1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice_base.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_flow.h" 11 #include "ice_eswitch.h" 12 #include "ice_virtchnl_allowlist.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_vf_vsi_vlan_ops.h" 15 #include "ice_vlan.h" 16 17 /** 18 * ice_free_vf_entries - Free all VF entries from the hash table 19 * @pf: pointer to the PF structure 20 * 21 * Iterate over the VF hash table, removing and releasing all VF entries. 22 * Called during VF teardown or as cleanup during failed VF initialization. 23 */ 24 static void ice_free_vf_entries(struct ice_pf *pf) 25 { 26 struct ice_vfs *vfs = &pf->vfs; 27 struct hlist_node *tmp; 28 struct ice_vf *vf; 29 unsigned int bkt; 30 31 /* Remove all VFs from the hash table and release their main 32 * reference. Once all references to the VF are dropped, ice_put_vf() 33 * will call ice_release_vf which will remove the VF memory. 34 */ 35 lockdep_assert_held(&vfs->table_lock); 36 37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { 38 hash_del_rcu(&vf->entry); 39 ice_put_vf(vf); 40 } 41 } 42 43 /** 44 * ice_free_vf_res - Free a VF's resources 45 * @vf: pointer to the VF info 46 */ 47 static void ice_free_vf_res(struct ice_vf *vf) 48 { 49 struct ice_pf *pf = vf->pf; 50 int i, last_vector_idx; 51 52 /* First, disable VF's configuration API to prevent OS from 53 * accessing the VF's VSI after it's freed or invalidated. 54 */ 55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states); 56 ice_vf_fdir_exit(vf); 57 /* free VF control VSI */ 58 if (vf->ctrl_vsi_idx != ICE_NO_VSI) 59 ice_vf_ctrl_vsi_release(vf); 60 61 /* free VSI and disconnect it from the parent uplink */ 62 if (vf->lan_vsi_idx != ICE_NO_VSI) { 63 ice_vf_vsi_release(vf); 64 vf->num_mac = 0; 65 } 66 67 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1; 68 69 /* clear VF MDD event information */ 70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); 71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); 72 73 /* Disable interrupts so that VF starts in a known state */ 74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { 75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); 76 ice_flush(&pf->hw); 77 } 78 /* reset some of the state variables keeping track of the resources */ 79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); 80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); 81 } 82 83 /** 84 * ice_dis_vf_mappings 85 * @vf: pointer to the VF structure 86 */ 87 static void ice_dis_vf_mappings(struct ice_vf *vf) 88 { 89 struct ice_pf *pf = vf->pf; 90 struct ice_vsi *vsi; 91 struct device *dev; 92 int first, last, v; 93 struct ice_hw *hw; 94 95 hw = &pf->hw; 96 vsi = ice_get_vf_vsi(vf); 97 if (WARN_ON(!vsi)) 98 return; 99 100 dev = ice_pf_to_dev(pf); 101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0); 102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); 103 104 first = vf->first_vector_idx; 105 last = first + vf->num_msix - 1; 106 for (v = first; v <= last; v++) { 107 u32 reg; 108 109 reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) | 110 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 111 wr32(hw, GLINT_VECT2FUNC(v), reg); 112 } 113 114 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) 115 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); 116 else 117 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 118 119 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) 120 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); 121 else 122 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 123 } 124 125 /** 126 * ice_sriov_free_msix_res - Reset/free any used MSIX resources 127 * @pf: pointer to the PF structure 128 * 129 * Since no MSIX entries are taken from the pf->irq_tracker then just clear 130 * the pf->sriov_base_vector. 131 * 132 * Returns 0 on success, and -EINVAL on error. 133 */ 134 static int ice_sriov_free_msix_res(struct ice_pf *pf) 135 { 136 if (!pf) 137 return -EINVAL; 138 139 bitmap_free(pf->sriov_irq_bm); 140 pf->sriov_irq_size = 0; 141 pf->sriov_base_vector = 0; 142 143 return 0; 144 } 145 146 /** 147 * ice_free_vfs - Free all VFs 148 * @pf: pointer to the PF structure 149 */ 150 void ice_free_vfs(struct ice_pf *pf) 151 { 152 struct device *dev = ice_pf_to_dev(pf); 153 struct ice_vfs *vfs = &pf->vfs; 154 struct ice_hw *hw = &pf->hw; 155 struct ice_vf *vf; 156 unsigned int bkt; 157 158 if (!ice_has_vfs(pf)) 159 return; 160 161 while (test_and_set_bit(ICE_VF_DIS, pf->state)) 162 usleep_range(1000, 2000); 163 164 /* Disable IOV before freeing resources. This lets any VF drivers 165 * running in the host get themselves cleaned up before we yank 166 * the carpet out from underneath their feet. 167 */ 168 if (!pci_vfs_assigned(pf->pdev)) 169 pci_disable_sriov(pf->pdev); 170 else 171 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); 172 173 mutex_lock(&vfs->table_lock); 174 175 ice_for_each_vf(pf, bkt, vf) { 176 mutex_lock(&vf->cfg_lock); 177 178 ice_eswitch_detach_vf(pf, vf); 179 ice_dis_vf_qs(vf); 180 181 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { 182 /* disable VF qp mappings and set VF disable state */ 183 ice_dis_vf_mappings(vf); 184 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 185 ice_free_vf_res(vf); 186 } 187 188 if (!pci_vfs_assigned(pf->pdev)) { 189 u32 reg_idx, bit_idx; 190 191 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 192 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 193 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 194 } 195 196 /* clear malicious info since the VF is getting released */ 197 if (!ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) 198 list_del(&vf->mbx_info.list_entry); 199 200 mutex_unlock(&vf->cfg_lock); 201 } 202 203 if (ice_sriov_free_msix_res(pf)) 204 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); 205 206 vfs->num_qps_per = 0; 207 ice_free_vf_entries(pf); 208 209 mutex_unlock(&vfs->table_lock); 210 211 clear_bit(ICE_VF_DIS, pf->state); 212 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 213 } 214 215 /** 216 * ice_vf_vsi_setup - Set up a VF VSI 217 * @vf: VF to setup VSI for 218 * 219 * Returns pointer to the successfully allocated VSI struct on success, 220 * otherwise returns NULL on failure. 221 */ 222 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) 223 { 224 struct ice_vsi_cfg_params params = {}; 225 struct ice_pf *pf = vf->pf; 226 struct ice_vsi *vsi; 227 228 params.type = ICE_VSI_VF; 229 params.port_info = ice_vf_get_port_info(vf); 230 params.vf = vf; 231 params.flags = ICE_VSI_FLAG_INIT; 232 233 vsi = ice_vsi_setup(pf, ¶ms); 234 235 if (!vsi) { 236 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); 237 ice_vf_invalidate_vsi(vf); 238 return NULL; 239 } 240 241 vf->lan_vsi_idx = vsi->idx; 242 243 return vsi; 244 } 245 246 247 /** 248 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware 249 * @vf: VF to enable MSIX mappings for 250 * 251 * Some of the registers need to be indexed/configured using hardware global 252 * device values and other registers need 0-based values, which represent PF 253 * based values. 