1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3
4 #include <linux/delay.h>
5 #include <linux/iopoll.h>
6 #include "ice_common.h"
7 #include "ice_ptp_hw.h"
8 #include "ice_ptp_consts.h"
9 #include "ice_cgu_regs.h"
10
11 static struct dpll_pin_frequency ice_cgu_pin_freq_common[] = {
12 DPLL_PIN_FREQUENCY_1PPS,
13 DPLL_PIN_FREQUENCY_10MHZ,
14 };
15
16 static struct dpll_pin_frequency ice_cgu_pin_freq_1_hz[] = {
17 DPLL_PIN_FREQUENCY_1PPS,
18 };
19
20 static struct dpll_pin_frequency ice_cgu_pin_freq_10_mhz[] = {
21 DPLL_PIN_FREQUENCY_10MHZ,
22 };
23
24 static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = {
25 { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
26 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
27 { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
28 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
29 { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0, },
30 { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0, },
31 { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT,
32 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
33 { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT,
34 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
35 { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
36 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
37 };
38
39 static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = {
40 { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
41 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
42 { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
43 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
44 { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, },
45 { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, },
46 { "C827_1-RCLKA", ZL_REF2P, DPLL_PIN_TYPE_MUX, },
47 { "C827_1-RCLKB", ZL_REF2N, DPLL_PIN_TYPE_MUX, },
48 { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT,
49 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
50 { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT,
51 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
52 { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
53 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
54 };
55
56 static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = {
57 { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
58 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
59 { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
60 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
61 { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
62 { "MAC-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
63 { "CVL-SDP21", ZL_OUT4, DPLL_PIN_TYPE_EXT,
64 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
65 { "CVL-SDP23", ZL_OUT5, DPLL_PIN_TYPE_EXT,
66 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
67 };
68
69 static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_outputs[] = {
70 { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
71 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
72 { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
73 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
74 { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
75 { "PHY2-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
76 { "MAC-CLK", ZL_OUT4, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
77 { "CVL-SDP21", ZL_OUT5, DPLL_PIN_TYPE_EXT,
78 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
79 { "CVL-SDP23", ZL_OUT6, DPLL_PIN_TYPE_EXT,
80 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
81 };
82
83 static const struct ice_cgu_pin_desc ice_e823_si_cgu_inputs[] = {
84 { "NONE", SI_REF0P, 0, 0 },
85 { "NONE", SI_REF0N, 0, 0 },
86 { "SYNCE0_DP", SI_REF1P, DPLL_PIN_TYPE_MUX, 0 },
87 { "SYNCE0_DN", SI_REF1N, DPLL_PIN_TYPE_MUX, 0 },
88 { "EXT_CLK_SYNC", SI_REF2P, DPLL_PIN_TYPE_EXT,
89 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
90 { "NONE", SI_REF2N, 0, 0 },
91 { "EXT_PPS_OUT", SI_REF3, DPLL_PIN_TYPE_EXT,
92 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
93 { "INT_PPS_OUT", SI_REF4, DPLL_PIN_TYPE_EXT,
94 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
95 };
96
97 static const struct ice_cgu_pin_desc ice_e823_si_cgu_outputs[] = {
98 { "1588-TIME_SYNC", SI_OUT0, DPLL_PIN_TYPE_EXT,
99 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
100 { "PHY-CLK", SI_OUT1, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
101 { "10MHZ-SMA2", SI_OUT2, DPLL_PIN_TYPE_EXT,
102 ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
103 { "PPS-SMA1", SI_OUT3, DPLL_PIN_TYPE_EXT,
104 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
105 };
106
107 static const struct ice_cgu_pin_desc ice_e823_zl_cgu_inputs[] = {
108 { "NONE", ZL_REF0P, 0, 0 },
109 { "INT_PPS_OUT", ZL_REF0N, DPLL_PIN_TYPE_EXT,
110 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
111 { "SYNCE0_DP", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0 },
112 { "SYNCE0_DN", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0 },
113 { "NONE", ZL_REF2P, 0, 0 },
114 { "NONE", ZL_REF2N, 0, 0 },
115 { "EXT_CLK_SYNC", ZL_REF3P, DPLL_PIN_TYPE_EXT,
116 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
117 { "NONE", ZL_REF3N, 0, 0 },
118 { "EXT_PPS_OUT", ZL_REF4P, DPLL_PIN_TYPE_EXT,
119 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
120 { "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0 },
121 };
122
123 static const struct ice_cgu_pin_desc ice_e823_zl_cgu_outputs[] = {
124 { "PPS-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
125 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
126 { "10MHZ-SMA2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
127 ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
128 { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
129 { "1588-TIME_REF", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
130 { "CPK-TIME_SYNC", ZL_OUT4, DPLL_PIN_TYPE_EXT,
131 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
132 { "NONE", ZL_OUT5, 0, 0 },
133 };
134
135 /* Low level functions for interacting with and managing the device clock used
136 * for the Precision Time Protocol.
