1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice_base.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_flow.h" 11 #include "ice_eswitch.h" 12 #include "ice_virtchnl_allowlist.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_vf_vsi_vlan_ops.h" 15 #include "ice_vlan.h" 16 17 /** 18 * ice_free_vf_entries - Free all VF entries from the hash table 19 * @pf: pointer to the PF structure 20 * 21 * Iterate over the VF hash table, removing and releasing all VF entries. 22 * Called during VF teardown or as cleanup during failed VF initialization. 23 */ 24 static void ice_free_vf_entries(struct ice_pf *pf) 25 { 26 struct ice_vfs *vfs = &pf->vfs; 27 struct hlist_node *tmp; 28 struct ice_vf *vf; 29 unsigned int bkt; 30 31 /* Remove all VFs from the hash table and release their main 32 * reference. Once all references to the VF are dropped, ice_put_vf() 33 * will call ice_release_vf which will remove the VF memory. 34 */ 35 lockdep_assert_held(&vfs->table_lock); 36 37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { 38 hash_del_rcu(&vf->entry); 39 ice_put_vf(vf); 40 } 41 } 42 43 /** 44 * ice_free_vf_res - Free a VF's resources 45 * @vf: pointer to the VF info 46 */ 47 static void ice_free_vf_res(struct ice_vf *vf) 48 { 49 struct ice_pf *pf = vf->pf; 50 int i, last_vector_idx; 51 52 /* First, disable VF's configuration API to prevent OS from 53 * accessing the VF's VSI after it's freed or invalidated. 54 */ 55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states); 56 ice_vf_fdir_exit(vf); 57 /* free VF control VSI */ 58 if (vf->ctrl_vsi_idx != ICE_NO_VSI) 59 ice_vf_ctrl_vsi_release(vf); 60 61 /* free VSI and disconnect it from the parent uplink */ 62 if (vf->lan_vsi_idx != ICE_NO_VSI) { 63 ice_vf_vsi_release(vf); 64 vf->num_mac = 0; 65 } 66 67 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1; 68 69 /* clear VF MDD event information */ 70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); 71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); 72 73 /* Disable interrupts so that VF starts in a known state */ 74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { 75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); 76 ice_flush(&pf->hw); 77 } 78 /* reset some of the state variables keeping track of the resources */ 79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); 80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); 81 } 82 83 /** 84 * ice_dis_vf_mappings 85 * @vf: pointer to the VF structure 86 */ 87 static void ice_dis_vf_mappings(struct ice_vf *vf) 88 { 89 struct ice_pf *pf = vf->pf; 90 struct ice_vsi *vsi; 91 struct device *dev; 92 int first, last, v; 93 struct ice_hw *hw; 94 95 hw = &pf->hw; 96 vsi = ice_get_vf_vsi(vf); 97 if (WARN_ON(!vsi)) 98 return; 99 100 dev = ice_pf_to_dev(pf); 101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0); 102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); 103 104 first = vf->first_vector_idx; 105 last = first + vf->num_msix - 1; 106 for (v = first; v <= last; v++) { 107 u32 reg; 108 109 reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) | 110 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 111 wr32(hw, GLINT_VECT2FUNC(v), reg); 112 } 113 114 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) 115 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); 116 else 117 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 118 119 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) 120 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); 121 else 122 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 123 } 124 125 /** 126 * ice_sriov_free_msix_res - Reset/free any used MSIX resources 127 * @pf: pointer to the PF structure 128 * 129 * Since no MSIX entries are taken from the pf->irq_tracker then just clear 130 * the pf->sriov_base_vector. 131 * 132 * Returns 0 on success, and -EINVAL on error. 133 */ 134 static int ice_sriov_free_msix_res(struct ice_pf *pf) 135 { 136 if (!pf) 137 return -EINVAL; 138 139 bitmap_free(pf->sriov_irq_bm); 140 pf->sriov_irq_size = 0; 141 pf->sriov_base_vector = 0; 142 143 return 0; 144 } 145 146 /** 147 * ice_free_vfs - Free all VFs 148 * @pf: pointer to the PF structure 149 */ 150 void ice_free_vfs(struct ice_pf *pf) 151 { 152 struct device *dev = ice_pf_to_dev(pf); 153 struct ice_vfs *vfs = &pf->vfs; 154 struct ice_hw *hw = &pf->hw; 155 struct ice_vf *vf; 156 unsigned int bkt; 157 158 if (!ice_has_vfs(pf)) 159 return; 160 161 while (test_and_set_bit(ICE_VF_DIS, pf->state)) 162 usleep_range(1000, 2000); 163 164 /* Disable IOV before freeing resources. This lets any VF drivers 165 * running in the host get themselves cleaned up before we yank 166 * the carpet out from underneath their feet. 167 */ 168 if (!pci_vfs_assigned(pf->pdev)) 169 pci_disable_sriov(pf->pdev); 170 else 171 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); 172 173 ice_eswitch_reserve_cp_queues(pf, -ice_get_num_vfs(pf)); 174 175 mutex_lock(&vfs->table_lock); 176 177 ice_for_each_vf(pf, bkt, vf) { 178 mutex_lock(&vf->cfg_lock); 179 180 ice_eswitch_detach(pf, vf); 181 ice_dis_vf_qs(vf); 182 183 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { 184 /* disable VF qp mappings and set VF disable state */ 185 ice_dis_vf_mappings(vf); 186 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 187 ice_free_vf_res(vf); 188 } 189 190 if (!pci_vfs_assigned(pf->pdev)) { 191 u32 reg_idx, bit_idx; 192 193 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 194 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 195 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 196 } 197 198 /* clear malicious info since the VF is getting released */ 199 list_del(&vf->mbx_info.list_entry); 200 201 mutex_unlock(&vf->cfg_lock); 202 } 203 204 if (ice_sriov_free_msix_res(pf)) 205 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); 206 207 vfs->num_qps_per = 0; 208 ice_free_vf_entries(pf); 209 210 mutex_unlock(&vfs->table_lock); 211 212 clear_bit(ICE_VF_DIS, pf->state); 213 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 214 } 215 216 /** 217 * ice_vf_vsi_setup - Set up a VF VSI 218 * @vf: VF to setup VSI for 219 * 220 * Returns pointer to the successfully allocated VSI struct on success, 221 * otherwise returns NULL on failure. 222 */ 223 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) 224 { 225 struct ice_vsi_cfg_params params = {}; 226 struct ice_pf *pf = vf->pf; 227 struct ice_vsi *vsi; 228 229 params.type = ICE_VSI_VF; 230 params.pi = ice_vf_get_port_info(vf); 231 params.vf = vf; 232 params.flags = ICE_VSI_FLAG_INIT; 233 234 vsi = ice_vsi_setup(pf, ¶ms); 235 236 if (!vsi) { 237 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); 238 ice_vf_invalidate_vsi(vf); 239 return NULL; 240 } 241 242 vf->lan_vsi_idx = vsi->idx; 243 244 return vsi; 245 } 246 247 248 /** 249 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware 250 * @vf: VF to enable MSIX mappings for 251 * 252 * Some of the registers need to be indexed/configured using hardware global 253 * device values and other registers need 0-based values, which represent PF 254 * based values. 