xref: /linux/drivers/net/ethernet/intel/ice/ice_sriov.c (revision bb118e86dfcc096b8a3889c1a5c88f214e1f65fa)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16 
17 /**
18  * ice_free_vf_entries - Free all VF entries from the hash table
19  * @pf: pointer to the PF structure
20  *
21  * Iterate over the VF hash table, removing and releasing all VF entries.
22  * Called during VF teardown or as cleanup during failed VF initialization.
23  */
24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 	struct ice_vfs *vfs = &pf->vfs;
27 	struct hlist_node *tmp;
28 	struct ice_vf *vf;
29 	unsigned int bkt;
30 
31 	/* Remove all VFs from the hash table and release their main
32 	 * reference. Once all references to the VF are dropped, ice_put_vf()
33 	 * will call ice_release_vf which will remove the VF memory.
34 	 */
35 	lockdep_assert_held(&vfs->table_lock);
36 
37 	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 		hash_del_rcu(&vf->entry);
39 		ice_put_vf(vf);
40 	}
41 }
42 
43 /**
44  * ice_free_vf_res - Free a VF's resources
45  * @vf: pointer to the VF info
46  */
47 static void ice_free_vf_res(struct ice_vf *vf)
48 {
49 	struct ice_pf *pf = vf->pf;
50 	int i, last_vector_idx;
51 
52 	/* First, disable VF's configuration API to prevent OS from
53 	 * accessing the VF's VSI after it's freed or invalidated.
54 	 */
55 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
56 	ice_vf_fdir_exit(vf);
57 	/* free VF control VSI */
58 	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
59 		ice_vf_ctrl_vsi_release(vf);
60 
61 	/* free VSI and disconnect it from the parent uplink */
62 	if (vf->lan_vsi_idx != ICE_NO_VSI) {
63 		ice_vf_vsi_release(vf);
64 		vf->num_mac = 0;
65 	}
66 
67 	last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
68 
69 	/* clear VF MDD event information */
70 	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
71 	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
72 
73 	/* Disable interrupts so that VF starts in a known state */
74 	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
75 		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
76 		ice_flush(&pf->hw);
77 	}
78 	/* reset some of the state variables keeping track of the resources */
79 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
80 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
81 }
82 
83 /**
84  * ice_dis_vf_mappings
85  * @vf: pointer to the VF structure
86  */
87 static void ice_dis_vf_mappings(struct ice_vf *vf)
88 {
89 	struct ice_pf *pf = vf->pf;
90 	struct ice_vsi *vsi;
91 	struct device *dev;
92 	int first, last, v;
93 	struct ice_hw *hw;
94 
95 	hw = &pf->hw;
96 	vsi = ice_get_vf_vsi(vf);
97 	if (WARN_ON(!vsi))
98 		return;
99 
100 	dev = ice_pf_to_dev(pf);
101 	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
102 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
103 
104 	first = vf->first_vector_idx;
105 	last = first + vf->num_msix - 1;
106 	for (v = first; v <= last; v++) {
107 		u32 reg;
108 
109 		reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
110 			GLINT_VECT2FUNC_IS_PF_M) |
111 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
112 			GLINT_VECT2FUNC_PF_NUM_M));
113 		wr32(hw, GLINT_VECT2FUNC(v), reg);
114 	}
115 
116 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
117 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
118 	else
119 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
120 
121 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
122 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
123 	else
124 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
125 }
126 
127 /**
128  * ice_sriov_free_msix_res - Reset/free any used MSIX resources
129  * @pf: pointer to the PF structure
130  *
131  * Since no MSIX entries are taken from the pf->irq_tracker then just clear
132  * the pf->sriov_base_vector.
133  *
134  * Returns 0 on success, and -EINVAL on error.
135  */
136 static int ice_sriov_free_msix_res(struct ice_pf *pf)
137 {
138 	if (!pf)
139 		return -EINVAL;
140 
141 	bitmap_free(pf->sriov_irq_bm);
142 	pf->sriov_irq_size = 0;
143 	pf->sriov_base_vector = 0;
144 
145 	return 0;
146 }
147 
148 /**
149  * ice_free_vfs - Free all VFs
150  * @pf: pointer to the PF structure
151  */
152 void ice_free_vfs(struct ice_pf *pf)
153 {
154 	struct device *dev = ice_pf_to_dev(pf);
155 	struct ice_vfs *vfs = &pf->vfs;
156 	struct ice_hw *hw = &pf->hw;
157 	struct ice_vf *vf;
158 	unsigned int bkt;
159 
160 	if (!ice_has_vfs(pf))
161 		return;
162 
163 	while (test_and_set_bit(ICE_VF_DIS, pf->state))
164 		usleep_range(1000, 2000);
165 
166 	/* Disable IOV before freeing resources. This lets any VF drivers
167 	 * running in the host get themselves cleaned up before we yank
168 	 * the carpet out from underneath their feet.
169 	 */
170 	if (!pci_vfs_assigned(pf->pdev))
171 		pci_disable_sriov(pf->pdev);
172 	else
173 		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
174 
175 	mutex_lock(&vfs->table_lock);
176 
177 	ice_eswitch_release(pf);
178 
179 	ice_for_each_vf(pf, bkt, vf) {
180 		mutex_lock(&vf->cfg_lock);
181 
182 		ice_dis_vf_qs(vf);
183 
184 		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
185 			/* disable VF qp mappings and set VF disable state */
186 			ice_dis_vf_mappings(vf);
187 			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
188 			ice_free_vf_res(vf);
189 		}
190 
191 		if (!pci_vfs_assigned(pf->pdev)) {
192 			u32 reg_idx, bit_idx;
193 
194 			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
195 			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
196 			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
197 		}
198 
199 		/* clear malicious info since the VF is getting released */
200 		list_del(&vf->mbx_info.list_entry);
201 
202 		mutex_unlock(&vf->cfg_lock);
203 	}
204 
205 	if (ice_sriov_free_msix_res(pf))
206 		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
207 
208 	vfs->num_qps_per = 0;
209 	ice_free_vf_entries(pf);
210 
211 	mutex_unlock(&vfs->table_lock);
212 
213 	clear_bit(ICE_VF_DIS, pf->state);
214 	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
215 }
216 
217 /**
218  * ice_vf_vsi_setup - Set up a VF VSI
219  * @vf: VF to setup VSI for
220  *
221  * Returns pointer to the successfully allocated VSI struct on success,
222  * otherwise returns NULL on failure.
223  */
224 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
225 {
226 	struct ice_vsi_cfg_params params = {};
227 	struct ice_pf *pf = vf->pf;
228 	struct ice_vsi *vsi;
229 
230 	params.type = ICE_VSI_VF;
231 	params.pi = ice_vf_get_port_info(vf);
232 	params.vf = vf;
233 	params.flags = ICE_VSI_FLAG_INIT;
234 
235 	vsi = ice_vsi_setup(pf, &params);
236 
237 	if (!vsi) {
238 		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
239 		ice_vf_invalidate_vsi(vf);
240 		return NULL;
241 	}
242 
243 	vf->lan_vsi_idx = vsi->idx;
244 	vf->lan_vsi_num = vsi->vsi_num;
245 
246 	return vsi;
247 }
248 
249 
250 /**
251  * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
252  * @vf: VF to enable MSIX mappings for
253  *
254  * Some of the registers need to be indexed/configured using hardware global
255  * device values and other registers need 0-based values, which represent PF
256  * based values.