137 *
138 * The ice hardware represents the current time using three registers:
139 *
140 * GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R
141 * +---------------+ +---------------+ +---------------+
142 * | 32 bits | | 32 bits | | 32 bits |
143 * +---------------+ +---------------+ +---------------+
144 *
145 * The registers are incremented every clock tick using a 40bit increment
146 * value defined over two registers:
147 *
148 * GLTSYN_INCVAL_H GLTSYN_INCVAL_L
149 * +---------------+ +---------------+
150 * | 8 bit s | | 32 bits |
151 * +---------------+ +---------------+
152 *
153 * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
154 * registers every clock source tick. Depending on the specific device
155 * configuration, the clock source frequency could be one of a number of
156 * values.
157 *
158 * For E810 devices, the increment frequency is 812.5 MHz
159 *
160 * For E822 devices the clock can be derived from different sources, and the
161 * increment has an effective frequency of one of the following:
162 * - 823.4375 MHz
163 * - 783.36 MHz
164 * - 796.875 MHz
165 * - 816 MHz
166 * - 830.078125 MHz
167 * - 783.36 MHz
168 *
169 * The hardware captures timestamps in the PHY for incoming packets, and for
170 * outgoing packets on request. To support this, the PHY maintains a timer
171 * that matches the lower 64 bits of the global source timer.
172 *
173 * In order to ensure that the PHY timers and the source timer are equivalent,
174 * shadow registers are used to prepare the desired initial values. A special
175 * sync command is issued to trigger copying from the shadow registers into
176 * the appropriate source and PHY registers simultaneously.
177 *
178 * The driver supports devices which have different PHYs with subtly different
179 * mechanisms to program and control the timers. We divide the devices into
180 * families named after the first major device, E810 and similar devices, and
181 * E822 and similar devices.
182 *
183 * - E822 based devices have additional support for fine grained Vernier
184 * calibration which requires significant setup
185 * - The layout of timestamp data in the PHY register blocks is different
186 * - The way timer synchronization commands are issued is different.
187 *
188 * To support this, very low level functions have an e810 or e822 suffix
189 * indicating what type of device they work on. Higher level abstractions for
190 * tasks that can be done on both devices do not have the suffix and will
191 * correctly look up the appropriate low level function when running.
192 *
193 * Functions which only make sense on a single device family may not have
194 * a suitable generic implementation
195 */
196
197 /**
198 * ice_get_ptp_src_clock_index - determine source clock index
199 * @hw: pointer to HW struct
200 *
201 * Determine the source clock index currently in use, based on device
202 * capabilities reported during initialization.
203 */
ice_get_ptp_src_clock_index(struct ice_hw * hw)204 u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
205 {
206 return hw->func_caps.ts_func_info.tmr_index_assoc;
207 }
208
209 /**
210 * ice_ptp_read_src_incval - Read source timer increment value
211 * @hw: pointer to HW struct
212 *
213 * Read the increment value of the source timer and return it.
