xref: /linux/drivers/net/ethernet/intel/ice/ice_ptp_hw.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include <linux/delay.h>
5 #include <linux/iopoll.h>
6 #include "ice_common.h"
7 #include "ice_ptp_hw.h"
8 #include "ice_ptp_consts.h"
9 #include "ice_cgu_regs.h"
10 
11 static struct dpll_pin_frequency ice_cgu_pin_freq_common[] = {
12 	DPLL_PIN_FREQUENCY_1PPS,
13 	DPLL_PIN_FREQUENCY_10MHZ,
14 };
15 
16 static struct dpll_pin_frequency ice_cgu_pin_freq_1_hz[] = {
17 	DPLL_PIN_FREQUENCY_1PPS,
18 };
19 
20 static struct dpll_pin_frequency ice_cgu_pin_freq_10_mhz[] = {
21 	DPLL_PIN_FREQUENCY_10MHZ,
22 };
23 
24 static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = {
25 	{ "CVL-SDP22",	  ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
26 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
27 	{ "CVL-SDP20",	  ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
28 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
29 	{ "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0, },
30 	{ "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0, },
31 	{ "SMA1",	  ZL_REF3P, DPLL_PIN_TYPE_EXT,
32 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
33 	{ "SMA2/U.FL2",	  ZL_REF3N, DPLL_PIN_TYPE_EXT,
34 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
35 	{ "GNSS-1PPS",	  ZL_REF4P, DPLL_PIN_TYPE_GNSS,
36 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
37 };
38 
39 static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = {
40 	{ "CVL-SDP22",	  ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
41 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
42 	{ "CVL-SDP20",	  ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
43 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
44 	{ "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, },
45 	{ "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, },
46 	{ "C827_1-RCLKA", ZL_REF2P, DPLL_PIN_TYPE_MUX, },
47 	{ "C827_1-RCLKB", ZL_REF2N, DPLL_PIN_TYPE_MUX, },
48 	{ "SMA1",	  ZL_REF3P, DPLL_PIN_TYPE_EXT,
49 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
50 	{ "SMA2/U.FL2",	  ZL_REF3N, DPLL_PIN_TYPE_EXT,
51 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
52 	{ "GNSS-1PPS",	  ZL_REF4P, DPLL_PIN_TYPE_GNSS,
53 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
54 };
55 
56 static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = {
57 	{ "REF-SMA1",	    ZL_OUT0, DPLL_PIN_TYPE_EXT,
58 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
59 	{ "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
60 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
61 	{ "PHY-CLK",	    ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
62 	{ "MAC-CLK",	    ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
63 	{ "CVL-SDP21",	    ZL_OUT4, DPLL_PIN_TYPE_EXT,
64 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
65 	{ "CVL-SDP23",	    ZL_OUT5, DPLL_PIN_TYPE_EXT,
66 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
67 };
68 
69 static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_outputs[] = {
70 	{ "REF-SMA1",	    ZL_OUT0, DPLL_PIN_TYPE_EXT,
71 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
72 	{ "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
73 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
74 	{ "PHY-CLK",	    ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
75 	{ "PHY2-CLK",	    ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
76 	{ "MAC-CLK",	    ZL_OUT4, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
77 	{ "CVL-SDP21",	    ZL_OUT5, DPLL_PIN_TYPE_EXT,
78 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
79 	{ "CVL-SDP23",	    ZL_OUT6, DPLL_PIN_TYPE_EXT,
80 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
81 };
82 
83 static const struct ice_cgu_pin_desc ice_e823_si_cgu_inputs[] = {
84 	{ "NONE",	  SI_REF0P, 0, 0 },
85 	{ "NONE",	  SI_REF0N, 0, 0 },
86 	{ "SYNCE0_DP",	  SI_REF1P, DPLL_PIN_TYPE_MUX, 0 },
87 	{ "SYNCE0_DN",	  SI_REF1N, DPLL_PIN_TYPE_MUX, 0 },
88 	{ "EXT_CLK_SYNC", SI_REF2P, DPLL_PIN_TYPE_EXT,
89 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
90 	{ "NONE",	  SI_REF2N, 0, 0 },
91 	{ "EXT_PPS_OUT",  SI_REF3,  DPLL_PIN_TYPE_EXT,
92 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
93 	{ "INT_PPS_OUT",  SI_REF4,  DPLL_PIN_TYPE_EXT,
94 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
95 };
96 
97 static const struct ice_cgu_pin_desc ice_e823_si_cgu_outputs[] = {
98 	{ "1588-TIME_SYNC", SI_OUT0, DPLL_PIN_TYPE_EXT,
99 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
100 	{ "PHY-CLK",	    SI_OUT1, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
101 	{ "10MHZ-SMA2",	    SI_OUT2, DPLL_PIN_TYPE_EXT,
102 		ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
103 	{ "PPS-SMA1",	    SI_OUT3, DPLL_PIN_TYPE_EXT,
104 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
105 };
106 
107 static const struct ice_cgu_pin_desc ice_e823_zl_cgu_inputs[] = {
108 	{ "NONE",	  ZL_REF0P, 0, 0 },
109 	{ "INT_PPS_OUT",  ZL_REF0N, DPLL_PIN_TYPE_EXT,
110 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
111 	{ "SYNCE0_DP",	  ZL_REF1P, DPLL_PIN_TYPE_MUX, 0 },
112 	{ "SYNCE0_DN",	  ZL_REF1N, DPLL_PIN_TYPE_MUX, 0 },
113 	{ "NONE",	  ZL_REF2P, 0, 0 },
114 	{ "NONE",	  ZL_REF2N, 0, 0 },
115 	{ "EXT_CLK_SYNC", ZL_REF3P, DPLL_PIN_TYPE_EXT,
116 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
117 	{ "NONE",	  ZL_REF3N, 0, 0 },
118 	{ "EXT_PPS_OUT",  ZL_REF4P, DPLL_PIN_TYPE_EXT,
119 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
120 	{ "OCXO",	  ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0 },
121 };
122 
123 static const struct ice_cgu_pin_desc ice_e823_zl_cgu_outputs[] = {
124 	{ "PPS-SMA1",	   ZL_OUT0, DPLL_PIN_TYPE_EXT,
125 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
126 	{ "10MHZ-SMA2",	   ZL_OUT1, DPLL_PIN_TYPE_EXT,
127 		ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
128 	{ "PHY-CLK",	   ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
129 	{ "1588-TIME_REF", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
130 	{ "CPK-TIME_SYNC", ZL_OUT4, DPLL_PIN_TYPE_EXT,
131 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
132 	{ "NONE",	   ZL_OUT5, 0, 0 },
133 };
134 
135 /* Low level functions for interacting with and managing the device clock used
136  * for the Precision Time Protocol.
137  *
138  * The ice hardware represents the current time using three registers:
139  *
140  *    GLTSYN_TIME_H     GLTSYN_TIME_L     GLTSYN_TIME_R
141  *  +---------------+ +---------------+ +---------------+
142  *  |    32 bits    | |    32 bits    | |    32 bits    |
143  *  +---------------+ +---------------+ +---------------+
144  *
145  * The registers are incremented every clock tick using a 40bit increment
146  * value defined over two registers:
147  *
148  *                     GLTSYN_INCVAL_H   GLTSYN_INCVAL_L
149  *                    +---------------+ +---------------+
150  *                    |    8 bit s    | |    32 bits    |
151  *                    +---------------+ +---------------+
152  *
153  * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
154  * registers every clock source tick. Depending on the specific device
155  * configuration, the clock source frequency could be one of a number of
156  * values.
157  *
158  * For E810 devices, the increment frequency is 812.5 MHz
159  *
160  * For E822 devices the clock can be derived from different sources, and the
161  * increment has an effective frequency of one of the following:
162  * - 823.4375 MHz
163  * - 783.36 MHz
164  * - 796.875 MHz
165  * - 816 MHz
166  * - 830.078125 MHz
167  * - 783.36 MHz
168  *
169  * The hardware captures timestamps in the PHY for incoming packets, and for
170  * outgoing packets on request. To support this, the PHY maintains a timer
171  * that matches the lower 64 bits of the global source timer.
172  *
173  * In order to ensure that the PHY timers and the source timer are equivalent,
174  * shadow registers are used to prepare the desired initial values. A special
175  * sync command is issued to trigger copying from the shadow registers into
176  * the appropriate source and PHY registers simultaneously.
177  *
178  * The driver supports devices which have different PHYs with subtly different
179  * mechanisms to program and control the timers. We divide the devices into
180  * families named after the first major device, E810 and similar devices, and
181  * E822 and similar devices.
182  *
183  * - E822 based devices have additional support for fine grained Vernier
184  *   calibration which requires significant setup
185  * - The layout of timestamp data in the PHY register blocks is different
186  * - The way timer synchronization commands are issued is different.
187  *
188  * To support this, very low level functions have an e810 or e822 suffix
189  * indicating what type of device they work on. Higher level abstractions for
190  * tasks that can be done on both devices do not have the suffix and will
191  * correctly look up the appropriate low level function when running.
192  *
193  * Functions which only make sense on a single device family may not have
194  * a suitable generic implementation
195  */
196 
197 /**
198  * ice_get_ptp_src_clock_index - determine source clock index
199  * @hw: pointer to HW struct
200  *
201  * Determine the source clock index currently in use, based on device
202  * capabilities reported during initialization.
203  */
204 u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
205 {
206 	return hw->func_caps.ts_func_info.tmr_index_assoc;
207 }
208 
209 /**
210  * ice_ptp_read_src_incval - Read source timer increment value
211  * @hw: pointer to HW struct
212  *
213  * Read the increment value of the source timer and return it.
214  */
215 static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
216 {
217 	u32 lo, hi;
218 	u8 tmr_idx;
219 
220 	tmr_idx = ice_get_ptp_src_clock_index(hw);
221 
222 	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
223 	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
224 
225 	return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
226 }
227 
228 /**
229  * ice_read_cgu_reg_e82x - Read a CGU register
230  * @hw: pointer to the HW struct
231  * @addr: Register address to read
232  * @val: storage for register value read
233  *
234  * Read the contents of a register of the Clock Generation Unit. Only
235  * applicable to E822 devices.
236  *
237  * Return: 0 on success, other error codes when failed to read from CGU
238  */
239 static int ice_read_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 *val)
240 {
241 	struct ice_sbq_msg_input cgu_msg = {
242 		.opcode = ice_sbq_msg_rd,
243 		.dest_dev = cgu,
244 		.msg_addr_low = addr
245 	};
246 	int err;
247 
248 	err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
249 	if (err) {
250 		ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
251 			  addr, err);
252 		return err;
253 	}
254 
255 	*val = cgu_msg.data;
256 
257 	return 0;
258 }
259 
260 /**
261  * ice_write_cgu_reg_e82x - Write a CGU register
262  * @hw: pointer to the HW struct
263  * @addr: Register address to write
264  * @val: value to write into the register
265  *
266  * Write the specified value to a register of the Clock Generation Unit. Only
267  * applicable to E822 devices.
268  *
269  * Return: 0 on success, other error codes when failed to write to CGU
270  */
271 static int ice_write_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 val)
272 {
273 	struct ice_sbq_msg_input cgu_msg = {
274 		.opcode = ice_sbq_msg_wr,
275 		.dest_dev = cgu,
276 		.msg_addr_low = addr,
277 		.data = val
278 	};
279 	int err;
280 
281 	err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
282 	if (err) {
283 		ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
284 			  addr, err);
285 		return err;
286 	}
287 
288 	return err;
289 }
290 
291 /**
292  * ice_clk_freq_str - Convert time_ref_freq to string
293  * @clk_freq: Clock frequency
294  *
295  * Return: specified TIME_REF clock frequency converted to a string
296  */
297 static const char *ice_clk_freq_str(enum ice_time_ref_freq clk_freq)
298 {
299 	switch (clk_freq) {
300 	case ICE_TIME_REF_FREQ_25_000:
301 		return "25 MHz";
302 	case ICE_TIME_REF_FREQ_122_880:
303 		return "122.88 MHz";
304 	case ICE_TIME_REF_FREQ_125_000:
305 		return "125 MHz";
306 	case ICE_TIME_REF_FREQ_153_600:
307 		return "153.6 MHz";
308 	case ICE_TIME_REF_FREQ_156_250:
309 		return "156.25 MHz";
310 	case ICE_TIME_REF_FREQ_245_760:
311 		return "245.76 MHz";
312 	default:
313 		return "Unknown";
314 	}
315 }
316 
317 /**
318  * ice_clk_src_str - Convert time_ref_src to string
319  * @clk_src: Clock source
320  *
321  * Return: specified clock source converted to its string name
322  */
323 static const char *ice_clk_src_str(enum ice_clk_src clk_src)
324 {
325 	switch (clk_src) {
326 	case ICE_CLK_SRC_TCXO:
327 		return "TCXO";
328 	case ICE_CLK_SRC_TIME_REF:
329 		return "TIME_REF";
330 	default:
331 		return "Unknown";
332 	}
333 }
334 
335 /**
336  * ice_cfg_cgu_pll_e82x - Configure the Clock Generation Unit
337  * @hw: pointer to the HW struct
338  * @clk_freq: Clock frequency to program
339  * @clk_src: Clock source to select (TIME_REF, or TCXO)
340  *
341  * Configure the Clock Generation Unit with the desired clock frequency and
342  * time reference, enabling the PLL which drives the PTP hardware clock.
343  *
344  * Return:
345  * * %0       - success
346  * * %-EINVAL - input parameters are incorrect
347  * * %-EBUSY  - failed to lock TS PLL
348  * * %other   - CGU read/write failure
349  */
350 static int ice_cfg_cgu_pll_e82x(struct ice_hw *hw,
351 				enum ice_time_ref_freq clk_freq,
352 				enum ice_clk_src clk_src)
353 {
354 	union tspll_ro_bwm_lf bwm_lf;
355 	union nac_cgu_dword19 dw19;
356 	union nac_cgu_dword22 dw22;
357 	union nac_cgu_dword24 dw24;
358 	union nac_cgu_dword9 dw9;
359 	int err;
360 
361 	if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
362 		dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
363 			 clk_freq);
364 		return -EINVAL;
365 	}
366 
367 	if (clk_src >= NUM_ICE_CLK_SRC) {
368 		dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
369 			 clk_src);
370 		return -EINVAL;
371 	}
372 
373 	if (clk_src == ICE_CLK_SRC_TCXO &&
374 	    clk_freq != ICE_TIME_REF_FREQ_25_000) {
375 		dev_warn(ice_hw_to_dev(hw),
376 			 "TCXO only supports 25 MHz frequency\n");
377 		return -EINVAL;
378 	}
379 
380 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
381 	if (err)
382 		return err;
383 
384 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
385 	if (err)
386 		return err;
387 
388 	err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
389 	if (err)
390 		return err;
391 
392 	/* Log the current clock configuration */
393 	ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
394 		  dw24.ts_pll_enable ? "enabled" : "disabled",
395 		  ice_clk_src_str(dw24.time_ref_sel),
396 		  ice_clk_freq_str(dw9.time_ref_freq_sel),
397 		  bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
398 
399 	/* Disable the PLL before changing the clock source or frequency */
400 	if (dw24.ts_pll_enable) {
401 		dw24.ts_pll_enable = 0;
402 
403 		err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
404 		if (err)
405 			return err;
406 	}
407 
408 	/* Set the frequency */
409 	dw9.time_ref_freq_sel = clk_freq;
410 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
411 	if (err)
412 		return err;
413 
414 	/* Configure the TS PLL feedback divisor */
415 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
416 	if (err)
417 		return err;
418 
419 	dw19.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
420 	dw19.tspll_ndivratio = 1;
421 
422 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
423 	if (err)
424 		return err;
425 
426 	/* Configure the TS PLL post divisor */
427 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
428 	if (err)
429 		return err;
430 
431 	dw22.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
432 	dw22.time1588clk_sel_div2 = 0;
433 
434 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
435 	if (err)
436 		return err;
437 
438 	/* Configure the TS PLL pre divisor and clock source */
439 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
440 	if (err)
441 		return err;
442 
443 	dw24.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
444 	dw24.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
445 	dw24.time_ref_sel = clk_src;
446 
447 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
448 	if (err)
449 		return err;
450 
451 	/* Finally, enable the PLL */
452 	dw24.ts_pll_enable = 1;
453 
454 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
455 	if (err)
456 		return err;
457 
458 	/* Wait to verify if the PLL locks */
459 	usleep_range(1000, 5000);
460 
461 	err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
462 	if (err)
463 		return err;
464 
465 	if (!bwm_lf.plllock_true_lock_cri) {
466 		dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
467 		return -EBUSY;
468 	}
469 
470 	/* Log the current clock configuration */
471 	ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
472 		  dw24.ts_pll_enable ? "enabled" : "disabled",
473 		  ice_clk_src_str(dw24.time_ref_sel),
474 		  ice_clk_freq_str(dw9.time_ref_freq_sel),
475 		  bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
476 
477 	return 0;
478 }
479 
480 /**
481  * ice_cfg_cgu_pll_e825c - Configure the Clock Generation Unit for E825-C
482  * @hw: pointer to the HW struct
483  * @clk_freq: Clock frequency to program
484  * @clk_src: Clock source to select (TIME_REF, or TCXO)
485  *
486  * Configure the Clock Generation Unit with the desired clock frequency and
487  * time reference, enabling the PLL which drives the PTP hardware clock.
488  *
489  * Return:
490  * * %0       - success
491  * * %-EINVAL - input parameters are incorrect
492  * * %-EBUSY  - failed to lock TS PLL
493  * * %other   - CGU read/write failure
494  */
495 static int ice_cfg_cgu_pll_e825c(struct ice_hw *hw,
496 				 enum ice_time_ref_freq clk_freq,
497 				 enum ice_clk_src clk_src)
498 {
499 	union tspll_ro_lock_e825c ro_lock;
500 	union nac_cgu_dword16_e825c dw16;
501 	union nac_cgu_dword23_e825c dw23;
502 	union nac_cgu_dword19 dw19;
503 	union nac_cgu_dword22 dw22;
504 	union nac_cgu_dword24 dw24;
505 	union nac_cgu_dword9 dw9;
506 	int err;
507 
508 	if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
509 		dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
510 			 clk_freq);
511 		return -EINVAL;
512 	}
513 
514 	if (clk_src >= NUM_ICE_CLK_SRC) {
515 		dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
516 			 clk_src);
517 		return -EINVAL;
518 	}
519 
520 	if (clk_src == ICE_CLK_SRC_TCXO &&
521 	    clk_freq != ICE_TIME_REF_FREQ_156_250) {
522 		dev_warn(ice_hw_to_dev(hw),
523 			 "TCXO only supports 156.25 MHz frequency\n");
524 		return -EINVAL;
525 	}
526 
527 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
528 	if (err)
529 		return err;
530 
531 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
532 	if (err)
533 		return err;
534 
535 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, &dw16.val);
536 	if (err)
537 		return err;
538 
539 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
540 	if (err)
541 		return err;
542 
543 	err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
544 	if (err)
545 		return err;
546 
547 	/* Log the current clock configuration */
548 	ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
549 		  dw24.ts_pll_enable ? "enabled" : "disabled",
550 		  ice_clk_src_str(dw23.time_ref_sel),
551 		  ice_clk_freq_str(dw9.time_ref_freq_sel),
552 		  ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
553 
554 	/* Disable the PLL before changing the clock source or frequency */
555 	if (dw23.ts_pll_enable) {
556 		dw23.ts_pll_enable = 0;
557 
558 		err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C,
559 					     dw23.val);
560 		if (err)
561 			return err;
562 	}
563 
564 	/* Set the frequency */
565 	dw9.time_ref_freq_sel = clk_freq;
566 
567 	/* Enable the correct receiver */
568 	if (clk_src == ICE_CLK_SRC_TCXO) {
569 		dw9.time_ref_en = 0;
570 		dw9.clk_eref0_en = 1;
571 	} else {
572 		dw9.time_ref_en = 1;
573 		dw9.clk_eref0_en = 0;
574 	}
575 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
576 	if (err)
577 		return err;
578 
579 	/* Choose the referenced frequency */
580 	dw16.tspll_ck_refclkfreq =
581 	e825c_cgu_params[clk_freq].tspll_ck_refclkfreq;
582 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, dw16.val);
583 	if (err)
584 		return err;
585 
586 	/* Configure the TS PLL feedback divisor */
587 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
588 	if (err)
589 		return err;
590 
591 	dw19.tspll_fbdiv_intgr =
592 		e825c_cgu_params[clk_freq].tspll_fbdiv_intgr;
593 	dw19.tspll_ndivratio =
594 		e825c_cgu_params[clk_freq].tspll_ndivratio;
595 
596 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
597 	if (err)
598 		return err;
599 
600 	/* Configure the TS PLL post divisor */
601 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
602 	if (err)
603 		return err;
604 
605 	/* These two are constant for E825C */
606 	dw22.time1588clk_div = 5;
607 	dw22.time1588clk_sel_div2 = 0;
608 
609 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
610 	if (err)
611 		return err;
612 
613 	/* Configure the TS PLL pre divisor and clock source */
614 	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
615 	if (err)
616 		return err;
617 
618 	dw23.ref1588_ck_div =
619 		e825c_cgu_params[clk_freq].ref1588_ck_div;
620 	dw23.time_ref_sel = clk_src;
621 
622 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
623 	if (err)
624 		return err;
625 
626 	dw24.tspll_fbdiv_frac =
627 		e825c_cgu_params[clk_freq].tspll_fbdiv_frac;
628 
629 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
630 	if (err)
631 		return err;
632 
633 	/* Finally, enable the PLL */
634 	dw23.ts_pll_enable = 1;
635 
636 	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
637 	if (err)
638 		return err;
639 
640 	/* Wait to verify if the PLL locks */
641 	usleep_range(1000, 5000);
642 
643 	err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
644 	if (err)
645 		return err;
646 
647 	if (!ro_lock.plllock_true_lock_cri) {
648 		dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
649 		return -EBUSY;
650 	}
651 
652 	/* Log the current clock configuration */
653 	ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
654 		  dw24.ts_pll_enable ? "enabled" : "disabled",
655 		  ice_clk_src_str(dw23.time_ref_sel),
656 		  ice_clk_freq_str(dw9.time_ref_freq_sel),
657 		  ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
658 
659 	return 0;
660 }
661 
662 /**
663  * ice_cfg_cgu_pll_dis_sticky_bits_e82x - disable TS PLL sticky bits
664  * @hw: pointer to the HW struct
665  *
666  * Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
667  * losing TS PLL lock, but always show current state.
668  *
669  * Return: 0 on success, other error codes when failed to read/write CGU
670  */
671 static int ice_cfg_cgu_pll_dis_sticky_bits_e82x(struct ice_hw *hw)
672 {
673 	union tspll_cntr_bist_settings cntr_bist;
674 	int err;
675 
676 	err = ice_read_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
677 				    &cntr_bist.val);
678 	if (err)
679 		return err;
680 
681 	/* Disable sticky lock detection so lock err reported is accurate */
682 	cntr_bist.i_plllock_sel_0 = 0;
683 	cntr_bist.i_plllock_sel_1 = 0;
684 
685 	return ice_write_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
686 				      cntr_bist.val);
687 }
688 
689 /**
690  * ice_cfg_cgu_pll_dis_sticky_bits_e825c - disable TS PLL sticky bits for E825-C
691  * @hw: pointer to the HW struct
692  *
693  * Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
694  * losing TS PLL lock, but always show current state.
695  *
696  * Return: 0 on success, other error codes when failed to read/write CGU
697  */
698 static int ice_cfg_cgu_pll_dis_sticky_bits_e825c(struct ice_hw *hw)
699 {
700 	union tspll_bw_tdc_e825c bw_tdc;
701 	int err;
702 
703 	err = ice_read_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, &bw_tdc.val);
704 	if (err)
705 		return err;
706 
707 	bw_tdc.i_plllock_sel_1_0 = 0;
708 
709 	return ice_write_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, bw_tdc.val);
710 }
711 
712 /**
713  * ice_init_cgu_e82x - Initialize CGU with settings from firmware
714  * @hw: pointer to the HW structure
715  *
716  * Initialize the Clock Generation Unit of the E822 device.
717  *
718  * Return: 0 on success, other error codes when failed to read/write/cfg CGU
719  */
720 static int ice_init_cgu_e82x(struct ice_hw *hw)
721 {
722 	struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
723 	int err;
724 
725 	/* Disable sticky lock detection so lock err reported is accurate */
726 	if (ice_is_e825c(hw))
727 		err = ice_cfg_cgu_pll_dis_sticky_bits_e825c(hw);
728 	else
729 		err = ice_cfg_cgu_pll_dis_sticky_bits_e82x(hw);
730 	if (err)
731 		return err;
732 
733 	/* Configure the CGU PLL using the parameters from the function
734 	 * capabilities.
735 	 */
736 	if (ice_is_e825c(hw))
737 		err = ice_cfg_cgu_pll_e825c(hw, ts_info->time_ref,
738 					    (enum ice_clk_src)ts_info->clk_src);
739 	else
740 		err = ice_cfg_cgu_pll_e82x(hw, ts_info->time_ref,
741 					   (enum ice_clk_src)ts_info->clk_src);
742 
743 	return err;
744 }
745 
746 /**
747  * ice_ptp_tmr_cmd_to_src_reg - Convert to source timer command value
748  * @hw: pointer to HW struct
749  * @cmd: Timer command
750  *
751  * Return: the source timer command register value for the given PTP timer
752  * command.
753  */
754 static u32 ice_ptp_tmr_cmd_to_src_reg(struct ice_hw *hw,
755 				      enum ice_ptp_tmr_cmd cmd)
756 {
757 	u32 cmd_val, tmr_idx;
758 
759 	switch (cmd) {
760 	case ICE_PTP_INIT_TIME:
761 		cmd_val = GLTSYN_CMD_INIT_TIME;
762 		break;
763 	case ICE_PTP_INIT_INCVAL:
764 		cmd_val = GLTSYN_CMD_INIT_INCVAL;
765 		break;
766 	case ICE_PTP_ADJ_TIME:
767 		cmd_val = GLTSYN_CMD_ADJ_TIME;
768 		break;
769 	case ICE_PTP_ADJ_TIME_AT_TIME:
770 		cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
771 		break;
772 	case ICE_PTP_NOP:
773 	case ICE_PTP_READ_TIME:
774 		cmd_val = GLTSYN_CMD_READ_TIME;
775 		break;
776 	default:
777 		dev_warn(ice_hw_to_dev(hw),
778 			 "Ignoring unrecognized timer command %u\n", cmd);
779 		cmd_val = 0;
780 	}
781 
782 	tmr_idx = ice_get_ptp_src_clock_index(hw);
783 
784 	return tmr_idx << SEL_CPK_SRC | cmd_val;
785 }
786 
787 /**
788  * ice_ptp_tmr_cmd_to_port_reg- Convert to port timer command value
789  * @hw: pointer to HW struct
790  * @cmd: Timer command
791  *
792  * Note that some hardware families use a different command register value for
793  * the PHY ports, while other hardware families use the same register values
794  * as the source timer.