254 */ 255 static void ice_ena_vf_msix_mappings(struct ice_vf *vf) 256 { 257 int device_based_first_msix, device_based_last_msix; 258 int pf_based_first_msix, pf_based_last_msix, v; 259 struct ice_pf *pf = vf->pf; 260 int device_based_vf_id; 261 struct ice_hw *hw; 262 u32 reg; 263 264 hw = &pf->hw; 265 pf_based_first_msix = vf->first_vector_idx; 266 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1; 267 268 device_based_first_msix = pf_based_first_msix + 269 pf->hw.func_caps.common_cap.msix_vector_first_id; 270 device_based_last_msix = 271 (device_based_first_msix + vf->num_msix) - 1; 272 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; 273 274 reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) | 275 FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) | 276 VPINT_ALLOC_VALID_M; 277 wr32(hw, VPINT_ALLOC(vf->vf_id), reg); 278 279 reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) | 280 FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) | 281 VPINT_ALLOC_PCI_VALID_M; 282 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); 283 284 /* map the interrupts to its functions */ 285 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { 286 reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) | 287 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 288 wr32(hw, GLINT_VECT2FUNC(v), reg); 289 } 290 291 /* Map mailbox interrupt to VF MSI-X vector 0 */ 292 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); 293 } 294 295 /** 296 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF 297 * @vf: VF to enable the mappings for 298 * @max_txq: max Tx queues allowed on the VF's VSI 299 * @max_rxq: max Rx queues allowed on the VF's VSI 300 */ 301 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) 302 { 303 struct device *dev = ice_pf_to_dev(vf->pf); 304 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 305 struct ice_hw *hw = &vf->pf->hw; 306 u32 reg; 307 308 if (WARN_ON(!vsi)) 309 return; 310 311 /* set regardless of mapping mode */ 312 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); 313 314 /* VF Tx queues allocation */ 315 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { 316 /* set the VF PF Tx queue range 317 * VFNUMQ value should be set to (number of queues - 1). A value 318 * of 0 means 1 queue and a value of 255 means 256 queues 319 */ 320 reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) | 321 FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1); 322 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); 323 } else { 324 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 325 } 326 327 /* set regardless of mapping mode */ 328 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); 329 330 /* VF Rx queues allocation */ 331 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { 332 /* set the VF PF Rx queue range 333 * VFNUMQ value should be set to (number of queues - 1). A value 334 * of 0 means 1 queue and a value of 255 means 256 queues 335 */ 336 reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) | 337 FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1); 338 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); 339 } else { 340 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 341 } 342 } 343 344 /** 345 * ice_ena_vf_mappings - enable VF MSIX and queue mapping 346 * @vf: pointer to the VF structure 347 */ 348 static void ice_ena_vf_mappings(struct ice_vf *vf) 349 { 350 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 351 352 if (WARN_ON(!vsi)) 353 return; 354 355 ice_ena_vf_msix_mappings(vf); 356 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); 357 } 358 359 /** 360 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space 361 * @vf: VF to calculate the register index for 362 * @q_vector: a q_vector associated to the VF 363 */ 364 void ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) 365 { 366 if (!vf || !q_vector) 367 return; 368 369 /* always add one to account for the OICR being the first MSIX */ 370 q_vector->vf_reg_idx = q_vector->v_idx + ICE_NONQ_VECS_VF; 371 q_vector->reg_idx = vf->first_vector_idx + q_vector->vf_reg_idx; 372 } 373 374 /** 375 * ice_sriov_set_msix_res - Set any used MSIX resources 376 * @pf: pointer to PF structure 377 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs 378 * 379 * This function allows SR-IOV resources to be taken from the end of the PF's 380 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We 381 * just set the pf->sriov_base_vector and return success. 382 * 383 * If there are not enough resources available, return an error. This should 384 * always be caught by ice_set_per_vf_res(). 385 * 386 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors 387 * in the PF's space available for SR-IOV. 388 */ 389 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) 390 { 391 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 392 int vectors_used = ice_get_max_used_msix_vector(pf); 393 int sriov_base_vector; 394 395 sriov_base_vector = total_vectors - num_msix_needed; 396 397 /* make sure we only grab irq_tracker entries from the list end and 398 * that we have enough available MSIX vectors 399 */ 400 if (sriov_base_vector < vectors_used) 401 return -EINVAL; 402 403 pf->sriov_base_vector = sriov_base_vector; 404 405 return 0; 406 } 407 408 /** 409 * ice_set_per_vf_res - check if vectors and queues are available 410 * @pf: pointer to the PF structure 411 * @num_vfs: the number of SR-IOV VFs being configured 412 * 413 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we 414 * get more vectors and can enable more queues per VF. Note that this does not 415 * grab any vectors from the SW pool already allocated. Also note, that all 416 * vector counts include one for each VF's miscellaneous interrupt vector 417 * (i.e. OICR). 418 * 419 * Minimum VFs - 2 vectors, 1 queue pair 420 * Small VFs - 5 vectors, 4 queue pairs 421 * Medium VFs - 17 vectors, 16 queue pairs 422 * 423 * Second, determine number of queue pairs per VF by starting with a pre-defined 424 * maximum each VF supports. If this is not possible, then we adjust based on 425 * queue pairs available on the device. 426 * 427 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used 428 * by each VF during VF initialization and reset. 