xref: /linux/drivers/net/ethernet/intel/ice/ice_sriov.c (revision 9d56c248e5030d17ea9cd132634e86fdf0622d0e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16 
17 /**
18  * ice_free_vf_entries - Free all VF entries from the hash table
19  * @pf: pointer to the PF structure
20  *
21  * Iterate over the VF hash table, removing and releasing all VF entries.
22  * Called during VF teardown or as cleanup during failed VF initialization.
23  */
24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 	struct ice_vfs *vfs = &pf->vfs;
27 	struct hlist_node *tmp;
28 	struct ice_vf *vf;
29 	unsigned int bkt;
30 
31 	/* Remove all VFs from the hash table and release their main
32 	 * reference. Once all references to the VF are dropped, ice_put_vf()
33 	 * will call ice_release_vf which will remove the VF memory.
34 	 */
35 	lockdep_assert_held(&vfs->table_lock);
36 
37 	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 		hash_del_rcu(&vf->entry);
39 		ice_put_vf(vf);
40 	}
41 }
42 
43 /**
44  * ice_free_vf_res - Free a VF's resources
45  * @vf: pointer to the VF info
46  */
47 static void ice_free_vf_res(struct ice_vf *vf)
48 {
49 	struct ice_pf *pf = vf->pf;
50 	int i, last_vector_idx;
51 
52 	/* First, disable VF's configuration API to prevent OS from
53 	 * accessing the VF's VSI after it's freed or invalidated.
54 	 */
55 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
56 	ice_vf_fdir_exit(vf);
57 	/* free VF control VSI */
58 	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
59 		ice_vf_ctrl_vsi_release(vf);
60 
61 	/* free VSI and disconnect it from the parent uplink */
62 	if (vf->lan_vsi_idx != ICE_NO_VSI) {
63 		ice_vf_vsi_release(vf);
64 		vf->num_mac = 0;
65 	}
66 
67 	last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
68 
69 	/* clear VF MDD event information */
70 	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
71 	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
72 
73 	/* Disable interrupts so that VF starts in a known state */
74 	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
75 		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
76 		ice_flush(&pf->hw);
77 	}
78 	/* reset some of the state variables keeping track of the resources */
79 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
80 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
81 }
82 
83 /**
84  * ice_dis_vf_mappings
85  * @vf: pointer to the VF structure
86  */
87 static void ice_dis_vf_mappings(struct ice_vf *vf)
88 {
89 	struct ice_pf *pf = vf->pf;
90 	struct ice_vsi *vsi;
91 	struct device *dev;
92 	int first, last, v;
93 	struct ice_hw *hw;
94 
95 	hw = &pf->hw;
96 	vsi = ice_get_vf_vsi(vf);
97 	if (WARN_ON(!vsi))
98 		return;
99 
100 	dev = ice_pf_to_dev(pf);
101 	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
102 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
103 
104 	first = vf->first_vector_idx;
105 	last = first + vf->num_msix - 1;
106 	for (v = first; v <= last; v++) {
107 		u32 reg;
108 
109 		reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) |
110 		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
111 		wr32(hw, GLINT_VECT2FUNC(v), reg);
112 	}
113 
114 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
115 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
116 	else
117 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
118 
119 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
120 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
121 	else
122 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
123 }
124 
125 /**
126  * ice_sriov_free_msix_res - Reset/free any used MSIX resources
127  * @pf: pointer to the PF structure
128  *
129  * Since no MSIX entries are taken from the pf->irq_tracker then just clear
130  * the pf->sriov_base_vector.
131  *
132  * Returns 0 on success, and -EINVAL on error.
133  */
134 static int ice_sriov_free_msix_res(struct ice_pf *pf)
135 {
136 	if (!pf)
137 		return -EINVAL;
138 
139 	bitmap_free(pf->sriov_irq_bm);
140 	pf->sriov_irq_size = 0;
141 	pf->sriov_base_vector = 0;
142 
143 	return 0;
144 }
145 
146 /**
147  * ice_free_vfs - Free all VFs
148  * @pf: pointer to the PF structure
149  */
150 void ice_free_vfs(struct ice_pf *pf)
151 {
152 	struct device *dev = ice_pf_to_dev(pf);
153 	struct ice_vfs *vfs = &pf->vfs;
154 	struct ice_hw *hw = &pf->hw;
155 	struct ice_vf *vf;
156 	unsigned int bkt;
157 
158 	if (!ice_has_vfs(pf))
159 		return;
160 
161 	while (test_and_set_bit(ICE_VF_DIS, pf->state))
162 		usleep_range(1000, 2000);
163 
164 	/* Disable IOV before freeing resources. This lets any VF drivers
165 	 * running in the host get themselves cleaned up before we yank
166 	 * the carpet out from underneath their feet.
167 	 */
168 	if (!pci_vfs_assigned(pf->pdev))
169 		pci_disable_sriov(pf->pdev);
170 	else
171 		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
172 
173 	mutex_lock(&vfs->table_lock);
174 
175 	ice_for_each_vf(pf, bkt, vf) {
176 		mutex_lock(&vf->cfg_lock);
177 
178 		ice_eswitch_detach(pf, vf);
179 		ice_dis_vf_qs(vf);
180 
181 		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
182 			/* disable VF qp mappings and set VF disable state */
183 			ice_dis_vf_mappings(vf);
184 			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
185 			ice_free_vf_res(vf);
186 		}
187 
188 		if (!pci_vfs_assigned(pf->pdev)) {
189 			u32 reg_idx, bit_idx;
190 
191 			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
192 			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
193 			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
194 		}
195 
196 		/* clear malicious info since the VF is getting released */
197 		list_del(&vf->mbx_info.list_entry);
198 
199 		mutex_unlock(&vf->cfg_lock);
200 	}
201 
202 	if (ice_sriov_free_msix_res(pf))
203 		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
204 
205 	vfs->num_qps_per = 0;
206 	ice_free_vf_entries(pf);
207 
208 	mutex_unlock(&vfs->table_lock);
209 
210 	clear_bit(ICE_VF_DIS, pf->state);
211 	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
212 }
213 
214 /**
215  * ice_vf_vsi_setup - Set up a VF VSI
216  * @vf: VF to setup VSI for
217  *
218  * Returns pointer to the successfully allocated VSI struct on success,
219  * otherwise returns NULL on failure.
220  */
221 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
222 {
223 	struct ice_vsi_cfg_params params = {};
224 	struct ice_pf *pf = vf->pf;
225 	struct ice_vsi *vsi;
226 
227 	params.type = ICE_VSI_VF;
228 	params.pi = ice_vf_get_port_info(vf);
229 	params.vf = vf;
230 	params.flags = ICE_VSI_FLAG_INIT;
231 
232 	vsi = ice_vsi_setup(pf, &params);
233 
234 	if (!vsi) {
235 		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
236 		ice_vf_invalidate_vsi(vf);
237 		return NULL;
238 	}
239 
240 	vf->lan_vsi_idx = vsi->idx;
241 
242 	return vsi;
243 }
244 
245 
246 /**
247  * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
248  * @vf: VF to enable MSIX mappings for
249  *
250  * Some of the registers need to be indexed/configured using hardware global
251  * device values and other registers need 0-based values, which represent PF
252  * based values.
