1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice_base.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_flow.h" 11 #include "ice_eswitch.h" 12 #include "ice_virtchnl_allowlist.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_vf_vsi_vlan_ops.h" 15 #include "ice_vlan.h" 16 17 /** 18 * ice_free_vf_entries - Free all VF entries from the hash table 19 * @pf: pointer to the PF structure 20 * 21 * Iterate over the VF hash table, removing and releasing all VF entries. 22 * Called during VF teardown or as cleanup during failed VF initialization. 23 */ 24 static void ice_free_vf_entries(struct ice_pf *pf) 25 { 26 struct ice_vfs *vfs = &pf->vfs; 27 struct hlist_node *tmp; 28 struct ice_vf *vf; 29 unsigned int bkt; 30 31 /* Remove all VFs from the hash table and release their main 32 * reference. Once all references to the VF are dropped, ice_put_vf() 33 * will call ice_release_vf which will remove the VF memory. 34 */ 35 lockdep_assert_held(&vfs->table_lock); 36 37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { 38 hash_del_rcu(&vf->entry); 39 ice_put_vf(vf); 40 } 41 } 42 43 /** 44 * ice_free_vf_res - Free a VF's resources 45 * @vf: pointer to the VF info 46 */ 47 static void ice_free_vf_res(struct ice_vf *vf) 48 { 49 struct ice_pf *pf = vf->pf; 50 int i, last_vector_idx; 51 52 /* First, disable VF's configuration API to prevent OS from 53 * accessing the VF's VSI after it's freed or invalidated. 54 */ 55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states); 56 ice_vf_fdir_exit(vf); 57 /* free VF control VSI */ 58 if (vf->ctrl_vsi_idx != ICE_NO_VSI) 59 ice_vf_ctrl_vsi_release(vf); 60 61 /* free VSI and disconnect it from the parent uplink */ 62 if (vf->lan_vsi_idx != ICE_NO_VSI) { 63 ice_vf_vsi_release(vf); 64 vf->num_mac = 0; 65 } 66 67 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1; 68 69 /* clear VF MDD event information */ 70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); 71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); 72 73 /* Disable interrupts so that VF starts in a known state */ 74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { 75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); 76 ice_flush(&pf->hw); 77 } 78 /* reset some of the state variables keeping track of the resources */ 79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); 80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); 81 } 82 83 /** 84 * ice_dis_vf_mappings 85 * @vf: pointer to the VF structure 86 */ 87 static void ice_dis_vf_mappings(struct ice_vf *vf) 88 { 89 struct ice_pf *pf = vf->pf; 90 struct ice_vsi *vsi; 91 struct device *dev; 92 int first, last, v; 93 struct ice_hw *hw; 94 95 hw = &pf->hw; 96 vsi = ice_get_vf_vsi(vf); 97 if (WARN_ON(!vsi)) 98 return; 99 100 dev = ice_pf_to_dev(pf); 101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0); 102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); 103 104 first = vf->first_vector_idx; 105 last = first + vf->num_msix - 1; 106 for (v = first; v <= last; v++) { 107 u32 reg; 108 109 reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) & 110 GLINT_VECT2FUNC_IS_PF_M) | 111 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & 112 GLINT_VECT2FUNC_PF_NUM_M)); 113 wr32(hw, GLINT_VECT2FUNC(v), reg); 114 } 115 116 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) 117 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); 118 else 119 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 120 121 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) 122 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); 123 else 124 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 125 } 126 127 /** 128 * ice_sriov_free_msix_res - Reset/free any used MSIX resources 129 * @pf: pointer to the PF structure 130 * 131 * Since no MSIX entries are taken from the pf->irq_tracker then just clear 132 * the pf->sriov_base_vector. 133 * 134 * Returns 0 on success, and -EINVAL on error. 135 */ 136 static int ice_sriov_free_msix_res(struct ice_pf *pf) 137 { 138 if (!pf) 139 return -EINVAL; 140 141 bitmap_free(pf->sriov_irq_bm); 142 pf->sriov_irq_size = 0; 143 pf->sriov_base_vector = 0; 144 145 return 0; 146 } 147 148 /** 149 * ice_free_vfs - Free all VFs 150 * @pf: pointer to the PF structure 151 */ 152 void ice_free_vfs(struct ice_pf *pf) 153 { 154 struct device *dev = ice_pf_to_dev(pf); 155 struct ice_vfs *vfs = &pf->vfs; 156 struct ice_hw *hw = &pf->hw; 157 struct ice_vf *vf; 158 unsigned int bkt; 159 160 if (!ice_has_vfs(pf)) 161 return; 162 163 while (test_and_set_bit(ICE_VF_DIS, pf->state)) 164 usleep_range(1000, 2000); 165 166 /* Disable IOV before freeing resources. This lets any VF drivers 167 * running in the host get themselves cleaned up before we yank 168 * the carpet out from underneath their feet. 169 */ 170 if (!pci_vfs_assigned(pf->pdev)) 171 pci_disable_sriov(pf->pdev); 172 else 173 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); 174 175 ice_eswitch_reserve_cp_queues(pf, -ice_get_num_vfs(pf)); 176 177 mutex_lock(&vfs->table_lock); 178 179 ice_for_each_vf(pf, bkt, vf) { 180 mutex_lock(&vf->cfg_lock); 181 182 ice_eswitch_detach(pf, vf); 183 ice_dis_vf_qs(vf); 184 185 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { 186 /* disable VF qp mappings and set VF disable state */ 187 ice_dis_vf_mappings(vf); 188 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 189 ice_free_vf_res(vf); 190 } 191 192 if (!pci_vfs_assigned(pf->pdev)) { 193 u32 reg_idx, bit_idx; 194 195 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 196 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 197 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 198 } 199 200 /* clear malicious info since the VF is getting released */ 201 list_del(&vf->mbx_info.list_entry); 202 203 mutex_unlock(&vf->cfg_lock); 204 } 205 206 if (ice_sriov_free_msix_res(pf)) 207 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); 208 209 vfs->num_qps_per = 0; 210 ice_free_vf_entries(pf); 211 212 mutex_unlock(&vfs->table_lock); 213 214 clear_bit(ICE_VF_DIS, pf->state); 215 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 216 } 217 218 /** 219 * ice_vf_vsi_setup - Set up a VF VSI 220 * @vf: VF to setup VSI for 221 * 222 * Returns pointer to the successfully allocated VSI struct on success, 223 * otherwise returns NULL on failure. 224 */ 225 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) 226 { 227 struct ice_vsi_cfg_params params = {}; 228 struct ice_pf *pf = vf->pf; 229 struct ice_vsi *vsi; 230 231 params.type = ICE_VSI_VF; 232 params.pi = ice_vf_get_port_info(vf); 233 params.vf = vf; 234 params.flags = ICE_VSI_FLAG_INIT; 235 236 vsi = ice_vsi_setup(pf, ¶ms); 237 238 if (!vsi) { 239 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); 240 ice_vf_invalidate_vsi(vf); 241 return NULL; 242 } 243 244 vf->lan_vsi_idx = vsi->idx; 245 vf->lan_vsi_num = vsi->vsi_num; 246 247 return vsi; 248 } 249 250 251 /** 252 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware 253 * @vf: VF to enable MSIX mappings for 254 * 255 * Some of the registers need to be indexed/configured using hardware global 256 * device values and other registers need 0-based values, which represent PF 257 * based values. 