xref: /linux/drivers/net/ethernet/intel/ice/ice_sriov.c (revision 2151003e773c7e7dba4d64bed4bfc483681b5f6a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16 
17 /**
18  * ice_free_vf_entries - Free all VF entries from the hash table
19  * @pf: pointer to the PF structure
20  *
21  * Iterate over the VF hash table, removing and releasing all VF entries.
22  * Called during VF teardown or as cleanup during failed VF initialization.
23  */
24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 	struct ice_vfs *vfs = &pf->vfs;
27 	struct hlist_node *tmp;
28 	struct ice_vf *vf;
29 	unsigned int bkt;
30 
31 	/* Remove all VFs from the hash table and release their main
32 	 * reference. Once all references to the VF are dropped, ice_put_vf()
33 	 * will call ice_release_vf which will remove the VF memory.
34 	 */
35 	lockdep_assert_held(&vfs->table_lock);
36 
37 	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 		hash_del_rcu(&vf->entry);
39 		ice_put_vf(vf);
40 	}
41 }
42 
43 /**
44  * ice_free_vf_res - Free a VF's resources
45  * @vf: pointer to the VF info
46  */
47 static void ice_free_vf_res(struct ice_vf *vf)
48 {
49 	struct ice_pf *pf = vf->pf;
50 	int i, last_vector_idx;
51 
52 	/* First, disable VF's configuration API to prevent OS from
53 	 * accessing the VF's VSI after it's freed or invalidated.
54 	 */
55 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
56 	ice_vf_fdir_exit(vf);
57 	/* free VF control VSI */
58 	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
59 		ice_vf_ctrl_vsi_release(vf);
60 
61 	/* free VSI and disconnect it from the parent uplink */
62 	if (vf->lan_vsi_idx != ICE_NO_VSI) {
63 		ice_vf_vsi_release(vf);
64 		vf->num_mac = 0;
65 	}
66 
67 	last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
68 
69 	/* clear VF MDD event information */
70 	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
71 	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
72 
73 	/* Disable interrupts so that VF starts in a known state */
74 	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
75 		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
76 		ice_flush(&pf->hw);
77 	}
78 	/* reset some of the state variables keeping track of the resources */
79 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
80 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
81 }
82 
83 /**
84  * ice_dis_vf_mappings
85  * @vf: pointer to the VF structure
86  */
87 static void ice_dis_vf_mappings(struct ice_vf *vf)
88 {
89 	struct ice_pf *pf = vf->pf;
90 	struct ice_vsi *vsi;
91 	struct device *dev;
92 	int first, last, v;
93 	struct ice_hw *hw;
94 
95 	hw = &pf->hw;
96 	vsi = ice_get_vf_vsi(vf);
97 	if (WARN_ON(!vsi))
98 		return;
99 
100 	dev = ice_pf_to_dev(pf);
101 	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
102 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
103 
104 	first = vf->first_vector_idx;
105 	last = first + vf->num_msix - 1;
106 	for (v = first; v <= last; v++) {
107 		u32 reg;
108 
109 		reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) |
110 		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
111 		wr32(hw, GLINT_VECT2FUNC(v), reg);
112 	}
113 
114 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
115 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
116 	else
117 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
118 
119 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
120 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
121 	else
122 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
123 }
124 
125 /**
126  * ice_free_vfs - Free all VFs
127  * @pf: pointer to the PF structure
128  */
129 void ice_free_vfs(struct ice_pf *pf)
130 {
131 	struct device *dev = ice_pf_to_dev(pf);
132 	struct ice_vfs *vfs = &pf->vfs;
133 	struct ice_hw *hw = &pf->hw;
134 	struct ice_vf *vf;
135 	unsigned int bkt;
136 
137 	if (!ice_has_vfs(pf))
138 		return;
139 
140 	while (test_and_set_bit(ICE_VF_DIS, pf->state))
141 		usleep_range(1000, 2000);
142 
143 	/* Disable IOV before freeing resources. This lets any VF drivers
144 	 * running in the host get themselves cleaned up before we yank
145 	 * the carpet out from underneath their feet.
146 	 */
147 	if (!pci_vfs_assigned(pf->pdev))
148 		pci_disable_sriov(pf->pdev);
149 	else
150 		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
151 
152 	mutex_lock(&vfs->table_lock);
153 
154 	ice_for_each_vf(pf, bkt, vf) {
155 		mutex_lock(&vf->cfg_lock);
156 
157 		ice_eswitch_detach_vf(pf, vf);
158 		ice_dis_vf_qs(vf);
159 		ice_virt_free_irqs(pf, vf->first_vector_idx, vf->num_msix);
160 
161 		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
162 			/* disable VF qp mappings and set VF disable state */
163 			ice_dis_vf_mappings(vf);
164 			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
165 			ice_free_vf_res(vf);
166 		}
167 
168 		if (!pci_vfs_assigned(pf->pdev)) {
169 			u32 reg_idx, bit_idx;
170 
171 			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
172 			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
173 			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
174 		}
175 
176 		/* clear malicious info since the VF is getting released */
177 		if (!ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
178 			list_del(&vf->mbx_info.list_entry);
179 
180 		mutex_unlock(&vf->cfg_lock);
181 	}
182 
183 	vfs->num_qps_per = 0;
184 	ice_free_vf_entries(pf);
185 
186 	mutex_unlock(&vfs->table_lock);
187 
188 	clear_bit(ICE_VF_DIS, pf->state);
189 	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
190 }
191 
192 /**
193  * ice_vf_vsi_setup - Set up a VF VSI
194  * @vf: VF to setup VSI for
195  *
196  * Returns pointer to the successfully allocated VSI struct on success,
197  * otherwise returns NULL on failure.
198  */
199 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
200 {
201 	struct ice_vsi_cfg_params params = {};
202 	struct ice_pf *pf = vf->pf;
203 	struct ice_vsi *vsi;
204 
205 	params.type = ICE_VSI_VF;
206 	params.port_info = ice_vf_get_port_info(vf);
207 	params.vf = vf;
208 	params.flags = ICE_VSI_FLAG_INIT;
209 
210 	vsi = ice_vsi_setup(pf, &params);
211 
212 	if (!vsi) {
213 		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
214 		ice_vf_invalidate_vsi(vf);
215 		return NULL;
216 	}
217 
218 	vf->lan_vsi_idx = vsi->idx;
219 
220 	return vsi;
221 }
222 
223 
224 /**
225  * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
226  * @vf: VF to enable MSIX mappings for
227  *
228  * Some of the registers need to be indexed/configured using hardware global
229  * device values and other registers need 0-based values, which represent PF
230  * based values.
