xref: /linux/drivers/net/ethernet/intel/ice/ice_sriov.c (revision af2d6148d2a159e1a0862bce5a2c88c1618a2b27)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16 
17 /**
18  * ice_free_vf_entries - Free all VF entries from the hash table
19  * @pf: pointer to the PF structure
20  *
21  * Iterate over the VF hash table, removing and releasing all VF entries.
22  * Called during VF teardown or as cleanup during failed VF initialization.
23  */
24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 	struct ice_vfs *vfs = &pf->vfs;
27 	struct hlist_node *tmp;
28 	struct ice_vf *vf;
29 	unsigned int bkt;
30 
31 	/* Remove all VFs from the hash table and release their main
32 	 * reference. Once all references to the VF are dropped, ice_put_vf()
33 	 * will call ice_release_vf which will remove the VF memory.
34 	 */
35 	lockdep_assert_held(&vfs->table_lock);
36 
37 	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 		hash_del_rcu(&vf->entry);
39 		ice_deinitialize_vf_entry(vf);
40 		ice_put_vf(vf);
41 	}
42 }
43 
44 /**
45  * ice_free_vf_res - Free a VF's resources
46  * @vf: pointer to the VF info
47  */
48 static void ice_free_vf_res(struct ice_vf *vf)
49 {
50 	struct ice_pf *pf = vf->pf;
51 	int i, last_vector_idx;
52 
53 	/* First, disable VF's configuration API to prevent OS from
54 	 * accessing the VF's VSI after it's freed or invalidated.
55 	 */
56 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
57 	ice_vf_fdir_exit(vf);
58 	/* free VF control VSI */
59 	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
60 		ice_vf_ctrl_vsi_release(vf);
61 
62 	/* free VSI and disconnect it from the parent uplink */
63 	if (vf->lan_vsi_idx != ICE_NO_VSI) {
64 		ice_vf_vsi_release(vf);
65 		vf->num_mac = 0;
66 		vf->num_mac_lldp = 0;
67 	}
68 
69 	last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
70 
71 	/* clear VF MDD event information */
72 	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
73 	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
74 
75 	/* Disable interrupts so that VF starts in a known state */
76 	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
77 		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
78 		ice_flush(&pf->hw);
79 	}
80 	/* reset some of the state variables keeping track of the resources */
81 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
82 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
83 }
84 
85 /**
86  * ice_dis_vf_mappings
87  * @vf: pointer to the VF structure
88  */
89 static void ice_dis_vf_mappings(struct ice_vf *vf)
90 {
91 	struct ice_pf *pf = vf->pf;
92 	struct ice_vsi *vsi;
93 	struct device *dev;
94 	int first, last, v;
95 	struct ice_hw *hw;
96 
97 	hw = &pf->hw;
98 	vsi = ice_get_vf_vsi(vf);
99 	if (WARN_ON(!vsi))
100 		return;
101 
102 	dev = ice_pf_to_dev(pf);
103 	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
104 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
105 
106 	first = vf->first_vector_idx;
107 	last = first + vf->num_msix - 1;
108 	for (v = first; v <= last; v++) {
109 		u32 reg;
110 
111 		reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) |
112 		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
113 		wr32(hw, GLINT_VECT2FUNC(v), reg);
114 	}
115 
116 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
117 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
118 	else
119 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
120 
121 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
122 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
123 	else
124 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
125 }
126 
127 /**
128  * ice_free_vfs - Free all VFs
129  * @pf: pointer to the PF structure
130  */
131 void ice_free_vfs(struct ice_pf *pf)
132 {
133 	struct device *dev = ice_pf_to_dev(pf);
134 	struct ice_vfs *vfs = &pf->vfs;
135 	struct ice_hw *hw = &pf->hw;
136 	struct ice_vf *vf;
137 	unsigned int bkt;
138 
139 	if (!ice_has_vfs(pf))
140 		return;
141 
142 	while (test_and_set_bit(ICE_VF_DIS, pf->state))
143 		usleep_range(1000, 2000);
144 
145 	/* Disable IOV before freeing resources. This lets any VF drivers
146 	 * running in the host get themselves cleaned up before we yank
147 	 * the carpet out from underneath their feet.
148 	 */
149 	if (!pci_vfs_assigned(pf->pdev))
150 		pci_disable_sriov(pf->pdev);
151 	else
152 		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
153 
154 	mutex_lock(&vfs->table_lock);
155 
156 	ice_for_each_vf(pf, bkt, vf) {
157 		mutex_lock(&vf->cfg_lock);
158 
159 		ice_eswitch_detach_vf(pf, vf);
160 		ice_dis_vf_qs(vf);
161 		ice_virt_free_irqs(pf, vf->first_vector_idx, vf->num_msix);
162 
163 		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
164 			/* disable VF qp mappings and set VF disable state */
165 			ice_dis_vf_mappings(vf);
166 			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
167 			ice_free_vf_res(vf);
168 		}
169 
170 		if (!pci_vfs_assigned(pf->pdev)) {
171 			u32 reg_idx, bit_idx;
172 
173 			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
174 			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
175 			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
176 		}
177 
178 		mutex_unlock(&vf->cfg_lock);
179 	}
180 
181 	vfs->num_qps_per = 0;
182 	ice_free_vf_entries(pf);
183 
184 	mutex_unlock(&vfs->table_lock);
185 
186 	clear_bit(ICE_VF_DIS, pf->state);
187 	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
188 }
189 
190 /**
191  * ice_vf_vsi_setup - Set up a VF VSI
192  * @vf: VF to setup VSI for
193  *
194  * Returns pointer to the successfully allocated VSI struct on success,
195  * otherwise returns NULL on failure.
196  */
197 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
198 {
199 	struct ice_vsi_cfg_params params = {};
200 	struct ice_pf *pf = vf->pf;
201 	struct ice_vsi *vsi;
202 
203 	params.type = ICE_VSI_VF;
204 	params.port_info = ice_vf_get_port_info(vf);
205 	params.vf = vf;
206 	params.flags = ICE_VSI_FLAG_INIT;
207 
208 	vsi = ice_vsi_setup(pf, &params);
209 
210 	if (!vsi) {
211 		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
212 		ice_vf_invalidate_vsi(vf);
213 		return NULL;
214 	}
215 
216 	vf->lan_vsi_idx = vsi->idx;
217 
218 	return vsi;
219 }
220 
221 
222 /**
223  * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
224  * @vf: VF to enable MSIX mappings for
225  *
226  * Some of the registers need to be indexed/configured using hardware global
227  * device values and other registers need 0-based values, which represent PF
228  * based values.
