1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice_base.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_flow.h" 11 #include "ice_eswitch.h" 12 #include "ice_virtchnl_allowlist.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_vf_vsi_vlan_ops.h" 15 #include "ice_vlan.h" 16 17 /** 18 * ice_free_vf_entries - Free all VF entries from the hash table 19 * @pf: pointer to the PF structure 20 * 21 * Iterate over the VF hash table, removing and releasing all VF entries. 22 * Called during VF teardown or as cleanup during failed VF initialization. 23 */ 24 static void ice_free_vf_entries(struct ice_pf *pf) 25 { 26 struct ice_vfs *vfs = &pf->vfs; 27 struct hlist_node *tmp; 28 struct ice_vf *vf; 29 unsigned int bkt; 30 31 /* Remove all VFs from the hash table and release their main 32 * reference. Once all references to the VF are dropped, ice_put_vf() 33 * will call ice_release_vf which will remove the VF memory. 34 */ 35 lockdep_assert_held(&vfs->table_lock); 36 37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { 38 hash_del_rcu(&vf->entry); 39 ice_put_vf(vf); 40 } 41 } 42 43 /** 44 * ice_free_vf_res - Free a VF's resources 45 * @vf: pointer to the VF info 46 */ 47 static void ice_free_vf_res(struct ice_vf *vf) 48 { 49 struct ice_pf *pf = vf->pf; 50 int i, last_vector_idx; 51 52 /* First, disable VF's configuration API to prevent OS from 53 * accessing the VF's VSI after it's freed or invalidated. 54 */ 55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states); 56 ice_vf_fdir_exit(vf); 57 /* free VF control VSI */ 58 if (vf->ctrl_vsi_idx != ICE_NO_VSI) 59 ice_vf_ctrl_vsi_release(vf); 60 61 /* free VSI and disconnect it from the parent uplink */ 62 if (vf->lan_vsi_idx != ICE_NO_VSI) { 63 ice_vf_vsi_release(vf); 64 vf->num_mac = 0; 65 } 66 67 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1; 68 69 /* clear VF MDD event information */ 70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); 71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); 72 73 /* Disable interrupts so that VF starts in a known state */ 74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { 75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); 76 ice_flush(&pf->hw); 77 } 78 /* reset some of the state variables keeping track of the resources */ 79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); 80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); 81 } 82 83 /** 84 * ice_dis_vf_mappings 85 * @vf: pointer to the VF structure 86 */ 87 static void ice_dis_vf_mappings(struct ice_vf *vf) 88 { 89 struct ice_pf *pf = vf->pf; 90 struct ice_vsi *vsi; 91 struct device *dev; 92 int first, last, v; 93 struct ice_hw *hw; 94 95 hw = &pf->hw; 96 vsi = ice_get_vf_vsi(vf); 97 if (WARN_ON(!vsi)) 98 return; 99 100 dev = ice_pf_to_dev(pf); 101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0); 102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); 103 104 first = vf->first_vector_idx; 105 last = first + vf->num_msix - 1; 106 for (v = first; v <= last; v++) { 107 u32 reg; 108 109 reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) | 110 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 111 wr32(hw, GLINT_VECT2FUNC(v), reg); 112 } 113 114 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) 115 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); 116 else 117 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 118 119 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) 120 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); 121 else 122 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 123 } 124 125 /** 126 * ice_sriov_free_msix_res - Reset/free any used MSIX resources 127 * @pf: pointer to the PF structure 128 * 129 * Since no MSIX entries are taken from the pf->irq_tracker then just clear 130 * the pf->sriov_base_vector. 131 * 132 * Returns 0 on success, and -EINVAL on error. 133 */ 134 static int ice_sriov_free_msix_res(struct ice_pf *pf) 135 { 136 if (!pf) 137 return -EINVAL; 138 139 bitmap_free(pf->sriov_irq_bm); 140 pf->sriov_irq_size = 0; 141 pf->sriov_base_vector = 0; 142 143 return 0; 144 } 145 146 /** 147 * ice_free_vfs - Free all VFs 148 * @pf: pointer to the PF structure 149 */ 150 void ice_free_vfs(struct ice_pf *pf) 151 { 152 struct device *dev = ice_pf_to_dev(pf); 153 struct ice_vfs *vfs = &pf->vfs; 154 struct ice_hw *hw = &pf->hw; 155 struct ice_vf *vf; 156 unsigned int bkt; 157 158 if (!ice_has_vfs(pf)) 159 return; 160 161 while (test_and_set_bit(ICE_VF_DIS, pf->state)) 162 usleep_range(1000, 2000); 163 164 /* Disable IOV before freeing resources. This lets any VF drivers 165 * running in the host get themselves cleaned up before we yank 166 * the carpet out from underneath their feet. 167 */ 168 if (!pci_vfs_assigned(pf->pdev)) 169 pci_disable_sriov(pf->pdev); 170 else 171 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); 172 173 ice_eswitch_reserve_cp_queues(pf, -ice_get_num_vfs(pf)); 174 175 mutex_lock(&vfs->table_lock); 176 177 ice_for_each_vf(pf, bkt, vf) { 178 mutex_lock(&vf->cfg_lock); 179 180 ice_eswitch_detach(pf, vf); 181 ice_dis_vf_qs(vf); 182 183 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { 184 /* disable VF qp mappings and set VF disable state */ 185 ice_dis_vf_mappings(vf); 186 set_bit(ICE_VF_STATE_DIS, vf->vf_states); 187 ice_free_vf_res(vf); 188 } 189 190 if (!pci_vfs_assigned(pf->pdev)) { 191 u32 reg_idx, bit_idx; 192 193 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 194 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 195 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 196 } 197 198 /* clear malicious info since the VF is getting released */ 199 list_del(&vf->mbx_info.list_entry); 200 201 mutex_unlock(&vf->cfg_lock); 202 } 203 204 if (ice_sriov_free_msix_res(pf)) 205 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); 206 207 vfs->num_qps_per = 0; 208 ice_free_vf_entries(pf); 209 210 mutex_unlock(&vfs->table_lock); 211 212 clear_bit(ICE_VF_DIS, pf->state); 213 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 214 } 215 216 /** 217 * ice_vf_vsi_setup - Set up a VF VSI 218 * @vf: VF to setup VSI for 219 * 220 * Returns pointer to the successfully allocated VSI struct on success, 221 * otherwise returns NULL on failure. 222 */ 223 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) 224 { 225 struct ice_vsi_cfg_params params = {}; 226 struct ice_pf *pf = vf->pf; 227 struct ice_vsi *vsi; 228 229 params.type = ICE_VSI_VF; 230 params.pi = ice_vf_get_port_info(vf); 231 params.vf = vf; 232 params.flags = ICE_VSI_FLAG_INIT; 233 234 vsi = ice_vsi_setup(pf, ¶ms); 235 236 if (!vsi) { 237 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); 238 ice_vf_invalidate_vsi(vf); 239 return NULL; 240 } 241 242 vf->lan_vsi_idx = vsi->idx; 243 vf->lan_vsi_num = vsi->vsi_num; 244 245 return vsi; 246 } 247 248 249 /** 250 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware 251 * @vf: VF to enable MSIX mappings for 252 * 253 * Some of the registers need to be indexed/configured using hardware global 254 * device values and other registers need 0-based values, which represent PF 255 * based values. 