429 */ 430 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) 431 { 432 int vectors_used = ice_get_max_used_msix_vector(pf); 433 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; 434 int msix_avail_per_vf, msix_avail_for_sriov; 435 struct device *dev = ice_pf_to_dev(pf); 436 int err; 437 438 lockdep_assert_held(&pf->vfs.table_lock); 439 440 if (!num_vfs) 441 return -EINVAL; 442 443 /* determine MSI-X resources per VF */ 444 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - 445 vectors_used; 446 msix_avail_per_vf = msix_avail_for_sriov / num_vfs; 447 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { 448 num_msix_per_vf = ICE_NUM_VF_MSIX_MED; 449 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { 450 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; 451 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { 452 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; 453 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { 454 num_msix_per_vf = ICE_MIN_INTR_PER_VF; 455 } else { 456 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", 457 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, 458 num_vfs); 459 return -ENOSPC; 460 } 461 462 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 463 ICE_MAX_RSS_QS_PER_VF); 464 avail_qs = ice_get_avail_txq_count(pf) / num_vfs; 465 if (!avail_qs) 466 num_txq = 0; 467 else if (num_txq > avail_qs) 468 num_txq = rounddown_pow_of_two(avail_qs); 469 470 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 471 ICE_MAX_RSS_QS_PER_VF); 472 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; 473 if (!avail_qs) 474 num_rxq = 0; 475 else if (num_rxq > avail_qs) 476 num_rxq = rounddown_pow_of_two(avail_qs); 477 478 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { 479 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", 480 ICE_MIN_QS_PER_VF, num_vfs); 481 return -ENOSPC; 482 } 483 484 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); 485 if (err) { 486 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", 487 num_vfs, err); 488 return err; 489 } 490 491 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ 492 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); 493 pf->vfs.num_msix_per = num_msix_per_vf; 494 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", 495 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); 496 497 return 0; 498 } 499 500 /** 501 * ice_sriov_get_irqs - get irqs for SR-IOV usacase 502 * @pf: pointer to PF structure 503 * @needed: number of irqs to get 504 * 505 * This returns the first MSI-X vector index in PF space that is used by this 506 * VF. This index is used when accessing PF relative registers such as 507 * GLINT_VECT2FUNC and GLINT_DYN_CTL. 508 * This will always be the OICR index in the AVF driver so any functionality 509 * using vf->first_vector_idx for queue configuration_id: id of VF which will 510 * use this irqs 511 * 512 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are 513 * allocated from the end of global irq index. First bit in sriov_irq_bm means 514 * last irq index etc. It simplifies extension of SRIOV vectors. 515 * They will be always located from sriov_base_vector to the last irq 516 * index. While increasing/decreasing sriov_base_vector can be moved. 517 */ 518 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed) 519 { 520 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm, 521 pf->sriov_irq_size, 0, needed, 0); 522 /* conversion from number in bitmap to global irq index */ 523 int index = pf->sriov_irq_size - res - needed; 524 525 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector) 526 return -ENOENT; 527 528 bitmap_set(pf->sriov_irq_bm, res, needed); 529 return index; 530 } 531 532 /** 533 * ice_sriov_free_irqs - free irqs used by the VF 534 * @pf: pointer to PF structure 535 * @vf: pointer to VF structure 536 */ 537 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf) 538 { 539 /* Move back from first vector index to first index in bitmap */ 540 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix; 541 542 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix); 543 vf->first_vector_idx = 0; 544 } 545 546 /** 547 * ice_init_vf_vsi_res - initialize/setup VF VSI resources 548 * @vf: VF to initialize/setup the VSI for 549 * 550 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the 551 * VF VSI's broadcast filter and is only used during initial VF creation. 552 */ 553 static int ice_init_vf_vsi_res(struct ice_vf *vf) 554 { 555 struct ice_pf *pf = vf->pf; 556 struct ice_vsi *vsi; 557 int err; 558 559 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 560 if (vf->first_vector_idx < 0) 561 return -ENOMEM; 562 563 vsi = ice_vf_vsi_setup(vf); 564 if (!vsi) 565 return -ENOMEM; 566 567 err = ice_vf_init_host_cfg(vf, vsi); 568 if (err) 569 goto release_vsi; 570 571 return 0; 572 573 release_vsi: 574 ice_vf_vsi_release(vf); 575 return err; 576 } 577 578 /** 579 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV 580 * @pf: PF the VFs are associated with 581 */ 582 static int ice_start_vfs(struct ice_pf *pf) 583 { 584 struct ice_hw *hw = &pf->hw; 585 unsigned int bkt, it_cnt; 586 struct ice_vf *vf; 587 int retval; 588 589 lockdep_assert_held(&pf->vfs.table_lock); 590 591 it_cnt = 0; 592 ice_for_each_vf(pf, bkt, vf) { 593 vf->vf_ops->clear_reset_trigger(vf); 594 595 retval = ice_init_vf_vsi_res(vf); 596 if (retval) { 597 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", 598 vf->vf_id, retval); 599 goto teardown; 600 } 601 602 retval = ice_eswitch_attach_vf(pf, vf); 603 if (retval) { 604 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d", 605 vf->vf_id, retval); 606 ice_vf_vsi_release(vf); 607 goto teardown; 608 } 609 610 set_bit(ICE_VF_STATE_INIT, vf->vf_states); 611 ice_ena_vf_mappings(vf); 612 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 613 it_cnt++; 614 } 615 616 ice_flush(hw); 617 return 0; 618 619 teardown: 620 ice_for_each_vf(pf, bkt, vf) { 621 if (it_cnt == 0) 622 break; 623 624 ice_dis_vf_mappings(vf); 625 ice_vf_vsi_release(vf); 626 it_cnt--; 627 } 628 629 return retval; 630 } 631 632 /** 633 * ice_sriov_free_vf - Free VF memory after all references are dropped 634 * @vf: pointer to VF to free 635 * 636 * Called by ice_put_vf through ice_release_vf once the last reference to a VF 637 * structure has been dropped. 638 */ 639 static void ice_sriov_free_vf(struct ice_vf *vf) 640 { 641 mutex_destroy(&vf->cfg_lock); 642 643 kfree_rcu(vf, rcu); 644 } 645 646 /** 647 * ice_sriov_clear_reset_state - clears VF Reset status register 648 * @vf: the vf to configure 649 */ 650 static void ice_sriov_clear_reset_state(struct ice_vf *vf) 651 { 652 struct ice_hw *hw = &vf->pf->hw; 653 654 /* Clear the reset status register so that VF immediately sees that 655 * the device is resetting, even if hardware hasn't yet gotten around 656 * to clearing VFGEN_RSTAT for us. 657 */ 658 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); 659 } 660 661 /** 662 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers 663 * @vf: the vf to configure 664 */ 665 static void ice_sriov_clear_mbx_register(struct ice_vf *vf) 666 { 667 struct ice_pf *pf = vf->pf; 668 669 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); 670 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); 671 } 672 673 /** 674 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF 675 * @vf: pointer to VF structure 676 * @is_vflr: true if reset occurred due to VFLR 677 * 678 * Trigger and cleanup after a VF reset for a SR-IOV VF. 679 */ 680 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) 681 { 682 struct ice_pf *pf = vf->pf; 683 u32 reg, reg_idx, bit_idx; 684 unsigned int vf_abs_id, i; 685 struct device *dev; 686 struct ice_hw *hw; 687 688 dev = ice_pf_to_dev(pf); 689 hw = &pf->hw; 690 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; 691 692 /* In the case of a VFLR, HW has already reset the VF and we just need 693 * to clean up. Otherwise we must first trigger the reset using the 694 * VFRTRIG register. 