231  */
232 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
233 {
234 	int device_based_first_msix, device_based_last_msix;
235 	int pf_based_first_msix, pf_based_last_msix, v;
236 	struct ice_pf *pf = vf->pf;
237 	int device_based_vf_id;
238 	struct ice_hw *hw;
239 	u32 reg;
240 
241 	hw = &pf->hw;
242 	pf_based_first_msix = vf->first_vector_idx;
243 	pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
244 
245 	device_based_first_msix = pf_based_first_msix +
246 		pf->hw.func_caps.common_cap.msix_vector_first_id;
247 	device_based_last_msix =
248 		(device_based_first_msix + vf->num_msix) - 1;
249 	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
250 
251 	reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) |
252 	      FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) |
253 	      VPINT_ALLOC_VALID_M;
254 	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
255 
256 	reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) |
257 	      FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) |
258 	      VPINT_ALLOC_PCI_VALID_M;
259 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
260 
261 	/* map the interrupts to its functions */
262 	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
263 		reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) |
264 		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
265 		wr32(hw, GLINT_VECT2FUNC(v), reg);
266 	}
267 
268 	/* Map mailbox interrupt to VF MSI-X vector 0 */
269 	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
270 }
271 
272 /**
273  * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
274  * @vf: VF to enable the mappings for
275  * @max_txq: max Tx queues allowed on the VF's VSI
276  * @max_rxq: max Rx queues allowed on the VF's VSI
277  */
278 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
279 {
280 	struct device *dev = ice_pf_to_dev(vf->pf);
281 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
282 	struct ice_hw *hw = &vf->pf->hw;
283 	u32 reg;
284 
285 	if (WARN_ON(!vsi))
286 		return;
287 
288 	/* set regardless of mapping mode */
289 	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
290 
291 	/* VF Tx queues allocation */
292 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
293 		/* set the VF PF Tx queue range
294 		 * VFNUMQ value should be set to (number of queues - 1). A value
295 		 * of 0 means 1 queue and a value of 255 means 256 queues
296 		 */
297 		reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) |
298 		      FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1);
299 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
300 	} else {
301 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
302 	}
303 
304 	/* set regardless of mapping mode */
305 	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
306 
307 	/* VF Rx queues allocation */
308 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
309 		/* set the VF PF Rx queue range
310 		 * VFNUMQ value should be set to (number of queues - 1). A value
311 		 * of 0 means 1 queue and a value of 255 means 256 queues
312 		 */
313 		reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) |
314 		      FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1);
315 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
316 	} else {
317 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
318 	}
319 }
320 
321 /**
322  * ice_ena_vf_mappings - enable VF MSIX and queue mapping
323  * @vf: pointer to the VF structure
324  */
325 static void ice_ena_vf_mappings(struct ice_vf *vf)
326 {
327 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
328 
329 	if (WARN_ON(!vsi))
330 		return;
331 
332 	ice_ena_vf_msix_mappings(vf);
333 	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
334 }
335 
336 /**
337  * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
338  * @vf: VF to calculate the register index for
339  * @q_vector: a q_vector associated to the VF
340  */
341 void ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
342 {
343 	if (!vf || !q_vector)
344 		return;
345 
346 	/* always add one to account for the OICR being the first MSIX */
347 	q_vector->vf_reg_idx = q_vector->v_idx + ICE_NONQ_VECS_VF;
348 	q_vector->reg_idx = vf->first_vector_idx + q_vector->vf_reg_idx;
349 }
350 
351 /**
352  * ice_set_per_vf_res - check if vectors and queues are available
353  * @pf: pointer to the PF structure
354  * @num_vfs: the number of SR-IOV VFs being configured
355  *
356  * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
357  * get more vectors and can enable more queues per VF. Note that this does not
358  * grab any vectors from the SW pool already allocated. Also note, that all
359  * vector counts include one for each VF's miscellaneous interrupt vector
360  * (i.e. OICR).
361  *
362  * Minimum VFs - 2 vectors, 1 queue pair
363  * Small VFs - 5 vectors, 4 queue pairs
364  * Medium VFs - 17 vectors, 16 queue pairs
365  *
366  * Second, determine number of queue pairs per VF by starting with a pre-defined
367  * maximum each VF supports. If this is not possible, then we adjust based on
368  * queue pairs available on the device.
369  *
370  * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
371  * by each VF during VF initialization and reset.
372  */
373 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
374 {
375 	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
376 	int msix_avail_per_vf, msix_avail_for_sriov;
377 	struct device *dev = ice_pf_to_dev(pf);
378 
379 	lockdep_assert_held(&pf->vfs.table_lock);
380 
381 	if (!num_vfs)
382 		return -EINVAL;
383 
384 	/* determine MSI-X resources per VF */
385 	msix_avail_for_sriov = pf->virt_irq_tracker.num_entries;
386 	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
387 	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
388 		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
389 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
390 		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
391 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
392 		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
393 	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
394 		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
395 	} else {
396 		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
397 			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
398 			num_vfs);
399 		return -ENOSPC;
400 	}
401 
402 	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
403 			ICE_MAX_RSS_QS_PER_VF);
404 	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
405 	if (!avail_qs)
406 		num_txq = 0;
407 	else if (num_txq > avail_qs)
408 		num_txq = rounddown_pow_of_two(avail_qs);
409 
410 	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
411 			ICE_MAX_RSS_QS_PER_VF);
412 	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
413 	if (!avail_qs)
414 		num_rxq = 0;
415 	else if (num_rxq > avail_qs)
416 		num_rxq = rounddown_pow_of_two(avail_qs);
417 
418 	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
419 		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
420 			ICE_MIN_QS_PER_VF, num_vfs);
421 		return -ENOSPC;
422 	}
423 
424 	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
425 	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
426 	pf->vfs.num_msix_per = num_msix_per_vf;
427 	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
428 		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
429 
430 	return 0;
431 }
432 
433 /**
434  * ice_init_vf_vsi_res - initialize/setup VF VSI resources
435  * @vf: VF to initialize/setup the VSI for
436  *
437  * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
438  * VF VSI's broadcast filter and is only used during initial VF creation.
