1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice_base.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_flow.h" 11 #include "ice_eswitch.h" 12 #include "ice_virtchnl_allowlist.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_vf_vsi_vlan_ops.h" 15 #include "ice_vlan.h" 16 17 /** 18 * ice_free_vf_entries - Free all VF entries from the hash table 19 * @pf: pointer to the PF structure 20 * 21 * Iterate over the VF hash table, removing and releasing all VF entries. 22 * Called during VF teardown or as cleanup during failed VF initialization. 23 */ 24 static void ice_free_vf_entries(struct ice_pf *pf) 25 { 26 struct ice_vfs *vfs = &pf->vfs; 27 struct hlist_node *tmp; 28 struct ice_vf *vf; 29 unsigned int bkt; 30 31 /* Remove all VFs from the hash table and release their main 32 * reference. Once all references to the VF are dropped, ice_put_vf() 33 * will call ice_release_vf which will remove the VF memory. 34 */ 35 lockdep_assert_held(&vfs->table_lock); 36 37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { 38 hash_del_rcu(&vf->entry); 39 ice_put_vf(vf); 40 } 41 } 42 43 /** 44 * ice_free_vf_res - Free a VF's resources 45 * @vf: pointer to the VF info 46 */ 47 static void ice_free_vf_res(struct ice_vf *vf) 48 { 49 struct ice_pf *pf = vf->pf; 50 int i, last_vector_idx; 51 52 /* First, disable VF's configuration API to prevent OS from 53 * accessing the VF's VSI after it's freed or invalidated. 54 */ 55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states); 56 ice_vf_fdir_exit(vf); 57 /* free VF control VSI */ 58 if (vf->ctrl_vsi_idx != ICE_NO_VSI) 59 ice_vf_ctrl_vsi_release(vf); 60 61 /* free VSI and disconnect it from the parent uplink */ 62 if (vf->lan_vsi_idx != ICE_NO_VSI) { 63 ice_vf_vsi_release(vf); 64 vf->num_mac = 0; 65 } 66 67 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1; 68 69 /* clear VF MDD event information */ 70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); 71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); 72 73 /* Disable interrupts so that VF starts in a known state */ 74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { 75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); 76 ice_flush(&pf->hw); 77 } 78 /* reset some of the state variables keeping track of the resources */ 79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); 80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); 81 } 82 83 /** 84 * ice_dis_vf_mappings 85 * @vf: pointer to the VF structure 86 */ 87 static void ice_dis_vf_mappings(struct ice_vf *vf) 88 { 89 struct ice_pf *pf = vf->pf; 90 struct ice_vsi *vsi; 91 struct device *dev; 92 int first, last, v; 93 struct ice_hw *hw; 94 95 hw = &pf->hw; 96 vsi = ice_get_vf_vsi(vf); 97 if (WARN_ON(!vsi)) 98 return; 99 100 dev = ice_pf_to_dev(pf); 101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0); 102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); 103 104 first = vf->first_vector_idx; 105 last = first + vf->num_msix - 1; 106 for (v = first; v <= last; v++) { 107 u32 reg; 108 109 reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) & 110 GLINT_VECT2FUNC_IS_PF_M) | 111 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & 112 GLINT_VECT2FUNC_PF_NUM_M)); 113 wr32(hw, GLINT_VECT2FUNC(v), reg); 114 } 115 116 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) 117 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); 118 else 119 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 120 121 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) 122 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); 123 else 124 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 125 } 126 127 /** 128 * ice_sriov_free_msix_res - Reset/free any used MSIX resources 129 * @pf: pointer to the PF structure 130 * 131 * Since no MSIX entries are taken from the pf->irq_tracker then just clear 132 * the pf->sriov_base_vector. 133 * 134 * Returns 0 on success, and -EINVAL on error. 135 */ 136 static int ice_sriov_free_msix_res(struct ice_pf *pf) 137 { 138 if (!pf) 139 return -EINVAL; 140 141 bitmap_free(pf->sriov_irq_bm); 142 pf->sriov_irq_size = 0; 143 pf->sriov_base_vector = 0; 144 145 return 0; 146 } 147 148 /** 149 * ice_free_vfs - Free all VFs 150 * @pf: pointer to the PF structure 151 */ 152 void ice_free_vfs(struct ice_pf *pf) 153 { 154 struct device *dev = ice_pf_to_dev(pf); 155 struct ice_vfs *vfs = &pf->vfs; 156 struct ice_hw *hw = &pf->hw; 157 struct ice_vf *vf; 158 unsigned int bkt; 159 160 if (!ice_has_vfs(pf)) 161 return; 162 163 while (test_and_set_bit(ICE_VF_DIS, pf->state)) 164 usleep_range(1000, 2000); 165 166 /* Disable IOV before freeing resources. This lets any VF drivers 167 * running in the host get themselves cleaned up before we yank 168 * the carpet out from underneath their feet. 169 */ 170 if (!pci_vfs_assigned(pf->pdev)) 171 pci_disable_sriov(pf->pdev); 172 else 173 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); 174 175 mutex_lock(&vfs->table_lock); 176 177 ice_eswitch_release(pf); 178 179 ice_for_each_vf(pf, bkt, vf) { 180 mutex_lock(&vf->cfg_lock); 181 182 ice_dis_vf_qs(vf); 183 184 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { 185 /* disable VF qp mappings and set VF disable state */ 186 ice_dis_vf_mappings(vf); 187 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 188 ice_free_vf_res(vf); 189 } 190 191 if (!pci_vfs_assigned(pf->pdev)) { 192 u32 reg_idx, bit_idx; 193 194 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 195 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 196 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 197 } 198 199 /* clear malicious info since the VF is getting released */ 200 list_del(&vf->mbx_info.list_entry); 201 202 mutex_unlock(&vf->cfg_lock); 203 } 204 205 if (ice_sriov_free_msix_res(pf)) 206 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); 207 208 vfs->num_qps_per = 0; 209 ice_free_vf_entries(pf); 210 211 mutex_unlock(&vfs->table_lock); 212 213 clear_bit(ICE_VF_DIS, pf->state); 214 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 215 } 216 217 /** 218 * ice_vf_vsi_setup - Set up a VF VSI 219 * @vf: VF to setup VSI for 220 * 221 * Returns pointer to the successfully allocated VSI struct on success, 222 * otherwise returns NULL on failure. 223 */ 224 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) 225 { 226 struct ice_vsi_cfg_params params = {}; 227 struct ice_pf *pf = vf->pf; 228 struct ice_vsi *vsi; 229 230 params.type = ICE_VSI_VF; 231 params.pi = ice_vf_get_port_info(vf); 232 params.vf = vf; 233 params.flags = ICE_VSI_FLAG_INIT; 234 235 vsi = ice_vsi_setup(pf, ¶ms); 236 237 if (!vsi) { 238 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); 239 ice_vf_invalidate_vsi(vf); 240 return NULL; 241 } 242 243 vf->lan_vsi_idx = vsi->idx; 244 vf->lan_vsi_num = vsi->vsi_num; 245 246 return vsi; 247 } 248 249 250 /** 251 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware 252 * @vf: VF to enable MSIX mappings for 253 * 254 * Some of the registers need to be indexed/configured using hardware global 255 * device values and other registers need 0-based values, which represent PF 256 * based values. 