695 */ 696 if (!is_vflr) { 697 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 698 reg |= VPGEN_VFRTRIG_VFSWR_M; 699 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 700 } 701 702 /* clear the VFLR bit in GLGEN_VFLRSTAT */ 703 reg_idx = (vf_abs_id) / 32; 704 bit_idx = (vf_abs_id) % 32; 705 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 706 ice_flush(hw); 707 708 wr32(hw, PF_PCI_CIAA, 709 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); 710 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { 711 reg = rd32(hw, PF_PCI_CIAD); 712 /* no transactions pending so stop polling */ 713 if ((reg & VF_TRANS_PENDING_M) == 0) 714 break; 715 716 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); 717 udelay(ICE_PCI_CIAD_WAIT_DELAY_US); 718 } 719 } 720 721 /** 722 * ice_sriov_poll_reset_status - poll SRIOV VF reset status 723 * @vf: pointer to VF structure 724 * 725 * Returns true when reset is successful, else returns false 726 */ 727 static bool ice_sriov_poll_reset_status(struct ice_vf *vf) 728 { 729 struct ice_pf *pf = vf->pf; 730 unsigned int i; 731 u32 reg; 732 733 for (i = 0; i < 10; i++) { 734 /* VF reset requires driver to first reset the VF and then 735 * poll the status register to make sure that the reset 736 * completed successfully. 737 */ 738 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); 739 if (reg & VPGEN_VFRSTAT_VFRD_M) 740 return true; 741 742 /* only sleep if the reset is not done */ 743 usleep_range(10, 20); 744 } 745 return false; 746 } 747 748 /** 749 * ice_sriov_clear_reset_trigger - enable VF to access hardware 750 * @vf: VF to enabled hardware access for 751 */ 752 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) 753 { 754 struct ice_hw *hw = &vf->pf->hw; 755 u32 reg; 756 757 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 758 reg &= ~VPGEN_VFRTRIG_VFSWR_M; 759 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 760 ice_flush(hw); 761 } 762 763 /** 764 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt 765 * @vf: VF to perform tasks on 766 */ 767 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) 768 { 769 ice_ena_vf_mappings(vf); 770 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 771 } 772 773 static const struct ice_vf_ops ice_sriov_vf_ops = { 774 .reset_type = ICE_VF_RESET, 775 .free = ice_sriov_free_vf, 776 .clear_reset_state = ice_sriov_clear_reset_state, 777 .clear_mbx_register = ice_sriov_clear_mbx_register, 778 .trigger_reset_register = ice_sriov_trigger_reset_register, 779 .poll_reset_status = ice_sriov_poll_reset_status, 780 .clear_reset_trigger = ice_sriov_clear_reset_trigger, 781 .irq_close = NULL, 782 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, 783 }; 784 785 /** 786 * ice_create_vf_entries - Allocate and insert VF entries 787 * @pf: pointer to the PF structure 788 * @num_vfs: the number of VFs to allocate 789 * 790 * Allocate new VF entries and insert them into the hash table. Set some 791 * basic default fields for initializing the new VFs. 792 * 793 * After this function exits, the hash table will have num_vfs entries 794 * inserted. 795 * 796 * Returns 0 on success or an integer error code on failure. 797 */ 798 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) 799 { 800 struct pci_dev *pdev = pf->pdev; 801 struct ice_vfs *vfs = &pf->vfs; 802 struct pci_dev *vfdev = NULL; 803 struct ice_vf *vf; 804 u16 vf_pdev_id; 805 int err, pos; 806 807 lockdep_assert_held(&vfs->table_lock); 808 809 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 810 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id); 811 812 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) { 813 vf = kzalloc(sizeof(*vf), GFP_KERNEL); 814 if (!vf) { 815 err = -ENOMEM; 816 goto err_free_entries; 817 } 818 kref_init(&vf->refcnt); 819 820 vf->pf = pf; 821 vf->vf_id = vf_id; 822 823 /* set sriov vf ops for VFs created during SRIOV flow */ 824 vf->vf_ops = &ice_sriov_vf_ops; 825 826 ice_initialize_vf_entry(vf); 827 828 do { 829 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev); 830 } while (vfdev && vfdev->physfn != pdev); 831 vf->vfdev = vfdev; 832 vf->vf_sw_id = pf->first_sw; 833 834 pci_dev_get(vfdev); 835 836 hash_add_rcu(vfs->table, &vf->entry, vf_id); 837 } 838 839 /* Decrement of refcount done by pci_get_device() inside the loop does 840 * not touch the last iteration's vfdev, so it has to be done manually 841 * to balance pci_dev_get() added within the loop. 842 */ 843 pci_dev_put(vfdev); 844 845 return 0; 846 847 err_free_entries: 848 ice_free_vf_entries(pf); 849 return err; 850 } 851 852 /** 853 * ice_ena_vfs - enable VFs so they are ready to be used 854 * @pf: pointer to the PF structure 855 * @num_vfs: number of VFs to enable 856 */ 857 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) 858 { 859 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 860 struct device *dev = ice_pf_to_dev(pf); 861 struct ice_hw *hw = &pf->hw; 862 int ret; 863 864 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL); 865 if (!pf->sriov_irq_bm) 866 return -ENOMEM; 867 pf->sriov_irq_size = total_vectors; 868 869 /* Disable global interrupt 0 so we don't try to handle the VFLR. */ 870 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 871 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 872 set_bit(ICE_OICR_INTR_DIS, pf->state); 873 ice_flush(hw); 874 875 ret = pci_enable_sriov(pf->pdev, num_vfs); 876 if (ret) 877 goto err_unroll_intr; 878 879 mutex_lock(&pf->vfs.table_lock); 880 881 ret = ice_set_per_vf_res(pf, num_vfs); 882 if (ret) { 883 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", 884 num_vfs, ret); 885 goto err_unroll_sriov; 886 } 887 888 ret = ice_create_vf_entries(pf, num_vfs); 889 if (ret) { 890 dev_err(dev, "Failed to allocate VF entries for %d VFs\n", 891 num_vfs); 892 goto err_unroll_sriov; 893 } 894 895 ret = ice_start_vfs(pf); 896 if (ret) { 897 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); 898 ret = -EAGAIN; 899 goto err_unroll_vf_entries; 900 } 901 902 clear_bit(ICE_VF_DIS, pf->state); 903 904 /* rearm global interrupts */ 905 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) 906 ice_irq_dynamic_ena(hw, NULL, NULL); 907 908 mutex_unlock(&pf->vfs.table_lock); 909 910 return 0; 911 912 err_unroll_vf_entries: 913 ice_free_vf_entries(pf); 914 err_unroll_sriov: 915 mutex_unlock(&pf->vfs.table_lock); 916 pci_disable_sriov(pf->pdev); 917 err_unroll_intr: 918 /* rearm interrupts here */ 919 ice_irq_dynamic_ena(hw, NULL, NULL); 920 clear_bit(ICE_OICR_INTR_DIS, pf->state); 921 bitmap_free(pf->sriov_irq_bm); 922 return ret; 923 } 924 925 /** 926 * ice_pci_sriov_ena - Enable or change number of VFs 927 * @pf: pointer to the PF structure 928 * @num_vfs: number of VFs to allocate 