xref: /linux/drivers/net/ethernet/intel/ice/ice_sriov.c (revision 119ff04864a24470b1e531bb53e5c141aa8fefb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16 
17 /**
18  * ice_free_vf_entries - Free all VF entries from the hash table
19  * @pf: pointer to the PF structure
20  *
21  * Iterate over the VF hash table, removing and releasing all VF entries.
22  * Called during VF teardown or as cleanup during failed VF initialization.
23  */
24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 	struct ice_vfs *vfs = &pf->vfs;
27 	struct hlist_node *tmp;
28 	struct ice_vf *vf;
29 	unsigned int bkt;
30 
31 	/* Remove all VFs from the hash table and release their main
32 	 * reference. Once all references to the VF are dropped, ice_put_vf()
33 	 * will call ice_release_vf which will remove the VF memory.
34 	 */
35 	lockdep_assert_held(&vfs->table_lock);
36 
37 	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 		hash_del_rcu(&vf->entry);
39 		ice_put_vf(vf);
40 	}
41 }
42 
43 /**
44  * ice_free_vf_res - Free a VF's resources
45  * @vf: pointer to the VF info
46  */
47 static void ice_free_vf_res(struct ice_vf *vf)
48 {
49 	struct ice_pf *pf = vf->pf;
50 	int i, last_vector_idx;
51 
52 	/* First, disable VF's configuration API to prevent OS from
53 	 * accessing the VF's VSI after it's freed or invalidated.
54 	 */
55 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
56 	ice_vf_fdir_exit(vf);
57 	/* free VF control VSI */
58 	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
59 		ice_vf_ctrl_vsi_release(vf);
60 
61 	/* free VSI and disconnect it from the parent uplink */
62 	if (vf->lan_vsi_idx != ICE_NO_VSI) {
63 		ice_vf_vsi_release(vf);
64 		vf->num_mac = 0;
65 	}
66 
67 	last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
68 
69 	/* clear VF MDD event information */
70 	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
71 	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
72 
73 	/* Disable interrupts so that VF starts in a known state */
74 	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
75 		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
76 		ice_flush(&pf->hw);
77 	}
78 	/* reset some of the state variables keeping track of the resources */
79 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
80 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
81 }
82 
83 /**
84  * ice_dis_vf_mappings
85  * @vf: pointer to the VF structure
86  */
87 static void ice_dis_vf_mappings(struct ice_vf *vf)
88 {
89 	struct ice_pf *pf = vf->pf;
90 	struct ice_vsi *vsi;
91 	struct device *dev;
92 	int first, last, v;
93 	struct ice_hw *hw;
94 
95 	hw = &pf->hw;
96 	vsi = ice_get_vf_vsi(vf);
97 	if (WARN_ON(!vsi))
98 		return;
99 
100 	dev = ice_pf_to_dev(pf);
101 	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
102 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
103 
104 	first = vf->first_vector_idx;
105 	last = first + vf->num_msix - 1;
106 	for (v = first; v <= last; v++) {
107 		u32 reg;
108 
109 		reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) |
110 		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
111 		wr32(hw, GLINT_VECT2FUNC(v), reg);
112 	}
113 
114 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
115 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
116 	else
117 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
118 
119 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
120 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
121 	else
122 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
123 }
124 
125 /**
126  * ice_sriov_free_msix_res - Reset/free any used MSIX resources
127  * @pf: pointer to the PF structure
128  *
129  * Since no MSIX entries are taken from the pf->irq_tracker then just clear
130  * the pf->sriov_base_vector.
131  *
132  * Returns 0 on success, and -EINVAL on error.
133  */
134 static int ice_sriov_free_msix_res(struct ice_pf *pf)
135 {
136 	if (!pf)
137 		return -EINVAL;
138 
139 	bitmap_free(pf->sriov_irq_bm);
140 	pf->sriov_irq_size = 0;
141 	pf->sriov_base_vector = 0;
142 
143 	return 0;
144 }
145 
146 /**
147  * ice_free_vfs - Free all VFs
148  * @pf: pointer to the PF structure
149  */
150 void ice_free_vfs(struct ice_pf *pf)
151 {
152 	struct device *dev = ice_pf_to_dev(pf);
153 	struct ice_vfs *vfs = &pf->vfs;
154 	struct ice_hw *hw = &pf->hw;
155 	struct ice_vf *vf;
156 	unsigned int bkt;
157 
158 	if (!ice_has_vfs(pf))
159 		return;
160 
161 	while (test_and_set_bit(ICE_VF_DIS, pf->state))
162 		usleep_range(1000, 2000);
163 
164 	/* Disable IOV before freeing resources. This lets any VF drivers
165 	 * running in the host get themselves cleaned up before we yank
166 	 * the carpet out from underneath their feet.
167 	 */
168 	if (!pci_vfs_assigned(pf->pdev))
169 		pci_disable_sriov(pf->pdev);
170 	else
171 		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
172 
173 	ice_eswitch_reserve_cp_queues(pf, -ice_get_num_vfs(pf));
174 
175 	mutex_lock(&vfs->table_lock);
176 
177 	ice_for_each_vf(pf, bkt, vf) {
178 		mutex_lock(&vf->cfg_lock);
179 
180 		ice_eswitch_detach(pf, vf);
181 		ice_dis_vf_qs(vf);
182 
183 		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
184 			/* disable VF qp mappings and set VF disable state */
185 			ice_dis_vf_mappings(vf);
186 			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
187 			ice_free_vf_res(vf);
188 		}
189 
190 		if (!pci_vfs_assigned(pf->pdev)) {
191 			u32 reg_idx, bit_idx;
192 
193 			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
194 			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
195 			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
196 		}
197 
198 		/* clear malicious info since the VF is getting released */
199 		list_del(&vf->mbx_info.list_entry);
200 
201 		mutex_unlock(&vf->cfg_lock);
202 	}
203 
204 	if (ice_sriov_free_msix_res(pf))
205 		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
206 
207 	vfs->num_qps_per = 0;
208 	ice_free_vf_entries(pf);
209 
210 	mutex_unlock(&vfs->table_lock);
211 
212 	clear_bit(ICE_VF_DIS, pf->state);
213 	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
214 }
215 
216 /**
217  * ice_vf_vsi_setup - Set up a VF VSI
218  * @vf: VF to setup VSI for
219  *
220  * Returns pointer to the successfully allocated VSI struct on success,
221  * otherwise returns NULL on failure.
222  */
223 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
224 {
225 	struct ice_vsi_cfg_params params = {};
226 	struct ice_pf *pf = vf->pf;
227 	struct ice_vsi *vsi;
228 
229 	params.type = ICE_VSI_VF;
230 	params.pi = ice_vf_get_port_info(vf);
231 	params.vf = vf;
232 	params.flags = ICE_VSI_FLAG_INIT;
233 
234 	vsi = ice_vsi_setup(pf, &params);
235 
236 	if (!vsi) {
237 		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
238 		ice_vf_invalidate_vsi(vf);
239 		return NULL;
240 	}
241 
242 	vf->lan_vsi_idx = vsi->idx;
243 	vf->lan_vsi_num = vsi->vsi_num;
244 
245 	return vsi;
246 }
247 
248 
249 /**
250  * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
251  * @vf: VF to enable MSIX mappings for
252  *
253  * Some of the registers need to be indexed/configured using hardware global
254  * device values and other registers need 0-based values, which represent PF
255  * based values.
