1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice_base.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_flow.h" 11 #include "ice_eswitch.h" 12 #include "ice_virtchnl_allowlist.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_vf_vsi_vlan_ops.h" 15 #include "ice_vlan.h" 16 17 /** 18 * ice_free_vf_entries - Free all VF entries from the hash table 19 * @pf: pointer to the PF structure 20 * 21 * Iterate over the VF hash table, removing and releasing all VF entries. 22 * Called during VF teardown or as cleanup during failed VF initialization. 23 */ 24 static void ice_free_vf_entries(struct ice_pf *pf) 25 { 26 struct ice_vfs *vfs = &pf->vfs; 27 struct hlist_node *tmp; 28 struct ice_vf *vf; 29 unsigned int bkt; 30 31 /* Remove all VFs from the hash table and release their main 32 * reference. Once all references to the VF are dropped, ice_put_vf() 33 * will call ice_release_vf which will remove the VF memory. 34 */ 35 lockdep_assert_held(&vfs->table_lock); 36 37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { 38 hash_del_rcu(&vf->entry); 39 ice_put_vf(vf); 40 } 41 } 42 43 /** 44 * ice_free_vf_res - Free a VF's resources 45 * @vf: pointer to the VF info 46 */ 47 static void ice_free_vf_res(struct ice_vf *vf) 48 { 49 struct ice_pf *pf = vf->pf; 50 int i, last_vector_idx; 51 52 /* First, disable VF's configuration API to prevent OS from 53 * accessing the VF's VSI after it's freed or invalidated. 54 */ 55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states); 56 ice_vf_fdir_exit(vf); 57 /* free VF control VSI */ 58 if (vf->ctrl_vsi_idx != ICE_NO_VSI) 59 ice_vf_ctrl_vsi_release(vf); 60 61 /* free VSI and disconnect it from the parent uplink */ 62 if (vf->lan_vsi_idx != ICE_NO_VSI) { 63 ice_vf_vsi_release(vf); 64 vf->num_mac = 0; 65 } 66 67 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1; 68 69 /* clear VF MDD event information */ 70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); 71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); 72 73 /* Disable interrupts so that VF starts in a known state */ 74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { 75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); 76 ice_flush(&pf->hw); 77 } 78 /* reset some of the state variables keeping track of the resources */ 79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); 80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); 81 } 82 83 /** 84 * ice_dis_vf_mappings 85 * @vf: pointer to the VF structure 86 */ 87 static void ice_dis_vf_mappings(struct ice_vf *vf) 88 { 89 struct ice_pf *pf = vf->pf; 90 struct ice_vsi *vsi; 91 struct device *dev; 92 int first, last, v; 93 struct ice_hw *hw; 94 95 hw = &pf->hw; 96 vsi = ice_get_vf_vsi(vf); 97 if (WARN_ON(!vsi)) 98 return; 99 100 dev = ice_pf_to_dev(pf); 101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0); 102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); 103 104 first = vf->first_vector_idx; 105 last = first + vf->num_msix - 1; 106 for (v = first; v <= last; v++) { 107 u32 reg; 108 109 reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) | 110 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 111 wr32(hw, GLINT_VECT2FUNC(v), reg); 112 } 113 114 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) 115 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); 116 else 117 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 118 119 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) 120 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); 121 else 122 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 123 } 124 125 /** 126 * ice_sriov_free_msix_res - Reset/free any used MSIX resources 127 * @pf: pointer to the PF structure 128 * 129 * Since no MSIX entries are taken from the pf->irq_tracker then just clear 130 * the pf->sriov_base_vector. 131 * 132 * Returns 0 on success, and -EINVAL on error. 133 */ 134 static int ice_sriov_free_msix_res(struct ice_pf *pf) 135 { 136 if (!pf) 137 return -EINVAL; 138 139 bitmap_free(pf->sriov_irq_bm); 140 pf->sriov_irq_size = 0; 141 pf->sriov_base_vector = 0; 142 143 return 0; 144 } 145 146 /** 147 * ice_free_vfs - Free all VFs 148 * @pf: pointer to the PF structure 149 */ 150 void ice_free_vfs(struct ice_pf *pf) 151 { 152 struct device *dev = ice_pf_to_dev(pf); 153 struct ice_vfs *vfs = &pf->vfs; 154 struct ice_hw *hw = &pf->hw; 155 struct ice_vf *vf; 156 unsigned int bkt; 157 158 if (!ice_has_vfs(pf)) 159 return; 160 161 while (test_and_set_bit(ICE_VF_DIS, pf->state)) 162 usleep_range(1000, 2000); 163 164 /* Disable IOV before freeing resources. This lets any VF drivers 165 * running in the host get themselves cleaned up before we yank 166 * the carpet out from underneath their feet. 167 */ 168 if (!pci_vfs_assigned(pf->pdev)) 169 pci_disable_sriov(pf->pdev); 170 else 171 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); 172 173 mutex_lock(&vfs->table_lock); 174 175 ice_for_each_vf(pf, bkt, vf) { 176 mutex_lock(&vf->cfg_lock); 177 178 ice_eswitch_detach(pf, vf); 179 ice_dis_vf_qs(vf); 180 181 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { 182 /* disable VF qp mappings and set VF disable state */ 183 ice_dis_vf_mappings(vf); 184 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 185 ice_free_vf_res(vf); 186 } 187 188 if (!pci_vfs_assigned(pf->pdev)) { 189 u32 reg_idx, bit_idx; 190 191 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 192 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 193 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 194 } 195 196 /* clear malicious info since the VF is getting released */ 197 list_del(&vf->mbx_info.list_entry); 198 199 mutex_unlock(&vf->cfg_lock); 200 } 201 202 if (ice_sriov_free_msix_res(pf)) 203 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); 204 205 vfs->num_qps_per = 0; 206 ice_free_vf_entries(pf); 207 208 mutex_unlock(&vfs->table_lock); 209 210 clear_bit(ICE_VF_DIS, pf->state); 211 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 212 } 213 214 /** 215 * ice_vf_vsi_setup - Set up a VF VSI 216 * @vf: VF to setup VSI for 217 * 218 * Returns pointer to the successfully allocated VSI struct on success, 219 * otherwise returns NULL on failure. 220 */ 221 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) 222 { 223 struct ice_vsi_cfg_params params = {}; 224 struct ice_pf *pf = vf->pf; 225 struct ice_vsi *vsi; 226 227 params.type = ICE_VSI_VF; 228 params.pi = ice_vf_get_port_info(vf); 229 params.vf = vf; 230 params.flags = ICE_VSI_FLAG_INIT; 231 232 vsi = ice_vsi_setup(pf, ¶ms); 233 234 if (!vsi) { 235 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); 236 ice_vf_invalidate_vsi(vf); 237 return NULL; 238 } 239 240 vf->lan_vsi_idx = vsi->idx; 241 242 return vsi; 243 } 244 245 246 /** 247 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware 248 * @vf: VF to enable MSIX mappings for 249 * 250 * Some of the registers need to be indexed/configured using hardware global 251 * device values and other registers need 0-based values, which represent PF 252 * based values. 