1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice_base.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_flow.h" 11 #include "ice_eswitch.h" 12 #include "ice_virtchnl_allowlist.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_vf_vsi_vlan_ops.h" 15 #include "ice_vlan.h" 16 17 /** 18 * ice_free_vf_entries - Free all VF entries from the hash table 19 * @pf: pointer to the PF structure 20 * 21 * Iterate over the VF hash table, removing and releasing all VF entries. 22 * Called during VF teardown or as cleanup during failed VF initialization. 23 */ 24 static void ice_free_vf_entries(struct ice_pf *pf) 25 { 26 struct ice_vfs *vfs = &pf->vfs; 27 struct hlist_node *tmp; 28 struct ice_vf *vf; 29 unsigned int bkt; 30 31 /* Remove all VFs from the hash table and release their main 32 * reference. Once all references to the VF are dropped, ice_put_vf() 33 * will call ice_release_vf which will remove the VF memory. 34 */ 35 lockdep_assert_held(&vfs->table_lock); 36 37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { 38 hash_del_rcu(&vf->entry); 39 ice_deinitialize_vf_entry(vf); 40 ice_put_vf(vf); 41 } 42 } 43 44 /** 45 * ice_free_vf_res - Free a VF's resources 46 * @vf: pointer to the VF info 47 */ 48 static void ice_free_vf_res(struct ice_vf *vf) 49 { 50 struct ice_pf *pf = vf->pf; 51 int i, last_vector_idx; 52 53 /* First, disable VF's configuration API to prevent OS from 54 * accessing the VF's VSI after it's freed or invalidated. 55 */ 56 clear_bit(ICE_VF_STATE_INIT, vf->vf_states); 57 ice_vf_fdir_exit(vf); 58 /* free VF control VSI */ 59 if (vf->ctrl_vsi_idx != ICE_NO_VSI) 60 ice_vf_ctrl_vsi_release(vf); 61 62 /* free VSI and disconnect it from the parent uplink */ 63 if (vf->lan_vsi_idx != ICE_NO_VSI) { 64 ice_vf_vsi_release(vf); 65 vf->num_mac = 0; 66 } 67 68 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1; 69 70 /* clear VF MDD event information */ 71 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); 72 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); 73 74 /* Disable interrupts so that VF starts in a known state */ 75 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { 76 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); 77 ice_flush(&pf->hw); 78 } 79 /* reset some of the state variables keeping track of the resources */ 80 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); 81 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); 82 } 83 84 /** 85 * ice_dis_vf_mappings 86 * @vf: pointer to the VF structure 87 */ 88 static void ice_dis_vf_mappings(struct ice_vf *vf) 89 { 90 struct ice_pf *pf = vf->pf; 91 struct ice_vsi *vsi; 92 struct device *dev; 93 int first, last, v; 94 struct ice_hw *hw; 95 96 hw = &pf->hw; 97 vsi = ice_get_vf_vsi(vf); 98 if (WARN_ON(!vsi)) 99 return; 100 101 dev = ice_pf_to_dev(pf); 102 wr32(hw, VPINT_ALLOC(vf->vf_id), 0); 103 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); 104 105 first = vf->first_vector_idx; 106 last = first + vf->num_msix - 1; 107 for (v = first; v <= last; v++) { 108 u32 reg; 109 110 reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) | 111 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 112 wr32(hw, GLINT_VECT2FUNC(v), reg); 113 } 114 115 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) 116 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); 117 else 118 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 119 120 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) 121 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); 122 else 123 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 124 } 125 126 /** 127 * ice_free_vfs - Free all VFs 128 * @pf: pointer to the PF structure 129 */ 130 void ice_free_vfs(struct ice_pf *pf) 131 { 132 struct device *dev = ice_pf_to_dev(pf); 133 struct ice_vfs *vfs = &pf->vfs; 134 struct ice_hw *hw = &pf->hw; 135 struct ice_vf *vf; 136 unsigned int bkt; 137 138 if (!ice_has_vfs(pf)) 139 return; 140 141 while (test_and_set_bit(ICE_VF_DIS, pf->state)) 142 usleep_range(1000, 2000); 143 144 /* Disable IOV before freeing resources. This lets any VF drivers 145 * running in the host get themselves cleaned up before we yank 146 * the carpet out from underneath their feet. 147 */ 148 if (!pci_vfs_assigned(pf->pdev)) 149 pci_disable_sriov(pf->pdev); 150 else 151 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); 152 153 mutex_lock(&vfs->table_lock); 154 155 ice_for_each_vf(pf, bkt, vf) { 156 mutex_lock(&vf->cfg_lock); 157 158 ice_eswitch_detach_vf(pf, vf); 159 ice_dis_vf_qs(vf); 160 ice_virt_free_irqs(pf, vf->first_vector_idx, vf->num_msix); 161 162 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { 163 /* disable VF qp mappings and set VF disable state */ 164 ice_dis_vf_mappings(vf); 165 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 166 ice_free_vf_res(vf); 167 } 168 169 if (!pci_vfs_assigned(pf->pdev)) { 170 u32 reg_idx, bit_idx; 171 172 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 173 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 174 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 175 } 176 177 mutex_unlock(&vf->cfg_lock); 178 } 179 180 vfs->num_qps_per = 0; 181 ice_free_vf_entries(pf); 182 183 mutex_unlock(&vfs->table_lock); 184 185 clear_bit(ICE_VF_DIS, pf->state); 186 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 187 } 188 189 /** 190 * ice_vf_vsi_setup - Set up a VF VSI 191 * @vf: VF to setup VSI for 192 * 193 * Returns pointer to the successfully allocated VSI struct on success, 194 * otherwise returns NULL on failure. 195 */ 196 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) 197 { 198 struct ice_vsi_cfg_params params = {}; 199 struct ice_pf *pf = vf->pf; 200 struct ice_vsi *vsi; 201 202 params.type = ICE_VSI_VF; 203 params.port_info = ice_vf_get_port_info(vf); 204 params.vf = vf; 205 params.flags = ICE_VSI_FLAG_INIT; 206 207 vsi = ice_vsi_setup(pf, ¶ms); 208 209 if (!vsi) { 210 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); 211 ice_vf_invalidate_vsi(vf); 212 return NULL; 213 } 214 215 vf->lan_vsi_idx = vsi->idx; 216 217 return vsi; 218 } 219 220 221 /** 222 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware 223 * @vf: VF to enable MSIX mappings for 224 * 225 * Some of the registers need to be indexed/configured using hardware global 226 * device values and other registers need 0-based values, which represent PF 227 * based values. 