 1679 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); 1680 ret = -EOPNOTSUPP; 1681 goto out_put_vf; 1682 } 1683 1684 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { 1685 ret = -EINVAL; 1686 goto out_put_vf; 1687 } 1688 1689 if (vf->min_tx_rate != (unsigned int)min_tx_rate) { 1690 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); 1691 if (ret) { 1692 dev_err(dev, "Unable to set min-tx-rate for VF %d\n", 1693 vf->vf_id); 1694 goto out_put_vf; 1695 } 1696 1697 vf->min_tx_rate = min_tx_rate; 1698 } 1699 1700 if (vf->max_tx_rate != (unsigned int)max_tx_rate) { 1701 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); 1702 if (ret) { 1703 dev_err(dev, "Unable to set max-tx-rate for VF %d\n", 1704 vf->vf_id); 1705 goto out_put_vf; 1706 } 1707 1708 vf->max_tx_rate = max_tx_rate; 1709 } 1710 1711 out_put_vf: 1712 ice_put_vf(vf); 1713 return ret; 1714 } 1715 1716 /** 1717 * ice_get_vf_stats - populate some stats for the VF 1718 * @netdev: the netdev of the PF 1719 * @vf_id: the host OS identifier (0-255) 1720 * @vf_stats: pointer to the OS memory to be initialized 1721 */ 1722 int ice_get_vf_stats(struct net_device *netdev, int vf_id, 1723 struct ifla_vf_stats *vf_stats) 1724 { 1725 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1726 struct ice_eth_stats *stats; 1727 struct ice_vsi *vsi; 1728 struct ice_vf *vf; 1729 int ret; 1730 1731 vf = ice_get_vf_by_id(pf, vf_id); 1732 if (!vf) 1733 return -EINVAL; 1734 1735 ret = ice_check_vf_ready_for_cfg(vf); 1736 if (ret) 1737 goto out_put_vf; 1738 1739 vsi = ice_get_vf_vsi(vf); 1740 if (!vsi) { 1741 ret = -EINVAL; 1742 goto out_put_vf; 1743 } 1744 1745 ice_update_eth_stats(vsi); 1746 stats = &vsi->eth_stats; 1747 1748 memset(vf_stats, 0, sizeof(*vf_stats)); 1749 1750 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + 1751 stats->rx_multicast; 1752 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + 1753 stats->tx_multicast; 1754 vf_stats->rx_bytes = stats->rx_bytes; 1755 vf_stats->tx_bytes = stats->tx_bytes; 1756 vf_stats->broadcast = stats->rx_broadcast; 1757 vf_stats->multicast = stats->rx_multicast; 1758 vf_stats->rx_dropped = stats->rx_discards; 1759 vf_stats->tx_dropped = stats->tx_discards; 1760 1761 out_put_vf: 1762 ice_put_vf(vf); 1763 return ret; 1764 } 1765 1766 /** 1767 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported 1768 * @hw: hardware structure used to check the VLAN mode 1769 * @vlan_proto: VLAN TPID being checked 1770 * 1771 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q 1772 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN 1773 * Mode (SVM), then only ETH_P_8021Q is supported. 1774 */ 1775 static bool 1776 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) 1777 { 1778 bool is_supported = false; 1779 1780 switch (vlan_proto) { 1781 case ETH_P_8021Q: 1782 is_supported = true; 1783 break; 1784 case ETH_P_8021AD: 1785 if (ice_is_dvm_ena(hw)) 1786 is_supported = true; 1787 break; 1788 } 1789 1790 return is_supported; 1791 } 1792 1793 /** 1794 * ice_set_vf_port_vlan 1795 * @netdev: network interface device structure 1796 * @vf_id: VF identifier 1797 * @vlan_id: VLAN ID being set 1798 * @qos: priority setting 1799 * @vlan_proto: VLAN protocol 1800 * 1801 * program VF Port VLAN ID and/or QoS 1802 */ 1803 int 1804 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, 1805 __be16 vlan_proto) 1806 { 1807 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1808 u16 local_vlan_proto = ntohs(vlan_proto); 1809 struct device *dev; 1810 struct ice_vf *vf; 1811 int ret; 1812 1813 dev = ice_pf_to_dev(pf); 1814 1815 if (vlan_id >= VLAN_N_VID || qos > 7) { 1816 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", 1817 vf_id, vlan_id, qos); 1818 return -EINVAL; 1819 } 1820 1821 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { 1822 