256 */ 257 static void ice_ena_vf_msix_mappings(struct ice_vf *vf) 258 { 259 int device_based_first_msix, device_based_last_msix; 260 int pf_based_first_msix, pf_based_last_msix, v; 261 struct ice_pf *pf = vf->pf; 262 int device_based_vf_id; 263 struct ice_hw *hw; 264 u32 reg; 265 266 hw = &pf->hw; 267 pf_based_first_msix = vf->first_vector_idx; 268 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1; 269 270 device_based_first_msix = pf_based_first_msix + 271 pf->hw.func_caps.common_cap.msix_vector_first_id; 272 device_based_last_msix = 273 (device_based_first_msix + vf->num_msix) - 1; 274 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; 275 276 reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) | 277 FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) | 278 VPINT_ALLOC_VALID_M; 279 wr32(hw, VPINT_ALLOC(vf->vf_id), reg); 280 281 reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) | 282 FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) | 283 VPINT_ALLOC_PCI_VALID_M; 284 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); 285 286 /* map the interrupts to its functions */ 287 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { 288 reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) | 289 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id); 290 wr32(hw, GLINT_VECT2FUNC(v), reg); 291 } 292 293 /* Map mailbox interrupt to VF MSI-X vector 0 */ 294 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); 295 } 296 297 /** 298 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF 299 * @vf: VF to enable the mappings for 300 * @max_txq: max Tx queues allowed on the VF's VSI 301 * @max_rxq: max Rx queues allowed on the VF's VSI 302 */ 303 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) 304 { 305 struct device *dev = ice_pf_to_dev(vf->pf); 306 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 307 struct ice_hw *hw = &vf->pf->hw; 308 u32 reg; 309 310 if (WARN_ON(!vsi)) 311 return; 312 313 /* set regardless of mapping mode */ 314 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); 315 316 /* VF Tx queues allocation */ 317 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { 318 /* set the VF PF Tx queue range 319 * VFNUMQ value should be set to (number of queues - 1). A value 320 * of 0 means 1 queue and a value of 255 means 256 queues 321 */ 322 reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) | 323 FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1); 324 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); 325 } else { 326 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); 327 } 328 329 /* set regardless of mapping mode */ 330 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); 331 332 /* VF Rx queues allocation */ 333 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { 334 /* set the VF PF Rx queue range 335 * VFNUMQ value should be set to (number of queues - 1). A value 336 * of 0 means 1 queue and a value of 255 means 256 queues 337 */ 338 reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) | 339 FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1); 340 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); 341 } else { 342 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); 343 } 344 } 345 346 /** 347 * ice_ena_vf_mappings - enable VF MSIX and queue mapping 348 * @vf: pointer to the VF structure 349 */ 350 static void ice_ena_vf_mappings(struct ice_vf *vf) 351 { 352 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 353 354 if (WARN_ON(!vsi)) 355 return; 356 357 ice_ena_vf_msix_mappings(vf); 358 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); 359 } 360 361 /** 362 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space 363 * @vf: VF to calculate the register index for 364 * @q_vector: a q_vector associated to the VF 365 */ 366 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) 367 { 368 if (!vf || !q_vector) 369 return -EINVAL; 370 371 /* always add one to account for the OICR being the first MSIX */ 372 return vf->first_vector_idx + q_vector->v_idx + 1; 373 } 374 375 /** 376 * ice_sriov_set_msix_res - Set any used MSIX resources 377 * @pf: pointer to PF structure 378 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs 379 * 380 * This function allows SR-IOV resources to be taken from the end of the PF's 381 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We 382 * just set the pf->sriov_base_vector and return success. 383 * 384 * If there are not enough resources available, return an error. This should 385 * always be caught by ice_set_per_vf_res(). 386 * 387 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors 388 * in the PF's space available for SR-IOV. 389 */ 390 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) 391 { 392 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 393 int vectors_used = ice_get_max_used_msix_vector(pf); 394 int sriov_base_vector; 395 396 sriov_base_vector = total_vectors - num_msix_needed; 397 398 /* make sure we only grab irq_tracker entries from the list end and 399 * that we have enough available MSIX vectors 400 */ 401 if (sriov_base_vector < vectors_used) 402 return -EINVAL; 403 404 pf->sriov_base_vector = sriov_base_vector; 405 406 return 0; 407 } 408 409 /** 410 * ice_set_per_vf_res - check if vectors and queues are available 411 * @pf: pointer to the PF structure 412 * @num_vfs: the number of SR-IOV VFs being configured 413 * 414 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we 415 * get more vectors and can enable more queues per VF. Note that this does not 416 * grab any vectors from the SW pool already allocated. Also note, that all 417 * vector counts include one for each VF's miscellaneous interrupt vector 418 * (i.e. OICR). 419 * 420 * Minimum VFs - 2 vectors, 1 queue pair 421 * Small VFs - 5 vectors, 4 queue pairs 422 * Medium VFs - 17 vectors, 16 queue pairs 423 * 424 * Second, determine number of queue pairs per VF by starting with a pre-defined 425 * maximum each VF supports. If this is not possible, then we adjust based on 426 * queue pairs available on the device. 427 * 428 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used 429 * by each VF during VF initialization and reset. 