795  *
796  * Return: the PHY port timer command register value for the given PTP timer
797  * command.
798  */
799 static u32 ice_ptp_tmr_cmd_to_port_reg(struct ice_hw *hw,
800 				       enum ice_ptp_tmr_cmd cmd)
801 {
802 	u32 cmd_val, tmr_idx;
803 
804 	/* Certain hardware families share the same register values for the
805 	 * port register and source timer register.
806 	 */
807 	switch (hw->ptp.phy_model) {
808 	case ICE_PHY_E810:
809 		return ice_ptp_tmr_cmd_to_src_reg(hw, cmd) & TS_CMD_MASK_E810;
810 	default:
811 		break;
812 	}
813 
814 	switch (cmd) {
815 	case ICE_PTP_INIT_TIME:
816 		cmd_val = PHY_CMD_INIT_TIME;
817 		break;
818 	case ICE_PTP_INIT_INCVAL:
819 		cmd_val = PHY_CMD_INIT_INCVAL;
820 		break;
821 	case ICE_PTP_ADJ_TIME:
822 		cmd_val = PHY_CMD_ADJ_TIME;
823 		break;
824 	case ICE_PTP_ADJ_TIME_AT_TIME:
825 		cmd_val = PHY_CMD_ADJ_TIME_AT_TIME;
826 		break;
827 	case ICE_PTP_READ_TIME:
828 		cmd_val = PHY_CMD_READ_TIME;
829 		break;
830 	case ICE_PTP_NOP:
831 		cmd_val = 0;
832 		break;
833 	default:
834 		dev_warn(ice_hw_to_dev(hw),
835 			 "Ignoring unrecognized timer command %u\n", cmd);
836 		cmd_val = 0;
837 	}
838 
839 	tmr_idx = ice_get_ptp_src_clock_index(hw);
840 
841 	return tmr_idx << SEL_PHY_SRC | cmd_val;
842 }
843 
844 /**
845  * ice_ptp_src_cmd - Prepare source timer for a timer command
846  * @hw: pointer to HW structure
847  * @cmd: Timer command
848  *
849  * Prepare the source timer for an upcoming timer sync command.
850  */
851 void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
852 {
853 	u32 cmd_val = ice_ptp_tmr_cmd_to_src_reg(hw, cmd);
854 
855 	wr32(hw, GLTSYN_CMD, cmd_val);
856 }
857 
858 /**
859  * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
860  * @hw: pointer to HW struct
861  *
862  * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
863  * write immediately. This triggers the hardware to begin executing all of the
864  * source and PHY timer commands synchronously.
865  */
866 static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
867 {
868 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
869 
870 	guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
871 	wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
872 	ice_flush(hw);
873 }
874 
875 /* 56G PHY device functions
876  *
877  * The following functions operate on devices with the ETH 56G PHY.
878  */
879 
880 /**
881  * ice_write_phy_eth56g - Write a PHY port register
882  * @hw: pointer to the HW struct
883  * @phy_idx: PHY index
884  * @addr: PHY register address
885  * @val: Value to write
886  *
887  * Return: 0 on success, other error codes when failed to write to PHY
888  */
889 static int ice_write_phy_eth56g(struct ice_hw *hw, u8 phy_idx, u32 addr,
890 				u32 val)
891 {
892 	struct ice_sbq_msg_input phy_msg;
893 	int err;
894 
895 	phy_msg.opcode = ice_sbq_msg_wr;
896 
897 	phy_msg.msg_addr_low = lower_16_bits(addr);
898 	phy_msg.msg_addr_high = upper_16_bits(addr);
899 
900 	phy_msg.data = val;
901 	phy_msg.dest_dev = hw->ptp.phy.eth56g.phy_addr[phy_idx];
902 
903 	err = ice_sbq_rw_reg(hw, &phy_msg, ICE_AQ_FLAG_RD);
904 
905 	if (err)
906 		ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
907 			  err);
908 
909 	return err;
910 }
911 
912 /**
913  * ice_read_phy_eth56g - Read a PHY port register
914  * @hw: pointer to the HW struct
915  * @phy_idx: PHY index
916  * @addr: PHY register address
917  * @val: Value to write
918  *
919  * Return: 0 on success, other error codes when failed to read from PHY
920  */
921 static int ice_read_phy_eth56g(struct ice_hw *hw, u8 phy_idx, u32 addr,
922 			       u32 *val)
923 {
924 	struct ice_sbq_msg_input phy_msg;
925 	int err;
926 
927 	phy_msg.opcode = ice_sbq_msg_rd;
928 
929 	phy_msg.msg_addr_low = lower_16_bits(addr);
930 	phy_msg.msg_addr_high = upper_16_bits(addr);
931 
932 	phy_msg.data = 0;
933 	phy_msg.dest_dev = hw->ptp.phy.eth56g.phy_addr[phy_idx];
934 
935 	err = ice_sbq_rw_reg(hw, &phy_msg, ICE_AQ_FLAG_RD);
936 	if (err) {
937 		ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
938 			  err);
939 		return err;
940 	}
941 
942 	*val = phy_msg.data;
943 
944 	return 0;
945 }
946 
947 /**
948  * ice_phy_res_address_eth56g - Calculate a PHY port register address
949  * @port: Port number to be written
950  * @res_type: resource type (register/memory)
951  * @offset: Offset from PHY port register base
952  * @addr: The result address
953  *
954  * Return:
955  * * %0      - success
956  * * %EINVAL - invalid port number or resource type
957  */
958 static int ice_phy_res_address_eth56g(u8 port, enum eth56g_res_type res_type,
959 				      u32 offset, u32 *addr)
960 {
961 	u8 lane = port % ICE_PORTS_PER_QUAD;
962 	u8 phy = ICE_GET_QUAD_NUM(port);
963 
964 	if (res_type >= NUM_ETH56G_PHY_RES)
965 		return -EINVAL;
966 
967 	*addr = eth56g_phy_res[res_type].base[phy] +
968 		lane * eth56g_phy_res[res_type].step + offset;
969 	return 0;
970 }
971 
972 /**
973  * ice_write_port_eth56g - Write a PHY port register
974  * @hw: pointer to the HW struct
975  * @offset: PHY register offset
976  * @port: Port number
977  * @val: Value to write
978  * @res_type: resource type (register/memory)
979  *
980  * Return:
981  * * %0      - success
982  * * %EINVAL - invalid port number or resource type
983  * * %other  - failed to write to PHY
984  */
985 static int ice_write_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
986 				 u32 val, enum eth56g_res_type res_type)
987 {
988 	u8 phy_port = port % hw->ptp.ports_per_phy;
989 	u8 phy_idx = port / hw->ptp.ports_per_phy;
990 	u32 addr;
991 	int err;
992 
993 	if (port >= hw->ptp.num_lports)
994 		return -EINVAL;
995 
996 	err = ice_phy_res_address_eth56g(phy_port, res_type, offset, &addr);
997 	if (err)
998 		return err;
999 
1000 	return ice_write_phy_eth56g(hw, phy_idx, addr, val);
1001 }
1002 
1003 /**
1004  * ice_read_port_eth56g - Read a PHY port register
1005  * @hw: pointer to the HW struct
1006  * @offset: PHY register offset
1007  * @port: Port number
1008  * @val: Value to write
1009  * @res_type: resource type (register/memory)
1010  *
1011  * Return:
1012  * * %0      - success
1013  * * %EINVAL - invalid port number or resource type
1014  * * %other  - failed to read from PHY
1015  */
1016 static int ice_read_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1017 				u32 *val, enum eth56g_res_type res_type)
1018 {
1019 	u8 phy_port = port % hw->ptp.ports_per_phy;
1020 	u8 phy_idx = port / hw->ptp.ports_per_phy;
1021 	u32 addr;
1022 	int err;
1023 
1024 	if (port >= hw->ptp.num_lports)
1025 		return -EINVAL;
1026 
1027 	err = ice_phy_res_address_eth56g(phy_port, res_type, offset, &addr);
1028 	if (err)
1029 		return err;
1030 
1031 	return ice_read_phy_eth56g(hw, phy_idx, addr, val);
1032 }
1033 
1034 /**
1035  * ice_write_ptp_reg_eth56g - Write a PHY port register
1036  * @hw: pointer to the HW struct
1037  * @port: Port number to be written
1038  * @offset: Offset from PHY port register base
1039  * @val: Value to write
1040  *
1041  * Return:
1042  * * %0      - success
1043  * * %EINVAL - invalid port number or resource type
1044  * * %other  - failed to write to PHY
1045  */
1046 static int ice_write_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1047 				    u32 val)
1048 {
1049 	return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
1050 }
1051 
1052 /**
1053  * ice_write_mac_reg_eth56g - Write a MAC PHY port register
1054  * parameter
1055  * @hw: pointer to the HW struct
1056  * @port: Port number to be written
1057  * @offset: Offset from PHY port register base
1058  * @val: Value to write
1059  *
1060  * Return:
1061  * * %0      - success
1062  * * %EINVAL - invalid port number or resource type
1063  * * %other  - failed to write to PHY
1064  */
1065 static int ice_write_mac_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1066 				    u32 val)
1067 {
1068 	return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
1069 }
1070 
1071 /**
1072  * ice_write_xpcs_reg_eth56g - Write a PHY port register
1073  * @hw: pointer to the HW struct
1074  * @port: Port number to be written
1075  * @offset: Offset from PHY port register base
1076  * @val: Value to write
1077  *
1078  * Return:
1079  * * %0      - success
1080  * * %EINVAL - invalid port number or resource type
1081  * * %other  - failed to write to PHY
1082  */
1083 static int ice_write_xpcs_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1084 				     u32 val)
1085 {
1086 	return ice_write_port_eth56g(hw, port, offset, val,
1087 				     ETH56G_PHY_REG_XPCS);
1088 }
1089 
1090 /**
1091  * ice_read_ptp_reg_eth56g - Read a PHY port register
1092  * @hw: pointer to the HW struct
1093  * @port: Port number to be read
1094  * @offset: Offset from PHY port register base
1095  * @val: Pointer to the value to read (out param)
1096  *
1097  * Return:
1098  * * %0      - success
1099  * * %EINVAL - invalid port number or resource type
1100  * * %other  - failed to read from PHY
1101  */
1102 static int ice_read_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1103 				   u32 *val)
1104 {
1105 	return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
1106 }
1107 
1108 /**
1109  * ice_read_mac_reg_eth56g - Read a PHY port register
1110  * @hw: pointer to the HW struct
1111  * @port: Port number to be read
1112  * @offset: Offset from PHY port register base
1113  * @val: Pointer to the value to read (out param)
1114  *
1115  * Return:
1116  * * %0      - success
1117  * * %EINVAL - invalid port number or resource type
1118  * * %other  - failed to read from PHY
1119  */
1120 static int ice_read_mac_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1121 				   u32 *val)
1122 {
1123 	return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
1124 }
1125 
1126 /**
1127  * ice_read_gpcs_reg_eth56g - Read a PHY port register
1128  * @hw: pointer to the HW struct
1129  * @port: Port number to be read
1130  * @offset: Offset from PHY port register base
1131  * @val: Pointer to the value to read (out param)
1132  *
1133  * Return:
1134  * * %0      - success
1135  * * %EINVAL - invalid port number or resource type
1136  * * %other  - failed to read from PHY
1137  */
1138 static int ice_read_gpcs_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1139 				    u32 *val)
1140 {
1141 	return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_GPCS);
1142 }
1143 
1144 /**
1145  * ice_read_port_mem_eth56g - Read a PHY port memory location
1146  * @hw: pointer to the HW struct
1147  * @port: Port number to be read
1148  * @offset: Offset from PHY port register base
1149  * @val: Pointer to the value to read (out param)
1150  *
1151  * Return:
1152  * * %0      - success
1153  * * %EINVAL - invalid port number or resource type
1154  * * %other  - failed to read from PHY
1155  */
1156 static int ice_read_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1157 				    u32 *val)
1158 {
1159 	return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
1160 }
1161 
1162 /**
1163  * ice_write_port_mem_eth56g - Write a PHY port memory location
1164  * @hw: pointer to the HW struct
1165  * @port: Port number to be read
1166  * @offset: Offset from PHY port register base
1167  * @val: Pointer to the value to read (out param)
1168  *
1169  * Return:
1170  * * %0      - success
1171  * * %EINVAL - invalid port number or resource type
1172  * * %other  - failed to write to PHY
1173  */
1174 static int ice_write_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1175 				     u32 val)
1176 {
1177 	return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
1178 }
1179 
1180 /**
1181  * ice_is_64b_phy_reg_eth56g - Check if this is a 64bit PHY register
1182  * @low_addr: the low address to check
1183  * @high_addr: on return, contains the high address of the 64bit register
1184  *
1185  * Write the appropriate high register offset to use.
1186  *
1187  * Return: true if the provided low address is one of the known 64bit PHY values
1188  * represented as two 32bit registers, false otherwise.
1189  */
1190 static bool ice_is_64b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
1191 {
1192 	switch (low_addr) {
1193 	case PHY_REG_TX_TIMER_INC_PRE_L:
1194 		*high_addr = PHY_REG_TX_TIMER_INC_PRE_U;
1195 		return true;
1196 	case PHY_REG_RX_TIMER_INC_PRE_L:
1197 		*high_addr = PHY_REG_RX_TIMER_INC_PRE_U;
1198 		return true;
1199 	case PHY_REG_TX_CAPTURE_L:
1200 		*high_addr = PHY_REG_TX_CAPTURE_U;
1201 		return true;
1202 	case PHY_REG_RX_CAPTURE_L:
1203 		*high_addr = PHY_REG_RX_CAPTURE_U;
1204 		return true;
1205 	case PHY_REG_TOTAL_TX_OFFSET_L:
1206 		*high_addr = PHY_REG_TOTAL_TX_OFFSET_U;
1207 		return true;
1208 	case PHY_REG_TOTAL_RX_OFFSET_L:
1209 		*high_addr = PHY_REG_TOTAL_RX_OFFSET_U;
1210 		return true;
1211 	case PHY_REG_TX_MEMORY_STATUS_L:
1212 		*high_addr = PHY_REG_TX_MEMORY_STATUS_U;
1213 		return true;
1214 	default:
1215 		return false;
1216 	}
1217 }
1218 
1219 /**
1220  * ice_is_40b_phy_reg_eth56g - Check if this is a 40bit PHY register
1221  * @low_addr: the low address to check
1222  * @high_addr: on return, contains the high address of the 40bit value
1223  *
1224  * Write the appropriate high register offset to use.
1225  *
1226  * Return: true if the provided low address is one of the known 40bit PHY
1227  * values split into two registers with the lower 8 bits in the low register and
1228  * the upper 32 bits in the high register, false otherwise.
1229  */
1230 static bool ice_is_40b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
1231 {
1232 	switch (low_addr) {
1233 	case PHY_REG_TIMETUS_L:
1234 		*high_addr = PHY_REG_TIMETUS_U;
1235 		return true;
1236 	case PHY_PCS_REF_TUS_L:
1237 		*high_addr = PHY_PCS_REF_TUS_U;
1238 		return true;
1239 	case PHY_PCS_REF_INC_L:
1240 		*high_addr = PHY_PCS_REF_INC_U;
1241 		return true;
1242 	default:
1243 		return false;
1244 	}
1245 }
1246 
1247 /**
1248  * ice_read_64b_phy_reg_eth56g - Read a 64bit value from PHY registers
1249  * @hw: pointer to the HW struct
1250  * @port: PHY port to read from
1251  * @low_addr: offset of the lower register to read from
1252  * @val: on return, the contents of the 64bit value from the PHY registers
1253  * @res_type: resource type
1254  *
1255  * Check if the caller has specified a known 40 bit register offset and read
1256  * the two registers associated with a 40bit value and return it in the val
1257  * pointer.
1258  *
1259  * Return:
1260  * * %0      - success
1261  * * %EINVAL - not a 64 bit register
1262  * * %other  - failed to read from PHY
1263  */
1264 static int ice_read_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
1265 				       u64 *val, enum eth56g_res_type res_type)
1266 {
1267 	u16 high_addr;
1268 	u32 lo, hi;
1269 	int err;
1270 
1271 	if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
1272 		return -EINVAL;
1273 
1274 	err = ice_read_port_eth56g(hw, port, low_addr, &lo, res_type);
1275 	if (err) {
1276 		ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register %#08x\n, err %d",
1277 			  low_addr, err);
1278 		return err;
1279 	}
1280 
1281 	err = ice_read_port_eth56g(hw, port, high_addr, &hi, res_type);
1282 	if (err) {
1283 		ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register %#08x\n, err %d",
1284 			  high_addr, err);
1285 		return err;
1286 	}
1287 
1288 	*val = ((u64)hi << 32) | lo;
1289 
1290 	return 0;
1291 }
1292 
1293 /**
1294  * ice_read_64b_ptp_reg_eth56g - Read a 64bit value from PHY registers
1295  * @hw: pointer to the HW struct
1296  * @port: PHY port to read from
1297  * @low_addr: offset of the lower register to read from
1298  * @val: on return, the contents of the 64bit value from the PHY registers
1299  *
1300  * Check if the caller has specified a known 40 bit register offset and read
1301  * the two registers associated with a 40bit value and return it in the val
1302  * pointer.
1303  *
1304  * Return:
1305  * * %0      - success
1306  * * %EINVAL - not a 64 bit register
1307  * * %other  - failed to read from PHY
1308  */
1309 static int ice_read_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
1310 				       u64 *val)
1311 {
1312 	return ice_read_64b_phy_reg_eth56g(hw, port, low_addr, val,
1313 					   ETH56G_PHY_REG_PTP);
1314 }
1315 
1316 /**
1317  * ice_write_40b_phy_reg_eth56g - Write a 40b value to the PHY
1318  * @hw: pointer to the HW struct
1319  * @port: port to write to
1320  * @low_addr: offset of the low register
1321  * @val: 40b value to write
1322  * @res_type: resource type
1323  *
1324  * Check if the caller has specified a known 40 bit register offset and write
1325  * provided 40b value to the two associated registers by splitting it up into
1326  * two chunks, the lower 8 bits and the upper 32 bits.
1327  *
1328  * Return:
1329  * * %0      - success
1330  * * %EINVAL - not a 40 bit register
1331  * * %other  - failed to write to PHY
1332  */
1333 static int ice_write_40b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
1334 					u16 low_addr, u64 val,
1335 					enum eth56g_res_type res_type)
1336 {
1337 	u16 high_addr;
1338 	u32 lo, hi;
1339 	int err;
1340 
1341 	if (!ice_is_40b_phy_reg_eth56g(low_addr, &high_addr))
1342 		return -EINVAL;
1343 
1344 	lo = FIELD_GET(P_REG_40B_LOW_M, val);
1345 	hi = (u32)(val >> P_REG_40B_HIGH_S);
1346 
1347 	err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
1348 	if (err) {
1349 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
1350 			  low_addr, err);
1351 		return err;
1352 	}
1353 
1354 	err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
1355 	if (err) {
1356 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
1357 			  high_addr, err);
1358 		return err;
1359 	}
1360 
1361 	return 0;
1362 }
1363 
1364 /**
1365  * ice_write_40b_ptp_reg_eth56g - Write a 40b value to the PHY
1366  * @hw: pointer to the HW struct
1367  * @port: port to write to
1368  * @low_addr: offset of the low register
1369  * @val: 40b value to write
1370  *
1371  * Check if the caller has specified a known 40 bit register offset and write
1372  * provided 40b value to the two associated registers by splitting it up into
1373  * two chunks, the lower 8 bits and the upper 32 bits.
1374  *
1375  * Return:
1376  * * %0      - success
1377  * * %EINVAL - not a 40 bit register
1378  * * %other  - failed to write to PHY
1379  */
1380 static int ice_write_40b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1381 					u16 low_addr, u64 val)
1382 {
1383 	return ice_write_40b_phy_reg_eth56g(hw, port, low_addr, val,
1384 					    ETH56G_PHY_REG_PTP);
1385 }
1386 
1387 /**
1388  * ice_write_64b_phy_reg_eth56g - Write a 64bit value to PHY registers
1389  * @hw: pointer to the HW struct
1390  * @port: PHY port to read from
1391  * @low_addr: offset of the lower register to read from
1392  * @val: the contents of the 64bit value to write to PHY
1393  * @res_type: resource type
1394  *
1395  * Check if the caller has specified a known 64 bit register offset and write
1396  * the 64bit value to the two associated 32bit PHY registers.
1397  *
1398  * Return:
1399  * * %0      - success
1400  * * %EINVAL - not a 64 bit register
1401  * * %other  - failed to write to PHY
1402  */
1403 static int ice_write_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
1404 					u16 low_addr, u64 val,
1405 					enum eth56g_res_type res_type)
1406 {
1407 	u16 high_addr;
1408 	u32 lo, hi;
1409 	int err;
1410 
1411 	if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
1412 		return -EINVAL;
1413 
1414 	lo = lower_32_bits(val);
1415 	hi = upper_32_bits(val);
1416 
1417 	err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
1418 	if (err) {
1419 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
1420 			  low_addr, err);
1421 		return err;
1422 	}
1423 
1424 	err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
1425 	if (err) {
1426 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
1427 			  high_addr, err);
1428 		return err;
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 /**
1435  * ice_write_64b_ptp_reg_eth56g - Write a 64bit value to PHY registers
1436  * @hw: pointer to the HW struct
1437  * @port: PHY port to read from
1438  * @low_addr: offset of the lower register to read from
1439  * @val: the contents of the 64bit value to write to PHY
1440  *
1441  * Check if the caller has specified a known 64 bit register offset and write
1442  * the 64bit value to the two associated 32bit PHY registers.
1443  *
1444  * Return:
1445  * * %0      - success
1446  * * %EINVAL - not a 64 bit register
1447  * * %other  - failed to write to PHY
1448  */
1449 static int ice_write_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1450 					u16 low_addr, u64 val)
1451 {
1452 	return ice_write_64b_phy_reg_eth56g(hw, port, low_addr, val,
1453 					    ETH56G_PHY_REG_PTP);
1454 }
1455 
1456 /**
1457  * ice_read_ptp_tstamp_eth56g - Read a PHY timestamp out of the port memory
1458  * @hw: pointer to the HW struct
1459  * @port: the port to read from
1460  * @idx: the timestamp index to read
1461  * @tstamp: on return, the 40bit timestamp value
1462  *
1463  * Read a 40bit timestamp value out of the two associated entries in the
1464  * port memory block of the internal PHYs of the 56G devices.
1465  *
1466  * Return:
1467  * * %0     - success
1468  * * %other - failed to read from PHY
1469  */
1470 static int ice_read_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx,
1471 				      u64 *tstamp)
1472 {
1473 	u16 lo_addr, hi_addr;
1474 	u32 lo, hi;
1475 	int err;
1476 
1477 	lo_addr = (u16)PHY_TSTAMP_L(idx);
1478 	hi_addr = (u16)PHY_TSTAMP_U(idx);
1479 
1480 	err = ice_read_port_mem_eth56g(hw, port, lo_addr, &lo);
1481 	if (err) {
1482 		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
1483 			  err);
1484 		return err;
1485 	}
1486 
1487 	err = ice_read_port_mem_eth56g(hw, port, hi_addr, &hi);
1488 	if (err) {
1489 		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
1490 			  err);
1491 		return err;
1492 	}
1493 
1494 	/* For 56G based internal PHYs, the timestamp is reported with the
1495 	 * lower 8 bits in the low register, and the upper 32 bits in the high
1496 	 * register.
1497 	 */
1498 	*tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M);
1499 
1500 	return 0;
1501 }
1502 
1503 /**
1504  * ice_clear_ptp_tstamp_eth56g - Clear a timestamp from the quad block
1505  * @hw: pointer to the HW struct
1506  * @port: the quad to read from
1507  * @idx: the timestamp index to reset
1508  *
1509  * Read and then forcibly clear the timestamp index to ensure the valid bit is
1510  * cleared and the timestamp status bit is reset in the PHY port memory of
1511  * internal PHYs of the 56G devices.
1512  *
1513  * To directly clear the contents of the timestamp block entirely, discarding
1514  * all timestamp data at once, software should instead use
1515  * ice_ptp_reset_ts_memory_quad_eth56g().
1516  *
1517  * This function should only be called on an idx whose bit is set according to
1518  * ice_get_phy_tx_tstamp_ready().
1519  *
1520  * Return:
1521  * * %0     - success
1522  * * %other - failed to write to PHY
1523  */
1524 static int ice_clear_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx)
1525 {
1526 	u64 unused_tstamp;
1527 	u16 lo_addr;
1528 	int err;
1529 
1530 	/* Read the timestamp register to ensure the timestamp status bit is
1531 	 * cleared.
1532 	 */
1533 	err = ice_read_ptp_tstamp_eth56g(hw, port, idx, &unused_tstamp);
1534 	if (err) {
1535 		ice_debug(hw, ICE_DBG_PTP, "Failed to read the PHY timestamp register for port %u, idx %u, err %d\n",
1536 			  port, idx, err);
1537 	}
1538 
1539 	lo_addr = (u16)PHY_TSTAMP_L(idx);
1540 
1541 	err = ice_write_port_mem_eth56g(hw, port, lo_addr, 0);
1542 	if (err) {
1543 		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for port %u, idx %u, err %d\n",
1544 			  port, idx, err);
1545 		return err;
1546 	}
1547 
1548 	return 0;
1549 }
1550 
1551 /**
1552  * ice_ptp_reset_ts_memory_eth56g - Clear all timestamps from the port block
1553  * @hw: pointer to the HW struct
1554  */
1555 static void ice_ptp_reset_ts_memory_eth56g(struct ice_hw *hw)
1556 {
1557 	unsigned int port;
1558 
1559 	for (port = 0; port < hw->ptp.num_lports; port++) {
1560 		ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
1561 					 0);
1562 		ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_U,
1563 					 0);
1564 	}
1565 }
1566 
1567 /**
1568  * ice_ptp_prep_port_time_eth56g - Prepare one PHY port with initial time
1569  * @hw: pointer to the HW struct
1570  * @port: port number
1571  * @time: time to initialize the PHY port clocks to
1572  *
1573  * Write a new initial time value into registers of a specific PHY port.