214 */
ice_ptp_read_src_incval(struct ice_hw * hw)215 static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
216 {
217 u32 lo, hi;
218 u8 tmr_idx;
219
220 tmr_idx = ice_get_ptp_src_clock_index(hw);
221
222 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
223 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
224
225 return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
226 }
227
228 /**
229 * ice_read_cgu_reg_e82x - Read a CGU register
230 * @hw: pointer to the HW struct
231 * @addr: Register address to read
232 * @val: storage for register value read
233 *
234 * Read the contents of a register of the Clock Generation Unit. Only
235 * applicable to E822 devices.
236 *
237 * Return: 0 on success, other error codes when failed to read from CGU
238 */
ice_read_cgu_reg_e82x(struct ice_hw * hw,u32 addr,u32 * val)239 static int ice_read_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 *val)
240 {
241 struct ice_sbq_msg_input cgu_msg = {
242 .opcode = ice_sbq_msg_rd,
243 .dest_dev = cgu,
244 .msg_addr_low = addr
245 };
246 int err;
247
248 err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
249 if (err) {
250 ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
251 addr, err);
252 return err;
253 }
254
255 *val = cgu_msg.data;
256
257 return 0;
258 }
259
260 /**
261 * ice_write_cgu_reg_e82x - Write a CGU register
262 * @hw: pointer to the HW struct
263 * @addr: Register address to write
264 * @val: value to write into the register
265 *
266 * Write the specified value to a register of the Clock Generation Unit. Only
267 * applicable to E822 devices.
268 *
269 * Return: 0 on success, other error codes when failed to write to CGU
270 */
ice_write_cgu_reg_e82x(struct ice_hw * hw,u32 addr,u32 val)271 static int ice_write_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 val)
272 {
273 struct ice_sbq_msg_input cgu_msg = {
274 .opcode = ice_sbq_msg_wr,
275 .dest_dev = cgu,
276 .msg_addr_low = addr,
277 .data = val
278 };
279 int err;
280
281 err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
282 if (err) {
283 ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
284 addr, err);
285 return err;
286 }
287
288 return err;
289 }
290
291 /**
292 * ice_clk_freq_str - Convert time_ref_freq to string
293 * @clk_freq: Clock frequency
294 *
295 * Return: specified TIME_REF clock frequency converted to a string
296 */
ice_clk_freq_str(enum ice_time_ref_freq clk_freq)297 static const char *ice_clk_freq_str(enum ice_time_ref_freq clk_freq)
298 {
299 switch (clk_freq) {
300 case ICE_TIME_REF_FREQ_25_000:
301 return "25 MHz";
302 case ICE_TIME_REF_FREQ_122_880:
303 return "122.88 MHz";
304 case ICE_TIME_REF_FREQ_125_000:
305 return "125 MHz";
306 case ICE_TIME_REF_FREQ_153_600:
307 return "153.6 MHz";
308 case ICE_TIME_REF_FREQ_156_250:
309 return "156.25 MHz";
310 case ICE_TIME_REF_FREQ_245_760:
311 return "245.76 MHz";
312 default:
313 return "Unknown";
314 }
315 }
316
317 /**
318 * ice_clk_src_str - Convert time_ref_src to string
319 * @clk_src: Clock source
320 *
321 * Return: specified clock source converted to its string name
322 */
ice_clk_src_str(enum ice_clk_src clk_src)323 static const char *ice_clk_src_str(enum ice_clk_src clk_src)
324 {
325 switch (clk_src) {
326 case ICE_CLK_SRC_TCXO:
327 return "TCXO";
328 case ICE_CLK_SRC_TIME_REF:
329 return "TIME_REF";
330 default:
331 return "Unknown";
332 }
333 }
334
335 /**
336 * ice_cfg_cgu_pll_e82x - Configure the Clock Generation Unit
337 * @hw: pointer to the HW struct
338 * @clk_freq: Clock frequency to program
339 * @clk_src: Clock source to select (TIME_REF, or TCXO)
340 *
341 * Configure the Clock Generation Unit with the desired clock frequency and
342 * time reference, enabling the PLL which drives the PTP hardware clock.
