1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice_base.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_flow.h" 11 #include "ice_eswitch.h" 12 #include "ice_virtchnl_allowlist.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_vf_vsi_vlan_ops.h" 15 #include "ice_vlan.h" 16 17 /** 18 * ice_free_vf_entries - Free all VF entries from the hash table 19 * @pf: pointer to the PF structure 20 * 21 * Iterate over the VF hash table, removing and releasing all VF entries. 22 * Called during VF teardown or as cleanup during failed VF initialization. 23 */ 24 static void ice_free_vf_entries(struct ice_pf *pf) 25 { 26 struct ice_vfs *vfs = &pf->vfs; 27 struct hlist_node *tmp; 28 struct ice_vf *vf; 29 unsigned int bkt; 30 31 /* Remove all VFs from the hash table and release their main 32 * reference. Once all references to the VF are dropped, ice_put_vf() 33 * will call ice_release_vf which will remove the VF memory. 34 */ 35 lockdep_assert_held(&vfs->table_lock); 36 37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { 38 hash_del_rcu(&vf->entry); 39 ice_put_vf(vf); 40 } 41 } 42 43 /** 44 * ice_free_vf_res - Free a VF's resources 45 * @vf: pointer to the VF info 46 */ 47 static void ice_free_vf_res(struct ice_vf *vf) 48 { 49 struct ice_pf *pf = vf->pf; 50 int i, last_vector_idx; 51 52 /* First, disable VF's configuration API to prevent OS from 53 * accessing the VF's VSI after it's freed or invalidated. 54 */ 55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states); 56 ice_vf_fdir_exit(vf); 57 /* free VF control VSI */ 58 if (vf->ctrl_vsi_idx != ICE_NO_VSI) 59 ice_vf_ctrl_vsi_release(vf); 60 61 /* free VSI and disconnect it from the parent uplink */ 62 if (vf->lan_vsi_idx != ICE_NO_VSI) { 63 ice_vf_vsi_release(vf); 64 vf->num_mac = 0; 65 } 66 67 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1; 68 69 /* clear VF MDD event information */ 70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); 71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); 72 73 /* Disable interrupts so that VF starts in a known state */ 74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { 75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); 76 ice_flush(&pf->hw); 77 } 78 /* reset some of the state variables keeping track of the resources */ 79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); 80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); 81 } 82 83 /** 84 * ice_dis_vf_mappings 85 * @vf: pointer to the VF structure 86 */ 87 static void ice_dis_vf_mappings(struct ice_vf *vf) 88 { 89 struct ice_pf *pf = vf->pf; 90 struct ice_vsi *vsi; 91 struct device *dev; 92 int first, last, v; 93 struct ice_hw *hw; 94 95 hw = &pf->hw; 96 vsi = ice_get_vf_vsi(vf); 97 if (WARN_ON(!vsi)) 98 return; 99 100 dev = ice_pf_to_dev(pf); 101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0); 102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); 103 104 first = vf->first_vector_idx; 105 last = first + vf->num_msix - 1; 106 for (v = first; v <= last; v++) { 107 u32 reg; 108 109 reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) | 110 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 111 wr32(hw, GLINT_VECT2FUNC(v), reg); 112 } 113 114 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) 115 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); 116 else 117 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 118 119 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) 120 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); 121 else 122 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 123 } 124 125 /** 126 * ice_sriov_free_msix_res - Reset/free any used MSIX resources 127 * @pf: pointer to the PF structure 128 * 129 * Since no MSIX entries are taken from the pf->irq_tracker then just clear 130 * the pf->sriov_base_vector. 131 * 132 * Returns 0 on success, and -EINVAL on error. 133 */ 134 static int ice_sriov_free_msix_res(struct ice_pf *pf) 135 { 136 if (!pf) 137 return -EINVAL; 138 139 bitmap_free(pf->sriov_irq_bm); 140 pf->sriov_irq_size = 0; 141 pf->sriov_base_vector = 0; 142 143 return 0; 144 } 145 146 /** 147 * ice_free_vfs - Free all VFs 148 * @pf: pointer to the PF structure 149 */ 150 void ice_free_vfs(struct ice_pf *pf) 151 { 152 struct device *dev = ice_pf_to_dev(pf); 153 struct ice_vfs *vfs = &pf->vfs; 154 struct ice_hw *hw = &pf->hw; 155 struct ice_vf *vf; 156 unsigned int bkt; 157 158 if (!ice_has_vfs(pf)) 159 return; 160 161 while (test_and_set_bit(ICE_VF_DIS, pf->state)) 162 usleep_range(1000, 2000); 163 164 /* Disable IOV before freeing resources. This lets any VF drivers 165 * running in the host get themselves cleaned up before we yank 166 * the carpet out from underneath their feet. 167 */ 168 if (!pci_vfs_assigned(pf->pdev)) 169 pci_disable_sriov(pf->pdev); 170 else 171 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); 172 173 ice_eswitch_reserve_cp_queues(pf, -ice_get_num_vfs(pf)); 174 175 mutex_lock(&vfs->table_lock); 176 177 ice_for_each_vf(pf, bkt, vf) { 178 mutex_lock(&vf->cfg_lock); 179 180 ice_eswitch_detach(pf, vf); 181 ice_dis_vf_qs(vf); 182 183 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { 184 /* disable VF qp mappings and set VF disable state */ 185 ice_dis_vf_mappings(vf); 186 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 187 ice_free_vf_res(vf); 188 } 189 190 if (!pci_vfs_assigned(pf->pdev)) { 191 u32 reg_idx, bit_idx; 192 193 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 194 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 195 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 196 } 197 198 /* clear malicious info since the VF is getting released */ 199 list_del(&vf->mbx_info.list_entry); 200 201 mutex_unlock(&vf->cfg_lock); 202 } 203 204 if (ice_sriov_free_msix_res(pf)) 205 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); 206 207 vfs->num_qps_per = 0; 208 ice_free_vf_entries(pf); 209 210 mutex_unlock(&vfs->table_lock); 211 212 clear_bit(ICE_VF_DIS, pf->state); 213 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 214 } 215 216 /** 217 * ice_vf_vsi_setup - Set up a VF VSI 218 * @vf: VF to setup VSI for 219 * 220 * Returns pointer to the successfully allocated VSI struct on success, 221 * otherwise returns NULL on failure. 222 */ 223 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) 224 { 225 struct ice_vsi_cfg_params params = {}; 226 struct ice_pf *pf = vf->pf; 227 struct ice_vsi *vsi; 228 229 params.type = ICE_VSI_VF; 230 params.pi = ice_vf_get_port_info(vf); 231 params.vf = vf; 232 params.flags = ICE_VSI_FLAG_INIT; 233 234 vsi = ice_vsi_setup(pf, ¶ms); 235 236 if (!vsi) { 237 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); 238 ice_vf_invalidate_vsi(vf); 239 return NULL; 240 } 241 242 vf->lan_vsi_idx = vsi->idx; 243 244 return vsi; 245 } 246 247 248 /** 249 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware 250 * @vf: VF to enable MSIX mappings for 251 * 252 * Some of the registers need to be indexed/configured using hardware global 253 * device values and other registers need 0-based values, which represent PF 254 * based values. 