253  */
254 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
255 {
256 	int device_based_first_msix, device_based_last_msix;
257 	int pf_based_first_msix, pf_based_last_msix, v;
258 	struct ice_pf *pf = vf->pf;
259 	int device_based_vf_id;
260 	struct ice_hw *hw;
261 	u32 reg;
262 
263 	hw = &pf->hw;
264 	pf_based_first_msix = vf->first_vector_idx;
265 	pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
266 
267 	device_based_first_msix = pf_based_first_msix +
268 		pf->hw.func_caps.common_cap.msix_vector_first_id;
269 	device_based_last_msix =
270 		(device_based_first_msix + vf->num_msix) - 1;
271 	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
272 
273 	reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) |
274 	      FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) |
275 	      VPINT_ALLOC_VALID_M;
276 	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
277 
278 	reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) |
279 	      FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) |
280 	      VPINT_ALLOC_PCI_VALID_M;
281 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
282 
283 	/* map the interrupts to its functions */
284 	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
285 		reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) |
286 		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
287 		wr32(hw, GLINT_VECT2FUNC(v), reg);
288 	}
289 
290 	/* Map mailbox interrupt to VF MSI-X vector 0 */
291 	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
292 }
293 
294 /**
295  * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
296  * @vf: VF to enable the mappings for
297  * @max_txq: max Tx queues allowed on the VF's VSI
298  * @max_rxq: max Rx queues allowed on the VF's VSI
299  */
300 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
301 {
302 	struct device *dev = ice_pf_to_dev(vf->pf);
303 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
304 	struct ice_hw *hw = &vf->pf->hw;
305 	u32 reg;
306 
307 	if (WARN_ON(!vsi))
308 		return;
309 
310 	/* set regardless of mapping mode */
311 	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
312 
313 	/* VF Tx queues allocation */
314 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
315 		/* set the VF PF Tx queue range
316 		 * VFNUMQ value should be set to (number of queues - 1). A value
317 		 * of 0 means 1 queue and a value of 255 means 256 queues
318 		 */
319 		reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) |
320 		      FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1);
321 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
322 	} else {
323 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
324 	}
325 
326 	/* set regardless of mapping mode */
327 	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
328 
329 	/* VF Rx queues allocation */
330 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
331 		/* set the VF PF Rx queue range
332 		 * VFNUMQ value should be set to (number of queues - 1). A value
333 		 * of 0 means 1 queue and a value of 255 means 256 queues
334 		 */
335 		reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) |
336 		      FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1);
337 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
338 	} else {
339 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
340 	}
341 }
342 
343 /**
344  * ice_ena_vf_mappings - enable VF MSIX and queue mapping
345  * @vf: pointer to the VF structure
346  */
347 static void ice_ena_vf_mappings(struct ice_vf *vf)
348 {
349 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
350 
351 	if (WARN_ON(!vsi))
352 		return;
353 
354 	ice_ena_vf_msix_mappings(vf);
355 	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
356 }
357 
358 /**
359  * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
360  * @vf: VF to calculate the register index for
361  * @q_vector: a q_vector associated to the VF
362  */
363 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
364 {
365 	if (!vf || !q_vector)
366 		return -EINVAL;
367 
368 	/* always add one to account for the OICR being the first MSIX */
369 	return vf->first_vector_idx + q_vector->v_idx + 1;
370 }
371 
372 /**
373  * ice_sriov_set_msix_res - Set any used MSIX resources
374  * @pf: pointer to PF structure
375  * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
376  *
377  * This function allows SR-IOV resources to be taken from the end of the PF's
378  * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
379  * just set the pf->sriov_base_vector and return success.
380  *
381  * If there are not enough resources available, return an error. This should
382  * always be caught by ice_set_per_vf_res().
383  *
384  * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
385  * in the PF's space available for SR-IOV.
386  */
387 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
388 {
389 	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
390 	int vectors_used = ice_get_max_used_msix_vector(pf);
391 	int sriov_base_vector;
392 
393 	sriov_base_vector = total_vectors - num_msix_needed;
394 
395 	/* make sure we only grab irq_tracker entries from the list end and
396 	 * that we have enough available MSIX vectors
397 	 */
398 	if (sriov_base_vector < vectors_used)
399 		return -EINVAL;
400 
401 	pf->sriov_base_vector = sriov_base_vector;
402 
403 	return 0;
404 }
405 
406 /**
407  * ice_set_per_vf_res - check if vectors and queues are available
408  * @pf: pointer to the PF structure
409  * @num_vfs: the number of SR-IOV VFs being configured
410  *
411  * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
412  * get more vectors and can enable more queues per VF. Note that this does not
413  * grab any vectors from the SW pool already allocated. Also note, that all
414  * vector counts include one for each VF's miscellaneous interrupt vector
415  * (i.e. OICR).
416  *
417  * Minimum VFs - 2 vectors, 1 queue pair
418  * Small VFs - 5 vectors, 4 queue pairs
419  * Medium VFs - 17 vectors, 16 queue pairs
420  *
421  * Second, determine number of queue pairs per VF by starting with a pre-defined
422  * maximum each VF supports. If this is not possible, then we adjust based on
423  * queue pairs available on the device.
424  *
425  * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
426  * by each VF during VF initialization and reset.
427  */
428 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
429 {
430 	int vectors_used = ice_get_max_used_msix_vector(pf);
431 	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
432 	int msix_avail_per_vf, msix_avail_for_sriov;
433 	struct device *dev = ice_pf_to_dev(pf);
434 	int err;
435 
436 	lockdep_assert_held(&pf->vfs.table_lock);
437 
438 	if (!num_vfs)
439 		return -EINVAL;
440 
441 	/* determine MSI-X resources per VF */
442 	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
443 		vectors_used;
444 	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
445 	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
446 		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
447 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
448 		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
449 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
450 		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
451 	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
452 		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
453 	} else {
454 		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
455 			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
456 			num_vfs);
457 		return -ENOSPC;
458 	}
459 
460 	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
461 			ICE_MAX_RSS_QS_PER_VF);
462 	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
463 	if (!avail_qs)
464 		num_txq = 0;
465 	else if (num_txq > avail_qs)
466 		num_txq = rounddown_pow_of_two(avail_qs);
467 
468 	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
469 			ICE_MAX_RSS_QS_PER_VF);
470 	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
471 	if (!avail_qs)
472 		num_rxq = 0;
473 	else if (num_rxq > avail_qs)
474 		num_rxq = rounddown_pow_of_two(avail_qs);
475 
476 	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
477 		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
478 			ICE_MIN_QS_PER_VF, num_vfs);
479 		return -ENOSPC;
480 	}
481 
482 	err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
483 	if (err) {
484 		dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
485 			num_vfs, err);
486 		return err;
487 	}
488 
489 	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
490 	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
491 	pf->vfs.num_msix_per = num_msix_per_vf;
492 	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
493 		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
494 
495 	return 0;
496 }
497 
498 /**
499  * ice_sriov_get_irqs - get irqs for SR-IOV usacase
500  * @pf: pointer to PF structure
501  * @needed: number of irqs to get
502  *
503  * This returns the first MSI-X vector index in PF space that is used by this
504  * VF. This index is used when accessing PF relative registers such as
505  * GLINT_VECT2FUNC and GLINT_DYN_CTL.