255 */ 256 static void ice_ena_vf_msix_mappings(struct ice_vf *vf) 257 { 258 int device_based_first_msix, device_based_last_msix; 259 int pf_based_first_msix, pf_based_last_msix, v; 260 struct ice_pf *pf = vf->pf; 261 int device_based_vf_id; 262 struct ice_hw *hw; 263 u32 reg; 264 265 hw = &pf->hw; 266 pf_based_first_msix = vf->first_vector_idx; 267 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1; 268 269 device_based_first_msix = pf_based_first_msix + 270 pf->hw.func_caps.common_cap.msix_vector_first_id; 271 device_based_last_msix = 272 (device_based_first_msix + vf->num_msix) - 1; 273 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; 274 275 reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) | 276 FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) | 277 VPINT_ALLOC_VALID_M; 278 wr32(hw, VPINT_ALLOC(vf->vf_id), reg); 279 280 reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) | 281 FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) | 282 VPINT_ALLOC_PCI_VALID_M; 283 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); 284 285 /* map the interrupts to its functions */ 286 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { 287 reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) | 288 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 289 wr32(hw, GLINT_VECT2FUNC(v), reg); 290 } 291 292 /* Map mailbox interrupt to VF MSI-X vector 0 */ 293 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); 294 } 295 296 /** 297 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF 298 * @vf: VF to enable the mappings for 299 * @max_txq: max Tx queues allowed on the VF's VSI 300 * @max_rxq: max Rx queues allowed on the VF's VSI 301 */ 302 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) 303 { 304 struct device *dev = ice_pf_to_dev(vf->pf); 305 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 306 struct ice_hw *hw = &vf->pf->hw; 307 u32 reg; 308 309 if (WARN_ON(!vsi)) 310 return; 311 312 /* set regardless of mapping mode */ 313 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); 314 315 /* VF Tx queues allocation */ 316 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { 317 /* set the VF PF Tx queue range 318 * VFNUMQ value should be set to (number of queues - 1). A value 319 * of 0 means 1 queue and a value of 255 means 256 queues 320 */ 321 reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) | 322 FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1); 323 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); 324 } else { 325 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 326 } 327 328 /* set regardless of mapping mode */ 329 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); 330 331 /* VF Rx queues allocation */ 332 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { 333 /* set the VF PF Rx queue range 334 * VFNUMQ value should be set to (number of queues - 1). A value 335 * of 0 means 1 queue and a value of 255 means 256 queues 336 */ 337 reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) | 338 FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1); 339 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); 340 } else { 341 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 342 } 343 } 344 345 /** 346 * ice_ena_vf_mappings - enable VF MSIX and queue mapping 347 * @vf: pointer to the VF structure 348 */ 349 static void ice_ena_vf_mappings(struct ice_vf *vf) 350 { 351 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 352 353 if (WARN_ON(!vsi)) 354 return; 355 356 ice_ena_vf_msix_mappings(vf); 357 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); 358 } 359 360 /** 361 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space 362 * @vf: VF to calculate the register index for 363 * @q_vector: a q_vector associated to the VF 364 */ 365 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) 366 { 367 if (!vf || !q_vector) 368 return -EINVAL; 369 370 /* always add one to account for the OICR being the first MSIX */ 371 return vf->first_vector_idx + q_vector->v_idx + 1; 372 } 373 374 /** 375 * ice_sriov_set_msix_res - Set any used MSIX resources 376 * @pf: pointer to PF structure 377 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs 378 * 379 * This function allows SR-IOV resources to be taken from the end of the PF's 380 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We 381 * just set the pf->sriov_base_vector and return success. 382 * 383 * If there are not enough resources available, return an error. This should 384 * always be caught by ice_set_per_vf_res(). 385 * 386 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors 387 * in the PF's space available for SR-IOV. 388 */ 389 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) 390 { 391 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 392 int vectors_used = ice_get_max_used_msix_vector(pf); 393 int sriov_base_vector; 394 395 sriov_base_vector = total_vectors - num_msix_needed; 396 397 /* make sure we only grab irq_tracker entries from the list end and 398 * that we have enough available MSIX vectors 399 */ 400 if (sriov_base_vector < vectors_used) 401 return -EINVAL; 402 403 pf->sriov_base_vector = sriov_base_vector; 404 405 return 0; 406 } 407 408 /** 409 * ice_set_per_vf_res - check if vectors and queues are available 410 * @pf: pointer to the PF structure 411 * @num_vfs: the number of SR-IOV VFs being configured 412 * 413 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we 414 * get more vectors and can enable more queues per VF. Note that this does not 415 * grab any vectors from the SW pool already allocated. Also note, that all 416 * vector counts include one for each VF's miscellaneous interrupt vector 417 * (i.e. OICR). 418 * 419 * Minimum VFs - 2 vectors, 1 queue pair 420 * Small VFs - 5 vectors, 4 queue pairs 421 * Medium VFs - 17 vectors, 16 queue pairs 422 * 423 * Second, determine number of queue pairs per VF by starting with a pre-defined 424 * maximum each VF supports. If this is not possible, then we adjust based on 425 * queue pairs available on the device. 426 * 427 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used 428 * by each VF during VF initialization and reset. 