255 */ 256 static void ice_ena_vf_msix_mappings(struct ice_vf *vf) 257 { 258 int device_based_first_msix, device_based_last_msix; 259 int pf_based_first_msix, pf_based_last_msix, v; 260 struct ice_pf *pf = vf->pf; 261 int device_based_vf_id; 262 struct ice_hw *hw; 263 u32 reg; 264 265 hw = &pf->hw; 266 pf_based_first_msix = vf->first_vector_idx; 267 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1; 268 269 device_based_first_msix = pf_based_first_msix + 270 pf->hw.func_caps.common_cap.msix_vector_first_id; 271 device_based_last_msix = 272 (device_based_first_msix + vf->num_msix) - 1; 273 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; 274 275 reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) | 276 FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) | 277 VPINT_ALLOC_VALID_M; 278 wr32(hw, VPINT_ALLOC(vf->vf_id), reg); 279 280 reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) | 281 FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) | 282 VPINT_ALLOC_PCI_VALID_M; 283 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); 284 285 /* map the interrupts to its functions */ 286 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { 287 reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) | 288 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 289 wr32(hw, GLINT_VECT2FUNC(v), reg); 290 } 291 292 /* Map mailbox interrupt to VF MSI-X vector 0 */ 293 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); 294 } 295 296 /** 297 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF 298 * @vf: VF to enable the mappings for 299 * @max_txq: max Tx queues allowed on the VF's VSI 300 * @max_rxq: max Rx queues allowed on the VF's VSI 301 */ 302 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) 303 { 304 struct device *dev = ice_pf_to_dev(vf->pf); 305 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 306 struct ice_hw *hw = &vf->pf->hw; 307 u32 reg; 308 309 if (WARN_ON(!vsi)) 310 return; 311 312 /* set regardless of mapping mode */ 313 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); 314 315 /* VF Tx queues allocation */ 316 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { 317 /* set the VF PF Tx queue range 318 * VFNUMQ value should be set to (number of queues - 1). A value 319 * of 0 means 1 queue and a value of 255 means 256 queues 320 */ 321 reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) | 322 FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1); 323 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); 324 } else { 325 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 326 } 327 328 /* set regardless of mapping mode */ 329 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); 330 331 /* VF Rx queues allocation */ 332 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { 333 /* set the VF PF Rx queue range 334 * VFNUMQ value should be set to (number of queues - 1). A value 335 * of 0 means 1 queue and a value of 255 means 256 queues 336 */ 337 reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) | 338 FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1); 339 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); 340 } else { 341 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 342 } 343 } 344 345 /** 346 * ice_ena_vf_mappings - enable VF MSIX and queue mapping 347 * @vf: pointer to the VF structure 348 */ 349 static void ice_ena_vf_mappings(struct ice_vf *vf) 350 { 351 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 352 353 if (WARN_ON(!vsi)) 354 return; 355 356 ice_ena_vf_msix_mappings(vf); 357 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); 358 } 359 360 /** 361 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space 362 * @vf: VF to calculate the register index for 363 * @q_vector: a q_vector associated to the VF 364 */ 365 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) 366 { 367 if (!vf || !q_vector) 368 return -EINVAL; 369 370 /* always add one to account for the OICR being the first MSIX */ 371 return vf->first_vector_idx + q_vector->v_idx + 1; 372 } 373 374 /** 375 * ice_sriov_set_msix_res - Set any used MSIX resources 376 * @pf: pointer to PF structure 377 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs 378 * 379 * This function allows SR-IOV resources to be taken from the end of the PF's 380 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We 381 * just set the pf->sriov_base_vector and return success. 382 * 383 * If there are not enough resources available, return an error. This should 384 * always be caught by ice_set_per_vf_res(). 385 * 386 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors 387 * in the PF's space available for SR-IOV. 388 */ 389 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) 390 { 391 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 392 int vectors_used = ice_get_max_used_msix_vector(pf); 393 int sriov_base_vector; 394 395 sriov_base_vector = total_vectors - num_msix_needed; 396 397 /* make sure we only grab irq_tracker entries from the list end and 398 * that we have enough available MSIX vectors 399 */ 400 if (sriov_base_vector < vectors_used) 401 return -EINVAL; 402 403 pf->sriov_base_vector = sriov_base_vector; 404 405 return 0; 406 } 407 408 /** 409 * ice_set_per_vf_res - check if vectors and queues are available 410 * @pf: pointer to the PF structure 411 * @num_vfs: the number of SR-IOV VFs being configured 412 * 413 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we 414 * get more vectors and can enable more queues per VF. Note that this does not 415 * grab any vectors from the SW pool already allocated. Also note, that all 416 * vector counts include one for each VF's miscellaneous interrupt vector 417 * (i.e. OICR). 418 * 419 * Minimum VFs - 2 vectors, 1 queue pair 420 * Small VFs - 5 vectors, 4 queue pairs 421 * Medium VFs - 17 vectors, 16 queue pairs 422 * 423 * Second, determine number of queue pairs per VF by starting with a pre-defined 424 * maximum each VF supports. If this is not possible, then we adjust based on 425 * queue pairs available on the device. 426 * 427 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used 428 * by each VF during VF initialization and reset. 