1574  *
1575  * Return:
1576  * * %0     - success
1577  * * %other - failed to write to PHY
1578  */
1579 static int ice_ptp_prep_port_time_eth56g(struct ice_hw *hw, u8 port,
1580 					 u64 time)
1581 {
1582 	int err;
1583 
1584 	/* Tx case */
1585 	err = ice_write_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
1586 					   time);
1587 	if (err)
1588 		return err;
1589 
1590 	/* Rx case */
1591 	return ice_write_64b_ptp_reg_eth56g(hw, port,
1592 					    PHY_REG_RX_TIMER_INC_PRE_L, time);
1593 }
1594 
1595 /**
1596  * ice_ptp_prep_phy_time_eth56g - Prepare PHY port with initial time
1597  * @hw: pointer to the HW struct
1598  * @time: Time to initialize the PHY port clocks to
1599  *
1600  * Program the PHY port registers with a new initial time value. The port
1601  * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
1602  * command. The time value is the upper 32 bits of the PHY timer, usually in
1603  * units of nominal nanoseconds.
1604  *
1605  * Return:
1606  * * %0     - success
1607  * * %other - failed to write to PHY
1608  */
1609 static int ice_ptp_prep_phy_time_eth56g(struct ice_hw *hw, u32 time)
1610 {
1611 	u64 phy_time;
1612 	u8 port;
1613 
1614 	/* The time represents the upper 32 bits of the PHY timer, so we need
1615 	 * to shift to account for this when programming.
1616 	 */
1617 	phy_time = (u64)time << 32;
1618 
1619 	for (port = 0; port < hw->ptp.num_lports; port++) {
1620 		int err;
1621 
1622 		err = ice_ptp_prep_port_time_eth56g(hw, port, phy_time);
1623 		if (err) {
1624 			ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
1625 				  port, err);
1626 			return err;
1627 		}
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 /**
1634  * ice_ptp_prep_port_adj_eth56g - Prepare a single port for time adjust
1635  * @hw: pointer to HW struct
1636  * @port: Port number to be programmed
1637  * @time: time in cycles to adjust the port clocks
1638  *
1639  * Program the port for an atomic adjustment by writing the Tx and Rx timer
1640  * registers. The atomic adjustment won't be completed until the driver issues
1641  * an ICE_PTP_ADJ_TIME command.
1642  *
1643  * Note that time is not in units of nanoseconds. It is in clock time
1644  * including the lower sub-nanosecond portion of the port timer.
1645  *
1646  * Negative adjustments are supported using 2s complement arithmetic.
1647  *
1648  * Return:
1649  * * %0     - success
1650  * * %other - failed to write to PHY
1651  */
1652 static int ice_ptp_prep_port_adj_eth56g(struct ice_hw *hw, u8 port, s64 time)
1653 {
1654 	u32 l_time, u_time;
1655 	int err;
1656 
1657 	l_time = lower_32_bits(time);
1658 	u_time = upper_32_bits(time);
1659 
1660 	/* Tx case */
1661 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
1662 				       l_time);
1663 	if (err)
1664 		goto exit_err;
1665 
1666 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_U,
1667 				       u_time);
1668 	if (err)
1669 		goto exit_err;
1670 
1671 	/* Rx case */
1672 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_L,
1673 				       l_time);
1674 	if (err)
1675 		goto exit_err;
1676 
1677 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_U,
1678 				       u_time);
1679 	if (err)
1680 		goto exit_err;
1681 
1682 	return 0;
1683 
1684 exit_err:
1685 	ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
1686 		  port, err);
1687 	return err;
1688 }
1689 
1690 /**
1691  * ice_ptp_prep_phy_adj_eth56g - Prep PHY ports for a time adjustment
1692  * @hw: pointer to HW struct
1693  * @adj: adjustment in nanoseconds
1694  *
1695  * Prepare the PHY ports for an atomic time adjustment by programming the PHY
1696  * Tx and Rx port registers. The actual adjustment is completed by issuing an
1697  * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
1698  *
1699  * Return:
1700  * * %0     - success
1701  * * %other - failed to write to PHY
1702  */
1703 static int ice_ptp_prep_phy_adj_eth56g(struct ice_hw *hw, s32 adj)
1704 {
1705 	s64 cycles;
1706 	u8 port;
1707 
1708 	/* The port clock supports adjustment of the sub-nanosecond portion of
1709 	 * the clock (lowest 32 bits). We shift the provided adjustment in
1710 	 * nanoseconds by 32 to calculate the appropriate adjustment to program
1711 	 * into the PHY ports.
1712 	 */
1713 	cycles = (s64)adj << 32;
1714 
1715 	for (port = 0; port < hw->ptp.num_lports; port++) {
1716 		int err;
1717 
1718 		err = ice_ptp_prep_port_adj_eth56g(hw, port, cycles);
1719 		if (err)
1720 			return err;
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 /**
1727  * ice_ptp_prep_phy_incval_eth56g - Prepare PHY ports for time adjustment
1728  * @hw: pointer to HW struct
1729  * @incval: new increment value to prepare
1730  *
1731  * Prepare each of the PHY ports for a new increment value by programming the
1732  * port's TIMETUS registers. The new increment value will be updated after
1733  * issuing an ICE_PTP_INIT_INCVAL command.
1734  *
1735  * Return:
1736  * * %0     - success
1737  * * %other - failed to write to PHY
1738  */
1739 static int ice_ptp_prep_phy_incval_eth56g(struct ice_hw *hw, u64 incval)
1740 {
1741 	u8 port;
1742 
1743 	for (port = 0; port < hw->ptp.num_lports; port++) {
1744 		int err;
1745 
1746 		err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L,
1747 						   incval);
1748 		if (err) {
1749 			ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
1750 				  port, err);
1751 			return err;
1752 		}
1753 	}
1754 
1755 	return 0;
1756 }
1757 
1758 /**
1759  * ice_ptp_read_port_capture_eth56g - Read a port's local time capture
1760  * @hw: pointer to HW struct
1761  * @port: Port number to read
1762  * @tx_ts: on return, the Tx port time capture
1763  * @rx_ts: on return, the Rx port time capture
1764  *
1765  * Read the port's Tx and Rx local time capture values.
1766  *
1767  * Return:
1768  * * %0     - success
1769  * * %other - failed to read from PHY
1770  */
1771 static int ice_ptp_read_port_capture_eth56g(struct ice_hw *hw, u8 port,
1772 					    u64 *tx_ts, u64 *rx_ts)
1773 {
1774 	int err;
1775 
1776 	/* Tx case */
1777 	err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_CAPTURE_L,
1778 					  tx_ts);
1779 	if (err) {
1780 		ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
1781 			  err);
1782 		return err;
1783 	}
1784 
1785 	ice_debug(hw, ICE_DBG_PTP, "tx_init = %#016llx\n", *tx_ts);
1786 
1787 	/* Rx case */
1788 	err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_RX_CAPTURE_L,
1789 					  rx_ts);
1790 	if (err) {
1791 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
1792 			  err);
1793 		return err;
1794 	}
1795 
1796 	ice_debug(hw, ICE_DBG_PTP, "rx_init = %#016llx\n", *rx_ts);
1797 
1798 	return 0;
1799 }
1800 
1801 /**
1802  * ice_ptp_write_port_cmd_eth56g - Prepare a single PHY port for a timer command
1803  * @hw: pointer to HW struct
1804  * @port: Port to which cmd has to be sent
1805  * @cmd: Command to be sent to the port
1806  *
1807  * Prepare the requested port for an upcoming timer sync command.
1808  *
1809  * Return:
1810  * * %0     - success
1811  * * %other - failed to write to PHY
1812  */
1813 static int ice_ptp_write_port_cmd_eth56g(struct ice_hw *hw, u8 port,
1814 					 enum ice_ptp_tmr_cmd cmd)
1815 {
1816 	u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
1817 	int err;
1818 
1819 	/* Tx case */
1820 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TMR_CMD, val);
1821 	if (err) {
1822 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
1823 			  err);
1824 		return err;
1825 	}
1826 
1827 	/* Rx case */
1828 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TMR_CMD, val);
1829 	if (err) {
1830 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
1831 			  err);
1832 		return err;
1833 	}
1834 
1835 	return 0;
1836 }
1837 
1838 /**
1839  * ice_phy_get_speed_eth56g - Get link speed based on PHY link type
1840  * @li: pointer to link information struct
1841  *
1842  * Return: simplified ETH56G PHY speed
1843  */
1844 static enum ice_eth56g_link_spd
1845 ice_phy_get_speed_eth56g(struct ice_link_status *li)
1846 {
1847 	u16 speed = ice_get_link_speed_based_on_phy_type(li->phy_type_low,
1848 							 li->phy_type_high);
1849 
1850 	switch (speed) {
1851 	case ICE_AQ_LINK_SPEED_1000MB:
1852 		return ICE_ETH56G_LNK_SPD_1G;
1853 	case ICE_AQ_LINK_SPEED_2500MB:
1854 		return ICE_ETH56G_LNK_SPD_2_5G;
1855 	case ICE_AQ_LINK_SPEED_10GB:
1856 		return ICE_ETH56G_LNK_SPD_10G;
1857 	case ICE_AQ_LINK_SPEED_25GB:
1858 		return ICE_ETH56G_LNK_SPD_25G;
1859 	case ICE_AQ_LINK_SPEED_40GB:
1860 		return ICE_ETH56G_LNK_SPD_40G;
1861 	case ICE_AQ_LINK_SPEED_50GB:
1862 		switch (li->phy_type_low) {
1863 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
1864 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
1865 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
1866 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
1867 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
1868 		case ICE_PHY_TYPE_LOW_50G_AUI1:
1869 			return ICE_ETH56G_LNK_SPD_50G;
1870 		default:
1871 			return ICE_ETH56G_LNK_SPD_50G2;
1872 		}
1873 	case ICE_AQ_LINK_SPEED_100GB:
1874 		if (li->phy_type_high ||
1875 		    li->phy_type_low == ICE_PHY_TYPE_LOW_100GBASE_SR2)
1876 			return ICE_ETH56G_LNK_SPD_100G2;
1877 		else
1878 			return ICE_ETH56G_LNK_SPD_100G;
1879 	default:
1880 		return ICE_ETH56G_LNK_SPD_1G;
1881 	}
1882 }
1883 
1884 /**
1885  * ice_phy_cfg_parpcs_eth56g - Configure TUs per PAR/PCS clock cycle
1886  * @hw: pointer to the HW struct
1887  * @port: port to configure
1888  *
1889  * Configure the number of TUs for the PAR and PCS clocks used as part of the
1890  * timestamp calibration process.
1891  *
1892  * Return:
1893  * * %0     - success
1894  * * %other - PHY read/write failed
1895  */
1896 static int ice_phy_cfg_parpcs_eth56g(struct ice_hw *hw, u8 port)
1897 {
1898 	u8 port_blk = port & ~(ICE_PORTS_PER_QUAD - 1);
1899 	u32 val;
1900 	int err;
1901 
1902 	err = ice_write_xpcs_reg_eth56g(hw, port, PHY_VENDOR_TXLANE_THRESH,
1903 					ICE_ETH56G_NOMINAL_THRESH4);
1904 	if (err) {
1905 		ice_debug(hw, ICE_DBG_PTP, "Failed to read VENDOR_TXLANE_THRESH, status: %d",
1906 			  err);
1907 		return err;
1908 	}
1909 
1910 	switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
1911 	case ICE_ETH56G_LNK_SPD_1G:
1912 	case ICE_ETH56G_LNK_SPD_2_5G:
1913 		err = ice_read_ptp_reg_eth56g(hw, port_blk,
1914 					      PHY_GPCS_CONFIG_REG0, &val);
1915 		if (err) {
1916 			ice_debug(hw, ICE_DBG_PTP, "Failed to read PHY_GPCS_CONFIG_REG0, status: %d",
1917 				  err);
1918 			return err;
1919 		}
1920 
1921 		val &= ~PHY_GPCS_CONFIG_REG0_TX_THR_M;
1922 		val |= FIELD_PREP(PHY_GPCS_CONFIG_REG0_TX_THR_M,
1923 				  ICE_ETH56G_NOMINAL_TX_THRESH);
1924 
1925 		err = ice_write_ptp_reg_eth56g(hw, port_blk,
1926 					       PHY_GPCS_CONFIG_REG0, val);
1927 		if (err) {
1928 			ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_GPCS_CONFIG_REG0, status: %d",
1929 				  err);
1930 			return err;
1931 		}
1932 		break;
1933 	default:
1934 		break;
1935 	}
1936 
1937 	err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_TUS_L,
1938 					   ICE_ETH56G_NOMINAL_PCS_REF_TUS);
1939 	if (err) {
1940 		ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_TUS, status: %d",
1941 			  err);
1942 		return err;
1943 	}
1944 
1945 	err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_INC_L,
1946 					   ICE_ETH56G_NOMINAL_PCS_REF_INC);
1947 	if (err) {
1948 		ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_INC, status: %d",
1949 			  err);
1950 		return err;
1951 	}
1952 
1953 	return 0;
1954 }
1955 
1956 /**
1957  * ice_phy_cfg_ptp_1step_eth56g - Configure 1-step PTP settings
1958  * @hw: Pointer to the HW struct
1959  * @port: Port to configure
1960  *
1961  * Return:
1962  * * %0     - success
1963  * * %other - PHY read/write failed
1964  */
1965 int ice_phy_cfg_ptp_1step_eth56g(struct ice_hw *hw, u8 port)
1966 {
1967 	u8 port_blk = port & ~(ICE_PORTS_PER_QUAD - 1);
1968 	u8 blk_port = port & (ICE_PORTS_PER_QUAD - 1);
1969 	bool enable, sfd_ena;
1970 	u32 val, peer_delay;
1971 	int err;
1972 
1973 	enable = hw->ptp.phy.eth56g.onestep_ena;
1974 	peer_delay = hw->ptp.phy.eth56g.peer_delay;
1975 	sfd_ena = hw->ptp.phy.eth56g.sfd_ena;
1976 
1977 	/* PHY_PTP_1STEP_CONFIG */
1978 	err = ice_read_ptp_reg_eth56g(hw, port_blk, PHY_PTP_1STEP_CONFIG, &val);
1979 	if (err)
1980 		return err;
1981 
1982 	if (enable)
1983 		val |= blk_port;
1984 	else
1985 		val &= ~blk_port;
1986 
1987 	val &= ~(PHY_PTP_1STEP_T1S_UP64_M | PHY_PTP_1STEP_T1S_DELTA_M);
1988 
1989 	err = ice_write_ptp_reg_eth56g(hw, port_blk, PHY_PTP_1STEP_CONFIG, val);
1990 	if (err)
1991 		return err;
1992 
1993 	/* PHY_PTP_1STEP_PEER_DELAY */
1994 	val = FIELD_PREP(PHY_PTP_1STEP_PD_DELAY_M, peer_delay);
1995 	if (peer_delay)
1996 		val |= PHY_PTP_1STEP_PD_ADD_PD_M;
1997 	val |= PHY_PTP_1STEP_PD_DLY_V_M;
1998 	err = ice_write_ptp_reg_eth56g(hw, port_blk,
1999 				       PHY_PTP_1STEP_PEER_DELAY(blk_port), val);
2000 	if (err)
2001 		return err;
2002 
2003 	val &= ~PHY_PTP_1STEP_PD_DLY_V_M;
2004 	err = ice_write_ptp_reg_eth56g(hw, port_blk,
2005 				       PHY_PTP_1STEP_PEER_DELAY(blk_port), val);
2006 	if (err)
2007 		return err;
2008 
2009 	/* PHY_MAC_XIF_MODE */
2010 	err = ice_read_mac_reg_eth56g(hw, port, PHY_MAC_XIF_MODE, &val);
2011 	if (err)
2012 		return err;
2013 
2014 	val &= ~(PHY_MAC_XIF_1STEP_ENA_M | PHY_MAC_XIF_TS_BIN_MODE_M |
2015 		 PHY_MAC_XIF_TS_SFD_ENA_M | PHY_MAC_XIF_GMII_TS_SEL_M);
2016 
2017 	switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
2018 	case ICE_ETH56G_LNK_SPD_1G:
2019 	case ICE_ETH56G_LNK_SPD_2_5G:
2020 		val |= PHY_MAC_XIF_GMII_TS_SEL_M;
2021 		break;
2022 	default:
2023 		break;
2024 	}
2025 
2026 	val |= FIELD_PREP(PHY_MAC_XIF_1STEP_ENA_M, enable) |
2027 	       FIELD_PREP(PHY_MAC_XIF_TS_BIN_MODE_M, enable) |
2028 	       FIELD_PREP(PHY_MAC_XIF_TS_SFD_ENA_M, sfd_ena);
2029 
2030 	return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_XIF_MODE, val);
2031 }
2032 
2033 /**
2034  * mul_u32_u32_fx_q9 - Multiply two u32 fixed point Q9 values
2035  * @a: multiplier value
2036  * @b: multiplicand value
2037  *
2038  * Return: result of multiplication
2039  */
2040 static u32 mul_u32_u32_fx_q9(u32 a, u32 b)
2041 {
2042 	return (u32)(((u64)a * b) >> ICE_ETH56G_MAC_CFG_FRAC_W);
2043 }
2044 
2045 /**
2046  * add_u32_u32_fx - Add two u32 fixed point values and discard overflow
2047  * @a: first value
2048  * @b: second value
2049  *
2050  * Return: result of addition
2051  */
2052 static u32 add_u32_u32_fx(u32 a, u32 b)
2053 {
2054 	return lower_32_bits(((u64)a + b));
2055 }
2056 
2057 /**
2058  * ice_ptp_calc_bitslip_eth56g - Calculate bitslip value
2059  * @hw: pointer to the HW struct
2060  * @port: port to configure
2061  * @bs: bitslip multiplier
2062  * @fc: FC-FEC enabled
2063  * @rs: RS-FEC enabled
2064  * @spd: link speed
2065  *
2066  * Return: calculated bitslip value
2067  */
2068 static u32 ice_ptp_calc_bitslip_eth56g(struct ice_hw *hw, u8 port, u32 bs,
2069 				       bool fc, bool rs,
2070 				       enum ice_eth56g_link_spd spd)
2071 {
2072 	u8 port_offset = port & (ICE_PORTS_PER_QUAD - 1);
2073 	u8 port_blk = port & ~(ICE_PORTS_PER_QUAD - 1);
2074 	u32 bitslip;
2075 	int err;
2076 
2077 	if (!bs || rs)
2078 		return 0;
2079 
2080 	if (spd == ICE_ETH56G_LNK_SPD_1G || spd == ICE_ETH56G_LNK_SPD_2_5G)
2081 		err = ice_read_gpcs_reg_eth56g(hw, port, PHY_GPCS_BITSLIP,
2082 					       &bitslip);
2083 	else
2084 		err = ice_read_ptp_reg_eth56g(hw, port_blk,
2085 					      PHY_REG_SD_BIT_SLIP(port_offset),
2086 					      &bitslip);
2087 	if (err)
2088 		return 0;
2089 
2090 	if (spd == ICE_ETH56G_LNK_SPD_1G && !bitslip) {
2091 		/* Bitslip register value of 0 corresponds to 10 so substitute
2092 		 * it for calculations
2093 		 */
2094 		bitslip = 10;
2095 	} else if (spd == ICE_ETH56G_LNK_SPD_10G ||
2096 		   spd == ICE_ETH56G_LNK_SPD_25G) {
2097 		if (fc)
2098 			bitslip = bitslip * 2 + 32;
2099 		else
2100 			bitslip = (u32)((s32)bitslip * -1 + 20);
2101 	}
2102 
2103 	bitslip <<= ICE_ETH56G_MAC_CFG_FRAC_W;
2104 	return mul_u32_u32_fx_q9(bitslip, bs);
2105 }
2106 
2107 /**
2108  * ice_ptp_calc_deskew_eth56g - Calculate deskew value
2109  * @hw: pointer to the HW struct
2110  * @port: port to configure
2111  * @ds: deskew multiplier
2112  * @rs: RS-FEC enabled
2113  * @spd: link speed
2114  *
2115  * Return: calculated deskew value
2116  */
2117 static u32 ice_ptp_calc_deskew_eth56g(struct ice_hw *hw, u8 port, u32 ds,
2118 				      bool rs, enum ice_eth56g_link_spd spd)
2119 {
2120 	u32 deskew_i, deskew_f;
2121 	int err;
2122 
2123 	if (!ds)
2124 		return 0;
2125 
2126 	read_poll_timeout(ice_read_ptp_reg_eth56g, err,
2127 			  FIELD_GET(PHY_REG_DESKEW_0_VALID, deskew_i), 500,
2128 			  50 * USEC_PER_MSEC, false, hw, port, PHY_REG_DESKEW_0,
2129 			  &deskew_i);
2130 	if (err)
2131 		return err;
2132 
2133 	deskew_f = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL_FRAC, deskew_i);
2134 	deskew_i = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL, deskew_i);
2135 
2136 	if (rs && spd == ICE_ETH56G_LNK_SPD_50G2)
2137 		ds = 0x633; /* 3.1 */
2138 	else if (rs && spd == ICE_ETH56G_LNK_SPD_100G)
2139 		ds = 0x31b; /* 1.552 */
2140 
2141 	deskew_i = FIELD_PREP(ICE_ETH56G_MAC_CFG_RX_OFFSET_INT, deskew_i);
2142 	/* Shift 3 fractional bits to the end of the integer part */
2143 	deskew_f <<= ICE_ETH56G_MAC_CFG_FRAC_W - PHY_REG_DESKEW_0_RLEVEL_FRAC_W;
2144 	return mul_u32_u32_fx_q9(deskew_i | deskew_f, ds);
2145 }
2146 
2147 /**
2148  * ice_phy_set_offsets_eth56g - Set Tx/Rx offset values
2149  * @hw: pointer to the HW struct
2150  * @port: port to configure
2151  * @spd: link speed
2152  * @cfg: structure to store output values
2153  * @fc: FC-FEC enabled
2154  * @rs: RS-FEC enabled
2155  *
2156  * Return:
2157  * * %0     - success
2158  * * %other - failed to write to PHY
2159  */
2160 static int ice_phy_set_offsets_eth56g(struct ice_hw *hw, u8 port,
2161 				      enum ice_eth56g_link_spd spd,
2162 				      const struct ice_eth56g_mac_reg_cfg *cfg,
2163 				      bool fc, bool rs)
2164 {
2165 	u32 rx_offset, tx_offset, bs_ds;
2166 	bool onestep, sfd;
2167 
2168 	onestep = hw->ptp.phy.eth56g.onestep_ena;
2169 	sfd = hw->ptp.phy.eth56g.sfd_ena;
2170 	bs_ds = cfg->rx_offset.bs_ds;
2171 
2172 	if (fc)
2173 		rx_offset = cfg->rx_offset.fc;
2174 	else if (rs)
2175 		rx_offset = cfg->rx_offset.rs;
2176 	else
2177 		rx_offset = cfg->rx_offset.no_fec;
2178 
2179 	rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.serdes);
2180 	if (sfd)
2181 		rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.sfd);
2182 
2183 	if (spd < ICE_ETH56G_LNK_SPD_40G)
2184 		bs_ds = ice_ptp_calc_bitslip_eth56g(hw, port, bs_ds, fc, rs,
2185 						    spd);
2186 	else
2187 		bs_ds = ice_ptp_calc_deskew_eth56g(hw, port, bs_ds, rs, spd);
2188 	rx_offset = add_u32_u32_fx(rx_offset, bs_ds);
2189 	rx_offset &= ICE_ETH56G_MAC_CFG_RX_OFFSET_INT |
2190 		     ICE_ETH56G_MAC_CFG_RX_OFFSET_FRAC;
2191 
2192 	if (fc)
2193 		tx_offset = cfg->tx_offset.fc;
2194 	else if (rs)
2195 		tx_offset = cfg->tx_offset.rs;
2196 	else
2197 		tx_offset = cfg->tx_offset.no_fec;
2198 	tx_offset += cfg->tx_offset.serdes + cfg->tx_offset.sfd * sfd +
2199 		     cfg->tx_offset.onestep * onestep;
2200 
2201 	ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_OFFSET, rx_offset);
2202 	return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_OFFSET, tx_offset);
2203 }
2204 
2205 /**
2206  * ice_phy_cfg_mac_eth56g - Configure MAC for PTP
2207  * @hw: Pointer to the HW struct
2208  * @port: Port to configure
2209  *
2210  * Return:
2211  * * %0     - success
2212  * * %other - failed to write to PHY
2213  */
2214 static int ice_phy_cfg_mac_eth56g(struct ice_hw *hw, u8 port)
2215 {
2216 	const struct ice_eth56g_mac_reg_cfg *cfg;
2217 	enum ice_eth56g_link_spd spd;
2218 	struct ice_link_status *li;
2219 	bool fc = false;
2220 	bool rs = false;
2221 	bool onestep;
2222 	u32 val;
2223 	int err;
2224 
2225 	onestep = hw->ptp.phy.eth56g.onestep_ena;
2226 	li = &hw->port_info->phy.link_info;
2227 	spd = ice_phy_get_speed_eth56g(li);
2228 	if (!!(li->an_info & ICE_AQ_FEC_EN)) {
2229 		if (spd == ICE_ETH56G_LNK_SPD_10G) {
2230 			fc = true;
2231 		} else {
2232 			fc = !!(li->fec_info & ICE_AQ_LINK_25G_KR_FEC_EN);
2233 			rs = !!(li->fec_info & ~ICE_AQ_LINK_25G_KR_FEC_EN);
2234 		}
2235 	}
2236 	cfg = &eth56g_mac_cfg[spd];
2237 
2238 	err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_MODULO, 0);
2239 	if (err)
2240 		return err;
2241 
2242 	err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_MODULO, 0);
2243 	if (err)
2244 		return err;
2245 
2246 	val = FIELD_PREP(PHY_MAC_TSU_CFG_TX_MODE_M,
2247 			 cfg->tx_mode.def + rs * cfg->tx_mode.rs) |
2248 	      FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_MK_DLY_M, cfg->tx_mk_dly) |
2249 	      FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_CW_DLY_M,
2250 			 cfg->tx_cw_dly.def +
2251 			 onestep * cfg->tx_cw_dly.onestep) |
2252 	      FIELD_PREP(PHY_MAC_TSU_CFG_RX_MODE_M,
2253 			 cfg->rx_mode.def + rs * cfg->rx_mode.rs) |
2254 	      FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_MK_DLY_M,
2255 			 cfg->rx_mk_dly.def + rs * cfg->rx_mk_dly.rs) |
2256 	      FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_CW_DLY_M,
2257 			 cfg->rx_cw_dly.def + rs * cfg->rx_cw_dly.rs) |
2258 	      FIELD_PREP(PHY_MAC_TSU_CFG_BLKS_PER_CLK_M, cfg->blks_per_clk);
2259 	err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TSU_CONFIG, val);
2260 	if (err)
2261 		return err;
2262 
2263 	err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_BLOCKTIME,
2264 				       cfg->blktime);
2265 	if (err)
2266 		return err;
2267 
2268 	err = ice_phy_set_offsets_eth56g(hw, port, spd, cfg, fc, rs);
2269 	if (err)
2270 		return err;
2271 
2272 	if (spd == ICE_ETH56G_LNK_SPD_25G && !rs)
2273 		val = 0;
2274 	else
2275 		val = cfg->mktime;
2276 
2277 	return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_MARKERTIME, val);
2278 }
2279 
2280 /**
2281  * ice_phy_cfg_intr_eth56g - Configure TX timestamp interrupt
2282  * @hw: pointer to the HW struct
2283  * @port: the timestamp port
2284  * @ena: enable or disable interrupt
2285  * @threshold: interrupt threshold
2286  *
2287  * Configure TX timestamp interrupt for the specified port
2288  *
2289  * Return:
2290  * * %0     - success
2291  * * %other - PHY read/write failed
2292  */
2293 int ice_phy_cfg_intr_eth56g(struct ice_hw *hw, u8 port, bool ena, u8 threshold)
2294 {
2295 	int err;
2296 	u32 val;
2297 
2298 	err = ice_read_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, &val);
2299 	if (err)
2300 		return err;
2301 
2302 	if (ena) {
2303 		val |= PHY_TS_INT_CONFIG_ENA_M;
2304 		val &= ~PHY_TS_INT_CONFIG_THRESHOLD_M;
2305 		val |= FIELD_PREP(PHY_TS_INT_CONFIG_THRESHOLD_M, threshold);
2306 	} else {
2307 		val &= ~PHY_TS_INT_CONFIG_ENA_M;
2308 	}
2309 
2310 	return ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, val);
2311 }
2312 
2313 /**
2314  * ice_read_phy_and_phc_time_eth56g - Simultaneously capture PHC and PHY time
2315  * @hw: pointer to the HW struct
2316  * @port: the PHY port to read
2317  * @phy_time: on return, the 64bit PHY timer value
2318  * @phc_time: on return, the lower 64bits of PHC time
2319  *
2320  * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
2321  * and PHC timer values.