439  */
440 static int ice_init_vf_vsi_res(struct ice_vf *vf)
441 {
442 	struct ice_pf *pf = vf->pf;
443 	struct ice_vsi *vsi;
444 	int err;
445 
446 	vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix);
447 	if (vf->first_vector_idx < 0)
448 		return -ENOMEM;
449 
450 	vsi = ice_vf_vsi_setup(vf);
451 	if (!vsi)
452 		return -ENOMEM;
453 
454 	err = ice_vf_init_host_cfg(vf, vsi);
455 	if (err)
456 		goto release_vsi;
457 
458 	return 0;
459 
460 release_vsi:
461 	ice_vf_vsi_release(vf);
462 	return err;
463 }
464 
465 /**
466  * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
467  * @pf: PF the VFs are associated with
468  */
469 static int ice_start_vfs(struct ice_pf *pf)
470 {
471 	struct ice_hw *hw = &pf->hw;
472 	unsigned int bkt, it_cnt;
473 	struct ice_vf *vf;
474 	int retval;
475 
476 	lockdep_assert_held(&pf->vfs.table_lock);
477 
478 	it_cnt = 0;
479 	ice_for_each_vf(pf, bkt, vf) {
480 		vf->vf_ops->clear_reset_trigger(vf);
481 
482 		retval = ice_init_vf_vsi_res(vf);
483 		if (retval) {
484 			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
485 				vf->vf_id, retval);
486 			goto teardown;
487 		}
488 
489 		retval = ice_eswitch_attach_vf(pf, vf);
490 		if (retval) {
491 			dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d",
492 				vf->vf_id, retval);
493 			ice_vf_vsi_release(vf);
494 			goto teardown;
495 		}
496 
497 		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
498 		ice_ena_vf_mappings(vf);
499 		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
500 		it_cnt++;
501 	}
502 
503 	ice_flush(hw);
504 	return 0;
505 
506 teardown:
507 	ice_for_each_vf(pf, bkt, vf) {
508 		if (it_cnt == 0)
509 			break;
510 
511 		ice_dis_vf_mappings(vf);
512 		ice_vf_vsi_release(vf);
513 		it_cnt--;
514 	}
515 
516 	return retval;
517 }
518 
519 /**
520  * ice_sriov_free_vf - Free VF memory after all references are dropped
521  * @vf: pointer to VF to free
522  *
523  * Called by ice_put_vf through ice_release_vf once the last reference to a VF
524  * structure has been dropped.
525  */
526 static void ice_sriov_free_vf(struct ice_vf *vf)
527 {
528 	mutex_destroy(&vf->cfg_lock);
529 
530 	kfree_rcu(vf, rcu);
531 }
532 
533 /**
534  * ice_sriov_clear_reset_state - clears VF Reset status register
535  * @vf: the vf to configure
536  */
537 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
538 {
539 	struct ice_hw *hw = &vf->pf->hw;
540 
541 	/* Clear the reset status register so that VF immediately sees that
542 	 * the device is resetting, even if hardware hasn't yet gotten around
543 	 * to clearing VFGEN_RSTAT for us.
544 	 */
545 	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
546 }
547 
548 /**
549  * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
550  * @vf: the vf to configure
551  */
552 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
553 {
554 	struct ice_pf *pf = vf->pf;
555 
556 	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
557 	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
558 }
559 
560 /**
561  * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
562  * @vf: pointer to VF structure
563  * @is_vflr: true if reset occurred due to VFLR
564  *
565  * Trigger and cleanup after a VF reset for a SR-IOV VF.
566  */
567 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
568 {
569 	struct ice_pf *pf = vf->pf;
570 	u32 reg, reg_idx, bit_idx;
571 	unsigned int vf_abs_id, i;
572 	struct device *dev;
573 	struct ice_hw *hw;
574 
575 	dev = ice_pf_to_dev(pf);
576 	hw = &pf->hw;
577 	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
578 
579 	/* In the case of a VFLR, HW has already reset the VF and we just need
580 	 * to clean up. Otherwise we must first trigger the reset using the
581 	 * VFRTRIG register.
582 	 */
583 	if (!is_vflr) {
584 		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
585 		reg |= VPGEN_VFRTRIG_VFSWR_M;
586 		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
587 	}
588 
589 	/* clear the VFLR bit in GLGEN_VFLRSTAT */
590 	reg_idx = (vf_abs_id) / 32;
591 	bit_idx = (vf_abs_id) % 32;
592 	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
593 	ice_flush(hw);
594 
595 	wr32(hw, PF_PCI_CIAA,
596 	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
597 	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
598 		reg = rd32(hw, PF_PCI_CIAD);
599 		/* no transactions pending so stop polling */
600 		if ((reg & VF_TRANS_PENDING_M) == 0)
601 			break;
602 
603 		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
604 		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
605 	}
606 }
607 
608 /**
609  * ice_sriov_poll_reset_status - poll SRIOV VF reset status
610  * @vf: pointer to VF structure
611  *
612  * Returns true when reset is successful, else returns false
613  */
614 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
615 {
616 	struct ice_pf *pf = vf->pf;
617 	unsigned int i;
618 	u32 reg;
619 
620 	for (i = 0; i < 10; i++) {
621 		/* VF reset requires driver to first reset the VF and then
622 		 * poll the status register to make sure that the reset
623 		 * completed successfully.
624 		 */
625 		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
626 		if (reg & VPGEN_VFRSTAT_VFRD_M)
627 			return true;
628 
629 		/* only sleep if the reset is not done */
630 		usleep_range(10, 20);
631 	}
632 	return false;
633 }
634 
635 /**
636  * ice_sriov_clear_reset_trigger - enable VF to access hardware
637  * @vf: VF to enabled hardware access for
638  */
639 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
640 {
641 	struct ice_hw *hw = &vf->pf->hw;
642 	u32 reg;
643 
644 	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
645 	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
646 	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
647 	ice_flush(hw);
648 }
649 
650 /**
651  * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
652  * @vf: VF to perform tasks on
653  */
654 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
655 {
656 	ice_ena_vf_mappings(vf);
657 	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
658 }
659 
660 static const struct ice_vf_ops ice_sriov_vf_ops = {
661 	.reset_type = ICE_VF_RESET,
662 	.free = ice_sriov_free_vf,
663 	.clear_reset_state = ice_sriov_clear_reset_state,
664 	.clear_mbx_register = ice_sriov_clear_mbx_register,
665 	.trigger_reset_register = ice_sriov_trigger_reset_register,
666 	.poll_reset_status = ice_sriov_poll_reset_status,
667 	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
668 	.irq_close = NULL,
669 	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
670 };
671 
672 /**
673  * ice_create_vf_entries - Allocate and insert VF entries
674  * @pf: pointer to the PF structure
675  * @num_vfs: the number of VFs to allocate
676  *
677  * Allocate new VF entries and insert them into the hash table. Set some
678  * basic default fields for initializing the new VFs.
679  *
680  * After this function exits, the hash table will have num_vfs entries
681  * inserted.
682  *
683  * Returns 0 on success or an integer error code on failure.
684  */
685 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
686 {
687 	struct pci_dev *pdev = pf->pdev;
688 	struct ice_vfs *vfs = &pf->vfs;
689 	struct pci_dev *vfdev = NULL;
690 	struct ice_vf *vf;
691 	u16 vf_pdev_id;
692 	int err, pos;
693 
694 	lockdep_assert_held(&vfs->table_lock);
695 
696 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
697 	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
698 
699 	for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
700 		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
701 		if (!vf) {
702 			err = -ENOMEM;
703 			goto err_free_entries;
704 		}
705 		kref_init(&vf->refcnt);
706 
707 		vf->pf = pf;
708 		vf->vf_id = vf_id;
709 
710 		/* set sriov vf ops for VFs created during SRIOV flow */
711 		vf->vf_ops = &ice_sriov_vf_ops;
712 
713 		ice_initialize_vf_entry(vf);
714 
715 		do {
716 			vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
717 		} while (vfdev && vfdev->physfn != pdev);
718 		vf->vfdev = vfdev;
719 		vf->vf_sw_id = pf->first_sw;
720 
721 		pci_dev_get(vfdev);
722 
723 		hash_add_rcu(vfs->table, &vf->entry, vf_id);
724 	}
725 
726 	/* Decrement of refcount done by pci_get_device() inside the loop does
727 	 * not touch the last iteration's vfdev, so it has to be done manually
728 	 * to balance pci_dev_get() added within the loop.