506  * This will always be the OICR index in the AVF driver so any functionality
507  * using vf->first_vector_idx for queue configuration_id: id of VF which will
508  * use this irqs
509  *
510  * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are
511  * allocated from the end of global irq index. First bit in sriov_irq_bm means
512  * last irq index etc. It simplifies extension of SRIOV vectors.
513  * They will be always located from sriov_base_vector to the last irq
514  * index. While increasing/decreasing sriov_base_vector can be moved.
515  */
516 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed)
517 {
518 	int res = bitmap_find_next_zero_area(pf->sriov_irq_bm,
519 					     pf->sriov_irq_size, 0, needed, 0);
520 	/* conversion from number in bitmap to global irq index */
521 	int index = pf->sriov_irq_size - res - needed;
522 
523 	if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector)
524 		return -ENOENT;
525 
526 	bitmap_set(pf->sriov_irq_bm, res, needed);
527 	return index;
528 }
529 
530 /**
531  * ice_sriov_free_irqs - free irqs used by the VF
532  * @pf: pointer to PF structure
533  * @vf: pointer to VF structure
534  */
535 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf)
536 {
537 	/* Move back from first vector index to first index in bitmap */
538 	int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix;
539 
540 	bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix);
541 	vf->first_vector_idx = 0;
542 }
543 
544 /**
545  * ice_init_vf_vsi_res - initialize/setup VF VSI resources
546  * @vf: VF to initialize/setup the VSI for
547  *
548  * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
549  * VF VSI's broadcast filter and is only used during initial VF creation.
550  */
551 static int ice_init_vf_vsi_res(struct ice_vf *vf)
552 {
553 	struct ice_pf *pf = vf->pf;
554 	struct ice_vsi *vsi;
555 	int err;
556 
557 	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
558 	if (vf->first_vector_idx < 0)
559 		return -ENOMEM;
560 
561 	vsi = ice_vf_vsi_setup(vf);
562 	if (!vsi)
563 		return -ENOMEM;
564 
565 	err = ice_vf_init_host_cfg(vf, vsi);
566 	if (err)
567 		goto release_vsi;
568 
569 	return 0;
570 
571 release_vsi:
572 	ice_vf_vsi_release(vf);
573 	return err;
574 }
575 
576 /**
577  * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
578  * @pf: PF the VFs are associated with
579  */
580 static int ice_start_vfs(struct ice_pf *pf)
581 {
582 	struct ice_hw *hw = &pf->hw;
583 	unsigned int bkt, it_cnt;
584 	struct ice_vf *vf;
585 	int retval;
586 
587 	lockdep_assert_held(&pf->vfs.table_lock);
588 
589 	it_cnt = 0;
590 	ice_for_each_vf(pf, bkt, vf) {
591 		vf->vf_ops->clear_reset_trigger(vf);
592 
593 		retval = ice_init_vf_vsi_res(vf);
594 		if (retval) {
595 			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
596 				vf->vf_id, retval);
597 			goto teardown;
598 		}
599 
600 		retval = ice_eswitch_attach(pf, vf);
601 		if (retval) {
602 			dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d",
603 				vf->vf_id, retval);
604 			ice_vf_vsi_release(vf);
605 			goto teardown;
606 		}
607 
608 		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
609 		ice_ena_vf_mappings(vf);
610 		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
611 		it_cnt++;
612 	}
613 
614 	ice_flush(hw);
615 	return 0;
616 
617 teardown:
618 	ice_for_each_vf(pf, bkt, vf) {
619 		if (it_cnt == 0)
620 			break;
621 
622 		ice_dis_vf_mappings(vf);
623 		ice_vf_vsi_release(vf);
624 		it_cnt--;
625 	}
626 
627 	return retval;
628 }
629 
630 /**
631  * ice_sriov_free_vf - Free VF memory after all references are dropped
632  * @vf: pointer to VF to free
633  *
634  * Called by ice_put_vf through ice_release_vf once the last reference to a VF
635  * structure has been dropped.
636  */
637 static void ice_sriov_free_vf(struct ice_vf *vf)
638 {
639 	mutex_destroy(&vf->cfg_lock);
640 
641 	kfree_rcu(vf, rcu);
642 }
643 
644 /**
645  * ice_sriov_clear_reset_state - clears VF Reset status register
646  * @vf: the vf to configure
647  */
648 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
649 {
650 	struct ice_hw *hw = &vf->pf->hw;
651 
652 	/* Clear the reset status register so that VF immediately sees that
653 	 * the device is resetting, even if hardware hasn't yet gotten around
654 	 * to clearing VFGEN_RSTAT for us.
655 	 */
656 	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
657 }
658 
659 /**
660  * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
661  * @vf: the vf to configure
662  */
663 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
664 {
665 	struct ice_pf *pf = vf->pf;
666 
667 	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
668 	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
669 }
670 
671 /**
672  * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
673  * @vf: pointer to VF structure
674  * @is_vflr: true if reset occurred due to VFLR
675  *
676  * Trigger and cleanup after a VF reset for a SR-IOV VF.
677  */
678 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
679 {
680 	struct ice_pf *pf = vf->pf;
681 	u32 reg, reg_idx, bit_idx;
682 	unsigned int vf_abs_id, i;
683 	struct device *dev;
684 	struct ice_hw *hw;
685 
686 	dev = ice_pf_to_dev(pf);
687 	hw = &pf->hw;
688 	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
689 
690 	/* In the case of a VFLR, HW has already reset the VF and we just need
691 	 * to clean up. Otherwise we must first trigger the reset using the
692 	 * VFRTRIG register.
693 	 */
694 	if (!is_vflr) {
695 		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
696 		reg |= VPGEN_VFRTRIG_VFSWR_M;
697 		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
698 	}
699 
700 	/* clear the VFLR bit in GLGEN_VFLRSTAT */
701 	reg_idx = (vf_abs_id) / 32;
702 	bit_idx = (vf_abs_id) % 32;
703 	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
704 	ice_flush(hw);
705 
706 	wr32(hw, PF_PCI_CIAA,
707 	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
708 	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
709 		reg = rd32(hw, PF_PCI_CIAD);
710 		/* no transactions pending so stop polling */
711 		if ((reg & VF_TRANS_PENDING_M) == 0)
712 			break;
713 
714 		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
715 		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
716 	}
717 }
718 
719 /**
720  * ice_sriov_poll_reset_status - poll SRIOV VF reset status
721  * @vf: pointer to VF structure
722  *
723  * Returns true when reset is successful, else returns false
724  */
725 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
726 {
727 	struct ice_pf *pf = vf->pf;
728 	unsigned int i;
729 	u32 reg;
730 
731 	for (i = 0; i < 10; i++) {
732 		/* VF reset requires driver to first reset the VF and then
733 		 * poll the status register to make sure that the reset
734 		 * completed successfully.