253 */ 254 static void ice_ena_vf_msix_mappings(struct ice_vf *vf) 255 { 256 int device_based_first_msix, device_based_last_msix; 257 int pf_based_first_msix, pf_based_last_msix, v; 258 struct ice_pf *pf = vf->pf; 259 int device_based_vf_id; 260 struct ice_hw *hw; 261 u32 reg; 262 263 hw = &pf->hw; 264 pf_based_first_msix = vf->first_vector_idx; 265 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1; 266 267 device_based_first_msix = pf_based_first_msix + 268 pf->hw.func_caps.common_cap.msix_vector_first_id; 269 device_based_last_msix = 270 (device_based_first_msix + vf->num_msix) - 1; 271 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; 272 273 reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) | 274 FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) | 275 VPINT_ALLOC_VALID_M; 276 wr32(hw, VPINT_ALLOC(vf->vf_id), reg); 277 278 reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) | 279 FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) | 280 VPINT_ALLOC_PCI_VALID_M; 281 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); 282 283 /* map the interrupts to its functions */ 284 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { 285 reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) | 286 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 287 wr32(hw, GLINT_VECT2FUNC(v), reg); 288 } 289 290 /* Map mailbox interrupt to VF MSI-X vector 0 */ 291 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); 292 } 293 294 /** 295 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF 296 * @vf: VF to enable the mappings for 297 * @max_txq: max Tx queues allowed on the VF's VSI 298 * @max_rxq: max Rx queues allowed on the VF's VSI 299 */ 300 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) 301 { 302 struct device *dev = ice_pf_to_dev(vf->pf); 303 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 304 struct ice_hw *hw = &vf->pf->hw; 305 u32 reg; 306 307 if (WARN_ON(!vsi)) 308 return; 309 310 /* set regardless of mapping mode */ 311 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); 312 313 /* VF Tx queues allocation */ 314 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { 315 /* set the VF PF Tx queue range 316 * VFNUMQ value should be set to (number of queues - 1). A value 317 * of 0 means 1 queue and a value of 255 means 256 queues 318 */ 319 reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) | 320 FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1); 321 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); 322 } else { 323 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 324 } 325 326 /* set regardless of mapping mode */ 327 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); 328 329 /* VF Rx queues allocation */ 330 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { 331 /* set the VF PF Rx queue range 332 * VFNUMQ value should be set to (number of queues - 1). A value 333 * of 0 means 1 queue and a value of 255 means 256 queues 334 */ 335 reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) | 336 FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1); 337 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); 338 } else { 339 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 340 } 341 } 342 343 /** 344 * ice_ena_vf_mappings - enable VF MSIX and queue mapping 345 * @vf: pointer to the VF structure 346 */ 347 static void ice_ena_vf_mappings(struct ice_vf *vf) 348 { 349 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 350 351 if (WARN_ON(!vsi)) 352 return; 353 354 ice_ena_vf_msix_mappings(vf); 355 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); 356 } 357 358 /** 359 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space 360 * @vf: VF to calculate the register index for 361 * @q_vector: a q_vector associated to the VF 362 */ 363 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) 364 { 365 if (!vf || !q_vector) 366 return -EINVAL; 367 368 /* always add one to account for the OICR being the first MSIX */ 369 return vf->first_vector_idx + q_vector->v_idx + 1; 370 } 371 372 /** 373 * ice_sriov_set_msix_res - Set any used MSIX resources 374 * @pf: pointer to PF structure 375 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs 376 * 377 * This function allows SR-IOV resources to be taken from the end of the PF's 378 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We 379 * just set the pf->sriov_base_vector and return success. 380 * 381 * If there are not enough resources available, return an error. This should 382 * always be caught by ice_set_per_vf_res(). 383 * 384 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors 385 * in the PF's space available for SR-IOV. 386 */ 387 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) 388 { 389 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 390 int vectors_used = ice_get_max_used_msix_vector(pf); 391 int sriov_base_vector; 392 393 sriov_base_vector = total_vectors - num_msix_needed; 394 395 /* make sure we only grab irq_tracker entries from the list end and 396 * that we have enough available MSIX vectors 397 */ 398 if (sriov_base_vector < vectors_used) 399 return -EINVAL; 400 401 pf->sriov_base_vector = sriov_base_vector; 402 403 return 0; 404 } 405 406 /** 407 * ice_set_per_vf_res - check if vectors and queues are available 408 * @pf: pointer to the PF structure 409 * @num_vfs: the number of SR-IOV VFs being configured 410 * 411 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we 412 * get more vectors and can enable more queues per VF. Note that this does not 413 * grab any vectors from the SW pool already allocated. Also note, that all 414 * vector counts include one for each VF's miscellaneous interrupt vector 415 * (i.e. OICR). 416 * 417 * Minimum VFs - 2 vectors, 1 queue pair 418 * Small VFs - 5 vectors, 4 queue pairs 419 * Medium VFs - 17 vectors, 16 queue pairs 420 * 421 * Second, determine number of queue pairs per VF by starting with a pre-defined 422 * maximum each VF supports. If this is not possible, then we adjust based on 423 * queue pairs available on the device. 424 * 425 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used 426 * by each VF during VF initialization and reset. 