430 */ 431 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) 432 { 433 int vectors_used = ice_get_max_used_msix_vector(pf); 434 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; 435 int msix_avail_per_vf, msix_avail_for_sriov; 436 struct device *dev = ice_pf_to_dev(pf); 437 int err; 438 439 lockdep_assert_held(&pf->vfs.table_lock); 440 441 if (!num_vfs) 442 return -EINVAL; 443 444 /* determine MSI-X resources per VF */ 445 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - 446 vectors_used; 447 msix_avail_per_vf = msix_avail_for_sriov / num_vfs; 448 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { 449 num_msix_per_vf = ICE_NUM_VF_MSIX_MED; 450 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { 451 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; 452 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { 453 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; 454 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { 455 num_msix_per_vf = ICE_MIN_INTR_PER_VF; 456 } else { 457 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", 458 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, 459 num_vfs); 460 return -ENOSPC; 461 } 462 463 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 464 ICE_MAX_RSS_QS_PER_VF); 465 avail_qs = ice_get_avail_txq_count(pf) / num_vfs; 466 if (!avail_qs) 467 num_txq = 0; 468 else if (num_txq > avail_qs) 469 num_txq = rounddown_pow_of_two(avail_qs); 470 471 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, 472 ICE_MAX_RSS_QS_PER_VF); 473 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; 474 if (!avail_qs) 475 num_rxq = 0; 476 else if (num_rxq > avail_qs) 477 num_rxq = rounddown_pow_of_two(avail_qs); 478 479 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { 480 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", 481 ICE_MIN_QS_PER_VF, num_vfs); 482 return -ENOSPC; 483 } 484 485 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); 486 if (err) { 487 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", 488 num_vfs, err); 489 return err; 490 } 491 492 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ 493 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); 494 pf->vfs.num_msix_per = num_msix_per_vf; 495 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", 496 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); 497 498 return 0; 499 } 500 501 /** 502 * ice_sriov_get_irqs - get irqs for SR-IOV usacase 503 * @pf: pointer to PF structure 504 * @needed: number of irqs to get 505 * 506 * This returns the first MSI-X vector index in PF space that is used by this 507 * VF. This index is used when accessing PF relative registers such as 508 * GLINT_VECT2FUNC and GLINT_DYN_CTL. 509 * This will always be the OICR index in the AVF driver so any functionality 510 * using vf->first_vector_idx for queue configuration_id: id of VF which will 511 * use this irqs 512 * 513 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are 514 * allocated from the end of global irq index. First bit in sriov_irq_bm means 515 * last irq index etc. It simplifies extension of SRIOV vectors. 516 * They will be always located from sriov_base_vector to the last irq 517 * index. While increasing/decreasing sriov_base_vector can be moved. 518 */ 519 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed) 520 { 521 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm, 522 pf->sriov_irq_size, 0, needed, 0); 523 /* conversion from number in bitmap to global irq index */ 524 int index = pf->sriov_irq_size - res - needed; 525 526 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector) 527 return -ENOENT; 528 529 bitmap_set(pf->sriov_irq_bm, res, needed); 530 return index; 531 } 532 533 /** 534 * ice_sriov_free_irqs - free irqs used by the VF 535 * @pf: pointer to PF structure 536 * @vf: pointer to VF structure 537 */ 538 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf) 539 { 540 /* Move back from first vector index to first index in bitmap */ 541 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix; 542 543 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix); 544 vf->first_vector_idx = 0; 545 } 546 547 /** 548 * ice_init_vf_vsi_res - initialize/setup VF VSI resources 549 * @vf: VF to initialize/setup the VSI for 550 * 551 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the 552 * VF VSI's broadcast filter and is only used during initial VF creation. 553 */ 554 static int ice_init_vf_vsi_res(struct ice_vf *vf) 555 { 556 struct ice_pf *pf = vf->pf; 557 struct ice_vsi *vsi; 558 int err; 559 560 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 561 if (vf->first_vector_idx < 0) 562 return -ENOMEM; 563 564 vsi = ice_vf_vsi_setup(vf); 565 if (!vsi) 566 return -ENOMEM; 567 568 err = ice_vf_init_host_cfg(vf, vsi); 569 if (err) 570 goto release_vsi; 571 572 return 0; 573 574 release_vsi: 575 ice_vf_vsi_release(vf); 576 return err; 577 } 578 579 /** 580 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV 581 * @pf: PF the VFs are associated with 582 */ 583 static int ice_start_vfs(struct ice_pf *pf) 584 { 585 struct ice_hw *hw = &pf->hw; 586 unsigned int bkt, it_cnt; 587 struct ice_vf *vf; 588 int retval; 589 590 lockdep_assert_held(&pf->vfs.table_lock); 591 592 it_cnt = 0; 593 ice_for_each_vf(pf, bkt, vf) { 594 vf->vf_ops->clear_reset_trigger(vf); 595 596 retval = ice_init_vf_vsi_res(vf); 597 if (retval) { 598 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", 599 vf->vf_id, retval); 600 goto teardown; 601 } 602 603 retval = ice_eswitch_attach(pf, vf); 604 if (retval) { 605 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d", 606 vf->vf_id, retval); 607 ice_vf_vsi_release(vf); 608 goto teardown; 609 } 610 611 set_bit(ICE_VF_STATE_INIT, vf->vf_states); 612 ice_ena_vf_mappings(vf); 613 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 614 it_cnt++; 615 } 616 617 ice_flush(hw); 618 return 0; 619 620 teardown: 621 ice_for_each_vf(pf, bkt, vf) { 622 if (it_cnt == 0) 623 break; 624 625 ice_dis_vf_mappings(vf); 626 ice_vf_vsi_release(vf); 627 it_cnt--; 628 } 629 630 return retval; 631 } 632 633 /** 634 * ice_sriov_free_vf - Free VF memory after all references are dropped 635 * @vf: pointer to VF to free 636 * 637 * Called by ice_put_vf through ice_release_vf once the last reference to a VF 638 * structure has been dropped. 639 */ 640 static void ice_sriov_free_vf(struct ice_vf *vf) 641 { 642 mutex_destroy(&vf->cfg_lock); 643 644 kfree_rcu(vf, rcu); 645 } 646 647 /** 648 * ice_sriov_clear_reset_state - clears VF Reset status register 649 * @vf: the vf to configure 650 */ 651 static void ice_sriov_clear_reset_state(struct ice_vf *vf) 652 { 653 struct ice_hw *hw = &vf->pf->hw; 654 655 /* Clear the reset status register so that VF immediately sees that 656 * the device is resetting, even if hardware hasn't yet gotten around 657 * to clearing VFGEN_RSTAT for us. 658 */ 659 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); 660 } 661 662 /** 663 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers 664 * @vf: the vf to configure 665 */ 666 static void ice_sriov_clear_mbx_register(struct ice_vf *vf) 667 { 668 struct ice_pf *pf = vf->pf; 669 670 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); 671 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); 672 } 673 674 /** 675 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF 676 * @vf: pointer to VF structure 677 * @is_vflr: true if reset occurred due to VFLR 678 * 679 * Trigger and cleanup after a VF reset for a SR-IOV VF. 680 */ 681 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) 682 { 683 struct ice_pf *pf = vf->pf; 684 u32 reg, reg_idx, bit_idx; 685 unsigned int vf_abs_id, i; 686 struct device *dev; 687 struct ice_hw *hw; 688 689 dev = ice_pf_to_dev(pf); 690 hw = &pf->hw; 691 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; 692 693 /* In the case of a VFLR, HW has already reset the VF and we just need 694 * to clean up. Otherwise we must first trigger the reset using the 695 * VFRTRIG register. 