735 		 */
736 		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
737 		if (reg & VPGEN_VFRSTAT_VFRD_M)
738 			return true;
739 
740 		/* only sleep if the reset is not done */
741 		usleep_range(10, 20);
742 	}
743 	return false;
744 }
745 
746 /**
747  * ice_sriov_clear_reset_trigger - enable VF to access hardware
748  * @vf: VF to enabled hardware access for
749  */
750 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
751 {
752 	struct ice_hw *hw = &vf->pf->hw;
753 	u32 reg;
754 
755 	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
756 	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
757 	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
758 	ice_flush(hw);
759 }
760 
761 /**
762  * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
763  * @vf: VF to perform tasks on
764  */
765 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
766 {
767 	ice_ena_vf_mappings(vf);
768 	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
769 }
770 
771 static const struct ice_vf_ops ice_sriov_vf_ops = {
772 	.reset_type = ICE_VF_RESET,
773 	.free = ice_sriov_free_vf,
774 	.clear_reset_state = ice_sriov_clear_reset_state,
775 	.clear_mbx_register = ice_sriov_clear_mbx_register,
776 	.trigger_reset_register = ice_sriov_trigger_reset_register,
777 	.poll_reset_status = ice_sriov_poll_reset_status,
778 	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
779 	.irq_close = NULL,
780 	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
781 };
782 
783 /**
784  * ice_create_vf_entries - Allocate and insert VF entries
785  * @pf: pointer to the PF structure
786  * @num_vfs: the number of VFs to allocate
787  *
788  * Allocate new VF entries and insert them into the hash table. Set some
789  * basic default fields for initializing the new VFs.
790  *
791  * After this function exits, the hash table will have num_vfs entries
792  * inserted.
793  *
794  * Returns 0 on success or an integer error code on failure.
795  */
796 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
797 {
798 	struct pci_dev *pdev = pf->pdev;
799 	struct ice_vfs *vfs = &pf->vfs;
800 	struct pci_dev *vfdev = NULL;
801 	struct ice_vf *vf;
802 	u16 vf_pdev_id;
803 	int err, pos;
804 
805 	lockdep_assert_held(&vfs->table_lock);
806 
807 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
808 	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
809 
810 	for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
811 		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
812 		if (!vf) {
813 			err = -ENOMEM;
814 			goto err_free_entries;
815 		}
816 		kref_init(&vf->refcnt);
817 
818 		vf->pf = pf;
819 		vf->vf_id = vf_id;
820 
821 		/* set sriov vf ops for VFs created during SRIOV flow */
822 		vf->vf_ops = &ice_sriov_vf_ops;
823 
824 		ice_initialize_vf_entry(vf);
825 
826 		do {
827 			vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
828 		} while (vfdev && vfdev->physfn != pdev);
829 		vf->vfdev = vfdev;
830 		vf->vf_sw_id = pf->first_sw;
831 
832 		pci_dev_get(vfdev);
833 
834 		/* set default number of MSI-X */
835 		vf->num_msix = pf->vfs.num_msix_per;
836 		vf->num_vf_qs = pf->vfs.num_qps_per;
837 		ice_vc_set_default_allowlist(vf);
838 
839 		hash_add_rcu(vfs->table, &vf->entry, vf_id);
840 	}
841 
842 	/* Decrement of refcount done by pci_get_device() inside the loop does
843 	 * not touch the last iteration's vfdev, so it has to be done manually
844 	 * to balance pci_dev_get() added within the loop.
845 	 */
846 	pci_dev_put(vfdev);
847 
848 	return 0;
849 
850 err_free_entries:
851 	ice_free_vf_entries(pf);
852 	return err;
853 }
854 
855 /**
856  * ice_ena_vfs - enable VFs so they are ready to be used
857  * @pf: pointer to the PF structure
858  * @num_vfs: number of VFs to enable
859  */
860 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
861 {
862 	int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
863 	struct device *dev = ice_pf_to_dev(pf);
864 	struct ice_hw *hw = &pf->hw;
865 	int ret;
866 
867 	pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL);
868 	if (!pf->sriov_irq_bm)
869 		return -ENOMEM;
870 	pf->sriov_irq_size = total_vectors;
871 
872 	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
873 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
874 	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
875 	set_bit(ICE_OICR_INTR_DIS, pf->state);
876 	ice_flush(hw);
877 
878 	ret = pci_enable_sriov(pf->pdev, num_vfs);
879 	if (ret)
880 		goto err_unroll_intr;
881 
882 	mutex_lock(&pf->vfs.table_lock);
883 
884 	ret = ice_set_per_vf_res(pf, num_vfs);
885 	if (ret) {
886 		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
887 			num_vfs, ret);
888 		goto err_unroll_sriov;
889 	}
890 
891 	ret = ice_create_vf_entries(pf, num_vfs);
892 	if (ret) {
893 		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
894 			num_vfs);
895 		goto err_unroll_sriov;
896 	}
897 
898 	ret = ice_start_vfs(pf);
899 	if (ret) {
900 		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
901 		ret = -EAGAIN;
902 		goto err_unroll_vf_entries;
903 	}
904 
905 	clear_bit(ICE_VF_DIS, pf->state);
906 
907 	/* rearm global interrupts */
908 	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
909 		ice_irq_dynamic_ena(hw, NULL, NULL);
910 
911 	mutex_unlock(&pf->vfs.table_lock);
912 
913 	return 0;
914 
915 err_unroll_vf_entries:
916 	ice_free_vf_entries(pf);
917 err_unroll_sriov:
918 	mutex_unlock(&pf->vfs.table_lock);
919 	pci_disable_sriov(pf->pdev);
920 err_unroll_intr:
921 	/* rearm interrupts here */
922 	ice_irq_dynamic_ena(hw, NULL, NULL);
923 	clear_bit(ICE_OICR_INTR_DIS, pf->state);
924 	bitmap_free(pf->sriov_irq_bm);
925 	return ret;
926 }
927 
928 /**
929  * ice_pci_sriov_ena - Enable or change number of VFs
930  * @pf: pointer to the PF structure
931  * @num_vfs: number of VFs to allocate
932  *
933  * Returns 0 on success and negative on failure
934  */
935 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
936 {
937 	struct device *dev = ice_pf_to_dev(pf);
938 	int err;
939 
940 	if (!num_vfs) {
941 		ice_free_vfs(pf);
942 		return 0;
943 	}
944 
945 	if (num_vfs > pf->vfs.num_supported) {
946 		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
947 			num_vfs, pf->vfs.num_supported);
948 		return -EOPNOTSUPP;
949 	}
950 
951 	dev_info(dev, "Enabling %d VFs\n", num_vfs);