2322  *
2323  * Return:
2324  * * %0     - success
2325  * * %other - PHY read/write failed
2326  */
2327 static int ice_read_phy_and_phc_time_eth56g(struct ice_hw *hw, u8 port,
2328 					    u64 *phy_time, u64 *phc_time)
2329 {
2330 	u64 tx_time, rx_time;
2331 	u32 zo, lo;
2332 	u8 tmr_idx;
2333 	int err;
2334 
2335 	tmr_idx = ice_get_ptp_src_clock_index(hw);
2336 
2337 	/* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
2338 	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2339 
2340 	/* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
2341 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
2342 	if (err)
2343 		return err;
2344 
2345 	/* Issue the sync to start the ICE_PTP_READ_TIME capture */
2346 	ice_ptp_exec_tmr_cmd(hw);
2347 
2348 	/* Read the captured PHC time from the shadow time registers */
2349 	zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
2350 	lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
2351 	*phc_time = (u64)lo << 32 | zo;
2352 
2353 	/* Read the captured PHY time from the PHY shadow registers */
2354 	err = ice_ptp_read_port_capture_eth56g(hw, port, &tx_time, &rx_time);
2355 	if (err)
2356 		return err;
2357 
2358 	/* If the PHY Tx and Rx timers don't match, log a warning message.
2359 	 * Note that this should not happen in normal circumstances since the
2360 	 * driver always programs them together.
2361 	 */
2362 	if (tx_time != rx_time)
2363 		dev_warn(ice_hw_to_dev(hw), "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
2364 			 port, tx_time, rx_time);
2365 
2366 	*phy_time = tx_time;
2367 
2368 	return 0;
2369 }
2370 
2371 /**
2372  * ice_sync_phy_timer_eth56g - Synchronize the PHY timer with PHC timer
2373  * @hw: pointer to the HW struct
2374  * @port: the PHY port to synchronize
2375  *
2376  * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
2377  * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
2378  * simultaneous read of the PHY timer and PHC timer. Then we use the
2379  * difference to calculate an appropriate 2s complement addition to add
2380  * to the PHY timer in order to ensure it reads the same value as the
2381  * primary PHC timer.
2382  *
2383  * Return:
2384  * * %0     - success
2385  * * %-EBUSY- failed to acquire PTP semaphore
2386  * * %other - PHY read/write failed
2387  */
2388 static int ice_sync_phy_timer_eth56g(struct ice_hw *hw, u8 port)
2389 {
2390 	u64 phc_time, phy_time, difference;
2391 	int err;
2392 
2393 	if (!ice_ptp_lock(hw)) {
2394 		ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
2395 		return -EBUSY;
2396 	}
2397 
2398 	err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
2399 	if (err)
2400 		goto err_unlock;
2401 
2402 	/* Calculate the amount required to add to the port time in order for
2403 	 * it to match the PHC time.
2404 	 *
2405 	 * Note that the port adjustment is done using 2s complement
2406 	 * arithmetic. This is convenient since it means that we can simply
2407 	 * calculate the difference between the PHC time and the port time,
2408 	 * and it will be interpreted correctly.
2409 	 */
2410 
2411 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2412 	difference = phc_time - phy_time;
2413 
2414 	err = ice_ptp_prep_port_adj_eth56g(hw, port, (s64)difference);
2415 	if (err)
2416 		goto err_unlock;
2417 
2418 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
2419 	if (err)
2420 		goto err_unlock;
2421 
2422 	/* Issue the sync to activate the time adjustment */
2423 	ice_ptp_exec_tmr_cmd(hw);
2424 
2425 	/* Re-capture the timer values to flush the command registers and
2426 	 * verify that the time was properly adjusted.
2427 	 */
2428 	err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
2429 	if (err)
2430 		goto err_unlock;
2431 
2432 	dev_info(ice_hw_to_dev(hw),
2433 		 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
2434 		 port, phy_time, phc_time);
2435 
2436 err_unlock:
2437 	ice_ptp_unlock(hw);
2438 	return err;
2439 }
2440 
2441 /**
2442  * ice_stop_phy_timer_eth56g - Stop the PHY clock timer
2443  * @hw: pointer to the HW struct
2444  * @port: the PHY port to stop
2445  * @soft_reset: if true, hold the SOFT_RESET bit of PHY_REG_PS
2446  *
2447  * Stop the clock of a PHY port. This must be done as part of the flow to
2448  * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2449  * initialized or when link speed changes.
2450  *
2451  * Return:
2452  * * %0     - success
2453  * * %other - failed to write to PHY
2454  */
2455 int ice_stop_phy_timer_eth56g(struct ice_hw *hw, u8 port, bool soft_reset)
2456 {
2457 	int err;
2458 
2459 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 0);
2460 	if (err)
2461 		return err;
2462 
2463 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 0);
2464 	if (err)
2465 		return err;
2466 
2467 	ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
2468 
2469 	return 0;
2470 }
2471 
2472 /**
2473  * ice_start_phy_timer_eth56g - Start the PHY clock timer
2474  * @hw: pointer to the HW struct
2475  * @port: the PHY port to start
2476  *
2477  * Start the clock of a PHY port. This must be done as part of the flow to
2478  * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2479  * initialized or when link speed changes.
2480  *
2481  * Return:
2482  * * %0     - success
2483  * * %other - PHY read/write failed
2484  */
2485 int ice_start_phy_timer_eth56g(struct ice_hw *hw, u8 port)
2486 {
2487 	u32 lo, hi;
2488 	u64 incval;
2489 	u8 tmr_idx;
2490 	int err;
2491 
2492 	tmr_idx = ice_get_ptp_src_clock_index(hw);
2493 
2494 	err = ice_stop_phy_timer_eth56g(hw, port, false);
2495 	if (err)
2496 		return err;
2497 
2498 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2499 
2500 	err = ice_phy_cfg_parpcs_eth56g(hw, port);
2501 	if (err)
2502 		return err;
2503 
2504 	err = ice_phy_cfg_ptp_1step_eth56g(hw, port);
2505 	if (err)
2506 		return err;
2507 
2508 	err = ice_phy_cfg_mac_eth56g(hw, port);
2509 	if (err)
2510 		return err;
2511 
2512 	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
2513 	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
2514 	incval = (u64)hi << 32 | lo;
2515 
2516 	err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L, incval);
2517 	if (err)
2518 		return err;
2519 
2520 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
2521 	if (err)
2522 		return err;
2523 
2524 	ice_ptp_exec_tmr_cmd(hw);
2525 
2526 	err = ice_sync_phy_timer_eth56g(hw, port);
2527 	if (err)
2528 		return err;
2529 
2530 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 1);
2531 	if (err)
2532 		return err;
2533 
2534 	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 1);
2535 	if (err)
2536 		return err;
2537 
2538 	ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
2539 
2540 	return 0;
2541 }
2542 
2543 /**
2544  * ice_sb_access_ena_eth56g - Enable SB devices (PHY and others) access
2545  * @hw: pointer to HW struct
2546  * @enable: Enable or disable access
2547  *
2548  * Enable sideband devices (PHY and others) access.
2549  */
2550 static void ice_sb_access_ena_eth56g(struct ice_hw *hw, bool enable)
2551 {
2552 	u32 val = rd32(hw, PF_SB_REM_DEV_CTL);
2553 
2554 	if (enable)
2555 		val |= BIT(eth56g_phy_0) | BIT(cgu) | BIT(eth56g_phy_1);
2556 	else
2557 		val &= ~(BIT(eth56g_phy_0) | BIT(cgu) | BIT(eth56g_phy_1));
2558 
2559 	wr32(hw, PF_SB_REM_DEV_CTL, val);
2560 }
2561 
2562 /**
2563  * ice_ptp_init_phc_eth56g - Perform E82X specific PHC initialization
2564  * @hw: pointer to HW struct
2565  *
2566  * Perform PHC initialization steps specific to E82X devices.
2567  *
2568  * Return:
2569  * * %0     - success
2570  * * %other - failed to initialize CGU
2571  */
2572 static int ice_ptp_init_phc_eth56g(struct ice_hw *hw)
2573 {
2574 	ice_sb_access_ena_eth56g(hw, true);
2575 	/* Initialize the Clock Generation Unit */
2576 	return ice_init_cgu_e82x(hw);
2577 }
2578 
2579 /**
2580  * ice_ptp_read_tx_hwtstamp_status_eth56g - Get TX timestamp status
2581  * @hw: pointer to the HW struct
2582  * @ts_status: the timestamp mask pointer
2583  *
2584  * Read the PHY Tx timestamp status mask indicating which ports have Tx
2585  * timestamps available.
2586  *
2587  * Return:
2588  * * %0     - success
2589  * * %other - failed to read from PHY
2590  */
2591 int ice_ptp_read_tx_hwtstamp_status_eth56g(struct ice_hw *hw, u32 *ts_status)
2592 {
2593 	const struct ice_eth56g_params *params = &hw->ptp.phy.eth56g;
2594 	u8 phy, mask;
2595 	u32 status;
2596 
2597 	mask = (1 << hw->ptp.ports_per_phy) - 1;
2598 	*ts_status = 0;
2599 
2600 	for (phy = 0; phy < params->num_phys; phy++) {
2601 		int err;
2602 
2603 		err = ice_read_phy_eth56g(hw, phy, PHY_PTP_INT_STATUS, &status);
2604 		if (err)
2605 			return err;
2606 
2607 		*ts_status |= (status & mask) << (phy * hw->ptp.ports_per_phy);
2608 	}
2609 
2610 	ice_debug(hw, ICE_DBG_PTP, "PHY interrupt err: %x\n", *ts_status);
2611 
2612 	return 0;
2613 }
2614 
2615 /**
2616  * ice_get_phy_tx_tstamp_ready_eth56g - Read the Tx memory status register
2617  * @hw: pointer to the HW struct
2618  * @port: the PHY port to read from
2619  * @tstamp_ready: contents of the Tx memory status register
2620  *
2621  * Read the PHY_REG_TX_MEMORY_STATUS register indicating which timestamps in
2622  * the PHY are ready. A set bit means the corresponding timestamp is valid and
2623  * ready to be captured from the PHY timestamp block.
2624  *
2625  * Return:
2626  * * %0     - success
2627  * * %other - failed to read from PHY
2628  */
2629 static int ice_get_phy_tx_tstamp_ready_eth56g(struct ice_hw *hw, u8 port,
2630 					      u64 *tstamp_ready)
2631 {
2632 	int err;
2633 
2634 	err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
2635 					  tstamp_ready);
2636 	if (err) {
2637 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS for port %u, err %d\n",
2638 			  port, err);
2639 		return err;
2640 	}
2641 
2642 	return 0;
2643 }
2644 
2645 /**
2646  * ice_is_muxed_topo - detect breakout 2x50G topology for E825C
2647  * @hw: pointer to the HW struct
2648  *
2649  * Return: true if it's 2x50 breakout topology, false otherwise
2650  */
2651 static bool ice_is_muxed_topo(struct ice_hw *hw)
2652 {
2653 	u8 link_topo;
2654 	bool mux;
2655 	u32 val;
2656 
2657 	val = rd32(hw, GLGEN_SWITCH_MODE_CONFIG);
2658 	mux = FIELD_GET(GLGEN_SWITCH_MODE_CONFIG_25X4_QUAD_M, val);
2659 	val = rd32(hw, GLGEN_MAC_LINK_TOPO);
2660 	link_topo = FIELD_GET(GLGEN_MAC_LINK_TOPO_LINK_TOPO_M, val);
2661 
2662 	return (mux && link_topo == ICE_LINK_TOPO_UP_TO_2_LINKS);
2663 }
2664 
2665 /**
2666  * ice_ptp_init_phy_e825c - initialize PHY parameters
2667  * @hw: pointer to the HW struct
2668  */
2669 static void ice_ptp_init_phy_e825c(struct ice_hw *hw)
2670 {
2671 	struct ice_ptp_hw *ptp = &hw->ptp;
2672 	struct ice_eth56g_params *params;
2673 	u8 phy;
2674 
2675 	ptp->phy_model = ICE_PHY_ETH56G;
2676 	params = &ptp->phy.eth56g;
2677 	params->onestep_ena = false;
2678 	params->peer_delay = 0;
2679 	params->sfd_ena = false;
2680 	params->phy_addr[0] = eth56g_phy_0;
2681 	params->phy_addr[1] = eth56g_phy_1;
2682 	params->num_phys = 2;
2683 	ptp->ports_per_phy = 4;
2684 	ptp->num_lports = params->num_phys * ptp->ports_per_phy;
2685 
2686 	ice_sb_access_ena_eth56g(hw, true);
2687 	for (phy = 0; phy < params->num_phys; phy++) {
2688 		u32 phy_rev;
2689 		int err;
2690 
2691 		err = ice_read_phy_eth56g(hw, phy, PHY_REG_REVISION, &phy_rev);
2692 		if (err || phy_rev != PHY_REVISION_ETH56G) {
2693 			ptp->phy_model = ICE_PHY_UNSUP;
2694 			return;
2695 		}
2696 	}
2697 
2698 	ptp->is_2x50g_muxed_topo = ice_is_muxed_topo(hw);
2699 }
2700 
2701 /* E822 family functions
2702  *
2703  * The following functions operate on the E822 family of devices.
2704  */
2705 
2706 /**
2707  * ice_fill_phy_msg_e82x - Fill message data for a PHY register access
2708  * @hw: pointer to the HW struct
2709  * @msg: the PHY message buffer to fill in
2710  * @port: the port to access
2711  * @offset: the register offset
2712  */
2713 static void ice_fill_phy_msg_e82x(struct ice_hw *hw,
2714 				  struct ice_sbq_msg_input *msg, u8 port,
2715 				  u16 offset)
2716 {
2717 	int phy_port, phy, quadtype;
2718 
2719 	phy_port = port % hw->ptp.ports_per_phy;
2720 	phy = port / hw->ptp.ports_per_phy;
2721 	quadtype = ICE_GET_QUAD_NUM(port) %
2722 		   ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy);
2723 
2724 	if (quadtype == 0) {
2725 		msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
2726 		msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
2727 	} else {
2728 		msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
2729 		msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
2730 	}
2731 
2732 	if (phy == 0)
2733 		msg->dest_dev = rmn_0;
2734 	else if (phy == 1)
2735 		msg->dest_dev = rmn_1;
2736 	else
2737 		msg->dest_dev = rmn_2;
2738 }
2739 
2740 /**
2741  * ice_is_64b_phy_reg_e82x - Check if this is a 64bit PHY register
2742  * @low_addr: the low address to check
2743  * @high_addr: on return, contains the high address of the 64bit register
2744  *
2745  * Checks if the provided low address is one of the known 64bit PHY values
2746  * represented as two 32bit registers. If it is, return the appropriate high
2747  * register offset to use.
2748  */
2749 static bool ice_is_64b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
2750 {
2751 	switch (low_addr) {
2752 	case P_REG_PAR_PCS_TX_OFFSET_L:
2753 		*high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
2754 		return true;
2755 	case P_REG_PAR_PCS_RX_OFFSET_L:
2756 		*high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
2757 		return true;
2758 	case P_REG_PAR_TX_TIME_L:
2759 		*high_addr = P_REG_PAR_TX_TIME_U;
2760 		return true;
2761 	case P_REG_PAR_RX_TIME_L:
2762 		*high_addr = P_REG_PAR_RX_TIME_U;
2763 		return true;
2764 	case P_REG_TOTAL_TX_OFFSET_L:
2765 		*high_addr = P_REG_TOTAL_TX_OFFSET_U;
2766 		return true;
2767 	case P_REG_TOTAL_RX_OFFSET_L:
2768 		*high_addr = P_REG_TOTAL_RX_OFFSET_U;
2769 		return true;
2770 	case P_REG_UIX66_10G_40G_L:
2771 		*high_addr = P_REG_UIX66_10G_40G_U;
2772 		return true;
2773 	case P_REG_UIX66_25G_100G_L:
2774 		*high_addr = P_REG_UIX66_25G_100G_U;
2775 		return true;
2776 	case P_REG_TX_CAPTURE_L:
2777 		*high_addr = P_REG_TX_CAPTURE_U;
2778 		return true;
2779 	case P_REG_RX_CAPTURE_L:
2780 		*high_addr = P_REG_RX_CAPTURE_U;
2781 		return true;
2782 	case P_REG_TX_TIMER_INC_PRE_L:
2783 		*high_addr = P_REG_TX_TIMER_INC_PRE_U;
2784 		return true;
2785 	case P_REG_RX_TIMER_INC_PRE_L:
2786 		*high_addr = P_REG_RX_TIMER_INC_PRE_U;
2787 		return true;
2788 	default:
2789 		return false;
2790 	}
2791 }
2792 
2793 /**
2794  * ice_is_40b_phy_reg_e82x - Check if this is a 40bit PHY register
2795  * @low_addr: the low address to check
2796  * @high_addr: on return, contains the high address of the 40bit value
2797  *
2798  * Checks if the provided low address is one of the known 40bit PHY values
2799  * split into two registers with the lower 8 bits in the low register and the
2800  * upper 32 bits in the high register. If it is, return the appropriate high
2801  * register offset to use.
2802  */
2803 static bool ice_is_40b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
2804 {
2805 	switch (low_addr) {
2806 	case P_REG_TIMETUS_L:
2807 		*high_addr = P_REG_TIMETUS_U;
2808 		return true;
2809 	case P_REG_PAR_RX_TUS_L:
2810 		*high_addr = P_REG_PAR_RX_TUS_U;
2811 		return true;
2812 	case P_REG_PAR_TX_TUS_L:
2813 		*high_addr = P_REG_PAR_TX_TUS_U;
2814 		return true;
2815 	case P_REG_PCS_RX_TUS_L:
2816 		*high_addr = P_REG_PCS_RX_TUS_U;
2817 		return true;
2818 	case P_REG_PCS_TX_TUS_L:
2819 		*high_addr = P_REG_PCS_TX_TUS_U;
2820 		return true;
2821 	case P_REG_DESK_PAR_RX_TUS_L:
2822 		*high_addr = P_REG_DESK_PAR_RX_TUS_U;
2823 		return true;
2824 	case P_REG_DESK_PAR_TX_TUS_L:
2825 		*high_addr = P_REG_DESK_PAR_TX_TUS_U;
2826 		return true;
2827 	case P_REG_DESK_PCS_RX_TUS_L:
2828 		*high_addr = P_REG_DESK_PCS_RX_TUS_U;
2829 		return true;
2830 	case P_REG_DESK_PCS_TX_TUS_L:
2831 		*high_addr = P_REG_DESK_PCS_TX_TUS_U;
2832 		return true;
2833 	default:
2834 		return false;
2835 	}
2836 }
2837 
2838 /**
2839  * ice_read_phy_reg_e82x - Read a PHY register
2840  * @hw: pointer to the HW struct
2841  * @port: PHY port to read from
2842  * @offset: PHY register offset to read
2843  * @val: on return, the contents read from the PHY
2844  *
2845  * Read a PHY register for the given port over the device sideband queue.
2846  */
2847 static int
2848 ice_read_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
2849 {
2850 	struct ice_sbq_msg_input msg = {0};
2851 	int err;
2852 
2853 	ice_fill_phy_msg_e82x(hw, &msg, port, offset);
2854 	msg.opcode = ice_sbq_msg_rd;
2855 
2856 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
2857 	if (err) {
2858 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2859 			  err);
2860 		return err;
2861 	}
2862 
2863 	*val = msg.data;
2864 
2865 	return 0;
2866 }
2867 
2868 /**
2869  * ice_read_64b_phy_reg_e82x - Read a 64bit value from PHY registers
2870  * @hw: pointer to the HW struct
2871  * @port: PHY port to read from
2872  * @low_addr: offset of the lower register to read from
2873  * @val: on return, the contents of the 64bit value from the PHY registers
2874  *
2875  * Reads the two registers associated with a 64bit value and returns it in the
2876  * val pointer. The offset always specifies the lower register offset to use.
2877  * The high offset is looked up. This function only operates on registers
2878  * known to be two parts of a 64bit value.
2879  */
2880 static int
2881 ice_read_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
2882 {
2883 	u32 low, high;
2884 	u16 high_addr;
2885 	int err;
2886 
2887 	/* Only operate on registers known to be split into two 32bit
2888 	 * registers.
2889 	 */
2890 	if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
2891 		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
2892 			  low_addr);
2893 		return -EINVAL;
2894 	}
2895 
2896 	err = ice_read_phy_reg_e82x(hw, port, low_addr, &low);
2897 	if (err) {
2898 		ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
2899 			  low_addr, err);
2900 		return err;
2901 	}
2902 
2903 	err = ice_read_phy_reg_e82x(hw, port, high_addr, &high);
2904 	if (err) {
2905 		ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
2906 			  high_addr, err);
2907 		return err;
2908 	}
2909 
2910 	*val = (u64)high << 32 | low;
2911 
2912 	return 0;
2913 }
2914 
2915 /**
2916  * ice_write_phy_reg_e82x - Write a PHY register
2917  * @hw: pointer to the HW struct
2918  * @port: PHY port to write to
2919  * @offset: PHY register offset to write
2920  * @val: The value to write to the register
2921  *
2922  * Write a PHY register for the given port over the device sideband queue.
2923  */
2924 static int
2925 ice_write_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 val)
2926 {
2927 	struct ice_sbq_msg_input msg = {0};
2928 	int err;
2929 
2930 	ice_fill_phy_msg_e82x(hw, &msg, port, offset);
2931 	msg.opcode = ice_sbq_msg_wr;
2932 	msg.data = val;
2933 
2934 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
2935 	if (err) {
2936 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2937 			  err);
2938 		return err;
2939 	}
2940 
2941 	return 0;
2942 }
2943 
2944 /**
2945  * ice_write_40b_phy_reg_e82x - Write a 40b value to the PHY
2946  * @hw: pointer to the HW struct
2947  * @port: port to write to
2948  * @low_addr: offset of the low register
2949  * @val: 40b value to write
2950  *
2951  * Write the provided 40b value to the two associated registers by splitting
2952  * it up into two chunks, the lower 8 bits and the upper 32 bits.
2953  */
2954 static int
2955 ice_write_40b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
2956 {
2957 	u32 low, high;
2958 	u16 high_addr;
2959 	int err;
2960 
2961 	/* Only operate on registers known to be split into a lower 8 bit
2962 	 * register and an upper 32 bit register.
2963 	 */
2964 	if (!ice_is_40b_phy_reg_e82x(low_addr, &high_addr)) {
2965 		ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
2966 			  low_addr);
2967 		return -EINVAL;
2968 	}
2969 	low = FIELD_GET(P_REG_40B_LOW_M, val);
2970 	high = (u32)(val >> P_REG_40B_HIGH_S);
2971 
2972 	err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
2973 	if (err) {
2974 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
2975 			  low_addr, err);
2976 		return err;
2977 	}
2978 
2979 	err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
2980 	if (err) {
2981 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
2982 			  high_addr, err);
2983 		return err;
2984 	}
2985 
2986 	return 0;
2987 }
2988 
2989 /**
2990  * ice_write_64b_phy_reg_e82x - Write a 64bit value to PHY registers
2991  * @hw: pointer to the HW struct
2992  * @port: PHY port to read from
2993  * @low_addr: offset of the lower register to read from
2994  * @val: the contents of the 64bit value to write to PHY
2995  *
2996  * Write the 64bit value to the two associated 32bit PHY registers. The offset
2997  * is always specified as the lower register, and the high address is looked
2998  * up. This function only operates on registers known to be two parts of
2999  * a 64bit value.