429 */ 430 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) 431 { 432 int vectors_used = ice_get_max_used_msix_vector(pf); 433 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; 434 int msix_avail_per_vf, msix_avail_for_sriov; 435 struct device *dev = ice_pf_to_dev(pf); 436 int err; 437 438 lockdep_assert_held(&pf->vfs.table_lock); 439 440 if (!num_vfs) 441 return -EINVAL; 442 443 /* determine MSI-X resources per VF */ 444 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - 445 vectors_used; 446 msix_avail_per_vf = msix_avail_for_sriov / num_vfs; 447 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { 448 num_msix_per_vf = ICE_NUM_VF_MSIX_MED; 449 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { 450 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; 451 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { 452 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; 453 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { 454 num_msix_per_vf = ICE_MIN_INTR_PER_VF; 455 } else { 456 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", 457 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, 458 num_vfs); 459 return -ENOSPC; 460 } 461 462 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 463 ICE_MAX_RSS_QS_PER_VF); 464 avail_qs = ice_get_avail_txq_count(pf) / num_vfs; 465 if (!avail_qs) 466 num_txq = 0; 467 else if (num_txq > avail_qs) 468 num_txq = rounddown_pow_of_two(avail_qs); 469 470 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 471 ICE_MAX_RSS_QS_PER_VF); 472 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; 473 if (!avail_qs) 474 num_rxq = 0; 475 else if (num_rxq > avail_qs) 476 num_rxq = rounddown_pow_of_two(avail_qs); 477 478 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { 479 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", 480 ICE_MIN_QS_PER_VF, num_vfs); 481 return -ENOSPC; 482 } 483 484 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); 485 if (err) { 486 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", 487 num_vfs, err); 488 return err; 489 } 490 491 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ 492 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); 493 pf->vfs.num_msix_per = num_msix_per_vf; 494 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", 495 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); 496 497 return 0; 498 } 499 500 /** 501 * ice_sriov_get_irqs - get irqs for SR-IOV usacase 502 * @pf: pointer to PF structure 503 * @needed: number of irqs to get 504 * 505 * This returns the first MSI-X vector index in PF space that is used by this 506 * VF. This index is used when accessing PF relative registers such as 507 * GLINT_VECT2FUNC and GLINT_DYN_CTL. 508 * This will always be the OICR index in the AVF driver so any functionality 509 * using vf->first_vector_idx for queue configuration_id: id of VF which will 510 * use this irqs 511 * 512 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are 513 * allocated from the end of global irq index. First bit in sriov_irq_bm means 514 * last irq index etc. It simplifies extension of SRIOV vectors. 515 * They will be always located from sriov_base_vector to the last irq 516 * index. While increasing/decreasing sriov_base_vector can be moved. 517 */ 518 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed) 519 { 520 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm, 521 pf->sriov_irq_size, 0, needed, 0); 522 /* conversion from number in bitmap to global irq index */ 523 int index = pf->sriov_irq_size - res - needed; 524 525 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector) 526 return -ENOENT; 527 528 bitmap_set(pf->sriov_irq_bm, res, needed); 529 return index; 530 } 531 532 /** 533 * ice_sriov_free_irqs - free irqs used by the VF 534 * @pf: pointer to PF structure 535 * @vf: pointer to VF structure 536 */ 537 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf) 538 { 539 /* Move back from first vector index to first index in bitmap */ 540 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix; 541 542 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix); 543 vf->first_vector_idx = 0; 544 } 545 546 /** 547 * ice_init_vf_vsi_res - initialize/setup VF VSI resources 548 * @vf: VF to initialize/setup the VSI for 549 * 550 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the 551 * VF VSI's broadcast filter and is only used during initial VF creation. 552 */ 553 static int ice_init_vf_vsi_res(struct ice_vf *vf) 554 { 555 struct ice_pf *pf = vf->pf; 556 struct ice_vsi *vsi; 557 int err; 558 559 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 560 if (vf->first_vector_idx < 0) 561 return -ENOMEM; 562 563 vsi = ice_vf_vsi_setup(vf); 564 if (!vsi) 565 return -ENOMEM; 566 567 err = ice_vf_init_host_cfg(vf, vsi); 568 if (err) 569 goto release_vsi; 570 571 return 0; 572 573 release_vsi: 574 ice_vf_vsi_release(vf); 575 return err; 576 } 577 578 /** 579 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV 580 * @pf: PF the VFs are associated with 581 */ 582 static int ice_start_vfs(struct ice_pf *pf) 583 { 584 struct ice_hw *hw = &pf->hw; 585 unsigned int bkt, it_cnt; 586 struct ice_vf *vf; 587 int retval; 588 589 lockdep_assert_held(&pf->vfs.table_lock); 590 591 it_cnt = 0; 592 ice_for_each_vf(pf, bkt, vf) { 593 vf->vf_ops->clear_reset_trigger(vf); 594 595 retval = ice_init_vf_vsi_res(vf); 596 if (retval) { 597 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", 598 vf->vf_id, retval); 599 goto teardown; 600 } 601 602 retval = ice_eswitch_attach(pf, vf); 603 if (retval) { 604 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d", 605 vf->vf_id, retval); 606 ice_vf_vsi_release(vf); 607 goto teardown; 608 } 609 610 set_bit(ICE_VF_STATE_INIT, vf->vf_states); 611 ice_ena_vf_mappings(vf); 612 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 613 it_cnt++; 614 } 615 616 ice_flush(hw); 617 return 0; 618 619 teardown: 620 ice_for_each_vf(pf, bkt, vf) { 621 if (it_cnt == 0) 622 break; 623 624 ice_dis_vf_mappings(vf); 625 ice_vf_vsi_release(vf); 626 it_cnt--; 627 } 628 629 return retval; 630 } 631 632 /** 633 * ice_sriov_free_vf - Free VF memory after all references are dropped 634 * @vf: pointer to VF to free 635 * 636 * Called by ice_put_vf through ice_release_vf once the last reference to a VF 637 * structure has been dropped. 638 */ 639 static void ice_sriov_free_vf(struct ice_vf *vf) 640 { 641 mutex_destroy(&vf->cfg_lock); 642 643 kfree_rcu(vf, rcu); 644 } 645 646 /** 647 * ice_sriov_clear_reset_state - clears VF Reset status register 648 * @vf: the vf to configure 649 */ 650 static void ice_sriov_clear_reset_state(struct ice_vf *vf) 651 { 652 struct ice_hw *hw = &vf->pf->hw; 653 654 /* Clear the reset status register so that VF immediately sees that 655 * the device is resetting, even if hardware hasn't yet gotten around 656 * to clearing VFGEN_RSTAT for us. 657 */ 658 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); 659 } 660 661 /** 662 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers 663 * @vf: the vf to configure 664 */ 665 static void ice_sriov_clear_mbx_register(struct ice_vf *vf) 666 { 667 struct ice_pf *pf = vf->pf; 668 669 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); 670 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); 671 } 672 673 /** 674 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF 675 * @vf: pointer to VF structure 676 * @is_vflr: true if reset occurred due to VFLR 677 * 678 * Trigger and cleanup after a VF reset for a SR-IOV VF. 679 */ 680 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) 681 { 682 struct ice_pf *pf = vf->pf; 683 u32 reg, reg_idx, bit_idx; 684 unsigned int vf_abs_id, i; 685 struct device *dev; 686 struct ice_hw *hw; 687 688 dev = ice_pf_to_dev(pf); 689 hw = &pf->hw; 690 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; 691 692 /* In the case of a VFLR, HW has already reset the VF and we just need 693 * to clean up. Otherwise we must first trigger the reset using the 694 * VFRTRIG register. 