257 */ 258 static void ice_ena_vf_msix_mappings(struct ice_vf *vf) 259 { 260 int device_based_first_msix, device_based_last_msix; 261 int pf_based_first_msix, pf_based_last_msix, v; 262 struct ice_pf *pf = vf->pf; 263 int device_based_vf_id; 264 struct ice_hw *hw; 265 u32 reg; 266 267 hw = &pf->hw; 268 pf_based_first_msix = vf->first_vector_idx; 269 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1; 270 271 device_based_first_msix = pf_based_first_msix + 272 pf->hw.func_caps.common_cap.msix_vector_first_id; 273 device_based_last_msix = 274 (device_based_first_msix + vf->num_msix) - 1; 275 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; 276 277 reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) & 278 VPINT_ALLOC_FIRST_M) | 279 ((device_based_last_msix << VPINT_ALLOC_LAST_S) & 280 VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M); 281 wr32(hw, VPINT_ALLOC(vf->vf_id), reg); 282 283 reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S) 284 & VPINT_ALLOC_PCI_FIRST_M) | 285 ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) & 286 VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M); 287 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); 288 289 /* map the interrupts to its functions */ 290 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { 291 reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) & 292 GLINT_VECT2FUNC_VF_NUM_M) | 293 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & 294 GLINT_VECT2FUNC_PF_NUM_M)); 295 wr32(hw, GLINT_VECT2FUNC(v), reg); 296 } 297 298 /* Map mailbox interrupt to VF MSI-X vector 0 */ 299 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); 300 } 301 302 /** 303 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF 304 * @vf: VF to enable the mappings for 305 * @max_txq: max Tx queues allowed on the VF's VSI 306 * @max_rxq: max Rx queues allowed on the VF's VSI 307 */ 308 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) 309 { 310 struct device *dev = ice_pf_to_dev(vf->pf); 311 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 312 struct ice_hw *hw = &vf->pf->hw; 313 u32 reg; 314 315 if (WARN_ON(!vsi)) 316 return; 317 318 /* set regardless of mapping mode */ 319 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); 320 321 /* VF Tx queues allocation */ 322 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { 323 /* set the VF PF Tx queue range 324 * VFNUMQ value should be set to (number of queues - 1). A value 325 * of 0 means 1 queue and a value of 255 means 256 queues 326 */ 327 reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) & 328 VPLAN_TX_QBASE_VFFIRSTQ_M) | 329 (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) & 330 VPLAN_TX_QBASE_VFNUMQ_M)); 331 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); 332 } else { 333 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 334 } 335 336 /* set regardless of mapping mode */ 337 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); 338 339 /* VF Rx queues allocation */ 340 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { 341 /* set the VF PF Rx queue range 342 * VFNUMQ value should be set to (number of queues - 1). A value 343 * of 0 means 1 queue and a value of 255 means 256 queues 344 */ 345 reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) & 346 VPLAN_RX_QBASE_VFFIRSTQ_M) | 347 (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) & 348 VPLAN_RX_QBASE_VFNUMQ_M)); 349 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); 350 } else { 351 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 352 } 353 } 354 355 /** 356 * ice_ena_vf_mappings - enable VF MSIX and queue mapping 357 * @vf: pointer to the VF structure 358 */ 359 static void ice_ena_vf_mappings(struct ice_vf *vf) 360 { 361 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 362 363 if (WARN_ON(!vsi)) 364 return; 365 366 ice_ena_vf_msix_mappings(vf); 367 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); 368 } 369 370 /** 371 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space 372 * @vf: VF to calculate the register index for 373 * @q_vector: a q_vector associated to the VF 374 */ 375 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) 376 { 377 if (!vf || !q_vector) 378 return -EINVAL; 379 380 /* always add one to account for the OICR being the first MSIX */ 381 return vf->first_vector_idx + q_vector->v_idx + 1; 382 } 383 384 /** 385 * ice_sriov_set_msix_res - Set any used MSIX resources 386 * @pf: pointer to PF structure 387 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs 388 * 389 * This function allows SR-IOV resources to be taken from the end of the PF's 390 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We 391 * just set the pf->sriov_base_vector and return success. 392 * 393 * If there are not enough resources available, return an error. This should 394 * always be caught by ice_set_per_vf_res(). 395 * 396 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors 397 * in the PF's space available for SR-IOV. 398 */ 399 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) 400 { 401 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 402 int vectors_used = ice_get_max_used_msix_vector(pf); 403 int sriov_base_vector; 404 405 sriov_base_vector = total_vectors - num_msix_needed; 406 407 /* make sure we only grab irq_tracker entries from the list end and 408 * that we have enough available MSIX vectors 409 */ 410 if (sriov_base_vector < vectors_used) 411 return -EINVAL; 412 413 pf->sriov_base_vector = sriov_base_vector; 414 415 return 0; 416 } 417 418 /** 419 * ice_set_per_vf_res - check if vectors and queues are available 420 * @pf: pointer to the PF structure 421 * @num_vfs: the number of SR-IOV VFs being configured 422 * 423 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we 424 * get more vectors and can enable more queues per VF. Note that this does not 425 * grab any vectors from the SW pool already allocated. Also note, that all 426 * vector counts include one for each VF's miscellaneous interrupt vector 427 * (i.e. OICR). 428 * 429 * Minimum VFs - 2 vectors, 1 queue pair 430 * Small VFs - 5 vectors, 4 queue pairs 431 * Medium VFs - 17 vectors, 16 queue pairs 432 * 433 * Second, determine number of queue pairs per VF by starting with a pre-defined 434 * maximum each VF supports. If this is not possible, then we adjust based on 435 * queue pairs available on the device. 436 * 437 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used 438 * by each VF during VF initialization and reset. 