3000  */
3001 static int
3002 ice_write_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
3003 {
3004 	u32 low, high;
3005 	u16 high_addr;
3006 	int err;
3007 
3008 	/* Only operate on registers known to be split into two 32bit
3009 	 * registers.
3010 	 */
3011 	if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
3012 		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
3013 			  low_addr);
3014 		return -EINVAL;
3015 	}
3016 
3017 	low = lower_32_bits(val);
3018 	high = upper_32_bits(val);
3019 
3020 	err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
3021 	if (err) {
3022 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
3023 			  low_addr, err);
3024 		return err;
3025 	}
3026 
3027 	err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
3028 	if (err) {
3029 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
3030 			  high_addr, err);
3031 		return err;
3032 	}
3033 
3034 	return 0;
3035 }
3036 
3037 /**
3038  * ice_fill_quad_msg_e82x - Fill message data for quad register access
3039  * @hw: pointer to the HW struct
3040  * @msg: the PHY message buffer to fill in
3041  * @quad: the quad to access
3042  * @offset: the register offset
3043  *
3044  * Fill a message buffer for accessing a register in a quad shared between
3045  * multiple PHYs.
3046  *
3047  * Return:
3048  * * %0       - OK
3049  * * %-EINVAL - invalid quad number
3050  */
3051 static int ice_fill_quad_msg_e82x(struct ice_hw *hw,
3052 				  struct ice_sbq_msg_input *msg, u8 quad,
3053 				  u16 offset)
3054 {
3055 	u32 addr;
3056 
3057 	if (quad >= ICE_GET_QUAD_NUM(hw->ptp.num_lports))
3058 		return -EINVAL;
3059 
3060 	msg->dest_dev = rmn_0;
3061 
3062 	if (!(quad % ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy)))
3063 		addr = Q_0_BASE + offset;
3064 	else
3065 		addr = Q_1_BASE + offset;
3066 
3067 	msg->msg_addr_low = lower_16_bits(addr);
3068 	msg->msg_addr_high = upper_16_bits(addr);
3069 
3070 	return 0;
3071 }
3072 
3073 /**
3074  * ice_read_quad_reg_e82x - Read a PHY quad register
3075  * @hw: pointer to the HW struct
3076  * @quad: quad to read from
3077  * @offset: quad register offset to read
3078  * @val: on return, the contents read from the quad
3079  *
3080  * Read a quad register over the device sideband queue. Quad registers are
3081  * shared between multiple PHYs.
3082  */
3083 int
3084 ice_read_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
3085 {
3086 	struct ice_sbq_msg_input msg = {0};
3087 	int err;
3088 
3089 	err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
3090 	if (err)
3091 		return err;
3092 
3093 	msg.opcode = ice_sbq_msg_rd;
3094 
3095 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
3096 	if (err) {
3097 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
3098 			  err);
3099 		return err;
3100 	}
3101 
3102 	*val = msg.data;
3103 
3104 	return 0;
3105 }
3106 
3107 /**
3108  * ice_write_quad_reg_e82x - Write a PHY quad register
3109  * @hw: pointer to the HW struct
3110  * @quad: quad to write to
3111  * @offset: quad register offset to write
3112  * @val: The value to write to the register
3113  *
3114  * Write a quad register over the device sideband queue. Quad registers are
3115  * shared between multiple PHYs.
3116  */
3117 int
3118 ice_write_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
3119 {
3120 	struct ice_sbq_msg_input msg = {0};
3121 	int err;
3122 
3123 	err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
3124 	if (err)
3125 		return err;
3126 
3127 	msg.opcode = ice_sbq_msg_wr;
3128 	msg.data = val;
3129 
3130 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
3131 	if (err) {
3132 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
3133 			  err);
3134 		return err;
3135 	}
3136 
3137 	return 0;
3138 }
3139 
3140 /**
3141  * ice_read_phy_tstamp_e82x - Read a PHY timestamp out of the quad block
3142  * @hw: pointer to the HW struct
3143  * @quad: the quad to read from
3144  * @idx: the timestamp index to read
3145  * @tstamp: on return, the 40bit timestamp value
3146  *
3147  * Read a 40bit timestamp value out of the two associated registers in the
3148  * quad memory block that is shared between the internal PHYs of the E822
3149  * family of devices.
3150  */
3151 static int
3152 ice_read_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
3153 {
3154 	u16 lo_addr, hi_addr;
3155 	u32 lo, hi;
3156 	int err;
3157 
3158 	lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
3159 	hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
3160 
3161 	err = ice_read_quad_reg_e82x(hw, quad, lo_addr, &lo);
3162 	if (err) {
3163 		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
3164 			  err);
3165 		return err;
3166 	}
3167 
3168 	err = ice_read_quad_reg_e82x(hw, quad, hi_addr, &hi);
3169 	if (err) {
3170 		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
3171 			  err);
3172 		return err;
3173 	}
3174 
3175 	/* For E822 based internal PHYs, the timestamp is reported with the
3176 	 * lower 8 bits in the low register, and the upper 32 bits in the high
3177 	 * register.
3178 	 */
3179 	*tstamp = FIELD_PREP(TS_PHY_HIGH_M, hi) | FIELD_PREP(TS_PHY_LOW_M, lo);
3180 
3181 	return 0;
3182 }
3183 
3184 /**
3185  * ice_clear_phy_tstamp_e82x - Clear a timestamp from the quad block
3186  * @hw: pointer to the HW struct
3187  * @quad: the quad to read from
3188  * @idx: the timestamp index to reset
3189  *
3190  * Read the timestamp out of the quad to clear its timestamp status bit from
3191  * the PHY quad block that is shared between the internal PHYs of the E822
3192  * devices.
3193  *
3194  * Note that unlike E810, software cannot directly write to the quad memory
3195  * bank registers. E822 relies on the ice_get_phy_tx_tstamp_ready() function
3196  * to determine which timestamps are valid. Reading a timestamp auto-clears
3197  * the valid bit.
3198  *
3199  * To directly clear the contents of the timestamp block entirely, discarding
3200  * all timestamp data at once, software should instead use
3201  * ice_ptp_reset_ts_memory_quad_e82x().
3202  *
3203  * This function should only be called on an idx whose bit is set according to
3204  * ice_get_phy_tx_tstamp_ready().
3205  */
3206 static int
3207 ice_clear_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx)
3208 {
3209 	u64 unused_tstamp;
3210 	int err;
3211 
3212 	err = ice_read_phy_tstamp_e82x(hw, quad, idx, &unused_tstamp);
3213 	if (err) {
3214 		ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for quad %u, idx %u, err %d\n",
3215 			  quad, idx, err);
3216 		return err;
3217 	}
3218 
3219 	return 0;
3220 }
3221 
3222 /**
3223  * ice_ptp_reset_ts_memory_quad_e82x - Clear all timestamps from the quad block
3224  * @hw: pointer to the HW struct
3225  * @quad: the quad to read from
3226  *
3227  * Clear all timestamps from the PHY quad block that is shared between the
3228  * internal PHYs on the E822 devices.
3229  */
3230 void ice_ptp_reset_ts_memory_quad_e82x(struct ice_hw *hw, u8 quad)
3231 {
3232 	ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
3233 	ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
3234 }
3235 
3236 /**
3237  * ice_ptp_reset_ts_memory_e82x - Clear all timestamps from all quad blocks
3238  * @hw: pointer to the HW struct
3239  */
3240 static void ice_ptp_reset_ts_memory_e82x(struct ice_hw *hw)
3241 {
3242 	unsigned int quad;
3243 
3244 	for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports); quad++)
3245 		ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
3246 }
3247 
3248 /**
3249  * ice_ptp_set_vernier_wl - Set the window length for vernier calibration
3250  * @hw: pointer to the HW struct
3251  *
3252  * Set the window length used for the vernier port calibration process.
3253  */
3254 static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
3255 {
3256 	u8 port;
3257 
3258 	for (port = 0; port < hw->ptp.num_lports; port++) {
3259 		int err;
3260 
3261 		err = ice_write_phy_reg_e82x(hw, port, P_REG_WL,
3262 					     PTP_VERNIER_WL);
3263 		if (err) {
3264 			ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
3265 				  port, err);
3266 			return err;
3267 		}
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 /**
3274  * ice_ptp_init_phc_e82x - Perform E822 specific PHC initialization
3275  * @hw: pointer to HW struct
3276  *
3277  * Perform PHC initialization steps specific to E822 devices.
3278  */
3279 static int ice_ptp_init_phc_e82x(struct ice_hw *hw)
3280 {
3281 	int err;
3282 	u32 val;
3283 
3284 	/* Enable reading switch and PHY registers over the sideband queue */
3285 #define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
3286 #define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
3287 	val = rd32(hw, PF_SB_REM_DEV_CTL);
3288 	val |= (PF_SB_REM_DEV_CTL_SWITCH_READ | PF_SB_REM_DEV_CTL_PHY0);
3289 	wr32(hw, PF_SB_REM_DEV_CTL, val);
3290 
3291 	/* Initialize the Clock Generation Unit */
3292 	err = ice_init_cgu_e82x(hw);
3293 	if (err)
3294 		return err;
3295 
3296 	/* Set window length for all the ports */
3297 	return ice_ptp_set_vernier_wl(hw);
3298 }
3299 
3300 /**
3301  * ice_ptp_prep_phy_time_e82x - Prepare PHY port with initial time
3302  * @hw: pointer to the HW struct
3303  * @time: Time to initialize the PHY port clocks to
3304  *
3305  * Program the PHY port registers with a new initial time value. The port
3306  * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
3307  * command. The time value is the upper 32 bits of the PHY timer, usually in
3308  * units of nominal nanoseconds.
3309  */
3310 static int
3311 ice_ptp_prep_phy_time_e82x(struct ice_hw *hw, u32 time)
3312 {
3313 	u64 phy_time;
3314 	u8 port;
3315 	int err;
3316 
3317 	/* The time represents the upper 32 bits of the PHY timer, so we need
3318 	 * to shift to account for this when programming.
3319 	 */
3320 	phy_time = (u64)time << 32;
3321 
3322 	for (port = 0; port < hw->ptp.num_lports; port++) {
3323 		/* Tx case */
3324 		err = ice_write_64b_phy_reg_e82x(hw, port,
3325 						 P_REG_TX_TIMER_INC_PRE_L,
3326 						 phy_time);
3327 		if (err)
3328 			goto exit_err;
3329 
3330 		/* Rx case */
3331 		err = ice_write_64b_phy_reg_e82x(hw, port,
3332 						 P_REG_RX_TIMER_INC_PRE_L,
3333 						 phy_time);
3334 		if (err)
3335 			goto exit_err;
3336 	}
3337 
3338 	return 0;
3339 
3340 exit_err:
3341 	ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
3342 		  port, err);
3343 
3344 	return err;
3345 }
3346 
3347 /**
3348  * ice_ptp_prep_port_adj_e82x - Prepare a single port for time adjust
3349  * @hw: pointer to HW struct
3350  * @port: Port number to be programmed
3351  * @time: time in cycles to adjust the port Tx and Rx clocks
3352  *
3353  * Program the port for an atomic adjustment by writing the Tx and Rx timer
3354  * registers. The atomic adjustment won't be completed until the driver issues
3355  * an ICE_PTP_ADJ_TIME command.
3356  *
3357  * Note that time is not in units of nanoseconds. It is in clock time
3358  * including the lower sub-nanosecond portion of the port timer.
3359  *
3360  * Negative adjustments are supported using 2s complement arithmetic.
3361  */
3362 static int
3363 ice_ptp_prep_port_adj_e82x(struct ice_hw *hw, u8 port, s64 time)
3364 {
3365 	u32 l_time, u_time;
3366 	int err;
3367 
3368 	l_time = lower_32_bits(time);
3369 	u_time = upper_32_bits(time);
3370 
3371 	/* Tx case */
3372 	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_L,
3373 				     l_time);
3374 	if (err)
3375 		goto exit_err;
3376 
3377 	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_U,
3378 				     u_time);
3379 	if (err)
3380 		goto exit_err;
3381 
3382 	/* Rx case */
3383 	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_L,
3384 				     l_time);
3385 	if (err)
3386 		goto exit_err;
3387 
3388 	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_U,
3389 				     u_time);
3390 	if (err)
3391 		goto exit_err;
3392 
3393 	return 0;
3394 
3395 exit_err:
3396 	ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
3397 		  port, err);
3398 	return err;
3399 }
3400 
3401 /**
3402  * ice_ptp_prep_phy_adj_e82x - Prep PHY ports for a time adjustment
3403  * @hw: pointer to HW struct
3404  * @adj: adjustment in nanoseconds
3405  *
3406  * Prepare the PHY ports for an atomic time adjustment by programming the PHY
3407  * Tx and Rx port registers. The actual adjustment is completed by issuing an
3408  * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
3409  */
3410 static int
3411 ice_ptp_prep_phy_adj_e82x(struct ice_hw *hw, s32 adj)
3412 {
3413 	s64 cycles;
3414 	u8 port;
3415 
3416 	/* The port clock supports adjustment of the sub-nanosecond portion of
3417 	 * the clock. We shift the provided adjustment in nanoseconds to
3418 	 * calculate the appropriate adjustment to program into the PHY ports.
3419 	 */
3420 	if (adj > 0)
3421 		cycles = (s64)adj << 32;
3422 	else
3423 		cycles = -(((s64)-adj) << 32);
3424 
3425 	for (port = 0; port < hw->ptp.num_lports; port++) {
3426 		int err;
3427 
3428 		err = ice_ptp_prep_port_adj_e82x(hw, port, cycles);
3429 		if (err)
3430 			return err;
3431 	}
3432 
3433 	return 0;
3434 }
3435 
3436 /**
3437  * ice_ptp_prep_phy_incval_e82x - Prepare PHY ports for time adjustment
3438  * @hw: pointer to HW struct
3439  * @incval: new increment value to prepare
3440  *
3441  * Prepare each of the PHY ports for a new increment value by programming the
3442  * port's TIMETUS registers. The new increment value will be updated after
3443  * issuing an ICE_PTP_INIT_INCVAL command.
3444  */
3445 static int
3446 ice_ptp_prep_phy_incval_e82x(struct ice_hw *hw, u64 incval)
3447 {
3448 	int err;
3449 	u8 port;
3450 
3451 	for (port = 0; port < hw->ptp.num_lports; port++) {
3452 		err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L,
3453 						 incval);
3454 		if (err)
3455 			goto exit_err;
3456 	}
3457 
3458 	return 0;
3459 
3460 exit_err:
3461 	ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
3462 		  port, err);
3463 
3464 	return err;
3465 }
3466 
3467 /**
3468  * ice_ptp_read_port_capture - Read a port's local time capture
3469  * @hw: pointer to HW struct
3470  * @port: Port number to read
3471  * @tx_ts: on return, the Tx port time capture
3472  * @rx_ts: on return, the Rx port time capture
3473  *
3474  * Read the port's Tx and Rx local time capture values.
3475  *
3476  * Note this has no equivalent for the E810 devices.
3477  */
3478 static int
3479 ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
3480 {
3481 	int err;
3482 
3483 	/* Tx case */
3484 	err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
3485 	if (err) {
3486 		ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
3487 			  err);
3488 		return err;
3489 	}
3490 
3491 	ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
3492 		  (unsigned long long)*tx_ts);
3493 
3494 	/* Rx case */
3495 	err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
3496 	if (err) {
3497 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
3498 			  err);
3499 		return err;
3500 	}
3501 
3502 	ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
3503 		  (unsigned long long)*rx_ts);
3504 
3505 	return 0;
3506 }
3507 
3508 /**
3509  * ice_ptp_write_port_cmd_e82x - Prepare a single PHY port for a timer command
3510  * @hw: pointer to HW struct
3511  * @port: Port to which cmd has to be sent
3512  * @cmd: Command to be sent to the port
3513  *
3514  * Prepare the requested port for an upcoming timer sync command.
3515  *
3516  * Note there is no equivalent of this operation on E810, as that device
3517  * always handles all external PHYs internally.
3518  *
3519  * Return:
3520  * * %0     - success
3521  * * %other - failed to write to PHY
3522  */
3523 static int ice_ptp_write_port_cmd_e82x(struct ice_hw *hw, u8 port,
3524 				       enum ice_ptp_tmr_cmd cmd)
3525 {
3526 	u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
3527 	int err;
3528 
3529 	/* Tx case */
3530 	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TMR_CMD, val);
3531 	if (err) {
3532 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
3533 			  err);
3534 		return err;
3535 	}
3536 
3537 	/* Rx case */
3538 	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TMR_CMD,
3539 				     val | TS_CMD_RX_TYPE);
3540 	if (err) {
3541 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
3542 			  err);
3543 		return err;
3544 	}
3545 
3546 	return 0;
3547 }
3548 
3549 /* E822 Vernier calibration functions
3550  *
3551  * The following functions are used as part of the vernier calibration of
3552  * a port. This calibration increases the precision of the timestamps on the
3553  * port.
3554  */
3555 
3556 /**
3557  * ice_phy_get_speed_and_fec_e82x - Get link speed and FEC based on serdes mode
3558  * @hw: pointer to HW struct
3559  * @port: the port to read from
3560  * @link_out: if non-NULL, holds link speed on success
3561  * @fec_out: if non-NULL, holds FEC algorithm on success
3562  *
3563  * Read the serdes data for the PHY port and extract the link speed and FEC
3564  * algorithm.
3565  */
3566 static int
3567 ice_phy_get_speed_and_fec_e82x(struct ice_hw *hw, u8 port,
3568 			       enum ice_ptp_link_spd *link_out,
3569 			       enum ice_ptp_fec_mode *fec_out)
3570 {
3571 	enum ice_ptp_link_spd link;
3572 	enum ice_ptp_fec_mode fec;
3573 	u32 serdes;
3574 	int err;
3575 
3576 	err = ice_read_phy_reg_e82x(hw, port, P_REG_LINK_SPEED, &serdes);
3577 	if (err) {
3578 		ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
3579 		return err;
3580 	}
3581 
3582 	/* Determine the FEC algorithm */
3583 	fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
3584 
3585 	serdes &= P_REG_LINK_SPEED_SERDES_M;
3586 
3587 	/* Determine the link speed */
3588 	if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
3589 		switch (serdes) {
3590 		case ICE_PTP_SERDES_25G:
3591 			link = ICE_PTP_LNK_SPD_25G_RS;
3592 			break;
3593 		case ICE_PTP_SERDES_50G:
3594 			link = ICE_PTP_LNK_SPD_50G_RS;
3595 			break;
3596 		case ICE_PTP_SERDES_100G:
3597 			link = ICE_PTP_LNK_SPD_100G_RS;
3598 			break;
3599 		default:
3600 			return -EIO;
3601 		}
3602 	} else {
3603 		switch (serdes) {
3604 		case ICE_PTP_SERDES_1G:
3605 			link = ICE_PTP_LNK_SPD_1G;
3606 			break;
3607 		case ICE_PTP_SERDES_10G:
3608 			link = ICE_PTP_LNK_SPD_10G;
3609 			break;
3610 		case ICE_PTP_SERDES_25G:
3611 			link = ICE_PTP_LNK_SPD_25G;
3612 			break;
3613 		case ICE_PTP_SERDES_40G:
3614 			link = ICE_PTP_LNK_SPD_40G;
3615 			break;
3616 		case ICE_PTP_SERDES_50G:
3617 			link = ICE_PTP_LNK_SPD_50G;
3618 			break;
3619 		default:
3620 			return -EIO;
3621 		}
3622 	}
3623 
3624 	if (link_out)
3625 		*link_out = link;
3626 	if (fec_out)
3627 		*fec_out = fec;
3628 
3629 	return 0;
3630 }
3631 
3632 /**
3633  * ice_phy_cfg_lane_e82x - Configure PHY quad for single/multi-lane timestamp
3634  * @hw: pointer to HW struct
3635  * @port: to configure the quad for
3636  */
3637 static void ice_phy_cfg_lane_e82x(struct ice_hw *hw, u8 port)
3638 {
3639 	enum ice_ptp_link_spd link_spd;
3640 	int err;
3641 	u32 val;
3642 	u8 quad;
3643 
3644 	err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, NULL);
3645 	if (err) {
3646 		ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
3647 			  err);
3648 		return;
3649 	}
3650 
3651 	quad = ICE_GET_QUAD_NUM(port);
3652 
3653 	err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
3654 	if (err) {
3655 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
3656 			  err);
3657 		return;
3658 	}
3659 
3660 	if (link_spd >= ICE_PTP_LNK_SPD_40G)
3661 		val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
3662 	else
3663 		val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
3664 
3665 	err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
3666 	if (err) {
3667 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
3668 			  err);
3669 		return;
3670 	}
3671 }
3672 
3673 /**
3674  * ice_phy_cfg_uix_e82x - Configure Serdes UI to TU conversion for E822
3675  * @hw: pointer to the HW structure
3676  * @port: the port to configure
3677  *
3678  * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
3679  * hardware clock time units (TUs). That is, determine the number of TUs per
3680  * serdes unit interval, and program the UIX registers with this conversion.
3681  *
3682  * This conversion is used as part of the calibration process when determining
3683  * the additional error of a timestamp vs the real time of transmission or
3684  * receipt of the packet.
3685  *
3686  * Hardware uses the number of TUs per 66 UIs, written to the UIX registers
3687  * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
3688  *
3689  * To calculate the conversion ratio, we use the following facts:
3690  *
3691  * a) the clock frequency in Hz (cycles per second)
3692  * b) the number of TUs per cycle (the increment value of the clock)
3693  * c) 1 second per 1 billion nanoseconds
3694  * d) the duration of 66 UIs in nanoseconds
3695  *
3696  * Given these facts, we can use the following table to work out what ratios
3697  * to multiply in order to get the number of TUs per 66 UIs:
3698  *
3699  * cycles |   1 second   | incval (TUs) | nanoseconds
3700  * -------+--------------+--------------+-------------
3701  * second | 1 billion ns |    cycle     |   66 UIs
3702  *
3703  * To perform the multiplication using integers without too much loss of
3704  * precision, we can take use the following equation:
3705  *
3706  * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
3707  *
3708  * We scale up to using 6600 UI instead of 66 in order to avoid fractional
3709  * nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
3710  *
3711  * The increment value has a maximum expected range of about 34 bits, while
3712  * the frequency value is about 29 bits. Multiplying these values shouldn't
3713  * overflow the 64 bits. However, we must then further multiply them again by
3714  * the Serdes unit interval duration. To avoid overflow here, we split the
3715  * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
3716  * a divide by 390,625,000. This does lose some precision, but avoids
3717  * miscalculation due to arithmetic overflow.
3718  */
3719 static int ice_phy_cfg_uix_e82x(struct ice_hw *hw, u8 port)
3720 {
3721 	u64 cur_freq, clk_incval, tu_per_sec, uix;
3722 	int err;
3723 
3724 	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3725 	clk_incval = ice_ptp_read_src_incval(hw);
3726 
3727 	/* Calculate TUs per second divided by 256 */
3728 	tu_per_sec = (cur_freq * clk_incval) >> 8;
3729 
3730 #define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
3731 #define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
3732 
3733 	/* Program the 10Gb/40Gb conversion ratio */
3734 	uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
3735 
3736 	err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_10G_40G_L,
3737 					 uix);
3738 	if (err) {
3739 		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
3740 			  err);
3741 		return err;
3742 	}
3743 
3744 	/* Program the 25Gb/100Gb conversion ratio */
3745 	uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
3746 
3747 	err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_25G_100G_L,
3748 					 uix);
3749 	if (err) {
3750 		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
3751 			  err);
3752 		return err;
3753 	}
3754 
3755 	return 0;
3756 }
3757 
3758 /**
3759  * ice_phy_cfg_parpcs_e82x - Configure TUs per PAR/PCS clock cycle
3760  * @hw: pointer to the HW struct
3761  * @port: port to configure
3762  *
3763  * Configure the number of TUs for the PAR and PCS clocks used as part of the
3764  * timestamp calibration process. This depends on the link speed, as the PHY
3765  * uses different markers depending on the speed.
3766  *
3767  * 1Gb/10Gb/25Gb:
3768  * - Tx/Rx PAR/PCS markers
3769  *
3770  * 25Gb RS:
3771  * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
3772  *
3773  * 40Gb/50Gb:
3774  * - Tx/Rx PAR/PCS markers
3775  * - Rx Deskew PAR/PCS markers
3776  *
3777  * 50G RS and 100GB RS:
3778  * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
3779  * - Rx Deskew PAR/PCS markers
3780  * - Tx PAR/PCS markers
3781  *
3782  * To calculate the conversion, we use the PHC clock frequency (cycles per
3783  * second), the increment value (TUs per cycle), and the related PHY clock
3784  * frequency to calculate the TUs per unit of the PHY link clock. The
3785  * following table shows how the units convert:
3786  *
3787  * cycles |  TUs  | second
3788  * -------+-------+--------
3789  * second | cycle | cycles
3790  *
3791  * For each conversion register, look up the appropriate frequency from the
3792  * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
3793  * this to the appropriate register, preparing hardware to perform timestamp
3794  * calibration to calculate the total Tx or Rx offset to adjust the timestamp
3795  * in order to calibrate for the internal PHY delays.
3796  *
3797  * Note that the increment value ranges up to ~34 bits, and the clock
3798  * frequency is ~29 bits, so multiplying them together should fit within the
3799  * 64 bit arithmetic.
3800  */
3801 static int ice_phy_cfg_parpcs_e82x(struct ice_hw *hw, u8 port)
3802 {
3803 	u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
3804 	enum ice_ptp_link_spd link_spd;
3805 	enum ice_ptp_fec_mode fec_mode;
3806 	int err;
3807 
3808 	err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
3809 	if (err)
3810 		return err;
3811 
3812 	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3813 	clk_incval = ice_ptp_read_src_incval(hw);
3814 
3815 	/* Calculate TUs per cycle of the PHC clock */
3816 	tu_per_sec = cur_freq * clk_incval;
3817 
3818 	/* For each PHY conversion register, look up the appropriate link
3819 	 * speed frequency and determine the TUs per that clock's cycle time.
3820 	 * Split this into a high and low value and then program the
3821 	 * appropriate register. If that link speed does not use the
3822 	 * associated register, write zeros to clear it instead.