427 */ 428 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) 429 { 430 int vectors_used = ice_get_max_used_msix_vector(pf); 431 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; 432 int msix_avail_per_vf, msix_avail_for_sriov; 433 struct device *dev = ice_pf_to_dev(pf); 434 int err; 435 436 lockdep_assert_held(&pf->vfs.table_lock); 437 438 if (!num_vfs) 439 return -EINVAL; 440 441 /* determine MSI-X resources per VF */ 442 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - 443 vectors_used; 444 msix_avail_per_vf = msix_avail_for_sriov / num_vfs; 445 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { 446 num_msix_per_vf = ICE_NUM_VF_MSIX_MED; 447 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { 448 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; 449 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { 450 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; 451 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { 452 num_msix_per_vf = ICE_MIN_INTR_PER_VF; 453 } else { 454 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", 455 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, 456 num_vfs); 457 return -ENOSPC; 458 } 459 460 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 461 ICE_MAX_RSS_QS_PER_VF); 462 avail_qs = ice_get_avail_txq_count(pf) / num_vfs; 463 if (!avail_qs) 464 num_txq = 0; 465 else if (num_txq > avail_qs) 466 num_txq = rounddown_pow_of_two(avail_qs); 467 468 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 469 ICE_MAX_RSS_QS_PER_VF); 470 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; 471 if (!avail_qs) 472 num_rxq = 0; 473 else if (num_rxq > avail_qs) 474 num_rxq = rounddown_pow_of_two(avail_qs); 475 476 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { 477 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", 478 ICE_MIN_QS_PER_VF, num_vfs); 479 return -ENOSPC; 480 } 481 482 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); 483 if (err) { 484 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", 485 num_vfs, err); 486 return err; 487 } 488 489 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ 490 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); 491 pf->vfs.num_msix_per = num_msix_per_vf; 492 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", 493 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); 494 495 return 0; 496 } 497 498 /** 499 * ice_sriov_get_irqs - get irqs for SR-IOV usacase 500 * @pf: pointer to PF structure 501 * @needed: number of irqs to get 502 * 503 * This returns the first MSI-X vector index in PF space that is used by this 504 * VF. This index is used when accessing PF relative registers such as 505 * GLINT_VECT2FUNC and GLINT_DYN_CTL. 506 * This will always be the OICR index in the AVF driver so any functionality 507 * using vf->first_vector_idx for queue configuration_id: id of VF which will 508 * use this irqs 509 * 510 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are 511 * allocated from the end of global irq index. First bit in sriov_irq_bm means 512 * last irq index etc. It simplifies extension of SRIOV vectors. 513 * They will be always located from sriov_base_vector to the last irq 514 * index. While increasing/decreasing sriov_base_vector can be moved. 515 */ 516 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed) 517 { 518 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm, 519 pf->sriov_irq_size, 0, needed, 0); 520 /* conversion from number in bitmap to global irq index */ 521 int index = pf->sriov_irq_size - res - needed; 522 523 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector) 524 return -ENOENT; 525 526 bitmap_set(pf->sriov_irq_bm, res, needed); 527 return index; 528 } 529 530 /** 531 * ice_sriov_free_irqs - free irqs used by the VF 532 * @pf: pointer to PF structure 533 * @vf: pointer to VF structure 534 */ 535 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf) 536 { 537 /* Move back from first vector index to first index in bitmap */ 538 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix; 539 540 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix); 541 vf->first_vector_idx = 0; 542 } 543 544 /** 545 * ice_init_vf_vsi_res - initialize/setup VF VSI resources 546 * @vf: VF to initialize/setup the VSI for 547 * 548 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the 549 * VF VSI's broadcast filter and is only used during initial VF creation. 550 */ 551 static int ice_init_vf_vsi_res(struct ice_vf *vf) 552 { 553 struct ice_pf *pf = vf->pf; 554 struct ice_vsi *vsi; 555 int err; 556 557 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 558 if (vf->first_vector_idx < 0) 559 return -ENOMEM; 560 561 vsi = ice_vf_vsi_setup(vf); 562 if (!vsi) 563 return -ENOMEM; 564 565 err = ice_vf_init_host_cfg(vf, vsi); 566 if (err) 567 goto release_vsi; 568 569 return 0; 570 571 release_vsi: 572 ice_vf_vsi_release(vf); 573 return err; 574 } 575 576 /** 577 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV 578 * @pf: PF the VFs are associated with 579 */ 580 static int ice_start_vfs(struct ice_pf *pf) 581 { 582 struct ice_hw *hw = &pf->hw; 583 unsigned int bkt, it_cnt; 584 struct ice_vf *vf; 585 int retval; 586 587 lockdep_assert_held(&pf->vfs.table_lock); 588 589 it_cnt = 0; 590 ice_for_each_vf(pf, bkt, vf) { 591 vf->vf_ops->clear_reset_trigger(vf); 592 593 retval = ice_init_vf_vsi_res(vf); 594 if (retval) { 595 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", 596 vf->vf_id, retval); 597 goto teardown; 598 } 599 600 retval = ice_eswitch_attach(pf, vf); 601 if (retval) { 602 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d", 603 vf->vf_id, retval); 604 ice_vf_vsi_release(vf); 605 goto teardown; 606 } 607 608 set_bit(ICE_VF_STATE_INIT, vf->vf_states); 609 ice_ena_vf_mappings(vf); 610 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 611 it_cnt++; 612 } 613 614 ice_flush(hw); 615 return 0; 616 617 teardown: 618 ice_for_each_vf(pf, bkt, vf) { 619 if (it_cnt == 0) 620 break; 621 622 ice_dis_vf_mappings(vf); 623 ice_vf_vsi_release(vf); 624 it_cnt--; 625 } 626 627 return retval; 628 } 629 630 /** 631 * ice_sriov_free_vf - Free VF memory after all references are dropped 632 * @vf: pointer to VF to free 633 * 634 * Called by ice_put_vf through ice_release_vf once the last reference to a VF 635 * structure has been dropped. 636 */ 637 static void ice_sriov_free_vf(struct ice_vf *vf) 638 { 639 mutex_destroy(&vf->cfg_lock); 640 641 kfree_rcu(vf, rcu); 642 } 643 644 /** 645 * ice_sriov_clear_reset_state - clears VF Reset status register 646 * @vf: the vf to configure 647 */ 648 static void ice_sriov_clear_reset_state(struct ice_vf *vf) 649 { 650 struct ice_hw *hw = &vf->pf->hw; 651 652 /* Clear the reset status register so that VF immediately sees that 653 * the device is resetting, even if hardware hasn't yet gotten around 654 * to clearing VFGEN_RSTAT for us. 655 */ 656 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); 657 } 658 659 /** 660 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers 661 * @vf: the vf to configure 662 */ 663 static void ice_sriov_clear_mbx_register(struct ice_vf *vf) 664 { 665 struct ice_pf *pf = vf->pf; 666 667 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); 668 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); 669 } 670 671 /** 672 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF 673 * @vf: pointer to VF structure 674 * @is_vflr: true if reset occurred due to VFLR 675 * 676 * Trigger and cleanup after a VF reset for a SR-IOV VF. 677 */ 678 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) 679 { 680 struct ice_pf *pf = vf->pf; 681 u32 reg, reg_idx, bit_idx; 682 unsigned int vf_abs_id, i; 683 struct device *dev; 684 struct ice_hw *hw; 685 686 dev = ice_pf_to_dev(pf); 687 hw = &pf->hw; 688 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; 689 690 /* In the case of a VFLR, HW has already reset the VF and we just need 691 * to clean up. Otherwise we must first trigger the reset using the 692 * VFRTRIG register. 