429 */ 430 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) 431 { 432 int vectors_used = ice_get_max_used_msix_vector(pf); 433 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; 434 int msix_avail_per_vf, msix_avail_for_sriov; 435 struct device *dev = ice_pf_to_dev(pf); 436 int err; 437 438 lockdep_assert_held(&pf->vfs.table_lock); 439 440 if (!num_vfs) 441 return -EINVAL; 442 443 /* determine MSI-X resources per VF */ 444 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - 445 vectors_used; 446 msix_avail_per_vf = msix_avail_for_sriov / num_vfs; 447 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { 448 num_msix_per_vf = ICE_NUM_VF_MSIX_MED; 449 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { 450 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; 451 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { 452 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; 453 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { 454 num_msix_per_vf = ICE_MIN_INTR_PER_VF; 455 } else { 456 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", 457 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, 458 num_vfs); 459 return -ENOSPC; 460 } 461 462 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 463 ICE_MAX_RSS_QS_PER_VF); 464 avail_qs = ice_get_avail_txq_count(pf) / num_vfs; 465 if (!avail_qs) 466 num_txq = 0; 467 else if (num_txq > avail_qs) 468 num_txq = rounddown_pow_of_two(avail_qs); 469 470 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 471 ICE_MAX_RSS_QS_PER_VF); 472 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; 473 if (!avail_qs) 474 num_rxq = 0; 475 else if (num_rxq > avail_qs) 476 num_rxq = rounddown_pow_of_two(avail_qs); 477 478 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { 479 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", 480 ICE_MIN_QS_PER_VF, num_vfs); 481 return -ENOSPC; 482 } 483 484 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); 485 if (err) { 486 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", 487 num_vfs, err); 488 return err; 489 } 490 491 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ 492 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); 493 pf->vfs.num_msix_per = num_msix_per_vf; 494 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", 495 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); 496 497 return 0; 498 } 499 500 /** 501 * ice_sriov_get_irqs - get irqs for SR-IOV usacase 502 * @pf: pointer to PF structure 503 * @needed: number of irqs to get 504 * 505 * This returns the first MSI-X vector index in PF space that is used by this 506 * VF. This index is used when accessing PF relative registers such as 507 * GLINT_VECT2FUNC and GLINT_DYN_CTL. 508 * This will always be the OICR index in the AVF driver so any functionality 509 * using vf->first_vector_idx for queue configuration_id: id of VF which will 510 * use this irqs 511 * 512 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are 513 * allocated from the end of global irq index. First bit in sriov_irq_bm means 514 * last irq index etc. It simplifies extension of SRIOV vectors. 515 * They will be always located from sriov_base_vector to the last irq 516 * index. While increasing/decreasing sriov_base_vector can be moved. 517 */ 518 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed) 519 { 520 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm, 521 pf->sriov_irq_size, 0, needed, 0); 522 /* conversion from number in bitmap to global irq index */ 523 int index = pf->sriov_irq_size - res - needed; 524 525 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector) 526 return -ENOENT; 527 528 bitmap_set(pf->sriov_irq_bm, res, needed); 529 return index; 530 } 531 532 /** 533 * ice_sriov_free_irqs - free irqs used by the VF 534 * @pf: pointer to PF structure 535 * @vf: pointer to VF structure 536 */ 537 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf) 538 { 539 /* Move back from first vector index to first index in bitmap */ 540 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix; 541 542 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix); 543 vf->first_vector_idx = 0; 544 } 545 546 /** 547 * ice_init_vf_vsi_res - initialize/setup VF VSI resources 548 * @vf: VF to initialize/setup the VSI for 549 * 550 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the 551 * VF VSI's broadcast filter and is only used during initial VF creation. 552 */ 553 static int ice_init_vf_vsi_res(struct ice_vf *vf) 554 { 555 struct ice_pf *pf = vf->pf; 556 struct ice_vsi *vsi; 557 int err; 558 559 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 560 if (vf->first_vector_idx < 0) 561 return -ENOMEM; 562 563 vsi = ice_vf_vsi_setup(vf); 564 if (!vsi) 565 return -ENOMEM; 566 567 err = ice_vf_init_host_cfg(vf, vsi); 568 if (err) 569 goto release_vsi; 570 571 return 0; 572 573 release_vsi: 574 ice_vf_vsi_release(vf); 575 return err; 576 } 577 578 /** 579 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV 580 * @pf: PF the VFs are associated with 581 */ 582 static int ice_start_vfs(struct ice_pf *pf) 583 { 584 struct ice_hw *hw = &pf->hw; 585 unsigned int bkt, it_cnt; 586 struct ice_vf *vf; 587 int retval; 588 589 lockdep_assert_held(&pf->vfs.table_lock); 590 591 it_cnt = 0; 592 ice_for_each_vf(pf, bkt, vf) { 593 vf->vf_ops->clear_reset_trigger(vf); 594 595 retval = ice_init_vf_vsi_res(vf); 596 if (retval) { 597 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", 598 vf->vf_id, retval); 599 goto teardown; 600 } 601 602 retval = ice_eswitch_attach(pf, vf); 603 if (retval) { 604 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d", 605 vf->vf_id, retval); 606 ice_vf_vsi_release(vf); 607 goto teardown; 608 } 609 610 set_bit(ICE_VF_STATE_INIT, vf->vf_states); 611 ice_ena_vf_mappings(vf); 612 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 613 it_cnt++; 614 } 615 616 ice_flush(hw); 617 return 0; 618 619 teardown: 620 ice_for_each_vf(pf, bkt, vf) { 621 if (it_cnt == 0) 622 break; 623 624 ice_dis_vf_mappings(vf); 625 ice_vf_vsi_release(vf); 626 it_cnt--; 627 } 628 629 return retval; 630 } 631 632 /** 633 * ice_sriov_free_vf - Free VF memory after all references are dropped 634 * @vf: pointer to VF to free 635 * 636 * Called by ice_put_vf through ice_release_vf once the last reference to a VF 637 * structure has been dropped. 638 */ 639 static void ice_sriov_free_vf(struct ice_vf *vf) 640 { 641 mutex_destroy(&vf->cfg_lock); 642 643 kfree_rcu(vf, rcu); 644 } 645 646 /** 647 * ice_sriov_clear_reset_state - clears VF Reset status register 648 * @vf: the vf to configure 649 */ 650 static void ice_sriov_clear_reset_state(struct ice_vf *vf) 651 { 652 struct ice_hw *hw = &vf->pf->hw; 653 654 /* Clear the reset status register so that VF immediately sees that 655 * the device is resetting, even if hardware hasn't yet gotten around 656 * to clearing VFGEN_RSTAT for us. 657 */ 658 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); 659 } 660 661 /** 662 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers 663 * @vf: the vf to configure 664 */ 665 static void ice_sriov_clear_mbx_register(struct ice_vf *vf) 666 { 667 struct ice_pf *pf = vf->pf; 668 669 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); 670 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); 671 } 672 673 /** 674 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF 675 * @vf: pointer to VF structure 676 * @is_vflr: true if reset occurred due to VFLR 677 * 678 * Trigger and cleanup after a VF reset for a SR-IOV VF. 679 */ 680 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) 681 { 682 struct ice_pf *pf = vf->pf; 683 u32 reg, reg_idx, bit_idx; 684 unsigned int vf_abs_id, i; 685 struct device *dev; 686 struct ice_hw *hw; 687 688 dev = ice_pf_to_dev(pf); 689 hw = &pf->hw; 690 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; 691 692 /* In the case of a VFLR, HW has already reset the VF and we just need 693 * to clean up. Otherwise we must first trigger the reset using the 694 * VFRTRIG register. 