729 	 */
730 	pci_dev_put(vfdev);
731 
732 	return 0;
733 
734 err_free_entries:
735 	ice_free_vf_entries(pf);
736 	return err;
737 }
738 
739 /**
740  * ice_ena_vfs - enable VFs so they are ready to be used
741  * @pf: pointer to the PF structure
742  * @num_vfs: number of VFs to enable
743  */
744 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
745 {
746 	struct device *dev = ice_pf_to_dev(pf);
747 	struct ice_hw *hw = &pf->hw;
748 	int ret;
749 
750 	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
751 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
752 	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
753 	set_bit(ICE_OICR_INTR_DIS, pf->state);
754 	ice_flush(hw);
755 
756 	ret = pci_enable_sriov(pf->pdev, num_vfs);
757 	if (ret)
758 		goto err_unroll_intr;
759 
760 	mutex_lock(&pf->vfs.table_lock);
761 
762 	ret = ice_set_per_vf_res(pf, num_vfs);
763 	if (ret) {
764 		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
765 			num_vfs, ret);
766 		goto err_unroll_sriov;
767 	}
768 
769 	ret = ice_create_vf_entries(pf, num_vfs);
770 	if (ret) {
771 		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
772 			num_vfs);
773 		goto err_unroll_sriov;
774 	}
775 
776 	ret = ice_start_vfs(pf);
777 	if (ret) {
778 		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
779 		ret = -EAGAIN;
780 		goto err_unroll_vf_entries;
781 	}
782 
783 	clear_bit(ICE_VF_DIS, pf->state);
784 
785 	/* rearm global interrupts */
786 	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
787 		ice_irq_dynamic_ena(hw, NULL, NULL);
788 
789 	mutex_unlock(&pf->vfs.table_lock);
790 
791 	return 0;
792 
793 err_unroll_vf_entries:
794 	ice_free_vf_entries(pf);
795 err_unroll_sriov:
796 	mutex_unlock(&pf->vfs.table_lock);
797 	pci_disable_sriov(pf->pdev);
798 err_unroll_intr:
799 	/* rearm interrupts here */
800 	ice_irq_dynamic_ena(hw, NULL, NULL);
801 	clear_bit(ICE_OICR_INTR_DIS, pf->state);
802 	return ret;
803 }
804 
805 /**
806  * ice_pci_sriov_ena - Enable or change number of VFs
807  * @pf: pointer to the PF structure
808  * @num_vfs: number of VFs to allocate
809  *
810  * Returns 0 on success and negative on failure
811  */
812 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
813 {
814 	struct device *dev = ice_pf_to_dev(pf);
815 	int err;
816 
817 	if (!num_vfs) {
818 		ice_free_vfs(pf);
819 		return 0;
820 	}
821 
822 	if (num_vfs > pf->vfs.num_supported) {
823 		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
824 			num_vfs, pf->vfs.num_supported);
825 		return -EOPNOTSUPP;
826 	}
827 
828 	dev_info(dev, "Enabling %d VFs\n", num_vfs);
829 	err = ice_ena_vfs(pf, num_vfs);
830 	if (err) {
831 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
832 		return err;
833 	}
834 
835 	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
836 	return 0;
837 }
838 
839 /**
840  * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
841  * @pf: PF to enabled SR-IOV on
842  */
843 static int ice_check_sriov_allowed(struct ice_pf *pf)
844 {
845 	struct device *dev = ice_pf_to_dev(pf);
846 
847 	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
848 		dev_err(dev, "This device is not capable of SR-IOV\n");
849 		return -EOPNOTSUPP;
850 	}
851 
852 	if (ice_is_safe_mode(pf)) {
853 		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
854 		return -EOPNOTSUPP;
855 	}
856 
857 	if (!ice_pf_state_is_nominal(pf)) {
858 		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
859 		return -EBUSY;
860 	}
861 
862 	return 0;
863 }
864 
865 /**
866  * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
867  * @pdev: pointer to pci_dev struct
868  *
869  * The function is called via sysfs ops
870  */
871 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
872 {
873 	struct ice_pf *pf = pci_get_drvdata(pdev);
874 
875 	return pf->virt_irq_tracker.num_entries;
876 }
877 
878 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
879 {
880 	u16 vf_ids[ICE_MAX_SRIOV_VFS];
881 	struct ice_vf *tmp_vf;
882 	int to_remap = 0, bkt;
883 
884 	/* For better irqs usage try to remap irqs of VFs
885 	 * that aren't running yet
886 	 */
887 	ice_for_each_vf(pf, bkt, tmp_vf) {
888 		/* skip VF which is changing the number of MSI-X */
889 		if (restricted_id == tmp_vf->vf_id ||
890 		    test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
891 			continue;
892 
893 		ice_dis_vf_mappings(tmp_vf);
894 		ice_virt_free_irqs(pf, tmp_vf->first_vector_idx,
895 				   tmp_vf->num_msix);
896 
897 		vf_ids[to_remap] = tmp_vf->vf_id;
898 		to_remap += 1;
899 	}
900 
901 	for (int i = 0; i < to_remap; i++) {
902 		tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
903 		if (!tmp_vf)
904 			continue;
905 
906 		tmp_vf->first_vector_idx =
907 			ice_virt_get_irqs(pf, tmp_vf->num_msix);
908 		/* there is no need to rebuild VSI as we are only changing the
909 		 * vector indexes not amount of MSI-X or queues
910 		 */
911 		ice_ena_vf_mappings(tmp_vf);
912 		ice_put_vf(tmp_vf);
913 	}
914 }
915 
916 /**
917  * ice_sriov_set_msix_vec_count
918  * @vf_dev: pointer to pci_dev struct of VF device
919  * @msix_vec_count: new value for MSI-X amount on this VF
920  *
921  * Set requested MSI-X, queues and registers for @vf_dev.
922  *
923  * First do some sanity checks like if there are any VFs, if the new value
924  * is correct etc. Then disable old mapping (MSI-X and queues registers), change
925  * MSI-X and queues, rebuild VSI and enable new mapping.
926  *
927  * If it is possible (driver not binded to VF) try to remap also other VFs to
928  * linearize irqs register usage.