256  */
257 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
258 {
259 	int device_based_first_msix, device_based_last_msix;
260 	int pf_based_first_msix, pf_based_last_msix, v;
261 	struct ice_pf *pf = vf->pf;
262 	int device_based_vf_id;
263 	struct ice_hw *hw;
264 	u32 reg;
265 
266 	hw = &pf->hw;
267 	pf_based_first_msix = vf->first_vector_idx;
268 	pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
269 
270 	device_based_first_msix = pf_based_first_msix +
271 		pf->hw.func_caps.common_cap.msix_vector_first_id;
272 	device_based_last_msix =
273 		(device_based_first_msix + vf->num_msix) - 1;
274 	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
275 
276 	reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) |
277 	      FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) |
278 	      VPINT_ALLOC_VALID_M;
279 	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
280 
281 	reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) |
282 	      FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) |
283 	      VPINT_ALLOC_PCI_VALID_M;
284 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
285 
286 	/* map the interrupts to its functions */
287 	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
288 		reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) |
289 		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
290 		wr32(hw, GLINT_VECT2FUNC(v), reg);
291 	}
292 
293 	/* Map mailbox interrupt to VF MSI-X vector 0 */
294 	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
295 }
296 
297 /**
298  * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
299  * @vf: VF to enable the mappings for
300  * @max_txq: max Tx queues allowed on the VF's VSI
301  * @max_rxq: max Rx queues allowed on the VF's VSI
302  */
303 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
304 {
305 	struct device *dev = ice_pf_to_dev(vf->pf);
306 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
307 	struct ice_hw *hw = &vf->pf->hw;
308 	u32 reg;
309 
310 	if (WARN_ON(!vsi))
311 		return;
312 
313 	/* set regardless of mapping mode */
314 	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
315 
316 	/* VF Tx queues allocation */
317 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
318 		/* set the VF PF Tx queue range
319 		 * VFNUMQ value should be set to (number of queues - 1). A value
320 		 * of 0 means 1 queue and a value of 255 means 256 queues
321 		 */
322 		reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) |
323 		      FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1);
324 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
325 	} else {
326 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
327 	}
328 
329 	/* set regardless of mapping mode */
330 	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
331 
332 	/* VF Rx queues allocation */
333 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
334 		/* set the VF PF Rx queue range
335 		 * VFNUMQ value should be set to (number of queues - 1). A value
336 		 * of 0 means 1 queue and a value of 255 means 256 queues
337 		 */
338 		reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) |
339 		      FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1);
340 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
341 	} else {
342 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
343 	}
344 }
345 
346 /**
347  * ice_ena_vf_mappings - enable VF MSIX and queue mapping
348  * @vf: pointer to the VF structure
349  */
350 static void ice_ena_vf_mappings(struct ice_vf *vf)
351 {
352 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
353 
354 	if (WARN_ON(!vsi))
355 		return;
356 
357 	ice_ena_vf_msix_mappings(vf);
358 	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
359 }
360 
361 /**
362  * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
363  * @vf: VF to calculate the register index for
364  * @q_vector: a q_vector associated to the VF
365  */
366 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
367 {
368 	if (!vf || !q_vector)
369 		return -EINVAL;
370 
371 	/* always add one to account for the OICR being the first MSIX */
372 	return vf->first_vector_idx + q_vector->v_idx + 1;
373 }
374 
375 /**
376  * ice_sriov_set_msix_res - Set any used MSIX resources
377  * @pf: pointer to PF structure
378  * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
379  *
380  * This function allows SR-IOV resources to be taken from the end of the PF's
381  * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
382  * just set the pf->sriov_base_vector and return success.
383  *
384  * If there are not enough resources available, return an error. This should
385  * always be caught by ice_set_per_vf_res().
386  *
387  * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
388  * in the PF's space available for SR-IOV.
389  */
390 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
391 {
392 	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
393 	int vectors_used = ice_get_max_used_msix_vector(pf);
394 	int sriov_base_vector;
395 
396 	sriov_base_vector = total_vectors - num_msix_needed;
397 
398 	/* make sure we only grab irq_tracker entries from the list end and
399 	 * that we have enough available MSIX vectors
400 	 */
401 	if (sriov_base_vector < vectors_used)
402 		return -EINVAL;
403 
404 	pf->sriov_base_vector = sriov_base_vector;
405 
406 	return 0;
407 }
408 
409 /**
410  * ice_set_per_vf_res - check if vectors and queues are available
411  * @pf: pointer to the PF structure
412  * @num_vfs: the number of SR-IOV VFs being configured
413  *
414  * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
415  * get more vectors and can enable more queues per VF. Note that this does not
416  * grab any vectors from the SW pool already allocated. Also note, that all
417  * vector counts include one for each VF's miscellaneous interrupt vector
418  * (i.e. OICR).
419  *
420  * Minimum VFs - 2 vectors, 1 queue pair
421  * Small VFs - 5 vectors, 4 queue pairs
422  * Medium VFs - 17 vectors, 16 queue pairs
423  *
424  * Second, determine number of queue pairs per VF by starting with a pre-defined
425  * maximum each VF supports. If this is not possible, then we adjust based on
426  * queue pairs available on the device.
427  *
428  * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
429  * by each VF during VF initialization and reset.
430  */
431 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
432 {
433 	int vectors_used = ice_get_max_used_msix_vector(pf);
434 	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
435 	int msix_avail_per_vf, msix_avail_for_sriov;
436 	struct device *dev = ice_pf_to_dev(pf);
437 	int err;
438 
439 	lockdep_assert_held(&pf->vfs.table_lock);
440 
441 	if (!num_vfs)
442 		return -EINVAL;
443 
444 	/* determine MSI-X resources per VF */
445 	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
446 		vectors_used;
447 	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
448 	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
449 		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
450 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
451 		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
452 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
453 		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
454 	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
455 		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
456 	} else {
457 		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
458 			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
459 			num_vfs);
460 		return -ENOSPC;
461 	}
462 
463 	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
464 			ICE_MAX_RSS_QS_PER_VF);
465 	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
466 	if (!avail_qs)
467 		num_txq = 0;
468 	else if (num_txq > avail_qs)
469 		num_txq = rounddown_pow_of_two(avail_qs);
470 
471 	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
472 			ICE_MAX_RSS_QS_PER_VF);
473 	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
474 	if (!avail_qs)
475 		num_rxq = 0;
476 	else if (num_rxq > avail_qs)
477 		num_rxq = rounddown_pow_of_two(avail_qs);
478 
479 	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
480 		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
481 			ICE_MIN_QS_PER_VF, num_vfs);
482 		return -ENOSPC;
483 	}
484 
485 	err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
486 	if (err) {
487 		dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
488 			num_vfs, err);
489 		return err;
490 	}
491 
492 	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
493 	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
494 	pf->vfs.num_msix_per = num_msix_per_vf;
495 	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
496 		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
497 
498 	return 0;
499 }
500 
501 /**
502  * ice_sriov_get_irqs - get irqs for SR-IOV usacase
503  * @pf: pointer to PF structure
504  * @needed: number of irqs to get
505  *
506  * This returns the first MSI-X vector index in PF space that is used by this
507  * VF. This index is used when accessing PF relative registers such as
508  * GLINT_VECT2FUNC and GLINT_DYN_CTL.