257  */
258 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
259 {
260 	int device_based_first_msix, device_based_last_msix;
261 	int pf_based_first_msix, pf_based_last_msix, v;
262 	struct ice_pf *pf = vf->pf;
263 	int device_based_vf_id;
264 	struct ice_hw *hw;
265 	u32 reg;
266 
267 	hw = &pf->hw;
268 	pf_based_first_msix = vf->first_vector_idx;
269 	pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
270 
271 	device_based_first_msix = pf_based_first_msix +
272 		pf->hw.func_caps.common_cap.msix_vector_first_id;
273 	device_based_last_msix =
274 		(device_based_first_msix + vf->num_msix) - 1;
275 	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
276 
277 	reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
278 		VPINT_ALLOC_FIRST_M) |
279 	       ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
280 		VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
281 	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
282 
283 	reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
284 		 & VPINT_ALLOC_PCI_FIRST_M) |
285 	       ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
286 		VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
287 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
288 
289 	/* map the interrupts to its functions */
290 	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
291 		reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
292 			GLINT_VECT2FUNC_VF_NUM_M) |
293 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
294 			GLINT_VECT2FUNC_PF_NUM_M));
295 		wr32(hw, GLINT_VECT2FUNC(v), reg);
296 	}
297 
298 	/* Map mailbox interrupt to VF MSI-X vector 0 */
299 	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
300 }
301 
302 /**
303  * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
304  * @vf: VF to enable the mappings for
305  * @max_txq: max Tx queues allowed on the VF's VSI
306  * @max_rxq: max Rx queues allowed on the VF's VSI
307  */
308 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
309 {
310 	struct device *dev = ice_pf_to_dev(vf->pf);
311 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
312 	struct ice_hw *hw = &vf->pf->hw;
313 	u32 reg;
314 
315 	if (WARN_ON(!vsi))
316 		return;
317 
318 	/* set regardless of mapping mode */
319 	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
320 
321 	/* VF Tx queues allocation */
322 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
323 		/* set the VF PF Tx queue range
324 		 * VFNUMQ value should be set to (number of queues - 1). A value
325 		 * of 0 means 1 queue and a value of 255 means 256 queues
326 		 */
327 		reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
328 			VPLAN_TX_QBASE_VFFIRSTQ_M) |
329 		       (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
330 			VPLAN_TX_QBASE_VFNUMQ_M));
331 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
332 	} else {
333 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
334 	}
335 
336 	/* set regardless of mapping mode */
337 	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
338 
339 	/* VF Rx queues allocation */
340 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
341 		/* set the VF PF Rx queue range
342 		 * VFNUMQ value should be set to (number of queues - 1). A value
343 		 * of 0 means 1 queue and a value of 255 means 256 queues
344 		 */
345 		reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
346 			VPLAN_RX_QBASE_VFFIRSTQ_M) |
347 		       (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
348 			VPLAN_RX_QBASE_VFNUMQ_M));
349 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
350 	} else {
351 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
352 	}
353 }
354 
355 /**
356  * ice_ena_vf_mappings - enable VF MSIX and queue mapping
357  * @vf: pointer to the VF structure
358  */
359 static void ice_ena_vf_mappings(struct ice_vf *vf)
360 {
361 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
362 
363 	if (WARN_ON(!vsi))
364 		return;
365 
366 	ice_ena_vf_msix_mappings(vf);
367 	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
368 }
369 
370 /**
371  * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
372  * @vf: VF to calculate the register index for
373  * @q_vector: a q_vector associated to the VF
374  */
375 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
376 {
377 	struct ice_pf *pf;
378 
379 	if (!vf || !q_vector)
380 		return -EINVAL;
381 
382 	pf = vf->pf;
383 
384 	/* always add one to account for the OICR being the first MSIX */
385 	return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id +
386 		q_vector->v_idx + 1;
387 }
388 
389 /**
390  * ice_sriov_set_msix_res - Set any used MSIX resources
391  * @pf: pointer to PF structure
392  * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
393  *
394  * This function allows SR-IOV resources to be taken from the end of the PF's
395  * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
396  * just set the pf->sriov_base_vector and return success.
397  *
398  * If there are not enough resources available, return an error. This should
399  * always be caught by ice_set_per_vf_res().
400  *
401  * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
402  * in the PF's space available for SR-IOV.
403  */
404 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
405 {
406 	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
407 	int vectors_used = ice_get_max_used_msix_vector(pf);
408 	int sriov_base_vector;
409 
410 	sriov_base_vector = total_vectors - num_msix_needed;
411 
412 	/* make sure we only grab irq_tracker entries from the list end and
413 	 * that we have enough available MSIX vectors
414 	 */
415 	if (sriov_base_vector < vectors_used)
416 		return -EINVAL;
417 
418 	pf->sriov_base_vector = sriov_base_vector;
419 
420 	return 0;
421 }
422 
423 /**
424  * ice_set_per_vf_res - check if vectors and queues are available
425  * @pf: pointer to the PF structure
426  * @num_vfs: the number of SR-IOV VFs being configured
427  *
428  * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
429  * get more vectors and can enable more queues per VF. Note that this does not
430  * grab any vectors from the SW pool already allocated. Also note, that all
431  * vector counts include one for each VF's miscellaneous interrupt vector
432  * (i.e. OICR).
433  *
434  * Minimum VFs - 2 vectors, 1 queue pair
435  * Small VFs - 5 vectors, 4 queue pairs
436  * Medium VFs - 17 vectors, 16 queue pairs
437  *
438  * Second, determine number of queue pairs per VF by starting with a pre-defined
439  * maximum each VF supports. If this is not possible, then we adjust based on
440  * queue pairs available on the device.
441  *
442  * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
443  * by each VF during VF initialization and reset.
444  */
445 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
446 {
447 	int vectors_used = ice_get_max_used_msix_vector(pf);
448 	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
449 	int msix_avail_per_vf, msix_avail_for_sriov;
450 	struct device *dev = ice_pf_to_dev(pf);
451 	int err;
452 
453 	lockdep_assert_held(&pf->vfs.table_lock);
454 
455 	if (!num_vfs)
456 		return -EINVAL;
457 
458 	/* determine MSI-X resources per VF */
459 	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
460 		vectors_used;
461 	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
462 	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
463 		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
464 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
465 		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
466 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
467 		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
468 	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
469 		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
470 	} else {
471 		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
472 			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
473 			num_vfs);
474 		return -ENOSPC;
475 	}
476 
477 	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
478 			ICE_MAX_RSS_QS_PER_VF);
479 	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
480 	if (!avail_qs)
481 		num_txq = 0;
482 	else if (num_txq > avail_qs)
483 		num_txq = rounddown_pow_of_two(avail_qs);
484 
485 	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
486 			ICE_MAX_RSS_QS_PER_VF);
487 	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
488 	if (!avail_qs)
489 		num_rxq = 0;
490 	else if (num_rxq > avail_qs)
491 		num_rxq = rounddown_pow_of_two(avail_qs);
492 
493 	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
494 		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
495 			ICE_MIN_QS_PER_VF, num_vfs);
496 		return -ENOSPC;
497 	}
498 
499 	err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
500 	if (err) {
501 		dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
502 			num_vfs, err);
503 		return err;
504 	}
505 
506 	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
507 	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
508 	pf->vfs.num_msix_per = num_msix_per_vf;
509 	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
510 		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
511 
512 	return 0;
513 }
514 
515 /**
516  * ice_sriov_get_irqs - get irqs for SR-IOV usacase
517  * @pf: pointer to PF structure
518  * @needed: number of irqs to get
519  *
520  * This returns the first MSI-X vector index in PF space that is used by this
521  * VF. This index is used when accessing PF relative registers such as
522  * GLINT_VECT2FUNC and GLINT_DYN_CTL.