228 */ 229 static void ice_ena_vf_msix_mappings(struct ice_vf *vf) 230 { 231 int device_based_first_msix, device_based_last_msix; 232 int pf_based_first_msix, pf_based_last_msix, v; 233 struct ice_pf *pf = vf->pf; 234 int device_based_vf_id; 235 struct ice_hw *hw; 236 u32 reg; 237 238 hw = &pf->hw; 239 pf_based_first_msix = vf->first_vector_idx; 240 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1; 241 242 device_based_first_msix = pf_based_first_msix + 243 pf->hw.func_caps.common_cap.msix_vector_first_id; 244 device_based_last_msix = 245 (device_based_first_msix + vf->num_msix) - 1; 246 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; 247 248 reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) | 249 FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) | 250 VPINT_ALLOC_VALID_M; 251 wr32(hw, VPINT_ALLOC(vf->vf_id), reg); 252 253 reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) | 254 FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) | 255 VPINT_ALLOC_PCI_VALID_M; 256 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); 257 258 /* map the interrupts to its functions */ 259 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { 260 reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) | 261 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 262 wr32(hw, GLINT_VECT2FUNC(v), reg); 263 } 264 265 /* Map mailbox interrupt to VF MSI-X vector 0 */ 266 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); 267 } 268 269 /** 270 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF 271 * @vf: VF to enable the mappings for 272 * @max_txq: max Tx queues allowed on the VF's VSI 273 * @max_rxq: max Rx queues allowed on the VF's VSI 274 */ 275 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) 276 { 277 struct device *dev = ice_pf_to_dev(vf->pf); 278 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 279 struct ice_hw *hw = &vf->pf->hw; 280 u32 reg; 281 282 if (WARN_ON(!vsi)) 283 return; 284 285 /* set regardless of mapping mode */ 286 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); 287 288 /* VF Tx queues allocation */ 289 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { 290 /* set the VF PF Tx queue range 291 * VFNUMQ value should be set to (number of queues - 1). A value 292 * of 0 means 1 queue and a value of 255 means 256 queues 293 */ 294 reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) | 295 FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1); 296 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); 297 } else { 298 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 299 } 300 301 /* set regardless of mapping mode */ 302 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); 303 304 /* VF Rx queues allocation */ 305 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { 306 /* set the VF PF Rx queue range 307 * VFNUMQ value should be set to (number of queues - 1). A value 308 * of 0 means 1 queue and a value of 255 means 256 queues 309 */ 310 reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) | 311 FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1); 312 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); 313 } else { 314 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 315 } 316 } 317 318 /** 319 * ice_ena_vf_mappings - enable VF MSIX and queue mapping 320 * @vf: pointer to the VF structure 321 */ 322 static void ice_ena_vf_mappings(struct ice_vf *vf) 323 { 324 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 325 326 if (WARN_ON(!vsi)) 327 return; 328 329 ice_ena_vf_msix_mappings(vf); 330 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); 331 } 332 333 /** 334 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space 335 * @vf: VF to calculate the register index for 336 * @q_vector: a q_vector associated to the VF 337 */ 338 void ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) 339 { 340 if (!vf || !q_vector) 341 return; 342 343 /* always add one to account for the OICR being the first MSIX */ 344 q_vector->vf_reg_idx = q_vector->v_idx + ICE_NONQ_VECS_VF; 345 q_vector->reg_idx = vf->first_vector_idx + q_vector->vf_reg_idx; 346 } 347 348 /** 349 * ice_set_per_vf_res - check if vectors and queues are available 350 * @pf: pointer to the PF structure 351 * @num_vfs: the number of SR-IOV VFs being configured 352 * 353 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we 354 * get more vectors and can enable more queues per VF. Note that this does not 355 * grab any vectors from the SW pool already allocated. Also note, that all 356 * vector counts include one for each VF's miscellaneous interrupt vector 357 * (i.e. OICR). 358 * 359 * Minimum VFs - 2 vectors, 1 queue pair 360 * Small VFs - 5 vectors, 4 queue pairs 361 * Medium VFs - 17 vectors, 16 queue pairs 362 * 363 * Second, determine number of queue pairs per VF by starting with a pre-defined 364 * maximum each VF supports. If this is not possible, then we adjust based on 365 * queue pairs available on the device. 366 * 367 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used 368 * by each VF during VF initialization and reset. 369 */ 370 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) 371 { 372 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; 373 int msix_avail_per_vf, msix_avail_for_sriov; 374 struct device *dev = ice_pf_to_dev(pf); 375 376 lockdep_assert_held(&pf->vfs.table_lock); 377 378 if (!num_vfs) 379 return -EINVAL; 380 381 /* determine MSI-X resources per VF */ 382 msix_avail_for_sriov = pf->virt_irq_tracker.num_entries; 383 msix_avail_per_vf = msix_avail_for_sriov / num_vfs; 384 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { 385 num_msix_per_vf = ICE_NUM_VF_MSIX_MED; 386 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { 387 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; 388 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { 389 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; 390 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { 391 num_msix_per_vf = ICE_MIN_INTR_PER_VF; 392 } else { 393 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", 394 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, 395 num_vfs); 396 return -ENOSPC; 397 } 398 399 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 400 ICE_MAX_RSS_QS_PER_VF); 401 avail_qs = ice_get_avail_txq_count(pf) / num_vfs; 402 if (!avail_qs) 403 num_txq = 0; 404 else if (num_txq > avail_qs) 405 num_txq = rounddown_pow_of_two(avail_qs); 406 407 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 408 ICE_MAX_RSS_QS_PER_VF); 409 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; 410 if (!avail_qs) 411 num_rxq = 0; 412 else if (num_rxq > avail_qs) 413 num_rxq = rounddown_pow_of_two(avail_qs); 414 415 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { 416 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", 417 ICE_MIN_QS_PER_VF, num_vfs); 418 return -ENOSPC; 419 } 420 421 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ 422 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); 423 pf->vfs.num_msix_per = num_msix_per_vf; 424 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", 425 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); 426 427 return 0; 428 } 429 430 /** 431 * ice_init_vf_vsi_res - initialize/setup VF VSI resources 432 * @vf: VF to initialize/setup the VSI for 433 * 434 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the 435 * VF VSI's broadcast filter and is only used during initial VF creation. 