439 */ 440 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) 441 { 442 int vectors_used = ice_get_max_used_msix_vector(pf); 443 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; 444 int msix_avail_per_vf, msix_avail_for_sriov; 445 struct device *dev = ice_pf_to_dev(pf); 446 int err; 447 448 lockdep_assert_held(&pf->vfs.table_lock); 449 450 if (!num_vfs) 451 return -EINVAL; 452 453 /* determine MSI-X resources per VF */ 454 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - 455 vectors_used; 456 msix_avail_per_vf = msix_avail_for_sriov / num_vfs; 457 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { 458 num_msix_per_vf = ICE_NUM_VF_MSIX_MED; 459 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { 460 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; 461 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { 462 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; 463 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { 464 num_msix_per_vf = ICE_MIN_INTR_PER_VF; 465 } else { 466 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", 467 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, 468 num_vfs); 469 return -ENOSPC; 470 } 471 472 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 473 ICE_MAX_RSS_QS_PER_VF); 474 avail_qs = ice_get_avail_txq_count(pf) / num_vfs; 475 if (!avail_qs) 476 num_txq = 0; 477 else if (num_txq > avail_qs) 478 num_txq = rounddown_pow_of_two(avail_qs); 479 480 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 481 ICE_MAX_RSS_QS_PER_VF); 482 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; 483 if (!avail_qs) 484 num_rxq = 0; 485 else if (num_rxq > avail_qs) 486 num_rxq = rounddown_pow_of_two(avail_qs); 487 488 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { 489 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", 490 ICE_MIN_QS_PER_VF, num_vfs); 491 return -ENOSPC; 492 } 493 494 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); 495 if (err) { 496 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", 497 num_vfs, err); 498 return err; 499 } 500 501 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ 502 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); 503 pf->vfs.num_msix_per = num_msix_per_vf; 504 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", 505 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); 506 507 return 0; 508 } 509 510 /** 511 * ice_sriov_get_irqs - get irqs for SR-IOV usacase 512 * @pf: pointer to PF structure 513 * @needed: number of irqs to get 514 * 515 * This returns the first MSI-X vector index in PF space that is used by this 516 * VF. This index is used when accessing PF relative registers such as 517 * GLINT_VECT2FUNC and GLINT_DYN_CTL. 518 * This will always be the OICR index in the AVF driver so any functionality 519 * using vf->first_vector_idx for queue configuration_id: id of VF which will 520 * use this irqs 521 * 522 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are 523 * allocated from the end of global irq index. First bit in sriov_irq_bm means 524 * last irq index etc. It simplifies extension of SRIOV vectors. 525 * They will be always located from sriov_base_vector to the last irq 526 * index. While increasing/decreasing sriov_base_vector can be moved. 527 */ 528 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed) 529 { 530 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm, 531 pf->sriov_irq_size, 0, needed, 0); 532 /* conversion from number in bitmap to global irq index */ 533 int index = pf->sriov_irq_size - res - needed; 534 535 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector) 536 return -ENOENT; 537 538 bitmap_set(pf->sriov_irq_bm, res, needed); 539 return index; 540 } 541 542 /** 543 * ice_sriov_free_irqs - free irqs used by the VF 544 * @pf: pointer to PF structure 545 * @vf: pointer to VF structure 546 */ 547 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf) 548 { 549 /* Move back from first vector index to first index in bitmap */ 550 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix; 551 552 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix); 553 vf->first_vector_idx = 0; 554 } 555 556 /** 557 * ice_init_vf_vsi_res - initialize/setup VF VSI resources 558 * @vf: VF to initialize/setup the VSI for 559 * 560 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the 561 * VF VSI's broadcast filter and is only used during initial VF creation. 562 */ 563 static int ice_init_vf_vsi_res(struct ice_vf *vf) 564 { 565 struct ice_pf *pf = vf->pf; 566 struct ice_vsi *vsi; 567 int err; 568 569 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 570 if (vf->first_vector_idx < 0) 571 return -ENOMEM; 572 573 vsi = ice_vf_vsi_setup(vf); 574 if (!vsi) 575 return -ENOMEM; 576 577 err = ice_vf_init_host_cfg(vf, vsi); 578 if (err) 579 goto release_vsi; 580 581 return 0; 582 583 release_vsi: 584 ice_vf_vsi_release(vf); 585 return err; 586 } 587 588 /** 589 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV 590 * @pf: PF the VFs are associated with 591 */ 592 static int ice_start_vfs(struct ice_pf *pf) 593 { 594 struct ice_hw *hw = &pf->hw; 595 unsigned int bkt, it_cnt; 596 struct ice_vf *vf; 597 int retval; 598 599 lockdep_assert_held(&pf->vfs.table_lock); 600 601 it_cnt = 0; 602 ice_for_each_vf(pf, bkt, vf) { 603 vf->vf_ops->clear_reset_trigger(vf); 604 605 retval = ice_init_vf_vsi_res(vf); 606 if (retval) { 607 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", 608 vf->vf_id, retval); 609 goto teardown; 610 } 611 612 set_bit(ICE_VF_STATE_INIT, vf->vf_states); 613 ice_ena_vf_mappings(vf); 614 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 615 it_cnt++; 616 } 617 618 ice_flush(hw); 619 return 0; 620 621 teardown: 622 ice_for_each_vf(pf, bkt, vf) { 623 if (it_cnt == 0) 624 break; 625 626 ice_dis_vf_mappings(vf); 627 ice_vf_vsi_release(vf); 628 it_cnt--; 629 } 630 631 return retval; 632 } 633 634 /** 635 * ice_sriov_free_vf - Free VF memory after all references are dropped 636 * @vf: pointer to VF to free 637 * 638 * Called by ice_put_vf through ice_release_vf once the last reference to a VF 639 * structure has been dropped. 640 */ 641 static void ice_sriov_free_vf(struct ice_vf *vf) 642 { 643 mutex_destroy(&vf->cfg_lock); 644 645 kfree_rcu(vf, rcu); 646 } 647 648 /** 649 * ice_sriov_clear_reset_state - clears VF Reset status register 650 * @vf: the vf to configure 651 */ 652 static void ice_sriov_clear_reset_state(struct ice_vf *vf) 653 { 654 struct ice_hw *hw = &vf->pf->hw; 655 656 /* Clear the reset status register so that VF immediately sees that 657 * the device is resetting, even if hardware hasn't yet gotten around 658 * to clearing VFGEN_RSTAT for us. 659 */ 660 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); 661 } 662 663 /** 664 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers 665 * @vf: the vf to configure 666 */ 667 static void ice_sriov_clear_mbx_register(struct ice_vf *vf) 668 { 669 struct ice_pf *pf = vf->pf; 670 671 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); 672 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); 673 } 674 675 /** 676 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF 677 * @vf: pointer to VF structure 678 * @is_vflr: true if reset occurred due to VFLR 679 * 680 * Trigger and cleanup after a VF reset for a SR-IOV VF. 681 */ 682 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) 683 { 684 struct ice_pf *pf = vf->pf; 685 u32 reg, reg_idx, bit_idx; 686 unsigned int vf_abs_id, i; 687 struct device *dev; 688 struct ice_hw *hw; 689 690 dev = ice_pf_to_dev(pf); 691 hw = &pf->hw; 692 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; 693 694 /* In the case of a VFLR, HW has already reset the VF and we just need 695 * to clean up. Otherwise we must first trigger the reset using the 696 * VFRTRIG register. 