695 */ 696 if (!is_vflr) { 697 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 698 reg |= VPGEN_VFRTRIG_VFSWR_M; 699 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 700 } 701 702 /* clear the VFLR bit in GLGEN_VFLRSTAT */ 703 reg_idx = (vf_abs_id) / 32; 704 bit_idx = (vf_abs_id) % 32; 705 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 706 ice_flush(hw); 707 708 wr32(hw, PF_PCI_CIAA, 709 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); 710 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { 711 reg = rd32(hw, PF_PCI_CIAD); 712 /* no transactions pending so stop polling */ 713 if ((reg & VF_TRANS_PENDING_M) == 0) 714 break; 715 716 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); 717 udelay(ICE_PCI_CIAD_WAIT_DELAY_US); 718 } 719 } 720 721 /** 722 * ice_sriov_poll_reset_status - poll SRIOV VF reset status 723 * @vf: pointer to VF structure 724 * 725 * Returns true when reset is successful, else returns false 726 */ 727 static bool ice_sriov_poll_reset_status(struct ice_vf *vf) 728 { 729 struct ice_pf *pf = vf->pf; 730 unsigned int i; 731 u32 reg; 732 733 for (i = 0; i < 10; i++) { 734 /* VF reset requires driver to first reset the VF and then 735 * poll the status register to make sure that the reset 736 * completed successfully. 737 */ 738 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); 739 if (reg & VPGEN_VFRSTAT_VFRD_M) 740 return true; 741 742 /* only sleep if the reset is not done */ 743 usleep_range(10, 20); 744 } 745 return false; 746 } 747 748 /** 749 * ice_sriov_clear_reset_trigger - enable VF to access hardware 750 * @vf: VF to enabled hardware access for 751 */ 752 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) 753 { 754 struct ice_hw *hw = &vf->pf->hw; 755 u32 reg; 756 757 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 758 reg &= ~VPGEN_VFRTRIG_VFSWR_M; 759 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 760 ice_flush(hw); 761 } 762 763 /** 764 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt 765 * @vf: VF to perform tasks on 766 */ 767 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) 768 { 769 ice_ena_vf_mappings(vf); 770 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 771 } 772 773 static const struct ice_vf_ops ice_sriov_vf_ops = { 774 .reset_type = ICE_VF_RESET, 775 .free = ice_sriov_free_vf, 776 .clear_reset_state = ice_sriov_clear_reset_state, 777 .clear_mbx_register = ice_sriov_clear_mbx_register, 778 .trigger_reset_register = ice_sriov_trigger_reset_register, 779 .poll_reset_status = ice_sriov_poll_reset_status, 780 .clear_reset_trigger = ice_sriov_clear_reset_trigger, 781 .irq_close = NULL, 782 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, 783 }; 784 785 /** 786 * ice_create_vf_entries - Allocate and insert VF entries 787 * @pf: pointer to the PF structure 788 * @num_vfs: the number of VFs to allocate 789 * 790 * Allocate new VF entries and insert them into the hash table. Set some 791 * basic default fields for initializing the new VFs. 792 * 793 * After this function exits, the hash table will have num_vfs entries 794 * inserted. 795 * 796 * Returns 0 on success or an integer error code on failure. 797 */ 798 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) 799 { 800 struct pci_dev *pdev = pf->pdev; 801 struct ice_vfs *vfs = &pf->vfs; 802 struct pci_dev *vfdev = NULL; 803 struct ice_vf *vf; 804 u16 vf_pdev_id; 805 int err, pos; 806 807 lockdep_assert_held(&vfs->table_lock); 808 809 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 810 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id); 811 812 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) { 813 vf = kzalloc(sizeof(*vf), GFP_KERNEL); 814 if (!vf) { 815 err = -ENOMEM; 816 goto err_free_entries; 817 } 818 kref_init(&vf->refcnt); 819 820 vf->pf = pf; 821 vf->vf_id = vf_id; 822 823 /* set sriov vf ops for VFs created during SRIOV flow */ 824 vf->vf_ops = &ice_sriov_vf_ops; 825 826 ice_initialize_vf_entry(vf); 827 828 do { 829 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev); 830 } while (vfdev && vfdev->physfn != pdev); 831 vf->vfdev = vfdev; 832 vf->vf_sw_id = pf->first_sw; 833 834 pci_dev_get(vfdev); 835 836 /* set default number of MSI-X */ 837 vf->num_msix = pf->vfs.num_msix_per; 838 vf->num_vf_qs = pf->vfs.num_qps_per; 839 ice_vc_set_default_allowlist(vf); 840 841 hash_add_rcu(vfs->table, &vf->entry, vf_id); 842 } 843 844 /* Decrement of refcount done by pci_get_device() inside the loop does 845 * not touch the last iteration's vfdev, so it has to be done manually 846 * to balance pci_dev_get() added within the loop. 847 */ 848 pci_dev_put(vfdev); 849 850 return 0; 851 852 err_free_entries: 853 ice_free_vf_entries(pf); 854 return err; 855 } 856 857 /** 858 * ice_ena_vfs - enable VFs so they are ready to be used 859 * @pf: pointer to the PF structure 860 * @num_vfs: number of VFs to enable 861 */ 862 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) 863 { 864 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 865 struct device *dev = ice_pf_to_dev(pf); 866 struct ice_hw *hw = &pf->hw; 867 int ret; 868 869 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL); 870 if (!pf->sriov_irq_bm) 871 return -ENOMEM; 872 pf->sriov_irq_size = total_vectors; 873 874 /* Disable global interrupt 0 so we don't try to handle the VFLR. */ 875 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 876 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 877 set_bit(ICE_OICR_INTR_DIS, pf->state); 878 ice_flush(hw); 879 880 ret = pci_enable_sriov(pf->pdev, num_vfs); 881 if (ret) 882 goto err_unroll_intr; 883 884 mutex_lock(&pf->vfs.table_lock); 885 886 ret = ice_set_per_vf_res(pf, num_vfs); 887 if (ret) { 888 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", 889 num_vfs, ret); 890 goto err_unroll_sriov; 891 } 892 893 ret = ice_create_vf_entries(pf, num_vfs); 894 if (ret) { 895 dev_err(dev, "Failed to allocate VF entries for %d VFs\n", 896 num_vfs); 897 goto err_unroll_sriov; 898 } 899 900 ice_eswitch_reserve_cp_queues(pf, num_vfs); 901 ret = ice_start_vfs(pf); 902 if (ret) { 903 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); 904 ret = -EAGAIN; 905 goto err_unroll_vf_entries; 906 } 907 908 clear_bit(ICE_VF_DIS, pf->state); 909 910 /* rearm global interrupts */ 911 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) 912 ice_irq_dynamic_ena(hw, NULL, NULL); 