952 	err = ice_ena_vfs(pf, num_vfs);
953 	if (err) {
954 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
955 		return err;
956 	}
957 
958 	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
959 	return 0;
960 }
961 
962 /**
963  * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
964  * @pf: PF to enabled SR-IOV on
965  */
966 static int ice_check_sriov_allowed(struct ice_pf *pf)
967 {
968 	struct device *dev = ice_pf_to_dev(pf);
969 
970 	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
971 		dev_err(dev, "This device is not capable of SR-IOV\n");
972 		return -EOPNOTSUPP;
973 	}
974 
975 	if (ice_is_safe_mode(pf)) {
976 		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
977 		return -EOPNOTSUPP;
978 	}
979 
980 	if (!ice_pf_state_is_nominal(pf)) {
981 		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
982 		return -EBUSY;
983 	}
984 
985 	return 0;
986 }
987 
988 /**
989  * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
990  * @pdev: pointer to pci_dev struct
991  *
992  * The function is called via sysfs ops
993  */
994 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
995 {
996 	struct ice_pf *pf = pci_get_drvdata(pdev);
997 
998 	return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf);
999 }
1000 
1001 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move)
1002 {
1003 	if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf))
1004 		return -ENOMEM;
1005 
1006 	pf->sriov_base_vector -= move;
1007 	return 0;
1008 }
1009 
1010 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
1011 {
1012 	u16 vf_ids[ICE_MAX_SRIOV_VFS];
1013 	struct ice_vf *tmp_vf;
1014 	int to_remap = 0, bkt;
1015 
1016 	/* For better irqs usage try to remap irqs of VFs
1017 	 * that aren't running yet
1018 	 */
1019 	ice_for_each_vf(pf, bkt, tmp_vf) {
1020 		/* skip VF which is changing the number of MSI-X */
1021 		if (restricted_id == tmp_vf->vf_id ||
1022 		    test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
1023 			continue;
1024 
1025 		ice_dis_vf_mappings(tmp_vf);
1026 		ice_sriov_free_irqs(pf, tmp_vf);
1027 
1028 		vf_ids[to_remap] = tmp_vf->vf_id;
1029 		to_remap += 1;
1030 	}
1031 
1032 	for (int i = 0; i < to_remap; i++) {
1033 		tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
1034 		if (!tmp_vf)
1035 			continue;
1036 
1037 		tmp_vf->first_vector_idx =
1038 			ice_sriov_get_irqs(pf, tmp_vf->num_msix);
1039 		/* there is no need to rebuild VSI as we are only changing the
1040 		 * vector indexes not amount of MSI-X or queues
1041 		 */
1042 		ice_ena_vf_mappings(tmp_vf);
1043 		ice_put_vf(tmp_vf);
1044 	}
1045 }
1046 
1047 /**
1048  * ice_sriov_set_msix_vec_count
1049  * @vf_dev: pointer to pci_dev struct of VF device
1050  * @msix_vec_count: new value for MSI-X amount on this VF
1051  *
1052  * Set requested MSI-X, queues and registers for @vf_dev.
1053  *
1054  * First do some sanity checks like if there are any VFs, if the new value
1055  * is correct etc. Then disable old mapping (MSI-X and queues registers), change
1056  * MSI-X and queues, rebuild VSI and enable new mapping.
1057  *
1058  * If it is possible (driver not binded to VF) try to remap also other VFs to
1059  * linearize irqs register usage.
1060  */
1061 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
1062 {
1063 	struct pci_dev *pdev = pci_physfn(vf_dev);
1064 	struct ice_pf *pf = pci_get_drvdata(pdev);
1065 	u16 prev_msix, prev_queues, queues;
1066 	bool needs_rebuild = false;
1067 	struct ice_vsi *vsi;
1068 	struct ice_vf *vf;
1069 	int id;
1070 
1071 	if (!ice_get_num_vfs(pf))
1072 		return -ENOENT;
1073 
1074 	if (!msix_vec_count)
1075 		return 0;
1076 
1077 	queues = msix_vec_count;
1078 	/* add 1 MSI-X for OICR */
1079 	msix_vec_count += 1;
1080 
1081 	if (queues > min(ice_get_avail_txq_count(pf),
1082 			 ice_get_avail_rxq_count(pf)))
1083 		return -EINVAL;
1084 
1085 	if (msix_vec_count < ICE_MIN_INTR_PER_VF)
1086 		return -EINVAL;
1087 
1088 	/* Transition of PCI VF function number to function_id */
1089 	for (id = 0; id < pci_num_vf(pdev); id++) {
1090 		if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id))
1091 			break;
1092 	}
1093 
1094 	if (id == pci_num_vf(pdev))
1095 		return -ENOENT;
1096 
1097 	vf = ice_get_vf_by_id(pf, id);
1098 
1099 	if (!vf)
1100 		return -ENOENT;
1101 
1102 	vsi = ice_get_vf_vsi(vf);
1103 	if (!vsi)
1104 		return -ENOENT;
1105 
1106 	prev_msix = vf->num_msix;
1107 	prev_queues = vf->num_vf_qs;
1108 
1109 	if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) {
1110 		ice_put_vf(vf);
1111 		return -ENOSPC;
1112 	}
1113 
1114 	ice_dis_vf_mappings(vf);
1115 	ice_sriov_free_irqs(pf, vf);
1116 
1117 	/* Remap all VFs beside the one is now configured */
1118 	ice_sriov_remap_vectors(pf, vf->vf_id);
1119 
1120 	vf->num_msix = msix_vec_count;
1121 	vf->num_vf_qs = queues;
1122 	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1123 	if (vf->first_vector_idx < 0)
1124 		goto unroll;
1125 
1126 	if (ice_vf_reconfig_vsi(vf) || ice_vf_init_host_cfg(vf, vsi)) {
1127 		/* Try to rebuild with previous values */
1128 		needs_rebuild = true;
1129 		goto unroll;
1130 	}
1131 
1132 	dev_info(ice_pf_to_dev(pf),
1133 		 "Changing VF %d resources to %d vectors and %d queues\n",
1134 		 vf->vf_id, vf->num_msix, vf->num_vf_qs);
1135 
1136 	ice_ena_vf_mappings(vf);
1137 	ice_put_vf(vf);
1138 
1139 	return 0;
1140 
1141 unroll:
1142 	dev_info(ice_pf_to_dev(pf),
1143 		 "Can't set %d vectors on VF %d, falling back to %d\n",
1144 		 vf->num_msix, vf->vf_id, prev_msix);
1145 
1146 	vf->num_msix = prev_msix;
1147 	vf->num_vf_qs = prev_queues;
1148 	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1149 	if (vf->first_vector_idx < 0)
1150 		return -EINVAL;
1151 
1152 	if (needs_rebuild) {
1153 		ice_vf_reconfig_vsi(vf);
1154 		ice_vf_init_host_cfg(vf, vsi);
1155 	}
1156 
1157 	ice_ena_vf_mappings(vf);
1158 	ice_put_vf(vf);
1159 
1160 	return -EINVAL;
1161 }
1162 
1163 /**
1164  * ice_sriov_configure - Enable or change number of VFs via sysfs
1165  * @pdev: pointer to a pci_dev structure
1166  * @num_vfs: number of VFs to allocate or 0 to free VFs
1167  *
1168  * This function is called when the user updates the number of VFs in sysfs. On
1169  * success return whatever num_vfs was set to by the caller. Return negative on
1170  * failure.