509  * This will always be the OICR index in the AVF driver so any functionality
510  * using vf->first_vector_idx for queue configuration_id: id of VF which will
511  * use this irqs
512  *
513  * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are
514  * allocated from the end of global irq index. First bit in sriov_irq_bm means
515  * last irq index etc. It simplifies extension of SRIOV vectors.
516  * They will be always located from sriov_base_vector to the last irq
517  * index. While increasing/decreasing sriov_base_vector can be moved.
518  */
519 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed)
520 {
521 	int res = bitmap_find_next_zero_area(pf->sriov_irq_bm,
522 					     pf->sriov_irq_size, 0, needed, 0);
523 	/* conversion from number in bitmap to global irq index */
524 	int index = pf->sriov_irq_size - res - needed;
525 
526 	if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector)
527 		return -ENOENT;
528 
529 	bitmap_set(pf->sriov_irq_bm, res, needed);
530 	return index;
531 }
532 
533 /**
534  * ice_sriov_free_irqs - free irqs used by the VF
535  * @pf: pointer to PF structure
536  * @vf: pointer to VF structure
537  */
538 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf)
539 {
540 	/* Move back from first vector index to first index in bitmap */
541 	int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix;
542 
543 	bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix);
544 	vf->first_vector_idx = 0;
545 }
546 
547 /**
548  * ice_init_vf_vsi_res - initialize/setup VF VSI resources
549  * @vf: VF to initialize/setup the VSI for
550  *
551  * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
552  * VF VSI's broadcast filter and is only used during initial VF creation.
553  */
554 static int ice_init_vf_vsi_res(struct ice_vf *vf)
555 {
556 	struct ice_pf *pf = vf->pf;
557 	struct ice_vsi *vsi;
558 	int err;
559 
560 	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
561 	if (vf->first_vector_idx < 0)
562 		return -ENOMEM;
563 
564 	vsi = ice_vf_vsi_setup(vf);
565 	if (!vsi)
566 		return -ENOMEM;
567 
568 	err = ice_vf_init_host_cfg(vf, vsi);
569 	if (err)
570 		goto release_vsi;
571 
572 	return 0;
573 
574 release_vsi:
575 	ice_vf_vsi_release(vf);
576 	return err;
577 }
578 
579 /**
580  * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
581  * @pf: PF the VFs are associated with
582  */
583 static int ice_start_vfs(struct ice_pf *pf)
584 {
585 	struct ice_hw *hw = &pf->hw;
586 	unsigned int bkt, it_cnt;
587 	struct ice_vf *vf;
588 	int retval;
589 
590 	lockdep_assert_held(&pf->vfs.table_lock);
591 
592 	it_cnt = 0;
593 	ice_for_each_vf(pf, bkt, vf) {
594 		vf->vf_ops->clear_reset_trigger(vf);
595 
596 		retval = ice_init_vf_vsi_res(vf);
597 		if (retval) {
598 			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
599 				vf->vf_id, retval);
600 			goto teardown;
601 		}
602 
603 		retval = ice_eswitch_attach(pf, vf);
604 		if (retval) {
605 			dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d",
606 				vf->vf_id, retval);
607 			ice_vf_vsi_release(vf);
608 			goto teardown;
609 		}
610 
611 		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
612 		ice_ena_vf_mappings(vf);
613 		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
614 		it_cnt++;
615 	}
616 
617 	ice_flush(hw);
618 	return 0;
619 
620 teardown:
621 	ice_for_each_vf(pf, bkt, vf) {
622 		if (it_cnt == 0)
623 			break;
624 
625 		ice_dis_vf_mappings(vf);
626 		ice_vf_vsi_release(vf);
627 		it_cnt--;
628 	}
629 
630 	return retval;
631 }
632 
633 /**
634  * ice_sriov_free_vf - Free VF memory after all references are dropped
635  * @vf: pointer to VF to free
636  *
637  * Called by ice_put_vf through ice_release_vf once the last reference to a VF
638  * structure has been dropped.
639  */
640 static void ice_sriov_free_vf(struct ice_vf *vf)
641 {
642 	mutex_destroy(&vf->cfg_lock);
643 
644 	kfree_rcu(vf, rcu);
645 }
646 
647 /**
648  * ice_sriov_clear_reset_state - clears VF Reset status register
649  * @vf: the vf to configure
650  */
651 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
652 {
653 	struct ice_hw *hw = &vf->pf->hw;
654 
655 	/* Clear the reset status register so that VF immediately sees that
656 	 * the device is resetting, even if hardware hasn't yet gotten around
657 	 * to clearing VFGEN_RSTAT for us.
658 	 */
659 	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
660 }
661 
662 /**
663  * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
664  * @vf: the vf to configure
665  */
666 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
667 {
668 	struct ice_pf *pf = vf->pf;
669 
670 	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
671 	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
672 }
673 
674 /**
675  * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
676  * @vf: pointer to VF structure
677  * @is_vflr: true if reset occurred due to VFLR
678  *
679  * Trigger and cleanup after a VF reset for a SR-IOV VF.
680  */
681 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
682 {
683 	struct ice_pf *pf = vf->pf;
684 	u32 reg, reg_idx, bit_idx;
685 	unsigned int vf_abs_id, i;
686 	struct device *dev;
687 	struct ice_hw *hw;
688 
689 	dev = ice_pf_to_dev(pf);
690 	hw = &pf->hw;
691 	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
692 
693 	/* In the case of a VFLR, HW has already reset the VF and we just need
694 	 * to clean up. Otherwise we must first trigger the reset using the
695 	 * VFRTRIG register.
696 	 */
697 	if (!is_vflr) {
698 		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
699 		reg |= VPGEN_VFRTRIG_VFSWR_M;
700 		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
701 	}
702 
703 	/* clear the VFLR bit in GLGEN_VFLRSTAT */
704 	reg_idx = (vf_abs_id) / 32;
705 	bit_idx = (vf_abs_id) % 32;
706 	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
707 	ice_flush(hw);
708 
709 	wr32(hw, PF_PCI_CIAA,
710 	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
711 	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
712 		reg = rd32(hw, PF_PCI_CIAD);
713 		/* no transactions pending so stop polling */
714 		if ((reg & VF_TRANS_PENDING_M) == 0)
715 			break;
716 
717 		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
718 		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
719 	}
720 }
721 
722 /**
723  * ice_sriov_poll_reset_status - poll SRIOV VF reset status
724  * @vf: pointer to VF structure
725  *
726  * Returns true when reset is successful, else returns false
727  */
728 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
729 {
730 	struct ice_pf *pf = vf->pf;
731 	unsigned int i;
732 	u32 reg;
733 
734 	for (i = 0; i < 10; i++) {
735 		/* VF reset requires driver to first reset the VF and then
736 		 * poll the status register to make sure that the reset
737 		 * completed successfully.