436 */ 437 static int ice_init_vf_vsi_res(struct ice_vf *vf) 438 { 439 struct ice_pf *pf = vf->pf; 440 struct ice_vsi *vsi; 441 int err; 442 443 vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix); 444 if (vf->first_vector_idx < 0) 445 return -ENOMEM; 446 447 vsi = ice_vf_vsi_setup(vf); 448 if (!vsi) 449 return -ENOMEM; 450 451 err = ice_vf_init_host_cfg(vf, vsi); 452 if (err) 453 goto release_vsi; 454 455 return 0; 456 457 release_vsi: 458 ice_vf_vsi_release(vf); 459 return err; 460 } 461 462 /** 463 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV 464 * @pf: PF the VFs are associated with 465 */ 466 static int ice_start_vfs(struct ice_pf *pf) 467 { 468 struct ice_hw *hw = &pf->hw; 469 unsigned int bkt, it_cnt; 470 struct ice_vf *vf; 471 int retval; 472 473 lockdep_assert_held(&pf->vfs.table_lock); 474 475 it_cnt = 0; 476 ice_for_each_vf(pf, bkt, vf) { 477 vf->vf_ops->clear_reset_trigger(vf); 478 479 retval = ice_init_vf_vsi_res(vf); 480 if (retval) { 481 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", 482 vf->vf_id, retval); 483 goto teardown; 484 } 485 486 retval = ice_eswitch_attach_vf(pf, vf); 487 if (retval) { 488 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d", 489 vf->vf_id, retval); 490 ice_vf_vsi_release(vf); 491 goto teardown; 492 } 493 494 set_bit(ICE_VF_STATE_INIT, vf->vf_states); 495 ice_ena_vf_mappings(vf); 496 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 497 it_cnt++; 498 } 499 500 ice_flush(hw); 501 return 0; 502 503 teardown: 504 ice_for_each_vf(pf, bkt, vf) { 505 if (it_cnt == 0) 506 break; 507 508 ice_dis_vf_mappings(vf); 509 ice_vf_vsi_release(vf); 510 it_cnt--; 511 } 512 513 return retval; 514 } 515 516 /** 517 * ice_sriov_free_vf - Free VF memory after all references are dropped 518 * @vf: pointer to VF to free 519 * 520 * Called by ice_put_vf through ice_release_vf once the last reference to a VF 521 * structure has been dropped. 522 */ 523 static void ice_sriov_free_vf(struct ice_vf *vf) 524 { 525 mutex_destroy(&vf->cfg_lock); 526 527 kfree_rcu(vf, rcu); 528 } 529 530 /** 531 * ice_sriov_clear_reset_state - clears VF Reset status register 532 * @vf: the vf to configure 533 */ 534 static void ice_sriov_clear_reset_state(struct ice_vf *vf) 535 { 536 struct ice_hw *hw = &vf->pf->hw; 537 538 /* Clear the reset status register so that VF immediately sees that 539 * the device is resetting, even if hardware hasn't yet gotten around 540 * to clearing VFGEN_RSTAT for us. 541 */ 542 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); 543 } 544 545 /** 546 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers 547 * @vf: the vf to configure 548 */ 549 static void ice_sriov_clear_mbx_register(struct ice_vf *vf) 550 { 551 struct ice_pf *pf = vf->pf; 552 553 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); 554 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); 555 } 556 557 /** 558 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF 559 * @vf: pointer to VF structure 560 * @is_vflr: true if reset occurred due to VFLR 561 * 562 * Trigger and cleanup after a VF reset for a SR-IOV VF. 563 */ 564 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) 565 { 566 struct ice_pf *pf = vf->pf; 567 u32 reg, reg_idx, bit_idx; 568 unsigned int vf_abs_id, i; 569 struct device *dev; 570 struct ice_hw *hw; 571 572 dev = ice_pf_to_dev(pf); 573 hw = &pf->hw; 574 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; 575 576 /* In the case of a VFLR, HW has already reset the VF and we just need 577 * to clean up. Otherwise we must first trigger the reset using the 578 * VFRTRIG register. 579 */ 580 if (!is_vflr) { 581 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 582 reg |= VPGEN_VFRTRIG_VFSWR_M; 583 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 584 } 585 586 /* clear the VFLR bit in GLGEN_VFLRSTAT */ 587 reg_idx = (vf_abs_id) / 32; 588 bit_idx = (vf_abs_id) % 32; 589 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 590 ice_flush(hw); 591 592 wr32(hw, PF_PCI_CIAA, 593 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); 594 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { 595 reg = rd32(hw, PF_PCI_CIAD); 596 /* no transactions pending so stop polling */ 597 if ((reg & VF_TRANS_PENDING_M) == 0) 598 break; 599 600 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); 601 udelay(ICE_PCI_CIAD_WAIT_DELAY_US); 602 } 603 } 604 605 /** 606 * ice_sriov_poll_reset_status - poll SRIOV VF reset status 607 * @vf: pointer to VF structure 608 * 609 * Returns true when reset is successful, else returns false 610 */ 611 static bool ice_sriov_poll_reset_status(struct ice_vf *vf) 612 { 613 struct ice_pf *pf = vf->pf; 614 unsigned int i; 615 u32 reg; 616 617 for (i = 0; i < 10; i++) { 618 /* VF reset requires driver to first reset the VF and then 619 * poll the status register to make sure that the reset 620 * completed successfully. 