523  * This will always be the OICR index in the AVF driver so any functionality
524  * using vf->first_vector_idx for queue configuration_id: id of VF which will
525  * use this irqs
526  *
527  * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are
528  * allocated from the end of global irq index. First bit in sriov_irq_bm means
529  * last irq index etc. It simplifies extension of SRIOV vectors.
530  * They will be always located from sriov_base_vector to the last irq
531  * index. While increasing/decreasing sriov_base_vector can be moved.
532  */
533 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed)
534 {
535 	int res = bitmap_find_next_zero_area(pf->sriov_irq_bm,
536 					     pf->sriov_irq_size, 0, needed, 0);
537 	/* conversion from number in bitmap to global irq index */
538 	int index = pf->sriov_irq_size - res - needed;
539 
540 	if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector)
541 		return -ENOENT;
542 
543 	bitmap_set(pf->sriov_irq_bm, res, needed);
544 	return index;
545 }
546 
547 /**
548  * ice_sriov_free_irqs - free irqs used by the VF
549  * @pf: pointer to PF structure
550  * @vf: pointer to VF structure
551  */
552 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf)
553 {
554 	/* Move back from first vector index to first index in bitmap */
555 	int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix;
556 
557 	bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix);
558 	vf->first_vector_idx = 0;
559 }
560 
561 /**
562  * ice_init_vf_vsi_res - initialize/setup VF VSI resources
563  * @vf: VF to initialize/setup the VSI for
564  *
565  * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
566  * VF VSI's broadcast filter and is only used during initial VF creation.
567  */
568 static int ice_init_vf_vsi_res(struct ice_vf *vf)
569 {
570 	struct ice_pf *pf = vf->pf;
571 	struct ice_vsi *vsi;
572 	int err;
573 
574 	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
575 	if (vf->first_vector_idx < 0)
576 		return -ENOMEM;
577 
578 	vsi = ice_vf_vsi_setup(vf);
579 	if (!vsi)
580 		return -ENOMEM;
581 
582 	err = ice_vf_init_host_cfg(vf, vsi);
583 	if (err)
584 		goto release_vsi;
585 
586 	return 0;
587 
588 release_vsi:
589 	ice_vf_vsi_release(vf);
590 	return err;
591 }
592 
593 /**
594  * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
595  * @pf: PF the VFs are associated with
596  */
597 static int ice_start_vfs(struct ice_pf *pf)
598 {
599 	struct ice_hw *hw = &pf->hw;
600 	unsigned int bkt, it_cnt;
601 	struct ice_vf *vf;
602 	int retval;
603 
604 	lockdep_assert_held(&pf->vfs.table_lock);
605 
606 	it_cnt = 0;
607 	ice_for_each_vf(pf, bkt, vf) {
608 		vf->vf_ops->clear_reset_trigger(vf);
609 
610 		retval = ice_init_vf_vsi_res(vf);
611 		if (retval) {
612 			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
613 				vf->vf_id, retval);
614 			goto teardown;
615 		}
616 
617 		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
618 		ice_ena_vf_mappings(vf);
619 		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
620 		it_cnt++;
621 	}
622 
623 	ice_flush(hw);
624 	return 0;
625 
626 teardown:
627 	ice_for_each_vf(pf, bkt, vf) {
628 		if (it_cnt == 0)
629 			break;
630 
631 		ice_dis_vf_mappings(vf);
632 		ice_vf_vsi_release(vf);
633 		it_cnt--;
634 	}
635 
636 	return retval;
637 }
638 
639 /**
640  * ice_sriov_free_vf - Free VF memory after all references are dropped
641  * @vf: pointer to VF to free
642  *
643  * Called by ice_put_vf through ice_release_vf once the last reference to a VF
644  * structure has been dropped.
645  */
646 static void ice_sriov_free_vf(struct ice_vf *vf)
647 {
648 	mutex_destroy(&vf->cfg_lock);
649 
650 	kfree_rcu(vf, rcu);
651 }
652 
653 /**
654  * ice_sriov_clear_reset_state - clears VF Reset status register
655  * @vf: the vf to configure
656  */
657 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
658 {
659 	struct ice_hw *hw = &vf->pf->hw;
660 
661 	/* Clear the reset status register so that VF immediately sees that
662 	 * the device is resetting, even if hardware hasn't yet gotten around
663 	 * to clearing VFGEN_RSTAT for us.
664 	 */
665 	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
666 }
667 
668 /**
669  * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
670  * @vf: the vf to configure
671  */
672 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
673 {
674 	struct ice_pf *pf = vf->pf;
675 
676 	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
677 	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
678 }
679 
680 /**
681  * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
682  * @vf: pointer to VF structure
683  * @is_vflr: true if reset occurred due to VFLR
684  *
685  * Trigger and cleanup after a VF reset for a SR-IOV VF.
686  */
687 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
688 {
689 	struct ice_pf *pf = vf->pf;
690 	u32 reg, reg_idx, bit_idx;
691 	unsigned int vf_abs_id, i;
692 	struct device *dev;
693 	struct ice_hw *hw;
694 
695 	dev = ice_pf_to_dev(pf);
696 	hw = &pf->hw;
697 	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
698 
699 	/* In the case of a VFLR, HW has already reset the VF and we just need
700 	 * to clean up. Otherwise we must first trigger the reset using the
701 	 * VFRTRIG register.
702 	 */
703 	if (!is_vflr) {
704 		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
705 		reg |= VPGEN_VFRTRIG_VFSWR_M;
706 		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
707 	}
708 
709 	/* clear the VFLR bit in GLGEN_VFLRSTAT */
710 	reg_idx = (vf_abs_id) / 32;
711 	bit_idx = (vf_abs_id) % 32;
712 	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
713 	ice_flush(hw);
714 
715 	wr32(hw, PF_PCI_CIAA,
716 	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
717 	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
718 		reg = rd32(hw, PF_PCI_CIAD);
719 		/* no transactions pending so stop polling */
720 		if ((reg & VF_TRANS_PENDING_M) == 0)
721 			break;
722 
723 		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
724 		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
725 	}
726 }
727 
728 /**
729  * ice_sriov_poll_reset_status - poll SRIOV VF reset status
730  * @vf: pointer to VF structure
731  *
732  * Returns true when reset is successful, else returns false
733  */
734 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
735 {
736 	struct ice_pf *pf = vf->pf;
737 	unsigned int i;
738 	u32 reg;
739 
740 	for (i = 0; i < 10; i++) {
741 		/* VF reset requires driver to first reset the VF and then
742 		 * poll the status register to make sure that the reset
743 		 * completed successfully.