929  */
930 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
931 {
932 	struct pci_dev *pdev = pci_physfn(vf_dev);
933 	struct ice_pf *pf = pci_get_drvdata(pdev);
934 	u16 prev_msix, prev_queues, queues;
935 	bool needs_rebuild = false;
936 	struct ice_vsi *vsi;
937 	struct ice_vf *vf;
938 	int id;
939 
940 	if (!ice_get_num_vfs(pf))
941 		return -ENOENT;
942 
943 	if (!msix_vec_count)
944 		return 0;
945 
946 	queues = msix_vec_count;
947 	/* add 1 MSI-X for OICR */
948 	msix_vec_count += 1;
949 
950 	if (queues > min(ice_get_avail_txq_count(pf),
951 			 ice_get_avail_rxq_count(pf)))
952 		return -EINVAL;
953 
954 	if (msix_vec_count < ICE_MIN_INTR_PER_VF)
955 		return -EINVAL;
956 
957 	/* Transition of PCI VF function number to function_id */
958 	for (id = 0; id < pci_num_vf(pdev); id++) {
959 		if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id))
960 			break;
961 	}
962 
963 	if (id == pci_num_vf(pdev))
964 		return -ENOENT;
965 
966 	vf = ice_get_vf_by_id(pf, id);
967 
968 	if (!vf)
969 		return -ENOENT;
970 
971 	vsi = ice_get_vf_vsi(vf);
972 	if (!vsi) {
973 		ice_put_vf(vf);
974 		return -ENOENT;
975 	}
976 
977 	prev_msix = vf->num_msix;
978 	prev_queues = vf->num_vf_qs;
979 
980 	ice_dis_vf_mappings(vf);
981 	ice_virt_free_irqs(pf, vf->first_vector_idx, vf->num_msix);
982 
983 	/* Remap all VFs beside the one is now configured */
984 	ice_sriov_remap_vectors(pf, vf->vf_id);
985 
986 	vf->num_msix = msix_vec_count;
987 	vf->num_vf_qs = queues;
988 	vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix);
989 	if (vf->first_vector_idx < 0)
990 		goto unroll;
991 
992 	vsi->req_txq = queues;
993 	vsi->req_rxq = queues;
994 
995 	if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
996 		/* Try to rebuild with previous values */
997 		needs_rebuild = true;
998 		goto unroll;
999 	}
1000 
1001 	dev_info(ice_pf_to_dev(pf),
1002 		 "Changing VF %d resources to %d vectors and %d queues\n",
1003 		 vf->vf_id, vf->num_msix, vf->num_vf_qs);
1004 
1005 	ice_ena_vf_mappings(vf);
1006 	ice_put_vf(vf);
1007 
1008 	return 0;
1009 
1010 unroll:
1011 	dev_info(ice_pf_to_dev(pf),
1012 		 "Can't set %d vectors on VF %d, falling back to %d\n",
1013 		 vf->num_msix, vf->vf_id, prev_msix);
1014 
1015 	vf->num_msix = prev_msix;
1016 	vf->num_vf_qs = prev_queues;
1017 
1018 	vf->first_vector_idx = ice_virt_get_irqs(pf, vf->num_msix);
1019 	if (vf->first_vector_idx < 0) {
1020 		ice_put_vf(vf);
1021 		return -EINVAL;
1022 	}
1023 
1024 	if (needs_rebuild) {
1025 		vsi->req_txq = prev_queues;
1026 		vsi->req_rxq = prev_queues;
1027 
1028 		ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
1029 	}
1030 
1031 	ice_ena_vf_mappings(vf);
1032 	ice_put_vf(vf);
1033 
1034 	return -EINVAL;
1035 }
1036 
1037 /**
1038  * ice_sriov_configure - Enable or change number of VFs via sysfs
1039  * @pdev: pointer to a pci_dev structure
1040  * @num_vfs: number of VFs to allocate or 0 to free VFs
1041  *
1042  * This function is called when the user updates the number of VFs in sysfs. On
1043  * success return whatever num_vfs was set to by the caller. Return negative on
1044  * failure.
1045  */
1046 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1047 {
1048 	struct ice_pf *pf = pci_get_drvdata(pdev);
1049 	struct device *dev = ice_pf_to_dev(pf);
1050 	int err;
1051 
1052 	err = ice_check_sriov_allowed(pf);
1053 	if (err)
1054 		return err;
1055 
1056 	if (!num_vfs) {
1057 		if (!pci_vfs_assigned(pdev)) {
1058 			ice_free_vfs(pf);
1059 			return 0;
1060 		}
1061 
1062 		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1063 		return -EBUSY;
1064 	}
1065 
1066 	err = ice_pci_sriov_ena(pf, num_vfs);
1067 	if (err)
1068 		return err;
1069 
1070 	return num_vfs;
1071 }
1072 
1073 /**
1074  * ice_process_vflr_event - Free VF resources via IRQ calls
1075  * @pf: pointer to the PF structure
1076  *
1077  * called from the VFLR IRQ handler to
1078  * free up VF resources and state variables
1079  */
1080 void ice_process_vflr_event(struct ice_pf *pf)
1081 {
1082 	struct ice_hw *hw = &pf->hw;
1083 	struct ice_vf *vf;
1084 	unsigned int bkt;
1085 	u32 reg;
1086 
1087 	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1088 	    !ice_has_vfs(pf))
1089 		return;
1090 
1091 	mutex_lock(&pf->vfs.table_lock);
1092 	ice_for_each_vf(pf, bkt, vf) {
1093 		u32 reg_idx, bit_idx;
1094 
1095 		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1096 		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1097 		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1098 		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1099 		if (reg & BIT(bit_idx))
1100 			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1101 			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1102 	}
1103 	mutex_unlock(&pf->vfs.table_lock);
1104 }
1105 
1106 /**
1107  * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1108  * @pf: PF used to index all VFs
1109  * @pfq: queue index relative to the PF's function space
1110  *
1111  * If no VF is found who owns the pfq then return NULL, otherwise return a
1112  * pointer to the VF who owns the pfq
1113  *
1114  * If this function returns non-NULL, it acquires a reference count of the VF
1115  * structure. The caller is responsible for calling ice_put_vf() to drop this
1116  * reference.