738 		 */
739 		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
740 		if (reg & VPGEN_VFRSTAT_VFRD_M)
741 			return true;
742 
743 		/* only sleep if the reset is not done */
744 		usleep_range(10, 20);
745 	}
746 	return false;
747 }
748 
749 /**
750  * ice_sriov_clear_reset_trigger - enable VF to access hardware
751  * @vf: VF to enabled hardware access for
752  */
753 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
754 {
755 	struct ice_hw *hw = &vf->pf->hw;
756 	u32 reg;
757 
758 	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
759 	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
760 	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
761 	ice_flush(hw);
762 }
763 
764 /**
765  * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
766  * @vf: VF to perform tasks on
767  */
768 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
769 {
770 	ice_ena_vf_mappings(vf);
771 	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
772 }
773 
774 static const struct ice_vf_ops ice_sriov_vf_ops = {
775 	.reset_type = ICE_VF_RESET,
776 	.free = ice_sriov_free_vf,
777 	.clear_reset_state = ice_sriov_clear_reset_state,
778 	.clear_mbx_register = ice_sriov_clear_mbx_register,
779 	.trigger_reset_register = ice_sriov_trigger_reset_register,
780 	.poll_reset_status = ice_sriov_poll_reset_status,
781 	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
782 	.irq_close = NULL,
783 	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
784 };
785 
786 /**
787  * ice_create_vf_entries - Allocate and insert VF entries
788  * @pf: pointer to the PF structure
789  * @num_vfs: the number of VFs to allocate
790  *
791  * Allocate new VF entries and insert them into the hash table. Set some
792  * basic default fields for initializing the new VFs.
793  *
794  * After this function exits, the hash table will have num_vfs entries
795  * inserted.
796  *
797  * Returns 0 on success or an integer error code on failure.
798  */
799 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
800 {
801 	struct pci_dev *pdev = pf->pdev;
802 	struct ice_vfs *vfs = &pf->vfs;
803 	struct pci_dev *vfdev = NULL;
804 	struct ice_vf *vf;
805 	u16 vf_pdev_id;
806 	int err, pos;
807 
808 	lockdep_assert_held(&vfs->table_lock);
809 
810 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
811 	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
812 
813 	for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
814 		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
815 		if (!vf) {
816 			err = -ENOMEM;
817 			goto err_free_entries;
818 		}
819 		kref_init(&vf->refcnt);
820 
821 		vf->pf = pf;
822 		vf->vf_id = vf_id;
823 
824 		/* set sriov vf ops for VFs created during SRIOV flow */
825 		vf->vf_ops = &ice_sriov_vf_ops;
826 
827 		ice_initialize_vf_entry(vf);
828 
829 		do {
830 			vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
831 		} while (vfdev && vfdev->physfn != pdev);
832 		vf->vfdev = vfdev;
833 		vf->vf_sw_id = pf->first_sw;
834 
835 		pci_dev_get(vfdev);
836 
837 		/* set default number of MSI-X */
838 		vf->num_msix = pf->vfs.num_msix_per;
839 		vf->num_vf_qs = pf->vfs.num_qps_per;
840 		ice_vc_set_default_allowlist(vf);
841 
842 		hash_add_rcu(vfs->table, &vf->entry, vf_id);
843 	}
844 
845 	/* Decrement of refcount done by pci_get_device() inside the loop does
846 	 * not touch the last iteration's vfdev, so it has to be done manually
847 	 * to balance pci_dev_get() added within the loop.
848 	 */
849 	pci_dev_put(vfdev);
850 
851 	return 0;
852 
853 err_free_entries:
854 	ice_free_vf_entries(pf);
855 	return err;
856 }
857 
858 /**
859  * ice_ena_vfs - enable VFs so they are ready to be used
860  * @pf: pointer to the PF structure
861  * @num_vfs: number of VFs to enable
862  */
863 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
864 {
865 	int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
866 	struct device *dev = ice_pf_to_dev(pf);
867 	struct ice_hw *hw = &pf->hw;
868 	int ret;
869 
870 	pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL);
871 	if (!pf->sriov_irq_bm)
872 		return -ENOMEM;
873 	pf->sriov_irq_size = total_vectors;
874 
875 	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
876 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
877 	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
878 	set_bit(ICE_OICR_INTR_DIS, pf->state);
879 	ice_flush(hw);
880 
881 	ret = pci_enable_sriov(pf->pdev, num_vfs);
882 	if (ret)
883 		goto err_unroll_intr;
884 
885 	mutex_lock(&pf->vfs.table_lock);
886 
887 	ret = ice_set_per_vf_res(pf, num_vfs);
888 	if (ret) {
889 		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
890 			num_vfs, ret);
891 		goto err_unroll_sriov;
892 	}
893 
894 	ret = ice_create_vf_entries(pf, num_vfs);
895 	if (ret) {
896 		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
897 			num_vfs);
898 		goto err_unroll_sriov;
899 	}
900 
901 	ice_eswitch_reserve_cp_queues(pf, num_vfs);
902 	ret = ice_start_vfs(pf);
903 	if (ret) {
904 		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
905 		ret = -EAGAIN;
906 		goto err_unroll_vf_entries;
907 	}
908 
909 	clear_bit(ICE_VF_DIS, pf->state);
910 
911 	/* rearm global interrupts */
912 	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
913 		ice_irq_dynamic_ena(hw, NULL, NULL);
914 
915 	mutex_unlock(&pf->vfs.table_lock);
916 
917 	return 0;
918 
919 err_unroll_vf_entries:
920 	ice_free_vf_entries(pf);
921 err_unroll_sriov:
922 	mutex_unlock(&pf->vfs.table_lock);
923 	pci_disable_sriov(pf->pdev);
924 err_unroll_intr:
925 	/* rearm interrupts here */
926 	ice_irq_dynamic_ena(hw, NULL, NULL);
927 	clear_bit(ICE_OICR_INTR_DIS, pf->state);
928 	bitmap_free(pf->sriov_irq_bm);
929 	return ret;
930 }
931 
932 /**
933  * ice_pci_sriov_ena - Enable or change number of VFs
934  * @pf: pointer to the PF structure
935  * @num_vfs: number of VFs to allocate
936  *
937  * Returns 0 on success and negative on failure
938  */
939 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
940 {
941 	struct device *dev = ice_pf_to_dev(pf);
942 	int err;
943 
944 	if (!num_vfs) {
945 		ice_free_vfs(pf);
946 		return 0;
947 	}
948 
949 	if (num_vfs > pf->vfs.num_supported) {
950 		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