229  */
230 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
231 {
232 	int device_based_first_msix, device_based_last_msix;
233 	int pf_based_first_msix, pf_based_last_msix, v;
234 	struct ice_pf *pf = vf->pf;
235 	int device_based_vf_id;
236 	struct ice_hw *hw;
237 	u32 reg;
238 
239 	hw = &pf->hw;
240 	pf_based_first_msix = vf->first_vector_idx;
241 	pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
242 
243 	device_based_first_msix = pf_based_first_msix +
244 		pf->hw.func_caps.common_cap.msix_vector_first_id;
245 	device_based_last_msix =
246 		(device_based_first_msix + vf->num_msix) - 1;
247 	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
248 
249 	reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) |
250 	      FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) |
251 	      VPINT_ALLOC_VALID_M;
252 	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
253 
254 	reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) |
255 	      FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) |
256 	      VPINT_ALLOC_PCI_VALID_M;
257 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
258 
259 	/* map the interrupts to its functions */
260 	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
261 		reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) |
262 		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
263 		wr32(hw, GLINT_VECT2FUNC(v), reg);
264 	}
265 
266 	/* Map mailbox interrupt to VF MSI-X vector 0 */
267 	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
268 }
269 
270 /**
271  * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
272  * @vf: VF to enable the mappings for
273  * @max_txq: max Tx queues allowed on the VF's VSI
274  * @max_rxq: max Rx queues allowed on the VF's VSI
275  */
276 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
277 {
278 	struct device *dev = ice_pf_to_dev(vf->pf);
279 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
280 	struct ice_hw *hw = &vf->pf->hw;
281 	u32 reg;
282 
283 	if (WARN_ON(!vsi))
284 		return;
285 
286 	/* set regardless of mapping mode */
287 	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
288 
289 	/* VF Tx queues allocation */
290 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
291 		/* set the VF PF Tx queue range
292 		 * VFNUMQ value should be set to (number of queues - 1). A value
293 		 * of 0 means 1 queue and a value of 255 means 256 queues
294 		 */
295 		reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) |
296 		      FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1);
297 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
298 	} else {
299 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
300 	}
301 
302 	/* set regardless of mapping mode */
303 	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
304 
305 	/* VF Rx queues allocation */
306 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
307 		/* set the VF PF Rx queue range
308 		 * VFNUMQ value should be set to (number of queues - 1). A value
309 		 * of 0 means 1 queue and a value of 255 means 256 queues
310 		 */
311 		reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) |
312 		      FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1);
313 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
314 	} else {
315 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
316 	}
317 }
318 
319 /**
320  * ice_ena_vf_mappings - enable VF MSIX and queue mapping
321  * @vf: pointer to the VF structure
322  */
323 static void ice_ena_vf_mappings(struct ice_vf *vf)
324 {
325 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
326 
327 	if (WARN_ON(!vsi))
328 		return;
329 
330 	ice_ena_vf_msix_mappings(vf);
331 	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
332 }
333 
334 /**
335  * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
336  * @vf: VF to calculate the register index for
337  * @q_vector: a q_vector associated to the VF
338  */
339 void ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
340 {
341 	if (!vf || !q_vector)
342 		return;
343 
344 	/* always add one to account for the OICR being the first MSIX */
345 	q_vector->vf_reg_idx = q_vector->v_idx + ICE_NONQ_VECS_VF;
346 	q_vector->reg_idx = vf->first_vector_idx + q_vector->vf_reg_idx;
347 }
348 
349 /**
350  * ice_set_per_vf_res - check if vectors and queues are available
351  * @pf: pointer to the PF structure
352  * @num_vfs: the number of SR-IOV VFs being configured
353  *
354  * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
355  * get more vectors and can enable more queues per VF. Note that this does not
356  * grab any vectors from the SW pool already allocated. Also note, that all
357  * vector counts include one for each VF's miscellaneous interrupt vector
358  * (i.e. OICR).
359  *
360  * Minimum VFs - 2 vectors, 1 queue pair
361  * Small VFs - 5 vectors, 4 queue pairs
362  * Medium VFs - 17 vectors, 16 queue pairs
363  *
364  * Second, determine number of queue pairs per VF by starting with a pre-defined
365  * maximum each VF supports. If this is not possible, then we adjust based on
366  * queue pairs available on the device.
367  *
368  * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
369  * by each VF during VF initialization and reset.
370  */
371 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
372 {
373 	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
374 	int msix_avail_per_vf, msix_avail_for_sriov;
375 	struct device *dev = ice_pf_to_dev(pf);
376 
377 	lockdep_assert_held(&pf->vfs.table_lock);
378 
379 	if (!num_vfs)
380 		return -EINVAL;
381 
382 	/* determine MSI-X resources per VF */
383 	msix_avail_for_sriov = pf->virt_irq_tracker.num_entries;
384 	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
385 	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
386 		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
387 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
388 		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
389 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
390 		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
391 	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
392 		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
393 	} else {
394 		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
395 			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
396 			num_vfs);
397 		return -ENOSPC;
398 	}
399 
400 	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
401 			ICE_MAX_RSS_QS_PER_VF);
402 	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
403 	if (!avail_qs)
404 		num_txq = 0;
405 	else if (num_txq > avail_qs)
406 		num_txq = rounddown_pow_of_two(avail_qs);
407 
408 	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
409 			ICE_MAX_RSS_QS_PER_VF);
410 	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
411 	if (!avail_qs)
412 		num_rxq = 0;
413 	else if (num_rxq > avail_qs)
414 		num_rxq = rounddown_pow_of_two(avail_qs);
415 
416 	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
417 		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
418 			ICE_MIN_QS_PER_VF, num_vfs);
419 		return -ENOSPC;
420 	}
421 
422 	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
423 	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
424 	pf->vfs.num_msix_per = num_msix_per_vf;
425 	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
426 		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
427 
428 	return 0;
429 }
430 
431 /**
432  * ice_init_vf_vsi_res - initialize/setup VF VSI resources
433  * @vf: VF to initialize/setup the VSI for
434  *
435  * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
436  * VF VSI's broadcast filter and is only used during initial VF creation.