696 */ 697 if (!is_vflr) { 698 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 699 reg |= VPGEN_VFRTRIG_VFSWR_M; 700 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 701 } 702 703 /* clear the VFLR bit in GLGEN_VFLRSTAT */ 704 reg_idx = (vf_abs_id) / 32; 705 bit_idx = (vf_abs_id) % 32; 706 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); 707 ice_flush(hw); 708 709 wr32(hw, PF_PCI_CIAA, 710 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); 711 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { 712 reg = rd32(hw, PF_PCI_CIAD); 713 /* no transactions pending so stop polling */ 714 if ((reg & VF_TRANS_PENDING_M) == 0) 715 break; 716 717 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); 718 udelay(ICE_PCI_CIAD_WAIT_DELAY_US); 719 } 720 } 721 722 /** 723 * ice_sriov_poll_reset_status - poll SRIOV VF reset status 724 * @vf: pointer to VF structure 725 * 726 * Returns true when reset is successful, else returns false 727 */ 728 static bool ice_sriov_poll_reset_status(struct ice_vf *vf) 729 { 730 struct ice_pf *pf = vf->pf; 731 unsigned int i; 732 u32 reg; 733 734 for (i = 0; i < 10; i++) { 735 /* VF reset requires driver to first reset the VF and then 736 * poll the status register to make sure that the reset 737 * completed successfully. 738 */ 739 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); 740 if (reg & VPGEN_VFRSTAT_VFRD_M) 741 return true; 742 743 /* only sleep if the reset is not done */ 744 usleep_range(10, 20); 745 } 746 return false; 747 } 748 749 /** 750 * ice_sriov_clear_reset_trigger - enable VF to access hardware 751 * @vf: VF to enabled hardware access for 752 */ 753 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) 754 { 755 struct ice_hw *hw = &vf->pf->hw; 756 u32 reg; 757 758 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); 759 reg &= ~VPGEN_VFRTRIG_VFSWR_M; 760 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); 761 ice_flush(hw); 762 } 763 764 /** 765 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt 766 * @vf: VF to perform tasks on 767 */ 768 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) 769 { 770 ice_ena_vf_mappings(vf); 771 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); 772 } 773 774 static const struct ice_vf_ops ice_sriov_vf_ops = { 775 .reset_type = ICE_VF_RESET, 776 .free = ice_sriov_free_vf, 777 .clear_reset_state = ice_sriov_clear_reset_state, 778 .clear_mbx_register = ice_sriov_clear_mbx_register, 779 .trigger_reset_register = ice_sriov_trigger_reset_register, 780 .poll_reset_status = ice_sriov_poll_reset_status, 781 .clear_reset_trigger = ice_sriov_clear_reset_trigger, 782 .irq_close = NULL, 783 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, 784 }; 785 786 /** 787 * ice_create_vf_entries - Allocate and insert VF entries 788 * @pf: pointer to the PF structure 789 * @num_vfs: the number of VFs to allocate 790 * 791 * Allocate new VF entries and insert them into the hash table. Set some 792 * basic default fields for initializing the new VFs. 793 * 794 * After this function exits, the hash table will have num_vfs entries 795 * inserted. 796 * 797 * Returns 0 on success or an integer error code on failure. 798 */ 799 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) 800 { 801 struct pci_dev *pdev = pf->pdev; 802 struct ice_vfs *vfs = &pf->vfs; 803 struct pci_dev *vfdev = NULL; 804 struct ice_vf *vf; 805 u16 vf_pdev_id; 806 int err, pos; 807 808 lockdep_assert_held(&vfs->table_lock); 809 810 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 811 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id); 812 813 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) { 814 vf = kzalloc(sizeof(*vf), GFP_KERNEL); 815 if (!vf) { 816 err = -ENOMEM; 817 goto err_free_entries; 818 } 819 kref_init(&vf->refcnt); 820 821 vf->pf = pf; 822 vf->vf_id = vf_id; 823 824 /* set sriov vf ops for VFs created during SRIOV flow */ 825 vf->vf_ops = &ice_sriov_vf_ops; 826 827 ice_initialize_vf_entry(vf); 828 829 do { 830 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev); 831 } while (vfdev && vfdev->physfn != pdev); 832 vf->vfdev = vfdev; 833 vf->vf_sw_id = pf->first_sw; 834 835 pci_dev_get(vfdev); 836 837 /* set default number of MSI-X */ 838 vf->num_msix = pf->vfs.num_msix_per; 839 vf->num_vf_qs = pf->vfs.num_qps_per; 840 ice_vc_set_default_allowlist(vf); 841 842 hash_add_rcu(vfs->table, &vf->entry, vf_id); 843 } 844 845 /* Decrement of refcount done by pci_get_device() inside the loop does 846 * not touch the last iteration's vfdev, so it has to be done manually 847 * to balance pci_dev_get() added within the loop. 848 */ 849 pci_dev_put(vfdev); 850 851 return 0; 852 853 err_free_entries: 854 ice_free_vf_entries(pf); 855 return err; 856 } 857 858 /** 859 * ice_ena_vfs - enable VFs so they are ready to be used 860 * @pf: pointer to the PF structure 861 * @num_vfs: number of VFs to enable 862 */ 863 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) 864 { 865 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; 866 struct device *dev = ice_pf_to_dev(pf); 867 struct ice_hw *hw = &pf->hw; 868 int ret; 869 870 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL); 871 if (!pf->sriov_irq_bm) 872 return -ENOMEM; 873 pf->sriov_irq_size = total_vectors; 874 875 /* Disable global interrupt 0 so we don't try to handle the VFLR. */ 876 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 877 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 878 set_bit(ICE_OICR_INTR_DIS, pf->state); 879 ice_flush(hw); 880 881 ret = pci_enable_sriov(pf->pdev, num_vfs); 882 if (ret) 883 goto err_unroll_intr; 884 885 mutex_lock(&pf->vfs.table_lock); 886 887 ret = ice_set_per_vf_res(pf, num_vfs); 888 if (ret) { 889 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", 890 num_vfs, ret); 891 goto err_unroll_sriov; 892 } 893 894 ret = ice_create_vf_entries(pf, num_vfs); 895 if (ret) { 896 dev_err(dev, "Failed to allocate VF entries for %d VFs\n", 897 num_vfs); 898 goto err_unroll_sriov; 899 } 900 901 ice_eswitch_reserve_cp_queues(pf, num_vfs); 902 ret = ice_start_vfs(pf); 903 if (ret) { 904 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); 905 ret = -EAGAIN; 906 goto err_unroll_vf_entries; 907 } 908 909 clear_bit(ICE_VF_DIS, pf->state); 910 911 /* rearm global interrupts */ 912 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) 913 ice_irq_dynamic_ena(hw, NULL, NULL); 914 915 mutex_unlock(&pf->vfs.table_lock); 916 917 return 0; 918 919 err_unroll_vf_entries: 920 ice_free_vf_entries(pf); 921 err_unroll_sriov: 922 mutex_unlock(&pf->vfs.table_lock); 923 pci_disable_sriov(pf->pdev); 924 err_unroll_intr: 925 /* rearm interrupts here */ 926 ice_irq_dynamic_ena(hw, NULL, NULL); 927 clear_bit(ICE_OICR_INTR_DIS, pf->state); 928 bitmap_free(pf->sriov_irq_bm); 929 return ret; 930 } 931 932 /** 933 * ice_pci_sriov_ena - Enable or change number of VFs 934 * @pf: pointer to the PF structure 935 * @num_vfs: number of VFs to allocate 936 * 937 * Returns 0 on success and negative on failure 938 */ 939 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) 940 { 941 struct device *dev = ice_pf_to_dev(pf); 942 int err; 943 944 if (!num_vfs) { 945 ice_free_vfs(pf); 946 return 0; 947 } 948 949 if (num_vfs > pf->vfs.num_supported) { 950 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", 951 num_vfs, pf->vfs.num_supported); 952 return -EOPNOTSUPP; 953 } 954 955 dev_info(dev, "Enabling %d VFs\n", num_vfs); 956 err = ice_ena_vfs(pf, num_vfs); 957 if (err) { 958 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 959 return err; 960 } 961 962 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); 963 return 0; 964 } 965 966 /** 967 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks 968 * @pf: PF to enabled SR-IOV on 969 */ 970 static int ice_check_sriov_allowed(struct ice_pf *pf) 971 { 972 struct device *dev = ice_pf_to_dev(pf); 973 974 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { 975 dev_err(dev, "This device is not capable of SR-IOV\n"); 976 return -EOPNOTSUPP; 977 } 978 979 if (ice_is_safe_mode(pf)) { 980 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); 981 return -EOPNOTSUPP; 982 } 983 984 if (!ice_pf_state_is_nominal(pf)) { 985 dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); 986 return -EBUSY; 987 } 988 989 return 0; 990 } 991 992 /** 993 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs 994 * @pdev: pointer to pci_dev struct 995 * 996 * The function is called via sysfs ops 997 */ 998 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev) 999 { 1000 struct ice_pf *pf = pci_get_drvdata(pdev); 1001 1002 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf); 1003 } 1004 1005 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move) 1006 { 1007 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf)) 1008 return -ENOMEM; 1009 1010 pf->sriov_base_vector -= move; 1011 return 0; 1012 } 1013 1014 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id) 1015 { 1016 u16 vf_ids[ICE_MAX_SRIOV_VFS]; 1017 struct ice_vf *tmp_vf; 1018 int to_remap = 0, bkt; 1019 1020 /* For better irqs usage try to remap irqs of VFs 1021 * that aren't running yet 1022 */ 1023 ice_for_each_vf(pf, bkt, tmp_vf) { 1024 /* skip VF which is changing the number of MSI-X */ 1025 if (restricted_id == tmp_vf->vf_id || 1026 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states)) 1027 continue; 1028 1029 ice_dis_vf_mappings(tmp_vf); 1030 ice_sriov_free_irqs(pf, tmp_vf); 1031 1032 vf_ids[to_remap] = tmp_vf->vf_id; 1033 to_remap += 1; 1034 } 1035 1036 for (int i = 0; i < to_remap; i++) { 1037 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]); 1038 if (!tmp_vf) 1039 continue; 1040 1041 tmp_vf->first_vector_idx = 1042 ice_sriov_get_irqs(pf, tmp_vf->num_msix); 1043 /* there is no need to rebuild VSI as we are only changing the 1044 * vector indexes not amount of MSI-X or queues 1045 */ 1046 ice_ena_vf_mappings(tmp_vf); 1047 ice_put_vf(tmp_vf); 1048 } 1049 } 1050 1051 /** 1052 * ice_sriov_set_msix_vec_count 1053 * @vf_dev: pointer to pci_dev struct of VF device 1054 * @msix_vec_count: new value for MSI-X amount on this VF 1055 * 1056 * Set requested MSI-X, queues and registers for @vf_dev. 1057 * 1058 * First do some sanity checks like if there are any VFs, if the new value 1059 * is correct etc. Then disable old mapping (MSI-X and queues registers), change 1060 * MSI-X and queues, rebuild VSI and enable new mapping. 1061 * 1062 * If it is possible (driver not binded to VF) try to remap also other VFs to 1063 * linearize irqs register usage. 1064 */ 1065 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count) 1066 { 1067 struct pci_dev *pdev = pci_physfn(vf_dev); 1068 struct ice_pf *pf = pci_get_drvdata(pdev); 1069 u16 prev_msix, prev_queues, queues; 1070 bool needs_rebuild = false; 1071 struct ice_vf *vf; 1072 int id; 1073 1074 if (!ice_get_num_vfs(pf)) 1075 return -ENOENT; 1076 1077 if (!msix_vec_count) 1078 return 0; 1079 1080 queues = msix_vec_count; 1081 /* add 1 MSI-X for OICR */ 1082 msix_vec_count += 1; 1083 1084 if (queues > min(ice_get_avail_txq_count(pf), 1085 ice_get_avail_rxq_count(pf))) 1086 return -EINVAL; 1087 1088 if (msix_vec_count < ICE_MIN_INTR_PER_VF) 1089 return -EINVAL; 1090 1091 /* Transition of PCI VF function number to function_id */ 1092 for (id = 0; id < pci_num_vf(pdev); id++) { 1093 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id)) 1094 break; 1095 } 1096 1097 if (id == pci_num_vf(pdev)) 1098 return -ENOENT; 1099 1100 vf = ice_get_vf_by_id(pf, id); 1101 1102 if (!vf) 1103 return -ENOENT; 1104 1105 prev_msix = vf->num_msix; 1106 prev_queues = vf->num_vf_qs; 1107 1108 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) { 1109 ice_put_vf(vf); 1110 return -ENOSPC; 1111 } 1112 1113 ice_dis_vf_mappings(vf); 1114 ice_sriov_free_irqs(pf, vf); 1115 1116 /* Remap all VFs beside the one is now configured */ 1117 ice_sriov_remap_vectors(pf, vf->vf_id); 1118 1119 vf->num_msix = msix_vec_count; 1120 vf->num_vf_qs = queues; 1121 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1122 if (vf->first_vector_idx < 0) 1123 goto unroll; 1124 1125 if (ice_vf_reconfig_vsi(vf)) { 1126 /* Try to rebuild with previous values */ 1127 needs_rebuild = true; 1128 goto unroll; 1129 } 1130 1131 dev_info(ice_pf_to_dev(pf), 1132 "Changing VF %d resources to %d vectors and %d queues\n", 1133 vf->vf_id, vf->num_msix, vf->num_vf_qs); 1134 1135 ice_ena_vf_mappings(vf); 1136 ice_put_vf(vf); 1137 1138 return 0; 1139 1140 unroll: 1141 dev_info(ice_pf_to_dev(pf), 1142 "Can't set %d vectors on VF %d, falling back to %d\n", 1143 vf->num_msix, vf->vf_id, prev_msix); 1144 1145 vf->num_msix = prev_msix; 1146 vf->num_vf_qs = prev_queues; 1147 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix); 1148 if (vf->first_vector_idx < 0) 1149 return -EINVAL; 1150 1151 if (needs_rebuild) 1152 ice_vf_reconfig_vsi(vf); 1153 1154 ice_ena_vf_mappings(vf); 1155 ice_put_vf(vf); 1156 1157 return -EINVAL; 1158 } 1159 1160 /** 1161 * ice_sriov_configure - Enable or change number of VFs via sysfs 1162 * @pdev: pointer to a pci_dev structure 1163 * @num_vfs: number of VFs to allocate or 0 to free VFs 1164 * 1165 * This function is called when the user updates the number of VFs in sysfs. On 1166 * success return whatever num_vfs was set to by the caller. Return negative on 1167 * failure. 