1117  */
1118 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1119 {
1120 	struct ice_vf *vf;
1121 	unsigned int bkt;
1122 
1123 	rcu_read_lock();
1124 	ice_for_each_vf_rcu(pf, bkt, vf) {
1125 		struct ice_vsi *vsi;
1126 		u16 rxq_idx;
1127 
1128 		vsi = ice_get_vf_vsi(vf);
1129 		if (!vsi)
1130 			continue;
1131 
1132 		ice_for_each_rxq(vsi, rxq_idx)
1133 			if (vsi->rxq_map[rxq_idx] == pfq) {
1134 				struct ice_vf *found;
1135 
1136 				if (kref_get_unless_zero(&vf->refcnt))
1137 					found = vf;
1138 				else
1139 					found = NULL;
1140 				rcu_read_unlock();
1141 				return found;
1142 			}
1143 	}
1144 	rcu_read_unlock();
1145 
1146 	return NULL;
1147 }
1148 
1149 /**
1150  * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1151  * @pf: PF used for conversion
1152  * @globalq: global queue index used to convert to PF space queue index
1153  */
1154 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1155 {
1156 	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1157 }
1158 
1159 /**
1160  * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1161  * @pf: PF that the LAN overflow event happened on
1162  * @event: structure holding the event information for the LAN overflow event
1163  *
1164  * Determine if the LAN overflow event was caused by a VF queue. If it was not
1165  * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1166  * reset on the offending VF.
1167  */
1168 void
1169 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1170 {
1171 	u32 gldcb_rtctq, queue;
1172 	struct ice_vf *vf;
1173 
1174 	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1175 	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1176 
1177 	/* event returns device global Rx queue number */
1178 	queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq);
1179 
1180 	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1181 	if (!vf)
1182 		return;
1183 
1184 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1185 	ice_put_vf(vf);
1186 }
1187 
1188 /**
1189  * ice_set_vf_spoofchk
1190  * @netdev: network interface device structure
1191  * @vf_id: VF identifier
1192  * @ena: flag to enable or disable feature
1193  *
1194  * Enable or disable VF spoof checking
1195  */
1196 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1197 {
1198 	struct ice_netdev_priv *np = netdev_priv(netdev);
1199 	struct ice_pf *pf = np->vsi->back;
1200 	struct ice_vsi *vf_vsi;
1201 	struct device *dev;
1202 	struct ice_vf *vf;
1203 	int ret;
1204 
1205 	dev = ice_pf_to_dev(pf);
1206 
1207 	vf = ice_get_vf_by_id(pf, vf_id);
1208 	if (!vf)
1209 		return -EINVAL;
1210 
1211 	ret = ice_check_vf_ready_for_cfg(vf);
1212 	if (ret)
1213 		goto out_put_vf;
1214 
1215 	vf_vsi = ice_get_vf_vsi(vf);
1216 	if (!vf_vsi) {
1217 		netdev_err(netdev, "VSI %d for VF %d is null\n",
1218 			   vf->lan_vsi_idx, vf->vf_id);
1219 		ret = -EINVAL;
1220 		goto out_put_vf;
1221 	}
1222 
1223 	if (vf_vsi->type != ICE_VSI_VF) {
1224 		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1225 			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1226 		ret = -ENODEV;
1227 		goto out_put_vf;
1228 	}
1229 
1230 	if (ena == vf->spoofchk) {
1231 		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1232 		ret = 0;
1233 		goto out_put_vf;
1234 	}
1235 
1236 	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1237 	if (ret)
1238 		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1239 			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1240 	else
1241 		vf->spoofchk = ena;
1242 
1243 out_put_vf:
1244 	ice_put_vf(vf);
1245 	return ret;
1246 }
1247 
1248 /**
1249  * ice_get_vf_cfg
1250  * @netdev: network interface device structure
1251  * @vf_id: VF identifier
1252  * @ivi: VF configuration structure
1253  *
1254  * return VF configuration
1255  */
1256 int
1257 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1258 {
1259 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1260 	struct ice_vf *vf;
1261 	int ret;
1262 
1263 	vf = ice_get_vf_by_id(pf, vf_id);
1264 	if (!vf)
1265 		return -EINVAL;
1266 
1267 	ret = ice_check_vf_ready_for_cfg(vf);
1268 	if (ret)
1269 		goto out_put_vf;
1270 
1271 	ivi->vf = vf_id;
1272 	ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1273 
1274 	/* VF configuration for VLAN and applicable QoS */
1275 	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1276 	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1277 	if (ice_vf_is_port_vlan_ena(vf))
1278 		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1279 
1280 	ivi->trusted = vf->trusted;
1281 	ivi->spoofchk = vf->spoofchk;
1282 	if (!vf->link_forced)
1283 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1284 	else if (vf->link_up)
1285 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1286 	else
1287 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1288 	ivi->max_tx_rate = vf->max_tx_rate;
1289 	ivi->min_tx_rate = vf->min_tx_rate;
1290 
1291 out_put_vf:
1292 	ice_put_vf(vf);
1293 	return ret;
1294 }
1295 
1296 /**
1297  * __ice_set_vf_mac - program VF MAC address
1298  * @pf: PF to be configure
1299  * @vf_id: VF identifier
1300  * @mac: MAC address
1301  *
1302  * program VF MAC address
1303  * Return: zero on success or an error code on failure
1304  */
1305 int __ice_set_vf_mac(struct ice_pf *pf, u16 vf_id, const u8 *mac)
1306 {
1307 	struct device *dev;
1308 	struct ice_vf *vf;
1309 	int ret;
1310 
1311 	dev = ice_pf_to_dev(pf);
1312 	if (is_multicast_ether_addr(mac)) {
1313 		dev_err(dev, "%pM not a valid unicast address\n", mac);
1314 		return -EINVAL;
1315 	}
1316 
1317 	vf = ice_get_vf_by_id(pf, vf_id);
1318 	if (!vf)
1319 		return -EINVAL;
1320 
1321 	/* nothing left to do, unicast MAC already set */
1322 	if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1323 	    ether_addr_equal(vf->hw_lan_addr, mac)) {
1324 		ret = 0;
1325 		goto out_put_vf;
1326 	}
1327 
1328 	ret = ice_check_vf_ready_for_cfg(vf);
1329 	if (ret)
1330 		goto out_put_vf;
1331 
1332 	mutex_lock(&vf->cfg_lock);
1333 
1334 	/* VF is notified of its new MAC via the PF's response to the
1335 	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1336 	 */
1337 	ether_addr_copy(vf->dev_lan_addr, mac);
1338 	ether_addr_copy(vf->hw_lan_addr, mac);
1339 	if (is_zero_ether_addr(mac)) {
1340 		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1341 		vf->pf_set_mac = false;
1342 		dev_info(dev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1343 			 vf->vf_id);
1344 	} else {
1345 		/* PF will add MAC rule for the VF */
1346 		vf->pf_set_mac = true;
1347 		dev_info(dev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1348 			 mac, vf_id);
1349 	}
1350 
1351 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1352 	mutex_unlock(&vf->cfg_lock);
1353 
1354 out_put_vf:
1355 	ice_put_vf(vf);
1356 	return ret;
1357 }
1358 
1359 /**
1360  * ice_set_vf_mac - .ndo_set_vf_mac handler
1361  * @netdev: network interface device structure
1362  * @vf_id: VF identifier
1363  * @mac: MAC address
1364  *
1365  * program VF MAC address
1366  * Return: zero on success or an error code on failure
1367  */
1368 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1369 {
1370 	return __ice_set_vf_mac(ice_netdev_to_pf(netdev), vf_id, mac);
1371 }
1372 
1373 /**
1374  * ice_set_vf_trust
1375  * @netdev: network interface device structure
1376  * @vf_id: VF identifier
1377  * @trusted: Boolean value to enable/disable trusted VF
1378  *