913 914 mutex_unlock(&pf->vfs.table_lock); 915 916 return 0; 917 918 err_unroll_vf_entries: 919 ice_free_vf_entries(pf); 920 err_unroll_sriov: 921 mutex_unlock(&pf->vfs.table_lock); 922 pci_disable_sriov(pf->pdev); 923 err_unroll_intr: 924 /* rearm interrupts here */ 925 ice_irq_dynamic_ena(hw, NULL, NULL); 926 clear_bit(ICE_OICR_INTR_DIS, pf->state); 927 bitmap_free(pf->sriov_irq_bm); 928 return ret; 929 } 930 931 /** 932 * ice_pci_sriov_ena - Enable or change number of VFs 933 * @pf: pointer to the PF structure 934 * @num_vfs: number of VFs to allocate 935 * 936 * Returns 0 on success and negative on failure 937 */ 938 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) 939 { 940 struct device *dev = ice_pf_to_dev(pf); 941 int err; 942 943 if (!num_vfs) { 944 ice_free_vfs(pf); 945 return 0; 946 } 947 948 if (num_vfs > pf->vfs.num_supported) { 949 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", 950 num_vfs, pf->vfs.num_supported); 951 return -EOPNOTSUPP; 952 } 953 954 dev_info(dev, "Enabling %d VFs\n", num_vfs); 955 err = ice_ena_vfs(pf, num_vfs); 956 if (err) { 957 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 958 return err; 959 } 960 961 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 962 return 0; 963 } 964 965 /** 966 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks 967 * @pf: PF to enabled SR-IOV on 968 */ 969 static int ice_check_sriov_allowed(struct ice_pf *pf) 970 { 971 struct device *dev = ice_pf_to_dev(pf); 972 973 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { 974 dev_err(dev, "This device is not capable of SR-IOV\n"); 975 return -EOPNOTSUPP; 976 } 977 978 if (ice_is_safe_mode(pf)) { 979 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); 980 return -EOPNOTSUPP; 981 } 982 983 if (!ice_pf_state_is_nominal(pf)) { 984 dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); 985 return -EBUSY; 986 } 987 988 return 0; 989 } 990 991 /** 992 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs 993 * @pdev: pointer to pci_dev struct 994 * 995 * The function is called via sysfs ops 996 */ 997 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev) 998 { 999 struct ice_pf *pf = pci_get_drvdata(pdev); 1000 1001 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf); 1002 } 1003 1004 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move) 1005 { 1006 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf)) 1007 return -ENOMEM; 1008 1009 pf->sriov_base_vector -= move; 1010 return 0; 1011 } 1012 1013 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id) 1014 { 1015 u16 vf_ids[ICE_MAX_SRIOV_VFS]; 1016 struct ice_vf *tmp_vf; 1017 int to_remap = 0, bkt; 1018 1019 /* For better irqs usage try to remap irqs of VFs 1020 * that aren't running yet 1021 */ 1022 ice_for_each_vf(pf, bkt, tmp_vf) { 1023 /* skip VF which is changing the number of MSI-X */ 1024 if (restricted_id == tmp_vf->vf_id || 1025 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states)) 1026 continue; 1027 1028 ice_dis_vf_mappings(tmp_vf); 1029 ice_sriov_free_irqs(pf, tmp_vf); 1030 1031 vf_ids[to_remap] = tmp_vf->vf_id; 1032 to_remap += 1; 1033 } 1034 1035 for (int i = 0; i < to_remap; i++) { 1036 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]); 1037 if (!tmp_vf) 1038 continue; 1039 1040 tmp_vf->first_vector_idx = 1041 ice_sriov_get_irqs(pf, tmp_vf->num_msix); 1042 /* there is no need to rebuild VSI as we are only changing the 1043 * vector indexes not amount of MSI-X or queues 1044 */ 1045 ice_ena_vf_mappings(tmp_vf); 1046 ice_put_vf(tmp_vf); 1047 } 1048 } 1049 1050 /** 1051 * ice_sriov_set_msix_vec_count 1052 * @vf_dev: pointer to pci_dev struct of VF device 1053 * @msix_vec_count: new value for MSI-X amount on this VF 1054 * 1055 * Set requested MSI-X, queues and registers for @vf_dev. 1056 * 1057 * First do some sanity checks like if there are any VFs, if the new value 1058 * is correct etc. Then disable old mapping (MSI-X and queues registers), change 1059 * MSI-X and queues, rebuild VSI and enable new mapping. 1060 * 1061 * If it is possible (driver not binded to VF) try to remap also other VFs to 1062 * linearize irqs register usage. 1063 */ 1064 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count) 1065 { 1066 struct pci_dev *pdev = pci_physfn(vf_dev); 1067 struct ice_pf *pf = pci_get_drvdata(pdev); 1068 u16 prev_msix, prev_queues, queues; 1069 bool needs_rebuild = false; 1070 struct ice_vsi *vsi; 1071 struct ice_vf *vf; 1072 int id; 1073 1074 if (!ice_get_num_vfs(pf)) 1075 return -ENOENT; 1076 1077 if (!msix_vec_count) 1078 return 0; 1079 1080 queues = msix_vec_count; 1081 /* add 1 MSI-X for OICR */ 1082 msix_vec_count += 1; 1083 1084 if (queues > min(ice_get_avail_txq_count(pf), 1085 ice_get_avail_rxq_count(pf))) 1086 return -EINVAL; 1087 1088 if (msix_vec_count < ICE_MIN_INTR_PER_VF) 1089 return -EINVAL; 1090 1091 /* Transition of PCI VF function number to function_id */ 1092 for (id = 0; id < pci_num_vf(pdev); id++) { 1093 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id)) 1094 break; 1095 } 1096 1097 if (id == pci_num_vf(pdev)) 1098 return -ENOENT; 1099 1100 vf = ice_get_vf_by_id(pf, id); 1101 1102 if (!vf) 1103 return -ENOENT; 1104 1105 vsi = ice_get_vf_vsi(vf); 1106 if (!vsi) 1107 return -ENOENT; 1108 1109 prev_msix = vf->num_msix; 1110 prev_queues = vf->num_vf_qs; 1111 1112 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) { 1113 ice_put_vf(vf); 1114 return -ENOSPC; 1115 } 1116 1117 ice_dis_vf_mappings(vf); 1118 ice_sriov_free_irqs(pf, vf); 1119 1120 /* Remap all VFs beside the one is now configured */ 1121 ice_sriov_remap_vectors(pf, vf->vf_id); 1122 1123 vf->num_msix = msix_vec_count; 1124 vf->num_vf_qs = queues; 1125 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1126 if (vf->first_vector_idx < 0) 1127 goto unroll; 1128 1129 if (ice_vf_reconfig_vsi(vf) || ice_vf_init_host_cfg(vf, vsi)) { 1130 /* Try to rebuild with previous values */ 1131 needs_rebuild = true; 1132 goto unroll; 1133 } 1134 1135 dev_info(ice_pf_to_dev(pf), 1136 "Changing VF %d resources to %d vectors and %d queues\n", 1137 vf->vf_id, vf->num_msix, vf->num_vf_qs); 1138 1139 ice_ena_vf_mappings(vf); 1140 ice_put_vf(vf); 1141 1142 return 0; 1143 1144 unroll: 1145 dev_info(ice_pf_to_dev(pf), 1146 "Can't set %d vectors on VF %d, falling back to %d\n", 1147 vf->num_msix, vf->vf_id, prev_msix); 1148 1149 vf->num_msix = prev_msix; 1150 vf->num_vf_qs = prev_queues; 1151 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1152 if (vf->first_vector_idx < 0) 1153 return -EINVAL; 1154 1155 if (needs_rebuild) { 1156 ice_vf_reconfig_vsi(vf); 1157 ice_vf_init_host_cfg(vf, vsi); 1158 } 1159 1160 ice_ena_vf_mappings(vf); 1161 ice_put_vf(vf); 1162 1163 return -EINVAL; 1164 } 1165 1166 /** 1167 * ice_sriov_configure - Enable or change number of VFs via sysfs 1168 * @pdev: pointer to a pci_dev structure 1169 * @num_vfs: number of VFs to allocate or 0 to free VFs 1170 * 1171 * This function is called when the user updates the number of VFs in sysfs. On 1172 * success return whatever num_vfs was set to by the caller. Return negative on 1173 * failure. 