1168 */ 1169 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) 1170 { 1171 struct ice_pf *pf = pci_get_drvdata(pdev); 1172 struct device *dev = ice_pf_to_dev(pf); 1173 int err; 1174 1175 err = ice_check_sriov_allowed(pf); 1176 if (err) 1177 return err; 1178 1179 if (!num_vfs) { 1180 if (!pci_vfs_assigned(pdev)) { 1181 ice_free_vfs(pf); 1182 return 0; 1183 } 1184 1185 dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); 1186 return -EBUSY; 1187 } 1188 1189 err = ice_pci_sriov_ena(pf, num_vfs); 1190 if (err) 1191 return err; 1192 1193 return num_vfs; 1194 } 1195 1196 /** 1197 * ice_process_vflr_event - Free VF resources via IRQ calls 1198 * @pf: pointer to the PF structure 1199 * 1200 * called from the VFLR IRQ handler to 1201 * free up VF resources and state variables 1202 */ 1203 void ice_process_vflr_event(struct ice_pf *pf) 1204 { 1205 struct ice_hw *hw = &pf->hw; 1206 struct ice_vf *vf; 1207 unsigned int bkt; 1208 u32 reg; 1209 1210 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 1211 !ice_has_vfs(pf)) 1212 return; 1213 1214 mutex_lock(&pf->vfs.table_lock); 1215 ice_for_each_vf(pf, bkt, vf) { 1216 u32 reg_idx, bit_idx; 1217 1218 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; 1219 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; 1220 /* read GLGEN_VFLRSTAT register to find out the flr VFs */ 1221 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); 1222 if (reg & BIT(bit_idx)) 1223 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ 1224 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 1225 } 1226 mutex_unlock(&pf->vfs.table_lock); 1227 } 1228 1229 /** 1230 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in 1231 * @pf: PF used to index all VFs 1232 * @pfq: queue index relative to the PF's function space 1233 * 1234 * If no VF is found who owns the pfq then return NULL, otherwise return a 1235 * pointer to the VF who owns the pfq 1236 * 1237 * If this function returns non-NULL, it acquires a reference count of the VF 1238 * structure. The caller is responsible for calling ice_put_vf() to drop this 1239 * reference. 1240 */ 1241 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) 1242 { 1243 struct ice_vf *vf; 1244 unsigned int bkt; 1245 1246 rcu_read_lock(); 1247 ice_for_each_vf_rcu(pf, bkt, vf) { 1248 struct ice_vsi *vsi; 1249 u16 rxq_idx; 1250 1251 vsi = ice_get_vf_vsi(vf); 1252 if (!vsi) 1253 continue; 1254 1255 ice_for_each_rxq(vsi, rxq_idx) 1256 if (vsi->rxq_map[rxq_idx] == pfq) { 1257 struct ice_vf *found; 1258 1259 if (kref_get_unless_zero(&vf->refcnt)) 1260 found = vf; 1261 else 1262 found = NULL; 1263 rcu_read_unlock(); 1264 return found; 1265 } 1266 } 1267 rcu_read_unlock(); 1268 1269 return NULL; 1270 } 1271 1272 /** 1273 * ice_globalq_to_pfq - convert from global queue index to PF space queue index 1274 * @pf: PF used for conversion 1275 * @globalq: global queue index used to convert to PF space queue index 1276 */ 1277 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) 1278 { 1279 return globalq - pf->hw.func_caps.common_cap.rxq_first_id; 1280 } 1281 1282 /** 1283 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF 1284 * @pf: PF that the LAN overflow event happened on 1285 * @event: structure holding the event information for the LAN overflow event 1286 * 1287 * Determine if the LAN overflow event was caused by a VF queue. If it was not 1288 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a 1289 * reset on the offending VF. 1290 */ 1291 void 1292 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1293 { 1294 u32 gldcb_rtctq, queue; 1295 struct ice_vf *vf; 1296 1297 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); 1298 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); 1299 1300 /* event returns device global Rx queue number */ 1301 queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq); 1302 1303 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); 1304 if (!vf) 1305 return; 1306 1307 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1308 ice_put_vf(vf); 1309 } 1310 1311 /** 1312 * ice_set_vf_spoofchk 1313 * @netdev: network interface device structure 1314 * @vf_id: VF identifier 1315 * @ena: flag to enable or disable feature 1316 * 1317 * Enable or disable VF spoof checking 1318 */ 1319 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) 1320 { 1321 struct ice_netdev_priv *np = netdev_priv(netdev); 1322 struct ice_pf *pf = np->vsi->back; 1323 struct ice_vsi *vf_vsi; 1324 struct device *dev; 1325 struct ice_vf *vf; 1326 int ret; 1327 1328 dev = ice_pf_to_dev(pf); 1329 1330 vf = ice_get_vf_by_id(pf, vf_id); 1331 if (!vf) 1332 return -EINVAL; 1333 1334 ret = ice_check_vf_ready_for_cfg(vf); 1335 if (ret) 1336 goto out_put_vf; 1337 1338 vf_vsi = ice_get_vf_vsi(vf); 1339 if (!vf_vsi) { 1340 netdev_err(netdev, "VSI %d for VF %d is null\n", 1341 vf->lan_vsi_idx, vf->vf_id); 1342 ret = -EINVAL; 1343 goto out_put_vf; 1344 } 1345 1346 if (vf_vsi->type != ICE_VSI_VF) { 1347 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", 1348 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); 1349 ret = -ENODEV; 1350 goto out_put_vf; 1351 } 1352 1353 if (ena == vf->spoofchk) { 1354 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); 1355 ret = 0; 1356 goto out_put_vf; 1357 } 1358 1359 ret = ice_vsi_apply_spoofchk(vf_vsi, ena); 1360 if (ret) 1361 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", 1362 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); 1363 else 1364 vf->spoofchk = ena; 1365 1366 out_put_vf: 1367 ice_put_vf(vf); 1368 return ret; 1369 } 1370 1371 /** 1372 * ice_get_vf_cfg 1373 * @netdev: network interface device structure 1374 * @vf_id: VF identifier 1375 * @ivi: VF configuration structure 1376 * 1377 * return VF configuration 1378 */ 1379 int 1380 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) 1381 { 1382 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1383 struct ice_vf *vf; 1384 int ret; 1385 1386 vf = ice_get_vf_by_id(pf, vf_id); 1387 if (!vf) 1388 return -EINVAL; 1389 1390 ret = ice_check_vf_ready_for_cfg(vf); 1391 if (ret) 1392 goto out_put_vf; 1393 1394 ivi->vf = vf_id; 1395 ether_addr_copy(ivi->mac, vf->hw_lan_addr); 1396 1397 /* VF configuration for VLAN and applicable QoS */ 1398 ivi->vlan = ice_vf_get_port_vlan_id(vf); 1399 ivi->qos = ice_vf_get_port_vlan_prio(vf); 1400 if (ice_vf_is_port_vlan_ena(vf)) 1401 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); 1402 1403 ivi->trusted = vf->trusted; 1404 ivi->spoofchk = vf->spoofchk; 1405 if (!vf->link_forced) 1406 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 1407 else if (vf->link_up) 1408 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 1409 else 1410 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 1411 ivi->max_tx_rate = vf->max_tx_rate; 