744 		 */
745 		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
746 		if (reg & VPGEN_VFRSTAT_VFRD_M)
747 			return true;
748 
749 		/* only sleep if the reset is not done */
750 		usleep_range(10, 20);
751 	}
752 	return false;
753 }
754 
755 /**
756  * ice_sriov_clear_reset_trigger - enable VF to access hardware
757  * @vf: VF to enabled hardware access for
758  */
759 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
760 {
761 	struct ice_hw *hw = &vf->pf->hw;
762 	u32 reg;
763 
764 	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
765 	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
766 	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
767 	ice_flush(hw);
768 }
769 
770 /**
771  * ice_sriov_create_vsi - Create a new VSI for a VF
772  * @vf: VF to create the VSI for
773  *
774  * This is called by ice_vf_recreate_vsi to create the new VSI after the old
775  * VSI has been released.
776  */
777 static int ice_sriov_create_vsi(struct ice_vf *vf)
778 {
779 	struct ice_vsi *vsi;
780 
781 	vsi = ice_vf_vsi_setup(vf);
782 	if (!vsi)
783 		return -ENOMEM;
784 
785 	return 0;
786 }
787 
788 /**
789  * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
790  * @vf: VF to perform tasks on
791  */
792 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
793 {
794 	ice_ena_vf_mappings(vf);
795 	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
796 }
797 
798 static const struct ice_vf_ops ice_sriov_vf_ops = {
799 	.reset_type = ICE_VF_RESET,
800 	.free = ice_sriov_free_vf,
801 	.clear_reset_state = ice_sriov_clear_reset_state,
802 	.clear_mbx_register = ice_sriov_clear_mbx_register,
803 	.trigger_reset_register = ice_sriov_trigger_reset_register,
804 	.poll_reset_status = ice_sriov_poll_reset_status,
805 	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
806 	.irq_close = NULL,
807 	.create_vsi = ice_sriov_create_vsi,
808 	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
809 };
810 
811 /**
812  * ice_create_vf_entries - Allocate and insert VF entries
813  * @pf: pointer to the PF structure
814  * @num_vfs: the number of VFs to allocate
815  *
816  * Allocate new VF entries and insert them into the hash table. Set some
817  * basic default fields for initializing the new VFs.
818  *
819  * After this function exits, the hash table will have num_vfs entries
820  * inserted.
821  *
822  * Returns 0 on success or an integer error code on failure.
823  */
824 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
825 {
826 	struct pci_dev *pdev = pf->pdev;
827 	struct ice_vfs *vfs = &pf->vfs;
828 	struct pci_dev *vfdev = NULL;
829 	struct ice_vf *vf;
830 	u16 vf_pdev_id;
831 	int err, pos;
832 
833 	lockdep_assert_held(&vfs->table_lock);
834 
835 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
836 	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
837 
838 	for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
839 		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
840 		if (!vf) {
841 			err = -ENOMEM;
842 			goto err_free_entries;
843 		}
844 		kref_init(&vf->refcnt);
845 
846 		vf->pf = pf;
847 		vf->vf_id = vf_id;
848 
849 		/* set sriov vf ops for VFs created during SRIOV flow */
850 		vf->vf_ops = &ice_sriov_vf_ops;
851 
852 		ice_initialize_vf_entry(vf);
853 
854 		do {
855 			vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
856 		} while (vfdev && vfdev->physfn != pdev);
857 		vf->vfdev = vfdev;
858 		vf->vf_sw_id = pf->first_sw;
859 
860 		pci_dev_get(vfdev);
861 
862 		/* set default number of MSI-X */
863 		vf->num_msix = pf->vfs.num_msix_per;
864 		vf->num_vf_qs = pf->vfs.num_qps_per;
865 		ice_vc_set_default_allowlist(vf);
866 
867 		hash_add_rcu(vfs->table, &vf->entry, vf_id);
868 	}
869 
870 	/* Decrement of refcount done by pci_get_device() inside the loop does
871 	 * not touch the last iteration's vfdev, so it has to be done manually
872 	 * to balance pci_dev_get() added within the loop.
873 	 */
874 	pci_dev_put(vfdev);
875 
876 	return 0;
877 
878 err_free_entries:
879 	ice_free_vf_entries(pf);
880 	return err;
881 }
882 
883 /**
884  * ice_ena_vfs - enable VFs so they are ready to be used
885  * @pf: pointer to the PF structure
886  * @num_vfs: number of VFs to enable
887  */
888 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
889 {
890 	int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
891 	struct device *dev = ice_pf_to_dev(pf);
892 	struct ice_hw *hw = &pf->hw;
893 	int ret;
894 
895 	pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL);
896 	if (!pf->sriov_irq_bm)
897 		return -ENOMEM;
898 	pf->sriov_irq_size = total_vectors;
899 
900 	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
901 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
902 	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
903 	set_bit(ICE_OICR_INTR_DIS, pf->state);
904 	ice_flush(hw);
905 
906 	ret = pci_enable_sriov(pf->pdev, num_vfs);
907 	if (ret)
908 		goto err_unroll_intr;
909 
910 	mutex_lock(&pf->vfs.table_lock);
911 
912 	ret = ice_set_per_vf_res(pf, num_vfs);
913 	if (ret) {
914 		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
915 			num_vfs, ret);
916 		goto err_unroll_sriov;
917 	}
918 
919 	ret = ice_create_vf_entries(pf, num_vfs);
920 	if (ret) {
921 		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
922 			num_vfs);
923 		goto err_unroll_sriov;
924 	}
925 
926 	ret = ice_start_vfs(pf);
927 	if (ret) {
928 		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
929 		ret = -EAGAIN;
930 		goto err_unroll_vf_entries;
931 	}
932 
933 	clear_bit(ICE_VF_DIS, pf->state);
934 
935 	ret = ice_eswitch_configure(pf);
936 	if (ret) {
937 		dev_err(dev, "Failed to configure eswitch, err %d\n", ret);
938 		goto err_unroll_sriov;
939 	}
940 
941 	/* rearm global interrupts */
942 	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
943 		ice_irq_dynamic_ena(hw, NULL, NULL);
944 
945 	mutex_unlock(&pf->vfs.table_lock);
946 
947 	return 0;
948 
949 err_unroll_vf_entries:
950 	ice_free_vf_entries(pf);
951 err_unroll_sriov:
952 	mutex_unlock(&pf->vfs.table_lock);
953 	pci_disable_sriov(pf->pdev);
954 err_unroll_intr:
955 	/* rearm interrupts here */
956 	ice_irq_dynamic_ena(hw, NULL, NULL);
957 	clear_bit(ICE_OICR_INTR_DIS, pf->state);
958 	bitmap_free(pf->sriov_irq_bm);
959 	return ret;
960 }
961 
962 /**
963  * ice_pci_sriov_ena - Enable or change number of VFs
964  * @pf: pointer to the PF structure
965  * @num_vfs: number of VFs to allocate
966  *
967  * Returns 0 on success and negative on failure
968  */
969 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