951 			num_vfs, pf->vfs.num_supported);
952 		return -EOPNOTSUPP;
953 	}
954 
955 	dev_info(dev, "Enabling %d VFs\n", num_vfs);
956 	err = ice_ena_vfs(pf, num_vfs);
957 	if (err) {
958 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
959 		return err;
960 	}
961 
962 	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
963 	return 0;
964 }
965 
966 /**
967  * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
968  * @pf: PF to enabled SR-IOV on
969  */
970 static int ice_check_sriov_allowed(struct ice_pf *pf)
971 {
972 	struct device *dev = ice_pf_to_dev(pf);
973 
974 	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
975 		dev_err(dev, "This device is not capable of SR-IOV\n");
976 		return -EOPNOTSUPP;
977 	}
978 
979 	if (ice_is_safe_mode(pf)) {
980 		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
981 		return -EOPNOTSUPP;
982 	}
983 
984 	if (!ice_pf_state_is_nominal(pf)) {
985 		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
986 		return -EBUSY;
987 	}
988 
989 	return 0;
990 }
991 
992 /**
993  * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
994  * @pdev: pointer to pci_dev struct
995  *
996  * The function is called via sysfs ops
997  */
998 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
999 {
1000 	struct ice_pf *pf = pci_get_drvdata(pdev);
1001 
1002 	return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf);
1003 }
1004 
1005 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move)
1006 {
1007 	if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf))
1008 		return -ENOMEM;
1009 
1010 	pf->sriov_base_vector -= move;
1011 	return 0;
1012 }
1013 
1014 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
1015 {
1016 	u16 vf_ids[ICE_MAX_SRIOV_VFS];
1017 	struct ice_vf *tmp_vf;
1018 	int to_remap = 0, bkt;
1019 
1020 	/* For better irqs usage try to remap irqs of VFs
1021 	 * that aren't running yet
1022 	 */
1023 	ice_for_each_vf(pf, bkt, tmp_vf) {
1024 		/* skip VF which is changing the number of MSI-X */
1025 		if (restricted_id == tmp_vf->vf_id ||
1026 		    test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
1027 			continue;
1028 
1029 		ice_dis_vf_mappings(tmp_vf);
1030 		ice_sriov_free_irqs(pf, tmp_vf);
1031 
1032 		vf_ids[to_remap] = tmp_vf->vf_id;
1033 		to_remap += 1;
1034 	}
1035 
1036 	for (int i = 0; i < to_remap; i++) {
1037 		tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
1038 		if (!tmp_vf)
1039 			continue;
1040 
1041 		tmp_vf->first_vector_idx =
1042 			ice_sriov_get_irqs(pf, tmp_vf->num_msix);
1043 		/* there is no need to rebuild VSI as we are only changing the
1044 		 * vector indexes not amount of MSI-X or queues
1045 		 */
1046 		ice_ena_vf_mappings(tmp_vf);
1047 		ice_put_vf(tmp_vf);
1048 	}
1049 }
1050 
1051 /**
1052  * ice_sriov_set_msix_vec_count
1053  * @vf_dev: pointer to pci_dev struct of VF device
1054  * @msix_vec_count: new value for MSI-X amount on this VF
1055  *
1056  * Set requested MSI-X, queues and registers for @vf_dev.
1057  *
1058  * First do some sanity checks like if there are any VFs, if the new value
1059  * is correct etc. Then disable old mapping (MSI-X and queues registers), change
1060  * MSI-X and queues, rebuild VSI and enable new mapping.
1061  *
1062  * If it is possible (driver not binded to VF) try to remap also other VFs to
1063  * linearize irqs register usage.
1064  */
1065 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
1066 {
1067 	struct pci_dev *pdev = pci_physfn(vf_dev);
1068 	struct ice_pf *pf = pci_get_drvdata(pdev);
1069 	u16 prev_msix, prev_queues, queues;
1070 	bool needs_rebuild = false;
1071 	struct ice_vf *vf;
1072 	int id;
1073 
1074 	if (!ice_get_num_vfs(pf))
1075 		return -ENOENT;
1076 
1077 	if (!msix_vec_count)
1078 		return 0;
1079 
1080 	queues = msix_vec_count;
1081 	/* add 1 MSI-X for OICR */
1082 	msix_vec_count += 1;
1083 
1084 	if (queues > min(ice_get_avail_txq_count(pf),
1085 			 ice_get_avail_rxq_count(pf)))
1086 		return -EINVAL;
1087 
1088 	if (msix_vec_count < ICE_MIN_INTR_PER_VF)
1089 		return -EINVAL;
1090 
1091 	/* Transition of PCI VF function number to function_id */
1092 	for (id = 0; id < pci_num_vf(pdev); id++) {
1093 		if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id))
1094 			break;
1095 	}
1096 
1097 	if (id == pci_num_vf(pdev))
1098 		return -ENOENT;
1099 
1100 	vf = ice_get_vf_by_id(pf, id);
1101 
1102 	if (!vf)
1103 		return -ENOENT;
1104 
1105 	prev_msix = vf->num_msix;
1106 	prev_queues = vf->num_vf_qs;
1107 
1108 	if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) {
1109 		ice_put_vf(vf);
1110 		return -ENOSPC;
1111 	}
1112 
1113 	ice_dis_vf_mappings(vf);
1114 	ice_sriov_free_irqs(pf, vf);
1115 
1116 	/* Remap all VFs beside the one is now configured */
1117 	ice_sriov_remap_vectors(pf, vf->vf_id);
1118 
1119 	vf->num_msix = msix_vec_count;
1120 	vf->num_vf_qs = queues;
1121 	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1122 	if (vf->first_vector_idx < 0)
1123 		goto unroll;
1124 
1125 	if (ice_vf_reconfig_vsi(vf)) {
1126 		/* Try to rebuild with previous values */
1127 		needs_rebuild = true;
1128 		goto unroll;
1129 	}
1130 
1131 	dev_info(ice_pf_to_dev(pf),
1132 		 "Changing VF %d resources to %d vectors and %d queues\n",
1133 		 vf->vf_id, vf->num_msix, vf->num_vf_qs);
1134 
1135 	ice_ena_vf_mappings(vf);
1136 	ice_put_vf(vf);
1137 
1138 	return 0;
1139 
1140 unroll:
1141 	dev_info(ice_pf_to_dev(pf),
1142 		 "Can't set %d vectors on VF %d, falling back to %d\n",
1143 		 vf->num_msix, vf->vf_id, prev_msix);
1144 
1145 	vf->num_msix = prev_msix;
1146 	vf->num_vf_qs = prev_queues;
1147 	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1148 	if (vf->first_vector_idx < 0)
1149 		return -EINVAL;
1150 
1151 	if (needs_rebuild)
1152 		ice_vf_reconfig_vsi(vf);
1153 
1154 	ice_ena_vf_mappings(vf);
1155 	ice_put_vf(vf);
1156 
1157 	return -EINVAL;
1158 }
1159 
1160 /**
1161  * ice_sriov_configure - Enable or change number of VFs via sysfs
1162  * @pdev: pointer to a pci_dev structure
1163  * @num_vfs: number of VFs to allocate or 0 to free VFs
1164  *
1165  * This function is called when the user updates the number of VFs in sysfs. On
1166  * success return whatever num_vfs was set to by the caller. Return negative on
1167  * failure.