437  */
438 static int ice_init_vf_vsi_res(struct ice_vf *vf)
439 {
440 	struct ice_pf *pf = vf->pf;
441 	struct ice_vsi *vsi;
442 	int err;
443 
444 	vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix);
445 	if (vf->first_vector_idx < 0)
446 		return -ENOMEM;
447 
448 	vsi = ice_vf_vsi_setup(vf);
449 	if (!vsi)
450 		return -ENOMEM;
451 
452 	err = ice_vf_init_host_cfg(vf, vsi);
453 	if (err)
454 		goto release_vsi;
455 
456 	return 0;
457 
458 release_vsi:
459 	ice_vf_vsi_release(vf);
460 	return err;
461 }
462 
463 /**
464  * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
465  * @pf: PF the VFs are associated with
466  */
467 static int ice_start_vfs(struct ice_pf *pf)
468 {
469 	struct ice_hw *hw = &pf->hw;
470 	unsigned int bkt, it_cnt;
471 	struct ice_vf *vf;
472 	int retval;
473 
474 	lockdep_assert_held(&pf->vfs.table_lock);
475 
476 	it_cnt = 0;
477 	ice_for_each_vf(pf, bkt, vf) {
478 		vf->vf_ops->clear_reset_trigger(vf);
479 
480 		retval = ice_init_vf_vsi_res(vf);
481 		if (retval) {
482 			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
483 				vf->vf_id, retval);
484 			goto teardown;
485 		}
486 
487 		retval = ice_eswitch_attach_vf(pf, vf);
488 		if (retval) {
489 			dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d",
490 				vf->vf_id, retval);
491 			ice_vf_vsi_release(vf);
492 			goto teardown;
493 		}
494 
495 		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
496 		ice_ena_vf_mappings(vf);
497 		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
498 		it_cnt++;
499 	}
500 
501 	ice_flush(hw);
502 	return 0;
503 
504 teardown:
505 	ice_for_each_vf(pf, bkt, vf) {
506 		if (it_cnt == 0)
507 			break;
508 
509 		ice_dis_vf_mappings(vf);
510 		ice_vf_vsi_release(vf);
511 		it_cnt--;
512 	}
513 
514 	return retval;
515 }
516 
517 /**
518  * ice_sriov_free_vf - Free VF memory after all references are dropped
519  * @vf: pointer to VF to free
520  *
521  * Called by ice_put_vf through ice_release_vf once the last reference to a VF
522  * structure has been dropped.
523  */
524 static void ice_sriov_free_vf(struct ice_vf *vf)
525 {
526 	mutex_destroy(&vf->cfg_lock);
527 
528 	kfree_rcu(vf, rcu);
529 }
530 
531 /**
532  * ice_sriov_clear_reset_state - clears VF Reset status register
533  * @vf: the vf to configure
534  */
535 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
536 {
537 	struct ice_hw *hw = &vf->pf->hw;
538 
539 	/* Clear the reset status register so that VF immediately sees that
540 	 * the device is resetting, even if hardware hasn't yet gotten around
541 	 * to clearing VFGEN_RSTAT for us.
542 	 */
543 	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
544 }
545 
546 /**
547  * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
548  * @vf: the vf to configure
549  */
550 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
551 {
552 	struct ice_pf *pf = vf->pf;
553 
554 	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
555 	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
556 }
557 
558 /**
559  * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
560  * @vf: pointer to VF structure
561  * @is_vflr: true if reset occurred due to VFLR
562  *
563  * Trigger and cleanup after a VF reset for a SR-IOV VF.
564  */
565 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
566 {
567 	struct ice_pf *pf = vf->pf;
568 	u32 reg, reg_idx, bit_idx;
569 	unsigned int vf_abs_id, i;
570 	struct device *dev;
571 	struct ice_hw *hw;
572 
573 	dev = ice_pf_to_dev(pf);
574 	hw = &pf->hw;
575 	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
576 
577 	/* In the case of a VFLR, HW has already reset the VF and we just need
578 	 * to clean up. Otherwise we must first trigger the reset using the
579 	 * VFRTRIG register.
580 	 */
581 	if (!is_vflr) {
582 		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
583 		reg |= VPGEN_VFRTRIG_VFSWR_M;
584 		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
585 	}
586 
587 	/* clear the VFLR bit in GLGEN_VFLRSTAT */
588 	reg_idx = (vf_abs_id) / 32;
589 	bit_idx = (vf_abs_id) % 32;
590 	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
591 	ice_flush(hw);
592 
593 	wr32(hw, PF_PCI_CIAA,
594 	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
595 	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
596 		reg = rd32(hw, PF_PCI_CIAD);
597 		/* no transactions pending so stop polling */
598 		if ((reg & VF_TRANS_PENDING_M) == 0)
599 			break;
600 
601 		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
602 		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
603 	}
604 }
605 
606 /**
607  * ice_sriov_poll_reset_status - poll SRIOV VF reset status
608  * @vf: pointer to VF structure
609  *
610  * Returns true when reset is successful, else returns false
611  */
612 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
613 {
614 	struct ice_pf *pf = vf->pf;
615 	unsigned int i;
616 	u32 reg;
617 
618 	for (i = 0; i < 10; i++) {
619 		/* VF reset requires driver to first reset the VF and then
620 		 * poll the status register to make sure that the reset
621 		 * completed successfully.
622 		 */
623 		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
624 		if (reg & VPGEN_VFRSTAT_VFRD_M)
625 			return true;
626 
627 		/* only sleep if the reset is not done */
628 		usleep_range(10, 20);
629 	}
630 	return false;
631 }
632 
633 /**
634  * ice_sriov_clear_reset_trigger - enable VF to access hardware
635  * @vf: VF to enabled hardware access for
636  */
637 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
638 {
639 	struct ice_hw *hw = &vf->pf->hw;
640 	u32 reg;
641 
642 	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
643 	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
644 	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
645 	ice_flush(hw);
646 }
647 
648 /**
649  * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
650  * @vf: VF to perform tasks on
651  */
652 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
653 {
654 	ice_ena_vf_mappings(vf);
655 	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
656 }
657 
658 static const struct ice_vf_ops ice_sriov_vf_ops = {
659 	.reset_type = ICE_VF_RESET,
660 	.free = ice_sriov_free_vf,
661 	.clear_reset_state = ice_sriov_clear_reset_state,
662 	.clear_mbx_register = ice_sriov_clear_mbx_register,
663 	.trigger_reset_register = ice_sriov_trigger_reset_register,
664 	.poll_reset_status = ice_sriov_poll_reset_status,
665 	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
666 	.irq_close = NULL,
667 	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
668 };
669 
670 /**
671  * ice_create_vf_entries - Allocate and insert VF entries
672  * @pf: pointer to the PF structure
673  * @num_vfs: the number of VFs to allocate
674  *
675  * Allocate new VF entries and insert them into the hash table. Set some
676  * basic default fields for initializing the new VFs.
677  *
678  * After this function exits, the hash table will have num_vfs entries
679  * inserted.
680  *
681  * Returns 0 on success or an integer error code on failure.
682  */
683 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
684 {
685 	struct pci_dev *pdev = pf->pdev;
686 	struct ice_vfs *vfs = &pf->vfs;
687 	struct pci_dev *vfdev = NULL;
688 	struct ice_vf *vf;
689 	u16 vf_pdev_id;
690 	int err, pos;
691 
692 	lockdep_assert_held(&vfs->table_lock);
693 
694 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
695 	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
696 
697 	for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
698 		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
699 		if (!vf) {
700 			err = -ENOMEM;
701 			goto err_free_entries;
702 		}
703 		kref_init(&vf->refcnt);
704 
705 		vf->pf = pf;
706 		vf->vf_id = vf_id;
707 
708 		/* set sriov vf ops for VFs created during SRIOV flow */
709 		vf->vf_ops = &ice_sriov_vf_ops;
710 
711 		ice_initialize_vf_entry(vf);
712 
713 		do {
714 			vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
715 		} while (vfdev && vfdev->physfn != pdev);
716 		vf->vfdev = vfdev;
717 		vf->vf_sw_id = pf->first_sw;
718 
719 		pci_dev_get(vfdev);
720 
721 		hash_add_rcu(vfs->table, &vf->entry, vf_id);
722 	}
723 
724 	/* Decrement of refcount done by pci_get_device() inside the loop does
725 	 * not touch the last iteration's vfdev, so it has to be done manually
726 	 * to balance pci_dev_get() added within the loop.