3823 	 */
3824 
3825 	/* P_REG_PAR_TX_TUS */
3826 	if (e822_vernier[link_spd].tx_par_clk)
3827 		phy_tus = div_u64(tu_per_sec,
3828 				  e822_vernier[link_spd].tx_par_clk);
3829 	else
3830 		phy_tus = 0;
3831 
3832 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_TX_TUS_L,
3833 					 phy_tus);
3834 	if (err)
3835 		return err;
3836 
3837 	/* P_REG_PAR_RX_TUS */
3838 	if (e822_vernier[link_spd].rx_par_clk)
3839 		phy_tus = div_u64(tu_per_sec,
3840 				  e822_vernier[link_spd].rx_par_clk);
3841 	else
3842 		phy_tus = 0;
3843 
3844 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_RX_TUS_L,
3845 					 phy_tus);
3846 	if (err)
3847 		return err;
3848 
3849 	/* P_REG_PCS_TX_TUS */
3850 	if (e822_vernier[link_spd].tx_pcs_clk)
3851 		phy_tus = div_u64(tu_per_sec,
3852 				  e822_vernier[link_spd].tx_pcs_clk);
3853 	else
3854 		phy_tus = 0;
3855 
3856 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_TX_TUS_L,
3857 					 phy_tus);
3858 	if (err)
3859 		return err;
3860 
3861 	/* P_REG_PCS_RX_TUS */
3862 	if (e822_vernier[link_spd].rx_pcs_clk)
3863 		phy_tus = div_u64(tu_per_sec,
3864 				  e822_vernier[link_spd].rx_pcs_clk);
3865 	else
3866 		phy_tus = 0;
3867 
3868 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_RX_TUS_L,
3869 					 phy_tus);
3870 	if (err)
3871 		return err;
3872 
3873 	/* P_REG_DESK_PAR_TX_TUS */
3874 	if (e822_vernier[link_spd].tx_desk_rsgb_par)
3875 		phy_tus = div_u64(tu_per_sec,
3876 				  e822_vernier[link_spd].tx_desk_rsgb_par);
3877 	else
3878 		phy_tus = 0;
3879 
3880 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_TX_TUS_L,
3881 					 phy_tus);
3882 	if (err)
3883 		return err;
3884 
3885 	/* P_REG_DESK_PAR_RX_TUS */
3886 	if (e822_vernier[link_spd].rx_desk_rsgb_par)
3887 		phy_tus = div_u64(tu_per_sec,
3888 				  e822_vernier[link_spd].rx_desk_rsgb_par);
3889 	else
3890 		phy_tus = 0;
3891 
3892 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_RX_TUS_L,
3893 					 phy_tus);
3894 	if (err)
3895 		return err;
3896 
3897 	/* P_REG_DESK_PCS_TX_TUS */
3898 	if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
3899 		phy_tus = div_u64(tu_per_sec,
3900 				  e822_vernier[link_spd].tx_desk_rsgb_pcs);
3901 	else
3902 		phy_tus = 0;
3903 
3904 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_TX_TUS_L,
3905 					 phy_tus);
3906 	if (err)
3907 		return err;
3908 
3909 	/* P_REG_DESK_PCS_RX_TUS */
3910 	if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
3911 		phy_tus = div_u64(tu_per_sec,
3912 				  e822_vernier[link_spd].rx_desk_rsgb_pcs);
3913 	else
3914 		phy_tus = 0;
3915 
3916 	return ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_RX_TUS_L,
3917 					  phy_tus);
3918 }
3919 
3920 /**
3921  * ice_calc_fixed_tx_offset_e82x - Calculated Fixed Tx offset for a port
3922  * @hw: pointer to the HW struct
3923  * @link_spd: the Link speed to calculate for
3924  *
3925  * Calculate the fixed offset due to known static latency data.
3926  */
3927 static u64
3928 ice_calc_fixed_tx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
3929 {
3930 	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
3931 
3932 	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3933 	clk_incval = ice_ptp_read_src_incval(hw);
3934 
3935 	/* Calculate TUs per second */
3936 	tu_per_sec = cur_freq * clk_incval;
3937 
3938 	/* Calculate number of TUs to add for the fixed Tx latency. Since the
3939 	 * latency measurement is in 1/100th of a nanosecond, we need to
3940 	 * multiply by tu_per_sec and then divide by 1e11. This calculation
3941 	 * overflows 64 bit integer arithmetic, so break it up into two
3942 	 * divisions by 1e4 first then by 1e7.
3943 	 */
3944 	fixed_offset = div_u64(tu_per_sec, 10000);
3945 	fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
3946 	fixed_offset = div_u64(fixed_offset, 10000000);
3947 
3948 	return fixed_offset;
3949 }
3950 
3951 /**
3952  * ice_phy_cfg_tx_offset_e82x - Configure total Tx timestamp offset
3953  * @hw: pointer to the HW struct
3954  * @port: the PHY port to configure
3955  *
3956  * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
3957  * adjust Tx timestamps by. This is calculated by combining some known static
3958  * latency along with the Vernier offset computations done by hardware.
3959  *
3960  * This function will not return successfully until the Tx offset calculations
3961  * have been completed, which requires waiting until at least one packet has
3962  * been transmitted by the device. It is safe to call this function
3963  * periodically until calibration succeeds, as it will only program the offset
3964  * once.
3965  *
3966  * To avoid overflow, when calculating the offset based on the known static
3967  * latency values, we use measurements in 1/100th of a nanosecond, and divide
3968  * the TUs per second up front. This avoids overflow while allowing
3969  * calculation of the adjustment using integer arithmetic.
3970  *
3971  * Returns zero on success, -EBUSY if the hardware vernier offset
3972  * calibration has not completed, or another error code on failure.
3973  */
3974 int ice_phy_cfg_tx_offset_e82x(struct ice_hw *hw, u8 port)
3975 {
3976 	enum ice_ptp_link_spd link_spd;
3977 	enum ice_ptp_fec_mode fec_mode;
3978 	u64 total_offset, val;
3979 	int err;
3980 	u32 reg;
3981 
3982 	/* Nothing to do if we've already programmed the offset */
3983 	err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OR, &reg);
3984 	if (err) {
3985 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
3986 			  port, err);
3987 		return err;
3988 	}
3989 
3990 	if (reg)
3991 		return 0;
3992 
3993 	err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OV_STATUS, &reg);
3994 	if (err) {
3995 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
3996 			  port, err);
3997 		return err;
3998 	}
3999 
4000 	if (!(reg & P_REG_TX_OV_STATUS_OV_M))
4001 		return -EBUSY;
4002 
4003 	err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
4004 	if (err)
4005 		return err;
4006 
4007 	total_offset = ice_calc_fixed_tx_offset_e82x(hw, link_spd);
4008 
4009 	/* Read the first Vernier offset from the PHY register and add it to
4010 	 * the total offset.
4011 	 */
4012 	if (link_spd == ICE_PTP_LNK_SPD_1G ||
4013 	    link_spd == ICE_PTP_LNK_SPD_10G ||
4014 	    link_spd == ICE_PTP_LNK_SPD_25G ||
4015 	    link_spd == ICE_PTP_LNK_SPD_25G_RS ||
4016 	    link_spd == ICE_PTP_LNK_SPD_40G ||
4017 	    link_spd == ICE_PTP_LNK_SPD_50G) {
4018 		err = ice_read_64b_phy_reg_e82x(hw, port,
4019 						P_REG_PAR_PCS_TX_OFFSET_L,
4020 						&val);
4021 		if (err)
4022 			return err;
4023 
4024 		total_offset += val;
4025 	}
4026 
4027 	/* For Tx, we only need to use the second Vernier offset for
4028 	 * multi-lane link speeds with RS-FEC. The lanes will always be
4029 	 * aligned.
4030 	 */
4031 	if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4032 	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4033 		err = ice_read_64b_phy_reg_e82x(hw, port,
4034 						P_REG_PAR_TX_TIME_L,
4035 						&val);
4036 		if (err)
4037 			return err;
4038 
4039 		total_offset += val;
4040 	}
4041 
4042 	/* Now that the total offset has been calculated, program it to the
4043 	 * PHY and indicate that the Tx offset is ready. After this,
4044 	 * timestamps will be enabled.
4045 	 */
4046 	err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_TX_OFFSET_L,
4047 					 total_offset);
4048 	if (err)
4049 		return err;
4050 
4051 	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 1);
4052 	if (err)
4053 		return err;
4054 
4055 	dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
4056 		 port);
4057 
4058 	return 0;
4059 }
4060 
4061 /**
4062  * ice_phy_calc_pmd_adj_e82x - Calculate PMD adjustment for Rx
4063  * @hw: pointer to the HW struct
4064  * @port: the PHY port to adjust for
4065  * @link_spd: the current link speed of the PHY
4066  * @fec_mode: the current FEC mode of the PHY
4067  * @pmd_adj: on return, the amount to adjust the Rx total offset by
4068  *
4069  * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
4070  * This varies by link speed and FEC mode. The value calculated accounts for
4071  * various delays caused when receiving a packet.
4072  */
4073 static int
4074 ice_phy_calc_pmd_adj_e82x(struct ice_hw *hw, u8 port,
4075 			  enum ice_ptp_link_spd link_spd,
4076 			  enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
4077 {
4078 	u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
4079 	u8 pmd_align;
4080 	u32 val;
4081 	int err;
4082 
4083 	err = ice_read_phy_reg_e82x(hw, port, P_REG_PMD_ALIGNMENT, &val);
4084 	if (err) {
4085 		ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
4086 			  err);
4087 		return err;
4088 	}
4089 
4090 	pmd_align = (u8)val;
4091 
4092 	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
4093 	clk_incval = ice_ptp_read_src_incval(hw);
4094 
4095 	/* Calculate TUs per second */
4096 	tu_per_sec = cur_freq * clk_incval;
4097 
4098 	/* The PMD alignment adjustment measurement depends on the link speed,
4099 	 * and whether FEC is enabled. For each link speed, the alignment
4100 	 * adjustment is calculated by dividing a value by the length of
4101 	 * a Time Unit in nanoseconds.
4102 	 *
4103 	 * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
4104 	 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
4105 	 * 10G w/FEC: align * 0.1 * 32/33
4106 	 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
4107 	 * 25G w/FEC: align * 0.4 * 32/33
4108 	 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
4109 	 * 40G w/FEC: align * 0.1 * 32/33
4110 	 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
4111 	 * 50G w/FEC: align * 0.8 * 32/33
4112 	 *
4113 	 * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
4114 	 *
4115 	 * To allow for calculating this value using integer arithmetic, we
4116 	 * instead start with the number of TUs per second, (inverse of the
4117 	 * length of a Time Unit in nanoseconds), multiply by a value based
4118 	 * on the PMD alignment register, and then divide by the right value
4119 	 * calculated based on the table above. To avoid integer overflow this
4120 	 * division is broken up into a step of dividing by 125 first.
4121 	 */
4122 	if (link_spd == ICE_PTP_LNK_SPD_1G) {
4123 		if (pmd_align == 4)
4124 			mult = 10;
4125 		else
4126 			mult = (pmd_align + 6) % 10;
4127 	} else if (link_spd == ICE_PTP_LNK_SPD_10G ||
4128 		   link_spd == ICE_PTP_LNK_SPD_25G ||
4129 		   link_spd == ICE_PTP_LNK_SPD_40G ||
4130 		   link_spd == ICE_PTP_LNK_SPD_50G) {
4131 		/* If Clause 74 FEC, always calculate PMD adjust */
4132 		if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
4133 			mult = pmd_align;
4134 		else
4135 			mult = 0;
4136 	} else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
4137 		   link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4138 		   link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4139 		if (pmd_align < 17)
4140 			mult = pmd_align + 40;
4141 		else
4142 			mult = pmd_align;
4143 	} else {
4144 		ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
4145 			  link_spd);
4146 		mult = 0;
4147 	}
4148 
4149 	/* In some cases, there's no need to adjust for the PMD alignment */
4150 	if (!mult) {
4151 		*pmd_adj = 0;
4152 		return 0;
4153 	}
4154 
4155 	/* Calculate the adjustment by multiplying TUs per second by the
4156 	 * appropriate multiplier and divisor. To avoid overflow, we first
4157 	 * divide by 125, and then handle remaining divisor based on the link
4158 	 * speed pmd_adj_divisor value.
4159 	 */
4160 	adj = div_u64(tu_per_sec, 125);
4161 	adj *= mult;
4162 	adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
4163 
4164 	/* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
4165 	 * cycle count is necessary.
4166 	 */
4167 	if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
4168 		u64 cycle_adj;
4169 		u8 rx_cycle;
4170 
4171 		err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_40_TO_160_CNT,
4172 					    &val);
4173 		if (err) {
4174 			ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
4175 				  err);
4176 			return err;
4177 		}
4178 
4179 		rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
4180 		if (rx_cycle) {
4181 			mult = (4 - rx_cycle) * 40;
4182 
4183 			cycle_adj = div_u64(tu_per_sec, 125);
4184 			cycle_adj *= mult;
4185 			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
4186 
4187 			adj += cycle_adj;
4188 		}
4189 	} else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
4190 		u64 cycle_adj;
4191 		u8 rx_cycle;
4192 
4193 		err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_80_TO_160_CNT,
4194 					    &val);
4195 		if (err) {
4196 			ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
4197 				  err);
4198 			return err;
4199 		}
4200 
4201 		rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
4202 		if (rx_cycle) {
4203 			mult = rx_cycle * 40;
4204 
4205 			cycle_adj = div_u64(tu_per_sec, 125);
4206 			cycle_adj *= mult;
4207 			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
4208 
4209 			adj += cycle_adj;
4210 		}
4211 	}
4212 
4213 	/* Return the calculated adjustment */
4214 	*pmd_adj = adj;
4215 
4216 	return 0;
4217 }
4218 
4219 /**
4220  * ice_calc_fixed_rx_offset_e82x - Calculated the fixed Rx offset for a port
4221  * @hw: pointer to HW struct
4222  * @link_spd: The Link speed to calculate for
4223  *
4224  * Determine the fixed Rx latency for a given link speed.
4225  */
4226 static u64
4227 ice_calc_fixed_rx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
4228 {
4229 	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
4230 
4231 	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
4232 	clk_incval = ice_ptp_read_src_incval(hw);
4233 
4234 	/* Calculate TUs per second */
4235 	tu_per_sec = cur_freq * clk_incval;
4236 
4237 	/* Calculate number of TUs to add for the fixed Rx latency. Since the
4238 	 * latency measurement is in 1/100th of a nanosecond, we need to
4239 	 * multiply by tu_per_sec and then divide by 1e11. This calculation
4240 	 * overflows 64 bit integer arithmetic, so break it up into two
4241 	 * divisions by 1e4 first then by 1e7.
4242 	 */
4243 	fixed_offset = div_u64(tu_per_sec, 10000);
4244 	fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
4245 	fixed_offset = div_u64(fixed_offset, 10000000);
4246 
4247 	return fixed_offset;
4248 }
4249 
4250 /**
4251  * ice_phy_cfg_rx_offset_e82x - Configure total Rx timestamp offset
4252  * @hw: pointer to the HW struct
4253  * @port: the PHY port to configure
4254  *
4255  * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
4256  * adjust Rx timestamps by. This combines calculations from the Vernier offset
4257  * measurements taken in hardware with some data about known fixed delay as
4258  * well as adjusting for multi-lane alignment delay.
4259  *
4260  * This function will not return successfully until the Rx offset calculations
4261  * have been completed, which requires waiting until at least one packet has
4262  * been received by the device. It is safe to call this function periodically
4263  * until calibration succeeds, as it will only program the offset once.
4264  *
4265  * This function must be called only after the offset registers are valid,
4266  * i.e. after the Vernier calibration wait has passed, to ensure that the PHY
4267  * has measured the offset.
4268  *
4269  * To avoid overflow, when calculating the offset based on the known static
4270  * latency values, we use measurements in 1/100th of a nanosecond, and divide
4271  * the TUs per second up front. This avoids overflow while allowing
4272  * calculation of the adjustment using integer arithmetic.
4273  *
4274  * Returns zero on success, -EBUSY if the hardware vernier offset
4275  * calibration has not completed, or another error code on failure.
4276  */
4277 int ice_phy_cfg_rx_offset_e82x(struct ice_hw *hw, u8 port)
4278 {
4279 	enum ice_ptp_link_spd link_spd;
4280 	enum ice_ptp_fec_mode fec_mode;
4281 	u64 total_offset, pmd, val;
4282 	int err;
4283 	u32 reg;
4284 
4285 	/* Nothing to do if we've already programmed the offset */
4286 	err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OR, &reg);
4287 	if (err) {
4288 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
4289 			  port, err);
4290 		return err;
4291 	}
4292 
4293 	if (reg)
4294 		return 0;
4295 
4296 	err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OV_STATUS, &reg);
4297 	if (err) {
4298 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
4299 			  port, err);
4300 		return err;
4301 	}
4302 
4303 	if (!(reg & P_REG_RX_OV_STATUS_OV_M))
4304 		return -EBUSY;
4305 
4306 	err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
4307 	if (err)
4308 		return err;
4309 
4310 	total_offset = ice_calc_fixed_rx_offset_e82x(hw, link_spd);
4311 
4312 	/* Read the first Vernier offset from the PHY register and add it to
4313 	 * the total offset.
4314 	 */
4315 	err = ice_read_64b_phy_reg_e82x(hw, port,
4316 					P_REG_PAR_PCS_RX_OFFSET_L,
4317 					&val);
4318 	if (err)
4319 		return err;
4320 
4321 	total_offset += val;
4322 
4323 	/* For Rx, all multi-lane link speeds include a second Vernier
4324 	 * calibration, because the lanes might not be aligned.
4325 	 */
4326 	if (link_spd == ICE_PTP_LNK_SPD_40G ||
4327 	    link_spd == ICE_PTP_LNK_SPD_50G ||
4328 	    link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4329 	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4330 		err = ice_read_64b_phy_reg_e82x(hw, port,
4331 						P_REG_PAR_RX_TIME_L,
4332 						&val);
4333 		if (err)
4334 			return err;
4335 
4336 		total_offset += val;
4337 	}
4338 
4339 	/* In addition, Rx must account for the PMD alignment */
4340 	err = ice_phy_calc_pmd_adj_e82x(hw, port, link_spd, fec_mode, &pmd);
4341 	if (err)
4342 		return err;
4343 
4344 	/* For RS-FEC, this adjustment adds delay, but for other modes, it
4345 	 * subtracts delay.
4346 	 */
4347 	if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
4348 		total_offset += pmd;
4349 	else
4350 		total_offset -= pmd;
4351 
4352 	/* Now that the total offset has been calculated, program it to the
4353 	 * PHY and indicate that the Rx offset is ready. After this,
4354 	 * timestamps will be enabled.
4355 	 */
4356 	err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_RX_OFFSET_L,
4357 					 total_offset);
4358 	if (err)
4359 		return err;
4360 
4361 	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 1);
4362 	if (err)
4363 		return err;
4364 
4365 	dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
4366 		 port);
4367 
4368 	return 0;
4369 }
4370 
4371 /**
4372  * ice_ptp_clear_phy_offset_ready_e82x - Clear PHY TX_/RX_OFFSET_READY registers
4373  * @hw: pointer to the HW struct
4374  *
4375  * Clear PHY TX_/RX_OFFSET_READY registers, effectively marking all transmitted
4376  * and received timestamps as invalid.
4377  *
4378  * Return: 0 on success, other error codes when failed to write to PHY
4379  */
4380 int ice_ptp_clear_phy_offset_ready_e82x(struct ice_hw *hw)
4381 {
4382 	u8 port;
4383 
4384 	for (port = 0; port < hw->ptp.num_lports; port++) {
4385 		int err;
4386 
4387 		err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
4388 		if (err) {
4389 			dev_warn(ice_hw_to_dev(hw),
4390 				 "Failed to clear PHY TX_OFFSET_READY register\n");
4391 			return err;
4392 		}
4393 
4394 		err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
4395 		if (err) {
4396 			dev_warn(ice_hw_to_dev(hw),
4397 				 "Failed to clear PHY RX_OFFSET_READY register\n");
4398 			return err;
4399 		}
4400 	}
4401 
4402 	return 0;
4403 }
4404 
4405 /**
4406  * ice_read_phy_and_phc_time_e82x - Simultaneously capture PHC and PHY time
4407  * @hw: pointer to the HW struct
4408  * @port: the PHY port to read
4409  * @phy_time: on return, the 64bit PHY timer value
4410  * @phc_time: on return, the lower 64bits of PHC time
4411  *
4412  * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
4413  * and PHC timer values.
4414  */
4415 static int
4416 ice_read_phy_and_phc_time_e82x(struct ice_hw *hw, u8 port, u64 *phy_time,
4417 			       u64 *phc_time)
4418 {
4419 	u64 tx_time, rx_time;
4420 	u32 zo, lo;
4421 	u8 tmr_idx;
4422 	int err;
4423 
4424 	tmr_idx = ice_get_ptp_src_clock_index(hw);
4425 
4426 	/* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
4427 	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
4428 
4429 	/* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
4430 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
4431 	if (err)
4432 		return err;
4433 
4434 	/* Issue the sync to start the ICE_PTP_READ_TIME capture */
4435 	ice_ptp_exec_tmr_cmd(hw);
4436 
4437 	/* Read the captured PHC time from the shadow time registers */
4438 	zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
4439 	lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
4440 	*phc_time = (u64)lo << 32 | zo;
4441 
4442 	/* Read the captured PHY time from the PHY shadow registers */
4443 	err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
4444 	if (err)
4445 		return err;
4446 
4447 	/* If the PHY Tx and Rx timers don't match, log a warning message.
4448 	 * Note that this should not happen in normal circumstances since the
4449 	 * driver always programs them together.
4450 	 */
4451 	if (tx_time != rx_time)
4452 		dev_warn(ice_hw_to_dev(hw),
4453 			 "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
4454 			 port, (unsigned long long)tx_time,
4455 			 (unsigned long long)rx_time);
4456 
4457 	*phy_time = tx_time;
4458 
4459 	return 0;
4460 }
4461 
4462 /**
4463  * ice_sync_phy_timer_e82x - Synchronize the PHY timer with PHC timer
4464  * @hw: pointer to the HW struct
4465  * @port: the PHY port to synchronize
4466  *
4467  * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
4468  * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
4469  * simultaneous read of the PHY timer and PHC timer. Then we use the
4470  * difference to calculate an appropriate 2s complement addition to add
4471  * to the PHY timer in order to ensure it reads the same value as the
4472  * primary PHC timer.
4473  */
4474 static int ice_sync_phy_timer_e82x(struct ice_hw *hw, u8 port)
4475 {
4476 	u64 phc_time, phy_time, difference;
4477 	int err;
4478 
4479 	if (!ice_ptp_lock(hw)) {
4480 		ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
4481 		return -EBUSY;
4482 	}
4483 
4484 	err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
4485 	if (err)
4486 		goto err_unlock;
4487 
4488 	/* Calculate the amount required to add to the port time in order for
4489 	 * it to match the PHC time.
4490 	 *
4491 	 * Note that the port adjustment is done using 2s complement
4492 	 * arithmetic. This is convenient since it means that we can simply
4493 	 * calculate the difference between the PHC time and the port time,
4494 	 * and it will be interpreted correctly.
4495 	 */
4496 	difference = phc_time - phy_time;
4497 
4498 	err = ice_ptp_prep_port_adj_e82x(hw, port, (s64)difference);
4499 	if (err)
4500 		goto err_unlock;
4501 
4502 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
4503 	if (err)
4504 		goto err_unlock;
4505 
4506 	/* Do not perform any action on the main timer */
4507 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
4508 
4509 	/* Issue the sync to activate the time adjustment */
4510 	ice_ptp_exec_tmr_cmd(hw);
4511 
4512 	/* Re-capture the timer values to flush the command registers and
4513 	 * verify that the time was properly adjusted.
4514 	 */
4515 	err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
4516 	if (err)
4517 		goto err_unlock;
4518 
4519 	dev_info(ice_hw_to_dev(hw),
4520 		 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
4521 		 port, (unsigned long long)phy_time,
4522 		 (unsigned long long)phc_time);
4523 
4524 	ice_ptp_unlock(hw);
4525 
4526 	return 0;
4527 
4528 err_unlock:
4529 	ice_ptp_unlock(hw);
4530 	return err;
4531 }
4532 
4533 /**
4534  * ice_stop_phy_timer_e82x - Stop the PHY clock timer
4535  * @hw: pointer to the HW struct
4536  * @port: the PHY port to stop
4537  * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
4538  *
4539  * Stop the clock of a PHY port. This must be done as part of the flow to
4540  * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
4541  * initialized or when link speed changes.
4542  */
4543 int
4544 ice_stop_phy_timer_e82x(struct ice_hw *hw, u8 port, bool soft_reset)
4545 {
4546 	int err;
4547 	u32 val;
4548 
4549 	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
4550 	if (err)
4551 		return err;
4552 
4553 	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
4554 	if (err)
4555 		return err;
4556 
4557 	err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
4558 	if (err)
4559 		return err;
4560 
4561 	val &= ~P_REG_PS_START_M;
4562 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4563 	if (err)
4564 		return err;
4565 
4566 	val &= ~P_REG_PS_ENA_CLK_M;
4567 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4568 	if (err)
4569 		return err;
4570 
4571 	if (soft_reset) {
4572 		val |= P_REG_PS_SFT_RESET_M;
4573 		err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4574 		if (err)
4575 			return err;
4576 	}
4577 
4578 	ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
4579 
4580 	return 0;
4581 }
4582 
4583 /**
4584  * ice_start_phy_timer_e82x - Start the PHY clock timer
4585  * @hw: pointer to the HW struct
4586  * @port: the PHY port to start
4587  *
4588  * Start the clock of a PHY port. This must be done as part of the flow to
4589  * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
4590  * initialized or when link speed changes.
4591  *
4592  * Hardware will take Vernier measurements on Tx or Rx of packets.