970 {
971 	struct device *dev = ice_pf_to_dev(pf);
972 	int err;
973 
974 	if (!num_vfs) {
975 		ice_free_vfs(pf);
976 		return 0;
977 	}
978 
979 	if (num_vfs > pf->vfs.num_supported) {
980 		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
981 			num_vfs, pf->vfs.num_supported);
982 		return -EOPNOTSUPP;
983 	}
984 
985 	dev_info(dev, "Enabling %d VFs\n", num_vfs);
986 	err = ice_ena_vfs(pf, num_vfs);
987 	if (err) {
988 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
989 		return err;
990 	}
991 
992 	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
993 	return 0;
994 }
995 
996 /**
997  * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
998  * @pf: PF to enabled SR-IOV on
999  */
1000 static int ice_check_sriov_allowed(struct ice_pf *pf)
1001 {
1002 	struct device *dev = ice_pf_to_dev(pf);
1003 
1004 	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
1005 		dev_err(dev, "This device is not capable of SR-IOV\n");
1006 		return -EOPNOTSUPP;
1007 	}
1008 
1009 	if (ice_is_safe_mode(pf)) {
1010 		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
1011 		return -EOPNOTSUPP;
1012 	}
1013 
1014 	if (!ice_pf_state_is_nominal(pf)) {
1015 		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
1016 		return -EBUSY;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 /**
1023  * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
1024  * @pdev: pointer to pci_dev struct
1025  *
1026  * The function is called via sysfs ops
1027  */
1028 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
1029 {
1030 	struct ice_pf *pf = pci_get_drvdata(pdev);
1031 
1032 	return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf);
1033 }
1034 
1035 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move)
1036 {
1037 	if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf))
1038 		return -ENOMEM;
1039 
1040 	pf->sriov_base_vector -= move;
1041 	return 0;
1042 }
1043 
1044 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
1045 {
1046 	u16 vf_ids[ICE_MAX_SRIOV_VFS];
1047 	struct ice_vf *tmp_vf;
1048 	int to_remap = 0, bkt;
1049 
1050 	/* For better irqs usage try to remap irqs of VFs
1051 	 * that aren't running yet
1052 	 */
1053 	ice_for_each_vf(pf, bkt, tmp_vf) {
1054 		/* skip VF which is changing the number of MSI-X */
1055 		if (restricted_id == tmp_vf->vf_id ||
1056 		    test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
1057 			continue;
1058 
1059 		ice_dis_vf_mappings(tmp_vf);
1060 		ice_sriov_free_irqs(pf, tmp_vf);
1061 
1062 		vf_ids[to_remap] = tmp_vf->vf_id;
1063 		to_remap += 1;
1064 	}
1065 
1066 	for (int i = 0; i < to_remap; i++) {
1067 		tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
1068 		if (!tmp_vf)
1069 			continue;
1070 
1071 		tmp_vf->first_vector_idx =
1072 			ice_sriov_get_irqs(pf, tmp_vf->num_msix);
1073 		/* there is no need to rebuild VSI as we are only changing the
1074 		 * vector indexes not amount of MSI-X or queues
1075 		 */
1076 		ice_ena_vf_mappings(tmp_vf);
1077 		ice_put_vf(tmp_vf);
1078 	}
1079 }
1080 
1081 /**
1082  * ice_sriov_set_msix_vec_count
1083  * @vf_dev: pointer to pci_dev struct of VF device
1084  * @msix_vec_count: new value for MSI-X amount on this VF
1085  *
1086  * Set requested MSI-X, queues and registers for @vf_dev.
1087  *
1088  * First do some sanity checks like if there are any VFs, if the new value
1089  * is correct etc. Then disable old mapping (MSI-X and queues registers), change
1090  * MSI-X and queues, rebuild VSI and enable new mapping.
1091  *
1092  * If it is possible (driver not binded to VF) try to remap also other VFs to
1093  * linearize irqs register usage.
1094  */
1095 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
1096 {
1097 	struct pci_dev *pdev = pci_physfn(vf_dev);
1098 	struct ice_pf *pf = pci_get_drvdata(pdev);
1099 	u16 prev_msix, prev_queues, queues;
1100 	bool needs_rebuild = false;
1101 	struct ice_vf *vf;
1102 	int id;
1103 
1104 	if (!ice_get_num_vfs(pf))
1105 		return -ENOENT;
1106 
1107 	if (!msix_vec_count)
1108 		return 0;
1109 
1110 	queues = msix_vec_count;
1111 	/* add 1 MSI-X for OICR */
1112 	msix_vec_count += 1;
1113 
1114 	if (queues > min(ice_get_avail_txq_count(pf),
1115 			 ice_get_avail_rxq_count(pf)))
1116 		return -EINVAL;
1117 
1118 	if (msix_vec_count < ICE_MIN_INTR_PER_VF)
1119 		return -EINVAL;
1120 
1121 	/* Transition of PCI VF function number to function_id */
1122 	for (id = 0; id < pci_num_vf(pdev); id++) {
1123 		if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id))
1124 			break;
1125 	}
1126 
1127 	if (id == pci_num_vf(pdev))
1128 		return -ENOENT;
1129 
1130 	vf = ice_get_vf_by_id(pf, id);
1131 
1132 	if (!vf)
1133 		return -ENOENT;
1134 
1135 	prev_msix = vf->num_msix;
1136 	prev_queues = vf->num_vf_qs;
1137 
1138 	if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) {
1139 		ice_put_vf(vf);
1140 		return -ENOSPC;
1141 	}
1142 
1143 	ice_dis_vf_mappings(vf);
1144 	ice_sriov_free_irqs(pf, vf);
1145 
1146 	/* Remap all VFs beside the one is now configured */
1147 	ice_sriov_remap_vectors(pf, vf->vf_id);
1148 
1149 	vf->num_msix = msix_vec_count;
1150 	vf->num_vf_qs = queues;
1151 	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1152 	if (vf->first_vector_idx < 0)
1153 		goto unroll;
1154 
1155 	ice_vf_vsi_release(vf);
1156 	if (vf->vf_ops->create_vsi(vf)) {
1157 		/* Try to rebuild with previous values */
1158 		needs_rebuild = true;
1159 		goto unroll;
1160 	}
1161 
1162 	dev_info(ice_pf_to_dev(pf),
1163 		 "Changing VF %d resources to %d vectors and %d queues\n",
1164 		 vf->vf_id, vf->num_msix, vf->num_vf_qs);
1165 
1166 	ice_ena_vf_mappings(vf);
1167 	ice_put_vf(vf);
1168 
1169 	return 0;
1170 
1171 unroll:
1172 	dev_info(ice_pf_to_dev(pf),
1173 		 "Can't set %d vectors on VF %d, falling back to %d\n",
1174 		 vf->num_msix, vf->vf_id, prev_msix);
1175 
1176 	vf->num_msix = prev_msix;
1177 	vf->num_vf_qs = prev_queues;
1178 	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1179 	if (vf->first_vector_idx < 0)
1180 		return -EINVAL;
1181 
1182 	if (needs_rebuild)
1183 		vf->vf_ops->create_vsi(vf);
1184 
1185 	ice_ena_vf_mappings(vf);
1186 	ice_put_vf(vf);
1187 
1188 	return -EINVAL;
1189 }
1190 
1191 /**
1192  * ice_sriov_configure - Enable or change number of VFs via sysfs
1193  * @pdev: pointer to a pci_dev structure
1194  * @num_vfs: number of VFs to allocate or 0 to free VFs
1195  *
1196  * This function is called when the user updates the number of VFs in sysfs. On
1197  * success return whatever num_vfs was set to by the caller. Return negative on
1198  * failure.