693 */ 694 if (!is_vflr) { 695 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 696 reg |= VPGEN_VFRTRIG_VFSWR_M; 697 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 698 } 699 700 /* clear the VFLR bit in GLGEN_VFLRSTAT */ 701 reg_idx = (vf_abs_id) / 32; 702 bit_idx = (vf_abs_id) % 32; 703 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 704 ice_flush(hw); 705 706 wr32(hw, PF_PCI_CIAA, 707 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); 708 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { 709 reg = rd32(hw, PF_PCI_CIAD); 710 /* no transactions pending so stop polling */ 711 if ((reg & VF_TRANS_PENDING_M) == 0) 712 break; 713 714 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); 715 udelay(ICE_PCI_CIAD_WAIT_DELAY_US); 716 } 717 } 718 719 /** 720 * ice_sriov_poll_reset_status - poll SRIOV VF reset status 721 * @vf: pointer to VF structure 722 * 723 * Returns true when reset is successful, else returns false 724 */ 725 static bool ice_sriov_poll_reset_status(struct ice_vf *vf) 726 { 727 struct ice_pf *pf = vf->pf; 728 unsigned int i; 729 u32 reg; 730 731 for (i = 0; i < 10; i++) { 732 /* VF reset requires driver to first reset the VF and then 733 * poll the status register to make sure that the reset 734 * completed successfully. 735 */ 736 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); 737 if (reg & VPGEN_VFRSTAT_VFRD_M) 738 return true; 739 740 /* only sleep if the reset is not done */ 741 usleep_range(10, 20); 742 } 743 return false; 744 } 745 746 /** 747 * ice_sriov_clear_reset_trigger - enable VF to access hardware 748 * @vf: VF to enabled hardware access for 749 */ 750 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) 751 { 752 struct ice_hw *hw = &vf->pf->hw; 753 u32 reg; 754 755 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 756 reg &= ~VPGEN_VFRTRIG_VFSWR_M; 757 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 758 ice_flush(hw); 759 } 760 761 /** 762 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt 763 * @vf: VF to perform tasks on 764 */ 765 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) 766 { 767 ice_ena_vf_mappings(vf); 768 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 769 } 770 771 static const struct ice_vf_ops ice_sriov_vf_ops = { 772 .reset_type = ICE_VF_RESET, 773 .free = ice_sriov_free_vf, 774 .clear_reset_state = ice_sriov_clear_reset_state, 775 .clear_mbx_register = ice_sriov_clear_mbx_register, 776 .trigger_reset_register = ice_sriov_trigger_reset_register, 777 .poll_reset_status = ice_sriov_poll_reset_status, 778 .clear_reset_trigger = ice_sriov_clear_reset_trigger, 779 .irq_close = NULL, 780 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, 781 }; 782 783 /** 784 * ice_create_vf_entries - Allocate and insert VF entries 785 * @pf: pointer to the PF structure 786 * @num_vfs: the number of VFs to allocate 787 * 788 * Allocate new VF entries and insert them into the hash table. Set some 789 * basic default fields for initializing the new VFs. 790 * 791 * After this function exits, the hash table will have num_vfs entries 792 * inserted. 793 * 794 * Returns 0 on success or an integer error code on failure. 795 */ 796 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) 797 { 798 struct pci_dev *pdev = pf->pdev; 799 struct ice_vfs *vfs = &pf->vfs; 800 struct pci_dev *vfdev = NULL; 801 struct ice_vf *vf; 802 u16 vf_pdev_id; 803 int err, pos; 804 805 lockdep_assert_held(&vfs->table_lock); 806 807 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 808 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id); 809 810 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) { 811 vf = kzalloc(sizeof(*vf), GFP_KERNEL); 812 if (!vf) { 813 err = -ENOMEM; 814 goto err_free_entries; 815 } 816 kref_init(&vf->refcnt); 817 818 vf->pf = pf; 819 vf->vf_id = vf_id; 820 821 /* set sriov vf ops for VFs created during SRIOV flow */ 822 vf->vf_ops = &ice_sriov_vf_ops; 823 824 ice_initialize_vf_entry(vf); 825 826 do { 827 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev); 828 } while (vfdev && vfdev->physfn != pdev); 829 vf->vfdev = vfdev; 830 vf->vf_sw_id = pf->first_sw; 831 832 pci_dev_get(vfdev); 833 834 /* set default number of MSI-X */ 835 vf->num_msix = pf->vfs.num_msix_per; 836 vf->num_vf_qs = pf->vfs.num_qps_per; 837 ice_vc_set_default_allowlist(vf); 838 839 hash_add_rcu(vfs->table, &vf->entry, vf_id); 840 } 841 842 /* Decrement of refcount done by pci_get_device() inside the loop does 843 * not touch the last iteration's vfdev, so it has to be done manually 844 * to balance pci_dev_get() added within the loop. 845 */ 846 pci_dev_put(vfdev); 847 848 return 0; 849 850 err_free_entries: 851 ice_free_vf_entries(pf); 852 return err; 853 } 854 855 /** 856 * ice_ena_vfs - enable VFs so they are ready to be used 857 * @pf: pointer to the PF structure 858 * @num_vfs: number of VFs to enable 859 */ 860 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) 861 { 862 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 863 struct device *dev = ice_pf_to_dev(pf); 864 struct ice_hw *hw = &pf->hw; 865 int ret; 866 867 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL); 868 if (!pf->sriov_irq_bm) 869 return -ENOMEM; 870 pf->sriov_irq_size = total_vectors; 871 872 /* Disable global interrupt 0 so we don't try to handle the VFLR. */ 873 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 874 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 875 set_bit(ICE_OICR_INTR_DIS, pf->state); 876 ice_flush(hw); 877 878 ret = pci_enable_sriov(pf->pdev, num_vfs); 879 if (ret) 880 goto err_unroll_intr; 881 882 mutex_lock(&pf->vfs.table_lock); 883 884 ret = ice_set_per_vf_res(pf, num_vfs); 885 if (ret) { 886 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", 887 num_vfs, ret); 888 goto err_unroll_sriov; 889 } 890 891 ret = ice_create_vf_entries(pf, num_vfs); 892 if (ret) { 893 dev_err(dev, "Failed to allocate VF entries for %d VFs\n", 894 num_vfs); 895 goto err_unroll_sriov; 896 } 897 898 ret = ice_start_vfs(pf); 899 if (ret) { 900 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); 901 ret = -EAGAIN; 902 goto err_unroll_vf_entries; 903 } 904 905 clear_bit(ICE_VF_DIS, pf->state); 906 907 /* rearm global interrupts */ 908 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) 909 ice_irq_dynamic_ena(hw, NULL, NULL); 910 911 mutex_unlock(&pf->vfs.table_lock); 912 913 return 