727 	 */
728 	pci_dev_put(vfdev);
729 
730 	return 0;
731 
732 err_free_entries:
733 	ice_free_vf_entries(pf);
734 	return err;
735 }
736 
737 /**
738  * ice_ena_vfs - enable VFs so they are ready to be used
739  * @pf: pointer to the PF structure
740  * @num_vfs: number of VFs to enable
741  */
742 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
743 {
744 	struct device *dev = ice_pf_to_dev(pf);
745 	struct ice_hw *hw = &pf->hw;
746 	int ret;
747 
748 	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
749 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
750 	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
751 	set_bit(ICE_OICR_INTR_DIS, pf->state);
752 	ice_flush(hw);
753 
754 	ret = pci_enable_sriov(pf->pdev, num_vfs);
755 	if (ret)
756 		goto err_unroll_intr;
757 
758 	mutex_lock(&pf->vfs.table_lock);
759 
760 	ret = ice_set_per_vf_res(pf, num_vfs);
761 	if (ret) {
762 		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
763 			num_vfs, ret);
764 		goto err_unroll_sriov;
765 	}
766 
767 	ret = ice_create_vf_entries(pf, num_vfs);
768 	if (ret) {
769 		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
770 			num_vfs);
771 		goto err_unroll_sriov;
772 	}
773 
774 	ret = ice_start_vfs(pf);
775 	if (ret) {
776 		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
777 		ret = -EAGAIN;
778 		goto err_unroll_vf_entries;
779 	}
780 
781 	clear_bit(ICE_VF_DIS, pf->state);
782 
783 	/* rearm global interrupts */
784 	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
785 		ice_irq_dynamic_ena(hw, NULL, NULL);
786 
787 	mutex_unlock(&pf->vfs.table_lock);
788 
789 	return 0;
790 
791 err_unroll_vf_entries:
792 	ice_free_vf_entries(pf);
793 err_unroll_sriov:
794 	mutex_unlock(&pf->vfs.table_lock);
795 	pci_disable_sriov(pf->pdev);
796 err_unroll_intr:
797 	/* rearm interrupts here */
798 	ice_irq_dynamic_ena(hw, NULL, NULL);
799 	clear_bit(ICE_OICR_INTR_DIS, pf->state);
800 	return ret;
801 }
802 
803 /**
804  * ice_pci_sriov_ena - Enable or change number of VFs
805  * @pf: pointer to the PF structure
806  * @num_vfs: number of VFs to allocate
807  *
808  * Returns 0 on success and negative on failure
809  */
810 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
811 {
812 	struct device *dev = ice_pf_to_dev(pf);
813 	int err;
814 
815 	if (!num_vfs) {
816 		ice_free_vfs(pf);
817 		return 0;
818 	}
819 
820 	if (num_vfs > pf->vfs.num_supported) {
821 		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
822 			num_vfs, pf->vfs.num_supported);
823 		return -EOPNOTSUPP;
824 	}
825 
826 	dev_info(dev, "Enabling %d VFs\n", num_vfs);
827 	err = ice_ena_vfs(pf, num_vfs);
828 	if (err) {
829 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
830 		return err;
831 	}
832 
833 	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
834 	return 0;
835 }
836 
837 /**
838  * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
839  * @pf: PF to enabled SR-IOV on
840  */
841 static int ice_check_sriov_allowed(struct ice_pf *pf)
842 {
843 	struct device *dev = ice_pf_to_dev(pf);
844 
845 	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
846 		dev_err(dev, "This device is not capable of SR-IOV\n");
847 		return -EOPNOTSUPP;
848 	}
849 
850 	if (ice_is_safe_mode(pf)) {
851 		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
852 		return -EOPNOTSUPP;
853 	}
854 
855 	if (!ice_pf_state_is_nominal(pf)) {
856 		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
857 		return -EBUSY;
858 	}
859 
860 	return 0;
861 }
862 
863 /**
864  * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
865  * @pdev: pointer to pci_dev struct
866  *
867  * The function is called via sysfs ops
868  */
869 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
870 {
871 	struct ice_pf *pf = pci_get_drvdata(pdev);
872 
873 	return pf->virt_irq_tracker.num_entries;
874 }
875 
876 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
877 {
878 	u16 vf_ids[ICE_MAX_SRIOV_VFS];
879 	struct ice_vf *tmp_vf;
880 	int to_remap = 0, bkt;
881 
882 	/* For better irqs usage try to remap irqs of VFs
883 	 * that aren't running yet
884 	 */
885 	ice_for_each_vf(pf, bkt, tmp_vf) {
886 		/* skip VF which is changing the number of MSI-X */
887 		if (restricted_id == tmp_vf->vf_id ||
888 		    test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
889 			continue;
890 
891 		ice_dis_vf_mappings(tmp_vf);
892 		ice_virt_free_irqs(pf, tmp_vf->first_vector_idx,
893 				   tmp_vf->num_msix);
894 
895 		vf_ids[to_remap] = tmp_vf->vf_id;
896 		to_remap += 1;
897 	}
898 
899 	for (int i = 0; i < to_remap; i++) {
900 		tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
901 		if (!tmp_vf)
902 			continue;
903 
904 		tmp_vf->first_vector_idx =
905 			ice_virt_get_irqs(pf, tmp_vf->num_msix);
906 		/* there is no need to rebuild VSI as we are only changing the
907 		 * vector indexes not amount of MSI-X or queues
908 		 */
909 		ice_ena_vf_mappings(tmp_vf);
910 		ice_put_vf(tmp_vf);
911 	}
912 }
913 
914 /**
915  * ice_sriov_set_msix_vec_count
916  * @vf_dev: pointer to pci_dev struct of VF device
917  * @msix_vec_count: new value for MSI-X amount on this VF
918  *
919  * Set requested MSI-X, queues and registers for @vf_dev.
920  *
921  * First do some sanity checks like if there are any VFs, if the new value
922  * is correct etc. Then disable old mapping (MSI-X and queues registers), change
923  * MSI-X and queues, rebuild VSI and enable new mapping.
924  *
925  * If it is possible (driver not binded to VF) try to remap also other VFs to
926  * linearize irqs register usage.