258 */ 259 static void ice_ena_vf_msix_mappings(struct ice_vf *vf) 260 { 261 int device_based_first_msix, device_based_last_msix; 262 int pf_based_first_msix, pf_based_last_msix, v; 263 struct ice_pf *pf = vf->pf; 264 int device_based_vf_id; 265 struct ice_hw *hw; 266 u32 reg; 267 268 hw = &pf->hw; 269 pf_based_first_msix = vf->first_vector_idx; 270 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1; 271 272 device_based_first_msix = pf_based_first_msix + 273 pf->hw.func_caps.common_cap.msix_vector_first_id; 274 device_based_last_msix = 275 (device_based_first_msix + vf->num_msix) - 1; 276 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; 277 278 reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) & 279 VPINT_ALLOC_FIRST_M) | 280 ((device_based_last_msix << VPINT_ALLOC_LAST_S) & 281 VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M); 282 wr32(hw, VPINT_ALLOC(vf->vf_id), reg); 283 284 reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S) 285 & VPINT_ALLOC_PCI_FIRST_M) | 286 ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) & 287 VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M); 288 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); 289 290 /* map the interrupts to its functions */ 291 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { 292 reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) & 293 GLINT_VECT2FUNC_VF_NUM_M) | 294 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & 295 GLINT_VECT2FUNC_PF_NUM_M)); 296 wr32(hw, GLINT_VECT2FUNC(v), reg); 297 } 298 299 /* Map mailbox interrupt to VF MSI-X vector 0 */ 300 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); 301 } 302 303 /** 304 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF 305 * @vf: VF to enable the mappings for 306 * @max_txq: max Tx queues allowed on the VF's VSI 307 * @max_rxq: max Rx queues allowed on the VF's VSI 308 */ 309 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) 310 { 311 struct device *dev = ice_pf_to_dev(vf->pf); 312 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 313 struct ice_hw *hw = &vf->pf->hw; 314 u32 reg; 315 316 if (WARN_ON(!vsi)) 317 return; 318 319 /* set regardless of mapping mode */ 320 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); 321 322 /* VF Tx queues allocation */ 323 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { 324 /* set the VF PF Tx queue range 325 * VFNUMQ value should be set to (number of queues - 1). A value 326 * of 0 means 1 queue and a value of 255 means 256 queues 327 */ 328 reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) & 329 VPLAN_TX_QBASE_VFFIRSTQ_M) | 330 (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) & 331 VPLAN_TX_QBASE_VFNUMQ_M)); 332 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); 333 } else { 334 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 335 } 336 337 /* set regardless of mapping mode */ 338 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); 339 340 /* VF Rx queues allocation */ 341 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { 342 /* set the VF PF Rx queue range 343 * VFNUMQ value should be set to (number of queues - 1). A value 344 * of 0 means 1 queue and a value of 255 means 256 queues 345 */ 346 reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) & 347 VPLAN_RX_QBASE_VFFIRSTQ_M) | 348 (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) & 349 VPLAN_RX_QBASE_VFNUMQ_M)); 350 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); 351 } else { 352 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 353 } 354 } 355 356 /** 357 * ice_ena_vf_mappings - enable VF MSIX and queue mapping 358 * @vf: pointer to the VF structure 359 */ 360 static void ice_ena_vf_mappings(struct ice_vf *vf) 361 { 362 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 363 364 if (WARN_ON(!vsi)) 365 return; 366 367 ice_ena_vf_msix_mappings(vf); 368 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); 369 } 370 371 /** 372 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space 373 * @vf: VF to calculate the register index for 374 * @q_vector: a q_vector associated to the VF 375 */ 376 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) 377 { 378 struct ice_pf *pf; 379 380 if (!vf || !q_vector) 381 return -EINVAL; 382 383 pf = vf->pf; 384 385 /* always add one to account for the OICR being the first MSIX */ 386 return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id + 387 q_vector->v_idx + 1; 388 } 389 390 /** 391 * ice_sriov_set_msix_res - Set any used MSIX resources 392 * @pf: pointer to PF structure 393 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs 394 * 395 * This function allows SR-IOV resources to be taken from the end of the PF's 396 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We 397 * just set the pf->sriov_base_vector and return success. 398 * 399 * If there are not enough resources available, return an error. This should 400 * always be caught by ice_set_per_vf_res(). 401 * 402 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors 403 * in the PF's space available for SR-IOV. 404 */ 405 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) 406 { 407 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 408 int vectors_used = ice_get_max_used_msix_vector(pf); 409 int sriov_base_vector; 410 411 sriov_base_vector = total_vectors - num_msix_needed; 412 413 /* make sure we only grab irq_tracker entries from the list end and 414 * that we have enough available MSIX vectors 415 */ 416 if (sriov_base_vector < vectors_used) 417 return -EINVAL; 418 419 pf->sriov_base_vector = sriov_base_vector; 420 421 return 0; 422 } 423 424 /** 425 * ice_set_per_vf_res - check if vectors and queues are available 426 * @pf: pointer to the PF structure 427 * @num_vfs: the number of SR-IOV VFs being configured 428 * 429 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we 430 * get more vectors and can enable more queues per VF. Note that this does not 431 * grab any vectors from the SW pool already allocated. Also note, that all 432 * vector counts include one for each VF's miscellaneous interrupt vector 433 * (i.e. OICR). 434 * 435 * Minimum VFs - 2 vectors, 1 queue pair 436 * Small VFs - 5 vectors, 4 queue pairs 437 * Medium VFs - 17 vectors, 16 queue pairs 438 * 439 * Second, determine number of queue pairs per VF by starting with a pre-defined 440 * maximum each VF supports. If this is not possible, then we adjust based on 441 * queue pairs available on the device. 442 * 443 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used 444 * by each VF during VF initialization and reset. 