0; 914 915 err_unroll_vf_entries: 916 ice_free_vf_entries(pf); 917 err_unroll_sriov: 918 mutex_unlock(&pf->vfs.table_lock); 919 pci_disable_sriov(pf->pdev); 920 err_unroll_intr: 921 /* rearm interrupts here */ 922 ice_irq_dynamic_ena(hw, NULL, NULL); 923 clear_bit(ICE_OICR_INTR_DIS, pf->state); 924 bitmap_free(pf->sriov_irq_bm); 925 return ret; 926 } 927 928 /** 929 * ice_pci_sriov_ena - Enable or change number of VFs 930 * @pf: pointer to the PF structure 931 * @num_vfs: number of VFs to allocate 932 * 933 * Returns 0 on success and negative on failure 934 */ 935 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) 936 { 937 struct device *dev = ice_pf_to_dev(pf); 938 int err; 939 940 if (!num_vfs) { 941 ice_free_vfs(pf); 942 return 0; 943 } 944 945 if (num_vfs > pf->vfs.num_supported) { 946 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", 947 num_vfs, pf->vfs.num_supported); 948 return -EOPNOTSUPP; 949 } 950 951 dev_info(dev, "Enabling %d VFs\n", num_vfs); 952 err = ice_ena_vfs(pf, num_vfs); 953 if (err) { 954 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 955 return err; 956 } 957 958 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 959 return 0; 960 } 961 962 /** 963 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks 964 * @pf: PF to enabled SR-IOV on 965 */ 966 static int ice_check_sriov_allowed(struct ice_pf *pf) 967 { 968 struct device *dev = ice_pf_to_dev(pf); 969 970 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { 971 dev_err(dev, "This device is not capable of SR-IOV\n"); 972 return -EOPNOTSUPP; 973 } 974 975 if (ice_is_safe_mode(pf)) { 976 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); 977 return -EOPNOTSUPP; 978 } 979 980 if (!ice_pf_state_is_nominal(pf)) { 981 dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); 982 return -EBUSY; 983 } 984 985 return 0; 986 } 987 988 /** 989 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs 990 * @pdev: pointer to pci_dev struct 991 * 992 * The function is called via sysfs ops 993 */ 994 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev) 995 { 996 struct ice_pf *pf = pci_get_drvdata(pdev); 997 998 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf); 999 } 1000 1001 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move) 1002 { 1003 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf)) 1004 return -ENOMEM; 1005 1006 pf->sriov_base_vector -= move; 1007 return 0; 1008 } 1009 1010 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id) 1011 { 1012 u16 vf_ids[ICE_MAX_SRIOV_VFS]; 1013 struct ice_vf *tmp_vf; 1014 int to_remap = 0, bkt; 1015 1016 /* For better irqs usage try to remap irqs of VFs 1017 * that aren't running yet 1018 */ 1019 ice_for_each_vf(pf, bkt, tmp_vf) { 1020 /* skip VF which is changing the number of MSI-X */ 1021 if (restricted_id == tmp_vf->vf_id || 1022 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states)) 1023 continue; 1024 1025 ice_dis_vf_mappings(tmp_vf); 1026 ice_sriov_free_irqs(pf, tmp_vf); 1027 1028 vf_ids[to_remap] = tmp_vf->vf_id; 1029 to_remap += 1; 1030 } 1031 1032 for (int i = 0; i < to_remap; i++) { 1033 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]); 1034 if (!tmp_vf) 1035 continue; 1036 1037 tmp_vf->first_vector_idx = 1038 ice_sriov_get_irqs(pf, tmp_vf->num_msix); 1039 /* there is no need to rebuild VSI as we are only changing the 1040 * vector indexes not amount of MSI-X or queues 1041 */ 1042 ice_ena_vf_mappings(tmp_vf); 1043 ice_put_vf(tmp_vf); 1044 } 1045 } 1046 1047 /** 1048 * ice_sriov_set_msix_vec_count 1049 * @vf_dev: pointer to pci_dev struct of VF device 1050 * @msix_vec_count: new value for MSI-X amount on this VF 1051 * 1052 * Set requested MSI-X, queues and registers for @vf_dev. 1053 * 1054 * First do some sanity checks like if there are any VFs, if the new value 1055 * is correct etc. Then disable old mapping (MSI-X and queues registers), change 1056 * MSI-X and queues, rebuild VSI and enable new mapping. 1057 * 1058 * If it is possible (driver not binded to VF) try to remap also other VFs to 1059 * linearize irqs register usage. 1060 */ 1061 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count) 1062 { 1063 struct pci_dev *pdev = pci_physfn(vf_dev); 1064 struct ice_pf *pf = pci_get_drvdata(pdev); 1065 u16 prev_msix, prev_queues, queues; 1066 bool needs_rebuild = false; 1067 struct ice_vsi *vsi; 1068 struct ice_vf *vf; 1069 int id; 1070 1071 if (!ice_get_num_vfs(pf)) 1072 return -ENOENT; 1073 1074 if (!msix_vec_count) 1075 return 0; 1076 1077 queues = msix_vec_count; 1078 /* add 1 MSI-X for OICR */ 1079 msix_vec_count += 1; 1080 1081 if (queues > min(ice_get_avail_txq_count(pf), 1082 ice_get_avail_rxq_count(pf))) 1083 return -EINVAL; 1084 1085 if (msix_vec_count < ICE_MIN_INTR_PER_VF) 1086 return -EINVAL; 1087 1088 /* Transition of PCI VF function number to function_id */ 1089 for (id = 0; id < pci_num_vf(pdev); id++) { 1090 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id)) 1091 break; 1092 } 1093 1094 if (id == pci_num_vf(pdev)) 1095 return -ENOENT; 1096 1097 vf = ice_get_vf_by_id(pf, id); 1098 1099 if (!vf) 1100 return -ENOENT; 1101 1102 vsi = ice_get_vf_vsi(vf); 1103 if (!vsi) 1104 return -ENOENT; 1105 1106 prev_msix = vf->num_msix; 1107 prev_queues = vf->num_vf_qs; 1108 1109 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) { 1110 ice_put_vf(vf); 1111 return -ENOSPC; 1112 } 1113 1114 ice_dis_vf_mappings(vf); 1115 ice_sriov_free_irqs(pf, vf); 1116 1117 /* Remap all VFs beside the one is now configured */ 1118 ice_sriov_remap_vectors(pf, vf->vf_id); 1119 1120 vf->num_msix = msix_vec_count; 1121 vf->num_vf_qs = queues; 1122 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1123 if (vf->first_vector_idx < 0) 1124 goto unroll; 1125 1126 if (ice_vf_reconfig_vsi(vf) || ice_vf_init_host_cfg(vf, vsi)) { 1127 /* Try to rebuild with previous values */ 1128 needs_rebuild = true; 1129 goto unroll; 1130 } 1131 1132 dev_info(ice_pf_to_dev(pf), 1133 "Changing VF %d resources to %d vectors and %d queues\n", 1134 vf->vf_id, vf->num_msix, vf->num_vf_qs); 1135 1136 ice_ena_vf_mappings(vf); 1137 ice_put_vf(vf); 1138 1139 return 0; 1140 1141 unroll: 1142 dev_info(ice_pf_to_dev(pf), 1143 "Can't set %d vectors on VF %d, falling back to %d\n", 1144 vf->num_msix, vf->vf_id, prev_msix); 1145 1146 vf->num_msix = prev_msix; 1147 vf->num_vf_qs = prev_queues; 1148 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1149 if (vf->first_vector_idx < 0) 1150 return -EINVAL; 1151 1152 if (needs_rebuild) { 1153 ice_vf_reconfig_vsi(vf); 1154 ice_vf_init_host_cfg(vf, vsi); 1155 } 1156 1157 ice_ena_vf_mappings(vf); 1158 ice_put_vf(vf); 1159 1160 return -EINVAL; 1161 } 1162 1163 /** 1164 * ice_sriov_configure - Enable or change number of VFs via sysfs 1165 * @pdev: pointer to a pci_dev structure 1166 * @num_vfs: number of VFs to allocate or 0 to free VFs 1167 * 1168 * This function is called when the user updates the number of VFs in sysfs. On 1169 * success return whatever num_vfs was set to by the caller. Return negative on 1170 * failure. 