1379  * Enable or disable a given VF as trusted
1380  */
1381 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1382 {
1383 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1384 	struct ice_vf *vf;
1385 	int ret;
1386 
1387 	vf = ice_get_vf_by_id(pf, vf_id);
1388 	if (!vf)
1389 		return -EINVAL;
1390 
1391 	if (ice_is_eswitch_mode_switchdev(pf)) {
1392 		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1393 		return -EOPNOTSUPP;
1394 	}
1395 
1396 	ret = ice_check_vf_ready_for_cfg(vf);
1397 	if (ret)
1398 		goto out_put_vf;
1399 
1400 	/* Check if already trusted */
1401 	if (trusted == vf->trusted) {
1402 		ret = 0;
1403 		goto out_put_vf;
1404 	}
1405 
1406 	mutex_lock(&vf->cfg_lock);
1407 
1408 	vf->trusted = trusted;
1409 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1410 	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1411 		 vf_id, trusted ? "" : "un");
1412 
1413 	mutex_unlock(&vf->cfg_lock);
1414 
1415 out_put_vf:
1416 	ice_put_vf(vf);
1417 	return ret;
1418 }
1419 
1420 /**
1421  * ice_set_vf_link_state
1422  * @netdev: network interface device structure
1423  * @vf_id: VF identifier
1424  * @link_state: required link state
1425  *
1426  * Set VF's link state, irrespective of physical link state status
1427  */
1428 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1429 {
1430 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1431 	struct ice_vf *vf;
1432 	int ret;
1433 
1434 	vf = ice_get_vf_by_id(pf, vf_id);
1435 	if (!vf)
1436 		return -EINVAL;
1437 
1438 	ret = ice_check_vf_ready_for_cfg(vf);
1439 	if (ret)
1440 		goto out_put_vf;
1441 
1442 	switch (link_state) {
1443 	case IFLA_VF_LINK_STATE_AUTO:
1444 		vf->link_forced = false;
1445 		break;
1446 	case IFLA_VF_LINK_STATE_ENABLE:
1447 		vf->link_forced = true;
1448 		vf->link_up = true;
1449 		break;
1450 	case IFLA_VF_LINK_STATE_DISABLE:
1451 		vf->link_forced = true;
1452 		vf->link_up = false;
1453 		break;
1454 	default:
1455 		ret = -EINVAL;
1456 		goto out_put_vf;
1457 	}
1458 
1459 	ice_vc_notify_vf_link_state(vf);
1460 
1461 out_put_vf:
1462 	ice_put_vf(vf);
1463 	return ret;
1464 }
1465 
1466 /**
1467  * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1468  * @pf: PF associated with VFs
1469  */
1470 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1471 {
1472 	struct ice_vf *vf;
1473 	unsigned int bkt;
1474 	int rate = 0;
1475 
1476 	rcu_read_lock();
1477 	ice_for_each_vf_rcu(pf, bkt, vf)
1478 		rate += vf->min_tx_rate;
1479 	rcu_read_unlock();
1480 
1481 	return rate;
1482 }
1483 
1484 /**
1485  * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1486  * @vf: VF trying to configure min_tx_rate
1487  * @min_tx_rate: min Tx rate in Mbps
1488  *
1489  * Check if the min_tx_rate being passed in will cause oversubscription of total
1490  * min_tx_rate based on the current link speed and all other VFs configured
1491  * min_tx_rate
1492  *
1493  * Return true if the passed min_tx_rate would cause oversubscription, else
1494  * return false
1495  */
1496 static bool
1497 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1498 {
1499 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1500 	int all_vfs_min_tx_rate;
1501 	int link_speed_mbps;
1502 
1503 	if (WARN_ON(!vsi))
1504 		return false;
1505 
1506 	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1507 	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1508 
1509 	/* this VF's previous rate is being overwritten */
1510 	all_vfs_min_tx_rate -= vf->min_tx_rate;
1511 
1512 	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1513 		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1514 			min_tx_rate, vf->vf_id,
1515 			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1516 			link_speed_mbps);
1517 		return true;
1518 	}
1519 
1520 	return false;
1521 }
1522 
1523 /**
1524  * ice_set_vf_bw - set min/max VF bandwidth
1525  * @netdev: network interface device structure
1526  * @vf_id: VF identifier
1527  * @min_tx_rate: Minimum Tx rate in Mbps
1528  * @max_tx_rate: Maximum Tx rate in Mbps
1529  */
1530 int
1531 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1532 	      int max_tx_rate)
1533 {
1534 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1535 	struct ice_vsi *vsi;
1536 	struct device *dev;
1537 	struct ice_vf *vf;
1538 	int ret;
1539 
1540 	dev = ice_pf_to_dev(pf);
1541 
1542 	vf = ice_get_vf_by_id(pf, vf_id);
1543 	if (!vf)
1544 		return -EINVAL;
1545 
1546 	ret = ice_check_vf_ready_for_cfg(vf);
1547 	if (ret)
1548 		goto out_put_vf;
1549 
1550 	vsi = ice_get_vf_vsi(vf);
1551 	if (!vsi) {
1552 		ret = -EINVAL;
1553 		goto out_put_vf;
1554 	}
1555 
1556 	if (min_tx_rate && ice_is_dcb_active(pf)) {
1557 		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1558 		ret = -EOPNOTSUPP;
1559 		goto out_put_vf;
1560 	}
1561 
1562 	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1563 		ret = -EINVAL;
1564 		goto out_put_vf;
1565 	}
1566 
1567 	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1568 		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1569 		if (ret) {
1570 			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1571 				vf->vf_id);
1572 			goto out_put_vf;
1573 		}
1574 
1575 		vf->min_tx_rate = min_tx_rate;
1576 	}
1577 
1578 	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1579 		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1580 		if (ret) {
1581 			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1582 				vf->vf_id);
1583 			goto out_put_vf;
1584 		}
1585 
1586 		vf->max_tx_rate = max_tx_rate;
1587 	}
1588 
1589 out_put_vf:
1590 	ice_put_vf(vf);
1591 	return ret;
1592 }
1593 
1594 /**
1595  * ice_get_vf_stats - populate some stats for the VF
1596  * @netdev: the netdev of the PF
1597  * @vf_id: the host OS identifier (0-255)
1598  * @vf_stats: pointer to the OS memory to be initialized
1599  */
1600 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1601 		     struct ifla_vf_stats *vf_stats)
1602 {
1603 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1604 	struct ice_eth_stats *stats;
1605 	struct ice_vsi *vsi;
1606 	struct ice_vf *vf;
1607 	int ret;
1608 
1609 	vf = ice_get_vf_by_id(pf, vf_id);
1610 	if (!vf)
1611 		return -EINVAL;
1612 
1613 	ret = ice_check_vf_ready_for_cfg(vf);
1614 	if (ret)
1615 		goto out_put_vf;
1616 
1617 	vsi = ice_get_vf_vsi(vf);
1618 	if (!vsi) {
1619 		ret = -EINVAL;
1620 		goto out_put_vf;
1621 	}
1622 
1623 	ice_update_eth_stats(vsi);
1624 	stats = &vsi->eth_stats;
1625 
1626 	memset(vf_stats, 0, sizeof(*vf_stats));
1627 
1628 	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1629 		stats->rx_multicast;
1630 	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1631 		stats->tx_multicast;
1632 	vf_stats->rx_bytes   = stats->rx_bytes;
1633 	vf_stats->tx_bytes   = stats->tx_bytes;
1634 	vf_stats->broadcast  = stats->rx_broadcast;
1635 	vf_stats->multicast  = stats->rx_multicast;
1636 	vf_stats->rx_dropped = stats->rx_discards;
1637 	vf_stats->tx_dropped = stats->tx_discards;
1638 
1639 out_put_vf:
1640 	ice_put_vf(vf);
1641 	return ret;
1642 }
1643 
1644 /**
1645  * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1646  * @hw: hardware structure used to check the VLAN mode
1647  * @vlan_proto: VLAN TPID being checked
1648  *
1649  * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1650  * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1651  * Mode (SVM), then only ETH_P_8021Q is supported.