1171  */
1172 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1173 {
1174 	struct ice_pf *pf = pci_get_drvdata(pdev);
1175 	struct device *dev = ice_pf_to_dev(pf);
1176 	int err;
1177 
1178 	err = ice_check_sriov_allowed(pf);
1179 	if (err)
1180 		return err;
1181 
1182 	if (!num_vfs) {
1183 		if (!pci_vfs_assigned(pdev)) {
1184 			ice_free_vfs(pf);
1185 			return 0;
1186 		}
1187 
1188 		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1189 		return -EBUSY;
1190 	}
1191 
1192 	err = ice_pci_sriov_ena(pf, num_vfs);
1193 	if (err)
1194 		return err;
1195 
1196 	return num_vfs;
1197 }
1198 
1199 /**
1200  * ice_process_vflr_event - Free VF resources via IRQ calls
1201  * @pf: pointer to the PF structure
1202  *
1203  * called from the VFLR IRQ handler to
1204  * free up VF resources and state variables
1205  */
1206 void ice_process_vflr_event(struct ice_pf *pf)
1207 {
1208 	struct ice_hw *hw = &pf->hw;
1209 	struct ice_vf *vf;
1210 	unsigned int bkt;
1211 	u32 reg;
1212 
1213 	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1214 	    !ice_has_vfs(pf))
1215 		return;
1216 
1217 	mutex_lock(&pf->vfs.table_lock);
1218 	ice_for_each_vf(pf, bkt, vf) {
1219 		u32 reg_idx, bit_idx;
1220 
1221 		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1222 		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1223 		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1224 		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1225 		if (reg & BIT(bit_idx))
1226 			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1227 			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1228 	}
1229 	mutex_unlock(&pf->vfs.table_lock);
1230 }
1231 
1232 /**
1233  * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1234  * @pf: PF used to index all VFs
1235  * @pfq: queue index relative to the PF's function space
1236  *
1237  * If no VF is found who owns the pfq then return NULL, otherwise return a
1238  * pointer to the VF who owns the pfq
1239  *
1240  * If this function returns non-NULL, it acquires a reference count of the VF
1241  * structure. The caller is responsible for calling ice_put_vf() to drop this
1242  * reference.
1243  */
1244 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1245 {
1246 	struct ice_vf *vf;
1247 	unsigned int bkt;
1248 
1249 	rcu_read_lock();
1250 	ice_for_each_vf_rcu(pf, bkt, vf) {
1251 		struct ice_vsi *vsi;
1252 		u16 rxq_idx;
1253 
1254 		vsi = ice_get_vf_vsi(vf);
1255 		if (!vsi)
1256 			continue;
1257 
1258 		ice_for_each_rxq(vsi, rxq_idx)
1259 			if (vsi->rxq_map[rxq_idx] == pfq) {
1260 				struct ice_vf *found;
1261 
1262 				if (kref_get_unless_zero(&vf->refcnt))
1263 					found = vf;
1264 				else
1265 					found = NULL;
1266 				rcu_read_unlock();
1267 				return found;
1268 			}
1269 	}
1270 	rcu_read_unlock();
1271 
1272 	return NULL;
1273 }
1274 
1275 /**
1276  * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1277  * @pf: PF used for conversion
1278  * @globalq: global queue index used to convert to PF space queue index
1279  */
1280 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1281 {
1282 	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1283 }
1284 
1285 /**
1286  * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1287  * @pf: PF that the LAN overflow event happened on
1288  * @event: structure holding the event information for the LAN overflow event
1289  *
1290  * Determine if the LAN overflow event was caused by a VF queue. If it was not
1291  * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1292  * reset on the offending VF.
1293  */
1294 void
1295 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1296 {
1297 	u32 gldcb_rtctq, queue;
1298 	struct ice_vf *vf;
1299 
1300 	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1301 	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1302 
1303 	/* event returns device global Rx queue number */
1304 	queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq);
1305 
1306 	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1307 	if (!vf)
1308 		return;
1309 
1310 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1311 	ice_put_vf(vf);
1312 }
1313 
1314 /**
1315  * ice_set_vf_spoofchk
1316  * @netdev: network interface device structure
1317  * @vf_id: VF identifier
1318  * @ena: flag to enable or disable feature
1319  *
1320  * Enable or disable VF spoof checking
1321  */
1322 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1323 {
1324 	struct ice_netdev_priv *np = netdev_priv(netdev);
1325 	struct ice_pf *pf = np->vsi->back;
1326 	struct ice_vsi *vf_vsi;
1327 	struct device *dev;
1328 	struct ice_vf *vf;
1329 	int ret;
1330 
1331 	dev = ice_pf_to_dev(pf);
1332 
1333 	vf = ice_get_vf_by_id(pf, vf_id);
1334 	if (!vf)
1335 		return -EINVAL;
1336 
1337 	ret = ice_check_vf_ready_for_cfg(vf);
1338 	if (ret)
1339 		goto out_put_vf;
1340 
1341 	vf_vsi = ice_get_vf_vsi(vf);
1342 	if (!vf_vsi) {
1343 		netdev_err(netdev, "VSI %d for VF %d is null\n",
1344 			   vf->lan_vsi_idx, vf->vf_id);
1345 		ret = -EINVAL;
1346 		goto out_put_vf;
1347 	}
1348 
1349 	if (vf_vsi->type != ICE_VSI_VF) {
1350 		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1351 			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1352 		ret = -ENODEV;
1353 		goto out_put_vf;
1354 	}
1355 
1356 	if (ena == vf->spoofchk) {
1357 		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1358 		ret = 0;
1359 		goto out_put_vf;
1360 	}
1361 
1362 	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1363 	if (ret)
1364 		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1365 			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1366 	else
1367 		vf->spoofchk = ena;
1368 
1369 out_put_vf:
1370 	ice_put_vf(vf);
1371 	return ret;
1372 }
1373 
1374 /**
1375  * ice_get_vf_cfg
1376  * @netdev: network interface device structure
1377  * @vf_id: VF identifier
1378  * @ivi: VF configuration structure
1379  *
1380  * return VF configuration
1381  */
1382 int
1383 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1384 {
1385 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1386 	struct ice_vf *vf;
1387 	int ret;
1388 
1389 	vf = ice_get_vf_by_id(pf, vf_id);
1390 	if (!vf)
1391 		return -EINVAL;
1392 
1393 	ret = ice_check_vf_ready_for_cfg(vf);
1394 	if (ret)
1395 		goto out_put_vf;
1396 
1397 	ivi->vf = vf_id;
1398 	ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1399 
1400 	/* VF configuration for VLAN and applicable QoS */
1401 	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1402 	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1403 	if (ice_vf_is_port_vlan_ena(vf))
1404 		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1405 
1406 	ivi->trusted = vf->trusted;
1407 	ivi->spoofchk = vf->spoofchk;
1408 	if (!vf->link_forced)
1409 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1410 	else if (vf->link_up)
1411 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1412 	else
1413 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1414 	ivi->max_tx_rate = vf->max_tx_rate;
1415 	ivi->min_tx_rate = vf->min_tx_rate;
1416 
1417 out_put_vf:
1418 	ice_put_vf(vf);