929 * 930 * Returns 0 on success and negative on failure 931 */ 932 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) 933 { 934 struct device *dev = ice_pf_to_dev(pf); 935 int err; 936 937 if (!num_vfs) { 938 ice_free_vfs(pf); 939 return 0; 940 } 941 942 if (num_vfs > pf->vfs.num_supported) { 943 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", 944 num_vfs, pf->vfs.num_supported); 945 return -EOPNOTSUPP; 946 } 947 948 dev_info(dev, "Enabling %d VFs\n", num_vfs); 949 err = ice_ena_vfs(pf, num_vfs); 950 if (err) { 951 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 952 return err; 953 } 954 955 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 956 return 0; 957 } 958 959 /** 960 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks 961 * @pf: PF to enabled SR-IOV on 962 */ 963 static int ice_check_sriov_allowed(struct ice_pf *pf) 964 { 965 struct device *dev = ice_pf_to_dev(pf); 966 967 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { 968 dev_err(dev, "This device is not capable of SR-IOV\n"); 969 return -EOPNOTSUPP; 970 } 971 972 if (ice_is_safe_mode(pf)) { 973 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); 974 return -EOPNOTSUPP; 975 } 976 977 if (!ice_pf_state_is_nominal(pf)) { 978 dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); 979 return -EBUSY; 980 } 981 982 return 0; 983 } 984 985 /** 986 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs 987 * @pdev: pointer to pci_dev struct 988 * 989 * The function is called via sysfs ops 990 */ 991 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev) 992 { 993 struct ice_pf *pf = pci_get_drvdata(pdev); 994 995 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf); 996 } 997 998 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move) 999 { 1000 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf)) 1001 return -ENOMEM; 1002 1003 pf->sriov_base_vector -= move; 1004 return 0; 1005 } 1006 1007 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id) 1008 { 1009 u16 vf_ids[ICE_MAX_SRIOV_VFS]; 1010 struct ice_vf *tmp_vf; 1011 int to_remap = 0, bkt; 1012 1013 /* For better irqs usage try to remap irqs of VFs 1014 * that aren't running yet 1015 */ 1016 ice_for_each_vf(pf, bkt, tmp_vf) { 1017 /* skip VF which is changing the number of MSI-X */ 1018 if (restricted_id == tmp_vf->vf_id || 1019 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states)) 1020 continue; 1021 1022 ice_dis_vf_mappings(tmp_vf); 1023 ice_sriov_free_irqs(pf, tmp_vf); 1024 1025 vf_ids[to_remap] = tmp_vf->vf_id; 1026 to_remap += 1; 1027 } 1028 1029 for (int i = 0; i < to_remap; i++) { 1030 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]); 1031 if (!tmp_vf) 1032 continue; 1033 1034 tmp_vf->first_vector_idx = 1035 ice_sriov_get_irqs(pf, tmp_vf->num_msix); 1036 /* there is no need to rebuild VSI as we are only changing the 1037 * vector indexes not amount of MSI-X or queues 1038 */ 1039 ice_ena_vf_mappings(tmp_vf); 1040 ice_put_vf(tmp_vf); 1041 } 1042 } 1043 1044 /** 1045 * ice_sriov_set_msix_vec_count 1046 * @vf_dev: pointer to pci_dev struct of VF device 1047 * @msix_vec_count: new value for MSI-X amount on this VF 1048 * 1049 * Set requested MSI-X, queues and registers for @vf_dev. 1050 * 1051 * First do some sanity checks like if there are any VFs, if the new value 1052 * is correct etc. Then disable old mapping (MSI-X and queues registers), change 1053 * MSI-X and queues, rebuild VSI and enable new mapping. 1054 * 1055 * If it is possible (driver not binded to VF) try to remap also other VFs to 1056 * linearize irqs register usage. 1057 */ 1058 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count) 1059 { 1060 struct pci_dev *pdev = pci_physfn(vf_dev); 1061 struct ice_pf *pf = pci_get_drvdata(pdev); 1062 u16 prev_msix, prev_queues, queues; 1063 bool needs_rebuild = false; 1064 struct ice_vsi *vsi; 1065 struct ice_vf *vf; 1066 int id; 1067 1068 if (!ice_get_num_vfs(pf)) 1069 return -ENOENT; 1070 1071 if (!msix_vec_count) 1072 return 0; 1073 1074 queues = msix_vec_count; 1075 /* add 1 MSI-X for OICR */ 1076 msix_vec_count += 1; 1077 1078 if (queues > min(ice_get_avail_txq_count(pf), 1079 ice_get_avail_rxq_count(pf))) 1080 return -EINVAL; 1081 1082 if (msix_vec_count < ICE_MIN_INTR_PER_VF) 1083 return -EINVAL; 1084 1085 /* Transition of PCI VF function number to function_id */ 1086 for (id = 0; id < pci_num_vf(pdev); id++) { 1087 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id)) 1088 break; 1089 } 1090 1091 if (id == pci_num_vf(pdev)) 1092 return -ENOENT; 1093 1094 vf = ice_get_vf_by_id(pf, id); 1095 1096 if (!vf) 1097 return -ENOENT; 1098 1099 vsi = ice_get_vf_vsi(vf); 1100 if (!vsi) { 1101 ice_put_vf(vf); 1102 return -ENOENT; 1103 } 1104 1105 prev_msix = vf->num_msix; 1106 prev_queues = vf->num_vf_qs; 1107 1108 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) { 1109 ice_put_vf(vf); 1110 return -ENOSPC; 1111 } 1112 1113 ice_dis_vf_mappings(vf); 1114 ice_sriov_free_irqs(pf, vf); 1115 1116 /* Remap all VFs beside the one is now configured */ 1117 ice_sriov_remap_vectors(pf, vf->vf_id); 1118 1119 vf->num_msix = msix_vec_count; 1120 vf->num_vf_qs = queues; 1121 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1122 if (vf->first_vector_idx < 0) 1123 goto unroll; 1124 1125 vsi->req_txq = queues; 1126 vsi->req_rxq = queues; 1127 1128 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 1129 /* Try to rebuild with previous values */ 1130 needs_rebuild = true; 1131 goto unroll; 1132 } 1133 1134 dev_info(ice_pf_to_dev(pf), 1135 "Changing VF %d resources to %d vectors and %d queues\n", 1136 vf->vf_id, vf->num_msix, vf->num_vf_qs); 1137 1138 ice_ena_vf_mappings(vf); 1139 ice_put_vf(vf); 1140 1141 return 0; 1142 1143 unroll: 1144 dev_info(ice_pf_to_dev(pf), 1145 "Can't set %d vectors on VF %d, falling back to %d\n", 1146 vf->num_msix, vf->vf_id, prev_msix); 1147 1148 vf->num_msix = prev_msix; 1149 vf->num_vf_qs = prev_queues; 1150 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1151 if (vf->first_vector_idx < 0) { 1152 ice_put_vf(vf); 1153 return -EINVAL; 1154 } 1155 1156 if (needs_rebuild) { 1157 vsi->req_txq = prev_queues; 1158 vsi->req_rxq = prev_queues; 1159 1160 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 1161 } 1162 1163 ice_ena_vf_mappings(vf); 1164 ice_put_vf(vf); 1165 1166 return -EINVAL; 1167 } 1168 1169 /** 1170 * ice_sriov_configure - Enable or change number of VFs via sysfs 1171 * @pdev: pointer to a pci_dev structure 1172 * @num_vfs: number of VFs to allocate or 0 to free VFs 1173 * 1174 * This function is called when the user updates the number of VFs in sysfs. On 1175 * success return whatever num_vfs was set to by the caller. Return negative on 1176 * failure. 