1412 ivi->min_tx_rate = vf->min_tx_rate; 1413 1414 out_put_vf: 1415 ice_put_vf(vf); 1416 return ret; 1417 } 1418 1419 /** 1420 * ice_set_vf_mac 1421 * @netdev: network interface device structure 1422 * @vf_id: VF identifier 1423 * @mac: MAC address 1424 * 1425 * program VF MAC address 1426 */ 1427 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 1428 { 1429 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1430 struct ice_vf *vf; 1431 int ret; 1432 1433 if (is_multicast_ether_addr(mac)) { 1434 netdev_err(netdev, "%pM not a valid unicast address\n", mac); 1435 return -EINVAL; 1436 } 1437 1438 vf = ice_get_vf_by_id(pf, vf_id); 1439 if (!vf) 1440 return -EINVAL; 1441 1442 /* nothing left to do, unicast MAC already set */ 1443 if (ether_addr_equal(vf->dev_lan_addr, mac) && 1444 ether_addr_equal(vf->hw_lan_addr, mac)) { 1445 ret = 0; 1446 goto out_put_vf; 1447 } 1448 1449 ret = ice_check_vf_ready_for_cfg(vf); 1450 if (ret) 1451 goto out_put_vf; 1452 1453 mutex_lock(&vf->cfg_lock); 1454 1455 /* VF is notified of its new MAC via the PF's response to the 1456 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset 1457 */ 1458 ether_addr_copy(vf->dev_lan_addr, mac); 1459 ether_addr_copy(vf->hw_lan_addr, mac); 1460 if (is_zero_ether_addr(mac)) { 1461 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ 1462 vf->pf_set_mac = false; 1463 netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n", 1464 vf->vf_id); 1465 } else { 1466 /* PF will add MAC rule for the VF */ 1467 vf->pf_set_mac = true; 1468 netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", 1469 mac, vf_id); 1470 } 1471 1472 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1473 mutex_unlock(&vf->cfg_lock); 1474 1475 out_put_vf: 1476 ice_put_vf(vf); 1477 return ret; 1478 } 1479 1480 /** 1481 * ice_set_vf_trust 1482 * @netdev: network interface device structure 1483 * @vf_id: VF identifier 1484 * @trusted: Boolean value to enable/disable trusted VF 1485 * 1486 * Enable or disable a given VF as trusted 1487 */ 1488 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) 1489 { 1490 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1491 struct ice_vf *vf; 1492 int ret; 1493 1494 vf = ice_get_vf_by_id(pf, vf_id); 1495 if (!vf) 1496 return -EINVAL; 1497 1498 if (ice_is_eswitch_mode_switchdev(pf)) { 1499 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); 1500 return -EOPNOTSUPP; 1501 } 1502 1503 ret = ice_check_vf_ready_for_cfg(vf); 1504 if (ret) 1505 goto out_put_vf; 1506 1507 /* Check if already trusted */ 1508 if (trusted == vf->trusted) { 1509 ret = 0; 1510 goto out_put_vf; 1511 } 1512 1513 mutex_lock(&vf->cfg_lock); 1514 1515 vf->trusted = trusted; 1516 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1517 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", 1518 vf_id, trusted ? "" : "un"); 1519 1520 mutex_unlock(&vf->cfg_lock); 1521 1522 out_put_vf: 1523 ice_put_vf(vf); 1524 return ret; 1525 } 1526 1527 /** 1528 * ice_set_vf_link_state 1529 * @netdev: network interface device structure 1530 * @vf_id: VF identifier 1531 * @link_state: required link state 1532 * 1533 * Set VF's link state, irrespective of physical link state status 1534 */ 1535 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) 1536 { 1537 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1538 struct ice_vf *vf; 1539 int ret; 1540 1541 vf = ice_get_vf_by_id(pf, vf_id); 1542 if (!vf) 1543 return -EINVAL; 1544 1545 ret = ice_check_vf_ready_for_cfg(vf); 1546 if (ret) 1547 goto out_put_vf; 1548 1549 switch (link_state) { 1550 case IFLA_VF_LINK_STATE_AUTO: 1551 vf->link_forced = false; 1552 break; 1553 case IFLA_VF_LINK_STATE_ENABLE: 1554 vf->link_forced = true; 1555 vf->link_up = true; 1556 break; 1557 case IFLA_VF_LINK_STATE_DISABLE: 1558 vf->link_forced = true; 1559 vf->link_up = false; 1560 break; 1561 default: 1562 ret = -EINVAL; 1563 goto out_put_vf; 1564 } 1565 1566 ice_vc_notify_vf_link_state(vf); 1567 1568 out_put_vf: 1569 ice_put_vf(vf); 1570 return ret; 1571 } 1572 1573 /** 1574 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs 1575 * @pf: PF associated with VFs 1576 */ 1577 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) 1578 { 1579 struct ice_vf *vf; 1580 unsigned int bkt; 1581 int rate = 0; 1582 1583 rcu_read_lock(); 1584 ice_for_each_vf_rcu(pf, bkt, vf) 1585 rate += vf->min_tx_rate; 1586 rcu_read_unlock(); 1587 1588 return rate; 1589 } 1590 1591 /** 1592 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription 1593 * @vf: VF trying to configure min_tx_rate 1594 * @min_tx_rate: min Tx rate in Mbps 1595 * 1596 * Check if the min_tx_rate being passed in will cause oversubscription of total 1597 * min_tx_rate based on the current link speed and all other VFs configured 1598 * min_tx_rate 1599 * 1600 * Return true if the passed min_tx_rate would cause oversubscription, else 1601 * return false 1602 */ 1603 static bool 1604 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) 1605 { 1606 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 1607 int all_vfs_min_tx_rate; 1608 int link_speed_mbps; 1609 1610 if (WARN_ON(!vsi)) 1611 return false; 1612 1613 link_speed_mbps = ice_get_link_speed_mbps(vsi); 1614 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); 1615 1616 /* this VF's previous rate is being overwritten */ 1617 all_vfs_min_tx_rate -= vf->min_tx_rate; 1618 1619 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { 1620 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", 1621 min_tx_rate, vf->vf_id, 1622 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, 1623 link_speed_mbps); 1624 return true; 1625 } 1626 1627 return false; 1628 } 1629 1630 /** 1631 * ice_set_vf_bw - set min/max VF bandwidth 1632 * @netdev: network interface device structure 1633 * @vf_id: VF identifier 1634 * @min_tx_rate: Minimum Tx rate in Mbps 1635 * @max_tx_rate: Maximum Tx rate in Mbps 1636 */ 1637 int 1638 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, 1639 int max_tx_rate) 1640 { 1641 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1642 struct ice_vsi *vsi; 1643 struct device *dev; 1644 struct ice_vf *vf; 1645 int ret; 1646 1647 dev = ice_pf_to_dev(pf); 1648 1649 vf = ice_get_vf_by_id(pf, vf_id); 1650 if (!vf) 1651 return -EINVAL; 1652 1653 ret = ice_check_vf_ready_for_cfg(vf); 1654 if (ret) 1655 goto out_put_vf; 1656 1657 vsi = ice_get_vf_vsi(vf); 1658 if (!vsi) { 1659 ret = -EINVAL; 1660 goto out_put_vf; 1661 } 1662 1663 if (min_tx_rate && ice_is_dcb_active(pf)) { 1664 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); 1665 ret = -EOPNOTSUPP; 1666 goto out_put_vf; 1667 } 1668 1669 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { 1670 ret = -EINVAL; 1671 goto out_put_vf; 1672 } 1673 1674 if (vf->min_tx_rate != (unsigned int)min_tx_rate) { 1675 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); 1676 if (ret) { 1677 dev_err(dev, "Unable to set min-tx-rate for