1199  */
1200 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1201 {
1202 	struct ice_pf *pf = pci_get_drvdata(pdev);
1203 	struct device *dev = ice_pf_to_dev(pf);
1204 	int err;
1205 
1206 	err = ice_check_sriov_allowed(pf);
1207 	if (err)
1208 		return err;
1209 
1210 	if (!num_vfs) {
1211 		if (!pci_vfs_assigned(pdev)) {
1212 			ice_free_vfs(pf);
1213 			return 0;
1214 		}
1215 
1216 		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1217 		return -EBUSY;
1218 	}
1219 
1220 	err = ice_pci_sriov_ena(pf, num_vfs);
1221 	if (err)
1222 		return err;
1223 
1224 	return num_vfs;
1225 }
1226 
1227 /**
1228  * ice_process_vflr_event - Free VF resources via IRQ calls
1229  * @pf: pointer to the PF structure
1230  *
1231  * called from the VFLR IRQ handler to
1232  * free up VF resources and state variables
1233  */
1234 void ice_process_vflr_event(struct ice_pf *pf)
1235 {
1236 	struct ice_hw *hw = &pf->hw;
1237 	struct ice_vf *vf;
1238 	unsigned int bkt;
1239 	u32 reg;
1240 
1241 	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1242 	    !ice_has_vfs(pf))
1243 		return;
1244 
1245 	mutex_lock(&pf->vfs.table_lock);
1246 	ice_for_each_vf(pf, bkt, vf) {
1247 		u32 reg_idx, bit_idx;
1248 
1249 		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1250 		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1251 		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1252 		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1253 		if (reg & BIT(bit_idx))
1254 			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1255 			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1256 	}
1257 	mutex_unlock(&pf->vfs.table_lock);
1258 }
1259 
1260 /**
1261  * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1262  * @pf: PF used to index all VFs
1263  * @pfq: queue index relative to the PF's function space
1264  *
1265  * If no VF is found who owns the pfq then return NULL, otherwise return a
1266  * pointer to the VF who owns the pfq
1267  *
1268  * If this function returns non-NULL, it acquires a reference count of the VF
1269  * structure. The caller is responsible for calling ice_put_vf() to drop this
1270  * reference.
1271  */
1272 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1273 {
1274 	struct ice_vf *vf;
1275 	unsigned int bkt;
1276 
1277 	rcu_read_lock();
1278 	ice_for_each_vf_rcu(pf, bkt, vf) {
1279 		struct ice_vsi *vsi;
1280 		u16 rxq_idx;
1281 
1282 		vsi = ice_get_vf_vsi(vf);
1283 		if (!vsi)
1284 			continue;
1285 
1286 		ice_for_each_rxq(vsi, rxq_idx)
1287 			if (vsi->rxq_map[rxq_idx] == pfq) {
1288 				struct ice_vf *found;
1289 
1290 				if (kref_get_unless_zero(&vf->refcnt))
1291 					found = vf;
1292 				else
1293 					found = NULL;
1294 				rcu_read_unlock();
1295 				return found;
1296 			}
1297 	}
1298 	rcu_read_unlock();
1299 
1300 	return NULL;
1301 }
1302 
1303 /**
1304  * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1305  * @pf: PF used for conversion
1306  * @globalq: global queue index used to convert to PF space queue index
1307  */
1308 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1309 {
1310 	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1311 }
1312 
1313 /**
1314  * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1315  * @pf: PF that the LAN overflow event happened on
1316  * @event: structure holding the event information for the LAN overflow event
1317  *
1318  * Determine if the LAN overflow event was caused by a VF queue. If it was not
1319  * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1320  * reset on the offending VF.
1321  */
1322 void
1323 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1324 {
1325 	u32 gldcb_rtctq, queue;
1326 	struct ice_vf *vf;
1327 
1328 	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1329 	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1330 
1331 	/* event returns device global Rx queue number */
1332 	queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
1333 		GLDCB_RTCTQ_RXQNUM_S;
1334 
1335 	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1336 	if (!vf)
1337 		return;
1338 
1339 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1340 	ice_put_vf(vf);
1341 }
1342 
1343 /**
1344  * ice_set_vf_spoofchk
1345  * @netdev: network interface device structure
1346  * @vf_id: VF identifier
1347  * @ena: flag to enable or disable feature
1348  *
1349  * Enable or disable VF spoof checking
1350  */
1351 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1352 {
1353 	struct ice_netdev_priv *np = netdev_priv(netdev);
1354 	struct ice_pf *pf = np->vsi->back;
1355 	struct ice_vsi *vf_vsi;
1356 	struct device *dev;
1357 	struct ice_vf *vf;
1358 	int ret;
1359 
1360 	dev = ice_pf_to_dev(pf);
1361 
1362 	vf = ice_get_vf_by_id(pf, vf_id);
1363 	if (!vf)
1364 		return -EINVAL;
1365 
1366 	ret = ice_check_vf_ready_for_cfg(vf);
1367 	if (ret)
1368 		goto out_put_vf;
1369 
1370 	vf_vsi = ice_get_vf_vsi(vf);
1371 	if (!vf_vsi) {
1372 		netdev_err(netdev, "VSI %d for VF %d is null\n",
1373 			   vf->lan_vsi_idx, vf->vf_id);
1374 		ret = -EINVAL;
1375 		goto out_put_vf;
1376 	}
1377 
1378 	if (vf_vsi->type != ICE_VSI_VF) {
1379 		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1380 			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1381 		ret = -ENODEV;
1382 		goto out_put_vf;
1383 	}
1384 
1385 	if (ena == vf->spoofchk) {
1386 		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1387 		ret = 0;
1388 		goto out_put_vf;
1389 	}
1390 
1391 	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1392 	if (ret)
1393 		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1394 			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1395 	else
1396 		vf->spoofchk = ena;
1397 
1398 out_put_vf:
1399 	ice_put_vf(vf);
1400 	return ret;
1401 }
1402 
1403 /**
1404  * ice_get_vf_cfg
1405  * @netdev: network interface device structure
1406  * @vf_id: VF identifier
1407  * @ivi: VF configuration structure
1408  *
1409  * return VF configuration
1410  */
1411 int
1412 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1413 {
1414 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1415 	struct ice_vf *vf;
1416 	int ret;
1417 
1418 	vf = ice_get_vf_by_id(pf, vf_id);
1419 	if (!vf)
1420 		return -EINVAL;
1421 
1422 	ret = ice_check_vf_ready_for_cfg(vf);
1423 	if (ret)
1424 		goto out_put_vf;
1425 
1426 	ivi->vf = vf_id;
1427 	ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1428 
1429 	/* VF configuration for VLAN and applicable QoS */
1430 	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1431 	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1432 	if (ice_vf_is_port_vlan_ena(vf))
1433 		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1434 
1435 	ivi->trusted = vf->trusted;
1436 	ivi->spoofchk = vf->spoofchk;
1437 	if (!vf->link_forced)
1438 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1439 	else if (vf->link_up)
1440 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1441 	else
1442 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1443 	ivi->max_tx_rate = vf->max_tx_rate;
1444 	ivi->min_tx_rate = vf->min_tx_rate;
1445 
1446 out_put_vf:
1447 	ice_put_vf(vf);