343 *
344 * Return:
345 * * %0 - success
346 * * %-EINVAL - input parameters are incorrect
347 * * %-EBUSY - failed to lock TS PLL
348 * * %other - CGU read/write failure
349 */
ice_cfg_cgu_pll_e82x(struct ice_hw * hw,enum ice_time_ref_freq clk_freq,enum ice_clk_src clk_src)350 static int ice_cfg_cgu_pll_e82x(struct ice_hw *hw,
351 enum ice_time_ref_freq clk_freq,
352 enum ice_clk_src clk_src)
353 {
354 union tspll_ro_bwm_lf bwm_lf;
355 union nac_cgu_dword19 dw19;
356 union nac_cgu_dword22 dw22;
357 union nac_cgu_dword24 dw24;
358 union nac_cgu_dword9 dw9;
359 int err;
360
361 if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
362 dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
363 clk_freq);
364 return -EINVAL;
365 }
366
367 if (clk_src >= NUM_ICE_CLK_SRC) {
368 dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
369 clk_src);
370 return -EINVAL;
371 }
372
373 if (clk_src == ICE_CLK_SRC_TCXO &&
374 clk_freq != ICE_TIME_REF_FREQ_25_000) {
375 dev_warn(ice_hw_to_dev(hw),
376 "TCXO only supports 25 MHz frequency\n");
377 return -EINVAL;
378 }
379
380 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
381 if (err)
382 return err;
383
384 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
385 if (err)
386 return err;
387
388 err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
389 if (err)
390 return err;
391
392 /* Log the current clock configuration */
393 ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
394 dw24.ts_pll_enable ? "enabled" : "disabled",
395 ice_clk_src_str(dw24.time_ref_sel),
396 ice_clk_freq_str(dw9.time_ref_freq_sel),
397 bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
398
399 /* Disable the PLL before changing the clock source or frequency */
400 if (dw24.ts_pll_enable) {
401 dw24.ts_pll_enable = 0;
402
403 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
404 if (err)
405 return err;
406 }
407
408 /* Set the frequency */
409 dw9.time_ref_freq_sel = clk_freq;
410 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
411 if (err)
412 return err;
413
414 /* Configure the TS PLL feedback divisor */
415 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
416 if (err)
417 return err;
418
419 dw19.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
420 dw19.tspll_ndivratio = 1;
421
422 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
423 if (err)
424 return err;
425
426 /* Configure the TS PLL post divisor */
427 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
428 if (err)
429 return err;
430
431 dw22.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
432 dw22.time1588clk_sel_div2 = 0;
433
434 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
435 if (err)
436 return err;
437
438 /* Configure the TS PLL pre divisor and clock source */
439 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
440 if (err)
441 return err;
442
443 dw24.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
444 dw24.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
445 dw24.time_ref_sel = clk_src;
446
447 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
448 if (err)
449 return err;
450
451 /* Finally, enable the PLL */
452 dw24.ts_pll_enable = 1;
453
454 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
455 if (err)
456 return err;
457
458 /* Wait to verify if the PLL locks */
459 usleep_range(1000, 5000);
460
461 err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
462 if (err)
463 return err;
464
465 if (!bwm_lf.plllock_true_lock_cri) {
466 dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
467 return -EBUSY;
468 }
469
470 /* Log the current clock configuration */
471 ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
472 dw24.ts_pll_enable ? "enabled" : "disabled",
473 ice_clk_src_str(dw24.time_ref_sel),
474 ice_clk_freq_str(dw9.time_ref_freq_sel),
475 bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
476
477 return 0;
478 }
479
480 /**
481 * ice_cfg_cgu_pll_e825c - Configure the Clock Generation Unit for E825-C
482 * @hw: pointer to the HW struct
483 * @clk_freq: Clock frequency to program
484 * @clk_src: Clock source to select (TIME_REF, or TCXO)
485 *
486 * Configure the Clock Generation Unit with the desired clock frequency and
487 * time reference, enabling the PLL which drives the PTP hardware clock.