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", 1823 local_vlan_proto); 1824 return -EPROTONOSUPPORT; 1825 } 1826 1827 vf = ice_get_vf_by_id(pf, vf_id); 1828 if (!vf) 1829 return -EINVAL; 1830 1831 ret = ice_check_vf_ready_for_cfg(vf); 1832 if (ret) 1833 goto out_put_vf; 1834 1835 if (ice_vf_get_port_vlan_prio(vf) == qos && 1836 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && 1837 ice_vf_get_port_vlan_id(vf) == vlan_id) { 1838 /* duplicate request, so just return success */ 1839 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", 1840 vlan_id, qos, local_vlan_proto); 1841 ret = 0; 1842 goto out_put_vf; 1843 } 1844 1845 mutex_lock(&vf->cfg_lock); 1846 1847 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); 1848 if (ice_vf_is_port_vlan_ena(vf)) 1849 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", 1850 vlan_id, qos, local_vlan_proto, vf_id); 1851 else 1852 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); 1853 1854 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1855 mutex_unlock(&vf->cfg_lock); 1856 1857 out_put_vf: 1858 ice_put_vf(vf); 1859 return ret; 1860 } 1861 1862 /** 1863 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event 1864 * @vf: pointer to the VF structure 1865 */ 1866 void ice_print_vf_rx_mdd_event(struct ice_vf *vf) 1867 { 1868 struct ice_pf *pf = vf->pf; 1869 struct device *dev; 1870 1871 dev = ice_pf_to_dev(pf); 1872 1873 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1874 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, 1875 vf->dev_lan_addr, 1876 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1877 ? "on" : "off"); 1878 } 1879 1880 /** 1881 * ice_print_vf_tx_mdd_event - print VF Tx malicious driver detect event 1882 * @vf: pointer to the VF structure 1883 */ 1884 void ice_print_vf_tx_mdd_event(struct ice_vf *vf) 1885 { 1886 struct ice_pf *pf = vf->pf; 1887 struct device *dev; 1888 1889 dev = ice_pf_to_dev(pf); 1890 1891 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1892 vf->mdd_tx_events.count, pf->hw.pf_id, vf->vf_id, 1893 vf->dev_lan_addr, 1894 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1895 ? "on" : "off"); 1896 } 1897 1898 /** 1899 * ice_print_vfs_mdd_events - print VFs malicious driver detect event 1900 * @pf: pointer to the PF structure 1901 * 1902 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. 1903 */ 1904 void ice_print_vfs_mdd_events(struct ice_pf *pf) 1905 { 1906 struct ice_vf *vf; 1907 unsigned int bkt; 1908 1909 /* check that there are pending MDD events to print */ 1910 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) 1911 return; 1912 1913 /* VF MDD event logs are rate limited to one second intervals */ 1914 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) 1915 return; 1916 1917 pf->vfs.last_printed_mdd_jiffies = jiffies; 1918 1919 mutex_lock(&pf->vfs.table_lock); 1920 ice_for_each_vf(pf, bkt, vf) { 1921 /* only print Rx MDD event message if there are new events */ 1922 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 1923 vf->mdd_rx_events.last_printed = 1924 vf->mdd_rx_events.count; 1925 ice_print_vf_rx_mdd_event(vf); 1926 } 1927 1928 /* only print Tx MDD event message if there are new events */ 1929 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 1930 vf->mdd_tx_events.last_printed = 1931 vf->mdd_tx_events.count; 1932 ice_print_vf_tx_mdd_event(vf); 1933 } 1934 } 1935 mutex_unlock(&pf->vfs.table_lock); 1936 } 1937 1938 /** 1939 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR 1940 * @pf: pointer to the PF structure 1941 * 1942 * Called when recovering from a PF FLR to restore interrupt capability to 1943 * the VFs. 1944 */ 1945 void ice_restore_all_vfs_msi_state(struct ice_pf *pf) 1946 { 1947 struct ice_vf *vf; 1948 u32 bkt; 1949 1950 ice_for_each_vf(pf, bkt, vf) 1951 pci_restore_msi_state(vf->vfdev); 1952 } 1953