1168  */
1169 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1170 {
1171 	struct ice_pf *pf = pci_get_drvdata(pdev);
1172 	struct device *dev = ice_pf_to_dev(pf);
1173 	int err;
1174 
1175 	err = ice_check_sriov_allowed(pf);
1176 	if (err)
1177 		return err;
1178 
1179 	if (!num_vfs) {
1180 		if (!pci_vfs_assigned(pdev)) {
1181 			ice_free_vfs(pf);
1182 			return 0;
1183 		}
1184 
1185 		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1186 		return -EBUSY;
1187 	}
1188 
1189 	err = ice_pci_sriov_ena(pf, num_vfs);
1190 	if (err)
1191 		return err;
1192 
1193 	return num_vfs;
1194 }
1195 
1196 /**
1197  * ice_process_vflr_event - Free VF resources via IRQ calls
1198  * @pf: pointer to the PF structure
1199  *
1200  * called from the VFLR IRQ handler to
1201  * free up VF resources and state variables
1202  */
1203 void ice_process_vflr_event(struct ice_pf *pf)
1204 {
1205 	struct ice_hw *hw = &pf->hw;
1206 	struct ice_vf *vf;
1207 	unsigned int bkt;
1208 	u32 reg;
1209 
1210 	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1211 	    !ice_has_vfs(pf))
1212 		return;
1213 
1214 	mutex_lock(&pf->vfs.table_lock);
1215 	ice_for_each_vf(pf, bkt, vf) {
1216 		u32 reg_idx, bit_idx;
1217 
1218 		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1219 		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1220 		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1221 		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1222 		if (reg & BIT(bit_idx))
1223 			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1224 			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1225 	}
1226 	mutex_unlock(&pf->vfs.table_lock);
1227 }
1228 
1229 /**
1230  * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1231  * @pf: PF used to index all VFs
1232  * @pfq: queue index relative to the PF's function space
1233  *
1234  * If no VF is found who owns the pfq then return NULL, otherwise return a
1235  * pointer to the VF who owns the pfq
1236  *
1237  * If this function returns non-NULL, it acquires a reference count of the VF
1238  * structure. The caller is responsible for calling ice_put_vf() to drop this
1239  * reference.
1240  */
1241 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1242 {
1243 	struct ice_vf *vf;
1244 	unsigned int bkt;
1245 
1246 	rcu_read_lock();
1247 	ice_for_each_vf_rcu(pf, bkt, vf) {
1248 		struct ice_vsi *vsi;
1249 		u16 rxq_idx;
1250 
1251 		vsi = ice_get_vf_vsi(vf);
1252 		if (!vsi)
1253 			continue;
1254 
1255 		ice_for_each_rxq(vsi, rxq_idx)
1256 			if (vsi->rxq_map[rxq_idx] == pfq) {
1257 				struct ice_vf *found;
1258 
1259 				if (kref_get_unless_zero(&vf->refcnt))
1260 					found = vf;
1261 				else
1262 					found = NULL;
1263 				rcu_read_unlock();
1264 				return found;
1265 			}
1266 	}
1267 	rcu_read_unlock();
1268 
1269 	return NULL;
1270 }
1271 
1272 /**
1273  * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1274  * @pf: PF used for conversion
1275  * @globalq: global queue index used to convert to PF space queue index
1276  */
1277 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1278 {
1279 	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1280 }
1281 
1282 /**
1283  * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1284  * @pf: PF that the LAN overflow event happened on
1285  * @event: structure holding the event information for the LAN overflow event
1286  *
1287  * Determine if the LAN overflow event was caused by a VF queue. If it was not
1288  * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1289  * reset on the offending VF.
1290  */
1291 void
1292 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1293 {
1294 	u32 gldcb_rtctq, queue;
1295 	struct ice_vf *vf;
1296 
1297 	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1298 	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1299 
1300 	/* event returns device global Rx queue number */
1301 	queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq);
1302 
1303 	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1304 	if (!vf)
1305 		return;
1306 
1307 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1308 	ice_put_vf(vf);
1309 }
1310 
1311 /**
1312  * ice_set_vf_spoofchk
1313  * @netdev: network interface device structure
1314  * @vf_id: VF identifier
1315  * @ena: flag to enable or disable feature
1316  *
1317  * Enable or disable VF spoof checking
1318  */
1319 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1320 {
1321 	struct ice_netdev_priv *np = netdev_priv(netdev);
1322 	struct ice_pf *pf = np->vsi->back;
1323 	struct ice_vsi *vf_vsi;
1324 	struct device *dev;
1325 	struct ice_vf *vf;
1326 	int ret;
1327 
1328 	dev = ice_pf_to_dev(pf);
1329 
1330 	vf = ice_get_vf_by_id(pf, vf_id);
1331 	if (!vf)
1332 		return -EINVAL;
1333 
1334 	ret = ice_check_vf_ready_for_cfg(vf);
1335 	if (ret)
1336 		goto out_put_vf;
1337 
1338 	vf_vsi = ice_get_vf_vsi(vf);
1339 	if (!vf_vsi) {
1340 		netdev_err(netdev, "VSI %d for VF %d is null\n",
1341 			   vf->lan_vsi_idx, vf->vf_id);
1342 		ret = -EINVAL;
1343 		goto out_put_vf;
1344 	}
1345 
1346 	if (vf_vsi->type != ICE_VSI_VF) {
1347 		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1348 			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1349 		ret = -ENODEV;
1350 		goto out_put_vf;
1351 	}
1352 
1353 	if (ena == vf->spoofchk) {
1354 		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1355 		ret = 0;
1356 		goto out_put_vf;
1357 	}
1358 
1359 	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1360 	if (ret)
1361 		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1362 			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1363 	else
1364 		vf->spoofchk = ena;
1365 
1366 out_put_vf:
1367 	ice_put_vf(vf);
1368 	return ret;
1369 }
1370 
1371 /**
1372  * ice_get_vf_cfg
1373  * @netdev: network interface device structure
1374  * @vf_id: VF identifier
1375  * @ivi: VF configuration structure
1376  *
1377  * return VF configuration
1378  */
1379 int
1380 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1381 {
1382 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1383 	struct ice_vf *vf;
1384 	int ret;
1385 
1386 	vf = ice_get_vf_by_id(pf, vf_id);
1387 	if (!vf)
1388 		return -EINVAL;
1389 
1390 	ret = ice_check_vf_ready_for_cfg(vf);
1391 	if (ret)
1392 		goto out_put_vf;
1393 
1394 	ivi->vf = vf_id;
1395 	ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1396 
1397 	/* VF configuration for VLAN and applicable QoS */
1398 	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1399 	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1400 	if (ice_vf_is_port_vlan_ena(vf))
1401 		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1402 
1403 	ivi->trusted = vf->trusted;
1404 	ivi->spoofchk = vf->spoofchk;
1405 	if (!vf->link_forced)
1406 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1407 	else if (vf->link_up)
1408 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1409 	else
1410 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1411 	ivi->max_tx_rate = vf->max_tx_rate;
1412 	ivi->min_tx_rate = vf->min_tx_rate;
1413 
1414 out_put_vf:
1415 	ice_put_vf(vf);