1448 	return ret;
1449 }
1450 
1451 /**
1452  * ice_set_vf_mac
1453  * @netdev: network interface device structure
1454  * @vf_id: VF identifier
1455  * @mac: MAC address
1456  *
1457  * program VF MAC address
1458  */
1459 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1460 {
1461 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1462 	struct ice_vf *vf;
1463 	int ret;
1464 
1465 	if (is_multicast_ether_addr(mac)) {
1466 		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1467 		return -EINVAL;
1468 	}
1469 
1470 	vf = ice_get_vf_by_id(pf, vf_id);
1471 	if (!vf)
1472 		return -EINVAL;
1473 
1474 	/* nothing left to do, unicast MAC already set */
1475 	if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1476 	    ether_addr_equal(vf->hw_lan_addr, mac)) {
1477 		ret = 0;
1478 		goto out_put_vf;
1479 	}
1480 
1481 	ret = ice_check_vf_ready_for_cfg(vf);
1482 	if (ret)
1483 		goto out_put_vf;
1484 
1485 	mutex_lock(&vf->cfg_lock);
1486 
1487 	/* VF is notified of its new MAC via the PF's response to the
1488 	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1489 	 */
1490 	ether_addr_copy(vf->dev_lan_addr, mac);
1491 	ether_addr_copy(vf->hw_lan_addr, mac);
1492 	if (is_zero_ether_addr(mac)) {
1493 		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1494 		vf->pf_set_mac = false;
1495 		netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1496 			    vf->vf_id);
1497 	} else {
1498 		/* PF will add MAC rule for the VF */
1499 		vf->pf_set_mac = true;
1500 		netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1501 			    mac, vf_id);
1502 	}
1503 
1504 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1505 	mutex_unlock(&vf->cfg_lock);
1506 
1507 out_put_vf:
1508 	ice_put_vf(vf);
1509 	return ret;
1510 }
1511 
1512 /**
1513  * ice_set_vf_trust
1514  * @netdev: network interface device structure
1515  * @vf_id: VF identifier
1516  * @trusted: Boolean value to enable/disable trusted VF
1517  *
1518  * Enable or disable a given VF as trusted
1519  */
1520 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1521 {
1522 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1523 	struct ice_vf *vf;
1524 	int ret;
1525 
1526 	vf = ice_get_vf_by_id(pf, vf_id);
1527 	if (!vf)
1528 		return -EINVAL;
1529 
1530 	if (ice_is_eswitch_mode_switchdev(pf)) {
1531 		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1532 		return -EOPNOTSUPP;
1533 	}
1534 
1535 	ret = ice_check_vf_ready_for_cfg(vf);
1536 	if (ret)
1537 		goto out_put_vf;
1538 
1539 	/* Check if already trusted */
1540 	if (trusted == vf->trusted) {
1541 		ret = 0;
1542 		goto out_put_vf;
1543 	}
1544 
1545 	mutex_lock(&vf->cfg_lock);
1546 
1547 	vf->trusted = trusted;
1548 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1549 	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1550 		 vf_id, trusted ? "" : "un");
1551 
1552 	mutex_unlock(&vf->cfg_lock);
1553 
1554 out_put_vf:
1555 	ice_put_vf(vf);
1556 	return ret;
1557 }
1558 
1559 /**
1560  * ice_set_vf_link_state
1561  * @netdev: network interface device structure
1562  * @vf_id: VF identifier
1563  * @link_state: required link state
1564  *
1565  * Set VF's link state, irrespective of physical link state status
1566  */
1567 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1568 {
1569 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1570 	struct ice_vf *vf;
1571 	int ret;
1572 
1573 	vf = ice_get_vf_by_id(pf, vf_id);
1574 	if (!vf)
1575 		return -EINVAL;
1576 
1577 	ret = ice_check_vf_ready_for_cfg(vf);
1578 	if (ret)
1579 		goto out_put_vf;
1580 
1581 	switch (link_state) {
1582 	case IFLA_VF_LINK_STATE_AUTO:
1583 		vf->link_forced = false;
1584 		break;
1585 	case IFLA_VF_LINK_STATE_ENABLE:
1586 		vf->link_forced = true;
1587 		vf->link_up = true;
1588 		break;
1589 	case IFLA_VF_LINK_STATE_DISABLE:
1590 		vf->link_forced = true;
1591 		vf->link_up = false;
1592 		break;
1593 	default:
1594 		ret = -EINVAL;
1595 		goto out_put_vf;
1596 	}
1597 
1598 	ice_vc_notify_vf_link_state(vf);
1599 
1600 out_put_vf:
1601 	ice_put_vf(vf);
1602 	return ret;
1603 }
1604 
1605 /**
1606  * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1607  * @pf: PF associated with VFs
1608  */
1609 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1610 {
1611 	struct ice_vf *vf;
1612 	unsigned int bkt;
1613 	int rate = 0;
1614 
1615 	rcu_read_lock();
1616 	ice_for_each_vf_rcu(pf, bkt, vf)
1617 		rate += vf->min_tx_rate;
1618 	rcu_read_unlock();
1619 
1620 	return rate;
1621 }
1622 
1623 /**
1624  * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1625  * @vf: VF trying to configure min_tx_rate
1626  * @min_tx_rate: min Tx rate in Mbps
1627  *
1628  * Check if the min_tx_rate being passed in will cause oversubscription of total
1629  * min_tx_rate based on the current link speed and all other VFs configured
1630  * min_tx_rate
1631  *
1632  * Return true if the passed min_tx_rate would cause oversubscription, else
1633  * return false
1634  */
1635 static bool
1636 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1637 {
1638 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1639 	int all_vfs_min_tx_rate;
1640 	int link_speed_mbps;
1641 
1642 	if (WARN_ON(!vsi))
1643 		return false;
1644 
1645 	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1646 	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1647 
1648 	/* this VF's previous rate is being overwritten */
1649 	all_vfs_min_tx_rate -= vf->min_tx_rate;
1650 
1651 	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1652 		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1653 			min_tx_rate, vf->vf_id,
1654 			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1655 			link_speed_mbps);
1656 		return true;
1657 	}
1658 
1659 	return false;
1660 }
1661 
1662 /**
1663  * ice_set_vf_bw - set min/max VF bandwidth
1664  * @netdev: network interface device structure
1665  * @vf_id: VF identifier
1666  * @min_tx_rate: Minimum Tx rate in Mbps
1667  * @max_tx_rate: Maximum Tx rate in Mbps
1668  */
1669 int
1670 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1671 	      int max_tx_rate)
1672 {
1673 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1674 	struct ice_vsi *vsi;
1675 	struct device *dev;
1676 	struct ice_vf *vf;
1677 	int ret;
1678 
1679 	dev = ice_pf_to_dev(pf);
1680 
1681 	vf = ice_get_vf_by_id(pf, vf_id);
1682 	if (!vf)
1683 		return -EINVAL;
1684 
1685 	ret = ice_check_vf_ready_for_cfg(vf);
1686 	if (ret)
1687 		goto out_put_vf;
1688 
1689 	vsi = ice_get_vf_vsi(vf);
1690 	if (!vsi) {
1691 		ret = -EINVAL;
1692 		goto out_put_vf;
1693 	}
1694 
1695 	if (min_tx_rate && ice_is_dcb_active(pf)) {
1696 		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1697 		ret = -EOPNOTSUPP;
1698 		goto out_put_vf;
1699 	}
1700 
1701 	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1702 		ret = -EINVAL;
1703 		goto out_put_vf;
1704 	}
1705 
1706 	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1707 		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1708 		if (ret) {
1709 			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1710 				vf->vf_id);
1711 			goto out_put_vf;