927  */
928 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
929 {
930 	struct pci_dev *pdev = pci_physfn(vf_dev);
931 	struct ice_pf *pf = pci_get_drvdata(pdev);
932 	u16 prev_msix, prev_queues, queues;
933 	bool needs_rebuild = false;
934 	struct ice_vsi *vsi;
935 	struct ice_vf *vf;
936 
937 	if (!ice_get_num_vfs(pf))
938 		return -ENOENT;
939 
940 	if (!msix_vec_count)
941 		return 0;
942 
943 	queues = msix_vec_count;
944 	/* add 1 MSI-X for OICR */
945 	msix_vec_count += 1;
946 
947 	if (queues > min(ice_get_avail_txq_count(pf),
948 			 ice_get_avail_rxq_count(pf)))
949 		return -EINVAL;
950 
951 	if (msix_vec_count < ICE_MIN_INTR_PER_VF)
952 		return -EINVAL;
953 
954 	vf = ice_get_vf_by_dev(pf, vf_dev);
955 	if (!vf)
956 		return -ENOENT;
957 
958 	vsi = ice_get_vf_vsi(vf);
959 	if (!vsi) {
960 		ice_put_vf(vf);
961 		return -ENOENT;
962 	}
963 
964 	/* No need to rebuild if we're setting to the same value */
965 	if (msix_vec_count == vf->num_msix) {
966 		ice_put_vf(vf);
967 		return 0;
968 	}
969 
970 	prev_msix = vf->num_msix;
971 	prev_queues = vf->num_vf_qs;
972 
973 	ice_dis_vf_mappings(vf);
974 	ice_virt_free_irqs(pf, vf->first_vector_idx, vf->num_msix);
975 
976 	/* Remap all VFs beside the one is now configured */
977 	ice_sriov_remap_vectors(pf, vf->vf_id);
978 
979 	vf->num_msix = msix_vec_count;
980 	vf->num_vf_qs = queues;
981 	vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix);
982 	if (vf->first_vector_idx < 0)
983 		goto unroll;
984 
985 	vsi->req_txq = queues;
986 	vsi->req_rxq = queues;
987 
988 	if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
989 		/* Try to rebuild with previous values */
990 		needs_rebuild = true;
991 		goto unroll;
992 	}
993 
994 	dev_info(ice_pf_to_dev(pf),
995 		 "Changing VF %d resources to %d vectors and %d queues\n",
996 		 vf->vf_id, vf->num_msix, vf->num_vf_qs);
997 
998 	ice_ena_vf_mappings(vf);
999 	ice_put_vf(vf);
1000 
1001 	return 0;
1002 
1003 unroll:
1004 	dev_info(ice_pf_to_dev(pf),
1005 		 "Can't set %d vectors on VF %d, falling back to %d\n",
1006 		 vf->num_msix, vf->vf_id, prev_msix);
1007 
1008 	vf->num_msix = prev_msix;
1009 	vf->num_vf_qs = prev_queues;
1010 
1011 	vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix);
1012 	if (vf->first_vector_idx < 0) {
1013 		ice_put_vf(vf);
1014 		return -EINVAL;
1015 	}
1016 
1017 	if (needs_rebuild) {
1018 		vsi->req_txq = prev_queues;
1019 		vsi->req_rxq = prev_queues;
1020 
1021 		ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
1022 	}
1023 
1024 	ice_ena_vf_mappings(vf);
1025 	ice_put_vf(vf);
1026 
1027 	return -EINVAL;
1028 }
1029 
1030 /**
1031  * ice_sriov_configure - Enable or change number of VFs via sysfs
1032  * @pdev: pointer to a pci_dev structure
1033  * @num_vfs: number of VFs to allocate or 0 to free VFs
1034  *
1035  * This function is called when the user updates the number of VFs in sysfs. On
1036  * success return whatever num_vfs was set to by the caller. Return negative on
1037  * failure.
1038  */
1039 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1040 {
1041 	struct ice_pf *pf = pci_get_drvdata(pdev);
1042 	struct device *dev = ice_pf_to_dev(pf);
1043 	int err;
1044 
1045 	err = ice_check_sriov_allowed(pf);
1046 	if (err)
1047 		return err;
1048 
1049 	if (!num_vfs) {
1050 		if (!pci_vfs_assigned(pdev)) {
1051 			ice_free_vfs(pf);
1052 			return 0;
1053 		}
1054 
1055 		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1056 		return -EBUSY;
1057 	}
1058 
1059 	err = ice_pci_sriov_ena(pf, num_vfs);
1060 	if (err)
1061 		return err;
1062 
1063 	return num_vfs;
1064 }
1065 
1066 /**
1067  * ice_process_vflr_event - Free VF resources via IRQ calls
1068  * @pf: pointer to the PF structure
1069  *
1070  * called from the VFLR IRQ handler to
1071  * free up VF resources and state variables
1072  */
1073 void ice_process_vflr_event(struct ice_pf *pf)
1074 {
1075 	struct ice_hw *hw = &pf->hw;
1076 	struct ice_vf *vf;
1077 	unsigned int bkt;
1078 	u32 reg;
1079 
1080 	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1081 	    !ice_has_vfs(pf))
1082 		return;
1083 
1084 	mutex_lock(&pf->vfs.table_lock);
1085 	ice_for_each_vf(pf, bkt, vf) {
1086 		u32 reg_idx, bit_idx;
1087 
1088 		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1089 		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1090 		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1091 		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1092 		if (reg & BIT(bit_idx))
1093 			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1094 			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1095 	}
1096 	mutex_unlock(&pf->vfs.table_lock);
1097 }
1098 
1099 /**
1100  * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1101  * @pf: PF used to index all VFs
1102  * @pfq: queue index relative to the PF's function space
1103  *
1104  * If no VF is found who owns the pfq then return NULL, otherwise return a
1105  * pointer to the VF who owns the pfq
1106  *
1107  * If this function returns non-NULL, it acquires a reference count of the VF
1108  * structure. The caller is responsible for calling ice_put_vf() to drop this
1109  * reference.
1110  */
1111 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1112 {
1113 	struct ice_vf *vf;
1114 	unsigned int bkt;
1115 
1116 	rcu_read_lock();
1117 	ice_for_each_vf_rcu(pf, bkt, vf) {
1118 		struct ice_vsi *vsi;
1119 		u16 rxq_idx;
1120 
1121 		vsi = ice_get_vf_vsi(vf);
1122 		if (!vsi)
1123 			continue;
1124 
1125 		ice_for_each_rxq(vsi, rxq_idx)
1126 			if (vsi->rxq_map[rxq_idx] == pfq) {
1127 				struct ice_vf *found;
1128 
1129 				if (kref_get_unless_zero(&vf->refcnt))
1130 					found = vf;
1131 				else
1132 					found = NULL;
1133 				rcu_read_unlock();
1134 				return found;
1135 			}
1136 	}
1137 	rcu_read_unlock();
1138 
1139 	return NULL;
1140 }
1141 
1142 /**
1143  * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1144  * @pf: PF used for conversion
1145  * @globalq: global queue index used to convert to PF space queue index
1146  */
1147 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1148 {
1149 	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1150 }
1151 
1152 /**
1153  * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1154  * @pf: PF that the LAN overflow event happened on
1155  * @event: structure holding the event information for the LAN overflow event
1156  *
1157  * Determine if the LAN overflow event was caused by a VF queue. If it was not
1158  * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1159  * reset on the offending VF.