695 */ 696 if (!is_vflr) { 697 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 698 reg |= VPGEN_VFRTRIG_VFSWR_M; 699 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 700 } 701 702 /* clear the VFLR bit in GLGEN_VFLRSTAT */ 703 reg_idx = (vf_abs_id) / 32; 704 bit_idx = (vf_abs_id) % 32; 705 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 706 ice_flush(hw); 707 708 wr32(hw, PF_PCI_CIAA, 709 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); 710 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { 711 reg = rd32(hw, PF_PCI_CIAD); 712 /* no transactions pending so stop polling */ 713 if ((reg & VF_TRANS_PENDING_M) == 0) 714 break; 715 716 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); 717 udelay(ICE_PCI_CIAD_WAIT_DELAY_US); 718 } 719 } 720 721 /** 722 * ice_sriov_poll_reset_status - poll SRIOV VF reset status 723 * @vf: pointer to VF structure 724 * 725 * Returns true when reset is successful, else returns false 726 */ 727 static bool ice_sriov_poll_reset_status(struct ice_vf *vf) 728 { 729 struct ice_pf *pf = vf->pf; 730 unsigned int i; 731 u32 reg; 732 733 for (i = 0; i < 10; i++) { 734 /* VF reset requires driver to first reset the VF and then 735 * poll the status register to make sure that the reset 736 * completed successfully. 737 */ 738 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); 739 if (reg & VPGEN_VFRSTAT_VFRD_M) 740 return true; 741 742 /* only sleep if the reset is not done */ 743 usleep_range(10, 20); 744 } 745 return false; 746 } 747 748 /** 749 * ice_sriov_clear_reset_trigger - enable VF to access hardware 750 * @vf: VF to enabled hardware access for 751 */ 752 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) 753 { 754 struct ice_hw *hw = &vf->pf->hw; 755 u32 reg; 756 757 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 758 reg &= ~VPGEN_VFRTRIG_VFSWR_M; 759 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 760 ice_flush(hw); 761 } 762 763 /** 764 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt 765 * @vf: VF to perform tasks on 766 */ 767 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) 768 { 769 ice_ena_vf_mappings(vf); 770 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 771 } 772 773 static const struct ice_vf_ops ice_sriov_vf_ops = { 774 .reset_type = ICE_VF_RESET, 775 .free = ice_sriov_free_vf, 776 .clear_reset_state = ice_sriov_clear_reset_state, 777 .clear_mbx_register = ice_sriov_clear_mbx_register, 778 .trigger_reset_register = ice_sriov_trigger_reset_register, 779 .poll_reset_status = ice_sriov_poll_reset_status, 780 .clear_reset_trigger = ice_sriov_clear_reset_trigger, 781 .irq_close = NULL, 782 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, 783 }; 784 785 /** 786 * ice_create_vf_entries - Allocate and insert VF entries 787 * @pf: pointer to the PF structure 788 * @num_vfs: the number of VFs to allocate 789 * 790 * Allocate new VF entries and insert them into the hash table. Set some 791 * basic default fields for initializing the new VFs. 792 * 793 * After this function exits, the hash table will have num_vfs entries 794 * inserted. 795 * 796 * Returns 0 on success or an integer error code on failure. 797 */ 798 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) 799 { 800 struct pci_dev *pdev = pf->pdev; 801 struct ice_vfs *vfs = &pf->vfs; 802 struct pci_dev *vfdev = NULL; 803 struct ice_vf *vf; 804 u16 vf_pdev_id; 805 int err, pos; 806 807 lockdep_assert_held(&vfs->table_lock); 808 809 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 810 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id); 811 812 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) { 813 vf = kzalloc(sizeof(*vf), GFP_KERNEL); 814 if (!vf) { 815 err = -ENOMEM; 816 goto err_free_entries; 817 } 818 kref_init(&vf->refcnt); 819 820 vf->pf = pf; 821 vf->vf_id = vf_id; 822 823 /* set sriov vf ops for VFs created during SRIOV flow */ 824 vf->vf_ops = &ice_sriov_vf_ops; 825 826 ice_initialize_vf_entry(vf); 827 828 do { 829 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev); 830 } while (vfdev && vfdev->physfn != pdev); 831 vf->vfdev = vfdev; 832 vf->vf_sw_id = pf->first_sw; 833 834 pci_dev_get(vfdev); 835 836 /* set default number of MSI-X */ 837 vf->num_msix = pf->vfs.num_msix_per; 838 vf->num_vf_qs = pf->vfs.num_qps_per; 839 ice_vc_set_default_allowlist(vf); 840 841 hash_add_rcu(vfs->table, &vf->entry, vf_id); 842 } 843 844 /* Decrement of refcount done by pci_get_device() inside the loop does 845 * not touch the last iteration's vfdev, so it has to be done manually 846 * to balance pci_dev_get() added within the loop. 847 */ 848 pci_dev_put(vfdev); 849 850 return 0; 851 852 err_free_entries: 853 ice_free_vf_entries(pf); 854 return err; 855 } 856 857 /** 858 * ice_ena_vfs - enable VFs so they are ready to be used 859 * @pf: pointer to the PF structure 860 * @num_vfs: number of VFs to enable 861 */ 862 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) 863 { 864 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 865 struct device *dev = ice_pf_to_dev(pf); 866 struct ice_hw *hw = &pf->hw; 867 int ret; 868 869 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL); 870 if (!pf->sriov_irq_bm) 871 return -ENOMEM; 872 pf->sriov_irq_size = total_vectors; 873 874 /* Disable global interrupt 0 so we don't try to handle the VFLR. */ 875 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 876 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 877 set_bit(ICE_OICR_INTR_DIS, pf->state); 878 ice_flush(hw); 879 880 ret = pci_enable_sriov(pf->pdev, num_vfs); 881 if (ret) 882 goto err_unroll_intr; 883 884 mutex_lock(&pf->vfs.table_lock); 885 886 ret = ice_set_per_vf_res(pf, num_vfs); 887 if (ret) { 888 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", 889 num_vfs, ret); 890 goto err_unroll_sriov; 891 } 892 893 ret = ice_create_vf_entries(pf, num_vfs); 894 if (ret) { 895 dev_err(dev, "Failed to allocate VF entries for %d VFs\n", 896 num_vfs); 897 goto err_unroll_sriov; 898 } 899 900 ice_eswitch_reserve_cp_queues(pf, num_vfs); 901 ret = ice_start_vfs(pf); 902 if (ret) { 903 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); 904 ret = -EAGAIN; 905 goto err_unroll_vf_entries; 906 } 907 908 clear_bit(ICE_VF_DIS, pf->state); 909 910 /* rearm global interrupts */ 911 