621 */ 622 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); 623 if (reg & VPGEN_VFRSTAT_VFRD_M) 624 return true; 625 626 /* only sleep if the reset is not done */ 627 usleep_range(10, 20); 628 } 629 return false; 630 } 631 632 /** 633 * ice_sriov_clear_reset_trigger - enable VF to access hardware 634 * @vf: VF to enabled hardware access for 635 */ 636 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) 637 { 638 struct ice_hw *hw = &vf->pf->hw; 639 u32 reg; 640 641 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 642 reg &= ~VPGEN_VFRTRIG_VFSWR_M; 643 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 644 ice_flush(hw); 645 } 646 647 /** 648 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt 649 * @vf: VF to perform tasks on 650 */ 651 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) 652 { 653 ice_ena_vf_mappings(vf); 654 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 655 } 656 657 static const struct ice_vf_ops ice_sriov_vf_ops = { 658 .reset_type = ICE_VF_RESET, 659 .free = ice_sriov_free_vf, 660 .clear_reset_state = ice_sriov_clear_reset_state, 661 .clear_mbx_register = ice_sriov_clear_mbx_register, 662 .trigger_reset_register = ice_sriov_trigger_reset_register, 663 .poll_reset_status = ice_sriov_poll_reset_status, 664 .clear_reset_trigger = ice_sriov_clear_reset_trigger, 665 .irq_close = NULL, 666 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, 667 }; 668 669 /** 670 * ice_create_vf_entries - Allocate and insert VF entries 671 * @pf: pointer to the PF structure 672 * @num_vfs: the number of VFs to allocate 673 * 674 * Allocate new VF entries and insert them into the hash table. Set some 675 * basic default fields for initializing the new VFs. 676 * 677 * After this function exits, the hash table will have num_vfs entries 678 * inserted. 679 * 680 * Returns 0 on success or an integer error code on failure. 681 */ 682 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) 683 { 684 struct pci_dev *pdev = pf->pdev; 685 struct ice_vfs *vfs = &pf->vfs; 686 struct pci_dev *vfdev = NULL; 687 struct ice_vf *vf; 688 u16 vf_pdev_id; 689 int err, pos; 690 691 lockdep_assert_held(&vfs->table_lock); 692 693 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 694 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id); 695 696 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) { 697 vf = kzalloc(sizeof(*vf), GFP_KERNEL); 698 if (!vf) { 699 err = -ENOMEM; 700 goto err_free_entries; 701 } 702 kref_init(&vf->refcnt); 703 704 vf->pf = pf; 705 vf->vf_id = vf_id; 706 707 /* set sriov vf ops for VFs created during SRIOV flow */ 708 vf->vf_ops = &ice_sriov_vf_ops; 709 710 ice_initialize_vf_entry(vf); 711 712 do { 713 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev); 714 } while (vfdev && vfdev->physfn != pdev); 715 vf->vfdev = vfdev; 716 vf->vf_sw_id = pf->first_sw; 717 718 pci_dev_get(vfdev); 719 720 hash_add_rcu(vfs->table, &vf->entry, vf_id); 721 } 722 723 /* Decrement of refcount done by pci_get_device() inside the loop does 724 * not touch the last iteration's vfdev, so it has to be done manually 725 * to balance pci_dev_get() added within the loop. 726 */ 727 pci_dev_put(vfdev); 728 729 return 0; 730 731 err_free_entries: 732 ice_free_vf_entries(pf); 733 return err; 734 } 735 736 /** 737 * ice_ena_vfs - enable VFs so they are ready to be used 738 * @pf: pointer to the PF structure 739 * @num_vfs: number of VFs to enable 740 */ 741 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) 742 { 743 struct device *dev = ice_pf_to_dev(pf); 744 struct ice_hw *hw = &pf->hw; 745 int ret; 746 747 /* Disable global interrupt 0 so we don't try to handle the VFLR. */ 748 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 749 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 750 set_bit(ICE_OICR_INTR_DIS, pf->state); 751 ice_flush(hw); 752 753 ret = pci_enable_sriov(pf->pdev, num_vfs); 754 if (ret) 755 goto err_unroll_intr; 756 757 mutex_lock(&pf->vfs.table_lock); 758 759 ret = ice_set_per_vf_res(pf, num_vfs); 760 if (ret) { 761 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", 762 num_vfs, ret); 763 goto err_unroll_sriov; 764 } 765 766 ret = ice_create_vf_entries(pf, num_vfs); 767 if (ret) { 768 dev_err(dev, "Failed to allocate VF entries for %d VFs\n", 769 num_vfs); 770 goto err_unroll_sriov; 771 } 772 773 ret = ice_start_vfs(pf); 774 if (ret) { 775 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); 776 ret = -EAGAIN; 777 goto err_unroll_vf_entries; 778 } 779 780 clear_bit(ICE_VF_DIS, pf->state); 781 782 /* rearm global interrupts */ 783 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) 784 ice_irq_dynamic_ena(hw, NULL, NULL); 785 786 mutex_unlock(&pf->vfs.table_lock); 787 788 return 0; 789 790 err_unroll_vf_entries: 791 ice_free_vf_entries(pf); 792 err_unroll_sriov: 793 mutex_unlock(&pf->vfs.table_lock); 794 pci_disable_sriov(pf->pdev); 795 err_unroll_intr: 796 /* rearm interrupts here */ 797 ice_irq_dynamic_ena(hw, NULL, NULL); 798 clear_bit(ICE_OICR_INTR_DIS, pf->state); 799 return ret; 800 } 801 802 /** 803 * ice_pci_sriov_ena - Enable or change number of VFs 804 * @pf: pointer to the PF structure 805 * @num_vfs: number of VFs to allocate 806 * 807 * Returns 0 on success and negative on failure 808 */ 809 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) 810 { 811 struct device *dev = ice_pf_to_dev(pf); 812 int err; 813 814 if (!num_vfs) { 815 ice_free_vfs(pf); 816 return 0; 817 } 818 819 if (num_vfs > pf->vfs.num_supported) { 820 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", 821 num_vfs, pf->vfs.num_supported); 822 return -EOPNOTSUPP; 823 } 824 825 dev_info(dev, "Enabling %d VFs\n", num_vfs); 826 err = ice_ena_vfs(pf, num_vfs); 827 if (err) { 828 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 829 return err; 830 } 831 832 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 833 return 0; 834 } 835 836 /** 837 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks 838 * @pf: PF to enabled SR-IOV on 839 */ 840 static int ice_check_sriov_allowed(struct ice_pf *pf) 841 { 842 struct device *dev = ice_pf_to_dev(pf); 843 844 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { 845 dev_err(dev, "This device is not capable of SR-IOV\n"); 846 return -EOPNOTSUPP; 847 } 848 849 if (ice_is_safe_mode(pf)) { 850 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); 851 return -EOPNOTSUPP; 852 } 853 854 if (!ice_pf_state_is_nominal(pf)) { 855 dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); 856 return -EBUSY; 857 } 858 859 return 0; 860 } 861 862 /** 863 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs 864 * @pdev: pointer to pci_dev struct 865 * 866 * The function is called via sysfs ops 867 */ 868 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev) 869 { 870 struct ice_pf *pf = pci_get_drvdata(pdev); 871 872 return pf->virt_irq_tracker.num_entries; 873 } 874 875 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id) 876 { 877 u16 vf_ids[ICE_MAX_SRIOV_VFS]; 878 struct ice_vf *tmp_vf; 879 int to_remap = 0, bkt; 880 881 /* For better irqs usage try to remap