1171 */ 1172 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) 1173 { 1174 struct ice_pf *pf = pci_get_drvdata(pdev); 1175 struct device *dev = ice_pf_to_dev(pf); 1176 int err; 1177 1178 err = ice_check_sriov_allowed(pf); 1179 if (err) 1180 return err; 1181 1182 if (!num_vfs) { 1183 if (!pci_vfs_assigned(pdev)) { 1184 ice_free_vfs(pf); 1185 return 0; 1186 } 1187 1188 dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); 1189 return -EBUSY; 1190 } 1191 1192 err = ice_pci_sriov_ena(pf, num_vfs); 1193 if (err) 1194 return err; 1195 1196 return num_vfs; 1197 } 1198 1199 /** 1200 * ice_process_vflr_event - Free VF resources via IRQ calls 1201 * @pf: pointer to the PF structure 1202 * 1203 * called from the VFLR IRQ handler to 1204 * free up VF resources and state variables 1205 */ 1206 void ice_process_vflr_event(struct ice_pf *pf) 1207 { 1208 struct ice_hw *hw = &pf->hw; 1209 struct ice_vf *vf; 1210 unsigned int bkt; 1211 u32 reg; 1212 1213 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 1214 !ice_has_vfs(pf)) 1215 return; 1216 1217 mutex_lock(&pf->vfs.table_lock); 1218 ice_for_each_vf(pf, bkt, vf) { 1219 u32 reg_idx, bit_idx; 1220 1221 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 1222 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 1223 /* read GLGEN_VFLRSTAT register to find out the flr VFs */ 1224 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); 1225 if (reg & BIT(bit_idx)) 1226 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ 1227 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 1228 } 1229 mutex_unlock(&pf->vfs.table_lock); 1230 } 1231 1232 /** 1233 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in 1234 * @pf: PF used to index all VFs 1235 * @pfq: queue index relative to the PF's function space 1236 * 1237 * If no VF is found who owns the pfq then return NULL, otherwise return a 1238 * pointer to the VF who owns the pfq 1239 * 1240 * If this function returns non-NULL, it acquires a reference count of the VF 1241 * structure. The caller is responsible for calling ice_put_vf() to drop this 1242 * reference. 1243 */ 1244 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) 1245 { 1246 struct ice_vf *vf; 1247 unsigned int bkt; 1248 1249 rcu_read_lock(); 1250 ice_for_each_vf_rcu(pf, bkt, vf) { 1251 struct ice_vsi *vsi; 1252 u16 rxq_idx; 1253 1254 vsi = ice_get_vf_vsi(vf); 1255 if (!vsi) 1256 continue; 1257 1258 ice_for_each_rxq(vsi, rxq_idx) 1259 if (vsi->rxq_map[rxq_idx] == pfq) { 1260 struct ice_vf *found; 1261 1262 if (kref_get_unless_zero(&vf->refcnt)) 1263 found = vf; 1264 else 1265 found = NULL; 1266 rcu_read_unlock(); 1267 return found; 1268 } 1269 } 1270 rcu_read_unlock(); 1271 1272 return NULL; 1273 } 1274 1275 /** 1276 * ice_globalq_to_pfq - convert from global queue index to PF space queue index 1277 * @pf: PF used for conversion 1278 * @globalq: global queue index used to convert to PF space queue index 1279 */ 1280 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) 1281 { 1282 return globalq - pf->hw.func_caps.common_cap.rxq_first_id; 1283 } 1284 1285 /** 1286 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF 1287 * @pf: PF that the LAN overflow event happened on 1288 * @event: structure holding the event information for the LAN overflow event 1289 * 1290 * Determine if the LAN overflow event was caused by a VF queue. If it was not 1291 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a 1292 * reset on the offending VF. 1293 */ 1294 void 1295 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1296 { 1297 u32 gldcb_rtctq, queue; 1298 struct ice_vf *vf; 1299 1300 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); 1301 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); 1302 1303 /* event returns device global Rx queue number */ 1304 queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq); 1305 1306 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); 1307 if (!vf) 1308 return; 1309 1310 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1311 ice_put_vf(vf); 1312 } 1313 1314 /** 1315 * ice_set_vf_spoofchk 1316 * @netdev: network interface device structure 1317 * @vf_id: VF identifier 1318 * @ena: flag to enable or disable feature 1319 * 1320 * Enable or disable VF spoof checking 1321 */ 1322 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) 1323 { 1324 struct ice_netdev_priv *np = netdev_priv(netdev); 1325 struct ice_pf *pf = np->vsi->back; 1326 struct ice_vsi *vf_vsi; 1327 struct device *dev; 1328 struct ice_vf *vf; 1329 int ret; 1330 1331 dev = ice_pf_to_dev(pf); 1332 1333 vf = ice_get_vf_by_id(pf, vf_id); 1334 if (!vf) 1335 return -EINVAL; 1336 1337 ret = ice_check_vf_ready_for_cfg(vf); 1338 if (ret) 1339 goto out_put_vf; 1340 1341 vf_vsi = ice_get_vf_vsi(vf); 1342 if (!vf_vsi) { 1343 netdev_err(netdev, "VSI %d for VF %d is null\n", 1344 vf->lan_vsi_idx, vf->vf_id); 1345 ret = -EINVAL; 1346 goto out_put_vf; 1347 } 1348 1349 if (vf_vsi->type != ICE_VSI_VF) { 1350 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", 1351 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); 1352 ret = -ENODEV; 1353 goto out_put_vf; 1354 } 1355 1356 if (ena == vf->spoofchk) { 1357 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); 1358 ret = 0; 1359 goto out_put_vf; 1360 } 1361 1362 ret = ice_vsi_apply_spoofchk(vf_vsi, ena); 1363 if (ret) 1364 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", 1365 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); 1366 else 1367 vf->spoofchk = ena; 1368 1369 out_put_vf: 1370 ice_put_vf(vf); 1371 return ret; 1372 } 1373 1374 /** 1375 * ice_get_vf_cfg 1376 * @netdev: network interface device structure 1377 * @vf_id: VF identifier 1378 * @ivi: VF configuration structure 1379 * 1380 * return VF configuration 1381 */ 1382 int 1383 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) 1384 { 1385 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1386 struct ice_vf *vf; 1387 int ret; 1388 1389 vf = ice_get_vf_by_id(pf, vf_id); 1390 if (!vf) 1391 return -EINVAL; 1392 1393 ret = ice_check_vf_ready_for_cfg(vf); 1394 if (ret) 1395 goto out_put_vf; 1396 1397 ivi->vf = vf_id; 1398 ether_addr_copy(ivi->mac, vf->hw_lan_addr); 1399 1400 /* VF configuration for VLAN and applicable QoS */ 1401 ivi->vlan = ice_vf_get_port_vlan_id(vf); 1402 ivi->qos = ice_vf_get_port_vlan_prio(vf); 1403 if (ice_vf_is_port_vlan_ena(vf)) 1404 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); 1405 1406 ivi->trusted = vf->trusted; 1407 ivi->spoofchk = vf->spoofchk; 1408 if (!vf->link_forced) 1409 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 1410 else if (vf->link_up) 1411 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 1412 else 1413 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 1414 ivi->max_tx_rate = vf->max_tx_rate; 1415 ivi->min_tx_rate = vf->min_tx_rate; 1416 1417 out_put_vf: 1418 ice_put_vf(vf); 1419 return ret; 1420 } 1421 1422 /** 1423 * ice_set_vf_mac 1424 * @netdev: network interface device structure 1425 * @vf_id: VF identifier 1426 * @mac: MAC address 1427 * 1428 * program VF MAC address 1429 */ 1430 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 1431 { 1432 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1433 struct ice_vf *vf; 1434 int ret; 1435 1436 if (is_multicast_ether_addr(mac)) { 1437 netdev_err(netdev, "%pM not a valid unicast address\n", mac); 1438 return -EINVAL; 1439 } 1440 1441 vf = ice_get_vf_by_id(pf, vf_id); 1442 if (!vf) 1443 return -EINVAL; 1444 1445 /* nothing left to do, unicast MAC already set */ 1446 if (ether_addr_equal(vf->dev_lan_addr, mac) && 1447 ether_addr_equal(vf->hw_lan_addr, mac)) { 1448 ret = 0; 1449 goto out_put_vf; 1450 } 1451 1452 ret = ice_check_vf_ready_for_cfg(vf); 1453 if (ret) 1454 goto out_put_vf; 1455 1456 mutex_lock(&vf->cfg_lock); 1457 1458 /* VF is notified of its new MAC via the PF's response to the 1459 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset 1460 */ 1461 ether_addr_copy(vf->dev_lan_addr, mac); 1462 ether_addr_copy(vf->hw_lan_addr, mac); 1463 if (is_zero_ether_addr(mac)) { 1464 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ 1465 vf->pf_set_mac = false; 1466 netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n", 1467 vf->vf_id); 1468 } else { 1469 /* PF will add MAC rule for the VF */ 1470 vf->pf_set_mac = true; 1471 netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", 1472 mac, vf_id); 1473 } 1474 1475 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1476 mutex_unlock(&vf->cfg_lock); 1477 1478 out_put_vf: 1479 ice_put_vf(vf); 1480 return ret; 1481 } 1482 1483 /** 1484 * ice_set_vf_trust 1485 * @netdev: network interface device structure 1486 * @vf_id: VF identifier 1487 * @trusted: Boolean value to enable/disable trusted VF 1488 * 1489 * Enable or disable a given VF as trusted 1490 */ 1491 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) 1492 { 1493 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1494 struct ice_vf *vf; 1495 int ret; 1496 1497 vf = ice_get_vf_by_id(pf, vf_id); 1498 if (!vf) 1499 return -EINVAL; 1500 1501 if (ice_is_eswitch_mode_switchdev(pf)) { 1502 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); 1503 return -EOPNOTSUPP; 1504 } 1505 1506 ret = ice_check_vf_ready_for_cfg(vf); 1507 if (ret) 1508 goto out_put_vf; 1509 1510 /* Check if already trusted */ 1511 if (trusted == vf->trusted) { 1512 ret = 0; 1513 goto out_put_vf; 1514 } 1515 1516 mutex_lock(&vf->cfg_lock); 1517 1518 vf->trusted = trusted; 1519 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1520 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", 1521 vf_id, trusted ? "" : "un"); 1522 1523 mutex_unlock(&vf->cfg_lock); 1524 1525 out_put_vf: 1526 ice_put_vf(vf); 1527 return ret; 1528 } 1529 1530 /** 1531 * ice_set_vf_link_state 1532 * @netdev: network interface device structure 1533 * @vf_id: VF identifier 1534 * @link_state: required link state 1535 * 1536 * Set VF's link state, irrespective of physical link state status 1537 */ 1538 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) 1539 { 1540 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1541 struct ice_vf *vf; 1542 int ret; 1543 1544 vf = ice_get_vf_by_id(pf, vf_id); 1545 if (!vf) 1546 return -EINVAL; 1547 1548 ret = ice_check_vf_ready_for_cfg(vf); 1549 if (ret) 1550 goto out_put_vf; 1551 1552 switch (link_state) { 1553 case IFLA_VF_LINK_STATE_AUTO: 1554 vf->link_forced = false; 1555 break; 1556 case IFLA_VF_LINK_STATE_ENABLE: 1557 vf->link_forced = true; 1558 vf->link_up = true; 1559 break; 1560 case IFLA_VF_LINK_STATE_DISABLE: 1561 vf->link_forced = true; 1562 vf->link_up = false; 1563 break; 1564 default: 1565 ret = -EINVAL; 1566 goto out_put_vf; 1567 } 1568 1569 ice_vc_notify_vf_link_state(vf); 1570 1571 out_put_vf: 1572 ice_put_vf(vf); 1573 return ret; 1574 } 1575 1576 /** 1577 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs 1578 * @pf: PF associated with VFs 1579 */ 1580 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) 1581 { 1582 struct ice_vf *vf; 1583 unsigned int bkt; 1584 int rate = 0; 1585 1586 rcu_read_lock(); 1587 ice_for_each_vf_rcu(pf, bkt, vf) 1588 rate += vf->min_tx_rate; 1589 rcu_read_unlock(); 1590 1591 return rate; 1592 } 1593 1594 /** 1595 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription 1596 * @vf: VF trying to configure min_tx_rate 1597 * @min_tx_rate: min Tx rate in Mbps 1598 * 1599 * Check if the min_tx_rate being passed in will cause oversubscription of total 1600 * min_tx_rate based on the current link speed and all other VFs configured 1601 * min_tx_rate 1602 * 1603 * Return true if the passed min_tx_rate would cause oversubscription, else 1604 * return false 1605 */ 1606 static bool 1607 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) 1608 { 1609 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 1610 int all_vfs_min_tx_rate; 1611 int link_speed_mbps; 1612 1613 if (WARN_ON(!vsi)) 1614 return false; 1615 1616 link_speed_mbps = ice_get_link_speed_mbps(vsi); 1617 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); 1618 1619 /* this VF's previous rate is being overwritten */ 1620 all_vfs_min_tx_rate -= vf->min_tx_rate; 1621 1622 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { 1623 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", 1624 min_tx_rate, vf->vf_id, 1625 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, 1626 link_speed_mbps); 1627 return true; 1628 } 1629 1630 return false; 1631 } 1632 1633 /** 1634 * ice_set_vf_bw - set min/max VF bandwidth 1635 * @netdev: network interface device structure 1636 * @vf_id: VF identifier 1637 * @min_tx_rate: Minimum Tx rate in Mbps 1638 * @max_tx_rate: Maximum Tx rate in Mbps 1639 */ 1640 int 1641 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, 1642 int max_tx_rate) 1643 { 1644 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1645 struct ice_vsi *vsi; 1646 struct device *dev; 1647 struct ice_vf *vf; 1648 int ret; 1649 1650 dev = ice_pf_to_dev(pf); 1651 1652 vf = ice_get_vf_by_id(pf, vf_id); 1653 if (!vf) 1654 return -EINVAL; 1655 1656 ret = ice_check_vf_ready_for_cfg(vf); 1657 if (ret) 1658 goto out_put_vf; 1659 1660 vsi = ice_get_vf_vsi(vf); 1661 if (!vsi) { 1662 ret = -EINVAL; 1663 goto out_put_vf; 1664 } 1665 1666 if (min_tx_rate && ice_is_dcb_active(pf)) { 1667 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); 1668 ret = -EOPNOTSUPP; 1669 goto out_put_vf; 1670 } 1671 1672 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { 1673 ret = -EINVAL; 1674 goto out_put_vf; 1675 } 1676 1677 if (vf->min_tx_rate != (unsigned int)min_tx_rate) { 1678 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); 1679 if (ret) { 1680 dev_err(dev, "Unable to set min-tx-rate