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) 912 ice_irq_dynamic_ena(hw, NULL, NULL); 913 914 mutex_unlock(&pf->vfs.table_lock); 915 916 return 0; 917 918 err_unroll_vf_entries: 919 ice_free_vf_entries(pf); 920 err_unroll_sriov: 921 mutex_unlock(&pf->vfs.table_lock); 922 pci_disable_sriov(pf->pdev); 923 err_unroll_intr: 924 /* rearm interrupts here */ 925 ice_irq_dynamic_ena(hw, NULL, NULL); 926 clear_bit(ICE_OICR_INTR_DIS, pf->state); 927 bitmap_free(pf->sriov_irq_bm); 928 return ret; 929 } 930 931 /** 932 * ice_pci_sriov_ena - Enable or change number of VFs 933 * @pf: pointer to the PF structure 934 * @num_vfs: number of VFs to allocate 935 * 936 * Returns 0 on success and negative on failure 937 */ 938 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) 939 { 940 struct device *dev = ice_pf_to_dev(pf); 941 int err; 942 943 if (!num_vfs) { 944 ice_free_vfs(pf); 945 return 0; 946 } 947 948 if (num_vfs > pf->vfs.num_supported) { 949 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", 950 num_vfs, pf->vfs.num_supported); 951 return -EOPNOTSUPP; 952 } 953 954 dev_info(dev, "Enabling %d VFs\n", num_vfs); 955 err = ice_ena_vfs(pf, num_vfs); 956 if (err) { 957 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 958 return err; 959 } 960 961 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 962 return 0; 963 } 964 965 /** 966 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks 967 * @pf: PF to enabled SR-IOV on 968 */ 969 static int ice_check_sriov_allowed(struct ice_pf *pf) 970 { 971 struct device *dev = ice_pf_to_dev(pf); 972 973 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { 974 dev_err(dev, "This device is not capable of SR-IOV\n"); 975 return -EOPNOTSUPP; 976 } 977 978 if (ice_is_safe_mode(pf)) { 979 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); 980 return -EOPNOTSUPP; 981 } 982 983 if (!ice_pf_state_is_nominal(pf)) { 984 dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); 985 return -EBUSY; 986 } 987 988 return 0; 989 } 990 991 /** 992 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs 993 * @pdev: pointer to pci_dev struct 994 * 995 * The function is called via sysfs ops 996 */ 997 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev) 998 { 999 struct ice_pf *pf = pci_get_drvdata(pdev); 1000 1001 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf); 1002 } 1003 1004 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move) 1005 { 1006 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf)) 1007 return -ENOMEM; 1008 1009 pf->sriov_base_vector -= move; 1010 return 0; 1011 } 1012 1013 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id) 1014 { 1015 u16 vf_ids[ICE_MAX_SRIOV_VFS]; 1016 struct ice_vf *tmp_vf; 1017 int to_remap = 0, bkt; 1018 1019 /* For better irqs usage try to remap irqs of VFs 1020 * that aren't running yet 1021 */ 1022 ice_for_each_vf(pf, bkt, tmp_vf) { 1023 /* skip VF which is changing the number of MSI-X */ 1024 if (restricted_id == tmp_vf->vf_id || 1025 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states)) 1026 continue; 1027 1028 ice_dis_vf_mappings(tmp_vf); 1029 ice_sriov_free_irqs(pf, tmp_vf); 1030 1031 vf_ids[to_remap] = tmp_vf->vf_id; 1032 to_remap += 1; 1033 } 1034 1035 for (int i = 0; i < to_remap; i++) { 1036 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]); 1037 if (!tmp_vf) 1038 continue; 1039 1040 tmp_vf->first_vector_idx = 1041 ice_sriov_get_irqs(pf, tmp_vf->num_msix); 1042 /* there is no need to rebuild VSI as we are only changing the 1043 * vector indexes not amount of MSI-X or queues 1044 */ 1045 ice_ena_vf_mappings(tmp_vf); 1046 ice_put_vf(tmp_vf); 1047 } 1048 } 1049 1050 /** 1051 * ice_sriov_set_msix_vec_count 1052 * @vf_dev: pointer to pci_dev struct of VF device 1053 * @msix_vec_count: new value for MSI-X amount on this VF 1054 * 1055 * Set requested MSI-X, queues and registers for @vf_dev. 1056 * 1057 * First do some sanity checks like if there are any VFs, if the new value 1058 * is correct etc. Then disable old mapping (MSI-X and queues registers), change 1059 * MSI-X and queues, rebuild VSI and enable new mapping. 1060 * 1061 * If it is possible (driver not binded to VF) try to remap also other VFs to 1062 * linearize irqs register usage. 1063 */ 1064 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count) 1065 { 1066 struct pci_dev *pdev = pci_physfn(vf_dev); 1067 struct ice_pf *pf = pci_get_drvdata(pdev); 1068 u16 prev_msix, prev_queues, queues; 1069 bool needs_rebuild = false; 1070 struct ice_vf *vf; 1071 int id; 1072 1073 if (!ice_get_num_vfs(pf)) 1074 return -ENOENT; 1075 1076 if (!msix_vec_count) 1077 return 0; 1078 1079 queues = msix_vec_count; 1080 /* add 1 MSI-X for OICR */ 1081 msix_vec_count += 1; 1082 1083 if (queues > min(ice_get_avail_txq_count(pf), 1084 ice_get_avail_rxq_count(pf))) 1085 return -EINVAL; 1086 1087 if (msix_vec_count < ICE_MIN_INTR_PER_VF) 1088 return -EINVAL; 1089 1090 /* Transition of PCI VF function number to function_id */ 1091 for (id = 0; id < pci_num_vf(pdev); id++) { 1092 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id)) 1093 break; 1094 } 1095 1096 if (id == pci_num_vf(pdev)) 1097 return -ENOENT; 1098 1099 vf = ice_get_vf_by_id(pf, id); 1100 1101 if (!vf) 1102 return -ENOENT; 1103 1104 prev_msix = vf->num_msix; 1105 prev_queues = vf->num_vf_qs; 1106 1107 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) { 1108 ice_put_vf(vf); 1109 return -ENOSPC; 1110 } 1111 1112 ice_dis_vf_mappings(vf); 1113 ice_sriov_free_irqs(pf, vf); 1114 1115 /* Remap all VFs beside the one is now configured */ 1116 ice_sriov_remap_vectors(pf, vf->vf_id); 1117 1118 vf->num_msix = msix_vec_count; 1119 vf->num_vf_qs = queues; 1120 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1121 if (vf->first_vector_idx < 0) 1122 goto unroll; 1123 1124 if (ice_vf_reconfig_vsi(vf)) { 1125 /* Try to rebuild with previous values */ 1126 needs_rebuild = true; 1127 goto unroll; 1128 } 1129 1130 dev_info(ice_pf_to_dev(pf), 1131 "Changing VF %d resources to %d vectors and %d queues\n", 1132 vf->vf_id, vf->num_msix, vf->num_vf_qs); 1133 1134 ice_ena_vf_mappings(vf); 1135 ice_put_vf(vf); 1136 1137 return 0; 1138 1139 unroll: 1140 dev_info(ice_pf_to_dev(pf), 1141 "Can't set %d vectors on VF %d, falling back to %d\n", 1142 vf->num_msix, vf->vf_id, prev_msix); 1143 1144 vf->num_msix = prev_msix; 1145 vf->num_vf_qs = prev_queues; 1146 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1147 if (vf->first_vector_idx < 0) 1148 return -EINVAL; 1149 1150 if (needs_rebuild) 1151 ice_vf_reconfig_vsi(vf); 1152 1153 ice_ena_vf_mappings(vf); 1154 ice_put_vf(vf); 1155 1156 return -EINVAL; 1157 } 1158 1159 /** 1160 * ice_sriov_configure - Enable or change number of VFs via sysfs 1161 * @pdev: pointer to a pci_dev structure 1162 * @num_vfs: number of VFs to allocate or 0 to free VFs 1163 * 1164 * This function is called when the user updates the number of VFs in sysfs. On 1165 * success return whatever num_vfs was set to by the caller. Return negative on 1166 * failure. 