445 */ 446 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) 447 { 448 int vectors_used = ice_get_max_used_msix_vector(pf); 449 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; 450 int msix_avail_per_vf, msix_avail_for_sriov; 451 struct device *dev = ice_pf_to_dev(pf); 452 int err; 453 454 lockdep_assert_held(&pf->vfs.table_lock); 455 456 if (!num_vfs) 457 return -EINVAL; 458 459 /* determine MSI-X resources per VF */ 460 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - 461 vectors_used; 462 msix_avail_per_vf = msix_avail_for_sriov / num_vfs; 463 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { 464 num_msix_per_vf = ICE_NUM_VF_MSIX_MED; 465 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { 466 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; 467 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { 468 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; 469 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { 470 num_msix_per_vf = ICE_MIN_INTR_PER_VF; 471 } else { 472 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", 473 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, 474 num_vfs); 475 return -ENOSPC; 476 } 477 478 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 479 ICE_MAX_RSS_QS_PER_VF); 480 avail_qs = ice_get_avail_txq_count(pf) / num_vfs; 481 if (!avail_qs) 482 num_txq = 0; 483 else if (num_txq > avail_qs) 484 num_txq = rounddown_pow_of_two(avail_qs); 485 486 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 487 ICE_MAX_RSS_QS_PER_VF); 488 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; 489 if (!avail_qs) 490 num_rxq = 0; 491 else if (num_rxq > avail_qs) 492 num_rxq = rounddown_pow_of_two(avail_qs); 493 494 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { 495 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", 496 ICE_MIN_QS_PER_VF, num_vfs); 497 return -ENOSPC; 498 } 499 500 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); 501 if (err) { 502 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", 503 num_vfs, err); 504 return err; 505 } 506 507 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ 508 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); 509 pf->vfs.num_msix_per = num_msix_per_vf; 510 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", 511 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); 512 513 return 0; 514 } 515 516 /** 517 * ice_sriov_get_irqs - get irqs for SR-IOV usacase 518 * @pf: pointer to PF structure 519 * @needed: number of irqs to get 520 * 521 * This returns the first MSI-X vector index in PF space that is used by this 522 * VF. This index is used when accessing PF relative registers such as 523 * GLINT_VECT2FUNC and GLINT_DYN_CTL. 524 * This will always be the OICR index in the AVF driver so any functionality 525 * using vf->first_vector_idx for queue configuration_id: id of VF which will 526 * use this irqs 527 * 528 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are 529 * allocated from the end of global irq index. First bit in sriov_irq_bm means 530 * last irq index etc. It simplifies extension of SRIOV vectors. 531 * They will be always located from sriov_base_vector to the last irq 532 * index. While increasing/decreasing sriov_base_vector can be moved. 533 */ 534 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed) 535 { 536 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm, 537 pf->sriov_irq_size, 0, needed, 0); 538 /* conversion from number in bitmap to global irq index */ 539 int index = pf->sriov_irq_size - res - needed; 540 541 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector) 542 return -ENOENT; 543 544 bitmap_set(pf->sriov_irq_bm, res, needed); 545 return index; 546 } 547 548 /** 549 * ice_sriov_free_irqs - free irqs used by the VF 550 * @pf: pointer to PF structure 551 * @vf: pointer to VF structure 552 */ 553 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf) 554 { 555 /* Move back from first vector index to first index in bitmap */ 556 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix; 557 558 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix); 559 vf->first_vector_idx = 0; 560 } 561 562 /** 563 * ice_init_vf_vsi_res - initialize/setup VF VSI resources 564 * @vf: VF to initialize/setup the VSI for 565 * 566 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the 567 * VF VSI's broadcast filter and is only used during initial VF creation. 568 */ 569 static int ice_init_vf_vsi_res(struct ice_vf *vf) 570 { 571 struct ice_pf *pf = vf->pf; 572 struct ice_vsi *vsi; 573 int err; 574 575 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 576 if (vf->first_vector_idx < 0) 577 return -ENOMEM; 578 579 vsi = ice_vf_vsi_setup(vf); 580 if (!vsi) 581 return -ENOMEM; 582 583 err = ice_vf_init_host_cfg(vf, vsi); 584 if (err) 585 goto release_vsi; 586 587 return 0; 588 589 release_vsi: 590 ice_vf_vsi_release(vf); 591 return err; 592 } 593 594 /** 595 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV 596 * @pf: PF the VFs are associated with 597 */ 598 static int ice_start_vfs(struct ice_pf *pf) 599 { 600 struct ice_hw *hw = &pf->hw; 601 unsigned int bkt, it_cnt; 602 struct ice_vf *vf; 603 int retval; 604 605 lockdep_assert_held(&pf->vfs.table_lock); 606 607 it_cnt = 0; 608 ice_for_each_vf(pf, bkt, vf) { 609 vf->vf_ops->clear_reset_trigger(vf); 610 611 retval = ice_init_vf_vsi_res(vf); 612 if (retval) { 613 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", 614 vf->vf_id, retval); 615 goto teardown; 616 } 617 618 retval = ice_eswitch_attach(pf, vf); 619 if (retval) { 620 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d", 621 vf->vf_id, retval); 622 ice_vf_vsi_release(vf); 623 goto teardown; 624 } 625 626 set_bit(ICE_VF_STATE_INIT, vf->vf_states); 627 ice_ena_vf_mappings(vf); 628 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 629 it_cnt++; 630 } 631 632 ice_flush(hw); 633 return 0; 634 635 teardown: 636 ice_for_each_vf(pf, bkt, vf) { 637 if (it_cnt == 0) 638 break; 639 640 ice_dis_vf_mappings(vf); 641 ice_vf_vsi_release(vf); 642 it_cnt--; 643 } 644 645 return retval; 646 } 647 648 /** 649 * ice_sriov_free_vf - Free VF memory after all references are dropped 650 * @vf: pointer to VF to free 651 * 652 * Called by ice_put_vf through ice_release_vf once the last reference to a VF 653 * structure has been dropped. 654 */ 655 static void ice_sriov_free_vf(struct ice_vf *vf) 656 { 657 mutex_destroy(&vf->cfg_lock); 658 659 kfree_rcu(vf, rcu); 660 } 661 662 /** 663 * ice_sriov_clear_reset_state - clears VF Reset status register 664 * @vf: the vf to configure 665 */ 666 static void ice_sriov_clear_reset_state(struct ice_vf *vf) 667 { 668 struct ice_hw *hw = &vf->pf->hw; 669 670 /* Clear the reset status register so that VF immediately sees that 671 * the device is resetting, even if hardware hasn't yet gotten around 672 * to clearing VFGEN_RSTAT for us. 673 */ 674 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); 675 } 676 677 /** 678 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers 679 * @vf: the vf to configure 680 */ 681 static void ice_sriov_clear_mbx_register(struct ice_vf *vf) 682 { 683 struct ice_pf *pf = vf->pf; 684 685 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); 686 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); 687 } 688 689 /** 690 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF 691 * @vf: pointer to VF structure 692 * @is_vflr: true if reset occurred due to VFLR 693 * 694 * Trigger and cleanup after a VF reset for a SR-IOV VF. 695 */ 696 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) 697 { 698 struct ice_pf *pf = vf->pf; 699 u32 reg, reg_idx, bit_idx; 700 unsigned int vf_abs_id, i; 701 struct device *dev; 702 struct ice_hw *hw; 703 704 dev = ice_pf_to_dev(pf); 705 hw = &pf->hw; 706 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; 707 708 /* In the case of a VFLR, HW has already reset the VF and we just need 709 * to clean up. Otherwise we must first trigger the reset using the 710 * VFRTRIG register. 