1416 	return ret;
1417 }
1418 
1419 /**
1420  * ice_set_vf_mac
1421  * @netdev: network interface device structure
1422  * @vf_id: VF identifier
1423  * @mac: MAC address
1424  *
1425  * program VF MAC address
1426  */
1427 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1428 {
1429 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1430 	struct ice_vf *vf;
1431 	int ret;
1432 
1433 	if (is_multicast_ether_addr(mac)) {
1434 		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1435 		return -EINVAL;
1436 	}
1437 
1438 	vf = ice_get_vf_by_id(pf, vf_id);
1439 	if (!vf)
1440 		return -EINVAL;
1441 
1442 	/* nothing left to do, unicast MAC already set */
1443 	if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1444 	    ether_addr_equal(vf->hw_lan_addr, mac)) {
1445 		ret = 0;
1446 		goto out_put_vf;
1447 	}
1448 
1449 	ret = ice_check_vf_ready_for_cfg(vf);
1450 	if (ret)
1451 		goto out_put_vf;
1452 
1453 	mutex_lock(&vf->cfg_lock);
1454 
1455 	/* VF is notified of its new MAC via the PF's response to the
1456 	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1457 	 */
1458 	ether_addr_copy(vf->dev_lan_addr, mac);
1459 	ether_addr_copy(vf->hw_lan_addr, mac);
1460 	if (is_zero_ether_addr(mac)) {
1461 		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1462 		vf->pf_set_mac = false;
1463 		netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1464 			    vf->vf_id);
1465 	} else {
1466 		/* PF will add MAC rule for the VF */
1467 		vf->pf_set_mac = true;
1468 		netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1469 			    mac, vf_id);
1470 	}
1471 
1472 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1473 	mutex_unlock(&vf->cfg_lock);
1474 
1475 out_put_vf:
1476 	ice_put_vf(vf);
1477 	return ret;
1478 }
1479 
1480 /**
1481  * ice_set_vf_trust
1482  * @netdev: network interface device structure
1483  * @vf_id: VF identifier
1484  * @trusted: Boolean value to enable/disable trusted VF
1485  *
1486  * Enable or disable a given VF as trusted
1487  */
1488 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1489 {
1490 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1491 	struct ice_vf *vf;
1492 	int ret;
1493 
1494 	vf = ice_get_vf_by_id(pf, vf_id);
1495 	if (!vf)
1496 		return -EINVAL;
1497 
1498 	if (ice_is_eswitch_mode_switchdev(pf)) {
1499 		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1500 		return -EOPNOTSUPP;
1501 	}
1502 
1503 	ret = ice_check_vf_ready_for_cfg(vf);
1504 	if (ret)
1505 		goto out_put_vf;
1506 
1507 	/* Check if already trusted */
1508 	if (trusted == vf->trusted) {
1509 		ret = 0;
1510 		goto out_put_vf;
1511 	}
1512 
1513 	mutex_lock(&vf->cfg_lock);
1514 
1515 	vf->trusted = trusted;
1516 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1517 	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1518 		 vf_id, trusted ? "" : "un");
1519 
1520 	mutex_unlock(&vf->cfg_lock);
1521 
1522 out_put_vf:
1523 	ice_put_vf(vf);
1524 	return ret;
1525 }
1526 
1527 /**
1528  * ice_set_vf_link_state
1529  * @netdev: network interface device structure
1530  * @vf_id: VF identifier
1531  * @link_state: required link state
1532  *
1533  * Set VF's link state, irrespective of physical link state status
1534  */
1535 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1536 {
1537 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1538 	struct ice_vf *vf;
1539 	int ret;
1540 
1541 	vf = ice_get_vf_by_id(pf, vf_id);
1542 	if (!vf)
1543 		return -EINVAL;
1544 
1545 	ret = ice_check_vf_ready_for_cfg(vf);
1546 	if (ret)
1547 		goto out_put_vf;
1548 
1549 	switch (link_state) {
1550 	case IFLA_VF_LINK_STATE_AUTO:
1551 		vf->link_forced = false;
1552 		break;
1553 	case IFLA_VF_LINK_STATE_ENABLE:
1554 		vf->link_forced = true;
1555 		vf->link_up = true;
1556 		break;
1557 	case IFLA_VF_LINK_STATE_DISABLE:
1558 		vf->link_forced = true;
1559 		vf->link_up = false;
1560 		break;
1561 	default:
1562 		ret = -EINVAL;
1563 		goto out_put_vf;
1564 	}
1565 
1566 	ice_vc_notify_vf_link_state(vf);
1567 
1568 out_put_vf:
1569 	ice_put_vf(vf);
1570 	return ret;
1571 }
1572 
1573 /**
1574  * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1575  * @pf: PF associated with VFs
1576  */
1577 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1578 {
1579 	struct ice_vf *vf;
1580 	unsigned int bkt;
1581 	int rate = 0;
1582 
1583 	rcu_read_lock();
1584 	ice_for_each_vf_rcu(pf, bkt, vf)
1585 		rate += vf->min_tx_rate;
1586 	rcu_read_unlock();
1587 
1588 	return rate;
1589 }
1590 
1591 /**
1592  * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1593  * @vf: VF trying to configure min_tx_rate
1594  * @min_tx_rate: min Tx rate in Mbps
1595  *
1596  * Check if the min_tx_rate being passed in will cause oversubscription of total
1597  * min_tx_rate based on the current link speed and all other VFs configured
1598  * min_tx_rate
1599  *
1600  * Return true if the passed min_tx_rate would cause oversubscription, else
1601  * return false
1602  */
1603 static bool
1604 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1605 {
1606 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1607 	int all_vfs_min_tx_rate;
1608 	int link_speed_mbps;
1609 
1610 	if (WARN_ON(!vsi))
1611 		return false;
1612 
1613 	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1614 	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1615 
1616 	/* this VF's previous rate is being overwritten */
1617 	all_vfs_min_tx_rate -= vf->min_tx_rate;
1618 
1619 	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1620 		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1621 			min_tx_rate, vf->vf_id,
1622 			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1623 			link_speed_mbps);
1624 		return true;
1625 	}
1626 
1627 	return false;
1628 }
1629 
1630 /**
1631  * ice_set_vf_bw - set min/max VF bandwidth
1632  * @netdev: network interface device structure
1633  * @vf_id: VF identifier
1634  * @min_tx_rate: Minimum Tx rate in Mbps
1635  * @max_tx_rate: Maximum Tx rate in Mbps
1636  */
1637 int
1638 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1639 	      int max_tx_rate)
1640 {
1641 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1642 	struct ice_vsi *vsi;
1643 	struct device *dev;
1644 	struct ice_vf *vf;
1645 	int ret;
1646 
1647 	dev = ice_pf_to_dev(pf);
1648 
1649 	vf = ice_get_vf_by_id(pf, vf_id);
1650 	if (!vf)
1651 		return -EINVAL;
1652 
1653 	ret = ice_check_vf_ready_for_cfg(vf);
1654 	if (ret)
1655 		goto out_put_vf;
1656 
1657 	vsi = ice_get_vf_vsi(vf);
1658 	if (!vsi) {
1659 		ret = -EINVAL;
1660 		goto out_put_vf;
1661 	}
1662 
1663 	if (min_tx_rate && ice_is_dcb_active(pf)) {
1664 		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1665 		ret = -EOPNOTSUPP;
1666 		goto out_put_vf;
1667 	}
1668 
1669 	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1670 		ret = -EINVAL;
1671 		goto out_put_vf;
1672 	}
1673 
1674 	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1675 		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1676 		if (ret) {
1677 			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1678 				vf->vf_id);
1679 			goto out_put_vf;