1419 	return ret;
1420 }
1421 
1422 /**
1423  * ice_set_vf_mac
1424  * @netdev: network interface device structure
1425  * @vf_id: VF identifier
1426  * @mac: MAC address
1427  *
1428  * program VF MAC address
1429  */
1430 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1431 {
1432 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1433 	struct ice_vf *vf;
1434 	int ret;
1435 
1436 	if (is_multicast_ether_addr(mac)) {
1437 		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1438 		return -EINVAL;
1439 	}
1440 
1441 	vf = ice_get_vf_by_id(pf, vf_id);
1442 	if (!vf)
1443 		return -EINVAL;
1444 
1445 	/* nothing left to do, unicast MAC already set */
1446 	if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1447 	    ether_addr_equal(vf->hw_lan_addr, mac)) {
1448 		ret = 0;
1449 		goto out_put_vf;
1450 	}
1451 
1452 	ret = ice_check_vf_ready_for_cfg(vf);
1453 	if (ret)
1454 		goto out_put_vf;
1455 
1456 	mutex_lock(&vf->cfg_lock);
1457 
1458 	/* VF is notified of its new MAC via the PF's response to the
1459 	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1460 	 */
1461 	ether_addr_copy(vf->dev_lan_addr, mac);
1462 	ether_addr_copy(vf->hw_lan_addr, mac);
1463 	if (is_zero_ether_addr(mac)) {
1464 		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1465 		vf->pf_set_mac = false;
1466 		netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1467 			    vf->vf_id);
1468 	} else {
1469 		/* PF will add MAC rule for the VF */
1470 		vf->pf_set_mac = true;
1471 		netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1472 			    mac, vf_id);
1473 	}
1474 
1475 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1476 	mutex_unlock(&vf->cfg_lock);
1477 
1478 out_put_vf:
1479 	ice_put_vf(vf);
1480 	return ret;
1481 }
1482 
1483 /**
1484  * ice_set_vf_trust
1485  * @netdev: network interface device structure
1486  * @vf_id: VF identifier
1487  * @trusted: Boolean value to enable/disable trusted VF
1488  *
1489  * Enable or disable a given VF as trusted
1490  */
1491 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1492 {
1493 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1494 	struct ice_vf *vf;
1495 	int ret;
1496 
1497 	vf = ice_get_vf_by_id(pf, vf_id);
1498 	if (!vf)
1499 		return -EINVAL;
1500 
1501 	if (ice_is_eswitch_mode_switchdev(pf)) {
1502 		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1503 		return -EOPNOTSUPP;
1504 	}
1505 
1506 	ret = ice_check_vf_ready_for_cfg(vf);
1507 	if (ret)
1508 		goto out_put_vf;
1509 
1510 	/* Check if already trusted */
1511 	if (trusted == vf->trusted) {
1512 		ret = 0;
1513 		goto out_put_vf;
1514 	}
1515 
1516 	mutex_lock(&vf->cfg_lock);
1517 
1518 	vf->trusted = trusted;
1519 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1520 	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1521 		 vf_id, trusted ? "" : "un");
1522 
1523 	mutex_unlock(&vf->cfg_lock);
1524 
1525 out_put_vf:
1526 	ice_put_vf(vf);
1527 	return ret;
1528 }
1529 
1530 /**
1531  * ice_set_vf_link_state
1532  * @netdev: network interface device structure
1533  * @vf_id: VF identifier
1534  * @link_state: required link state
1535  *
1536  * Set VF's link state, irrespective of physical link state status
1537  */
1538 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1539 {
1540 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1541 	struct ice_vf *vf;
1542 	int ret;
1543 
1544 	vf = ice_get_vf_by_id(pf, vf_id);
1545 	if (!vf)
1546 		return -EINVAL;
1547 
1548 	ret = ice_check_vf_ready_for_cfg(vf);
1549 	if (ret)
1550 		goto out_put_vf;
1551 
1552 	switch (link_state) {
1553 	case IFLA_VF_LINK_STATE_AUTO:
1554 		vf->link_forced = false;
1555 		break;
1556 	case IFLA_VF_LINK_STATE_ENABLE:
1557 		vf->link_forced = true;
1558 		vf->link_up = true;
1559 		break;
1560 	case IFLA_VF_LINK_STATE_DISABLE:
1561 		vf->link_forced = true;
1562 		vf->link_up = false;
1563 		break;
1564 	default:
1565 		ret = -EINVAL;
1566 		goto out_put_vf;
1567 	}
1568 
1569 	ice_vc_notify_vf_link_state(vf);
1570 
1571 out_put_vf:
1572 	ice_put_vf(vf);
1573 	return ret;
1574 }
1575 
1576 /**
1577  * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1578  * @pf: PF associated with VFs
1579  */
1580 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1581 {
1582 	struct ice_vf *vf;
1583 	unsigned int bkt;
1584 	int rate = 0;
1585 
1586 	rcu_read_lock();
1587 	ice_for_each_vf_rcu(pf, bkt, vf)
1588 		rate += vf->min_tx_rate;
1589 	rcu_read_unlock();
1590 
1591 	return rate;
1592 }
1593 
1594 /**
1595  * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1596  * @vf: VF trying to configure min_tx_rate
1597  * @min_tx_rate: min Tx rate in Mbps
1598  *
1599  * Check if the min_tx_rate being passed in will cause oversubscription of total
1600  * min_tx_rate based on the current link speed and all other VFs configured
1601  * min_tx_rate
1602  *
1603  * Return true if the passed min_tx_rate would cause oversubscription, else
1604  * return false
1605  */
1606 static bool
1607 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1608 {
1609 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1610 	int all_vfs_min_tx_rate;
1611 	int link_speed_mbps;
1612 
1613 	if (WARN_ON(!vsi))
1614 		return false;
1615 
1616 	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1617 	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1618 
1619 	/* this VF's previous rate is being overwritten */
1620 	all_vfs_min_tx_rate -= vf->min_tx_rate;
1621 
1622 	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1623 		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1624 			min_tx_rate, vf->vf_id,
1625 			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1626 			link_speed_mbps);
1627 		return true;
1628 	}
1629 
1630 	return false;
1631 }
1632 
1633 /**
1634  * ice_set_vf_bw - set min/max VF bandwidth
1635  * @netdev: network interface device structure
1636  * @vf_id: VF identifier
1637  * @min_tx_rate: Minimum Tx rate in Mbps
1638  * @max_tx_rate: Maximum Tx rate in Mbps
1639  */
1640 int
1641 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1642 	      int max_tx_rate)
1643 {
1644 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1645 	struct ice_vsi *vsi;
1646 	struct device *dev;
1647 	struct ice_vf *vf;
1648 	int ret;
1649 
1650 	dev = ice_pf_to_dev(pf);
1651 
1652 	vf = ice_get_vf_by_id(pf, vf_id);
1653 	if (!vf)
1654 		return -EINVAL;
1655 
1656 	ret = ice_check_vf_ready_for_cfg(vf);
1657 	if (ret)
1658 		goto out_put_vf;
1659 
1660 	vsi = ice_get_vf_vsi(vf);
1661 	if (!vsi) {
1662 		ret = -EINVAL;
1663 		goto out_put_vf;
1664 	}
1665 
1666 	if (min_tx_rate && ice_is_dcb_active(pf)) {
1667 		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1668 		ret = -EOPNOTSUPP;
1669 		goto out_put_vf;
1670 	}
1671 
1672 	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1673 		ret = -EINVAL;
1674 		goto out_put_vf;
1675 	}
1676 
1677 	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1678 		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1679 		if (ret) {
1680 			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1681 				vf->vf_id);
1682 			goto out_put_vf;