711 */ 712 if (!is_vflr) { 713 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 714 reg |= VPGEN_VFRTRIG_VFSWR_M; 715 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 716 } 717 718 /* clear the VFLR bit in GLGEN_VFLRSTAT */ 719 reg_idx = (vf_abs_id) / 32; 720 bit_idx = (vf_abs_id) % 32; 721 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 722 ice_flush(hw); 723 724 wr32(hw, PF_PCI_CIAA, 725 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); 726 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { 727 reg = rd32(hw, PF_PCI_CIAD); 728 /* no transactions pending so stop polling */ 729 if ((reg & VF_TRANS_PENDING_M) == 0) 730 break; 731 732 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); 733 udelay(ICE_PCI_CIAD_WAIT_DELAY_US); 734 } 735 } 736 737 /** 738 * ice_sriov_poll_reset_status - poll SRIOV VF reset status 739 * @vf: pointer to VF structure 740 * 741 * Returns true when reset is successful, else returns false 742 */ 743 static bool ice_sriov_poll_reset_status(struct ice_vf *vf) 744 { 745 struct ice_pf *pf = vf->pf; 746 unsigned int i; 747 u32 reg; 748 749 for (i = 0; i < 10; i++) { 750 /* VF reset requires driver to first reset the VF and then 751 * poll the status register to make sure that the reset 752 * completed successfully. 753 */ 754 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); 755 if (reg & VPGEN_VFRSTAT_VFRD_M) 756 return true; 757 758 /* only sleep if the reset is not done */ 759 usleep_range(10, 20); 760 } 761 return false; 762 } 763 764 /** 765 * ice_sriov_clear_reset_trigger - enable VF to access hardware 766 * @vf: VF to enabled hardware access for 767 */ 768 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) 769 { 770 struct ice_hw *hw = &vf->pf->hw; 771 u32 reg; 772 773 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 774 reg &= ~VPGEN_VFRTRIG_VFSWR_M; 775 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 776 ice_flush(hw); 777 } 778 779 /** 780 * ice_sriov_create_vsi - Create a new VSI for a VF 781 * @vf: VF to create the VSI for 782 * 783 * This is called by ice_vf_recreate_vsi to create the new VSI after the old 784 * VSI has been released. 785 */ 786 static int ice_sriov_create_vsi(struct ice_vf *vf) 787 { 788 struct ice_vsi *vsi; 789 790 vsi = ice_vf_vsi_setup(vf); 791 if (!vsi) 792 return -ENOMEM; 793 794 return 0; 795 } 796 797 /** 798 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt 799 * @vf: VF to perform tasks on 800 */ 801 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) 802 { 803 ice_ena_vf_mappings(vf); 804 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 805 } 806 807 static const struct ice_vf_ops ice_sriov_vf_ops = { 808 .reset_type = ICE_VF_RESET, 809 .free = ice_sriov_free_vf, 810 .clear_reset_state = ice_sriov_clear_reset_state, 811 .clear_mbx_register = ice_sriov_clear_mbx_register, 812 .trigger_reset_register = ice_sriov_trigger_reset_register, 813 .poll_reset_status = ice_sriov_poll_reset_status, 814 .clear_reset_trigger = ice_sriov_clear_reset_trigger, 815 .irq_close = NULL, 816 .create_vsi = ice_sriov_create_vsi, 817 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, 818 }; 819 820 /** 821 * ice_create_vf_entries - Allocate and insert VF entries 822 * @pf: pointer to the PF structure 823 * @num_vfs: the number of VFs to allocate 824 * 825 * Allocate new VF entries and insert them into the hash table. Set some 826 * basic default fields for initializing the new VFs. 827 * 828 * After this function exits, the hash table will have num_vfs entries 829 * inserted. 830 * 831 * Returns 0 on success or an integer error code on failure. 832 */ 833 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) 834 { 835 struct pci_dev *pdev = pf->pdev; 836 struct ice_vfs *vfs = &pf->vfs; 837 struct pci_dev *vfdev = NULL; 838 struct ice_vf *vf; 839 u16 vf_pdev_id; 840 int err, pos; 841 842 lockdep_assert_held(&vfs->table_lock); 843 844 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 845 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id); 846 847 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) { 848 vf = kzalloc(sizeof(*vf), GFP_KERNEL); 849 if (!vf) { 850 err = -ENOMEM; 851 goto err_free_entries; 852 } 853 kref_init(&vf->refcnt); 854 855 vf->pf = pf; 856 vf->vf_id = vf_id; 857 858 /* set sriov vf ops for VFs created during SRIOV flow */ 859 vf->vf_ops = &ice_sriov_vf_ops; 860 861 ice_initialize_vf_entry(vf); 862 863 do { 864 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev); 865 } while (vfdev && vfdev->physfn != pdev); 866 vf->vfdev = vfdev; 867 vf->vf_sw_id = pf->first_sw; 868 869 pci_dev_get(vfdev); 870 871 /* set default number of MSI-X */ 872 vf->num_msix = pf->vfs.num_msix_per; 873 vf->num_vf_qs = pf->vfs.num_qps_per; 874 ice_vc_set_default_allowlist(vf); 875 876 hash_add_rcu(vfs->table, &vf->entry, vf_id); 877 } 878 879 /* Decrement of refcount done by pci_get_device() inside the loop does 880 * not touch the last iteration's vfdev, so it has to be done manually 881 * to balance pci_dev_get() added within the loop. 882 */ 883 pci_dev_put(vfdev); 884 885 return 0; 886 887 err_free_entries: 888 ice_free_vf_entries(pf); 889 return err; 890 } 891 892 /** 893 * ice_ena_vfs - enable VFs so they are ready to be used 894 * @pf: pointer to the PF structure 895 * @num_vfs: number of VFs to enable 896 */ 897 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) 898 { 899 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 900 struct device *dev = ice_pf_to_dev(pf); 901 struct ice_hw *hw = &pf->hw; 902 int ret; 903 904 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL); 905 if (!pf->sriov_irq_bm) 906 return -ENOMEM; 907 pf->sriov_irq_size = total_vectors; 908 909 /* Disable global interrupt 0 so we don't try to handle the VFLR. */ 910 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 911 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 912 set_bit(ICE_OICR_INTR_DIS, pf->state); 913 ice_flush(hw); 914 915 ret = pci_enable_sriov(pf->pdev, num_vfs); 916 if (ret) 917 goto err_unroll_intr; 918 919 mutex_lock(&pf->vfs.table_lock); 920 921 ret = ice_set_per_vf_res(pf, num_vfs); 922 if (ret) { 923 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", 924 num_vfs, ret); 925 goto err_unroll_sriov; 926 } 927 928 ret = ice_create_vf_entries(pf, num_vfs); 929 if (ret) { 930 dev_err(dev, "Failed to allocate VF entries for %d VFs\n", 931 num_vfs); 932 goto err_unroll_sriov; 933 } 934 935 ice_eswitch_reserve_cp_queues(pf, num_vfs); 936 ret = ice_start_vfs(pf); 937 if (ret) { 938 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); 939 ret = -EAGAIN; 940 goto err_unroll_vf_entries; 941 } 942 943 clear_bit(ICE_VF_DIS, pf->state); 944 945 /* rearm global interrupts */ 946 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) 947 ice_irq_dynamic_ena(hw, NULL, NULL); 948 949 mutex_unlock(&pf->vfs.table_lock); 950 951 return 0; 952 953 err_unroll_vf_entries: 954 ice_free_vf_entries(pf); 955 err_unroll_sriov: 956 mutex_unlock(&pf->vfs.table_lock); 957 pci_disable_sriov(pf->pdev); 958 err_unroll_intr: 959 /* rearm interrupts here */ 960 ice_irq_dynamic_ena(hw, NULL, NULL); 961 clear_bit(ICE_OICR_INTR_DIS, pf->state); 962 bitmap_free(pf->sriov_irq_bm); 963 return ret; 964 } 965 966 /** 967 * ice_pci_sriov_ena - Enable or change number of VFs 968 * @pf: pointer to the PF structure 969 * @num_vfs: number of VFs to allocate 970 * 971 * Returns 0 on success and negative on failure 972 */ 973 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) 974 { 975 struct device *dev = ice_pf_to_dev(pf); 976 int err; 977 978 if (!num_vfs) { 979 ice_free_vfs(pf); 980 return 0; 981 } 982 983 if (num_vfs > pf->vfs.num_supported) { 984 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", 985 num_vfs, pf->vfs.num_supported); 986 return -EOPNOTSUPP; 987 } 988 989 dev_info(dev, "Enabling %d VFs\n", num_vfs); 990 err = ice_ena_vfs(pf, num_vfs); 991 if (err) { 992 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 993 return err; 994 } 995 996 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 997 return 0; 998 } 999 1000 /** 1001 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks 1002 * @pf: PF to enabled SR-IOV on 1003 */ 1004 static int ice_check_sriov_allowed(struct ice_pf *pf) 1005 { 1006 struct device *dev = ice_pf_to_dev(pf); 1007 1008 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { 1009 dev_err(dev, "This device is not capable of SR-IOV\n"); 1010 return -EOPNOTSUPP; 1011 } 1012 1013 if (ice_is_safe_mode(pf)) { 1014 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); 1015 return -EOPNOTSUPP; 1016 } 1017 1018 if (!ice_pf_state_is_nominal(pf)) { 1019 dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); 1020 return -EBUSY; 1021 } 1022 1023 return 0; 1024 } 1025 1026 /** 1027 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs 1028 * @pdev: pointer to pci_dev struct 1029 * 1030 * The function is called via sysfs ops 1031 */ 1032 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev) 1033 { 1034 struct ice_pf *pf = pci_get_drvdata(pdev); 1035 1036 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf); 1037 } 1038 1039 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move) 1040 { 1041 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf)) 1042 return -ENOMEM; 1043 1044 pf->sriov_base_vector -= move; 1045 return 0; 1046 } 1047 1048 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id) 1049 { 1050 u16 vf_ids[ICE_MAX_SRIOV_VFS]; 1051 struct ice_vf *tmp_vf; 1052 int to_remap = 0, bkt; 1053 1054 /* For better irqs usage try to remap irqs of VFs 1055 * that aren't running yet 1056 */ 1057 ice_for_each_vf(pf, bkt, tmp_vf) { 1058 /* skip VF which is changing the number of MSI-X */ 1059 if (restricted_id == tmp_vf->vf_id || 1060 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states)) 1061 continue; 1062 1063 ice_dis_vf_mappings(tmp_vf); 1064 ice_sriov_free_irqs(pf, tmp_vf); 1065 1066 vf_ids[to_remap] = tmp_vf->vf_id; 1067 to_remap += 1; 1068 } 1069 1070 for (int i = 0; i < to_remap; i++) { 1071 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]); 1072 if (!tmp_vf) 1073 continue; 1074 1075 tmp_vf->first_vector_idx = 1076 ice_sriov_get_irqs(pf, tmp_vf->num_msix); 1077 /* there is no need to rebuild VSI as we are only changing the 1078 * vector indexes not amount of MSI-X or queues 1079 */ 1080 ice_ena_vf_mappings(tmp_vf); 1081 ice_put_vf(tmp_vf); 1082 } 1083 } 1084 1085 /** 1086 * ice_sriov_set_msix_vec_count 1087 * @vf_dev: pointer to pci_dev struct of VF device 1088 * @msix_vec_count: new value for MSI-X amount on this VF 1089 * 1090 * Set requested MSI-X, queues and registers for @vf_dev. 1091 * 1092 * First do some sanity checks like if there are any VFs, if the new value 1093 * is correct etc. Then disable old mapping (MSI-X and queues registers), change 1094 * MSI-X and queues, rebuild VSI and enable new mapping. 1095 * 1096 * If it is possible (driver not binded to VF) try to remap also other VFs to 1097 * linearize irqs register usage. 1098 */ 1099 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count) 1100 { 1101 struct pci_dev *pdev = pci_physfn(vf_dev); 1102 struct ice_pf *pf = pci_get_drvdata(pdev); 1103 u16 prev_msix, prev_queues, queues; 1104 bool needs_rebuild = false; 1105 struct ice_vf *vf; 1106 int id; 1107 1108 if (!ice_get_num_vfs(pf)) 1109 return -ENOENT; 1110 1111 if (!msix_vec_count) 1112 return 0; 1113 1114 queues = msix_vec_count; 1115 /* add 1 MSI-X for OICR */ 1116 msix_vec_count += 1; 1117 1118 if (queues > min(ice_get_avail_txq_count(pf), 1119 ice_get_avail_rxq_count(pf))) 1120 return -EINVAL; 1121 1122 if (msix_vec_count < ICE_MIN_INTR_PER_VF) 1123 return -EINVAL; 1124 1125 /* Transition of PCI VF function number to function_id */ 1126 for (id = 0; id < pci_num_vf(pdev); id++) { 1127 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id)) 1128 break; 1129 } 1130 1131 if (id == pci_num_vf(pdev)) 1132 return -ENOENT; 1133 1134 vf = ice_get_vf_by_id(pf, id); 1135 1136 if (!vf) 1137 return -ENOENT; 1138 1139 prev_msix = vf->num_msix; 1140 prev_queues = vf->num_vf_qs; 1141 1142 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) { 1143 ice_put_vf(vf); 1144 return -ENOSPC; 1145 } 1146 1147 ice_dis_vf_mappings(vf); 1148 ice_sriov_free_irqs(pf, vf); 1149 1150 /* Remap all VFs beside the one is now configured */ 1151 ice_sriov_remap_vectors(pf, vf->vf_id); 1152 1153 vf->num_msix = msix_vec_count; 1154 vf->num_vf_qs = queues; 1155 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1156 if (vf->first_vector_idx < 0) 1157 goto unroll; 1158 1159 ice_vf_vsi_release(vf); 1160 if (vf->vf_ops->create_vsi(vf)) { 1161 /* Try to rebuild with previous values */ 1162 needs_rebuild = true; 1163 goto unroll; 1164 } 1165 1166 dev_info(ice_pf_to_dev(pf), 1167 "Changing VF %d resources to %d vectors and %d queues\n", 1168 vf->vf_id, vf->num_msix, vf->num_vf_qs); 1169 1170 ice_ena_vf_mappings(vf); 1171 ice_put_vf(vf); 1172 1173 return 0; 1174 1175 unroll: 1176 dev_info(ice_pf_to_dev(pf), 1177 "Can't set %d vectors on VF %d, falling back to %d\n", 1178 vf->num_msix, vf->vf_id, prev_msix); 1179 1180 vf->num_msix = prev_msix; 1181 vf->num_vf_qs = prev_queues; 1182 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1183 if (vf->first_vector_idx < 0) 1184 return -EINVAL; 1185 1186 if (needs_rebuild) 1187 vf->vf_ops->create_vsi(vf); 1188 1189 ice_ena_vf_mappings(vf); 1190 ice_put_vf(vf); 1191 1192 return -EINVAL; 1193 } 1194 1195 /** 1196 * ice_sriov_configure - Enable or change number of VFs via sysfs 1197 * @pdev: pointer to a pci_dev structure 1198 * @num_vfs: number of VFs to allocate or 0 to free VFs 1199 * 1200 * This function is called when the user updates the number of VFs in sysfs. On 1201 * success return whatever num_vfs was set to by the caller. Return negative on 1202 * failure. 