1680 		}
1681 
1682 		vf->min_tx_rate = min_tx_rate;
1683 	}
1684 
1685 	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1686 		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1687 		if (ret) {
1688 			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1689 				vf->vf_id);
1690 			goto out_put_vf;
1691 		}
1692 
1693 		vf->max_tx_rate = max_tx_rate;
1694 	}
1695 
1696 out_put_vf:
1697 	ice_put_vf(vf);
1698 	return ret;
1699 }
1700 
1701 /**
1702  * ice_get_vf_stats - populate some stats for the VF
1703  * @netdev: the netdev of the PF
1704  * @vf_id: the host OS identifier (0-255)
1705  * @vf_stats: pointer to the OS memory to be initialized
1706  */
1707 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1708 		     struct ifla_vf_stats *vf_stats)
1709 {
1710 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1711 	struct ice_eth_stats *stats;
1712 	struct ice_vsi *vsi;
1713 	struct ice_vf *vf;
1714 	int ret;
1715 
1716 	vf = ice_get_vf_by_id(pf, vf_id);
1717 	if (!vf)
1718 		return -EINVAL;
1719 
1720 	ret = ice_check_vf_ready_for_cfg(vf);
1721 	if (ret)
1722 		goto out_put_vf;
1723 
1724 	vsi = ice_get_vf_vsi(vf);
1725 	if (!vsi) {
1726 		ret = -EINVAL;
1727 		goto out_put_vf;
1728 	}
1729 
1730 	ice_update_eth_stats(vsi);
1731 	stats = &vsi->eth_stats;
1732 
1733 	memset(vf_stats, 0, sizeof(*vf_stats));
1734 
1735 	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1736 		stats->rx_multicast;
1737 	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1738 		stats->tx_multicast;
1739 	vf_stats->rx_bytes   = stats->rx_bytes;
1740 	vf_stats->tx_bytes   = stats->tx_bytes;
1741 	vf_stats->broadcast  = stats->rx_broadcast;
1742 	vf_stats->multicast  = stats->rx_multicast;
1743 	vf_stats->rx_dropped = stats->rx_discards;
1744 	vf_stats->tx_dropped = stats->tx_discards;
1745 
1746 out_put_vf:
1747 	ice_put_vf(vf);
1748 	return ret;
1749 }
1750 
1751 /**
1752  * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1753  * @hw: hardware structure used to check the VLAN mode
1754  * @vlan_proto: VLAN TPID being checked
1755  *
1756  * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1757  * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1758  * Mode (SVM), then only ETH_P_8021Q is supported.
1759  */
1760 static bool
1761 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1762 {
1763 	bool is_supported = false;
1764 
1765 	switch (vlan_proto) {
1766 	case ETH_P_8021Q:
1767 		is_supported = true;
1768 		break;
1769 	case ETH_P_8021AD:
1770 		if (ice_is_dvm_ena(hw))
1771 			is_supported = true;
1772 		break;
1773 	}
1774 
1775 	return is_supported;
1776 }
1777 
1778 /**
1779  * ice_set_vf_port_vlan
1780  * @netdev: network interface device structure
1781  * @vf_id: VF identifier
1782  * @vlan_id: VLAN ID being set
1783  * @qos: priority setting
1784  * @vlan_proto: VLAN protocol
1785  *
1786  * program VF Port VLAN ID and/or QoS
1787  */
1788 int
1789 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1790 		     __be16 vlan_proto)
1791 {
1792 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1793 	u16 local_vlan_proto = ntohs(vlan_proto);
1794 	struct device *dev;
1795 	struct ice_vf *vf;
1796 	int ret;
1797 
1798 	dev = ice_pf_to_dev(pf);
1799 
1800 	if (vlan_id >= VLAN_N_VID || qos > 7) {
1801 		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1802 			vf_id, vlan_id, qos);
1803 		return -EINVAL;
1804 	}
1805 
1806 	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1807 		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1808 			local_vlan_proto);
1809 		return -EPROTONOSUPPORT;
1810 	}
1811 
1812 	vf = ice_get_vf_by_id(pf, vf_id);
1813 	if (!vf)
1814 		return -EINVAL;
1815 
1816 	ret = ice_check_vf_ready_for_cfg(vf);
1817 	if (ret)
1818 		goto out_put_vf;
1819 
1820 	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1821 	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1822 	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1823 		/* duplicate request, so just return success */
1824 		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1825 			vlan_id, qos, local_vlan_proto);
1826 		ret = 0;
1827 		goto out_put_vf;
1828 	}
1829 
1830 	mutex_lock(&vf->cfg_lock);
1831 
1832 	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1833 	if (ice_vf_is_port_vlan_ena(vf))
1834 		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1835 			 vlan_id, qos, local_vlan_proto, vf_id);
1836 	else
1837 		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1838 
1839 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1840 	mutex_unlock(&vf->cfg_lock);
1841 
1842 out_put_vf:
1843 	ice_put_vf(vf);
1844 	return ret;
1845 }
1846 
1847 /**
1848  * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1849  * @vf: pointer to the VF structure
1850  */
1851 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1852 {
1853 	struct ice_pf *pf = vf->pf;
1854 	struct device *dev;
1855 
1856 	dev = ice_pf_to_dev(pf);
1857 
1858 	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1859 		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1860 		 vf->dev_lan_addr,
1861 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1862 			  ? "on" : "off");
1863 }
1864 
1865 /**
1866  * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1867  * @pf: pointer to the PF structure
1868  *
1869  * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1870  */
1871 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1872 {
1873 	struct device *dev = ice_pf_to_dev(pf);
1874 	struct ice_hw *hw = &pf->hw;
1875 	struct ice_vf *vf;
1876 	unsigned int bkt;
1877 
1878 	/* check that there are pending MDD events to print */
1879 	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1880 		return;
1881 
1882 	/* VF MDD event logs are rate limited to one second intervals */
1883 	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1884 		return;
1885 
1886 	pf->vfs.last_printed_mdd_jiffies = jiffies;
1887 
1888 	mutex_lock(&pf->vfs.table_lock);
1889 	ice_for_each_vf(pf, bkt, vf) {
1890 		/* only print Rx MDD event message if there are new events */
1891 		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1892 			vf->mdd_rx_events.last_printed =
1893 							vf->mdd_rx_events.count;
1894 			ice_print_vf_rx_mdd_event(vf);
1895 		}
1896 
1897 		/* only print Tx MDD event message if there are new events */
1898 		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1899 			vf->mdd_tx_events.last_printed =
1900 							vf->mdd_tx_events.count;
1901 
1902 			dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1903 				 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1904 				 vf->dev_lan_addr);
1905 		}
1906 	}
1907 	mutex_unlock(&pf->vfs.table_lock);
1908 }
1909 
1910 /**
1911  * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1912  * @pf: pointer to the PF structure
1913  *
1914  * Called when recovering from a PF FLR to restore interrupt capability to
1915  * the VFs.
1916  */
1917 void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1918 {
1919 	struct ice_vf *vf;
1920 	u32 bkt;
1921 
1922 	ice_for_each_vf(pf, bkt, vf)
1923 		pci_restore_msi_state(vf->vfdev);
1924 }
1925