for VF %d\n", 1681 vf->vf_id); 1682 goto out_put_vf; 1683 } 1684 1685 vf->min_tx_rate = min_tx_rate; 1686 } 1687 1688 if (vf->max_tx_rate != (unsigned int)max_tx_rate) { 1689 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); 1690 if (ret) { 1691 dev_err(dev, "Unable to set max-tx-rate for VF %d\n", 1692 vf->vf_id); 1693 goto out_put_vf; 1694 } 1695 1696 vf->max_tx_rate = max_tx_rate; 1697 } 1698 1699 out_put_vf: 1700 ice_put_vf(vf); 1701 return ret; 1702 } 1703 1704 /** 1705 * ice_get_vf_stats - populate some stats for the VF 1706 * @netdev: the netdev of the PF 1707 * @vf_id: the host OS identifier (0-255) 1708 * @vf_stats: pointer to the OS memory to be initialized 1709 */ 1710 int ice_get_vf_stats(struct net_device *netdev, int vf_id, 1711 struct ifla_vf_stats *vf_stats) 1712 { 1713 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1714 struct ice_eth_stats *stats; 1715 struct ice_vsi *vsi; 1716 struct ice_vf *vf; 1717 int ret; 1718 1719 vf = ice_get_vf_by_id(pf, vf_id); 1720 if (!vf) 1721 return -EINVAL; 1722 1723 ret = ice_check_vf_ready_for_cfg(vf); 1724 if (ret) 1725 goto out_put_vf; 1726 1727 vsi = ice_get_vf_vsi(vf); 1728 if (!vsi) { 1729 ret = -EINVAL; 1730 goto out_put_vf; 1731 } 1732 1733 ice_update_eth_stats(vsi); 1734 stats = &vsi->eth_stats; 1735 1736 memset(vf_stats, 0, sizeof(*vf_stats)); 1737 1738 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + 1739 stats->rx_multicast; 1740 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + 1741 stats->tx_multicast; 1742 vf_stats->rx_bytes = stats->rx_bytes; 1743 vf_stats->tx_bytes = stats->tx_bytes; 1744 vf_stats->broadcast = stats->rx_broadcast; 1745 vf_stats->multicast = stats->rx_multicast; 1746 vf_stats->rx_dropped = stats->rx_discards; 1747 vf_stats->tx_dropped = stats->tx_discards; 1748 1749 out_put_vf: 1750 ice_put_vf(vf); 1751 return ret; 1752 } 1753 1754 /** 1755 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported 1756 * @hw: hardware structure used to check the VLAN mode 1757 * @vlan_proto: VLAN TPID being checked 1758 * 1759 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q 1760 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN 1761 * Mode (SVM), then only ETH_P_8021Q is supported. 1762 */ 1763 static bool 1764 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) 1765 { 1766 bool is_supported = false; 1767 1768 switch (vlan_proto) { 1769 case ETH_P_8021Q: 1770 is_supported = true; 1771 break; 1772 case ETH_P_8021AD: 1773 if (ice_is_dvm_ena(hw)) 1774 is_supported = true; 1775 break; 1776 } 1777 1778 return is_supported; 1779 } 1780 1781 /** 1782 * ice_set_vf_port_vlan 1783 * @netdev: network interface device structure 1784 * @vf_id: VF identifier 1785 * @vlan_id: VLAN ID being set 1786 * @qos: priority setting 1787 * @vlan_proto: VLAN protocol 1788 * 1789 * program VF Port VLAN ID and/or QoS 1790 */ 1791 int 1792 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, 1793 __be16 vlan_proto) 1794 { 1795 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1796 u16 local_vlan_proto = ntohs(vlan_proto); 1797 struct device *dev; 1798 struct ice_vf *vf; 1799 int ret; 1800 1801 dev = ice_pf_to_dev(pf); 1802 1803 if (vlan_id >= VLAN_N_VID || qos > 7) { 1804 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", 1805 vf_id, vlan_id, qos); 1806 return -EINVAL; 1807 } 1808 1809 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { 1810 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", 1811 local_vlan_proto); 1812 return -EPROTONOSUPPORT; 1813 } 1814 1815 vf = ice_get_vf_by_id(pf, vf_id); 1816 if (!vf) 1817 return -EINVAL; 1818 1819 ret = ice_check_vf_ready_for_cfg(vf); 1820 if (ret) 1821 goto out_put_vf; 1822 1823 if (ice_vf_get_port_vlan_prio(vf) == qos && 1824 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && 1825 ice_vf_get_port_vlan_id(vf) == vlan_id) { 1826 /* duplicate request, so just return success */ 1827 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", 1828 vlan_id, qos, local_vlan_proto); 1829 ret = 0; 1830 goto out_put_vf; 1831 } 1832 1833 mutex_lock(&vf->cfg_lock); 1834 1835 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); 1836 if (ice_vf_is_port_vlan_ena(vf)) 1837 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", 1838 vlan_id, qos, local_vlan_proto, vf_id); 1839 else 1840 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); 1841 1842 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1843 mutex_unlock(&vf->cfg_lock); 1844 1845 out_put_vf: 1846 ice_put_vf(vf); 1847 return ret; 1848 } 1849 1850 /** 1851 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event 1852 * @vf: pointer to the VF structure 1853 */ 1854 void ice_print_vf_rx_mdd_event(struct ice_vf *vf) 1855 { 1856 struct ice_pf *pf = vf->pf; 1857 struct device *dev; 1858 1859 dev = ice_pf_to_dev(pf); 1860 1861 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1862 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, 1863 vf->dev_lan_addr, 1864 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1865 ? "on" : "off"); 1866 } 1867 1868 /** 1869 * ice_print_vfs_mdd_events - print VFs malicious driver detect event 1870 * @pf: pointer to the PF structure 1871 * 1872 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. 1873 */ 1874 void ice_print_vfs_mdd_events(struct ice_pf *pf) 1875 { 1876 struct device *dev = ice_pf_to_dev(pf); 1877 struct ice_hw *hw = &pf->hw; 1878 struct ice_vf *vf; 1879 unsigned int bkt; 1880 1881 /* check that there are pending MDD events to print */ 1882 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) 1883 return; 1884 1885 /* VF MDD event logs are rate limited to one second intervals */ 1886 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) 1887 return; 1888 1889 pf->vfs.last_printed_mdd_jiffies = jiffies; 1890 1891 mutex_lock(&pf->vfs.table_lock); 1892 ice_for_each_vf(pf, bkt, vf) { 1893 /* only print Rx MDD event message if there are new events */ 1894 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 1895 vf->mdd_rx_events.last_printed = 1896 vf->mdd_rx_events.count; 1897 ice_print_vf_rx_mdd_event(vf); 1898 } 1899 1900 /* only print Tx MDD event message if there are new events */ 1901 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 1902 vf->mdd_tx_events.last_printed = 1903 vf->mdd_tx_events.count; 1904 1905 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n", 1906 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id, 1907 vf->dev_lan_addr); 1908 } 1909 } 1910 mutex_unlock(&pf->vfs.table_lock); 1911 } 1912 1913 /** 1914 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR 1915 * @pf: pointer to the PF structure 1916 * 1917 * Called when recovering from a PF FLR to restore interrupt capability to 1918 * the VFs. 1919 */ 1920 void ice_restore_all_vfs_msi_state(struct ice_pf *pf) 1921 { 1922 struct ice_vf *vf; 1923 u32 bkt; 1924 1925 ice_for_each_vf(pf, bkt, vf) 1926 pci_restore_msi_state(vf->vfdev); 1927 } 1928