1203 */ 1204 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) 1205 { 1206 struct ice_pf *pf = pci_get_drvdata(pdev); 1207 struct device *dev = ice_pf_to_dev(pf); 1208 int err; 1209 1210 err = ice_check_sriov_allowed(pf); 1211 if (err) 1212 return err; 1213 1214 if (!num_vfs) { 1215 if (!pci_vfs_assigned(pdev)) { 1216 ice_free_vfs(pf); 1217 return 0; 1218 } 1219 1220 dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); 1221 return -EBUSY; 1222 } 1223 1224 err = ice_pci_sriov_ena(pf, num_vfs); 1225 if (err) 1226 return err; 1227 1228 return num_vfs; 1229 } 1230 1231 /** 1232 * ice_process_vflr_event - Free VF resources via IRQ calls 1233 * @pf: pointer to the PF structure 1234 * 1235 * called from the VFLR IRQ handler to 1236 * free up VF resources and state variables 1237 */ 1238 void ice_process_vflr_event(struct ice_pf *pf) 1239 { 1240 struct ice_hw *hw = &pf->hw; 1241 struct ice_vf *vf; 1242 unsigned int bkt; 1243 u32 reg; 1244 1245 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 1246 !ice_has_vfs(pf)) 1247 return; 1248 1249 mutex_lock(&pf->vfs.table_lock); 1250 ice_for_each_vf(pf, bkt, vf) { 1251 u32 reg_idx, bit_idx; 1252 1253 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 1254 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 1255 /* read GLGEN_VFLRSTAT register to find out the flr VFs */ 1256 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); 1257 if (reg & BIT(bit_idx)) 1258 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ 1259 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 1260 } 1261 mutex_unlock(&pf->vfs.table_lock); 1262 } 1263 1264 /** 1265 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in 1266 * @pf: PF used to index all VFs 1267 * @pfq: queue index relative to the PF's function space 1268 * 1269 * If no VF is found who owns the pfq then return NULL, otherwise return a 1270 * pointer to the VF who owns the pfq 1271 * 1272 * If this function returns non-NULL, it acquires a reference count of the VF 1273 * structure. The caller is responsible for calling ice_put_vf() to drop this 1274 * reference. 1275 */ 1276 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) 1277 { 1278 struct ice_vf *vf; 1279 unsigned int bkt; 1280 1281 rcu_read_lock(); 1282 ice_for_each_vf_rcu(pf, bkt, vf) { 1283 struct ice_vsi *vsi; 1284 u16 rxq_idx; 1285 1286 vsi = ice_get_vf_vsi(vf); 1287 if (!vsi) 1288 continue; 1289 1290 ice_for_each_rxq(vsi, rxq_idx) 1291 if (vsi->rxq_map[rxq_idx] == pfq) { 1292 struct ice_vf *found; 1293 1294 if (kref_get_unless_zero(&vf->refcnt)) 1295 found = vf; 1296 else 1297 found = NULL; 1298 rcu_read_unlock(); 1299 return found; 1300 } 1301 } 1302 rcu_read_unlock(); 1303 1304 return NULL; 1305 } 1306 1307 /** 1308 * ice_globalq_to_pfq - convert from global queue index to PF space queue index 1309 * @pf: PF used for conversion 1310 * @globalq: global queue index used to convert to PF space queue index 1311 */ 1312 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) 1313 { 1314 return globalq - pf->hw.func_caps.common_cap.rxq_first_id; 1315 } 1316 1317 /** 1318 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF 1319 * @pf: PF that the LAN overflow event happened on 1320 * @event: structure holding the event information for the LAN overflow event 1321 * 1322 * Determine if the LAN overflow event was caused by a VF queue. If it was not 1323 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a 1324 * reset on the offending VF. 1325 */ 1326 void 1327 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1328 { 1329 u32 gldcb_rtctq, queue; 1330 struct ice_vf *vf; 1331 1332 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); 1333 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); 1334 1335 /* event returns device global Rx queue number */ 1336 queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >> 1337 GLDCB_RTCTQ_RXQNUM_S; 1338 1339 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); 1340 if (!vf) 1341 return; 1342 1343 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1344 ice_put_vf(vf); 1345 } 1346 1347 /** 1348 * ice_set_vf_spoofchk 1349 * @netdev: network interface device structure 1350 * @vf_id: VF identifier 1351 * @ena: flag to enable or disable feature 1352 * 1353 * Enable or disable VF spoof checking 1354 */ 1355 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) 1356 { 1357 struct ice_netdev_priv *np = netdev_priv(netdev); 1358 struct ice_pf *pf = np->vsi->back; 1359 struct ice_vsi *vf_vsi; 1360 struct device *dev; 1361 struct ice_vf *vf; 1362 int ret; 1363 1364 dev = ice_pf_to_dev(pf); 1365 1366 vf = ice_get_vf_by_id(pf, vf_id); 1367 if (!vf) 1368 return -EINVAL; 1369 1370 ret = ice_check_vf_ready_for_cfg(vf); 1371 if (ret) 1372 goto out_put_vf; 1373 1374 vf_vsi = ice_get_vf_vsi(vf); 1375 if (!vf_vsi) { 1376 netdev_err(netdev, "VSI %d for VF %d is null\n", 1377 vf->lan_vsi_idx, vf->vf_id); 1378 ret = -EINVAL; 1379 goto out_put_vf; 1380 } 1381 1382 if (vf_vsi->type != ICE_VSI_VF) { 1383 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", 1384 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); 1385 ret = -ENODEV; 1386 goto out_put_vf; 1387 } 1388 1389 if (ena == vf->spoofchk) { 1390 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); 1391 ret = 0; 1392 goto out_put_vf; 1393 } 1394 1395 ret = ice_vsi_apply_spoofchk(vf_vsi, ena); 1396 if (ret) 1397 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", 1398 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); 1399 else 1400 vf->spoofchk = ena; 1401 1402 out_put_vf: 1403 ice_put_vf(vf); 1404 return ret; 1405 } 1406 1407 /** 1408 * ice_get_vf_cfg 1409 * @netdev: network interface device structure 1410 * @vf_id: VF identifier 1411 * @ivi: VF configuration structure 1412 * 1413 * return VF configuration 1414 */ 1415 int 1416 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) 1417 { 1418 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1419 struct ice_vf *vf; 1420 int ret; 1421 1422 vf = ice_get_vf_by_id(pf, vf_id); 1423 if (!vf) 1424 return -EINVAL; 1425 1426 ret = ice_check_vf_ready_for_cfg(vf); 1427 if (ret) 1428 goto out_put_vf; 1429 1430 ivi->vf = vf_id; 1431 ether_addr_copy(ivi->mac, vf->hw_lan_addr); 1432 1433 /* VF configuration for VLAN and applicable QoS */ 1434 ivi->vlan = ice_vf_get_port_vlan_id(vf); 1435 ivi->qos = ice_vf_get_port_vlan_prio(vf); 1436 if (ice_vf_is_port_vlan_ena(vf)) 1437 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); 1438 1439 ivi->trusted = vf->trusted; 1440 ivi->spoofchk = vf->spoofchk; 1441 if (!vf->link_forced) 