1652  */
1653 static bool
1654 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1655 {
1656 	bool is_supported = false;
1657 
1658 	switch (vlan_proto) {
1659 	case ETH_P_8021Q:
1660 		is_supported = true;
1661 		break;
1662 	case ETH_P_8021AD:
1663 		if (ice_is_dvm_ena(hw))
1664 			is_supported = true;
1665 		break;
1666 	}
1667 
1668 	return is_supported;
1669 }
1670 
1671 /**
1672  * ice_set_vf_port_vlan
1673  * @netdev: network interface device structure
1674  * @vf_id: VF identifier
1675  * @vlan_id: VLAN ID being set
1676  * @qos: priority setting
1677  * @vlan_proto: VLAN protocol
1678  *
1679  * program VF Port VLAN ID and/or QoS
1680  */
1681 int
1682 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1683 		     __be16 vlan_proto)
1684 {
1685 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1686 	u16 local_vlan_proto = ntohs(vlan_proto);
1687 	struct device *dev;
1688 	struct ice_vf *vf;
1689 	int ret;
1690 
1691 	dev = ice_pf_to_dev(pf);
1692 
1693 	if (vlan_id >= VLAN_N_VID || qos > 7) {
1694 		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1695 			vf_id, vlan_id, qos);
1696 		return -EINVAL;
1697 	}
1698 
1699 	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1700 		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1701 			local_vlan_proto);
1702 		return -EPROTONOSUPPORT;
1703 	}
1704 
1705 	vf = ice_get_vf_by_id(pf, vf_id);
1706 	if (!vf)
1707 		return -EINVAL;
1708 
1709 	ret = ice_check_vf_ready_for_cfg(vf);
1710 	if (ret)
1711 		goto out_put_vf;
1712 
1713 	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1714 	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1715 	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1716 		/* duplicate request, so just return success */
1717 		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1718 			vlan_id, qos, local_vlan_proto);
1719 		ret = 0;
1720 		goto out_put_vf;
1721 	}
1722 
1723 	mutex_lock(&vf->cfg_lock);
1724 
1725 	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1726 	if (ice_vf_is_port_vlan_ena(vf))
1727 		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1728 			 vlan_id, qos, local_vlan_proto, vf_id);
1729 	else
1730 		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1731 
1732 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1733 	mutex_unlock(&vf->cfg_lock);
1734 
1735 out_put_vf:
1736 	ice_put_vf(vf);
1737 	return ret;
1738 }
1739 
1740 /**
1741  * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1742  * @vf: pointer to the VF structure
1743  */
1744 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1745 {
1746 	struct ice_pf *pf = vf->pf;
1747 	struct device *dev;
1748 
1749 	dev = ice_pf_to_dev(pf);
1750 
1751 	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1752 		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1753 		 vf->dev_lan_addr,
1754 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1755 			  ? "on" : "off");
1756 }
1757 
1758 /**
1759  * ice_print_vf_tx_mdd_event - print VF Tx malicious driver detect event
1760  * @vf: pointer to the VF structure
1761  */
1762 void ice_print_vf_tx_mdd_event(struct ice_vf *vf)
1763 {
1764 	struct ice_pf *pf = vf->pf;
1765 	struct device *dev;
1766 
1767 	dev = ice_pf_to_dev(pf);
1768 
1769 	dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1770 		 vf->mdd_tx_events.count, pf->hw.pf_id, vf->vf_id,
1771 		 vf->dev_lan_addr,
1772 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1773 			  ? "on" : "off");
1774 }
1775 
1776 /**
1777  * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1778  * @pf: pointer to the PF structure
1779  *
1780  * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1781  */
1782 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1783 {
1784 	struct ice_vf *vf;
1785 	unsigned int bkt;
1786 
1787 	/* check that there are pending MDD events to print */
1788 	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1789 		return;
1790 
1791 	/* VF MDD event logs are rate limited to one second intervals */
1792 	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1793 		return;
1794 
1795 	pf->vfs.last_printed_mdd_jiffies = jiffies;
1796 
1797 	mutex_lock(&pf->vfs.table_lock);
1798 	ice_for_each_vf(pf, bkt, vf) {
1799 		/* only print Rx MDD event message if there are new events */
1800 		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1801 			vf->mdd_rx_events.last_printed =
1802 							vf->mdd_rx_events.count;
1803 			ice_print_vf_rx_mdd_event(vf);
1804 		}
1805 
1806 		/* only print Tx MDD event message if there are new events */
1807 		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1808 			vf->mdd_tx_events.last_printed =
1809 							vf->mdd_tx_events.count;
1810 			ice_print_vf_tx_mdd_event(vf);
1811 		}
1812 	}
1813 	mutex_unlock(&pf->vfs.table_lock);
1814 }
1815 
1816 /**
1817  * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1818  * @pf: pointer to the PF structure
1819  *
1820  * Called when recovering from a PF FLR to restore interrupt capability to
1821  * the VFs.
1822  */
1823 void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1824 {
1825 	struct ice_vf *vf;
1826 	u32 bkt;
1827 
1828 	ice_for_each_vf(pf, bkt, vf)
1829 		pci_restore_msi_state(vf->vfdev);
1830 }
1831