1683 		}
1684 
1685 		vf->min_tx_rate = min_tx_rate;
1686 	}
1687 
1688 	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1689 		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1690 		if (ret) {
1691 			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1692 				vf->vf_id);
1693 			goto out_put_vf;
1694 		}
1695 
1696 		vf->max_tx_rate = max_tx_rate;
1697 	}
1698 
1699 out_put_vf:
1700 	ice_put_vf(vf);
1701 	return ret;
1702 }
1703 
1704 /**
1705  * ice_get_vf_stats - populate some stats for the VF
1706  * @netdev: the netdev of the PF
1707  * @vf_id: the host OS identifier (0-255)
1708  * @vf_stats: pointer to the OS memory to be initialized
1709  */
1710 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1711 		     struct ifla_vf_stats *vf_stats)
1712 {
1713 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1714 	struct ice_eth_stats *stats;
1715 	struct ice_vsi *vsi;
1716 	struct ice_vf *vf;
1717 	int ret;
1718 
1719 	vf = ice_get_vf_by_id(pf, vf_id);
1720 	if (!vf)
1721 		return -EINVAL;
1722 
1723 	ret = ice_check_vf_ready_for_cfg(vf);
1724 	if (ret)
1725 		goto out_put_vf;
1726 
1727 	vsi = ice_get_vf_vsi(vf);
1728 	if (!vsi) {
1729 		ret = -EINVAL;
1730 		goto out_put_vf;
1731 	}
1732 
1733 	ice_update_eth_stats(vsi);
1734 	stats = &vsi->eth_stats;
1735 
1736 	memset(vf_stats, 0, sizeof(*vf_stats));
1737 
1738 	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1739 		stats->rx_multicast;
1740 	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1741 		stats->tx_multicast;
1742 	vf_stats->rx_bytes   = stats->rx_bytes;
1743 	vf_stats->tx_bytes   = stats->tx_bytes;
1744 	vf_stats->broadcast  = stats->rx_broadcast;
1745 	vf_stats->multicast  = stats->rx_multicast;
1746 	vf_stats->rx_dropped = stats->rx_discards;
1747 	vf_stats->tx_dropped = stats->tx_discards;
1748 
1749 out_put_vf:
1750 	ice_put_vf(vf);
1751 	return ret;
1752 }
1753 
1754 /**
1755  * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1756  * @hw: hardware structure used to check the VLAN mode
1757  * @vlan_proto: VLAN TPID being checked
1758  *
1759  * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1760  * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1761  * Mode (SVM), then only ETH_P_8021Q is supported.
1762  */
1763 static bool
1764 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1765 {
1766 	bool is_supported = false;
1767 
1768 	switch (vlan_proto) {
1769 	case ETH_P_8021Q:
1770 		is_supported = true;
1771 		break;
1772 	case ETH_P_8021AD:
1773 		if (ice_is_dvm_ena(hw))
1774 			is_supported = true;
1775 		break;
1776 	}
1777 
1778 	return is_supported;
1779 }
1780 
1781 /**
1782  * ice_set_vf_port_vlan
1783  * @netdev: network interface device structure
1784  * @vf_id: VF identifier
1785  * @vlan_id: VLAN ID being set
1786  * @qos: priority setting
1787  * @vlan_proto: VLAN protocol
1788  *
1789  * program VF Port VLAN ID and/or QoS
1790  */
1791 int
1792 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1793 		     __be16 vlan_proto)
1794 {
1795 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1796 	u16 local_vlan_proto = ntohs(vlan_proto);
1797 	struct device *dev;
1798 	struct ice_vf *vf;
1799 	int ret;
1800 
1801 	dev = ice_pf_to_dev(pf);
1802 
1803 	if (vlan_id >= VLAN_N_VID || qos > 7) {
1804 		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1805 			vf_id, vlan_id, qos);
1806 		return -EINVAL;
1807 	}
1808 
1809 	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1810 		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1811 			local_vlan_proto);
1812 		return -EPROTONOSUPPORT;
1813 	}
1814 
1815 	vf = ice_get_vf_by_id(pf, vf_id);
1816 	if (!vf)
1817 		return -EINVAL;
1818 
1819 	ret = ice_check_vf_ready_for_cfg(vf);
1820 	if (ret)
1821 		goto out_put_vf;
1822 
1823 	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1824 	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1825 	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1826 		/* duplicate request, so just return success */
1827 		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1828 			vlan_id, qos, local_vlan_proto);
1829 		ret = 0;
1830 		goto out_put_vf;
1831 	}
1832 
1833 	mutex_lock(&vf->cfg_lock);
1834 
1835 	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1836 	if (ice_vf_is_port_vlan_ena(vf))
1837 		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1838 			 vlan_id, qos, local_vlan_proto, vf_id);
1839 	else
1840 		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1841 
1842 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1843 	mutex_unlock(&vf->cfg_lock);
1844 
1845 out_put_vf:
1846 	ice_put_vf(vf);
1847 	return ret;
1848 }
1849 
1850 /**
1851  * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1852  * @vf: pointer to the VF structure
1853  */
1854 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1855 {
1856 	struct ice_pf *pf = vf->pf;
1857 	struct device *dev;
1858 
1859 	dev = ice_pf_to_dev(pf);
1860 
1861 	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1862 		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1863 		 vf->dev_lan_addr,
1864 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1865 			  ? "on" : "off");
1866 }
1867 
1868 /**
1869  * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1870  * @pf: pointer to the PF structure
1871  *
1872  * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1873  */
1874 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1875 {
1876 	struct device *dev = ice_pf_to_dev(pf);
1877 	struct ice_hw *hw = &pf->hw;
1878 	struct ice_vf *vf;
1879 	unsigned int bkt;
1880 
1881 	/* check that there are pending MDD events to print */
1882 	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1883 		return;
1884 
1885 	/* VF MDD event logs are rate limited to one second intervals */
1886 	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1887 		return;
1888 
1889 	pf->vfs.last_printed_mdd_jiffies = jiffies;
1890 
1891 	mutex_lock(&pf->vfs.table_lock);
1892 	ice_for_each_vf(pf, bkt, vf) {
1893 		/* only print Rx MDD event message if there are new events */
1894 		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1895 			vf->mdd_rx_events.last_printed =
1896 							vf->mdd_rx_events.count;
1897 			ice_print_vf_rx_mdd_event(vf);
1898 		}
1899 
1900 		/* only print Tx MDD event message if there are new events */
1901 		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1902 			vf->mdd_tx_events.last_printed =
1903 							vf->mdd_tx_events.count;
1904 
1905 			dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1906 				 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1907 				 vf->dev_lan_addr);
1908 		}
1909 	}
1910 	mutex_unlock(&pf->vfs.table_lock);
1911 }
1912 
1913 /**
1914  * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1915  * @pf: pointer to the PF structure
1916  *
1917  * Called when recovering from a PF FLR to restore interrupt capability to
1918  * the VFs.
1919  */
1920 void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1921 {
1922 	struct ice_vf *vf;
1923 	u32 bkt;
1924 
1925 	ice_for_each_vf(pf, bkt, vf)
1926 		pci_restore_msi_state(vf->vfdev);
1927 }
1928