1442 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 1443 else if (vf->link_up) 1444 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 1445 else 1446 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 1447 ivi->max_tx_rate = vf->max_tx_rate; 1448 ivi->min_tx_rate = vf->min_tx_rate; 1449 1450 out_put_vf: 1451 ice_put_vf(vf); 1452 return ret; 1453 } 1454 1455 /** 1456 * ice_set_vf_mac 1457 * @netdev: network interface device structure 1458 * @vf_id: VF identifier 1459 * @mac: MAC address 1460 * 1461 * program VF MAC address 1462 */ 1463 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 1464 { 1465 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1466 struct ice_vf *vf; 1467 int ret; 1468 1469 if (is_multicast_ether_addr(mac)) { 1470 netdev_err(netdev, "%pM not a valid unicast address\n", mac); 1471 return -EINVAL; 1472 } 1473 1474 vf = ice_get_vf_by_id(pf, vf_id); 1475 if (!vf) 1476 return -EINVAL; 1477 1478 /* nothing left to do, unicast MAC already set */ 1479 if (ether_addr_equal(vf->dev_lan_addr, mac) && 1480 ether_addr_equal(vf->hw_lan_addr, mac)) { 1481 ret = 0; 1482 goto out_put_vf; 1483 } 1484 1485 ret = ice_check_vf_ready_for_cfg(vf); 1486 if (ret) 1487 goto out_put_vf; 1488 1489 mutex_lock(&vf->cfg_lock); 1490 1491 /* VF is notified of its new MAC via the PF's response to the 1492 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset 1493 */ 1494 ether_addr_copy(vf->dev_lan_addr, mac); 1495 ether_addr_copy(vf->hw_lan_addr, mac); 1496 if (is_zero_ether_addr(mac)) { 1497 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ 1498 vf->pf_set_mac = false; 1499 netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n", 1500 vf->vf_id); 1501 } else { 1502 /* PF will add MAC rule for the VF */ 1503 vf->pf_set_mac = true; 1504 netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", 1505 mac, vf_id); 1506 } 1507 1508 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1509 mutex_unlock(&vf->cfg_lock); 1510 1511 out_put_vf: 1512 ice_put_vf(vf); 1513 return ret; 1514 } 1515 1516 /** 1517 * ice_set_vf_trust 1518 * @netdev: network interface device structure 1519 * @vf_id: VF identifier 1520 * @trusted: Boolean value to enable/disable trusted VF 1521 * 1522 * Enable or disable a given VF as trusted 1523 */ 1524 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) 1525 { 1526 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1527 struct ice_vf *vf; 1528 int ret; 1529 1530 vf = ice_get_vf_by_id(pf, vf_id); 1531 if (!vf) 1532 return -EINVAL; 1533 1534 if (ice_is_eswitch_mode_switchdev(pf)) { 1535 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); 1536 return -EOPNOTSUPP; 1537 } 1538 1539 ret = ice_check_vf_ready_for_cfg(vf); 1540 if (ret) 1541 goto out_put_vf; 1542 1543 /* Check if already trusted */ 1544 if (trusted == vf->trusted) { 1545 ret = 0; 1546 goto out_put_vf; 1547 } 1548 1549 mutex_lock(&vf->cfg_lock); 1550 1551 vf->trusted = trusted; 1552 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1553 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", 1554 vf_id, trusted ? "" : "un"); 1555 1556 mutex_unlock(&vf->cfg_lock); 1557 1558 out_put_vf: 1559 ice_put_vf(vf); 1560 return ret; 1561 } 1562 1563 /** 1564 * ice_set_vf_link_state 1565 * @netdev: network interface device structure 1566 * @vf_id: VF identifier 1567 * @link_state: required link state 1568 * 1569 * Set VF's link state, irrespective of physical link state status 1570 */ 1571 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) 1572 { 1573 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1574 struct ice_vf *vf; 1575 int ret; 1576 1577 vf = ice_get_vf_by_id(pf, vf_id); 1578 if (!vf) 1579 return -EINVAL; 1580 1581 ret = ice_check_vf_ready_for_cfg(vf); 1582 if (ret) 1583 goto out_put_vf; 1584 1585 switch (link_state) { 1586 case IFLA_VF_LINK_STATE_AUTO: 1587 vf->link_forced = false; 1588 break; 1589 case IFLA_VF_LINK_STATE_ENABLE: 1590 vf->link_forced = true; 1591 vf->link_up = true; 1592 break; 1593 case IFLA_VF_LINK_STATE_DISABLE: 1594 vf->link_forced = true; 1595 vf->link_up = false; 1596 break; 1597 default: 1598 ret = -EINVAL; 1599 goto out_put_vf; 1600 } 1601 1602 ice_vc_notify_vf_link_state(vf); 1603 1604 out_put_vf: 1605 ice_put_vf(vf); 1606 return ret; 1607 } 1608 1609 /** 1610 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs 1611 * @pf: PF associated with VFs 1612 */ 1613 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) 1614 { 1615 struct ice_vf *vf; 1616 unsigned int bkt; 1617 int rate = 0; 1618 1619 rcu_read_lock(); 1620 ice_for_each_vf_rcu(pf, bkt, vf) 1621 rate += vf->min_tx_rate; 1622 rcu_read_unlock(); 1623 1624 return rate; 1625 } 1626 1627 /** 1628 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription 1629 * @vf: VF trying to configure min_tx_rate 1630 * @min_tx_rate: min Tx rate in Mbps 1631 * 1632 * Check if the min_tx_rate being passed in will cause oversubscription of total 1633 * min_tx_rate based on the current link speed and all other VFs configured 1634 * min_tx_rate 1635 * 1636 * Return true if the passed min_tx_rate would cause oversubscription, else 1637 * return false 1638 */ 1639 static bool 1640 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) 1641 { 1642 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 1643 int all_vfs_min_tx_rate; 1644 int link_speed_mbps; 1645 1646 if (WARN_ON(!vsi)) 1647 return false; 1648 1649 link_speed_mbps = ice_get_link_speed_mbps(vsi); 1650 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); 1651 1652 /* this VF's previous rate is being overwritten */ 1653 all_vfs_min_tx_rate -= vf->min_tx_rate; 1654 1655 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { 1656 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", 1657 min_tx_rate, vf->vf_id, 1658 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, 1659 link_speed_mbps); 1660 return true; 1661 } 1662 1663 return false; 1664 } 1665 1666 /** 1667 * ice_set_vf_bw - set min/max VF bandwidth 1668 * @netdev: network interface device structure 1669 * @vf_id: VF identifier 1670 * @min_tx_rate: Minimum Tx rate in Mbps 1671 * @max_tx_rate: Maximum Tx rate in Mbps 1672 */ 1673 int 1674 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, 1675 int max_tx_rate) 1676 { 1677 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1678 struct ice_vsi *vsi; 1679 struct device *dev; 1680 struct ice_vf *vf; 1681 int ret; 1682 1683 dev = ice_pf_to_dev(pf); 1684 1685 vf = ice_get_vf_by_id(pf, vf_id); 1686 if (!vf) 1687 return -EINVAL; 1688 1689 ret = ice_check_vf_ready_for_cfg(vf); 1690 if (ret) 1691 goto out_put_vf; 1692 1693 vsi = ice_get_vf_vsi(vf); 1694 if (!vsi) { 1695 ret = -EINVAL; 1696 goto out_put_vf; 1697 } 1698 1699 if (min_tx_rate && ice_is_dcb_active(pf)) { 1700 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); 1701 ret = -EOPNOTSUPP; 1702 goto out_put_vf; 1703 } 1704 1705 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { 1706 ret = -EINVAL; 1707 goto out_put_vf; 1708 } 1709 1710 if (vf->min_tx_rate != (unsigned int)min_tx_rate) { 