1167 */ 1168 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) 1169 { 1170 struct ice_pf *pf = pci_get_drvdata(pdev); 1171 struct device *dev = ice_pf_to_dev(pf); 1172 int err; 1173 1174 err = ice_check_sriov_allowed(pf); 1175 if (err) 1176 return err; 1177 1178 if (!num_vfs) { 1179 if (!pci_vfs_assigned(pdev)) { 1180 ice_free_vfs(pf); 1181 return 0; 1182 } 1183 1184 dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); 1185 return -EBUSY; 1186 } 1187 1188 err = ice_pci_sriov_ena(pf, num_vfs); 1189 if (err) 1190 return err; 1191 1192 return num_vfs; 1193 } 1194 1195 /** 1196 * ice_process_vflr_event - Free VF resources via IRQ calls 1197 * @pf: pointer to the PF structure 1198 * 1199 * called from the VFLR IRQ handler to 1200 * free up VF resources and state variables 1201 */ 1202 void ice_process_vflr_event(struct ice_pf *pf) 1203 { 1204 struct ice_hw *hw = &pf->hw; 1205 struct ice_vf *vf; 1206 unsigned int bkt; 1207 u32 reg; 1208 1209 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 1210 !ice_has_vfs(pf)) 1211 return; 1212 1213 mutex_lock(&pf->vfs.table_lock); 1214 ice_for_each_vf(pf, bkt, vf) { 1215 u32 reg_idx, bit_idx; 1216 1217 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 1218 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 1219 /* read GLGEN_VFLRSTAT register to find out the flr VFs */ 1220 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); 1221 if (reg & BIT(bit_idx)) 1222 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ 1223 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 1224 } 1225 mutex_unlock(&pf->vfs.table_lock); 1226 } 1227 1228 /** 1229 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in 1230 * @pf: PF used to index all VFs 1231 * @pfq: queue index relative to the PF's function space 1232 * 1233 * If no VF is found who owns the pfq then return NULL, otherwise return a 1234 * pointer to the VF who owns the pfq 1235 * 1236 * If this function returns non-NULL, it acquires a reference count of the VF 1237 * structure. The caller is responsible for calling ice_put_vf() to drop this 1238 * reference. 1239 */ 1240 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) 1241 { 1242 struct ice_vf *vf; 1243 unsigned int bkt; 1244 1245 rcu_read_lock(); 1246 ice_for_each_vf_rcu(pf, bkt, vf) { 1247 struct ice_vsi *vsi; 1248 u16 rxq_idx; 1249 1250 vsi = ice_get_vf_vsi(vf); 1251 if (!vsi) 1252 continue; 1253 1254 ice_for_each_rxq(vsi, rxq_idx) 1255 if (vsi->rxq_map[rxq_idx] == pfq) { 1256 struct ice_vf *found; 1257 1258 if (kref_get_unless_zero(&vf->refcnt)) 1259 found = vf; 1260 else 1261 found = NULL; 1262 rcu_read_unlock(); 1263 return found; 1264 } 1265 } 1266 rcu_read_unlock(); 1267 1268 return NULL; 1269 } 1270 1271 /** 1272 * ice_globalq_to_pfq - convert from global queue index to PF space queue index 1273 * @pf: PF used for conversion 1274 * @globalq: global queue index used to convert to PF space queue index 1275 */ 1276 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) 1277 { 1278 return globalq - pf->hw.func_caps.common_cap.rxq_first_id; 1279 } 1280 1281 /** 1282 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF 1283 * @pf: PF that the LAN overflow event happened on 1284 * @event: structure holding the event information for the LAN overflow event 1285 * 1286 * Determine if the LAN overflow event was caused by a VF queue. If it was not 1287 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a 1288 * reset on the offending VF. 1289 */ 1290 void 1291 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1292 { 1293 u32 gldcb_rtctq, queue; 1294 struct ice_vf *vf; 1295 1296 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); 1297 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); 1298 1299 /* event returns device global Rx queue number */ 1300 queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq); 1301 1302 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); 1303 if (!vf) 1304 return; 1305 1306 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1307 ice_put_vf(vf); 1308 } 1309 1310 /** 1311 * ice_set_vf_spoofchk 1312 * @netdev: network interface device structure 1313 * @vf_id: VF identifier 1314 * @ena: flag to enable or disable feature 1315 * 1316 * Enable or disable VF spoof checking 1317 */ 1318 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) 1319 { 1320 struct ice_netdev_priv *np = netdev_priv(netdev); 1321 struct ice_pf *pf = np->vsi->back; 1322 struct ice_vsi *vf_vsi; 1323 struct device *dev; 1324 struct ice_vf *vf; 1325 int ret; 1326 1327 dev = ice_pf_to_dev(pf); 1328 1329 vf = ice_get_vf_by_id(pf, vf_id); 1330 if (!vf) 1331 return -EINVAL; 1332 1333 ret = ice_check_vf_ready_for_cfg(vf); 1334 if (ret) 1335 goto out_put_vf; 1336 1337 vf_vsi = ice_get_vf_vsi(vf); 1338 if (!vf_vsi) { 1339 netdev_err(netdev, "VSI %d for VF %d is null\n", 1340 vf->lan_vsi_idx, vf->vf_id); 1341 ret = -EINVAL; 1342 goto out_put_vf; 1343 } 1344 1345 if (vf_vsi->type != ICE_VSI_VF) { 1346 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", 1347 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); 1348 ret = -ENODEV; 1349 goto out_put_vf; 1350 } 1351 1352 if (ena == vf->spoofchk) { 1353 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); 1354 ret = 0; 1355 goto out_put_vf; 1356 } 1357 1358 ret = ice_vsi_apply_spoofchk(vf_vsi, ena); 1359 if (ret) 1360 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", 1361 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); 1362 else 1363 vf->spoofchk = ena; 1364 1365 out_put_vf: 1366 ice_put_vf(vf); 1367 return ret; 1368 } 1369 1370 /** 1371 * ice_get_vf_cfg 1372 * @netdev: network interface device structure 1373 * @vf_id: VF identifier 1374 * @ivi: VF configuration structure 1375 * 1376 * return VF configuration 1377 */ 1378 int 1379 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) 1380 { 1381 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1382 struct ice_vf *vf; 1383 int ret; 1384 1385 vf = ice_get_vf_by_id(pf, vf_id); 1386 if (!vf) 1387 return -EINVAL; 1388 1389 ret = ice_check_vf_ready_for_cfg(vf); 1390 if (ret) 1391 goto out_put_vf; 1392 1393 ivi->vf = vf_id; 1394 ether_addr_copy(ivi->mac, vf->hw_lan_addr); 1395 1396 /* VF configuration for VLAN and applicable QoS */ 1397 ivi->vlan = ice_vf_get_port_vlan_id(vf); 1398 ivi->qos = ice_vf_get_port_vlan_prio(vf); 1399 if (ice_vf_is_port_vlan_ena(vf)) 1400 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); 1401 1402 ivi->trusted = vf->trusted; 1403 ivi->spoofchk = vf->spoofchk; 1404 if (!vf->link_forced) 1405 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 1406 else if (vf->link_up) 1407 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 1408 else 1409 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 1410 ivi->max_tx_rate = vf->max_tx_rate; 1411 