1174 */ 1175 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) 1176 { 1177 struct ice_pf *pf = pci_get_drvdata(pdev); 1178 struct device *dev = ice_pf_to_dev(pf); 1179 int err; 1180 1181 err = ice_check_sriov_allowed(pf); 1182 if (err) 1183 return err; 1184 1185 if (!num_vfs) { 1186 if (!pci_vfs_assigned(pdev)) { 1187 ice_free_vfs(pf); 1188 return 0; 1189 } 1190 1191 dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); 1192 return -EBUSY; 1193 } 1194 1195 err = ice_pci_sriov_ena(pf, num_vfs); 1196 if (err) 1197 return err; 1198 1199 return num_vfs; 1200 } 1201 1202 /** 1203 * ice_process_vflr_event - Free VF resources via IRQ calls 1204 * @pf: pointer to the PF structure 1205 * 1206 * called from the VFLR IRQ handler to 1207 * free up VF resources and state variables 1208 */ 1209 void ice_process_vflr_event(struct ice_pf *pf) 1210 { 1211 struct ice_hw *hw = &pf->hw; 1212 struct ice_vf *vf; 1213 unsigned int bkt; 1214 u32 reg; 1215 1216 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 1217 !ice_has_vfs(pf)) 1218 return; 1219 1220 mutex_lock(&pf->vfs.table_lock); 1221 ice_for_each_vf(pf, bkt, vf) { 1222 u32 reg_idx, bit_idx; 1223 1224 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 1225 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 1226 /* read GLGEN_VFLRSTAT register to find out the flr VFs */ 1227 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); 1228 if (reg & BIT(bit_idx)) 1229 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ 1230 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 1231 } 1232 mutex_unlock(&pf->vfs.table_lock); 1233 } 1234 1235 /** 1236 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in 1237 * @pf: PF used to index all VFs 1238 * @pfq: queue index relative to the PF's function space 1239 * 1240 * If no VF is found who owns the pfq then return NULL, otherwise return a 1241 * pointer to the VF who owns the pfq 1242 * 1243 * If this function returns non-NULL, it acquires a reference count of the VF 1244 * structure. The caller is responsible for calling ice_put_vf() to drop this 1245 * reference. 1246 */ 1247 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) 1248 { 1249 struct ice_vf *vf; 1250 unsigned int bkt; 1251 1252 rcu_read_lock(); 1253 ice_for_each_vf_rcu(pf, bkt, vf) { 1254 struct ice_vsi *vsi; 1255 u16 rxq_idx; 1256 1257 vsi = ice_get_vf_vsi(vf); 1258 if (!vsi) 1259 continue; 1260 1261 ice_for_each_rxq(vsi, rxq_idx) 1262 if (vsi->rxq_map[rxq_idx] == pfq) { 1263 struct ice_vf *found; 1264 1265 if (kref_get_unless_zero(&vf->refcnt)) 1266 found = vf; 1267 else 1268 found = NULL; 1269 rcu_read_unlock(); 1270 return found; 1271 } 1272 } 1273 rcu_read_unlock(); 1274 1275 return NULL; 1276 } 1277 1278 /** 1279 * ice_globalq_to_pfq - convert from global queue index to PF space queue index 1280 * @pf: PF used for conversion 1281 * @globalq: global queue index used to convert to PF space queue index 1282 */ 1283 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) 1284 { 1285 return globalq - pf->hw.func_caps.common_cap.rxq_first_id; 1286 } 1287 1288 /** 1289 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF 1290 * @pf: PF that the LAN overflow event happened on 1291 * @event: structure holding the event information for the LAN overflow event 1292 * 1293 * Determine if the LAN overflow event was caused by a VF queue. If it was not 1294 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a 1295 * reset on the offending VF. 1296 */ 1297 void 1298 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1299 { 1300 u32 gldcb_rtctq, queue; 1301 struct ice_vf *vf; 1302 1303 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); 1304 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); 1305 1306 /* event returns device global Rx queue number */ 1307 queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq); 1308 1309 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); 1310 if (!vf) 1311 return; 1312 1313 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1314 ice_put_vf(vf); 1315 } 1316 1317 /** 1318 * ice_set_vf_spoofchk 1319 * @netdev: network interface device structure 1320 * @vf_id: VF identifier 1321 * @ena: flag to enable or disable feature 1322 * 1323 * Enable or disable VF spoof checking 1324 */ 1325 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) 1326 { 1327 struct ice_netdev_priv *np = netdev_priv(netdev); 1328 struct ice_pf *pf = np->vsi->back; 1329 struct ice_vsi *vf_vsi; 1330 struct device *dev; 1331 struct ice_vf *vf; 1332 int ret; 1333 1334 dev = ice_pf_to_dev(pf); 1335 1336 vf = ice_get_vf_by_id(pf, vf_id); 1337 if (!vf) 1338 return -EINVAL; 1339 1340 ret = ice_check_vf_ready_for_cfg(vf); 1341 if (ret) 1342 goto out_put_vf; 1343 1344 vf_vsi = ice_get_vf_vsi(vf); 1345 if (!vf_vsi) { 1346 netdev_err(netdev, "VSI %d for VF %d is null\n", 1347 vf->lan_vsi_idx, vf->vf_id); 1348 ret = -EINVAL; 1349 goto out_put_vf; 1350 } 1351 1352 if (vf_vsi->type != ICE_VSI_VF) { 1353 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", 1354 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); 1355 ret = -ENODEV; 1356 goto out_put_vf; 1357 } 1358 1359 if (ena == vf->spoofchk) { 1360 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); 1361 ret = 0; 1362 goto out_put_vf; 1363 } 1364 1365 ret = ice_vsi_apply_spoofchk(vf_vsi, ena); 1366 if (ret) 1367 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", 1368 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); 1369 else 1370 vf->spoofchk = ena; 1371 1372 out_put_vf: 1373 ice_put_vf(vf); 1374 return ret; 1375 } 1376 1377 /** 1378 * ice_get_vf_cfg 1379 * @netdev: network interface device structure 1380 * @vf_id: VF identifier 1381 * @ivi: VF configuration structure 1382 * 1383 * return VF configuration 1384 */ 1385 int 1386 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) 1387 { 1388 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1389 struct ice_vf *vf; 1390 int ret; 1391 1392 vf = ice_get_vf_by_id(pf, vf_id); 1393 if (!vf) 1394 return -EINVAL; 1395 1396 ret = ice_check_vf_ready_for_cfg(vf); 1397 if (ret) 1398 goto out_put_vf; 1399 1400 ivi->vf = vf_id; 1401 ether_addr_copy(ivi->mac, vf->hw_lan_addr); 1402 1403 /* VF configuration for VLAN and applicable QoS */ 1404 ivi->vlan = ice_vf_get_port_vlan_id(vf); 1405 ivi->qos = ice_vf_get_port_vlan_prio(vf); 1406 if (ice_vf_is_port_vlan_ena(vf)) 1407 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); 1408 1409 ivi->trusted = vf->trusted; 1410 ivi->spoofchk = vf->spoofchk; 1411 if (!vf->link_forced) 1412 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 1413 else if (vf->link_up) 1414 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 1415 else 1416 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 