488 *
489 * Return:
490 * * %0 - success
491 * * %-EINVAL - input parameters are incorrect
492 * * %-EBUSY - failed to lock TS PLL
493 * * %other - CGU read/write failure
494 */
ice_cfg_cgu_pll_e825c(struct ice_hw * hw,enum ice_time_ref_freq clk_freq,enum ice_clk_src clk_src)495 static int ice_cfg_cgu_pll_e825c(struct ice_hw *hw,
496 enum ice_time_ref_freq clk_freq,
497 enum ice_clk_src clk_src)
498 {
499 union tspll_ro_lock_e825c ro_lock;
500 union nac_cgu_dword16_e825c dw16;
501 union nac_cgu_dword23_e825c dw23;
502 union nac_cgu_dword19 dw19;
503 union nac_cgu_dword22 dw22;
504 union nac_cgu_dword24 dw24;
505 union nac_cgu_dword9 dw9;
506 int err;
507
508 if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
509 dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
510 clk_freq);
511 return -EINVAL;
512 }
513
514 if (clk_src >= NUM_ICE_CLK_SRC) {
515 dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
516 clk_src);
517 return -EINVAL;
518 }
519
520 if (clk_src == ICE_CLK_SRC_TCXO &&
521 clk_freq != ICE_TIME_REF_FREQ_156_250) {
522 dev_warn(ice_hw_to_dev(hw),
523 "TCXO only supports 156.25 MHz frequency\n");
524 return -EINVAL;
525 }
526
527 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
528 if (err)
529 return err;
530
531 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
532 if (err)
533 return err;
534
535 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, &dw16.val);
536 if (err)
537 return err;
538
539 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
540 if (err)
541 return err;
542
543 err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
544 if (err)
545 return err;
546
547 /* Log the current clock configuration */
548 ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
549 dw24.ts_pll_enable ? "enabled" : "disabled",
550 ice_clk_src_str(dw23.time_ref_sel),
551 ice_clk_freq_str(dw9.time_ref_freq_sel),
552 ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
553
554 /* Disable the PLL before changing the clock source or frequency */
555 if (dw23.ts_pll_enable) {
556 dw23.ts_pll_enable = 0;
557
558 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C,
559 dw23.val);
560 if (err)
561 return err;
562 }
563
564 /* Set the frequency */
565 dw9.time_ref_freq_sel = clk_freq;
566
567 /* Enable the correct receiver */
568 if (clk_src == ICE_CLK_SRC_TCXO) {
569 dw9.time_ref_en = 0;
570 dw9.clk_eref0_en = 1;
571 } else {
572 dw9.time_ref_en = 1;
573 dw9.clk_eref0_en = 0;
574 }
575 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
576 if (err)
577 return err;
578
579 /* Choose the referenced frequency */
580 dw16.tspll_ck_refclkfreq =
581 e825c_cgu_params[clk_freq].tspll_ck_refclkfreq;
582 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, dw16.val);
583 if (err)
584 return err;
585
586 /* Configure the TS PLL feedback divisor */
587 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
588 if (err)
589 return err;
590
591 dw19.tspll_fbdiv_intgr =
592 e825c_cgu_params[clk_freq].tspll_fbdiv_intgr;
593 dw19.tspll_ndivratio =
594 e825c_cgu_params[clk_freq].tspll_ndivratio;
595
596 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
597 if (err)
598 return err;
599
600 /* Configure the TS PLL post divisor */
601 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
602 if (err)
603 return err;
604
605 /* These two are constant for E825C */
606 dw22.time1588clk_div = 5;
607 dw22.time1588clk_sel_div2 = 0;
608
609 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
610 if (err)
611 return err;
612
613 /* Configure the TS PLL pre divisor and clock source */
614 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
615 if (err)
616 return err;
617
618 dw23.ref1588_ck_div =
619 e825c_cgu_params[clk_freq].ref1588_ck_div;
620 dw23.time_ref_sel = clk_src;
621
622 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
623 if (err)
624 return err;
625
626 dw24.tspll_fbdiv_frac =
627 e825c_cgu_params[clk_freq].tspll_fbdiv_frac;
628
629 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
630 if (err)
631 return err;
632
633 /* Finally, enable the PLL */
634 dw23.ts_pll_enable = 1;
635
636 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
637 if (err)
638 return err;
639
640 /* Wait to verify if the PLL locks */
641 usleep_range(1000, 5000);
642
643 err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
644 if (err)
645 return err;
646
647 if (!ro_lock.plllock_true_lock_cri) {
648 dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
649 return -EBUSY;
650 }
651
652 /* Log the current clock configuration */
653 ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
654 dw24.ts_pll_enable ? "enabled" : "disabled",
655 ice_clk_src_str(dw23.time_ref_sel),
656 ice_clk_freq_str(dw9.time_ref_freq_sel),
657 ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
658
659 return 0;
660 }
661
662 /**
663 * ice_cfg_cgu_pll_dis_sticky_bits_e82x - disable TS PLL sticky bits
664 * @hw: pointer to the HW struct
665 *
666 * Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
667 * losing TS PLL lock, but always show current state.