ivi->min_tx_rate = vf->min_tx_rate; 1412 1413 out_put_vf: 1414 ice_put_vf(vf); 1415 return ret; 1416 } 1417 1418 /** 1419 * ice_set_vf_mac 1420 * @netdev: network interface device structure 1421 * @vf_id: VF identifier 1422 * @mac: MAC address 1423 * 1424 * program VF MAC address 1425 */ 1426 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 1427 { 1428 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1429 struct ice_vf *vf; 1430 int ret; 1431 1432 if (is_multicast_ether_addr(mac)) { 1433 netdev_err(netdev, "%pM not a valid unicast address\n", mac); 1434 return -EINVAL; 1435 } 1436 1437 vf = ice_get_vf_by_id(pf, vf_id); 1438 if (!vf) 1439 return -EINVAL; 1440 1441 /* nothing left to do, unicast MAC already set */ 1442 if (ether_addr_equal(vf->dev_lan_addr, mac) && 1443 ether_addr_equal(vf->hw_lan_addr, mac)) { 1444 ret = 0; 1445 goto out_put_vf; 1446 } 1447 1448 ret = ice_check_vf_ready_for_cfg(vf); 1449 if (ret) 1450 goto out_put_vf; 1451 1452 mutex_lock(&vf->cfg_lock); 1453 1454 /* VF is notified of its new MAC via the PF's response to the 1455 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset 1456 */ 1457 ether_addr_copy(vf->dev_lan_addr, mac); 1458 ether_addr_copy(vf->hw_lan_addr, mac); 1459 if (is_zero_ether_addr(mac)) { 1460 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ 1461 vf->pf_set_mac = false; 1462 netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n", 1463 vf->vf_id); 1464 } else { 1465 /* PF will add MAC rule for the VF */ 1466 vf->pf_set_mac = true; 1467 netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", 1468 mac, vf_id); 1469 } 1470 1471 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1472 mutex_unlock(&vf->cfg_lock); 1473 1474 out_put_vf: 1475 ice_put_vf(vf); 1476 return ret; 1477 } 1478 1479 /** 1480 * ice_set_vf_trust 1481 * @netdev: network interface device structure 1482 * @vf_id: VF identifier 1483 * @trusted: Boolean value to enable/disable trusted VF 1484 * 1485 * Enable or disable a given VF as trusted 1486 */ 1487 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) 1488 { 1489 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1490 struct ice_vf *vf; 1491 int ret; 1492 1493 vf = ice_get_vf_by_id(pf, vf_id); 1494 if (!vf) 1495 return -EINVAL; 1496 1497 if (ice_is_eswitch_mode_switchdev(pf)) { 1498 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); 1499 return -EOPNOTSUPP; 1500 } 1501 1502 ret = ice_check_vf_ready_for_cfg(vf); 1503 if (ret) 1504 goto out_put_vf; 1505 1506 /* Check if already trusted */ 1507 if (trusted == vf->trusted) { 1508 ret = 0; 1509 goto out_put_vf; 1510 } 1511 1512 mutex_lock(&vf->cfg_lock); 1513 1514 vf->trusted = trusted; 1515 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1516 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", 1517 vf_id, trusted ? "" : "un"); 1518 1519 mutex_unlock(&vf->cfg_lock); 1520 1521 out_put_vf: 1522 ice_put_vf(vf); 1523 return ret; 1524 } 1525 1526 /** 1527 * ice_set_vf_link_state 1528 * @netdev: network interface device structure 1529 * @vf_id: VF identifier 1530 * @link_state: required link state 1531 * 1532 * Set VF's link state, irrespective of physical link state status 1533 */ 1534 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) 1535 { 1536 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1537 struct ice_vf *vf; 1538 int ret; 1539 1540 vf = ice_get_vf_by_id(pf, vf_id); 1541 if (!vf) 1542 return -EINVAL; 1543 1544 ret = ice_check_vf_ready_for_cfg(vf); 1545 if (ret) 1546 goto out_put_vf; 1547 1548 switch (link_state) { 1549 case IFLA_VF_LINK_STATE_AUTO: 1550 vf->link_forced = false; 1551 break; 1552 case IFLA_VF_LINK_STATE_ENABLE: 1553 vf->link_forced = true; 1554 vf->link_up = true; 1555 break; 1556 case IFLA_VF_LINK_STATE_DISABLE: 1557 vf->link_forced = true; 1558 vf->link_up = false; 1559 break; 1560 default: 1561 ret = -EINVAL; 1562 goto out_put_vf; 1563 } 1564 1565 ice_vc_notify_vf_link_state(vf); 1566 1567 out_put_vf: 1568 ice_put_vf(vf); 1569 return ret; 1570 } 1571 1572 /** 1573 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs 1574 * @pf: PF associated with VFs 1575 */ 1576 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) 1577 { 1578 struct ice_vf *vf; 1579 unsigned int bkt; 1580 int rate = 0; 1581 1582 rcu_read_lock(); 1583 ice_for_each_vf_rcu(pf, bkt, vf) 1584 rate += vf->min_tx_rate; 1585 rcu_read_unlock(); 1586 1587 return rate; 1588 } 1589 1590 /** 1591 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription 1592 * @vf: VF trying to configure min_tx_rate 1593 * @min_tx_rate: min Tx rate in Mbps 1594 * 1595 * Check if the min_tx_rate being passed in will cause oversubscription of total 1596 * min_tx_rate based on the current link speed and all other VFs configured 1597 * min_tx_rate 1598 * 1599 * Return true if the passed min_tx_rate would cause oversubscription, else 1600 * return false 1601 */ 1602 static bool 1603 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) 1604 { 1605 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 1606 int all_vfs_min_tx_rate; 1607 int link_speed_mbps; 1608 1609 if (WARN_ON(!vsi)) 1610 return false; 1611 1612 link_speed_mbps = ice_get_link_speed_mbps(vsi); 1613 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); 1614 1615 /* this VF's previous rate is being overwritten */ 1616 all_vfs_min_tx_rate -= vf->min_tx_rate; 1617 1618 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { 1619 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", 1620 min_tx_rate, vf->vf_id, 1621 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, 1622 link_speed_mbps); 1623 return true; 1624 } 1625 1626 return false; 1627 } 1628 1629 /** 1630 * ice_set_vf_bw - set min/max VF bandwidth 1631 * @netdev: network interface device structure 1632 * @vf_id: VF identifier 1633 * @min_tx_rate: Minimum Tx rate in Mbps 1634 * @max_tx_rate: Maximum Tx rate in Mbps 1635 */ 1636 int 1637 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, 1638 int max_tx_rate) 1639 { 1640 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1641 struct ice_vsi *vsi; 1642 struct device *dev; 1643 struct ice_vf *vf; 1644 int ret; 1645 1646 dev = ice_pf_to_dev(pf); 1647 1648 vf = ice_get_vf_by_id(pf, vf_id); 1649 if (!vf) 1650 return -EINVAL; 1651 1652 ret = ice_check_vf_ready_for_cfg(vf); 1653 if (ret) 1654 goto out_put_vf; 1655 1656 vsi = ice_get_vf_vsi(vf); 1657 if (!vsi) { 1658 ret = -EINVAL; 1659 goto out_put_vf; 1660 } 1661 1662 if (min_tx_rate && ice_is_dcb_active(pf)) { 1663 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); 1664 ret = -EOPNOTSUPP; 1665 goto out_put_vf; 1666 } 1667 1668 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { 1669 ret = -EINVAL; 1670 goto out_put_vf; 1671 } 1672 1673 if (vf->min_tx_rate != (unsigned int)min_tx_rate) { 1674 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); 1675 if (ret) { 1676 dev_err(dev, "Unable to set min-tx-rate for VF %d\n", 1677 vf->vf_id); 1678 goto out_put_vf; 1679 } 1680 1681 vf->min_tx_rate = min_tx_rate; 1682 } 1683 1684 if (vf->max_tx_rate != (unsigned int)max_tx_rate) { 1685 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); 1686 if (ret) { 1687 dev_err(dev, "Unable to set max-tx-rate for VF %d\n", 1688 vf->vf_id); 1689 goto out_put_vf; 1690 } 1691 1692 vf->max_tx_rate = max_tx_rate; 1693 } 1694 1695 out_put_vf: 1696 ice_put_vf(vf); 1697 return ret; 1698 } 1699 1700 /** 1701 * ice_get_vf_stats - populate some stats for the VF 1702 * @netdev: the netdev of the PF 1703 * @vf_id: the host OS identifier (0-255) 1704 * @vf_stats: pointer to the OS memory to be initialized 1705 */ 1706 int ice_get_vf_stats(struct net_device *netdev, int vf_id, 1707 struct ifla_vf_stats *vf_stats) 1708 { 1709 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1710 struct ice_eth_stats *stats; 1711 struct ice_vsi *vsi; 1712 struct ice_vf *vf; 1713 int ret; 1714 1715 vf = ice_get_vf_by_id(pf, vf_id); 1716 if (!vf) 1717 return -EINVAL; 1718 1719 ret = ice_check_vf_ready_for_cfg(vf); 1720 if (ret) 1721 goto out_put_vf; 1722 1723 vsi = ice_get_vf_vsi(vf); 1724 if (!vsi) { 1725 ret = -EINVAL; 1726 goto out_put_vf; 1727 } 1728 1729 ice_update_eth_stats(vsi); 1730 stats = &vsi->eth_stats; 1731 1732 memset(vf_stats, 0, sizeof(*vf_stats)); 1733 1734 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + 1735 stats->rx_multicast; 1736 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + 1737 stats->tx_multicast; 1738 vf_stats->rx_bytes = stats->rx_bytes; 1739 vf_stats->tx_bytes = stats->tx_bytes; 1740 vf_stats->broadcast = stats->rx_broadcast; 1741 vf_stats->multicast = stats->rx_multicast; 1742 vf_stats->rx_dropped = stats->rx_discards; 1743 vf_stats->tx_dropped = stats->tx_discards; 1744 1745 out_put_vf: 1746 ice_put_vf(vf); 1747 return ret; 1748 } 1749 1750 /** 1751 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported 1752 * @hw: hardware structure used to check the VLAN mode 1753 * @vlan_proto: VLAN TPID being checked 1754 * 1755 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q 1756 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN 1757 * Mode (SVM), then only ETH_P_8021Q is supported. 1758 */ 1759 static bool 1760 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) 1761 { 1762 bool is_supported = false; 1763 1764 switch (vlan_proto) { 1765 case ETH_P_8021Q: 1766 is_supported = true; 1767 break; 1768 case ETH_P_8021AD: 1769 if (ice_is_dvm_ena(hw)) 1770 is_supported = true; 1771 break; 1772 } 1773 1774 return is_supported; 1775 } 1776 1777 /** 1778 * ice_set_vf_port_vlan 1779 * @netdev: network interface device structure 1780 * @vf_id: VF identifier 1781 * @vlan_id: VLAN ID being set 1782 * @qos: priority setting 1783 * @vlan_proto: VLAN protocol 1784 * 1785 * program VF Port VLAN ID and/or QoS 1786 */ 1787 int 1788 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, 1789 __be16 vlan_proto) 1790 { 1791 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1792 u16 local_vlan_proto = ntohs(vlan_proto); 1793 struct device *dev; 1794 struct ice_vf *vf; 1795 int ret; 1796 1797 dev = ice_pf_to_dev(pf); 1798 1799 if (vlan_id >= VLAN_N_VID || qos > 7) { 1800 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", 1801 vf_id, vlan_id, qos); 1802 return -EINVAL; 1803 } 1804 1805 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { 1806 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", 1807 local_vlan_proto); 1808 return -EPROTONOSUPPORT; 1809 } 1810 1811 vf = ice_get_vf_by_id(pf, vf_id); 1812 if (!vf) 1813 return -EINVAL; 1814 1815 ret = ice_check_vf_ready_for_cfg(vf); 1816 if (ret) 1817 goto out_put_vf; 1818 1819 if (ice_vf_get_port_vlan_prio(vf) == qos && 1820 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && 1821 ice_vf_get_port_vlan_id(vf) == vlan_id) { 1822 /* duplicate request, so just return success */ 1823 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", 1824 vlan_id, qos, local_vlan_proto); 1825 ret = 0; 1826 goto out_put_vf; 1827 } 1828 1829 mutex_lock(&vf->cfg_lock); 1830 1831 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); 1832 if (ice_vf_is_port_vlan_ena(vf)) 1833 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", 1834 vlan_id, qos, local_vlan_proto, vf_id); 1835 else 1836 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); 1837 1838 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1839 mutex_unlock(&vf->cfg_lock); 1840 1841 out_put_vf: 1842 ice_put_vf(vf); 1843 return ret; 1844 } 1845 1846 /** 1847 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event 1848 * @vf: pointer to the VF structure 1849 */ 1850 void ice_print_vf_rx_mdd_event(struct ice_vf *vf) 1851 { 1852 struct ice_pf *pf = vf->pf; 1853 struct device *dev; 1854 1855 dev = ice_pf_to_dev(pf); 1856 1857 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1858 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, 1859 vf->dev_lan_addr, 1860 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1861 ? "on" : "off"); 1862 } 1863 1864 /** 1865 * ice_print_vfs_mdd_events - print VFs malicious driver detect event 1866 * @pf: pointer to the PF structure 1867 * 1868 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. 1869 */ 1870 void ice_print_vfs_mdd_events(struct ice_pf *pf) 1871 { 1872 struct device *dev = ice_pf_to_dev(pf); 1873 struct ice_hw *hw = &pf->hw; 1874 struct ice_vf *vf; 1875 unsigned int bkt; 1876 1877 /* check that there are pending MDD events to print */ 1878 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) 1879 return; 1880 1881 /* VF MDD event logs are rate limited to one second intervals */ 1882 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) 1883 return; 1884 1885 pf->vfs.last_printed_mdd_jiffies = jiffies; 1886 1887 mutex_lock(&pf->vfs.table_lock); 1888 ice_for_each_vf(pf, bkt, vf) { 1889 /* only print Rx MDD event message if there are new events */ 1890 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 1891 vf->mdd_rx_events.last_printed = 1892 vf->mdd_rx_events.count; 1893 ice_print_vf_rx_mdd_event(vf); 1894 } 1895 1896 /* only print Tx MDD event message if there are new events */ 1897 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 1898 vf->mdd_tx_events.last_printed = 1899 vf->mdd_tx_events.count; 1900 1901 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n", 1902 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id, 1903 vf->dev_lan_addr); 1904 } 1905 } 1906 mutex_unlock(&pf->vfs.table_lock); 1907 } 1908 1909 /** 1910 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR 1911 * @pf: pointer to the PF structure 1912 * 1913 * Called when recovering from a PF FLR to restore interrupt capability to 1914 * the VFs. 1915 */ 1916 void ice_restore_all_vfs_msi_state(struct ice_pf *pf) 1917 { 1918 struct ice_vf *vf; 1919 u32 bkt; 1920 1921 ice_for_each_vf(pf, bkt, vf) 1922 pci_restore_msi_state(vf->vfdev); 1923 } 1924