irqs of VFs 882 * that aren't running yet 883 */ 884 ice_for_each_vf(pf, bkt, tmp_vf) { 885 /* skip VF which is changing the number of MSI-X */ 886 if (restricted_id == tmp_vf->vf_id || 887 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states)) 888 continue; 889 890 ice_dis_vf_mappings(tmp_vf); 891 ice_virt_free_irqs(pf, tmp_vf->first_vector_idx, 892 tmp_vf->num_msix); 893 894 vf_ids[to_remap] = tmp_vf->vf_id; 895 to_remap += 1; 896 } 897 898 for (int i = 0; i < to_remap; i++) { 899 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]); 900 if (!tmp_vf) 901 continue; 902 903 tmp_vf->first_vector_idx = 904 ice_virt_get_irqs(pf, tmp_vf->num_msix); 905 /* there is no need to rebuild VSI as we are only changing the 906 * vector indexes not amount of MSI-X or queues 907 */ 908 ice_ena_vf_mappings(tmp_vf); 909 ice_put_vf(tmp_vf); 910 } 911 } 912 913 /** 914 * ice_sriov_set_msix_vec_count 915 * @vf_dev: pointer to pci_dev struct of VF device 916 * @msix_vec_count: new value for MSI-X amount on this VF 917 * 918 * Set requested MSI-X, queues and registers for @vf_dev. 919 * 920 * First do some sanity checks like if there are any VFs, if the new value 921 * is correct etc. Then disable old mapping (MSI-X and queues registers), change 922 * MSI-X and queues, rebuild VSI and enable new mapping. 923 * 924 * If it is possible (driver not binded to VF) try to remap also other VFs to 925 * linearize irqs register usage. 926 */ 927 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count) 928 { 929 struct pci_dev *pdev = pci_physfn(vf_dev); 930 struct ice_pf *pf = pci_get_drvdata(pdev); 931 u16 prev_msix, prev_queues, queues; 932 bool needs_rebuild = false; 933 struct ice_vsi *vsi; 934 struct ice_vf *vf; 935 int id; 936 937 if (!ice_get_num_vfs(pf)) 938 return -ENOENT; 939 940 if (!msix_vec_count) 941 return 0; 942 943 queues = msix_vec_count; 944 /* add 1 MSI-X for OICR */ 945 msix_vec_count += 1; 946 947 if (queues > min(ice_get_avail_txq_count(pf), 948 ice_get_avail_rxq_count(pf))) 949 return -EINVAL; 950 951 if (msix_vec_count < ICE_MIN_INTR_PER_VF) 952 return -EINVAL; 953 954 /* Transition of PCI VF function number to function_id */ 955 for (id = 0; id < pci_num_vf(pdev); id++) { 956 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id)) 957 break; 958 } 959 960 if (id == pci_num_vf(pdev)) 961 return -ENOENT; 962 963 vf = ice_get_vf_by_id(pf, id); 964 965 if (!vf) 966 return -ENOENT; 967 968 vsi = ice_get_vf_vsi(vf); 969 if (!vsi) { 970 ice_put_vf(vf); 971 return -ENOENT; 972 } 973 974 prev_msix = vf->num_msix; 975 prev_queues = vf->num_vf_qs; 976 977 ice_dis_vf_mappings(vf); 978 ice_virt_free_irqs(pf, vf->first_vector_idx, vf->num_msix); 979 980 /* Remap all VFs beside the one is now configured */ 981 ice_sriov_remap_vectors(pf, vf->vf_id); 982 983 vf->num_msix = msix_vec_count; 984 vf->num_vf_qs = queues; 985 vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix); 986 if (vf->first_vector_idx < 0) 987 goto unroll; 988 989 vsi->req_txq = queues; 990 vsi->req_rxq = queues; 991 992 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 993 /* Try to rebuild with previous values */ 994 needs_rebuild = true; 995 goto unroll; 996 } 997 998 dev_info(ice_pf_to_dev(pf), 999 "Changing VF %d resources to %d vectors and %d queues\n", 1000 vf->vf_id, vf->num_msix, vf->num_vf_qs); 1001 1002 ice_ena_vf_mappings(vf); 1003 ice_put_vf(vf); 1004 1005 return 0; 1006 1007 unroll: 1008 dev_info(ice_pf_to_dev(pf), 1009 "Can't set %d vectors on VF %d, falling back to %d\n", 1010 vf->num_msix, vf->vf_id, prev_msix); 1011 1012 vf->num_msix = prev_msix; 1013 vf->num_vf_qs = prev_queues; 1014 1015 vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix); 1016 if (vf->first_vector_idx < 0) { 1017 ice_put_vf(vf); 1018 return -EINVAL; 1019 } 1020 1021 if (needs_rebuild) { 1022 vsi->req_txq = prev_queues; 1023 vsi->req_rxq = prev_queues; 1024 1025 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 1026 } 1027 1028 ice_ena_vf_mappings(vf); 1029 ice_put_vf(vf); 1030 1031 return -EINVAL; 1032 } 1033 1034 /** 1035 * ice_sriov_configure - Enable or change number of VFs via sysfs 1036 * @pdev: pointer to a pci_dev structure 1037 * @num_vfs: number of VFs to allocate or 0 to free VFs 1038 * 1039 * This function is called when the user updates the number of VFs in sysfs. On 1040 * success return whatever num_vfs was set to by the caller. Return negative on 1041 * failure. 1042 */ 1043 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) 1044 { 1045 struct ice_pf *pf = pci_get_drvdata(pdev); 1046 struct device *dev = ice_pf_to_dev(pf); 1047 int err; 1048 1049 err = ice_check_sriov_allowed(pf); 1050 if (err) 1051 return err; 1052 1053 if (!num_vfs) { 1054 if (!pci_vfs_assigned(pdev)) { 1055 ice_free_vfs(pf); 1056 return 0; 1057 } 1058 1059 dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); 1060 return -EBUSY; 1061 } 1062 1063 err = ice_pci_sriov_ena(pf, num_vfs); 1064 if (err) 1065 return err; 1066 1067 return num_vfs; 1068 } 1069 1070 /** 1071 * ice_process_vflr_event - Free VF resources via IRQ calls 1072 * @pf: pointer to the PF structure 1073 * 1074 * called from the VFLR IRQ handler to 1075 * free up VF resources and state variables 1076 */ 1077 void ice_process_vflr_event(struct ice_pf *pf) 1078 { 1079 struct ice_hw *hw = &pf->hw; 1080 struct ice_vf *vf; 1081 unsigned int bkt; 1082 u32 reg; 1083 1084 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 1085 !ice_has_vfs(pf)) 1086 return; 1087 1088 mutex_lock(&pf->vfs.table_lock); 1089 ice_for_each_vf(pf, bkt, vf) { 1090 u32 reg_idx, bit_idx; 1091 1092 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 1093 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 1094 /* read GLGEN_VFLRSTAT register to find out the flr VFs */ 1095 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); 1096 if (reg & BIT(bit_idx)) 1097 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ 1098 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 1099 } 1100 mutex_unlock(&pf->vfs.table_lock); 1101 } 1102 1103 /** 1104 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in 1105 * @pf: PF used to index all VFs 1106 * @pfq: queue index relative to the PF's function space 1107 * 1108 * If no VF is found who owns the pfq then return NULL, otherwise return a 1109 * pointer to the VF who owns the pfq 1110 * 1111 * If this function returns non-NULL, it acquires a reference count of the VF 1112 * structure. The caller is responsible for calling ice_put_vf() to drop this 1113 * reference. 