1160  */
1161 void
1162 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1163 {
1164 	u32 gldcb_rtctq, queue;
1165 	struct ice_vf *vf;
1166 
1167 	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1168 	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1169 
1170 	/* event returns device global Rx queue number */
1171 	queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq);
1172 
1173 	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1174 	if (!vf)
1175 		return;
1176 
1177 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1178 	ice_put_vf(vf);
1179 }
1180 
1181 /**
1182  * ice_set_vf_spoofchk
1183  * @netdev: network interface device structure
1184  * @vf_id: VF identifier
1185  * @ena: flag to enable or disable feature
1186  *
1187  * Enable or disable VF spoof checking
1188  */
1189 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1190 {
1191 	struct ice_netdev_priv *np = netdev_priv(netdev);
1192 	struct ice_pf *pf = np->vsi->back;
1193 	struct ice_vsi *vf_vsi;
1194 	struct device *dev;
1195 	struct ice_vf *vf;
1196 	int ret;
1197 
1198 	dev = ice_pf_to_dev(pf);
1199 
1200 	vf = ice_get_vf_by_id(pf, vf_id);
1201 	if (!vf)
1202 		return -EINVAL;
1203 
1204 	ret = ice_check_vf_ready_for_cfg(vf);
1205 	if (ret)
1206 		goto out_put_vf;
1207 
1208 	vf_vsi = ice_get_vf_vsi(vf);
1209 	if (!vf_vsi) {
1210 		netdev_err(netdev, "VSI %d for VF %d is null\n",
1211 			   vf->lan_vsi_idx, vf->vf_id);
1212 		ret = -EINVAL;
1213 		goto out_put_vf;
1214 	}
1215 
1216 	if (vf_vsi->type != ICE_VSI_VF) {
1217 		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1218 			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1219 		ret = -ENODEV;
1220 		goto out_put_vf;
1221 	}
1222 
1223 	if (ena == vf->spoofchk) {
1224 		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1225 		ret = 0;
1226 		goto out_put_vf;
1227 	}
1228 
1229 	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1230 	if (ret)
1231 		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1232 			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1233 	else
1234 		vf->spoofchk = ena;
1235 
1236 out_put_vf:
1237 	ice_put_vf(vf);
1238 	return ret;
1239 }
1240 
1241 /**
1242  * ice_get_vf_cfg
1243  * @netdev: network interface device structure
1244  * @vf_id: VF identifier
1245  * @ivi: VF configuration structure
1246  *
1247  * return VF configuration
1248  */
1249 int
1250 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1251 {
1252 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1253 	struct ice_vf *vf;
1254 	int ret;
1255 
1256 	vf = ice_get_vf_by_id(pf, vf_id);
1257 	if (!vf)
1258 		return -EINVAL;
1259 
1260 	ret = ice_check_vf_ready_for_cfg(vf);
1261 	if (ret)
1262 		goto out_put_vf;
1263 
1264 	ivi->vf = vf_id;
1265 	ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1266 
1267 	/* VF configuration for VLAN and applicable QoS */
1268 	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1269 	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1270 	if (ice_vf_is_port_vlan_ena(vf))
1271 		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1272 
1273 	ivi->trusted = vf->trusted;
1274 	ivi->spoofchk = vf->spoofchk;
1275 	if (!vf->link_forced)
1276 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1277 	else if (vf->link_up)
1278 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1279 	else
1280 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1281 	ivi->max_tx_rate = vf->max_tx_rate;
1282 	ivi->min_tx_rate = vf->min_tx_rate;
1283 
1284 out_put_vf:
1285 	ice_put_vf(vf);
1286 	return ret;
1287 }
1288 
1289 /**
1290  * __ice_set_vf_mac - program VF MAC address
1291  * @pf: PF to be configure
1292  * @vf_id: VF identifier
1293  * @mac: MAC address
1294  *
1295  * program VF MAC address
1296  * Return: zero on success or an error code on failure
1297  */
1298 int __ice_set_vf_mac(struct ice_pf *pf, u16 vf_id, const u8 *mac)
1299 {
1300 	struct device *dev;
1301 	struct ice_vf *vf;
1302 	int ret;
1303 
1304 	dev = ice_pf_to_dev(pf);
1305 	if (is_multicast_ether_addr(mac)) {
1306 		dev_err(dev, "%pM not a valid unicast address\n", mac);
1307 		return -EINVAL;
1308 	}
1309 
1310 	vf = ice_get_vf_by_id(pf, vf_id);
1311 	if (!vf)
1312 		return -EINVAL;
1313 
1314 	/* nothing left to do, unicast MAC already set */
1315 	if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1316 	    ether_addr_equal(vf->hw_lan_addr, mac)) {
1317 		ret = 0;
1318 		goto out_put_vf;
1319 	}
1320 
1321 	ret = ice_check_vf_ready_for_cfg(vf);
1322 	if (ret)
1323 		goto out_put_vf;
1324 
1325 	mutex_lock(&vf->cfg_lock);
1326 
1327 	/* VF is notified of its new MAC via the PF's response to the
1328 	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1329 	 */
1330 	ether_addr_copy(vf->dev_lan_addr, mac);
1331 	ether_addr_copy(vf->hw_lan_addr, mac);
1332 	if (is_zero_ether_addr(mac)) {
1333 		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1334 		vf->pf_set_mac = false;
1335 		dev_info(dev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1336 			 vf->vf_id);
1337 	} else {
1338 		/* PF will add MAC rule for the VF */
1339 		vf->pf_set_mac = true;
1340 		dev_info(dev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1341 			 mac, vf_id);
1342 	}
1343 
1344 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1345 	mutex_unlock(&vf->cfg_lock);
1346 
1347 out_put_vf:
1348 	ice_put_vf(vf);
1349 	return ret;
1350 }
1351 
1352 /**
1353  * ice_set_vf_mac - .ndo_set_vf_mac handler
1354  * @netdev: network interface device structure
1355  * @vf_id: VF identifier
1356  * @mac: MAC address
1357  *
1358  * program VF MAC address
1359  * Return: zero on success or an error code on failure
1360  */
1361 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1362 {
1363 	return __ice_set_vf_mac(ice_netdev_to_pf(netdev), vf_id, mac);
1364 }
1365 
1366 /**
1367  * ice_set_vf_trust
1368  * @netdev: network interface device structure
1369  * @vf_id: VF identifier
1370  * @trusted: Boolean value to enable/disable trusted VF
1371  *
1372  * Enable or disable a given VF as trusted
1373  */
1374 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1375 {
1376 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1377 	struct ice_vf *vf;
1378 	int ret;
1379 
1380 	vf = ice_get_vf_by_id(pf, vf_id);
1381 	if (!vf)
1382 		return -EINVAL;
1383 
1384 	if (ice_is_eswitch_mode_switchdev(pf)) {
1385 		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1386 		return -EOPNOTSUPP;
1387 	}
1388 
1389 	ret = ice_check_vf_ready_for_cfg(vf);
1390 	if (ret)
1391 		goto out_put_vf;
1392 
1393 	/* Check if already trusted */
1394 	if (trusted == vf->trusted) {
1395 		ret = 0;
1396 		goto out_put_vf;
1397 	}
1398 
1399 	mutex_lock(&vf->cfg_lock);
1400 
1401 	while (!trusted && vf->num_mac_lldp)