VF %d\n", 1678 vf->vf_id); 1679 goto out_put_vf; 1680 } 1681 1682 vf->min_tx_rate = min_tx_rate; 1683 } 1684 1685 if (vf->max_tx_rate != (unsigned int)max_tx_rate) { 1686 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); 1687 if (ret) { 1688 dev_err(dev, "Unable to set max-tx-rate for VF %d\n", 1689 vf->vf_id); 1690 goto out_put_vf; 1691 } 1692 1693 vf->max_tx_rate = max_tx_rate; 1694 } 1695 1696 out_put_vf: 1697 ice_put_vf(vf); 1698 return ret; 1699 } 1700 1701 /** 1702 * ice_get_vf_stats - populate some stats for the VF 1703 * @netdev: the netdev of the PF 1704 * @vf_id: the host OS identifier (0-255) 1705 * @vf_stats: pointer to the OS memory to be initialized 1706 */ 1707 int ice_get_vf_stats(struct net_device *netdev, int vf_id, 1708 struct ifla_vf_stats *vf_stats) 1709 { 1710 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1711 struct ice_eth_stats *stats; 1712 struct ice_vsi *vsi; 1713 struct ice_vf *vf; 1714 int ret; 1715 1716 vf = ice_get_vf_by_id(pf, vf_id); 1717 if (!vf) 1718 return -EINVAL; 1719 1720 ret = ice_check_vf_ready_for_cfg(vf); 1721 if (ret) 1722 goto out_put_vf; 1723 1724 vsi = ice_get_vf_vsi(vf); 1725 if (!vsi) { 1726 ret = -EINVAL; 1727 goto out_put_vf; 1728 } 1729 1730 ice_update_eth_stats(vsi); 1731 stats = &vsi->eth_stats; 1732 1733 memset(vf_stats, 0, sizeof(*vf_stats)); 1734 1735 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + 1736 stats->rx_multicast; 1737 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + 1738 stats->tx_multicast; 1739 vf_stats->rx_bytes = stats->rx_bytes; 1740 vf_stats->tx_bytes = stats->tx_bytes; 1741 vf_stats->broadcast = stats->rx_broadcast; 1742 vf_stats->multicast = stats->rx_multicast; 1743 vf_stats->rx_dropped = stats->rx_discards; 1744 vf_stats->tx_dropped = stats->tx_discards; 1745 1746 out_put_vf: 1747 ice_put_vf(vf); 1748 return ret; 1749 } 1750 1751 /** 1752 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported 1753 * @hw: hardware structure used to check the VLAN mode 1754 * @vlan_proto: VLAN TPID being checked 1755 * 1756 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q 1757 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN 1758 * Mode (SVM), then only ETH_P_8021Q is supported. 1759 */ 1760 static bool 1761 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) 1762 { 1763 bool is_supported = false; 1764 1765 switch (vlan_proto) { 1766 case ETH_P_8021Q: 1767 is_supported = true; 1768 break; 1769 case ETH_P_8021AD: 1770 if (ice_is_dvm_ena(hw)) 1771 is_supported = true; 1772 break; 1773 } 1774 1775 return is_supported; 1776 } 1777 1778 /** 1779 * ice_set_vf_port_vlan 1780 * @netdev: network interface device structure 1781 * @vf_id: VF identifier 1782 * @vlan_id: VLAN ID being set 1783 * @qos: priority setting 1784 * @vlan_proto: VLAN protocol 1785 * 1786 * program VF Port VLAN ID and/or QoS 1787 */ 1788 int 1789 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, 1790 __be16 vlan_proto) 1791 { 1792 struct ice_pf *pf = ice_netdev_to_pf(netdev); 1793 u16 local_vlan_proto = ntohs(vlan_proto); 1794 struct device *dev; 1795 struct ice_vf *vf; 1796 int ret; 1797 1798 dev = ice_pf_to_dev(pf); 1799 1800 if (vlan_id >= VLAN_N_VID || qos > 7) { 1801 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", 1802 vf_id, vlan_id, qos); 1803 return -EINVAL; 1804 } 1805 1806 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { 1807 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", 1808 local_vlan_proto); 1809 return -EPROTONOSUPPORT; 1810 } 1811 1812 vf = ice_get_vf_by_id(pf, vf_id); 1813 if (!vf) 1814 return -EINVAL; 1815 1816 ret = ice_check_vf_ready_for_cfg(vf); 1817 if (ret) 1818 goto out_put_vf; 1819 1820 if (ice_vf_get_port_vlan_prio(vf) == qos && 1821 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && 1822 ice_vf_get_port_vlan_id(vf) == vlan_id) { 1823 /* duplicate request, so just return success */ 1824 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", 1825 vlan_id, qos, local_vlan_proto); 1826 ret = 0; 1827 goto out_put_vf; 1828 } 1829 1830 mutex_lock(&vf->cfg_lock); 1831 1832 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); 1833 if (ice_vf_is_port_vlan_ena(vf)) 1834 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", 1835 vlan_id, qos, local_vlan_proto, vf_id); 1836 else 1837 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); 1838 1839 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 1840 mutex_unlock(&vf->cfg_lock); 1841 1842 out_put_vf: 1843 ice_put_vf(vf); 1844 return ret; 1845 } 1846 1847 /** 1848 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event 1849 * @vf: pointer to the VF structure 1850 */ 1851 void ice_print_vf_rx_mdd_event(struct ice_vf *vf) 1852 { 1853 struct ice_pf *pf = vf->pf; 1854 struct device *dev; 1855 1856 dev = ice_pf_to_dev(pf); 1857 1858 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", 1859 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, 1860 vf->dev_lan_addr, 1861 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) 1862 ? "on" : "off"); 1863 } 1864 1865 /** 1866 * ice_print_vfs_mdd_events - print VFs malicious driver detect event 1867 * @pf: pointer to the PF structure 1868 * 1869 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. 1870 */ 1871 void ice_print_vfs_mdd_events(struct ice_pf *pf) 1872 { 1873 struct device *dev = ice_pf_to_dev(pf); 1874 struct ice_hw *hw = &pf->hw; 1875 struct ice_vf *vf; 1876 unsigned int bkt; 1877 1878 /* check that there are pending MDD events to print */ 1879 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) 1880 return; 1881 1882 /* VF MDD event logs are rate limited to one second intervals */ 1883 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) 1884 return; 1885 1886 pf->vfs.last_printed_mdd_jiffies = jiffies; 1887 1888 mutex_lock(&pf->vfs.table_lock); 1889 ice_for_each_vf(pf, bkt, vf) { 1890 /* only print Rx MDD event message if there are new events */ 1891 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { 1892 vf->mdd_rx_events.last_printed = 1893 vf->mdd_rx_events.count; 1894 ice_print_vf_rx_mdd_event(vf); 1895 } 1896 1897 /* only print Tx MDD event message if there are new events */ 1898 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { 1899 vf->mdd_tx_events.last_printed = 1900 vf->mdd_tx_events.count; 1901 1902 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n", 1903 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id, 1904 vf->dev_lan_addr); 1905 } 1906 } 1907 mutex_unlock(&pf->vfs.table_lock); 1908 } 1909 1910 /** 1911 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR 1912 * @pf: pointer to the PF structure 1913 * 1914 * Called when recovering from a PF FLR to restore interrupt capability to 1915 * the VFs. 1916 */ 1917 void ice_restore_all_vfs_msi_state(struct ice_pf *pf) 1918 { 1919 struct ice_vf *vf; 1920 u32 bkt; 1921 1922 ice_for_each_vf(pf, bkt, vf) 1923 pci_restore_msi_state(vf->vfdev); 1924 } 1925