1114 */ 1115 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) 1116 { 1117 struct ice_vf *vf; 1118 unsigned int bkt; 1119 1120 rcu_read_lock(); 1121 ice_for_each_vf_rcu(pf, bkt, vf) { 1122 struct ice_vsi *vsi; 1123 u16 rxq_idx; 1124 1125 vsi = ice_get_vf_vsi(vf); 1126 if (!vsi) 1127 continue; 1128 1129 ice_for_each_rxq(vsi, rxq_idx) 1130 if (vsi->rxq_map[rxq_idx] == pfq) { 1131 struct ice_vf *found; 1132 1133 if (kref_get_unless_zero(&vf->refcnt)) 1134 found = vf; 1135 else 1136 found = NULL; 1137 rcu_read_unlock(); 1138 return found; 1139 } 1140 } 1141 rcu_read_unlock(); 1142 1143 return NULL; 1144 } 1145 1146 /** 1147 * ice_globalq_to_pfq - convert from global queue index to PF space queue index 1148 * @pf: PF used for conversion 1149 * @globalq: global queue index used to convert to PF space queue index 1150 */ 1151 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) 1152 { 1153 return globalq - pf->hw.func_caps.common_cap.rxq_first_id; 1154 } 1155 1156 /** 1157 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF 1158 * @pf: PF that the LAN overflow event happened on 1159 * @event: structure holding the event information for the LAN overflow event 1160 * 1161 * Determine if the LAN overflow event was caused by a VF queue. If it was not 1162 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a 1163 * reset on the offending VF. 1164 */ 1165 void 1166 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1167 { 1168 u32 gldcb_rtctq, queue; 1169 struct ice_vf *vf; 1170 1171 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); 1172 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); 1173 1174 /* event returns device global Rx queue number */ 1175 queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq); 1176 1177 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); 1178 if (!vf) 1179 return; 1180 1181 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1182 ice_put_vf(vf); 1183 } 1184 1185 /** 1186 * ice_set_vf_spoofchk 1187 * @netdev: network interface device structure 1188 * @vf_id: VF identifier 1189 * @ena: flag to enable or disable feature 1190 * 1191 * Enable or disable VF spoof checking 1192 */ 1193 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) 1194 { 1195 struct ice_netdev_priv *np = netdev_priv(netdev); 1196 struct ice_pf *pf = np->vsi->back; 1197 struct ice_vsi *vf_vsi; 1198 struct device *dev; 1199 struct ice_vf *vf; 1200 int ret; 1201 1202 dev = ice_pf_to_dev(pf); 1203 1204 vf = ice_get_vf_by_id(pf, vf_id); 1205 if (!vf) 1206 return -EINVAL; 1207 1208 ret = ice_check_vf_ready_for_cfg(vf); 1209 if (ret) 1210 goto out_put_vf; 1211 1212 vf_vsi = ice_get_vf_vsi(vf); 1213 if (!vf_vsi) { 1214 netdev_err(netdev, "VSI %d for VF %d is null\n", 1215 vf->lan_vsi_idx, vf->vf_id); 1216 ret = -EINVAL; 1217 goto out_put_vf; 1218 } 1219 1220 if (vf_vsi->type != ICE_VSI_VF) { 1221 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", 1222 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); 1223 ret = -ENODEV; 1224 goto out_put_vf; 1225 } 1226 1227 if (ena == vf->spoofchk) { 1228 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); 1229 ret = 0; 1230 goto out_put_vf; 1231 } 1232 1233 ret = ice_vsi_apply_spoofchk(vf_vsi, ena); 1234 if (ret) 1235 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", 1236 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); 1237 else 1238 vf->spoofchk = ena; 1239 1240 out_put_vf: 1241 ice_put_vf(vf); 1242 return ret; 1243 } 1244 1245 /** 1246 * ice_get_vf_cfg 1247 * @netdev: network interface device structure 1248 * @vf_id: VF identifier 1249 * @ivi: VF configuration structure 1250 * 1251 * return VF configuration 1252 */ 1253 int 1254 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) 1255 { 1256 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1257 struct ice_vf *vf; 1258 int ret; 1259 1260 vf = ice_get_vf_by_id(pf, vf_id); 1261 if (!vf) 1262 return -EINVAL; 1263 1264 ret = ice_check_vf_ready_for_cfg(vf); 1265 if (ret) 1266 goto out_put_vf; 1267 1268 ivi->vf = vf_id; 1269 ether_addr_copy(ivi->mac, vf->hw_lan_addr); 1270 1271 /* VF configuration for VLAN and applicable QoS */ 1272 ivi->vlan = ice_vf_get_port_vlan_id(vf); 1273 ivi->qos = ice_vf_get_port_vlan_prio(vf); 1274 if (ice_vf_is_port_vlan_ena(vf)) 1275 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); 1276 1277 ivi->trusted = vf->trusted; 1278 ivi->spoofchk = vf->spoofchk; 1279 if (!vf->link_forced) 1280 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 1281 else if (vf->link_up) 1282 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 1283 else 1284 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 1285 ivi->max_tx_rate = vf->max_tx_rate; 1286 ivi->min_tx_rate = vf->min_tx_rate; 1287 1288 out_put_vf: 1289 ice_put_vf(vf); 1290 return ret; 1291 } 1292 1293 /** 1294 * __ice_set_vf_mac - program VF MAC address 1295 * @pf: PF to be configure 1296 * @vf_id: VF identifier 1297 * @mac: MAC address 1298 * 1299 * program VF MAC address 1300 * Return: zero on success or an error code on failure 1301 */ 1302 int __ice_set_vf_mac(struct ice_pf *pf, u16 vf_id, const u8 *mac) 1303 { 1304 struct device *dev; 1305 struct ice_vf *vf; 1306 int ret; 1307 1308 dev = ice_pf_to_dev(pf); 1309 if (is_multicast_ether_addr(mac)) { 1310 dev_err(dev, "%pM not a valid unicast address\n", mac); 1311 return -EINVAL; 1312 } 1313 1314 vf = ice_get_vf_by_id(pf, vf_id); 1315 if (!vf) 1316 return -EINVAL; 1317 1318 /* nothing left to do, unicast MAC already set */ 1319 if (ether_addr_equal(vf->dev_lan_addr, mac) && 1320 ether_addr_equal(vf->hw_lan_addr, mac)) { 1321 ret = 0; 1322 goto out_put_vf; 1323 } 1324 1325 ret = ice_check_vf_ready_for_cfg(vf); 1326 if (ret) 1327 goto out_put_vf; 1328 1329 mutex_lock(&vf->cfg_lock); 1330 1331 /* VF is notified of its new MAC via the PF's response to the 1332 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset 1333 */ 1334 ether_addr_copy(vf->dev_lan_addr, mac); 1335 ether_addr_copy(vf->hw_lan_addr, mac); 1336 if (is_zero_ether_addr(mac)) { 1337 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ 1338 vf->pf_set_mac = false; 1339 dev_info(dev, "Removing MAC on VF %d. VF driver will be reinitialized\n", 1340 vf->vf_id); 1341 } else { 1342 /* PF will add MAC rule for the VF */ 1343 vf->pf_set_mac = true; 1344 dev_info(dev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", 1345 mac, vf_id); 1346 } 1347 1348 