697 */ 698 if (!is_vflr) { 699 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 700 reg |= VPGEN_VFRTRIG_VFSWR_M; 701 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 702 } 703 704 /* clear the VFLR bit in GLGEN_VFLRSTAT */ 705 reg_idx = (vf_abs_id) / 32; 706 bit_idx = (vf_abs_id) % 32; 707 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 708 ice_flush(hw); 709 710 wr32(hw, PF_PCI_CIAA, 711 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); 712 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { 713 reg = rd32(hw, PF_PCI_CIAD); 714 /* no transactions pending so stop polling */ 715 if ((reg & VF_TRANS_PENDING_M) == 0) 716 break; 717 718 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); 719 udelay(ICE_PCI_CIAD_WAIT_DELAY_US); 720 } 721 } 722 723 /** 724 * ice_sriov_poll_reset_status - poll SRIOV VF reset status 725 * @vf: pointer to VF structure 726 * 727 * Returns true when reset is successful, else returns false 728 */ 729 static bool ice_sriov_poll_reset_status(struct ice_vf *vf) 730 { 731 struct ice_pf *pf = vf->pf; 732 unsigned int i; 733 u32 reg; 734 735 for (i = 0; i < 10; i++) { 736 /* VF reset requires driver to first reset the VF and then 737 * poll the status register to make sure that the reset 738 * completed successfully. 739 */ 740 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); 741 if (reg & VPGEN_VFRSTAT_VFRD_M) 742 return true; 743 744 /* only sleep if the reset is not done */ 745 usleep_range(10, 20); 746 } 747 return false; 748 } 749 750 /** 751 * ice_sriov_clear_reset_trigger - enable VF to access hardware 752 * @vf: VF to enabled hardware access for 753 */ 754 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) 755 { 756 struct ice_hw *hw = &vf->pf->hw; 757 u32 reg; 758 759 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 760 reg &= ~VPGEN_VFRTRIG_VFSWR_M; 761 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 762 ice_flush(hw); 763 } 764 765 /** 766 * ice_sriov_create_vsi - Create a new VSI for a VF 767 * @vf: VF to create the VSI for 768 * 769 * This is called by ice_vf_recreate_vsi to create the new VSI after the old 770 * VSI has been released. 771 */ 772 static int ice_sriov_create_vsi(struct ice_vf *vf) 773 { 774 struct ice_vsi *vsi; 775 776 vsi = ice_vf_vsi_setup(vf); 777 if (!vsi) 778 return -ENOMEM; 779 780 return 0; 781 } 782 783 /** 784 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt 785 * @vf: VF to perform tasks on 786 */ 787 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) 788 { 789 ice_ena_vf_mappings(vf); 790 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 791 } 792 793 static const struct ice_vf_ops ice_sriov_vf_ops = { 794 .reset_type = ICE_VF_RESET, 795 .free = ice_sriov_free_vf, 796 .clear_reset_state = ice_sriov_clear_reset_state, 797 .clear_mbx_register = ice_sriov_clear_mbx_register, 798 .trigger_reset_register = ice_sriov_trigger_reset_register, 799 .poll_reset_status = ice_sriov_poll_reset_status, 800 .clear_reset_trigger = ice_sriov_clear_reset_trigger, 801 .irq_close = NULL, 802 .create_vsi = ice_sriov_create_vsi, 803 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, 804 }; 805 806 /** 807 * ice_create_vf_entries - Allocate and insert VF entries 808 * @pf: pointer to the PF structure 809 * @num_vfs: the number of VFs to allocate 810 * 811 * Allocate new VF entries and insert them into the hash table. Set some 812 * basic default fields for initializing the new VFs. 813 * 814 * After this function exits, the hash table will have num_vfs entries 815 * inserted. 816 * 817 * Returns 0 on success or an integer error code on failure. 818 */ 819 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) 820 { 821 struct pci_dev *pdev = pf->pdev; 822 struct ice_vfs *vfs = &pf->vfs; 823 struct pci_dev *vfdev = NULL; 824 struct ice_vf *vf; 825 u16 vf_pdev_id; 826 int err, pos; 827 828 lockdep_assert_held(&vfs->table_lock); 829 830 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 831 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id); 832 833 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) { 834 vf = kzalloc(sizeof(*vf), GFP_KERNEL); 835 if (!vf) { 836 err = -ENOMEM; 837 goto err_free_entries; 838 } 839 kref_init(&vf->refcnt); 840 841 vf->pf = pf; 842 vf->vf_id = vf_id; 843 844 /* set sriov vf ops for VFs created during SRIOV flow */ 845 vf->vf_ops = &ice_sriov_vf_ops; 846 847 ice_initialize_vf_entry(vf); 848 849 do { 850 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev); 851 } while (vfdev && vfdev->physfn != pdev); 852 vf->vfdev = vfdev; 853 vf->vf_sw_id = pf->first_sw; 854 855 pci_dev_get(vfdev); 856 857 /* set default number of MSI-X */ 858 vf->num_msix = pf->vfs.num_msix_per; 859 vf->num_vf_qs = pf->vfs.num_qps_per; 860 ice_vc_set_default_allowlist(vf); 861 862 hash_add_rcu(vfs->table, &vf->entry, vf_id); 863 } 864 865 /* Decrement of refcount done by pci_get_device() inside the loop does 866 * not touch the last iteration's vfdev, so it has to be done manually 867 * to balance pci_dev_get() added within the loop. 868 */ 869 pci_dev_put(vfdev); 870 871 return 0; 872 873 err_free_entries: 874 ice_free_vf_entries(pf); 875 return err; 876 } 877 878 /** 879 * ice_ena_vfs - enable VFs so they are ready to be used 880 * @pf: pointer to the PF structure 881 * @num_vfs: number of VFs to enable 882 */ 883 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) 884 { 885 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 886 struct device *dev = ice_pf_to_dev(pf); 887 struct ice_hw *hw = &pf->hw; 888 int ret; 889 890 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL); 891 if (!pf->sriov_irq_bm) 892 return -ENOMEM; 893 pf->sriov_irq_size = total_vectors; 894 895 /* Disable global interrupt 0 so we don't try to handle the VFLR. */ 896 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 897 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 898 set_bit(ICE_OICR_INTR_DIS, pf->state); 899 ice_flush(hw); 900 901 ret = pci_enable_sriov(pf->pdev, num_vfs); 902 if (ret) 903 goto err_unroll_intr; 904 905 mutex_lock(&pf->vfs.table_lock); 906 907 ret = ice_set_per_vf_res(pf, num_vfs); 908 if (ret) { 909 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", 910 num_vfs, ret); 911 goto err_unroll_sriov; 912 } 913 914 ret = ice_create_vf_entries(pf, num_vfs); 915 if (ret) { 916 dev_err(dev, "Failed to allocate VF entries for %d VFs\n", 917 num_vfs); 918 goto err_unroll_sriov; 919 } 920 921 ret = ice_start_vfs(pf); 922 if (ret) { 923 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); 