1402 		ice_vf_update_mac_lldp_num(vf, ice_get_vf_vsi(vf), false);
1403 
1404 	vf->trusted = trusted;
1405 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1406 	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1407 		 vf_id, trusted ? "" : "un");
1408 
1409 	mutex_unlock(&vf->cfg_lock);
1410 
1411 out_put_vf:
1412 	ice_put_vf(vf);
1413 	return ret;
1414 }
1415 
1416 /**
1417  * ice_set_vf_link_state
1418  * @netdev: network interface device structure
1419  * @vf_id: VF identifier
1420  * @link_state: required link state
1421  *
1422  * Set VF's link state, irrespective of physical link state status
1423  */
1424 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1425 {
1426 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1427 	struct ice_vf *vf;
1428 	int ret;
1429 
1430 	vf = ice_get_vf_by_id(pf, vf_id);
1431 	if (!vf)
1432 		return -EINVAL;
1433 
1434 	ret = ice_check_vf_ready_for_cfg(vf);
1435 	if (ret)
1436 		goto out_put_vf;
1437 
1438 	switch (link_state) {
1439 	case IFLA_VF_LINK_STATE_AUTO:
1440 		vf->link_forced = false;
1441 		break;
1442 	case IFLA_VF_LINK_STATE_ENABLE:
1443 		vf->link_forced = true;
1444 		vf->link_up = true;
1445 		break;
1446 	case IFLA_VF_LINK_STATE_DISABLE:
1447 		vf->link_forced = true;
1448 		vf->link_up = false;
1449 		break;
1450 	default:
1451 		ret = -EINVAL;
1452 		goto out_put_vf;
1453 	}
1454 
1455 	ice_vc_notify_vf_link_state(vf);
1456 
1457 out_put_vf:
1458 	ice_put_vf(vf);
1459 	return ret;
1460 }
1461 
1462 /**
1463  * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1464  * @pf: PF associated with VFs
1465  */
1466 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1467 {
1468 	struct ice_vf *vf;
1469 	unsigned int bkt;
1470 	int rate = 0;
1471 
1472 	rcu_read_lock();
1473 	ice_for_each_vf_rcu(pf, bkt, vf)
1474 		rate += vf->min_tx_rate;
1475 	rcu_read_unlock();
1476 
1477 	return rate;
1478 }
1479 
1480 /**
1481  * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1482  * @vf: VF trying to configure min_tx_rate
1483  * @min_tx_rate: min Tx rate in Mbps
1484  *
1485  * Check if the min_tx_rate being passed in will cause oversubscription of total
1486  * min_tx_rate based on the current link speed and all other VFs configured
1487  * min_tx_rate
1488  *
1489  * Return true if the passed min_tx_rate would cause oversubscription, else
1490  * return false
1491  */
1492 static bool
1493 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1494 {
1495 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1496 	int all_vfs_min_tx_rate;
1497 	int link_speed_mbps;
1498 
1499 	if (WARN_ON(!vsi))
1500 		return false;
1501 
1502 	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1503 	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1504 
1505 	/* this VF's previous rate is being overwritten */
1506 	all_vfs_min_tx_rate -= vf->min_tx_rate;
1507 
1508 	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1509 		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1510 			min_tx_rate, vf->vf_id,
1511 			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1512 			link_speed_mbps);
1513 		return true;
1514 	}
1515 
1516 	return false;
1517 }
1518 
1519 /**
1520  * ice_set_vf_bw - set min/max VF bandwidth
1521  * @netdev: network interface device structure
1522  * @vf_id: VF identifier
1523  * @min_tx_rate: Minimum Tx rate in Mbps
1524  * @max_tx_rate: Maximum Tx rate in Mbps
1525  */
1526 int
1527 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1528 	      int max_tx_rate)
1529 {
1530 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1531 	struct ice_vsi *vsi;
1532 	struct device *dev;
1533 	struct ice_vf *vf;
1534 	int ret;
1535 
1536 	dev = ice_pf_to_dev(pf);
1537 
1538 	vf = ice_get_vf_by_id(pf, vf_id);
1539 	if (!vf)
1540 		return -EINVAL;
1541 
1542 	ret = ice_check_vf_ready_for_cfg(vf);
1543 	if (ret)
1544 		goto out_put_vf;
1545 
1546 	vsi = ice_get_vf_vsi(vf);
1547 	if (!vsi) {
1548 		ret = -EINVAL;
1549 		goto out_put_vf;
1550 	}
1551 
1552 	if (min_tx_rate && ice_is_dcb_active(pf)) {
1553 		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1554 		ret = -EOPNOTSUPP;
1555 		goto out_put_vf;
1556 	}
1557 
1558 	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1559 		ret = -EINVAL;
1560 		goto out_put_vf;
1561 	}
1562 
1563 	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1564 		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1565 		if (ret) {
1566 			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1567 				vf->vf_id);
1568 			goto out_put_vf;
1569 		}
1570 
1571 		vf->min_tx_rate = min_tx_rate;
1572 	}
1573 
1574 	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1575 		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1576 		if (ret) {
1577 			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1578 				vf->vf_id);
1579 			goto out_put_vf;
1580 		}
1581 
1582 		vf->max_tx_rate = max_tx_rate;
1583 	}
1584 
1585 out_put_vf:
1586 	ice_put_vf(vf);
1587 	return ret;
1588 }
1589 
1590 /**
1591  * ice_get_vf_stats - populate some stats for the VF
1592  * @netdev: the netdev of the PF
1593  * @vf_id: the host OS identifier (0-255)
1594  * @vf_stats: pointer to the OS memory to be initialized
1595  */
1596 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1597 		     struct ifla_vf_stats *vf_stats)
1598 {
1599 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1600 	struct ice_eth_stats *stats;
1601 	struct ice_vsi *vsi;
1602 	struct ice_vf *vf;
1603 	int ret;
1604 
1605 	vf = ice_get_vf_by_id(pf, vf_id);
1606 	if (!vf)
1607 		return -EINVAL;
1608 
1609 	ret = ice_check_vf_ready_for_cfg(vf);
1610 	if (ret)
1611 		goto out_put_vf;
1612 
1613 	vsi = ice_get_vf_vsi(vf);
1614 	if (!vsi) {
1615 		ret = -EINVAL;
1616 		goto out_put_vf;
1617 	}
1618 
1619 	ice_update_eth_stats(vsi);
1620 	stats = &vsi->eth_stats;
1621 
1622 	memset(vf_stats, 0, sizeof(*vf_stats));
1623 
1624 	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1625 		stats->rx_multicast;
1626 	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1627 		stats->tx_multicast;
1628 	vf_stats->rx_bytes   = stats->rx_bytes;
1629 	vf_stats->tx_bytes   = stats->tx_bytes;
1630 	vf_stats->broadcast  = stats->rx_broadcast;
1631 	vf_stats->multicast  = stats->rx_multicast;
1632 	vf_stats->rx_dropped = stats->rx_discards;
1633 	vf_stats->tx_dropped = stats->tx_discards;
1634 
1635 out_put_vf:
1636 	ice_put_vf(vf);
1637 	return ret;
1638 }
1639 
1640 /**
1641  * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1642  * @hw: hardware structure used to check the VLAN mode
1643  * @vlan_proto: VLAN TPID being checked
1644  *
1645  * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1646  * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1647  * Mode (SVM), then only ETH_P_8021Q is supported.