1177 */ 1178 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) 1179 { 1180 struct ice_pf *pf = pci_get_drvdata(pdev); 1181 struct device *dev = ice_pf_to_dev(pf); 1182 int err; 1183 1184 err = ice_check_sriov_allowed(pf); 1185 if (err) 1186 return err; 1187 1188 if (!num_vfs) { 1189 if (!pci_vfs_assigned(pdev)) { 1190 ice_free_vfs(pf); 1191 return 0; 1192 } 1193 1194 dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); 1195 return -EBUSY; 1196 } 1197 1198 err = ice_pci_sriov_ena(pf, num_vfs); 1199 if (err) 1200 return err; 1201 1202 return num_vfs; 1203 } 1204 1205 /** 1206 * ice_process_vflr_event - Free VF resources via IRQ calls 1207 * @pf: pointer to the PF structure 1208 * 1209 * called from the VFLR IRQ handler to 1210 * free up VF resources and state variables 1211 */ 1212 void ice_process_vflr_event(struct ice_pf *pf) 1213 { 1214 struct ice_hw *hw = &pf->hw; 1215 struct ice_vf *vf; 1216 unsigned int bkt; 1217 u32 reg; 1218 1219 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 1220 !ice_has_vfs(pf)) 1221 return; 1222 1223 mutex_lock(&pf->vfs.table_lock); 1224 ice_for_each_vf(pf, bkt, vf) { 1225 u32 reg_idx, bit_idx; 1226 1227 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 1228 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 1229 /* read GLGEN_VFLRSTAT register to find out the flr VFs */ 1230 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); 1231 if (reg & BIT(bit_idx)) 1232 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ 1233 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 1234 } 1235 mutex_unlock(&pf->vfs.table_lock); 1236 } 1237 1238 /** 1239 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in 1240 * @pf: PF used to index all VFs 1241 * @pfq: queue index relative to the PF's function space 1242 * 1243 * If no VF is found who owns the pfq then return NULL, otherwise return a 1244 * pointer to the VF who owns the pfq 1245 * 1246 * If this function returns non-NULL, it acquires a reference count of the VF 1247 * structure. The caller is responsible for calling ice_put_vf() to drop this 1248 * reference. 1249 */ 1250 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) 1251 { 1252 struct ice_vf *vf; 1253 unsigned int bkt; 1254 1255 rcu_read_lock(); 1256 ice_for_each_vf_rcu(pf, bkt, vf) { 1257 struct ice_vsi *vsi; 1258 u16 rxq_idx; 1259 1260 vsi = ice_get_vf_vsi(vf); 1261 if (!vsi) 1262 continue; 1263 1264 ice_for_each_rxq(vsi, rxq_idx) 1265 if (vsi->rxq_map[rxq_idx] == pfq) { 1266 struct ice_vf *found; 1267 1268 if (kref_get_unless_zero(&vf->refcnt)) 1269 found = vf; 1270 else 1271 found = NULL; 1272 rcu_read_unlock(); 1273 return found; 1274 } 1275 } 1276 rcu_read_unlock(); 1277 1278 return NULL; 1279 } 1280 1281 /** 1282 * ice_globalq_to_pfq - convert from global queue index to PF space queue index 1283 * @pf: PF used for conversion 1284 * @globalq: global queue index used to convert to PF space queue index 1285 */ 1286 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) 1287 { 1288 return globalq - pf->hw.func_caps.common_cap.rxq_first_id; 1289 } 1290 1291 /** 1292 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF 1293 * @pf: PF that the LAN overflow event happened on 1294 * @event: structure holding the event information for the LAN overflow event 1295 * 1296 * Determine if the LAN overflow event was caused by a VF queue. If it was not 1297 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a 1298 * reset on the offending VF. 1299 */ 1300 void 1301 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1302 { 1303 u32 gldcb_rtctq, queue; 1304 struct ice_vf *vf; 1305 1306 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); 1307 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); 1308 1309 /* event returns device global Rx queue number */ 1310 queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq); 1311 1312 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); 1313 if (!vf) 1314 return; 1315 1316 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1317 ice_put_vf(vf); 1318 } 1319 1320 /** 1321 * ice_set_vf_spoofchk 1322 * @netdev: network interface device structure 1323 * @vf_id: VF identifier 1324 * @ena: flag to enable or disable feature 1325 * 1326 * Enable or disable VF spoof checking 1327 */ 1328 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) 1329 { 1330 struct ice_netdev_priv *np = netdev_priv(netdev); 1331 struct ice_pf *pf = np->vsi->back; 1332 struct ice_vsi *vf_vsi; 1333 struct device *dev; 1334 struct ice_vf *vf; 1335 int ret; 1336 1337 dev = ice_pf_to_dev(pf); 1338 1339 vf = ice_get_vf_by_id(pf, vf_id); 1340 if (!vf) 1341 return -EINVAL; 1342 1343 ret = ice_check_vf_ready_for_cfg(vf); 1344 if (ret) 1345 goto out_put_vf; 1346 1347 vf_vsi = ice_get_vf_vsi(vf); 1348 if (!vf_vsi) { 1349 netdev_err(netdev, "VSI %d for VF %d is null\n", 1350 vf->lan_vsi_idx, vf->vf_id); 1351 ret = -EINVAL; 1352 goto out_put_vf; 1353 } 1354 1355 if (vf_vsi->type != ICE_VSI_VF) { 1356 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", 1357 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); 1358 ret = -ENODEV; 1359 goto out_put_vf; 1360 } 1361 1362 if (ena == vf->spoofchk) { 1363 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); 1364 ret = 0; 1365 goto out_put_vf; 1366 } 1367 1368 ret = ice_vsi_apply_spoofchk(vf_vsi, ena); 1369 if (ret) 1370 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", 1371 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); 1372 else 1373 vf->spoofchk = ena; 1374 1375 out_put_vf: 1376 ice_put_vf(vf); 1377 return ret; 1378 } 1379 1380 /** 1381 * ice_get_vf_cfg 1382 * @netdev: network interface device structure 1383 * @vf_id: VF identifier 1384 * @ivi: VF configuration structure 1385 * 1386 * return VF configuration 1387 */ 1388 int 1389 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) 1390 { 1391 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1392 struct ice_vf *vf; 1393 int ret; 1394 1395 vf = ice_get_vf_by_id(pf, vf_id); 1396 if (!vf) 1397 return -EINVAL; 1398 1399 ret = ice_check_vf_ready_for_cfg(vf); 1400 if (ret) 1401 goto out_put_vf; 1402 1403 ivi->vf = vf_id; 1404 ether_addr_copy(ivi->mac, vf->hw_lan_addr); 1405 1406 /* VF configuration for VLAN and applicable QoS */ 1407 ivi->vlan = ice_vf_get_port_vlan_id(vf); 1408 ivi->qos = ice_vf_get_port_vlan_prio(vf); 1409 if (ice_vf_is_port_vlan_ena(vf)) 1410 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); 1411 1412 ivi->trusted = vf->trusted; 1413 ivi->spoofchk = vf->spoofchk; 1414 if (!vf->link_forced) 1415 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 1416 else if (vf->link_up) 1417 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 1418 else 1419 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 1420 ivi->max_tx_rate = vf->max_tx_rate; 1421 ivi->min_tx_rate = vf->min_tx_rate; 1422 1423 out_put_vf: 1424 ice_put_vf(vf); 1425 return ret; 1426 } 1427 1428 /** 1429 * __ice_set_vf_mac - program VF MAC address 1430 * @pf: PF to be configure 1431 * @vf_id: VF identifier 1432 * @mac: MAC address 1433 * 1434 * program VF MAC address 1435 * Return: zero on success or an error code on failure 1436 */ 1437 int __ice_set_vf_mac(struct ice_pf *pf, u16 vf_id, const u8 *mac) 1438 { 1439 struct device *dev; 1440 struct ice_vf *vf; 1441 int ret; 1442 1443 dev = ice_pf_to_dev(pf); 1444 if (is_multicast_ether_addr(mac)) { 