4593  */
4594 int ice_start_phy_timer_e82x(struct ice_hw *hw, u8 port)
4595 {
4596 	u32 lo, hi, val;
4597 	u64 incval;
4598 	u8 tmr_idx;
4599 	int err;
4600 
4601 	tmr_idx = ice_get_ptp_src_clock_index(hw);
4602 
4603 	err = ice_stop_phy_timer_e82x(hw, port, false);
4604 	if (err)
4605 		return err;
4606 
4607 	ice_phy_cfg_lane_e82x(hw, port);
4608 
4609 	err = ice_phy_cfg_uix_e82x(hw, port);
4610 	if (err)
4611 		return err;
4612 
4613 	err = ice_phy_cfg_parpcs_e82x(hw, port);
4614 	if (err)
4615 		return err;
4616 
4617 	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
4618 	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
4619 	incval = (u64)hi << 32 | lo;
4620 
4621 	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L, incval);
4622 	if (err)
4623 		return err;
4624 
4625 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
4626 	if (err)
4627 		return err;
4628 
4629 	/* Do not perform any action on the main timer */
4630 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
4631 
4632 	ice_ptp_exec_tmr_cmd(hw);
4633 
4634 	err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
4635 	if (err)
4636 		return err;
4637 
4638 	val |= P_REG_PS_SFT_RESET_M;
4639 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4640 	if (err)
4641 		return err;
4642 
4643 	val |= P_REG_PS_START_M;
4644 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4645 	if (err)
4646 		return err;
4647 
4648 	val &= ~P_REG_PS_SFT_RESET_M;
4649 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4650 	if (err)
4651 		return err;
4652 
4653 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
4654 	if (err)
4655 		return err;
4656 
4657 	ice_ptp_exec_tmr_cmd(hw);
4658 
4659 	val |= P_REG_PS_ENA_CLK_M;
4660 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4661 	if (err)
4662 		return err;
4663 
4664 	val |= P_REG_PS_LOAD_OFFSET_M;
4665 	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4666 	if (err)
4667 		return err;
4668 
4669 	ice_ptp_exec_tmr_cmd(hw);
4670 
4671 	err = ice_sync_phy_timer_e82x(hw, port);
4672 	if (err)
4673 		return err;
4674 
4675 	ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
4676 
4677 	return 0;
4678 }
4679 
4680 /**
4681  * ice_get_phy_tx_tstamp_ready_e82x - Read Tx memory status register
4682  * @hw: pointer to the HW struct
4683  * @quad: the timestamp quad to read from
4684  * @tstamp_ready: contents of the Tx memory status register
4685  *
4686  * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
4687  * the PHY are ready. A set bit means the corresponding timestamp is valid and
4688  * ready to be captured from the PHY timestamp block.
4689  */
4690 static int
4691 ice_get_phy_tx_tstamp_ready_e82x(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
4692 {
4693 	u32 hi, lo;
4694 	int err;
4695 
4696 	err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi);
4697 	if (err) {
4698 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
4699 			  quad, err);
4700 		return err;
4701 	}
4702 
4703 	err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo);
4704 	if (err) {
4705 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
4706 			  quad, err);
4707 		return err;
4708 	}
4709 
4710 	*tstamp_ready = (u64)hi << 32 | (u64)lo;
4711 
4712 	return 0;
4713 }
4714 
4715 /**
4716  * ice_phy_cfg_intr_e82x - Configure TX timestamp interrupt
4717  * @hw: pointer to the HW struct
4718  * @quad: the timestamp quad
4719  * @ena: enable or disable interrupt
4720  * @threshold: interrupt threshold
4721  *
4722  * Configure TX timestamp interrupt for the specified quad
4723  *
4724  * Return: 0 on success, other error codes when failed to read/write quad
4725  */
4726 
4727 int ice_phy_cfg_intr_e82x(struct ice_hw *hw, u8 quad, bool ena, u8 threshold)
4728 {
4729 	int err;
4730 	u32 val;
4731 
4732 	err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
4733 	if (err)
4734 		return err;
4735 
4736 	val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
4737 	if (ena) {
4738 		val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
4739 		val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
4740 		val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M, threshold);
4741 	}
4742 
4743 	return ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
4744 }
4745 
4746 /**
4747  * ice_ptp_init_phy_e82x - initialize PHY parameters
4748  * @ptp: pointer to the PTP HW struct
4749  */
4750 static void ice_ptp_init_phy_e82x(struct ice_ptp_hw *ptp)
4751 {
4752 	ptp->phy_model = ICE_PHY_E82X;
4753 	ptp->num_lports = 8;
4754 	ptp->ports_per_phy = 8;
4755 }
4756 
4757 /* E810 functions
4758  *
4759  * The following functions operate on the E810 series devices which use
4760  * a separate external PHY.
4761  */
4762 
4763 /**
4764  * ice_read_phy_reg_e810 - Read register from external PHY on E810
4765  * @hw: pointer to the HW struct
4766  * @addr: the address to read from
4767  * @val: On return, the value read from the PHY
4768  *
4769  * Read a register from the external PHY on the E810 device.
4770  */
4771 static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
4772 {
4773 	struct ice_sbq_msg_input msg = {0};
4774 	int err;
4775 
4776 	msg.msg_addr_low = lower_16_bits(addr);
4777 	msg.msg_addr_high = upper_16_bits(addr);
4778 	msg.opcode = ice_sbq_msg_rd;
4779 	msg.dest_dev = rmn_0;
4780 
4781 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
4782 	if (err) {
4783 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
4784 			  err);
4785 		return err;
4786 	}
4787 
4788 	*val = msg.data;
4789 
4790 	return 0;
4791 }
4792 
4793 /**
4794  * ice_write_phy_reg_e810 - Write register on external PHY on E810
4795  * @hw: pointer to the HW struct
4796  * @addr: the address to writem to
4797  * @val: the value to write to the PHY
4798  *
4799  * Write a value to a register of the external PHY on the E810 device.
4800  */
4801 static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
4802 {
4803 	struct ice_sbq_msg_input msg = {0};
4804 	int err;
4805 
4806 	msg.msg_addr_low = lower_16_bits(addr);
4807 	msg.msg_addr_high = upper_16_bits(addr);
4808 	msg.opcode = ice_sbq_msg_wr;
4809 	msg.dest_dev = rmn_0;
4810 	msg.data = val;
4811 
4812 	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
4813 	if (err) {
4814 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
4815 			  err);
4816 		return err;
4817 	}
4818 
4819 	return 0;
4820 }
4821 
4822 /**
4823  * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
4824  * @hw: pointer to the HW struct
4825  * @idx: the timestamp index to read
4826  * @hi: 8 bit timestamp high value
4827  * @lo: 32 bit timestamp low value
4828  *
4829  * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
4830  * timestamp block of the external PHY on the E810 device using the low latency
4831  * timestamp read.
4832  */
4833 static int
4834 ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
4835 {
4836 	u32 val;
4837 	u8 i;
4838 
4839 	/* Write TS index to read to the PF register so the FW can read it */
4840 	val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS;
4841 	wr32(hw, PF_SB_ATQBAL, val);
4842 
4843 	/* Read the register repeatedly until the FW provides us the TS */
4844 	for (i = TS_LL_READ_RETRIES; i > 0; i--) {
4845 		val = rd32(hw, PF_SB_ATQBAL);
4846 
4847 		/* When the bit is cleared, the TS is ready in the register */
4848 		if (!(FIELD_GET(TS_LL_READ_TS, val))) {
4849 			/* High 8 bit value of the TS is on the bits 16:23 */
4850 			*hi = FIELD_GET(TS_LL_READ_TS_HIGH, val);
4851 
4852 			/* Read the low 32 bit value and set the TS valid bit */
4853 			*lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID;
4854 			return 0;
4855 		}
4856 
4857 		udelay(10);
4858 	}
4859 
4860 	/* FW failed to provide the TS in time */
4861 	ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
4862 	return -EINVAL;
4863 }
4864 
4865 /**
4866  * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
4867  * @hw: pointer to the HW struct
4868  * @lport: the lport to read from
4869  * @idx: the timestamp index to read
4870  * @hi: 8 bit timestamp high value
4871  * @lo: 32 bit timestamp low value
4872  *
4873  * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
4874  * timestamp block of the external PHY on the E810 device using sideband queue.
4875  */
4876 static int
4877 ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
4878 			     u32 *lo)
4879 {
4880 	u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
4881 	u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
4882 	u32 lo_val, hi_val;
4883 	int err;
4884 
4885 	err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
4886 	if (err) {
4887 		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
4888 			  err);
4889 		return err;
4890 	}
4891 
4892 	err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
4893 	if (err) {
4894 		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
4895 			  err);
4896 		return err;
4897 	}
4898 
4899 	*lo = lo_val;
4900 	*hi = (u8)hi_val;
4901 
4902 	return 0;
4903 }
4904 
4905 /**
4906  * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
4907  * @hw: pointer to the HW struct
4908  * @lport: the lport to read from
4909  * @idx: the timestamp index to read
4910  * @tstamp: on return, the 40bit timestamp value
4911  *
4912  * Read a 40bit timestamp value out of the timestamp block of the external PHY
4913  * on the E810 device.
4914  */
4915 static int
4916 ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
4917 {
4918 	u32 lo = 0;
4919 	u8 hi = 0;
4920 	int err;
4921 
4922 	if (hw->dev_caps.ts_dev_info.ts_ll_read)
4923 		err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
4924 	else
4925 		err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
4926 
4927 	if (err)
4928 		return err;
4929 
4930 	/* For E810 devices, the timestamp is reported with the lower 32 bits
4931 	 * in the low register, and the upper 8 bits in the high register.
4932 	 */
4933 	*tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
4934 
4935 	return 0;
4936 }
4937 
4938 /**
4939  * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
4940  * @hw: pointer to the HW struct
4941  * @lport: the lport to read from
4942  * @idx: the timestamp index to reset
4943  *
4944  * Read the timestamp and then forcibly overwrite its value to clear the valid
4945  * bit from the timestamp block of the external PHY on the E810 device.
4946  *
4947  * This function should only be called on an idx whose bit is set according to
4948  * ice_get_phy_tx_tstamp_ready().
4949  */
4950 static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
4951 {
4952 	u32 lo_addr, hi_addr;
4953 	u64 unused_tstamp;
4954 	int err;
4955 
4956 	err = ice_read_phy_tstamp_e810(hw, lport, idx, &unused_tstamp);
4957 	if (err) {
4958 		ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for lport %u, idx %u, err %d\n",
4959 			  lport, idx, err);
4960 		return err;
4961 	}
4962 
4963 	lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
4964 	hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
4965 
4966 	err = ice_write_phy_reg_e810(hw, lo_addr, 0);
4967 	if (err) {
4968 		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for lport %u, idx %u, err %d\n",
4969 			  lport, idx, err);
4970 		return err;
4971 	}
4972 
4973 	err = ice_write_phy_reg_e810(hw, hi_addr, 0);
4974 	if (err) {
4975 		ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register for lport %u, idx %u, err %d\n",
4976 			  lport, idx, err);
4977 		return err;
4978 	}
4979 
4980 	return 0;
4981 }
4982 
4983 /**
4984  * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
4985  * @hw: pointer to HW struct
4986  *
4987  * Perform E810-specific PTP hardware clock initialization steps.
4988  *
4989  * Return: 0 on success, other error codes when failed to initialize TimeSync
4990  */
4991 static int ice_ptp_init_phc_e810(struct ice_hw *hw)
4992 {
4993 	u8 tmr_idx;
4994 	int err;
4995 
4996 	/* Ensure synchronization delay is zero */
4997 	wr32(hw, GLTSYN_SYNC_DLAY, 0);
4998 
4999 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5000 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
5001 				     GLTSYN_ENA_TSYN_ENA_M);
5002 	if (err)
5003 		ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
5004 			  err);
5005 
5006 	return err;
5007 }
5008 
5009 /**
5010  * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
5011  * @hw: Board private structure
5012  * @time: Time to initialize the PHY port clock to
5013  *
5014  * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
5015  * initial clock time. The time will not actually be programmed until the
5016  * driver issues an ICE_PTP_INIT_TIME command.
5017  *
5018  * The time value is the upper 32 bits of the PHY timer, usually in units of
5019  * nominal nanoseconds.
5020  */
5021 static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
5022 {
5023 	u8 tmr_idx;
5024 	int err;
5025 
5026 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5027 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
5028 	if (err) {
5029 		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
5030 			  err);
5031 		return err;
5032 	}
5033 
5034 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
5035 	if (err) {
5036 		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
5037 			  err);
5038 		return err;
5039 	}
5040 
5041 	return 0;
5042 }
5043 
5044 /**
5045  * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
5046  * @hw: pointer to HW struct
5047  * @adj: adjustment value to program
5048  *
5049  * Prepare the PHY port for an atomic adjustment by programming the PHY
5050  * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
5051  * is completed by issuing an ICE_PTP_ADJ_TIME sync command.
5052  *
5053  * The adjustment value only contains the portion used for the upper 32bits of
5054  * the PHY timer, usually in units of nominal nanoseconds. Negative
5055  * adjustments are supported using 2s complement arithmetic.
5056  */
5057 static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
5058 {
5059 	u8 tmr_idx;
5060 	int err;
5061 
5062 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5063 
5064 	/* Adjustments are represented as signed 2's complement values in
5065 	 * nanoseconds. Sub-nanosecond adjustment is not supported.
5066 	 */
5067 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
5068 	if (err) {
5069 		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
5070 			  err);
5071 		return err;
5072 	}
5073 
5074 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
5075 	if (err) {
5076 		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
5077 			  err);
5078 		return err;
5079 	}
5080 
5081 	return 0;
5082 }
5083 
5084 /**
5085  * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
5086  * @hw: pointer to HW struct
5087  * @incval: The new 40bit increment value to prepare
5088  *
5089  * Prepare the PHY port for a new increment value by programming the PHY
5090  * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
5091  * completed by issuing an ICE_PTP_INIT_INCVAL command.
5092  */
5093 static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
5094 {
5095 	u32 high, low;
5096 	u8 tmr_idx;
5097 	int err;
5098 
5099 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5100 	low = lower_32_bits(incval);
5101 	high = upper_32_bits(incval);
5102 
5103 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
5104 	if (err) {
5105 		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
5106 			  err);
5107 		return err;
5108 	}
5109 
5110 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
5111 	if (err) {
5112 		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
5113 			  err);
5114 		return err;
5115 	}
5116 
5117 	return 0;
5118 }
5119 
5120 /**
5121  * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
5122  * @hw: pointer to HW struct
5123  * @cmd: Command to be sent to the port
5124  *
5125  * Prepare the external PHYs connected to this device for a timer sync
5126  * command.
5127  */
5128 static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5129 {
5130 	u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
5131 
5132 	return ice_write_phy_reg_e810(hw, E810_ETH_GLTSYN_CMD, val);
5133 }
5134 
5135 /**
5136  * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
5137  * @hw: pointer to the HW struct
5138  * @port: the PHY port to read
5139  * @tstamp_ready: contents of the Tx memory status register
5140  *
5141  * E810 devices do not use a Tx memory status register. Instead simply
5142  * indicate that all timestamps are currently ready.
5143  */
5144 static int
5145 ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
5146 {
5147 	*tstamp_ready = 0xFFFFFFFFFFFFFFFF;
5148 	return 0;
5149 }
5150 
5151 /* E810T SMA functions
5152  *
5153  * The following functions operate specifically on E810T hardware and are used
5154  * to access the extended GPIOs available.
5155  */
5156 
5157 /**
5158  * ice_get_pca9575_handle
5159  * @hw: pointer to the hw struct
5160  * @pca9575_handle: GPIO controller's handle
5161  *
5162  * Find and return the GPIO controller's handle in the netlist.
5163  * When found - the value will be cached in the hw structure and following calls
5164  * will return cached value
5165  */
5166 static int
5167 ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
5168 {
5169 	struct ice_aqc_get_link_topo *cmd;
5170 	struct ice_aq_desc desc;
5171 	int status;
5172 	u8 idx;
5173 
5174 	/* If handle was read previously return cached value */
5175 	if (hw->io_expander_handle) {
5176 		*pca9575_handle = hw->io_expander_handle;
5177 		return 0;
5178 	}
5179 
5180 	/* If handle was not detected read it from the netlist */
5181 	cmd = &desc.params.get_link_topo;
5182 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
5183 
5184 	/* Set node type to GPIO controller */
5185 	cmd->addr.topo_params.node_type_ctx =
5186 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M &
5187 		 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
5188 
5189 #define SW_PCA9575_SFP_TOPO_IDX		2
5190 #define SW_PCA9575_QSFP_TOPO_IDX	1
5191 
5192 	/* Check if the SW IO expander controlling SMA exists in the netlist. */
5193 	if (hw->device_id == ICE_DEV_ID_E810C_SFP)
5194 		idx = SW_PCA9575_SFP_TOPO_IDX;
5195 	else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
5196 		idx = SW_PCA9575_QSFP_TOPO_IDX;
5197 	else
5198 		return -EOPNOTSUPP;
5199 
5200 	cmd->addr.topo_params.index = idx;
5201 
5202 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5203 	if (status)
5204 		return -EOPNOTSUPP;
5205 
5206 	/* Verify if we found the right IO expander type */
5207 	if (desc.params.get_link_topo.node_part_num !=
5208 		ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
5209 		return -EOPNOTSUPP;
5210 
5211 	/* If present save the handle and return it */
5212 	hw->io_expander_handle =
5213 		le16_to_cpu(desc.params.get_link_topo.addr.handle);
5214 	*pca9575_handle = hw->io_expander_handle;
5215 
5216 	return 0;
5217 }
5218 
5219 /**
5220  * ice_read_sma_ctrl_e810t
5221  * @hw: pointer to the hw struct
5222  * @data: pointer to data to be read from the GPIO controller
5223  *
5224  * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
5225  * PCA9575 expander, so only bits 3-7 in data are valid.
5226  */
5227 int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data)
5228 {
5229 	int status;
5230 	u16 handle;
5231 	u8 i;
5232 
5233 	status = ice_get_pca9575_handle(hw, &handle);
5234 	if (status)
5235 		return status;
5236 
5237 	*data = 0;
5238 
5239 	for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
5240 		bool pin;
5241 
5242 		status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
5243 					 &pin, NULL);
5244 		if (status)
5245 			break;
5246 		*data |= (u8)(!pin) << i;
5247 	}
5248 
5249 	return status;
5250 }
5251 
5252 /**
5253  * ice_write_sma_ctrl_e810t
5254  * @hw: pointer to the hw struct
5255  * @data: data to be written to the GPIO controller
5256  *
5257  * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
5258  * of the PCA9575 expander, so only bits 3-7 in data are valid.
5259  */
5260 int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data)
5261 {
5262 	int status;
5263 	u16 handle;
5264 	u8 i;
5265 
5266 	status = ice_get_pca9575_handle(hw, &handle);
5267 	if (status)
5268 		return status;
5269 
5270 	for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
5271 		bool pin;
5272 
5273 		pin = !(data & (1 << i));
5274 		status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
5275 					 pin, NULL);
5276 		if (status)
5277 			break;
5278 	}
5279 
5280 	return status;
5281 }
5282 
5283 /**
5284  * ice_read_pca9575_reg_e810t
5285  * @hw: pointer to the hw struct
5286  * @offset: GPIO controller register offset
5287  * @data: pointer to data to be read from the GPIO controller
5288  *
5289  * Read the register from the GPIO controller
5290  */
5291 int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data)
5292 {
5293 	struct ice_aqc_link_topo_addr link_topo;
5294 	__le16 addr;
5295 	u16 handle;
5296 	int err;
5297 
5298 	memset(&link_topo, 0, sizeof(link_topo));
5299 
5300 	err = ice_get_pca9575_handle(hw, &handle);
5301 	if (err)
5302 		return err;
5303 
5304 	link_topo.handle = cpu_to_le16(handle);
5305 	link_topo.topo_params.node_type_ctx =
5306 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
5307 			   ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
5308 
5309 	addr = cpu_to_le16((u16)offset);
5310 
5311 	return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
5312 }
5313 
5314 /**
5315  * ice_ptp_init_phy_e810 - initialize PHY parameters
5316  * @ptp: pointer to the PTP HW struct
5317  */
5318 static void ice_ptp_init_phy_e810(struct ice_ptp_hw *ptp)
5319 {
5320 	ptp->phy_model = ICE_PHY_E810;
5321 	ptp->num_lports = 8;
5322 	ptp->ports_per_phy = 4;
5323 }
5324 
5325 /* Device agnostic functions
5326  *
5327  * The following functions implement shared behavior common to both E822 and
5328  * E810 devices, possibly calling a device specific implementation where
5329  * necessary.
5330  */
5331 
5332 /**
5333  * ice_ptp_lock - Acquire PTP global semaphore register lock
5334  * @hw: pointer to the HW struct
5335  *
5336  * Acquire the global PTP hardware semaphore lock. Returns true if the lock
5337  * was acquired, false otherwise.
5338  *
5339  * The PFTSYN_SEM register sets the busy bit on read, returning the previous
5340  * value. If software sees the busy bit cleared, this means that this function
5341  * acquired the lock (and the busy bit is now set). If software sees the busy
5342  * bit set, it means that another function acquired the lock.
5343  *
5344  * Software must clear the busy bit with a write to release the lock for other
5345  * functions when done.
5346  */
5347 bool ice_ptp_lock(struct ice_hw *hw)
5348 {
5349 	u32 hw_lock;
5350 	int i;
5351 
5352 #define MAX_TRIES 15
5353 
5354 	for (i = 0; i < MAX_TRIES; i++) {
5355 		hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
5356 		hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
5357 		if (hw_lock) {
5358 			/* Somebody is holding the lock */
5359 			usleep_range(5000, 6000);
5360 			continue;
5361 		}
5362 
5363 		break;
5364 	}
5365 
5366 	return !hw_lock;
5367 }
5368 
5369 /**
5370  * ice_ptp_unlock - Release PTP global semaphore register lock
5371  * @hw: pointer to the HW struct
5372  *
5373  * Release the global PTP hardware semaphore lock. This is done by writing to
5374  * the PFTSYN_SEM register.
5375  */
5376 void ice_ptp_unlock(struct ice_hw *hw)
5377 {
5378 	wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
5379 }
5380 
5381 /**
5382  * ice_ptp_init_hw - Initialize hw based on device type
5383  * @hw: pointer to the HW structure
5384  *
5385  * Determine the PHY model for the device, and initialize hw
5386  * for use by other functions.
5387  */
5388 void ice_ptp_init_hw(struct ice_hw *hw)
5389 {
5390 	struct ice_ptp_hw *ptp = &hw->ptp;
5391 
5392 	if (ice_is_e822(hw) || ice_is_e823(hw))
5393 		ice_ptp_init_phy_e82x(ptp);
5394 	else if (ice_is_e810(hw))
5395 		ice_ptp_init_phy_e810(ptp);
5396 	else if (ice_is_e825c(hw))
5397 		ice_ptp_init_phy_e825c(hw);
5398 	else
5399 		ptp->phy_model = ICE_PHY_UNSUP;
5400 }
5401 
5402 /**
5403  * ice_ptp_write_port_cmd - Prepare a single PHY port for a timer command
5404  * @hw: pointer to HW struct
5405  * @port: Port to which cmd has to be sent
5406  * @cmd: Command to be sent to the port
5407  *
5408  * Prepare one port for the upcoming timer sync command. Do not use this for
5409  * programming only a single port, instead use ice_ptp_one_port_cmd() to
5410  * ensure non-modified ports get properly initialized to ICE_PTP_NOP.
5411  *
5412  * Return:
5413  * * %0     - success
5414  *  %-EBUSY - PHY type not supported
5415  * * %other - failed to write port command
5416  */
5417 static int ice_ptp_write_port_cmd(struct ice_hw *hw, u8 port,
5418 				  enum ice_ptp_tmr_cmd cmd)
5419 {
5420 	switch (hw->ptp.phy_model) {
5421 	case ICE_PHY_ETH56G:
5422 		return ice_ptp_write_port_cmd_eth56g(hw, port, cmd);
5423 	case ICE_PHY_E82X:
5424 		return ice_ptp_write_port_cmd_e82x(hw, port, cmd);
5425 	default:
5426 		return -EOPNOTSUPP;
5427 	}
5428 }
5429 
5430 /**
5431  * ice_ptp_one_port_cmd - Program one PHY port for a timer command
5432  * @hw: pointer to HW struct
5433  * @configured_port: the port that should execute the command
5434  * @configured_cmd: the command to be executed on the configured port
5435  *
5436  * Prepare one port for executing a timer command, while preparing all other
5437  * ports to ICE_PTP_NOP. This allows executing a command on a single port
5438  * while ensuring all other ports do not execute stale commands.
5439  *
5440  * Return:
5441  * * %0     - success
5442  * * %other - failed to write port command
5443  */
5444 int ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port,
5445 			 enum ice_ptp_tmr_cmd configured_cmd)
5446 {
5447 	u32 port;
5448 
5449 	for (port = 0; port < hw->ptp.num_lports; port++) {
5450 		int err;
5451 
5452 		/* Program the configured port with the configured command,
5453 		 * program all other ports with ICE_PTP_NOP.
5454 		 */
5455 		if (port == configured_port)
5456 			err = ice_ptp_write_port_cmd(hw, port, configured_cmd);
5457 		else
5458 			err = ice_ptp_write_port_cmd(hw, port, ICE_PTP_NOP);
5459 
5460 		if (err)
5461 			return err;
5462 	}
5463 
5464 	return 0;
5465 }
5466 
5467 /**
5468  * ice_ptp_port_cmd - Prepare PHY ports for a timer sync command
5469  * @hw: pointer to HW struct
5470  * @cmd: the timer command to setup
5471  *
5472  * Prepare all PHY ports on this device for the requested timer command. For
5473  * some families this can be done in one shot, but for other families each
5474  * port must be configured individually.
5475  *
5476  * Return:
5477  * * %0     - success
5478  * * %other - failed to write port command
5479  */
5480 static int ice_ptp_port_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5481 {
5482 	u32 port;
5483 
5484 	/* PHY models which can program all ports simultaneously */
5485 	switch (hw->ptp.phy_model) {
5486 	case ICE_PHY_E810:
5487 		return ice_ptp_port_cmd_e810(hw, cmd);
5488 	default:
5489 		break;
5490 	}
5491 
5492 	/* PHY models which require programming each port separately */
5493 	for (port = 0; port < hw->ptp.num_lports; port++) {
5494 		int err;
5495 
5496 		err = ice_ptp_write_port_cmd(hw, port, cmd);
5497 		if (err)
5498 			return err;
5499 	}
5500 
5501 	return 0;
5502 }
5503 
5504 /**
5505  * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
5506  * @hw: pointer to HW struct
5507  * @cmd: the command to issue
5508  *
5509  * Prepare the source timer and PHY timers and then trigger the requested
5510  * command. This causes the shadow registers previously written in preparation
5511  * for the command to be synchronously applied to both the source and PHY
5512  * timers.