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1349 mutex_unlock(&vf->cfg_lock); 1350 1351 out_put_vf: 1352 ice_put_vf(vf); 1353 return ret; 1354 } 1355 1356 /** 1357 * ice_set_vf_mac - .ndo_set_vf_mac handler 1358 * @netdev: network interface device structure 1359 * @vf_id: VF identifier 1360 * @mac: MAC address 1361 * 1362 * program VF MAC address 1363 * Return: zero on success or an error code on failure 1364 */ 1365 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 1366 { 1367 return __ice_set_vf_mac(ice_netdev_to_pf(netdev), vf_id, mac); 1368 } 1369 1370 /** 1371 * ice_set_vf_trust 1372 * @netdev: network interface device structure 1373 * @vf_id: VF identifier 1374 * @trusted: Boolean value to enable/disable trusted VF 1375 * 1376 * Enable or disable a given VF as trusted 1377 */ 1378 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) 1379 { 1380 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1381 struct ice_vf *vf; 1382 int ret; 1383 1384 vf = ice_get_vf_by_id(pf, vf_id); 1385 if (!vf) 1386 return -EINVAL; 1387 1388 if (ice_is_eswitch_mode_switchdev(pf)) { 1389 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); 1390 return -EOPNOTSUPP; 1391 } 1392 1393 ret = ice_check_vf_ready_for_cfg(vf); 1394 if (ret) 1395 goto out_put_vf; 1396 1397 /* Check if already trusted */ 1398 if (trusted == vf->trusted) { 1399 ret = 0; 1400 goto out_put_vf; 1401 } 1402 1403 mutex_lock(&vf->cfg_lock); 1404 1405 vf->trusted = trusted; 1406 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1407 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", 1408 vf_id, trusted ? "" : "un"); 1409 1410 mutex_unlock(&vf->cfg_lock); 1411 1412 out_put_vf: 1413 ice_put_vf(vf); 1414 return ret; 1415 } 1416 1417 /** 1418 * ice_set_vf_link_state 1419 * @netdev: network interface device structure 1420 * @vf_id: VF identifier 1421 * @link_state: required link state 1422 * 1423 * Set VF's link state, irrespective of physical link state status 1424 */ 1425 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) 1426 { 1427 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1428 struct ice_vf *vf; 1429 int ret; 1430 1431 vf = ice_get_vf_by_id(pf, vf_id); 1432 if (!vf) 1433 return -EINVAL; 1434 1435 ret = ice_check_vf_ready_for_cfg(vf); 1436 if (ret) 1437 goto out_put_vf; 1438 1439 switch (link_state) { 1440 case IFLA_VF_LINK_STATE_AUTO: 1441 vf->link_forced = false; 1442 break; 1443 case IFLA_VF_LINK_STATE_ENABLE: 1444 vf->link_forced = true; 1445 vf->link_up = true; 1446 break; 1447 case IFLA_VF_LINK_STATE_DISABLE: 1448 vf->link_forced = true; 1449 vf->link_up = false; 1450 break; 1451 default: 1452 ret = -EINVAL; 1453 goto out_put_vf; 1454 } 1455 1456 ice_vc_notify_vf_link_state(vf); 1457 1458 out_put_vf: 1459 ice_put_vf(vf); 1460 return ret; 1461 } 1462 1463 /** 1464 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs 1465 * @pf: PF associated with VFs 1466 */ 1467 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) 1468 { 1469 struct ice_vf *vf; 1470 unsigned int bkt; 1471 int rate = 0; 1472 1473 rcu_read_lock(); 1474 ice_for_each_vf_rcu(pf, bkt, vf) 1475 rate += vf->min_tx_rate; 1476 rcu_read_unlock(); 1477 1478 return rate; 1479 } 1480 1481 /** 1482 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription 1483 * @vf: VF trying to configure min_tx_rate 1484 * @min_tx_rate: min Tx rate in Mbps 1485 * 1486 * Check if the min_tx_rate being passed in will cause oversubscription of total 1487 * min_tx_rate based on the current link speed and all other VFs configured 1488 * min_tx_rate 1489 * 1490 * Return true if the passed min_tx_rate would cause oversubscription, else 1491 * return false 1492 */ 1493 static bool 1494 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) 1495 { 1496 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 1497 int all_vfs_min_tx_rate; 1498 int link_speed_mbps; 1499 1500 if (WARN_ON(!vsi)) 1501 return false; 1502 1503 link_speed_mbps = ice_get_link_speed_mbps(vsi); 1504 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); 1505 1506 /* this VF's previous rate is being overwritten */ 1507 all_vfs_min_tx_rate -= vf->min_tx_rate; 1508 1509 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { 1510 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", 1511 min_tx_rate, vf->vf_id, 1512 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, 1513 link_speed_mbps); 1514 return true; 1515 } 1516 1517 return false; 1518 } 1519 1520 /** 1521 * ice_set_vf_bw - set min/max VF bandwidth 1522 * @netdev: network interface device structure 1523 * @vf_id: VF identifier 1524 * @min_tx_rate: Minimum Tx rate in Mbps 1525 * @max_tx_rate: Maximum Tx rate in Mbps 1526 */ 1527 int 1528 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, 1529 int max_tx_rate) 1530 { 1531 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1532 struct ice_vsi *vsi; 1533 struct device *dev; 1534 struct ice_vf *vf; 1535 int ret; 1536 1537 dev = ice_pf_to_dev(pf); 1538 1539 vf = ice_get_vf_by_id(pf, vf_id); 1540 if (!vf) 1541 return -EINVAL; 1542 1543 ret = ice_check_vf_ready_for_cfg(vf); 1544 if (ret) 1545 goto out_put_vf; 1546 1547 vsi = ice_get_vf_vsi(vf); 1548 if (!vsi) { 1549 ret = -EINVAL; 1550 goto out_put_vf; 1551 } 1552 1553 if (min_tx_rate && ice_is_dcb_active(pf)) { 1554 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); 1555 ret = -EOPNOTSUPP; 1556 goto out_put_vf; 1557 } 1558 1559 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { 1560 ret = -EINVAL; 1561 goto out_put_vf; 1562 } 1563 1564 if (vf->min_tx_rate != (unsigned int)min_tx_rate) { 1565 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); 1566 if (ret) { 1567 dev_err(dev, "Unable to set min-tx-rate for VF %d\n", 1568 vf->vf_id); 1569 goto out_put_vf; 1570 } 1571 1572 vf->min_tx_rate = min_tx_rate; 1573 } 1574 1575 if (vf->max_tx_rate != (unsigned int)max_tx_rate) { 1576 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); 1577 if (ret) { 1578 dev_err(dev, "Unable to set max-tx-rate for VF %d\n", 1579 vf->vf_id); 1580 goto out_put_vf; 1581 } 1582 1583 vf->max_tx_rate = max_tx_rate; 1584 } 1585 1586 out_put_vf: 1587 ice_put_vf(vf); 1588 return ret; 1589 } 1590 1591 /** 1592 * ice_get_vf_stats - populate some stats for the VF 1593 * @netdev: the netdev of the PF 1594 * @vf_id: the host OS identifier (0-255) 1595 * @vf_stats: pointer to the OS memory to be initialized 1596 */ 1597 int ice_get_vf_stats(struct net_device *netdev, int vf_id, 1598 struct