924 ret = -EAGAIN; 925 goto err_unroll_vf_entries; 926 } 927 928 clear_bit(ICE_VF_DIS, pf->state); 929 930 ret = ice_eswitch_configure(pf); 931 if (ret) { 932 dev_err(dev, "Failed to configure eswitch, err %d\n", ret); 933 goto err_unroll_sriov; 934 } 935 936 /* rearm global interrupts */ 937 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) 938 ice_irq_dynamic_ena(hw, NULL, NULL); 939 940 mutex_unlock(&pf->vfs.table_lock); 941 942 return 0; 943 944 err_unroll_vf_entries: 945 ice_free_vf_entries(pf); 946 err_unroll_sriov: 947 mutex_unlock(&pf->vfs.table_lock); 948 pci_disable_sriov(pf->pdev); 949 err_unroll_intr: 950 /* rearm interrupts here */ 951 ice_irq_dynamic_ena(hw, NULL, NULL); 952 clear_bit(ICE_OICR_INTR_DIS, pf->state); 953 bitmap_free(pf->sriov_irq_bm); 954 return ret; 955 } 956 957 /** 958 * ice_pci_sriov_ena - Enable or change number of VFs 959 * @pf: pointer to the PF structure 960 * @num_vfs: number of VFs to allocate 961 * 962 * Returns 0 on success and negative on failure 963 */ 964 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) 965 { 966 struct device *dev = ice_pf_to_dev(pf); 967 int err; 968 969 if (!num_vfs) { 970 ice_free_vfs(pf); 971 return 0; 972 } 973 974 if (num_vfs > pf->vfs.num_supported) { 975 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", 976 num_vfs, pf->vfs.num_supported); 977 return -EOPNOTSUPP; 978 } 979 980 dev_info(dev, "Enabling %d VFs\n", num_vfs); 981 err = ice_ena_vfs(pf, num_vfs); 982 if (err) { 983 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 984 return err; 985 } 986 987 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 988 return 0; 989 } 990 991 /** 992 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks 993 * @pf: PF to enabled SR-IOV on 994 */ 995 static int ice_check_sriov_allowed(struct ice_pf *pf) 996 { 997 struct device *dev = ice_pf_to_dev(pf); 998 999 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { 1000 dev_err(dev, "This device is not capable of SR-IOV\n"); 1001 return -EOPNOTSUPP; 1002 } 1003 1004 if (ice_is_safe_mode(pf)) { 1005 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); 1006 return -EOPNOTSUPP; 1007 } 1008 1009 if (!ice_pf_state_is_nominal(pf)) { 1010 dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); 1011 return -EBUSY; 1012 } 1013 1014 return 0; 1015 } 1016 1017 /** 1018 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs 1019 * @pdev: pointer to pci_dev struct 1020 * 1021 * The function is called via sysfs ops 1022 */ 1023 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev) 1024 { 1025 struct ice_pf *pf = pci_get_drvdata(pdev); 1026 1027 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf); 1028 } 1029 1030 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move) 1031 { 1032 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf)) 1033 return -ENOMEM; 1034 1035 pf->sriov_base_vector -= move; 1036 return 0; 1037 } 1038 1039 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id) 1040 { 1041 u16 vf_ids[ICE_MAX_SRIOV_VFS]; 1042 struct ice_vf *tmp_vf; 1043 int to_remap = 0, bkt; 1044 1045 /* For better irqs usage try to remap irqs of VFs 1046 * that aren't running yet 1047 */ 1048 ice_for_each_vf(pf, bkt, tmp_vf) { 1049 /* skip VF which is changing the number of MSI-X */ 1050 if (restricted_id == tmp_vf->vf_id || 1051 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states)) 1052 continue; 1053 1054 ice_dis_vf_mappings(tmp_vf); 1055 ice_sriov_free_irqs(pf, tmp_vf); 1056 1057 vf_ids[to_remap] = tmp_vf->vf_id; 1058 to_remap += 1; 1059 } 1060 1061 for (int i = 0; i < to_remap; i++) { 1062 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]); 1063 if (!tmp_vf) 1064 continue; 1065 1066 tmp_vf->first_vector_idx = 1067 ice_sriov_get_irqs(pf, tmp_vf->num_msix); 1068 /* there is no need to rebuild VSI as we are only changing the 1069 * vector indexes not amount of MSI-X or queues 1070 */ 1071 ice_ena_vf_mappings(tmp_vf); 1072 ice_put_vf(tmp_vf); 1073 } 1074 } 1075 1076 /** 1077 * ice_sriov_set_msix_vec_count 1078 * @vf_dev: pointer to pci_dev struct of VF device 1079 * @msix_vec_count: new value for MSI-X amount on this VF 1080 * 1081 * Set requested MSI-X, queues and registers for @vf_dev. 1082 * 1083 * First do some sanity checks like if there are any VFs, if the new value 1084 * is correct etc. Then disable old mapping (MSI-X and queues registers), change 1085 * MSI-X and queues, rebuild VSI and enable new mapping. 1086 * 1087 * If it is possible (driver not binded to VF) try to remap also other VFs to 1088 * linearize irqs register usage. 1089 */ 1090 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count) 1091 { 1092 struct pci_dev *pdev = pci_physfn(vf_dev); 1093 struct ice_pf *pf = pci_get_drvdata(pdev); 1094 u16 prev_msix, prev_queues, queues; 1095 bool needs_rebuild = false; 1096 struct ice_vf *vf; 1097 int id; 1098 1099 if (!ice_get_num_vfs(pf)) 1100 return -ENOENT; 1101 1102 if (!msix_vec_count) 1103 return 0; 1104 1105 queues = msix_vec_count; 1106 /* add 1 MSI-X for OICR */ 1107 msix_vec_count += 1; 1108 1109 if (queues > min(ice_get_avail_txq_count(pf), 1110 ice_get_avail_rxq_count(pf))) 1111 return -EINVAL; 1112 1113 if (msix_vec_count < ICE_MIN_INTR_PER_VF) 1114 return -EINVAL; 1115 1116 /* Transition of PCI VF function number to function_id */ 1117 for (id = 0; id < pci_num_vf(pdev); id++) { 1118 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id)) 1119 break; 1120 } 1121 1122 if (id == pci_num_vf(pdev)) 1123 return -ENOENT; 1124 1125 vf = ice_get_vf_by_id(pf, id); 1126 1127 if (!vf) 1128 return -ENOENT; 1129 1130 prev_msix = vf->num_msix; 1131 prev_queues = vf->num_vf_qs; 1132 1133 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) { 1134 ice_put_vf(vf); 1135 return -ENOSPC; 1136 } 1137 1138 ice_dis_vf_mappings(vf); 1139 ice_sriov_free_irqs(pf, vf); 1140 1141 /* Remap all VFs beside the one is now configured */ 1142 ice_sriov_remap_vectors(pf, vf->vf_id); 1143 1144 vf->num_msix = msix_vec_count; 1145 vf->num_vf_qs = queues; 1146 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1147 if (vf->first_vector_idx < 0) 1148 goto unroll; 1149 1150 ice_vf_vsi_release(vf); 1151 if (vf->vf_ops->create_vsi(vf)) { 1152 /* Try to rebuild with previous values */ 1153 needs_rebuild = true; 1154 goto unroll; 1155 } 1156 1157 dev_info(ice_pf_to_dev(pf), 1158 "Changing VF %d resources to %d vectors and %d queues\n", 1159 vf->vf_id, vf->num_msix, vf->num_vf_qs); 1160 1161 ice_ena_vf_mappings(vf); 1162 ice_put_vf(vf); 1163 1164 return 0; 1165 1166 unroll: 1167 dev_info(ice_pf_to_dev(pf), 1168 "Can't set %d vectors on VF %d, falling back to %d\n", 1169 vf->num_msix, vf->vf_id, prev_msix); 1170 1171 vf->num_msix = prev_msix; 1172 vf->num_vf_qs = prev_queues; 1173 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1174 if (vf->first_vector_idx < 0) 1175 return -EINVAL; 1176 1177 if (needs_rebuild) 1178 vf->vf_ops->create_vsi(vf); 1179 1180 ice_ena_vf_mappings(vf); 1181 ice_put_vf(vf); 1182 1183 return -EINVAL; 1184 } 1185 1186 /** 1187 * ice_sriov_configure - Enable or change number of VFs via sysfs 1188 * @pdev: pointer to a pci_dev structure 1189 * @num_vfs: number of VFs to allocate or 0 to free VFs 1190 * 1191 * This function is called when the user updates the number of VFs in sysfs. On 1192 * success return whatever num_vfs was set to by the caller. Return negative on 1193 * failure. 