668 *
669 * Return: 0 on success, other error codes when failed to read/write CGU
670 */
ice_cfg_cgu_pll_dis_sticky_bits_e82x(struct ice_hw * hw)671 static int ice_cfg_cgu_pll_dis_sticky_bits_e82x(struct ice_hw *hw)
672 {
673 union tspll_cntr_bist_settings cntr_bist;
674 int err;
675
676 err = ice_read_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
677 &cntr_bist.val);
678 if (err)
679 return err;
680
681 /* Disable sticky lock detection so lock err reported is accurate */
682 cntr_bist.i_plllock_sel_0 = 0;
683 cntr_bist.i_plllock_sel_1 = 0;
684
685 return ice_write_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
686 cntr_bist.val);
687 }
688
689 /**
690 * ice_cfg_cgu_pll_dis_sticky_bits_e825c - disable TS PLL sticky bits for E825-C
691 * @hw: pointer to the HW struct
692 *
693 * Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
694 * losing TS PLL lock, but always show current state.
695 *
696 * Return: 0 on success, other error codes when failed to read/write CGU
697 */
ice_cfg_cgu_pll_dis_sticky_bits_e825c(struct ice_hw * hw)698 static int ice_cfg_cgu_pll_dis_sticky_bits_e825c(struct ice_hw *hw)
699 {
700 union tspll_bw_tdc_e825c bw_tdc;
701 int err;
702
703 err = ice_read_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, &bw_tdc.val);
704 if (err)
705 return err;
706
707 bw_tdc.i_plllock_sel_1_0 = 0;
708
709 return ice_write_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, bw_tdc.val);
710 }
711
712 /**
713 * ice_init_cgu_e82x - Initialize CGU with settings from firmware
714 * @hw: pointer to the HW structure
715 *
716 * Initialize the Clock Generation Unit of the E822 device.
717 *
718 * Return: 0 on success, other error codes when failed to read/write/cfg CGU
719 */
ice_init_cgu_e82x(struct ice_hw * hw)720 static int ice_init_cgu_e82x(struct ice_hw *hw)
721 {
722 struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
723 int err;
724
725 /* Disable sticky lock detection so lock err reported is accurate */
726 if (ice_is_e825c(hw))
727 err = ice_cfg_cgu_pll_dis_sticky_bits_e825c(hw);
728 else
729 err = ice_cfg_cgu_pll_dis_sticky_bits_e82x(hw);
730 if (err)
731 return err;
732
733 /* Configure the CGU PLL using the parameters from the function
734 * capabilities.
735 */
736 if (ice_is_e825c(hw))
737 err = ice_cfg_cgu_pll_e825c(hw, ts_info->time_ref,
738 (enum ice_clk_src)ts_info->clk_src);
739 else
740 err = ice_cfg_cgu_pll_e82x(hw, ts_info->time_ref,
741 (enum ice_clk_src)ts_info->clk_src);
742
743 return err;
744 }
745
746 /**
747 * ice_ptp_tmr_cmd_to_src_reg - Convert to source timer command value
748 * @hw: pointer to HW struct
749 * @cmd: Timer command
750 *
751 * Return: the source timer command register value for the given PTP timer
752 * command.