5513  */
5514 static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5515 {
5516 	int err;
5517 
5518 	/* First, prepare the source timer */
5519 	ice_ptp_src_cmd(hw, cmd);
5520 
5521 	/* Next, prepare the ports */
5522 	err = ice_ptp_port_cmd(hw, cmd);
5523 	if (err) {
5524 		ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
5525 			  cmd, err);
5526 		return err;
5527 	}
5528 
5529 	/* Write the sync command register to drive both source and PHY timer
5530 	 * commands synchronously
5531 	 */
5532 	ice_ptp_exec_tmr_cmd(hw);
5533 
5534 	return 0;
5535 }
5536 
5537 /**
5538  * ice_ptp_init_time - Initialize device time to provided value
5539  * @hw: pointer to HW struct
5540  * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
5541  *
5542  * Initialize the device to the specified time provided. This requires a three
5543  * step process:
5544  *
5545  * 1) write the new init time to the source timer shadow registers
5546  * 2) write the new init time to the PHY timer shadow registers
5547  * 3) issue an init_time timer command to synchronously switch both the source
5548  *    and port timers to the new init time value at the next clock cycle.
5549  */
5550 int ice_ptp_init_time(struct ice_hw *hw, u64 time)
5551 {
5552 	u8 tmr_idx;
5553 	int err;
5554 
5555 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5556 
5557 	/* Source timers */
5558 	wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
5559 	wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
5560 	wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
5561 
5562 	/* PHY timers */
5563 	/* Fill Rx and Tx ports and send msg to PHY */
5564 	switch (hw->ptp.phy_model) {
5565 	case ICE_PHY_ETH56G:
5566 		err = ice_ptp_prep_phy_time_eth56g(hw,
5567 						   (u32)(time & 0xFFFFFFFF));
5568 		break;
5569 	case ICE_PHY_E810:
5570 		err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
5571 		break;
5572 	case ICE_PHY_E82X:
5573 		err = ice_ptp_prep_phy_time_e82x(hw, time & 0xFFFFFFFF);
5574 		break;
5575 	default:
5576 		err = -EOPNOTSUPP;
5577 	}
5578 
5579 	if (err)
5580 		return err;
5581 
5582 	return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_TIME);
5583 }
5584 
5585 /**
5586  * ice_ptp_write_incval - Program PHC with new increment value
5587  * @hw: pointer to HW struct
5588  * @incval: Source timer increment value per clock cycle
5589  *
5590  * Program the PHC with a new increment value. This requires a three-step
5591  * process:
5592  *
5593  * 1) Write the increment value to the source timer shadow registers
5594  * 2) Write the increment value to the PHY timer shadow registers
5595  * 3) Issue an ICE_PTP_INIT_INCVAL timer command to synchronously switch both
5596  *    the source and port timers to the new increment value at the next clock
5597  *    cycle.
5598  */
5599 int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
5600 {
5601 	u8 tmr_idx;
5602 	int err;
5603 
5604 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5605 
5606 	/* Shadow Adjust */
5607 	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
5608 	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
5609 
5610 	switch (hw->ptp.phy_model) {
5611 	case ICE_PHY_ETH56G:
5612 		err = ice_ptp_prep_phy_incval_eth56g(hw, incval);
5613 		break;
5614 	case ICE_PHY_E810:
5615 		err = ice_ptp_prep_phy_incval_e810(hw, incval);
5616 		break;
5617 	case ICE_PHY_E82X:
5618 		err = ice_ptp_prep_phy_incval_e82x(hw, incval);
5619 		break;
5620 	default:
5621 		err = -EOPNOTSUPP;
5622 	}
5623 
5624 	if (err)
5625 		return err;
5626 
5627 	return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_INCVAL);
5628 }
5629 
5630 /**
5631  * ice_ptp_write_incval_locked - Program new incval while holding semaphore
5632  * @hw: pointer to HW struct
5633  * @incval: Source timer increment value per clock cycle
5634  *
5635  * Program a new PHC incval while holding the PTP semaphore.
5636  */
5637 int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
5638 {
5639 	int err;
5640 
5641 	if (!ice_ptp_lock(hw))
5642 		return -EBUSY;
5643 
5644 	err = ice_ptp_write_incval(hw, incval);
5645 
5646 	ice_ptp_unlock(hw);
5647 
5648 	return err;
5649 }
5650 
5651 /**
5652  * ice_ptp_adj_clock - Adjust PHC clock time atomically
5653  * @hw: pointer to HW struct
5654  * @adj: Adjustment in nanoseconds
5655  *
5656  * Perform an atomic adjustment of the PHC time by the specified number of
5657  * nanoseconds. This requires a three-step process:
5658  *
5659  * 1) Write the adjustment to the source timer shadow registers
5660  * 2) Write the adjustment to the PHY timer shadow registers
5661  * 3) Issue an ICE_PTP_ADJ_TIME timer command to synchronously apply the
5662  *    adjustment to both the source and port timers at the next clock cycle.
5663  */
5664 int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
5665 {
5666 	u8 tmr_idx;
5667 	int err;
5668 
5669 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5670 
5671 	/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
5672 	 * For an ICE_PTP_ADJ_TIME command, this set of registers represents
5673 	 * the value to add to the clock time. It supports subtraction by
5674 	 * interpreting the value as a 2's complement integer.
5675 	 */
5676 	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
5677 	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
5678 
5679 	switch (hw->ptp.phy_model) {
5680 	case ICE_PHY_ETH56G:
5681 		err = ice_ptp_prep_phy_adj_eth56g(hw, adj);
5682 		break;
5683 	case ICE_PHY_E810:
5684 		err = ice_ptp_prep_phy_adj_e810(hw, adj);
5685 		break;
5686 	case ICE_PHY_E82X:
5687 		err = ice_ptp_prep_phy_adj_e82x(hw, adj);
5688 		break;
5689 	default:
5690 		err = -EOPNOTSUPP;
5691 	}
5692 
5693 	if (err)
5694 		return err;
5695 
5696 	return ice_ptp_tmr_cmd(hw, ICE_PTP_ADJ_TIME);
5697 }
5698 
5699 /**
5700  * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
5701  * @hw: pointer to the HW struct
5702  * @block: the block to read from
5703  * @idx: the timestamp index to read
5704  * @tstamp: on return, the 40bit timestamp value
5705  *
5706  * Read a 40bit timestamp value out of the timestamp block. For E822 devices,
5707  * the block is the quad to read from. For E810 devices, the block is the
5708  * logical port to read from.
5709  */
5710 int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
5711 {
5712 	switch (hw->ptp.phy_model) {
5713 	case ICE_PHY_ETH56G:
5714 		return ice_read_ptp_tstamp_eth56g(hw, block, idx, tstamp);
5715 	case ICE_PHY_E810:
5716 		return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
5717 	case ICE_PHY_E82X:
5718 		return ice_read_phy_tstamp_e82x(hw, block, idx, tstamp);
5719 	default:
5720 		return -EOPNOTSUPP;
5721 	}
5722 }
5723 
5724 /**
5725  * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
5726  * @hw: pointer to the HW struct
5727  * @block: the block to read from
5728  * @idx: the timestamp index to reset
5729  *
5730  * Clear a timestamp from the timestamp block, discarding its value without
5731  * returning it. This resets the memory status bit for the timestamp index
5732  * allowing it to be reused for another timestamp in the future.
5733  *
5734  * For E822 devices, the block number is the PHY quad to clear from. For E810
5735  * devices, the block number is the logical port to clear from.
5736  *
5737  * This function must only be called on a timestamp index whose valid bit is
5738  * set according to ice_get_phy_tx_tstamp_ready().
5739  */
5740 int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
5741 {
5742 	switch (hw->ptp.phy_model) {
5743 	case ICE_PHY_ETH56G:
5744 		return ice_clear_ptp_tstamp_eth56g(hw, block, idx);
5745 	case ICE_PHY_E810:
5746 		return ice_clear_phy_tstamp_e810(hw, block, idx);
5747 	case ICE_PHY_E82X:
5748 		return ice_clear_phy_tstamp_e82x(hw, block, idx);
5749 	default:
5750 		return -EOPNOTSUPP;
5751 	}
5752 }
5753 
5754 /**
5755  * ice_get_pf_c827_idx - find and return the C827 index for the current pf
5756  * @hw: pointer to the hw struct
5757  * @idx: index of the found C827 PHY
5758  * Return:
5759  * * 0 - success
5760  * * negative - failure
5761  */
5762 static int ice_get_pf_c827_idx(struct ice_hw *hw, u8 *idx)
5763 {
5764 	struct ice_aqc_get_link_topo cmd;
5765 	u8 node_part_number;
5766 	u16 node_handle;
5767 	int status;
5768 	u8 ctx;
5769 
5770 	if (hw->mac_type != ICE_MAC_E810)
5771 		return -ENODEV;
5772 
5773 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP) {
5774 		*idx = C827_0;
5775 		return 0;
5776 	}
5777 
5778 	memset(&cmd, 0, sizeof(cmd));
5779 
5780 	ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_PHY << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
5781 	ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
5782 	cmd.addr.topo_params.node_type_ctx = ctx;
5783 
5784 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
5785 					 &node_handle);
5786 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
5787 		return -ENOENT;
5788 
5789 	if (node_handle == E810C_QSFP_C827_0_HANDLE)
5790 		*idx = C827_0;
5791 	else if (node_handle == E810C_QSFP_C827_1_HANDLE)
5792 		*idx = C827_1;
5793 	else
5794 		return -EIO;
5795 
5796 	return 0;
5797 }
5798 
5799 /**
5800  * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
5801  * @hw: pointer to the HW struct
5802  */
5803 void ice_ptp_reset_ts_memory(struct ice_hw *hw)
5804 {
5805 	switch (hw->ptp.phy_model) {
5806 	case ICE_PHY_ETH56G:
5807 		ice_ptp_reset_ts_memory_eth56g(hw);
5808 		break;
5809 	case ICE_PHY_E82X:
5810 		ice_ptp_reset_ts_memory_e82x(hw);
5811 		break;
5812 	case ICE_PHY_E810:
5813 	default:
5814 		return;
5815 	}
5816 }
5817 
5818 /**
5819  * ice_ptp_init_phc - Initialize PTP hardware clock
5820  * @hw: pointer to the HW struct
5821  *
5822  * Perform the steps required to initialize the PTP hardware clock.
5823  */
5824 int ice_ptp_init_phc(struct ice_hw *hw)
5825 {
5826 	u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5827 
5828 	/* Enable source clocks */
5829 	wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
5830 
5831 	/* Clear event err indications for auxiliary pins */
5832 	(void)rd32(hw, GLTSYN_STAT(src_idx));
5833 
5834 	switch (hw->ptp.phy_model) {
5835 	case ICE_PHY_ETH56G:
5836 		return ice_ptp_init_phc_eth56g(hw);
5837 	case ICE_PHY_E810:
5838 		return ice_ptp_init_phc_e810(hw);
5839 	case ICE_PHY_E82X:
5840 		return ice_ptp_init_phc_e82x(hw);
5841 	default:
5842 		return -EOPNOTSUPP;
5843 	}
5844 }
5845 
5846 /**
5847  * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
5848  * @hw: pointer to the HW struct
5849  * @block: the timestamp block to check
5850  * @tstamp_ready: storage for the PHY Tx memory status information
5851  *
5852  * Check the PHY for Tx timestamp memory status. This reports a 64 bit value
5853  * which indicates which timestamps in the block may be captured. A set bit
5854  * means the timestamp can be read. An unset bit means the timestamp is not
5855  * ready and software should avoid reading the register.
5856  */
5857 int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
5858 {
5859 	switch (hw->ptp.phy_model) {
5860 	case ICE_PHY_ETH56G:
5861 		return ice_get_phy_tx_tstamp_ready_eth56g(hw, block,
5862 							  tstamp_ready);
5863 	case ICE_PHY_E810:
5864 		return ice_get_phy_tx_tstamp_ready_e810(hw, block,
5865 							tstamp_ready);
5866 	case ICE_PHY_E82X:
5867 		return ice_get_phy_tx_tstamp_ready_e82x(hw, block,
5868 							tstamp_ready);
5869 		break;
5870 	default:
5871 		return -EOPNOTSUPP;
5872 	}
5873 }
5874 
5875 /**
5876  * ice_cgu_get_pin_desc_e823 - get pin description array
5877  * @hw: pointer to the hw struct
5878  * @input: if request is done against input or output pin
5879  * @size: number of inputs/outputs
5880  *
5881  * Return: pointer to pin description array associated to given hw.
5882  */
5883 static const struct ice_cgu_pin_desc *
5884 ice_cgu_get_pin_desc_e823(struct ice_hw *hw, bool input, int *size)
5885 {
5886 	static const struct ice_cgu_pin_desc *t;
5887 
5888 	if (hw->cgu_part_number ==
5889 	    ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) {
5890 		if (input) {
5891 			t = ice_e823_zl_cgu_inputs;
5892 			*size = ARRAY_SIZE(ice_e823_zl_cgu_inputs);
5893 		} else {
5894 			t = ice_e823_zl_cgu_outputs;
5895 			*size = ARRAY_SIZE(ice_e823_zl_cgu_outputs);
5896 		}
5897 	} else if (hw->cgu_part_number ==
5898 		   ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) {
5899 		if (input) {
5900 			t = ice_e823_si_cgu_inputs;
5901 			*size = ARRAY_SIZE(ice_e823_si_cgu_inputs);
5902 		} else {
5903 			t = ice_e823_si_cgu_outputs;
5904 			*size = ARRAY_SIZE(ice_e823_si_cgu_outputs);
5905 		}
5906 	} else {
5907 		t = NULL;
5908 		*size = 0;
5909 	}
5910 
5911 	return t;
5912 }
5913 
5914 /**
5915  * ice_cgu_get_pin_desc - get pin description array
5916  * @hw: pointer to the hw struct
5917  * @input: if request is done against input or output pins
5918  * @size: size of array returned by function
5919  *
5920  * Return: pointer to pin description array associated to given hw.
5921  */
5922 static const struct ice_cgu_pin_desc *
5923 ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size)
5924 {
5925 	const struct ice_cgu_pin_desc *t = NULL;
5926 
5927 	switch (hw->device_id) {
5928 	case ICE_DEV_ID_E810C_SFP:
5929 		if (input) {
5930 			t = ice_e810t_sfp_cgu_inputs;
5931 			*size = ARRAY_SIZE(ice_e810t_sfp_cgu_inputs);
5932 		} else {
5933 			t = ice_e810t_sfp_cgu_outputs;
5934 			*size = ARRAY_SIZE(ice_e810t_sfp_cgu_outputs);
5935 		}
5936 		break;
5937 	case ICE_DEV_ID_E810C_QSFP:
5938 		if (input) {
5939 			t = ice_e810t_qsfp_cgu_inputs;
5940 			*size = ARRAY_SIZE(ice_e810t_qsfp_cgu_inputs);
5941 		} else {
5942 			t = ice_e810t_qsfp_cgu_outputs;
5943 			*size = ARRAY_SIZE(ice_e810t_qsfp_cgu_outputs);
5944 		}
5945 		break;
5946 	case ICE_DEV_ID_E823L_10G_BASE_T:
5947 	case ICE_DEV_ID_E823L_1GBE:
5948 	case ICE_DEV_ID_E823L_BACKPLANE:
5949 	case ICE_DEV_ID_E823L_QSFP:
5950 	case ICE_DEV_ID_E823L_SFP:
5951 	case ICE_DEV_ID_E823C_10G_BASE_T:
5952 	case ICE_DEV_ID_E823C_BACKPLANE:
5953 	case ICE_DEV_ID_E823C_QSFP:
5954 	case ICE_DEV_ID_E823C_SFP:
5955 	case ICE_DEV_ID_E823C_SGMII:
5956 		t = ice_cgu_get_pin_desc_e823(hw, input, size);
5957 		break;
5958 	default:
5959 		break;
5960 	}
5961 
5962 	return t;
5963 }
5964 
5965 /**
5966  * ice_cgu_get_num_pins - get pin description array size
5967  * @hw: pointer to the hw struct
5968  * @input: if request is done against input or output pins
5969  *
5970  * Return: size of pin description array for given hw.
5971  */
5972 int ice_cgu_get_num_pins(struct ice_hw *hw, bool input)
5973 {
5974 	const struct ice_cgu_pin_desc *t;
5975 	int size;
5976 
5977 	t = ice_cgu_get_pin_desc(hw, input, &size);
5978 	if (t)
5979 		return size;
5980 
5981 	return 0;
5982 }
5983 
5984 /**
5985  * ice_cgu_get_pin_type - get pin's type
5986  * @hw: pointer to the hw struct
5987  * @pin: pin index
5988  * @input: if request is done against input or output pin
5989  *
5990  * Return: type of a pin.
5991  */
5992 enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input)
5993 {
5994 	const struct ice_cgu_pin_desc *t;
5995 	int t_size;
5996 
5997 	t = ice_cgu_get_pin_desc(hw, input, &t_size);
5998 
5999 	if (!t)
6000 		return 0;
6001 
6002 	if (pin >= t_size)
6003 		return 0;
6004 
6005 	return t[pin].type;
6006 }
6007 
6008 /**
6009  * ice_cgu_get_pin_freq_supp - get pin's supported frequency
6010  * @hw: pointer to the hw struct
6011  * @pin: pin index
6012  * @input: if request is done against input or output pin
6013  * @num: output number of supported frequencies
6014  *
6015  * Get frequency supported number and array of supported frequencies.
6016  *
6017  * Return: array of supported frequencies for given pin.
6018  */
6019 struct dpll_pin_frequency *
6020 ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num)
6021 {
6022 	const struct ice_cgu_pin_desc *t;
6023 	int t_size;
6024 
6025 	*num = 0;
6026 	t = ice_cgu_get_pin_desc(hw, input, &t_size);
6027 	if (!t)
6028 		return NULL;
6029 	if (pin >= t_size)
6030 		return NULL;
6031 	*num = t[pin].freq_supp_num;
6032 
6033 	return t[pin].freq_supp;
6034 }
6035 
6036 /**
6037  * ice_cgu_get_pin_name - get pin's name
6038  * @hw: pointer to the hw struct
6039  * @pin: pin index
6040  * @input: if request is done against input or output pin
6041  *
6042  * Return:
6043  * * null terminated char array with name
6044  * * NULL in case of failure
6045  */
6046 const char *ice_cgu_get_pin_name(struct ice_hw *hw, u8 pin, bool input)
6047 {
6048 	const struct ice_cgu_pin_desc *t;
6049 	int t_size;
6050 
6051 	t = ice_cgu_get_pin_desc(hw, input, &t_size);
6052 
6053 	if (!t)
6054 		return NULL;
6055 
6056 	if (pin >= t_size)
6057 		return NULL;
6058 
6059 	return t[pin].name;
6060 }
6061 
6062 /**
6063  * ice_get_cgu_state - get the state of the DPLL
6064  * @hw: pointer to the hw struct
6065  * @dpll_idx: Index of internal DPLL unit
6066  * @last_dpll_state: last known state of DPLL
6067  * @pin: pointer to a buffer for returning currently active pin
6068  * @ref_state: reference clock state
6069  * @eec_mode: eec mode of the DPLL
6070  * @phase_offset: pointer to a buffer for returning phase offset
6071  * @dpll_state: state of the DPLL (output)
6072  *
6073  * This function will read the state of the DPLL(dpll_idx). Non-null
6074  * 'pin', 'ref_state', 'eec_mode' and 'phase_offset' parameters are used to
6075  * retrieve currently active pin, state, mode and phase_offset respectively.
6076  *
6077  * Return: state of the DPLL
6078  */
6079 int ice_get_cgu_state(struct ice_hw *hw, u8 dpll_idx,
6080 		      enum dpll_lock_status last_dpll_state, u8 *pin,
6081 		      u8 *ref_state, u8 *eec_mode, s64 *phase_offset,
6082 		      enum dpll_lock_status *dpll_state)
6083 {
6084 	u8 hw_ref_state, hw_dpll_state, hw_eec_mode, hw_config;
6085 	s64 hw_phase_offset;
6086 	int status;
6087 
6088 	status = ice_aq_get_cgu_dpll_status(hw, dpll_idx, &hw_ref_state,
6089 					    &hw_dpll_state, &hw_config,
6090 					    &hw_phase_offset, &hw_eec_mode);
6091 	if (status)
6092 		return status;
6093 
6094 	if (pin)
6095 		/* current ref pin in dpll_state_refsel_status_X register */
6096 		*pin = hw_config & ICE_AQC_GET_CGU_DPLL_CONFIG_CLK_REF_SEL;
6097 	if (phase_offset)
6098 		*phase_offset = hw_phase_offset;
6099 	if (ref_state)
6100 		*ref_state = hw_ref_state;
6101 	if (eec_mode)
6102 		*eec_mode = hw_eec_mode;
6103 	if (!dpll_state)
6104 		return 0;
6105 
6106 	/* According to ZL DPLL documentation, once state reach LOCKED_HO_ACQ
6107 	 * it would never return to FREERUN. This aligns to ITU-T G.781
6108 	 * Recommendation. We cannot report HOLDOVER as HO memory is cleared
6109 	 * while switching to another reference.
6110 	 * Only for situations where previous state was either: "LOCKED without
6111 	 * HO_ACQ" or "HOLDOVER" we actually back to FREERUN.
6112 	 */
6113 	if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_LOCK) {
6114 		if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_HO_READY)
6115 			*dpll_state = DPLL_LOCK_STATUS_LOCKED_HO_ACQ;
6116 		else
6117 			*dpll_state = DPLL_LOCK_STATUS_LOCKED;
6118 	} else if (last_dpll_state == DPLL_LOCK_STATUS_LOCKED_HO_ACQ ||
6119 		   last_dpll_state == DPLL_LOCK_STATUS_HOLDOVER) {
6120 		*dpll_state = DPLL_LOCK_STATUS_HOLDOVER;
6121 	} else {
6122 		*dpll_state = DPLL_LOCK_STATUS_UNLOCKED;
6123 	}
6124 
6125 	return 0;
6126 }
6127 
6128 /**
6129  * ice_get_cgu_rclk_pin_info - get info on available recovered clock pins
6130  * @hw: pointer to the hw struct
6131  * @base_idx: returns index of first recovered clock pin on device
6132  * @pin_num: returns number of recovered clock pins available on device
6133  *
6134  * Based on hw provide caller info about recovery clock pins available on the
6135  * board.
6136  *
6137  * Return:
6138  * * 0 - success, information is valid
6139  * * negative - failure, information is not valid
6140  */
6141 int ice_get_cgu_rclk_pin_info(struct ice_hw *hw, u8 *base_idx, u8 *pin_num)
6142 {
6143 	u8 phy_idx;
6144 	int ret;
6145 
6146 	switch (hw->device_id) {
6147 	case ICE_DEV_ID_E810C_SFP:
6148 	case ICE_DEV_ID_E810C_QSFP:
6149 
6150 		ret = ice_get_pf_c827_idx(hw, &phy_idx);
6151 		if (ret)
6152 			return ret;
6153 		*base_idx = E810T_CGU_INPUT_C827(phy_idx, ICE_RCLKA_PIN);
6154 		*pin_num = ICE_E810_RCLK_PINS_NUM;
6155 		ret = 0;
6156 		break;
6157 	case ICE_DEV_ID_E823L_10G_BASE_T:
6158 	case ICE_DEV_ID_E823L_1GBE:
6159 	case ICE_DEV_ID_E823L_BACKPLANE:
6160 	case ICE_DEV_ID_E823L_QSFP:
6161 	case ICE_DEV_ID_E823L_SFP:
6162 	case ICE_DEV_ID_E823C_10G_BASE_T:
6163 	case ICE_DEV_ID_E823C_BACKPLANE:
6164 	case ICE_DEV_ID_E823C_QSFP:
6165 	case ICE_DEV_ID_E823C_SFP:
6166 	case ICE_DEV_ID_E823C_SGMII:
6167 		*pin_num = ICE_E82X_RCLK_PINS_NUM;
6168 		ret = 0;
6169 		if (hw->cgu_part_number ==
6170 		    ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032)
6171 			*base_idx = ZL_REF1P;
6172 		else if (hw->cgu_part_number ==
6173 			 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384)
6174 			*base_idx = SI_REF1P;
6175 		else
6176 			ret = -ENODEV;
6177 
6178 		break;
6179 	default:
6180 		ret = -ENODEV;
6181 		break;
6182 	}
6183 
6184 	return ret;
6185 }
6186 
6187 /**
6188  * ice_cgu_get_output_pin_state_caps - get output pin state capabilities
6189  * @hw: pointer to the hw struct
6190  * @pin_id: id of a pin
6191  * @caps: capabilities to modify
6192  *
6193  * Return:
6194  * * 0 - success, state capabilities were modified
6195  * * negative - failure, capabilities were not modified
6196  */
6197 int ice_cgu_get_output_pin_state_caps(struct ice_hw *hw, u8 pin_id,
6198 				      unsigned long *caps)
6199 {
6200 	bool can_change = true;
6201 
6202 	switch (hw->device_id) {
6203 	case ICE_DEV_ID_E810C_SFP:
6204 		if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3)
6205 			can_change = false;
6206 		break;
6207 	case ICE_DEV_ID_E810C_QSFP:
6208 		if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3 || pin_id == ZL_OUT4)
6209 			can_change = false;
6210 		break;
6211 	case ICE_DEV_ID_E823L_10G_BASE_T:
6212 	case ICE_DEV_ID_E823L_1GBE:
6213 	case ICE_DEV_ID_E823L_BACKPLANE:
6214 	case ICE_DEV_ID_E823L_QSFP:
6215 	case ICE_DEV_ID_E823L_SFP:
6216 	case ICE_DEV_ID_E823C_10G_BASE_T:
6217 	case ICE_DEV_ID_E823C_BACKPLANE:
6218 	case ICE_DEV_ID_E823C_QSFP:
6219 	case ICE_DEV_ID_E823C_SFP:
6220 	case ICE_DEV_ID_E823C_SGMII:
6221 		if (hw->cgu_part_number ==
6222 		    ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032 &&
6223 		    pin_id == ZL_OUT2)
6224 			can_change = false;
6225 		else if (hw->cgu_part_number ==
6226 			 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384 &&
6227 			 pin_id == SI_OUT1)
6228 			can_change = false;
6229 		break;
6230 	default:
6231 		return -EINVAL;
6232 	}
6233 	if (can_change)
6234 		*caps |= DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
6235 	else
6236 		*caps &= ~DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
6237 
6238 	return 0;
6239 }
6240