1194 */ 1195 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) 1196 { 1197 struct ice_pf *pf = pci_get_drvdata(pdev); 1198 struct device *dev = ice_pf_to_dev(pf); 1199 int err; 1200 1201 err = ice_check_sriov_allowed(pf); 1202 if (err) 1203 return err; 1204 1205 if (!num_vfs) { 1206 if (!pci_vfs_assigned(pdev)) { 1207 ice_free_vfs(pf); 1208 return 0; 1209 } 1210 1211 dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); 1212 return -EBUSY; 1213 } 1214 1215 err = ice_pci_sriov_ena(pf, num_vfs); 1216 if (err) 1217 return err; 1218 1219 return num_vfs; 1220 } 1221 1222 /** 1223 * ice_process_vflr_event - Free VF resources via IRQ calls 1224 * @pf: pointer to the PF structure 1225 * 1226 * called from the VFLR IRQ handler to 1227 * free up VF resources and state variables 1228 */ 1229 void ice_process_vflr_event(struct ice_pf *pf) 1230 { 1231 struct ice_hw *hw = &pf->hw; 1232 struct ice_vf *vf; 1233 unsigned int bkt; 1234 u32 reg; 1235 1236 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 1237 !ice_has_vfs(pf)) 1238 return; 1239 1240 mutex_lock(&pf->vfs.table_lock); 1241 ice_for_each_vf(pf, bkt, vf) { 1242 u32 reg_idx, bit_idx; 1243 1244 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 1245 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 1246 /* read GLGEN_VFLRSTAT register to find out the flr VFs */ 1247 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); 1248 if (reg & BIT(bit_idx)) 1249 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ 1250 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 1251 } 1252 mutex_unlock(&pf->vfs.table_lock); 1253 } 1254 1255 /** 1256 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in 1257 * @pf: PF used to index all VFs 1258 * @pfq: queue index relative to the PF's function space 1259 * 1260 * If no VF is found who owns the pfq then return NULL, otherwise return a 1261 * pointer to the VF who owns the pfq 1262 * 1263 * If this function returns non-NULL, it acquires a reference count of the VF 1264 * structure. The caller is responsible for calling ice_put_vf() to drop this 1265 * reference. 1266 */ 1267 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) 1268 { 1269 struct ice_vf *vf; 1270 unsigned int bkt; 1271 1272 rcu_read_lock(); 1273 ice_for_each_vf_rcu(pf, bkt, vf) { 1274 struct ice_vsi *vsi; 1275 u16 rxq_idx; 1276 1277 vsi = ice_get_vf_vsi(vf); 1278 if (!vsi) 1279 continue; 1280 1281 ice_for_each_rxq(vsi, rxq_idx) 1282 if (vsi->rxq_map[rxq_idx] == pfq) { 1283 struct ice_vf *found; 1284 1285 if (kref_get_unless_zero(&vf->refcnt)) 1286 found = vf; 1287 else 1288 found = NULL; 1289 rcu_read_unlock(); 1290 return found; 1291 } 1292 } 1293 rcu_read_unlock(); 1294 1295 return NULL; 1296 } 1297 1298 /** 1299 * ice_globalq_to_pfq - convert from global queue index to PF space queue index 1300 * @pf: PF used for conversion 1301 * @globalq: global queue index used to convert to PF space queue index 1302 */ 1303 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) 1304 { 1305 return globalq - pf->hw.func_caps.common_cap.rxq_first_id; 1306 } 1307 1308 /** 1309 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF 1310 * @pf: PF that the LAN overflow event happened on 1311 * @event: structure holding the event information for the LAN overflow event 1312 * 1313 * Determine if the LAN overflow event was caused by a VF queue. If it was not 1314 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a 1315 * reset on the offending VF. 1316 */ 1317 void 1318 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1319 { 1320 u32 gldcb_rtctq, queue; 1321 struct ice_vf *vf; 1322 1323 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); 1324 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); 1325 1326 /* event returns device global Rx queue number */ 1327 queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >> 1328 GLDCB_RTCTQ_RXQNUM_S; 1329 1330 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); 1331 if (!vf) 1332 return; 1333 1334 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1335 ice_put_vf(vf); 1336 } 1337 1338 /** 1339 * ice_set_vf_spoofchk 1340 * @netdev: network interface device structure 1341 * @vf_id: VF identifier 1342 * @ena: flag to enable or disable feature 1343 * 1344 * Enable or disable VF spoof checking 1345 */ 1346 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) 1347 { 1348 struct ice_netdev_priv *np = netdev_priv(netdev); 1349 struct ice_pf *pf = np->vsi->back; 1350 struct ice_vsi *vf_vsi; 1351 struct device *dev; 1352 struct ice_vf *vf; 1353 int ret; 1354 1355 dev = ice_pf_to_dev(pf); 1356 1357 vf = ice_get_vf_by_id(pf, vf_id); 1358 if (!vf) 1359 return -EINVAL; 1360 1361 ret = ice_check_vf_ready_for_cfg(vf); 1362 if (ret) 1363 goto out_put_vf; 1364 1365 vf_vsi = ice_get_vf_vsi(vf); 1366 if (!vf_vsi) { 1367 netdev_err(netdev, "VSI %d for VF %d is null\n", 1368 vf->lan_vsi_idx, vf->vf_id); 1369 ret = -EINVAL; 1370 goto out_put_vf; 1371 } 1372 1373 if (vf_vsi->type != ICE_VSI_VF) { 1374 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", 1375 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); 1376 ret = -ENODEV; 1377 goto out_put_vf; 1378 } 1379 1380 if (ena == vf->spoofchk) { 1381 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); 1382 ret = 0; 1383 goto out_put_vf; 1384 } 1385 1386 ret = ice_vsi_apply_spoofchk(vf_vsi, ena); 1387 if (ret) 1388 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", 1389 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); 1390 else 1391 vf->spoofchk = ena; 1392 1393 out_put_vf: 1394 ice_put_vf(vf); 1395 return ret; 1396 } 1397 1398 /** 1399 * ice_get_vf_cfg 1400 * @netdev: network interface device structure 1401 * @vf_id: VF identifier 1402 * @ivi: VF configuration structure 1403 * 1404 * return VF configuration 1405 */ 1406 int 1407 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) 1408 { 1409 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1410 struct ice_vf *vf; 1411 int ret; 1412 1413 vf = ice_get_vf_by_id(pf, vf_id); 1414 if (!vf) 1415 return -EINVAL; 1416 1417 ret = ice_check_vf_ready_for_cfg(vf); 1418 if (ret) 1419 goto out_put_vf; 1420 1421 ivi->vf = vf_id; 1422 ether_addr_copy(ivi->mac, vf->hw_lan_addr); 1423 1424 /* VF configuration for VLAN and applicable QoS */ 1425 ivi->vlan = ice_vf_get_port_vlan_id(vf); 1426 ivi->qos = ice_vf_get_port_vlan_prio(vf); 1427 if (ice_vf_is_port_vlan_ena(vf)) 1428 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); 1429 1430 ivi->trusted = vf->trusted; 1431 ivi->spoofchk = vf->spoofchk; 1432 if (!vf->link_forced) 1433 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 1434 