1417 ivi->max_tx_rate = vf->max_tx_rate; 1418 ivi->min_tx_rate = vf->min_tx_rate; 1419 1420 out_put_vf: 1421 ice_put_vf(vf); 1422 return ret; 1423 } 1424 1425 /** 1426 * ice_set_vf_mac 1427 * @netdev: network interface device structure 1428 * @vf_id: VF identifier 1429 * @mac: MAC address 1430 * 1431 * program VF MAC address 1432 */ 1433 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 1434 { 1435 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1436 struct ice_vf *vf; 1437 int ret; 1438 1439 if (is_multicast_ether_addr(mac)) { 1440 netdev_err(netdev, "%pM not a valid unicast address\n", mac); 1441 return -EINVAL; 1442 } 1443 1444 vf = ice_get_vf_by_id(pf, vf_id); 1445 if (!vf) 1446 return -EINVAL; 1447 1448 /* nothing left to do, unicast MAC already set */ 1449 if (ether_addr_equal(vf->dev_lan_addr, mac) && 1450 ether_addr_equal(vf->hw_lan_addr, mac)) { 1451 ret = 0; 1452 goto out_put_vf; 1453 } 1454 1455 ret = ice_check_vf_ready_for_cfg(vf); 1456 if (ret) 1457 goto out_put_vf; 1458 1459 mutex_lock(&vf->cfg_lock); 1460 1461 /* VF is notified of its new MAC via the PF's response to the 1462 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset 1463 */ 1464 ether_addr_copy(vf->dev_lan_addr, mac); 1465 ether_addr_copy(vf->hw_lan_addr, mac); 1466 if (is_zero_ether_addr(mac)) { 1467 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ 1468 vf->pf_set_mac = false; 1469 netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n", 1470 vf->vf_id); 1471 } else { 1472 /* PF will add MAC rule for the VF */ 1473 vf->pf_set_mac = true; 1474 netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", 1475 mac, vf_id); 1476 } 1477 1478 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1479 mutex_unlock(&vf->cfg_lock); 1480 1481 out_put_vf: 1482 ice_put_vf(vf); 1483 return ret; 1484 } 1485 1486 /** 1487 * ice_set_vf_trust 1488 * @netdev: network interface device structure 1489 * @vf_id: VF identifier 1490 * @trusted: Boolean value to enable/disable trusted VF 1491 * 1492 * Enable or disable a given VF as trusted 1493 */ 1494 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) 1495 { 1496 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1497 struct ice_vf *vf; 1498 int ret; 1499 1500 vf = ice_get_vf_by_id(pf, vf_id); 1501 if (!vf) 1502 return -EINVAL; 1503 1504 if (ice_is_eswitch_mode_switchdev(pf)) { 1505 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); 1506 return -EOPNOTSUPP; 1507 } 1508 1509 ret = ice_check_vf_ready_for_cfg(vf); 1510 if (ret) 1511 goto out_put_vf; 1512 1513 /* Check if already trusted */ 1514 if (trusted == vf->trusted) { 1515 ret = 0; 1516 goto out_put_vf; 1517 } 1518 1519 mutex_lock(&vf->cfg_lock); 1520 1521 vf->trusted = trusted; 1522 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1523 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", 1524 vf_id, trusted ? "" : "un"); 1525 1526 mutex_unlock(&vf->cfg_lock); 1527 1528 out_put_vf: 1529 ice_put_vf(vf); 1530 return ret; 1531 } 1532 1533 /** 1534 * ice_set_vf_link_state 1535 * @netdev: network interface device structure 1536 * @vf_id: VF identifier 1537 * @link_state: required link state 1538 * 1539 * Set VF's link state, irrespective of physical link state status 1540 */ 1541 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) 1542 { 1543 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1544 struct ice_vf *vf; 1545 int ret; 1546 1547 vf = ice_get_vf_by_id(pf, vf_id); 1548 if (!vf) 1549 return -EINVAL; 1550 1551 ret = ice_check_vf_ready_for_cfg(vf); 1552 if (ret) 1553 goto out_put_vf; 1554 1555 switch (link_state) { 1556 case IFLA_VF_LINK_STATE_AUTO: 1557 vf->link_forced = false; 1558 break; 1559 case IFLA_VF_LINK_STATE_ENABLE: 1560 vf->link_forced = true; 1561 vf->link_up = true; 1562 break; 1563 case IFLA_VF_LINK_STATE_DISABLE: 1564 vf->link_forced = true; 1565 vf->link_up = false; 1566 break; 1567 default: 1568 ret = -EINVAL; 1569 goto out_put_vf; 1570 } 1571 1572 ice_vc_notify_vf_link_state(vf); 1573 1574 out_put_vf: 1575 ice_put_vf(vf); 1576 return ret; 1577 } 1578 1579 /** 1580 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs 1581 * @pf: PF associated with VFs 1582 */ 1583 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) 1584 { 1585 struct ice_vf *vf; 1586 unsigned int bkt; 1587 int rate = 0; 1588 1589 rcu_read_lock(); 1590 ice_for_each_vf_rcu(pf, bkt, vf) 1591 rate += vf->min_tx_rate; 1592 rcu_read_unlock(); 1593 1594 return rate; 1595 } 1596 1597 /** 1598 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription 1599 * @vf: VF trying to configure min_tx_rate 1600 * @min_tx_rate: min Tx rate in Mbps 1601 * 1602 * Check if the min_tx_rate being passed in will cause oversubscription of total 1603 * min_tx_rate based on the current link speed and all other VFs configured 1604 * min_tx_rate 1605 * 1606 * Return true if the passed min_tx_rate would cause oversubscription, else 1607 * return false 1608 */ 1609 static bool 1610 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) 1611 { 1612 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 1613 int all_vfs_min_tx_rate; 1614 int link_speed_mbps; 1615 1616 if (WARN_ON(!vsi)) 1617 return false; 1618 1619 link_speed_mbps = ice_get_link_speed_mbps(vsi); 1620 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); 1621 1622 /* this VF's previous rate is being overwritten */ 1623 all_vfs_min_tx_rate -= vf->min_tx_rate; 1624 1625 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { 1626 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", 1627 min_tx_rate, vf->vf_id, 1628 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, 1629 link_speed_mbps); 1630 return true; 1631 } 1632 1633 return false; 1634 } 1635 1636 /** 1637 * ice_set_vf_bw - set min/max VF bandwidth 1638 * @netdev: network interface device structure 1639 * @vf_id: VF identifier 1640 * @min_tx_rate: Minimum Tx rate in Mbps 1641 * @max_tx_rate: Maximum Tx rate in Mbps 1642 */ 1643 int 1644 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, 1645 int max_tx_rate) 1646 { 1647 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1648 struct ice_vsi *vsi; 1649 struct device *dev; 1650 struct ice_vf *vf; 1651 int ret; 1652 1653 dev = ice_pf_to_dev(pf); 1654 1655 vf = ice_get_vf_by_id(pf, vf_id); 1656 if (!vf) 1657 return -EINVAL; 1658 1659 ret = ice_check_vf_ready_for_cfg(vf); 1660 if (ret) 1661 goto out_put_vf; 1662 1663 vsi = ice_get_vf_vsi(vf); 1664 if (!vsi) { 1665 ret = -EINVAL; 1666 goto out_put_vf; 1667 } 1668 1669 if (min_tx_rate && ice_is_dcb_active(pf)) { 1670 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); 1671 ret = -EOPNOTSUPP; 1672 goto out_put_vf; 1673 } 1674 1675 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { 1676 ret = -EINVAL; 1677 goto out_put_vf; 1678 } 1679 1680 if (vf->min_tx_rate != (unsigned int)min_tx_rate) { 1681 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); 1682 if (ret) { 1683 dev_err(dev, "Unable to set