1711 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); 1712 if (ret) { 1713 dev_err(dev, "Unable to set min-tx-rate for VF %d\n", 1714 vf->vf_id); 1715 goto out_put_vf; 1716 } 1717 1718 vf->min_tx_rate = min_tx_rate; 1719 } 1720 1721 if (vf->max_tx_rate != (unsigned int)max_tx_rate) { 1722 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); 1723 if (ret) { 1724 dev_err(dev, "Unable to set max-tx-rate for VF %d\n", 1725 vf->vf_id); 1726 goto out_put_vf; 1727 } 1728 1729 vf->max_tx_rate = max_tx_rate; 1730 } 1731 1732 out_put_vf: 1733 ice_put_vf(vf); 1734 return ret; 1735 } 1736 1737 /** 1738 * ice_get_vf_stats - populate some stats for the VF 1739 * @netdev: the netdev of the PF 1740 * @vf_id: the host OS identifier (0-255) 1741 * @vf_stats: pointer to the OS memory to be initialized 1742 */ 1743 int ice_get_vf_stats(struct net_device *netdev, int vf_id, 1744 struct ifla_vf_stats *vf_stats) 1745 { 1746 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1747 struct ice_eth_stats *stats; 1748 struct ice_vsi *vsi; 1749 struct ice_vf *vf; 1750 int ret; 1751 1752 vf = ice_get_vf_by_id(pf, vf_id); 1753 if (!vf) 1754 return -EINVAL; 1755 1756 ret = ice_check_vf_ready_for_cfg(vf); 1757 if (ret) 1758 goto out_put_vf; 1759 1760 vsi = ice_get_vf_vsi(vf); 1761 if (!vsi) { 1762 ret = -EINVAL; 1763 goto out_put_vf; 1764 } 1765 1766 ice_update_eth_stats(vsi); 1767 stats = &vsi->eth_stats; 1768 1769 memset(vf_stats, 0, sizeof(*vf_stats)); 1770 1771 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + 1772 stats->rx_multicast; 1773 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + 1774 stats->tx_multicast; 1775 vf_stats->rx_bytes = stats->rx_bytes; 1776 vf_stats->tx_bytes = stats->tx_bytes; 1777 vf_stats->broadcast = stats->rx_broadcast; 1778 vf_stats->multicast = stats->rx_multicast; 1779 vf_stats->rx_dropped = stats->rx_discards; 1780 vf_stats->tx_dropped = stats->tx_discards; 1781 1782 out_put_vf: 1783 ice_put_vf(vf); 1784 return ret; 1785 } 1786 1787 /** 1788 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported 1789 * @hw: hardware structure used to check the VLAN mode 1790 * @vlan_proto: VLAN TPID being checked 1791 * 1792 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q 1793 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN 1794 * Mode (SVM), then only ETH_P_8021Q is supported. 1795 */ 1796 static bool 1797 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) 1798 { 1799 bool is_supported = false; 1800 1801 switch (vlan_proto) { 1802 case ETH_P_8021Q: 1803 is_supported = true; 1804 break; 1805 case ETH_P_8021AD: 1806 if (ice_is_dvm_ena(hw)) 1807 is_supported = true; 1808 break; 1809 } 1810 1811 return is_supported; 1812 } 1813 1814 /** 1815 * ice_set_vf_port_vlan 1816 * @netdev: network interface device structure 1817 * @vf_id: VF identifier 1818 * @vlan_id: VLAN ID being set 1819 * @qos: priority setting 1820 * @vlan_proto: VLAN protocol 1821 * 1822 * program VF Port VLAN ID and/or QoS 1823 */ 1824 int 1825 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, 1826 __be16 vlan_proto) 1827 { 1828 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1829 u16 local_vlan_proto = ntohs(vlan_proto); 1830 struct device *dev; 1831 struct ice_vf *vf; 1832 int ret; 1833 1834 dev = ice_pf_to_dev(pf); 1835 1836 if (vlan_id >= VLAN_N_VID || qos > 7) { 1837 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", 1838 vf_id, vlan_id, qos); 1839 return -EINVAL; 1840 } 1841 1842 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { 1843 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", 1844 local_vlan_proto); 1845 return -EPROTONOSUPPORT; 1846 } 1847 1848 vf = ice_get_vf_by_id(pf, vf_id); 1849 if (!vf) 1850 return -EINVAL; 1851 1852 ret = ice_check_vf_ready_for_cfg(vf); 1853 if (ret) 1854 goto out_put_vf; 1855 1856 if (ice_vf_get_port_vlan_prio(vf) == qos && 1857 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && 1858 ice_vf_get_port_vlan_id(vf) == vlan_id) { 1859 /* duplicate request, so just return success */ 1860 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", 1861 vlan_id, qos, local_vlan_proto); 1862 ret = 0; 1863 goto out_put_vf; 1864 } 1865 1866 mutex_lock(&vf->cfg_lock); 1867 1868 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); 1869 if (ice_vf_is_port_vlan_ena(vf)) 1870 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", 1871 vlan_id, qos, local_vlan_proto, vf_id); 1872 else 1873 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); 1874 1875 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1876 mutex_unlock(&vf->cfg_lock); 1877 1878 out_put_vf: 1879 ice_put_vf(vf); 1880 return ret; 1881 } 1882 1883 /** 1884 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event 1885 * @vf: pointer to the VF structure 1886 */ 1887 void ice_print_vf_rx_mdd_event(struct ice_vf *vf) 1888 { 1889 struct ice_pf *pf = vf->pf; 1890 struct device *dev; 1891 1892 dev = ice_pf_to_dev(pf); 1893 1894 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1895 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, 1896 vf->dev_lan_addr, 1897 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1898 ? "on" : "off"); 1899 } 1900 1901 /** 1902 * ice_print_vfs_mdd_events - print VFs malicious driver detect event 1903 * @pf: pointer to the PF structure 1904 * 1905 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. 1906 */ 1907 void ice_print_vfs_mdd_events(struct ice_pf *pf) 1908 { 1909 struct device *dev = ice_pf_to_dev(pf); 1910 struct ice_hw *hw = &pf->hw; 1911 struct ice_vf *vf; 1912 unsigned int bkt; 1913 1914 /* check that there are pending MDD events to print */ 1915 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) 1916 return; 1917 1918 /* VF MDD event logs are rate limited to one second intervals */ 1919 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) 1920 return; 1921 1922 pf->vfs.last_printed_mdd_jiffies = jiffies; 1923 1924 mutex_lock(&pf->vfs.table_lock); 1925 ice_for_each_vf(pf, bkt, vf) { 1926 /* only print Rx MDD event message if there are new events */ 1927 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 1928 vf->mdd_rx_events.last_printed = 1929 vf->mdd_rx_events.count; 1930 ice_print_vf_rx_mdd_event(vf); 1931 } 1932 1933 /* only print Tx MDD event message if there are new events */ 1934 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 1935 vf->mdd_tx_events.last_printed = 1936 vf->mdd_tx_events.count; 1937 1938 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n", 1939 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id, 1940 vf->dev_lan_addr); 1941 } 1942 } 1943 mutex_unlock(&pf->vfs.table_lock); 1944 } 1945 1946 /** 1947 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR 1948 * @pf: pointer to the PF structure 1949 * 1950 * Called when recovering from a PF FLR to restore interrupt capability to 1951 * the VFs. 1952 */ 1953 void ice_restore_all_vfs_msi_state(struct ice_pf *pf) 1954 { 1955 struct ice_vf *vf; 1956 u32 bkt; 1957 1958 ice_for_each_vf(pf, bkt, vf) 1959 pci_restore_msi_state(vf->vfdev); 1960 } 1961