ifla_vf_stats *vf_stats) 1599 { 1600 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1601 struct ice_eth_stats *stats; 1602 struct ice_vsi *vsi; 1603 struct ice_vf *vf; 1604 int ret; 1605 1606 vf = ice_get_vf_by_id(pf, vf_id); 1607 if (!vf) 1608 return -EINVAL; 1609 1610 ret = ice_check_vf_ready_for_cfg(vf); 1611 if (ret) 1612 goto out_put_vf; 1613 1614 vsi = ice_get_vf_vsi(vf); 1615 if (!vsi) { 1616 ret = -EINVAL; 1617 goto out_put_vf; 1618 } 1619 1620 ice_update_eth_stats(vsi); 1621 stats = &vsi->eth_stats; 1622 1623 memset(vf_stats, 0, sizeof(*vf_stats)); 1624 1625 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + 1626 stats->rx_multicast; 1627 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + 1628 stats->tx_multicast; 1629 vf_stats->rx_bytes = stats->rx_bytes; 1630 vf_stats->tx_bytes = stats->tx_bytes; 1631 vf_stats->broadcast = stats->rx_broadcast; 1632 vf_stats->multicast = stats->rx_multicast; 1633 vf_stats->rx_dropped = stats->rx_discards; 1634 vf_stats->tx_dropped = stats->tx_discards; 1635 1636 out_put_vf: 1637 ice_put_vf(vf); 1638 return ret; 1639 } 1640 1641 /** 1642 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported 1643 * @hw: hardware structure used to check the VLAN mode 1644 * @vlan_proto: VLAN TPID being checked 1645 * 1646 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q 1647 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN 1648 * Mode (SVM), then only ETH_P_8021Q is supported. 1649 */ 1650 static bool 1651 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) 1652 { 1653 bool is_supported = false; 1654 1655 switch (vlan_proto) { 1656 case ETH_P_8021Q: 1657 is_supported = true; 1658 break; 1659 case ETH_P_8021AD: 1660 if (ice_is_dvm_ena(hw)) 1661 is_supported = true; 1662 break; 1663 } 1664 1665 return is_supported; 1666 } 1667 1668 /** 1669 * ice_set_vf_port_vlan 1670 * @netdev: network interface device structure 1671 * @vf_id: VF identifier 1672 * @vlan_id: VLAN ID being set 1673 * @qos: priority setting 1674 * @vlan_proto: VLAN protocol 1675 * 1676 * program VF Port VLAN ID and/or QoS 1677 */ 1678 int 1679 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, 1680 __be16 vlan_proto) 1681 { 1682 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1683 u16 local_vlan_proto = ntohs(vlan_proto); 1684 struct device *dev; 1685 struct ice_vf *vf; 1686 int ret; 1687 1688 dev = ice_pf_to_dev(pf); 1689 1690 if (vlan_id >= VLAN_N_VID || qos > 7) { 1691 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", 1692 vf_id, vlan_id, qos); 1693 return -EINVAL; 1694 } 1695 1696 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { 1697 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", 1698 local_vlan_proto); 1699 return -EPROTONOSUPPORT; 1700 } 1701 1702 vf = ice_get_vf_by_id(pf, vf_id); 1703 if (!vf) 1704 return -EINVAL; 1705 1706 ret = ice_check_vf_ready_for_cfg(vf); 1707 if (ret) 1708 goto out_put_vf; 1709 1710 if (ice_vf_get_port_vlan_prio(vf) == qos && 1711 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && 1712 ice_vf_get_port_vlan_id(vf) == vlan_id) { 1713 /* duplicate request, so just return success */ 1714 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", 1715 vlan_id, qos, local_vlan_proto); 1716 ret = 0; 1717 goto out_put_vf; 1718 } 1719 1720 mutex_lock(&vf->cfg_lock); 1721 1722 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); 1723 if (ice_vf_is_port_vlan_ena(vf)) 1724 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", 1725 vlan_id, qos, local_vlan_proto, vf_id); 1726 else 1727 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); 1728 1729 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1730 mutex_unlock(&vf->cfg_lock); 1731 1732 out_put_vf: 1733 ice_put_vf(vf); 1734 return ret; 1735 } 1736 1737 /** 1738 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event 1739 * @vf: pointer to the VF structure 1740 */ 1741 void ice_print_vf_rx_mdd_event(struct ice_vf *vf) 1742 { 1743 struct ice_pf *pf = vf->pf; 1744 struct device *dev; 1745 1746 dev = ice_pf_to_dev(pf); 1747 1748 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1749 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, 1750 vf->dev_lan_addr, 1751 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1752 ? "on" : "off"); 1753 } 1754 1755 /** 1756 * ice_print_vf_tx_mdd_event - print VF Tx malicious driver detect event 1757 * @vf: pointer to the VF structure 1758 */ 1759 void ice_print_vf_tx_mdd_event(struct ice_vf *vf) 1760 { 1761 struct ice_pf *pf = vf->pf; 1762 struct device *dev; 1763 1764 dev = ice_pf_to_dev(pf); 1765 1766 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1767 vf->mdd_tx_events.count, pf->hw.pf_id, vf->vf_id, 1768 vf->dev_lan_addr, 1769 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1770 ? "on" : "off"); 1771 } 1772 1773 /** 1774 * ice_print_vfs_mdd_events - print VFs malicious driver detect event 1775 * @pf: pointer to the PF structure 1776 * 1777 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. 1778 */ 1779 void ice_print_vfs_mdd_events(struct ice_pf *pf) 1780 { 1781 struct ice_vf *vf; 1782 unsigned int bkt; 1783 1784 /* check that there are pending MDD events to print */ 1785 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) 1786 return; 1787 1788 /* VF MDD event logs are rate limited to one second intervals */ 1789 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) 1790 return; 1791 1792 pf->vfs.last_printed_mdd_jiffies = jiffies; 1793 1794 mutex_lock(&pf->vfs.table_lock); 1795 ice_for_each_vf(pf, bkt, vf) { 1796 /* only print Rx MDD event message if there are new events */ 1797 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 1798 vf->mdd_rx_events.last_printed = 1799 vf->mdd_rx_events.count; 1800 ice_print_vf_rx_mdd_event(vf); 1801 } 1802 1803 /* only print Tx MDD event message if there are new events */ 1804 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 1805 vf->mdd_tx_events.last_printed = 1806 vf->mdd_tx_events.count; 1807 ice_print_vf_tx_mdd_event(vf); 1808 } 1809 } 1810 mutex_unlock(&pf->vfs.table_lock); 1811 } 1812 1813 /** 1814 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR 1815 * @pf: pointer to the PF structure 1816 * 1817 * Called when recovering from a PF FLR to restore interrupt capability to 1818 * the VFs. 1819 */ 1820 void ice_restore_all_vfs_msi_state(struct ice_pf *pf) 1821 { 1822 struct ice_vf *vf; 1823 u32 bkt; 1824 1825 ice_for_each_vf(pf, bkt, vf) 1826 pci_restore_msi_state(vf->vfdev); 1827 } 1828