min-tx-rate for VF %d\n", 1684 vf->vf_id); 1685 goto out_put_vf; 1686 } 1687 1688 vf->min_tx_rate = min_tx_rate; 1689 } 1690 1691 if (vf->max_tx_rate != (unsigned int)max_tx_rate) { 1692 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); 1693 if (ret) { 1694 dev_err(dev, "Unable to set max-tx-rate for VF %d\n", 1695 vf->vf_id); 1696 goto out_put_vf; 1697 } 1698 1699 vf->max_tx_rate = max_tx_rate; 1700 } 1701 1702 out_put_vf: 1703 ice_put_vf(vf); 1704 return ret; 1705 } 1706 1707 /** 1708 * ice_get_vf_stats - populate some stats for the VF 1709 * @netdev: the netdev of the PF 1710 * @vf_id: the host OS identifier (0-255) 1711 * @vf_stats: pointer to the OS memory to be initialized 1712 */ 1713 int ice_get_vf_stats(struct net_device *netdev, int vf_id, 1714 struct ifla_vf_stats *vf_stats) 1715 { 1716 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1717 struct ice_eth_stats *stats; 1718 struct ice_vsi *vsi; 1719 struct ice_vf *vf; 1720 int ret; 1721 1722 vf = ice_get_vf_by_id(pf, vf_id); 1723 if (!vf) 1724 return -EINVAL; 1725 1726 ret = ice_check_vf_ready_for_cfg(vf); 1727 if (ret) 1728 goto out_put_vf; 1729 1730 vsi = ice_get_vf_vsi(vf); 1731 if (!vsi) { 1732 ret = -EINVAL; 1733 goto out_put_vf; 1734 } 1735 1736 ice_update_eth_stats(vsi); 1737 stats = &vsi->eth_stats; 1738 1739 memset(vf_stats, 0, sizeof(*vf_stats)); 1740 1741 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + 1742 stats->rx_multicast; 1743 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + 1744 stats->tx_multicast; 1745 vf_stats->rx_bytes = stats->rx_bytes; 1746 vf_stats->tx_bytes = stats->tx_bytes; 1747 vf_stats->broadcast = stats->rx_broadcast; 1748 vf_stats->multicast = stats->rx_multicast; 1749 vf_stats->rx_dropped = stats->rx_discards; 1750 vf_stats->tx_dropped = stats->tx_discards; 1751 1752 out_put_vf: 1753 ice_put_vf(vf); 1754 return ret; 1755 } 1756 1757 /** 1758 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported 1759 * @hw: hardware structure used to check the VLAN mode 1760 * @vlan_proto: VLAN TPID being checked 1761 * 1762 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q 1763 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN 1764 * Mode (SVM), then only ETH_P_8021Q is supported. 1765 */ 1766 static bool 1767 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) 1768 { 1769 bool is_supported = false; 1770 1771 switch (vlan_proto) { 1772 case ETH_P_8021Q: 1773 is_supported = true; 1774 break; 1775 case ETH_P_8021AD: 1776 if (ice_is_dvm_ena(hw)) 1777 is_supported = true; 1778 break; 1779 } 1780 1781 return is_supported; 1782 } 1783 1784 /** 1785 * ice_set_vf_port_vlan 1786 * @netdev: network interface device structure 1787 * @vf_id: VF identifier 1788 * @vlan_id: VLAN ID being set 1789 * @qos: priority setting 1790 * @vlan_proto: VLAN protocol 1791 * 1792 * program VF Port VLAN ID and/or QoS 1793 */ 1794 int 1795 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, 1796 __be16 vlan_proto) 1797 { 1798 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1799 u16 local_vlan_proto = ntohs(vlan_proto); 1800 struct device *dev; 1801 struct ice_vf *vf; 1802 int ret; 1803 1804 dev = ice_pf_to_dev(pf); 1805 1806 if (vlan_id >= VLAN_N_VID || qos > 7) { 1807 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", 1808 vf_id, vlan_id, qos); 1809 return -EINVAL; 1810 } 1811 1812 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { 1813 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", 1814 local_vlan_proto); 1815 return -EPROTONOSUPPORT; 1816 } 1817 1818 vf = ice_get_vf_by_id(pf, vf_id); 1819 if (!vf) 1820 return -EINVAL; 1821 1822 ret = ice_check_vf_ready_for_cfg(vf); 1823 if (ret) 1824 goto out_put_vf; 1825 1826 if (ice_vf_get_port_vlan_prio(vf) == qos && 1827 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && 1828 ice_vf_get_port_vlan_id(vf) == vlan_id) { 1829 /* duplicate request, so just return success */ 1830 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", 1831 vlan_id, qos, local_vlan_proto); 1832 ret = 0; 1833 goto out_put_vf; 1834 } 1835 1836 mutex_lock(&vf->cfg_lock); 1837 1838 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); 1839 if (ice_vf_is_port_vlan_ena(vf)) 1840 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", 1841 vlan_id, qos, local_vlan_proto, vf_id); 1842 else 1843 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); 1844 1845 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1846 mutex_unlock(&vf->cfg_lock); 1847 1848 out_put_vf: 1849 ice_put_vf(vf); 1850 return ret; 1851 } 1852 1853 /** 1854 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event 1855 * @vf: pointer to the VF structure 1856 */ 1857 void ice_print_vf_rx_mdd_event(struct ice_vf *vf) 1858 { 1859 struct ice_pf *pf = vf->pf; 1860 struct device *dev; 1861 1862 dev = ice_pf_to_dev(pf); 1863 1864 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1865 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, 1866 vf->dev_lan_addr, 1867 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1868 ? "on" : "off"); 1869 } 1870 1871 /** 1872 * ice_print_vfs_mdd_events - print VFs malicious driver detect event 1873 * @pf: pointer to the PF structure 1874 * 1875 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. 1876 */ 1877 void ice_print_vfs_mdd_events(struct ice_pf *pf) 1878 { 1879 struct device *dev = ice_pf_to_dev(pf); 1880 struct ice_hw *hw = &pf->hw; 1881 struct ice_vf *vf; 1882 unsigned int bkt; 1883 1884 /* check that there are pending MDD events to print */ 1885 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) 1886 return; 1887 1888 /* VF MDD event logs are rate limited to one second intervals */ 1889 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) 1890 return; 1891 1892 pf->vfs.last_printed_mdd_jiffies = jiffies; 1893 1894 mutex_lock(&pf->vfs.table_lock); 1895 ice_for_each_vf(pf, bkt, vf) { 1896 /* only print Rx MDD event message if there are new events */ 1897 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 1898 vf->mdd_rx_events.last_printed = 1899 vf->mdd_rx_events.count; 1900 ice_print_vf_rx_mdd_event(vf); 1901 } 1902 1903 /* only print Tx MDD event message if there are new events */ 1904 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 1905 vf->mdd_tx_events.last_printed = 1906 vf->mdd_tx_events.count; 1907 1908 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n", 1909 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id, 1910 vf->dev_lan_addr); 1911 } 1912 } 1913 mutex_unlock(&pf->vfs.table_lock); 1914 } 1915 1916 /** 1917 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR 1918 * @pf: pointer to the PF structure 1919 * 1920 * Called when recovering from a PF FLR to restore interrupt capability to 1921 * the VFs. 1922 */ 1923 void ice_restore_all_vfs_msi_state(struct ice_pf *pf) 1924 { 1925 struct ice_vf *vf; 1926 u32 bkt; 1927 1928 ice_for_each_vf(pf, bkt, vf) 1929 pci_restore_msi_state(vf->vfdev); 1930 } 1931