1712 		}
1713 
1714 		vf->min_tx_rate = min_tx_rate;
1715 	}
1716 
1717 	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1718 		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1719 		if (ret) {
1720 			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1721 				vf->vf_id);
1722 			goto out_put_vf;
1723 		}
1724 
1725 		vf->max_tx_rate = max_tx_rate;
1726 	}
1727 
1728 out_put_vf:
1729 	ice_put_vf(vf);
1730 	return ret;
1731 }
1732 
1733 /**
1734  * ice_get_vf_stats - populate some stats for the VF
1735  * @netdev: the netdev of the PF
1736  * @vf_id: the host OS identifier (0-255)
1737  * @vf_stats: pointer to the OS memory to be initialized
1738  */
1739 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1740 		     struct ifla_vf_stats *vf_stats)
1741 {
1742 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1743 	struct ice_eth_stats *stats;
1744 	struct ice_vsi *vsi;
1745 	struct ice_vf *vf;
1746 	int ret;
1747 
1748 	vf = ice_get_vf_by_id(pf, vf_id);
1749 	if (!vf)
1750 		return -EINVAL;
1751 
1752 	ret = ice_check_vf_ready_for_cfg(vf);
1753 	if (ret)
1754 		goto out_put_vf;
1755 
1756 	vsi = ice_get_vf_vsi(vf);
1757 	if (!vsi) {
1758 		ret = -EINVAL;
1759 		goto out_put_vf;
1760 	}
1761 
1762 	ice_update_eth_stats(vsi);
1763 	stats = &vsi->eth_stats;
1764 
1765 	memset(vf_stats, 0, sizeof(*vf_stats));
1766 
1767 	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1768 		stats->rx_multicast;
1769 	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1770 		stats->tx_multicast;
1771 	vf_stats->rx_bytes   = stats->rx_bytes;
1772 	vf_stats->tx_bytes   = stats->tx_bytes;
1773 	vf_stats->broadcast  = stats->rx_broadcast;
1774 	vf_stats->multicast  = stats->rx_multicast;
1775 	vf_stats->rx_dropped = stats->rx_discards;
1776 	vf_stats->tx_dropped = stats->tx_discards;
1777 
1778 out_put_vf:
1779 	ice_put_vf(vf);
1780 	return ret;
1781 }
1782 
1783 /**
1784  * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1785  * @hw: hardware structure used to check the VLAN mode
1786  * @vlan_proto: VLAN TPID being checked
1787  *
1788  * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1789  * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1790  * Mode (SVM), then only ETH_P_8021Q is supported.
1791  */
1792 static bool
1793 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1794 {
1795 	bool is_supported = false;
1796 
1797 	switch (vlan_proto) {
1798 	case ETH_P_8021Q:
1799 		is_supported = true;
1800 		break;
1801 	case ETH_P_8021AD:
1802 		if (ice_is_dvm_ena(hw))
1803 			is_supported = true;
1804 		break;
1805 	}
1806 
1807 	return is_supported;
1808 }
1809 
1810 /**
1811  * ice_set_vf_port_vlan
1812  * @netdev: network interface device structure
1813  * @vf_id: VF identifier
1814  * @vlan_id: VLAN ID being set
1815  * @qos: priority setting
1816  * @vlan_proto: VLAN protocol
1817  *
1818  * program VF Port VLAN ID and/or QoS
1819  */
1820 int
1821 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1822 		     __be16 vlan_proto)
1823 {
1824 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1825 	u16 local_vlan_proto = ntohs(vlan_proto);
1826 	struct device *dev;
1827 	struct ice_vf *vf;
1828 	int ret;
1829 
1830 	dev = ice_pf_to_dev(pf);
1831 
1832 	if (vlan_id >= VLAN_N_VID || qos > 7) {
1833 		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1834 			vf_id, vlan_id, qos);
1835 		return -EINVAL;
1836 	}
1837 
1838 	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1839 		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1840 			local_vlan_proto);
1841 		return -EPROTONOSUPPORT;
1842 	}
1843 
1844 	vf = ice_get_vf_by_id(pf, vf_id);
1845 	if (!vf)
1846 		return -EINVAL;
1847 
1848 	ret = ice_check_vf_ready_for_cfg(vf);
1849 	if (ret)
1850 		goto out_put_vf;
1851 
1852 	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1853 	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1854 	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1855 		/* duplicate request, so just return success */
1856 		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1857 			vlan_id, qos, local_vlan_proto);
1858 		ret = 0;
1859 		goto out_put_vf;
1860 	}
1861 
1862 	mutex_lock(&vf->cfg_lock);
1863 
1864 	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1865 	if (ice_vf_is_port_vlan_ena(vf))
1866 		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1867 			 vlan_id, qos, local_vlan_proto, vf_id);
1868 	else
1869 		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1870 
1871 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1872 	mutex_unlock(&vf->cfg_lock);
1873 
1874 out_put_vf:
1875 	ice_put_vf(vf);
1876 	return ret;
1877 }
1878 
1879 /**
1880  * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1881  * @vf: pointer to the VF structure
1882  */
1883 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1884 {
1885 	struct ice_pf *pf = vf->pf;
1886 	struct device *dev;
1887 
1888 	dev = ice_pf_to_dev(pf);
1889 
1890 	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1891 		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1892 		 vf->dev_lan_addr,
1893 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1894 			  ? "on" : "off");
1895 }
1896 
1897 /**
1898  * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1899  * @pf: pointer to the PF structure
1900  *
1901  * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1902  */
1903 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1904 {
1905 	struct device *dev = ice_pf_to_dev(pf);
1906 	struct ice_hw *hw = &pf->hw;
1907 	struct ice_vf *vf;
1908 	unsigned int bkt;
1909 
1910 	/* check that there are pending MDD events to print */
1911 	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1912 		return;
1913 
1914 	/* VF MDD event logs are rate limited to one second intervals */
1915 	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1916 		return;
1917 
1918 	pf->vfs.last_printed_mdd_jiffies = jiffies;
1919 
1920 	mutex_lock(&pf->vfs.table_lock);
1921 	ice_for_each_vf(pf, bkt, vf) {
1922 		/* only print Rx MDD event message if there are new events */
1923 		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1924 			vf->mdd_rx_events.last_printed =
1925 							vf->mdd_rx_events.count;
1926 			ice_print_vf_rx_mdd_event(vf);
1927 		}
1928 
1929 		/* only print Tx MDD event message if there are new events */
1930 		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1931 			vf->mdd_tx_events.last_printed =
1932 							vf->mdd_tx_events.count;
1933 
1934 			dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1935 				 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1936 				 vf->dev_lan_addr);
1937 		}
1938 	}
1939 	mutex_unlock(&pf->vfs.table_lock);
1940 }
1941 
1942 /**
1943  * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1944  * @pf: pointer to the PF structure
1945  *
1946  * Called when recovering from a PF FLR to restore interrupt capability to
1947  * the VFs.
1948  */
1949 void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1950 {
1951 	struct ice_vf *vf;
1952 	u32 bkt;
1953 
1954 	ice_for_each_vf(pf, bkt, vf)
1955 		pci_restore_msi_state(vf->vfdev);
1956 }
1957