1648  */
1649 static bool
1650 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1651 {
1652 	bool is_supported = false;
1653 
1654 	switch (vlan_proto) {
1655 	case ETH_P_8021Q:
1656 		is_supported = true;
1657 		break;
1658 	case ETH_P_8021AD:
1659 		if (ice_is_dvm_ena(hw))
1660 			is_supported = true;
1661 		break;
1662 	}
1663 
1664 	return is_supported;
1665 }
1666 
1667 /**
1668  * ice_set_vf_port_vlan
1669  * @netdev: network interface device structure
1670  * @vf_id: VF identifier
1671  * @vlan_id: VLAN ID being set
1672  * @qos: priority setting
1673  * @vlan_proto: VLAN protocol
1674  *
1675  * program VF Port VLAN ID and/or QoS
1676  */
1677 int
1678 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1679 		     __be16 vlan_proto)
1680 {
1681 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1682 	u16 local_vlan_proto = ntohs(vlan_proto);
1683 	struct device *dev;
1684 	struct ice_vf *vf;
1685 	int ret;
1686 
1687 	dev = ice_pf_to_dev(pf);
1688 
1689 	if (vlan_id >= VLAN_N_VID || qos > 7) {
1690 		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1691 			vf_id, vlan_id, qos);
1692 		return -EINVAL;
1693 	}
1694 
1695 	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1696 		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1697 			local_vlan_proto);
1698 		return -EPROTONOSUPPORT;
1699 	}
1700 
1701 	vf = ice_get_vf_by_id(pf, vf_id);
1702 	if (!vf)
1703 		return -EINVAL;
1704 
1705 	ret = ice_check_vf_ready_for_cfg(vf);
1706 	if (ret)
1707 		goto out_put_vf;
1708 
1709 	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1710 	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1711 	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1712 		/* duplicate request, so just return success */
1713 		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1714 			vlan_id, qos, local_vlan_proto);
1715 		ret = 0;
1716 		goto out_put_vf;
1717 	}
1718 
1719 	mutex_lock(&vf->cfg_lock);
1720 
1721 	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1722 	if (ice_vf_is_port_vlan_ena(vf))
1723 		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1724 			 vlan_id, qos, local_vlan_proto, vf_id);
1725 	else
1726 		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1727 
1728 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1729 	mutex_unlock(&vf->cfg_lock);
1730 
1731 out_put_vf:
1732 	ice_put_vf(vf);
1733 	return ret;
1734 }
1735 
1736 /**
1737  * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1738  * @vf: pointer to the VF structure
1739  */
1740 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1741 {
1742 	struct ice_pf *pf = vf->pf;
1743 	struct device *dev;
1744 
1745 	dev = ice_pf_to_dev(pf);
1746 
1747 	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1748 		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1749 		 vf->dev_lan_addr,
1750 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1751 			  ? "on" : "off");
1752 }
1753 
1754 /**
1755  * ice_print_vf_tx_mdd_event - print VF Tx malicious driver detect event
1756  * @vf: pointer to the VF structure
1757  */
1758 void ice_print_vf_tx_mdd_event(struct ice_vf *vf)
1759 {
1760 	struct ice_pf *pf = vf->pf;
1761 	struct device *dev;
1762 
1763 	dev = ice_pf_to_dev(pf);
1764 
1765 	dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1766 		 vf->mdd_tx_events.count, pf->hw.pf_id, vf->vf_id,
1767 		 vf->dev_lan_addr,
1768 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1769 			  ? "on" : "off");
1770 }
1771 
1772 /**
1773  * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1774  * @pf: pointer to the PF structure
1775  *
1776  * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1777  */
1778 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1779 {
1780 	struct ice_vf *vf;
1781 	unsigned int bkt;
1782 
1783 	/* check that there are pending MDD events to print */
1784 	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1785 		return;
1786 
1787 	/* VF MDD event logs are rate limited to one second intervals */
1788 	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1789 		return;
1790 
1791 	pf->vfs.last_printed_mdd_jiffies = jiffies;
1792 
1793 	mutex_lock(&pf->vfs.table_lock);
1794 	ice_for_each_vf(pf, bkt, vf) {
1795 		/* only print Rx MDD event message if there are new events */
1796 		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1797 			vf->mdd_rx_events.last_printed =
1798 							vf->mdd_rx_events.count;
1799 			ice_print_vf_rx_mdd_event(vf);
1800 		}
1801 
1802 		/* only print Tx MDD event message if there are new events */
1803 		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1804 			vf->mdd_tx_events.last_printed =
1805 							vf->mdd_tx_events.count;
1806 			ice_print_vf_tx_mdd_event(vf);
1807 		}
1808 	}
1809 	mutex_unlock(&pf->vfs.table_lock);
1810 }
1811 
1812 /**
1813  * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1814  * @pf: pointer to the PF structure
1815  *
1816  * Called when recovering from a PF FLR to restore interrupt capability to
1817  * the VFs.
1818  */
1819 void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1820 {
1821 	struct ice_vf *vf;
1822 	u32 bkt;
1823 
1824 	ice_for_each_vf(pf, bkt, vf)
1825 		pci_restore_msi_state(vf->vfdev);
1826 }
1827