1445 dev_err(dev, "%pM not a valid unicast address\n", mac); 1446 return -EINVAL; 1447 } 1448 1449 vf = ice_get_vf_by_id(pf, vf_id); 1450 if (!vf) 1451 return -EINVAL; 1452 1453 /* nothing left to do, unicast MAC already set */ 1454 if (ether_addr_equal(vf->dev_lan_addr, mac) && 1455 ether_addr_equal(vf->hw_lan_addr, mac)) { 1456 ret = 0; 1457 goto out_put_vf; 1458 } 1459 1460 ret = ice_check_vf_ready_for_cfg(vf); 1461 if (ret) 1462 goto out_put_vf; 1463 1464 mutex_lock(&vf->cfg_lock); 1465 1466 /* VF is notified of its new MAC via the PF's response to the 1467 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset 1468 */ 1469 ether_addr_copy(vf->dev_lan_addr, mac); 1470 ether_addr_copy(vf->hw_lan_addr, mac); 1471 if (is_zero_ether_addr(mac)) { 1472 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ 1473 vf->pf_set_mac = false; 1474 dev_info(dev, "Removing MAC on VF %d. VF driver will be reinitialized\n", 1475 vf->vf_id); 1476 } else { 1477 /* PF will add MAC rule for the VF */ 1478 vf->pf_set_mac = true; 1479 dev_info(dev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", 1480 mac, vf_id); 1481 } 1482 1483 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1484 mutex_unlock(&vf->cfg_lock); 1485 1486 out_put_vf: 1487 ice_put_vf(vf); 1488 return ret; 1489 } 1490 1491 /** 1492 * ice_set_vf_mac - .ndo_set_vf_mac handler 1493 * @netdev: network interface device structure 1494 * @vf_id: VF identifier 1495 * @mac: MAC address 1496 * 1497 * program VF MAC address 1498 * Return: zero on success or an error code on failure 1499 */ 1500 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 1501 { 1502 return __ice_set_vf_mac(ice_netdev_to_pf(netdev), vf_id, mac); 1503 } 1504 1505 /** 1506 * ice_set_vf_trust 1507 * @netdev: network interface device structure 1508 * @vf_id: VF identifier 1509 * @trusted: Boolean value to enable/disable trusted VF 1510 * 1511 * Enable or disable a given VF as trusted 1512 */ 1513 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) 1514 { 1515 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1516 struct ice_vf *vf; 1517 int ret; 1518 1519 vf = ice_get_vf_by_id(pf, vf_id); 1520 if (!vf) 1521 return -EINVAL; 1522 1523 if (ice_is_eswitch_mode_switchdev(pf)) { 1524 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); 1525 return -EOPNOTSUPP; 1526 } 1527 1528 ret = ice_check_vf_ready_for_cfg(vf); 1529 if (ret) 1530 goto out_put_vf; 1531 1532 /* Check if already trusted */ 1533 if (trusted == vf->trusted) { 1534 ret = 0; 1535 goto out_put_vf; 1536 } 1537 1538 mutex_lock(&vf->cfg_lock); 1539 1540 vf->trusted = trusted; 1541 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1542 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", 1543 vf_id, trusted ? "" : "un"); 1544 1545 mutex_unlock(&vf->cfg_lock); 1546 1547 out_put_vf: 1548 ice_put_vf(vf); 1549 return ret; 1550 } 1551 1552 /** 1553 * ice_set_vf_link_state 1554 * @netdev: network interface device structure 1555 * @vf_id: VF identifier 1556 * @link_state: required link state 1557 * 1558 * Set VF's link state, irrespective of physical link state status 1559 */ 1560 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) 1561 { 1562 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1563 struct ice_vf *vf; 1564 int ret; 1565 1566 vf = ice_get_vf_by_id(pf, vf_id); 1567 if (!vf) 1568 return -EINVAL; 1569 1570 ret = ice_check_vf_ready_for_cfg(vf); 1571 if (ret) 1572 goto out_put_vf; 1573 1574 switch (link_state) { 1575 case IFLA_VF_LINK_STATE_AUTO: 1576 vf->link_forced = false; 1577 break; 1578 case IFLA_VF_LINK_STATE_ENABLE: 1579 vf->link_forced = true; 1580 vf->link_up = true; 1581 break; 1582 case IFLA_VF_LINK_STATE_DISABLE: 1583 vf->link_forced = true; 1584 vf->link_up = false; 1585 break; 1586 default: 1587 ret = -EINVAL; 1588 goto out_put_vf; 1589 } 1590 1591 ice_vc_notify_vf_link_state(vf); 1592 1593 out_put_vf: 1594 ice_put_vf(vf); 1595 return ret; 1596 } 1597 1598 /** 1599 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs 1600 * @pf: PF associated with VFs 1601 */ 1602 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) 1603 { 1604 struct ice_vf *vf; 1605 unsigned int bkt; 1606 int rate = 0; 1607 1608 rcu_read_lock(); 1609 ice_for_each_vf_rcu(pf, bkt, vf) 1610 rate += vf->min_tx_rate; 1611 rcu_read_unlock(); 1612 1613 return rate; 1614 } 1615 1616 /** 1617 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription 1618 * @vf: VF trying to configure min_tx_rate 1619 * @min_tx_rate: min Tx rate in Mbps 1620 * 1621 * Check if the min_tx_rate being passed in will cause oversubscription of total 1622 * min_tx_rate based on the current link speed and all other VFs configured 1623 * min_tx_rate 1624 * 1625 * Return true if the passed min_tx_rate would cause oversubscription, else 1626 * return false 1627 */ 1628 static bool 1629 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) 1630 { 1631 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 1632 int all_vfs_min_tx_rate; 1633 int link_speed_mbps; 1634 1635 if (WARN_ON(!vsi)) 1636 return false; 1637 1638 link_speed_mbps = ice_get_link_speed_mbps(vsi); 1639 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); 1640 1641 /* this VF's previous rate is being overwritten */ 1642 all_vfs_min_tx_rate -= vf->min_tx_rate; 1643 1644 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { 1645 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", 1646 min_tx_rate, vf->vf_id, 1647 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, 1648 link_speed_mbps); 1649 return true; 1650 } 1651 1652 return false; 1653 } 1654 1655 /** 1656 * ice_set_vf_bw - set min/max VF bandwidth 1657 * @netdev: network interface device structure 1658 * @vf_id: VF identifier 1659 * @min_tx_rate: Minimum Tx rate in Mbps 1660 * @max_tx_rate: Maximum Tx rate in Mbps 1661 */ 1662 int 1663 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, 1664 int max_tx_rate) 1665 { 1666 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1667 struct ice_vsi *vsi; 1668 struct device *dev; 1669 struct ice_vf *vf; 1670 int ret; 1671 1672 dev = ice_pf_to_dev(pf); 1673 1674 vf = ice_get_vf_by_id(pf, vf_id); 1675 if (!vf) 1676 return -EINVAL; 1677 1678 ret = ice_check_vf_ready_for_cfg(vf); 1679 if (ret) 1680 goto out_put_vf; 1681 1682 vsi = ice_get_vf_vsi(vf); 1683 if (!vsi) { 1684 ret = -EINVAL; 1685 goto out_put_vf; 1686 } 1687 1688 if (min_tx_rate && ice_is_dcb_active(pf)) { 1689 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); 1690 ret = -EOPNOTSUPP; 1691 goto out_put_vf; 1692 } 1693 1694 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { 1695 ret = -EINVAL; 1696 goto out_put_vf; 1697 } 1698 1699 if (vf->min_tx_rate != (unsigned int)min_tx_rate) { 1700 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); 1701 if (ret) { 1702 dev_err(dev, "Unable to set min-tx-rate for VF %d\n", 1703 vf->vf_id); 1704 goto out_put_vf; 1705 } 1706 1707 vf->min_tx_rate = min_tx_rate; 1708 } 1709 1710 if (vf->max_tx_rate != (unsigned int)max_tx_rate) { 1711 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); 