else if (vf->link_up) 1435 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 1436 else 1437 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 1438 ivi->max_tx_rate = vf->max_tx_rate; 1439 ivi->min_tx_rate = vf->min_tx_rate; 1440 1441 out_put_vf: 1442 ice_put_vf(vf); 1443 return ret; 1444 } 1445 1446 /** 1447 * ice_set_vf_mac 1448 * @netdev: network interface device structure 1449 * @vf_id: VF identifier 1450 * @mac: MAC address 1451 * 1452 * program VF MAC address 1453 */ 1454 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 1455 { 1456 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1457 struct ice_vf *vf; 1458 int ret; 1459 1460 if (is_multicast_ether_addr(mac)) { 1461 netdev_err(netdev, "%pM not a valid unicast address\n", mac); 1462 return -EINVAL; 1463 } 1464 1465 vf = ice_get_vf_by_id(pf, vf_id); 1466 if (!vf) 1467 return -EINVAL; 1468 1469 /* nothing left to do, unicast MAC already set */ 1470 if (ether_addr_equal(vf->dev_lan_addr, mac) && 1471 ether_addr_equal(vf->hw_lan_addr, mac)) { 1472 ret = 0; 1473 goto out_put_vf; 1474 } 1475 1476 ret = ice_check_vf_ready_for_cfg(vf); 1477 if (ret) 1478 goto out_put_vf; 1479 1480 mutex_lock(&vf->cfg_lock); 1481 1482 /* VF is notified of its new MAC via the PF's response to the 1483 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset 1484 */ 1485 ether_addr_copy(vf->dev_lan_addr, mac); 1486 ether_addr_copy(vf->hw_lan_addr, mac); 1487 if (is_zero_ether_addr(mac)) { 1488 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ 1489 vf->pf_set_mac = false; 1490 netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n", 1491 vf->vf_id); 1492 } else { 1493 /* PF will add MAC rule for the VF */ 1494 vf->pf_set_mac = true; 1495 netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", 1496 mac, vf_id); 1497 } 1498 1499 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1500 mutex_unlock(&vf->cfg_lock); 1501 1502 out_put_vf: 1503 ice_put_vf(vf); 1504 return ret; 1505 } 1506 1507 /** 1508 * ice_set_vf_trust 1509 * @netdev: network interface device structure 1510 * @vf_id: VF identifier 1511 * @trusted: Boolean value to enable/disable trusted VF 1512 * 1513 * Enable or disable a given VF as trusted 1514 */ 1515 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) 1516 { 1517 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1518 struct ice_vf *vf; 1519 int ret; 1520 1521 vf = ice_get_vf_by_id(pf, vf_id); 1522 if (!vf) 1523 return -EINVAL; 1524 1525 if (ice_is_eswitch_mode_switchdev(pf)) { 1526 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); 1527 return -EOPNOTSUPP; 1528 } 1529 1530 ret = ice_check_vf_ready_for_cfg(vf); 1531 if (ret) 1532 goto out_put_vf; 1533 1534 /* Check if already trusted */ 1535 if (trusted == vf->trusted) { 1536 ret = 0; 1537 goto out_put_vf; 1538 } 1539 1540 mutex_lock(&vf->cfg_lock); 1541 1542 vf->trusted = trusted; 1543 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1544 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", 1545 vf_id, trusted ? "" : "un"); 1546 1547 mutex_unlock(&vf->cfg_lock); 1548 1549 out_put_vf: 1550 ice_put_vf(vf); 1551 return ret; 1552 } 1553 1554 /** 1555 * ice_set_vf_link_state 1556 * @netdev: network interface device structure 1557 * @vf_id: VF identifier 1558 * @link_state: required link state 1559 * 1560 * Set VF's link state, irrespective of physical link state status 1561 */ 1562 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) 1563 { 1564 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1565 struct ice_vf *vf; 1566 int ret; 1567 1568 vf = ice_get_vf_by_id(pf, vf_id); 1569 if (!vf) 1570 return -EINVAL; 1571 1572 ret = ice_check_vf_ready_for_cfg(vf); 1573 if (ret) 1574 goto out_put_vf; 1575 1576 switch (link_state) { 1577 case IFLA_VF_LINK_STATE_AUTO: 1578 vf->link_forced = false; 1579 break; 1580 case IFLA_VF_LINK_STATE_ENABLE: 1581 vf->link_forced = true; 1582 vf->link_up = true; 1583 break; 1584 case IFLA_VF_LINK_STATE_DISABLE: 1585 vf->link_forced = true; 1586 vf->link_up = false; 1587 break; 1588 default: 1589 ret = -EINVAL; 1590 goto out_put_vf; 1591 } 1592 1593 ice_vc_notify_vf_link_state(vf); 1594 1595 out_put_vf: 1596 ice_put_vf(vf); 1597 return ret; 1598 } 1599 1600 /** 1601 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs 1602 * @pf: PF associated with VFs 1603 */ 1604 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) 1605 { 1606 struct ice_vf *vf; 1607 unsigned int bkt; 1608 int rate = 0; 1609 1610 rcu_read_lock(); 1611 ice_for_each_vf_rcu(pf, bkt, vf) 1612 rate += vf->min_tx_rate; 1613 rcu_read_unlock(); 1614 1615 return rate; 1616 } 1617 1618 /** 1619 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription 1620 * @vf: VF trying to configure min_tx_rate 1621 * @min_tx_rate: min Tx rate in Mbps 1622 * 1623 * Check if the min_tx_rate being passed in will cause oversubscription of total 1624 * min_tx_rate based on the current link speed and all other VFs configured 1625 * min_tx_rate 1626 * 1627 * Return true if the passed min_tx_rate would cause oversubscription, else 1628 * return false 1629 */ 1630 static bool 1631 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) 1632 { 1633 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 1634 int all_vfs_min_tx_rate; 1635 int link_speed_mbps; 1636 1637 if (WARN_ON(!vsi)) 1638 return false; 1639 1640 link_speed_mbps = ice_get_link_speed_mbps(vsi); 1641 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); 1642 1643 /* this VF's previous rate is being overwritten */ 1644 all_vfs_min_tx_rate -= vf->min_tx_rate; 1645 1646 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { 1647 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", 1648 min_tx_rate, vf->vf_id, 1649 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, 1650 link_speed_mbps); 1651 return true; 1652 } 1653 1654 return false; 1655 } 1656 1657 /** 1658 * ice_set_vf_bw - set min/max VF bandwidth 1659 * @netdev: network interface device structure 1660 * @vf_id: VF identifier 1661 * @min_tx_rate: Minimum Tx rate in Mbps 1662 * @max_tx_rate: Maximum Tx rate in Mbps 1663 */ 1664 int 1665 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, 1666 int max_tx_rate) 1667 { 1668 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1669 struct ice_vsi *vsi; 1670 struct device *dev; 1671 struct ice_vf *vf; 1672 int ret; 1673 1674 dev = ice_pf_to_dev(pf); 1675 1676 vf = ice_get_vf_by_id(pf, vf_id); 1677 if (!vf) 1678 return -EINVAL; 1679 1680 ret = ice_check_vf_ready_for_cfg(vf); 1681 if (ret) 1682 goto out_put_vf; 1683 1684 vsi = ice_get_vf_vsi(vf); 1685 if (!vsi) { 1686 ret = -EINVAL; 1687 goto out_put_vf; 1688 } 1689 1690 if (min_tx_rate && ice_is_dcb_active(pf)) { 1691 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); 1692 ret = -EOPNOTSUPP; 1693 goto out_put_vf; 1694 } 1695 1696 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { 1697 ret = -EINVAL; 1698 goto out_put_vf; 1699 } 1700 1701 if (vf->min_tx_rate != (unsigned int)min_tx_rate) { 1702 