1712 if (ret) { 1713 dev_err(dev, "Unable to set max-tx-rate for VF %d\n", 1714 vf->vf_id); 1715 goto out_put_vf; 1716 } 1717 1718 vf->max_tx_rate = max_tx_rate; 1719 } 1720 1721 out_put_vf: 1722 ice_put_vf(vf); 1723 return ret; 1724 } 1725 1726 /** 1727 * ice_get_vf_stats - populate some stats for the VF 1728 * @netdev: the netdev of the PF 1729 * @vf_id: the host OS identifier (0-255) 1730 * @vf_stats: pointer to the OS memory to be initialized 1731 */ 1732 int ice_get_vf_stats(struct net_device *netdev, int vf_id, 1733 struct ifla_vf_stats *vf_stats) 1734 { 1735 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1736 struct ice_eth_stats *stats; 1737 struct ice_vsi *vsi; 1738 struct ice_vf *vf; 1739 int ret; 1740 1741 vf = ice_get_vf_by_id(pf, vf_id); 1742 if (!vf) 1743 return -EINVAL; 1744 1745 ret = ice_check_vf_ready_for_cfg(vf); 1746 if (ret) 1747 goto out_put_vf; 1748 1749 vsi = ice_get_vf_vsi(vf); 1750 if (!vsi) { 1751 ret = -EINVAL; 1752 goto out_put_vf; 1753 } 1754 1755 ice_update_eth_stats(vsi); 1756 stats = &vsi->eth_stats; 1757 1758 memset(vf_stats, 0, sizeof(*vf_stats)); 1759 1760 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + 1761 stats->rx_multicast; 1762 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + 1763 stats->tx_multicast; 1764 vf_stats->rx_bytes = stats->rx_bytes; 1765 vf_stats->tx_bytes = stats->tx_bytes; 1766 vf_stats->broadcast = stats->rx_broadcast; 1767 vf_stats->multicast = stats->rx_multicast; 1768 vf_stats->rx_dropped = stats->rx_discards; 1769 vf_stats->tx_dropped = stats->tx_discards; 1770 1771 out_put_vf: 1772 ice_put_vf(vf); 1773 return ret; 1774 } 1775 1776 /** 1777 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported 1778 * @hw: hardware structure used to check the VLAN mode 1779 * @vlan_proto: VLAN TPID being checked 1780 * 1781 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q 1782 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN 1783 * Mode (SVM), then only ETH_P_8021Q is supported. 1784 */ 1785 static bool 1786 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) 1787 { 1788 bool is_supported = false; 1789 1790 switch (vlan_proto) { 1791 case ETH_P_8021Q: 1792 is_supported = true; 1793 break; 1794 case ETH_P_8021AD: 1795 if (ice_is_dvm_ena(hw)) 1796 is_supported = true; 1797 break; 1798 } 1799 1800 return is_supported; 1801 } 1802 1803 /** 1804 * ice_set_vf_port_vlan 1805 * @netdev: network interface device structure 1806 * @vf_id: VF identifier 1807 * @vlan_id: VLAN ID being set 1808 * @qos: priority setting 1809 * @vlan_proto: VLAN protocol 1810 * 1811 * program VF Port VLAN ID and/or QoS 1812 */ 1813 int 1814 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, 1815 __be16 vlan_proto) 1816 { 1817 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1818 u16 local_vlan_proto = ntohs(vlan_proto); 1819 struct device *dev; 1820 struct ice_vf *vf; 1821 int ret; 1822 1823 dev = ice_pf_to_dev(pf); 1824 1825 if (vlan_id >= VLAN_N_VID || qos > 7) { 1826 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", 1827 vf_id, vlan_id, qos); 1828 return -EINVAL; 1829 } 1830 1831 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { 1832 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", 1833 local_vlan_proto); 1834 return -EPROTONOSUPPORT; 1835 } 1836 1837 vf = ice_get_vf_by_id(pf, vf_id); 1838 if (!vf) 1839 return -EINVAL; 1840 1841 ret = ice_check_vf_ready_for_cfg(vf); 1842 if (ret) 1843 goto out_put_vf; 1844 1845 if (ice_vf_get_port_vlan_prio(vf) == qos && 1846 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && 1847 ice_vf_get_port_vlan_id(vf) == vlan_id) { 1848 /* duplicate request, so just return success */ 1849 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", 1850 vlan_id, qos, local_vlan_proto); 1851 ret = 0; 1852 goto out_put_vf; 1853 } 1854 1855 mutex_lock(&vf->cfg_lock); 1856 1857 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); 1858 if (ice_vf_is_port_vlan_ena(vf)) 1859 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", 1860 vlan_id, qos, local_vlan_proto, vf_id); 1861 else 1862 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); 1863 1864 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1865 mutex_unlock(&vf->cfg_lock); 1866 1867 out_put_vf: 1868 ice_put_vf(vf); 1869 return ret; 1870 } 1871 1872 /** 1873 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event 1874 * @vf: pointer to the VF structure 1875 */ 1876 void ice_print_vf_rx_mdd_event(struct ice_vf *vf) 1877 { 1878 struct ice_pf *pf = vf->pf; 1879 struct device *dev; 1880 1881 dev = ice_pf_to_dev(pf); 1882 1883 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1884 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, 1885 vf->dev_lan_addr, 1886 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1887 ? "on" : "off"); 1888 } 1889 1890 /** 1891 * ice_print_vf_tx_mdd_event - print VF Tx malicious driver detect event 1892 * @vf: pointer to the VF structure 1893 */ 1894 void ice_print_vf_tx_mdd_event(struct ice_vf *vf) 1895 { 1896 struct ice_pf *pf = vf->pf; 1897 struct device *dev; 1898 1899 dev = ice_pf_to_dev(pf); 1900 1901 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1902 vf->mdd_tx_events.count, pf->hw.pf_id, vf->vf_id, 1903 vf->dev_lan_addr, 1904 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1905 ? "on" : "off"); 1906 } 1907 1908 /** 1909 * ice_print_vfs_mdd_events - print VFs malicious driver detect event 1910 * @pf: pointer to the PF structure 1911 * 1912 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. 1913 */ 1914 void ice_print_vfs_mdd_events(struct ice_pf *pf) 1915 { 1916 struct ice_vf *vf; 1917 unsigned int bkt; 1918 1919 /* check that there are pending MDD events to print */ 1920 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) 1921 return; 1922 1923 /* VF MDD event logs are rate limited to one second intervals */ 1924 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) 1925 return; 1926 1927 pf->vfs.last_printed_mdd_jiffies = jiffies; 1928 1929 mutex_lock(&pf->vfs.table_lock); 1930 ice_for_each_vf(pf, bkt, vf) { 1931 /* only print Rx MDD event message if there are new events */ 1932 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 1933 vf->mdd_rx_events.last_printed = 1934 vf->mdd_rx_events.count; 1935 ice_print_vf_rx_mdd_event(vf); 1936 } 1937 1938 /* only print Tx MDD event message if there are new events */ 1939 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 1940 vf->mdd_tx_events.last_printed = 1941 vf->mdd_tx_events.count; 1942 ice_print_vf_tx_mdd_event(vf); 1943 } 1944 } 1945 mutex_unlock(&pf->vfs.table_lock); 1946 } 1947 1948 /** 1949 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR 1950 * @pf: pointer to the PF structure 1951 * 1952 * Called when recovering from a PF FLR to restore interrupt capability to 1953 * the VFs. 1954 */ 1955 void ice_restore_all_vfs_msi_state(struct ice_pf *pf) 1956 { 1957 struct ice_vf *vf; 1958 u32 bkt; 1959 1960 ice_for_each_vf(pf, bkt, vf) 1961 pci_restore_msi_state(vf->vfdev); 1962 } 1963