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); 1703 if (ret) { 1704 dev_err(dev, "Unable to set min-tx-rate for VF %d\n", 1705 vf->vf_id); 1706 goto out_put_vf; 1707 } 1708 1709 vf->min_tx_rate = min_tx_rate; 1710 } 1711 1712 if (vf->max_tx_rate != (unsigned int)max_tx_rate) { 1713 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); 1714 if (ret) { 1715 dev_err(dev, "Unable to set max-tx-rate for VF %d\n", 1716 vf->vf_id); 1717 goto out_put_vf; 1718 } 1719 1720 vf->max_tx_rate = max_tx_rate; 1721 } 1722 1723 out_put_vf: 1724 ice_put_vf(vf); 1725 return ret; 1726 } 1727 1728 /** 1729 * ice_get_vf_stats - populate some stats for the VF 1730 * @netdev: the netdev of the PF 1731 * @vf_id: the host OS identifier (0-255) 1732 * @vf_stats: pointer to the OS memory to be initialized 1733 */ 1734 int ice_get_vf_stats(struct net_device *netdev, int vf_id, 1735 struct ifla_vf_stats *vf_stats) 1736 { 1737 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1738 struct ice_eth_stats *stats; 1739 struct ice_vsi *vsi; 1740 struct ice_vf *vf; 1741 int ret; 1742 1743 vf = ice_get_vf_by_id(pf, vf_id); 1744 if (!vf) 1745 return -EINVAL; 1746 1747 ret = ice_check_vf_ready_for_cfg(vf); 1748 if (ret) 1749 goto out_put_vf; 1750 1751 vsi = ice_get_vf_vsi(vf); 1752 if (!vsi) { 1753 ret = -EINVAL; 1754 goto out_put_vf; 1755 } 1756 1757 ice_update_eth_stats(vsi); 1758 stats = &vsi->eth_stats; 1759 1760 memset(vf_stats, 0, sizeof(*vf_stats)); 1761 1762 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + 1763 stats->rx_multicast; 1764 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + 1765 stats->tx_multicast; 1766 vf_stats->rx_bytes = stats->rx_bytes; 1767 vf_stats->tx_bytes = stats->tx_bytes; 1768 vf_stats->broadcast = stats->rx_broadcast; 1769 vf_stats->multicast = stats->rx_multicast; 1770 vf_stats->rx_dropped = stats->rx_discards; 1771 vf_stats->tx_dropped = stats->tx_discards; 1772 1773 out_put_vf: 1774 ice_put_vf(vf); 1775 return ret; 1776 } 1777 1778 /** 1779 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported 1780 * @hw: hardware structure used to check the VLAN mode 1781 * @vlan_proto: VLAN TPID being checked 1782 * 1783 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q 1784 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN 1785 * Mode (SVM), then only ETH_P_8021Q is supported. 1786 */ 1787 static bool 1788 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) 1789 { 1790 bool is_supported = false; 1791 1792 switch (vlan_proto) { 1793 case ETH_P_8021Q: 1794 is_supported = true; 1795 break; 1796 case ETH_P_8021AD: 1797 if (ice_is_dvm_ena(hw)) 1798 is_supported = true; 1799 break; 1800 } 1801 1802 return is_supported; 1803 } 1804 1805 /** 1806 * ice_set_vf_port_vlan 1807 * @netdev: network interface device structure 1808 * @vf_id: VF identifier 1809 * @vlan_id: VLAN ID being set 1810 * @qos: priority setting 1811 * @vlan_proto: VLAN protocol 1812 * 1813 * program VF Port VLAN ID and/or QoS 1814 */ 1815 int 1816 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, 1817 __be16 vlan_proto) 1818 { 1819 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1820 u16 local_vlan_proto = ntohs(vlan_proto); 1821 struct device *dev; 1822 struct ice_vf *vf; 1823 int ret; 1824 1825 dev = ice_pf_to_dev(pf); 1826 1827 if (vlan_id >= VLAN_N_VID || qos > 7) { 1828 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", 1829 vf_id, vlan_id, qos); 1830 return -EINVAL; 1831 } 1832 1833 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { 1834 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", 1835 local_vlan_proto); 1836 return -EPROTONOSUPPORT; 1837 } 1838 1839 vf = ice_get_vf_by_id(pf, vf_id); 1840 if (!vf) 1841 return -EINVAL; 1842 1843 ret = ice_check_vf_ready_for_cfg(vf); 1844 if (ret) 1845 goto out_put_vf; 1846 1847 if (ice_vf_get_port_vlan_prio(vf) == qos && 1848 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && 1849 ice_vf_get_port_vlan_id(vf) == vlan_id) { 1850 /* duplicate request, so just return success */ 1851 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", 1852 vlan_id, qos, local_vlan_proto); 1853 ret = 0; 1854 goto out_put_vf; 1855 } 1856 1857 mutex_lock(&vf->cfg_lock); 1858 1859 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); 1860 if (ice_vf_is_port_vlan_ena(vf)) 1861 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", 1862 vlan_id, qos, local_vlan_proto, vf_id); 1863 else 1864 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); 1865 1866 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1867 mutex_unlock(&vf->cfg_lock); 1868 1869 out_put_vf: 1870 ice_put_vf(vf); 1871 return ret; 1872 } 1873 1874 /** 1875 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event 1876 * @vf: pointer to the VF structure 1877 */ 1878 void ice_print_vf_rx_mdd_event(struct ice_vf *vf) 1879 { 1880 struct ice_pf *pf = vf->pf; 1881 struct device *dev; 1882 1883 dev = ice_pf_to_dev(pf); 1884 1885 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1886 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, 1887 vf->dev_lan_addr, 1888 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1889 ? "on" : "off"); 1890 } 1891 1892 /** 1893 * ice_print_vfs_mdd_events - print VFs malicious driver detect event 1894 * @pf: pointer to the PF structure 1895 * 1896 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. 1897 */ 1898 void ice_print_vfs_mdd_events(struct ice_pf *pf) 1899 { 1900 struct device *dev = ice_pf_to_dev(pf); 1901 struct ice_hw *hw = &pf->hw; 1902 struct ice_vf *vf; 1903 unsigned int bkt; 1904 1905 /* check that there are pending MDD events to print */ 1906 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) 1907 return; 1908 1909 /* VF MDD event logs are rate limited to one second intervals */ 1910 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) 1911 return; 1912 1913 pf->vfs.last_printed_mdd_jiffies = jiffies; 1914 1915 mutex_lock(&pf->vfs.table_lock); 1916 ice_for_each_vf(pf, bkt, vf) { 1917 /* only print Rx MDD event message if there are new events */ 1918 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 1919 vf->mdd_rx_events.last_printed = 1920 vf->mdd_rx_events.count; 1921 ice_print_vf_rx_mdd_event(vf); 1922 } 1923 1924 /* only print Tx MDD event message if there are new events */ 1925 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 1926 vf->mdd_tx_events.last_printed = 1927 vf->mdd_tx_events.count; 1928 1929 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n", 1930 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id, 1931 vf->dev_lan_addr); 1932 } 1933 } 1934 mutex_unlock(&pf->vfs.table_lock); 1935 } 1936 1937 /** 1938 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR 1939 * @pf: pointer to the PF structure 1940 * 1941 * Called when recovering from a PF FLR to restore interrupt capability to 1942 * the VFs. 1943 */ 1944 void ice_restore_all_vfs_msi_state(struct ice_pf *pf) 1945 { 1946 struct ice_vf *vf; 1947 u32 bkt; 1948 1949 ice_for_each_vf(pf, bkt, vf) 1950 pci_restore_msi_state(vf->vfdev); 1951 } 1952