753 */
ice_ptp_tmr_cmd_to_src_reg(struct ice_hw * hw,enum ice_ptp_tmr_cmd cmd)754 static u32 ice_ptp_tmr_cmd_to_src_reg(struct ice_hw *hw,
755 enum ice_ptp_tmr_cmd cmd)
756 {
757 u32 cmd_val, tmr_idx;
758
759 switch (cmd) {
760 case ICE_PTP_INIT_TIME:
761 cmd_val = GLTSYN_CMD_INIT_TIME;
762 break;
763 case ICE_PTP_INIT_INCVAL:
764 cmd_val = GLTSYN_CMD_INIT_INCVAL;
765 break;
766 case ICE_PTP_ADJ_TIME:
767 cmd_val = GLTSYN_CMD_ADJ_TIME;
768 break;
769 case ICE_PTP_ADJ_TIME_AT_TIME:
770 cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
771 break;
772 case ICE_PTP_NOP:
773 case ICE_PTP_READ_TIME:
774 cmd_val = GLTSYN_CMD_READ_TIME;
775 break;
776 default:
777 dev_warn(ice_hw_to_dev(hw),
778 "Ignoring unrecognized timer command %u\n", cmd);
779 cmd_val = 0;
780 }
781
782 tmr_idx = ice_get_ptp_src_clock_index(hw);
783
784 return tmr_idx << SEL_CPK_SRC | cmd_val;
785 }
786
787 /**
788 * ice_ptp_tmr_cmd_to_port_reg- Convert to port timer command value
789 * @hw: pointer to HW struct
790 * @cmd: Timer command
791 *
792 * Note that some hardware families use a different command register value for
793 * the PHY ports, while other hardware families use the same register values
794 * as the source timer.
795 *
796 * Return: the PHY port timer command register value for the given PTP timer
797 * command.
798 */
ice_ptp_tmr_cmd_to_port_reg(struct ice_hw * hw,enum ice_ptp_tmr_cmd cmd)799 static u32 ice_ptp_tmr_cmd_to_port_reg(struct ice_hw *hw,
800 enum ice_ptp_tmr_cmd cmd)
801 {
802 u32 cmd_val, tmr_idx;
803
804 /* Certain hardware families share the same register values for the
805 * port register and source timer register.
806 */
807 switch (hw->ptp.phy_model) {
808 case ICE_PHY_E810:
809 return ice_ptp_tmr_cmd_to_src_reg(hw, cmd) & TS_CMD_MASK_E810;
810 default:
811 break;
812 }
813
814 switch (cmd) {
815 case ICE_PTP_INIT_TIME:
816 cmd_val = PHY_CMD_INIT_TIME;
817 break;
818 case ICE_PTP_INIT_INCVAL:
819 cmd_val = PHY_CMD_INIT_INCVAL;
820 break;
821 case ICE_PTP_ADJ_TIME:
822 cmd_val = PHY_CMD_ADJ_TIME;
823 break;
824 case ICE_PTP_ADJ_TIME_AT_TIME:
825 cmd_val = PHY_CMD_ADJ_TIME_AT_TIME;
826 break;
827 case ICE_PTP_READ_TIME:
828 cmd_val = PHY_CMD_READ_TIME;
829 break;
830 case ICE_PTP_NOP:
831 cmd_val = 0;
832 break;
833 default:
834 dev_warn(ice_hw_to_dev(hw),
835 "Ignoring unrecognized timer command %u\n", cmd);
836 cmd_val = 0;
837 }
838
839 tmr_idx = ice_get_ptp_src_clock_index(hw);
840
841 return tmr_idx << SEL_PHY_SRC | cmd_val;
842 }
843
844 /**
845 * ice_ptp_src_cmd - Prepare source timer for a timer command
846 * @hw: pointer to HW structure
847 * @cmd: Timer command
848 *
849 * Prepare the source timer for an upcoming timer sync command.
850 */
ice_ptp_src_cmd(struct ice_hw * hw,enum ice_ptp_tmr_cmd cmd)851 void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
852 {
853 u32 cmd_val = ice_ptp_tmr_cmd_to_src_reg(hw, cmd);
854
855 wr32(hw, GLTSYN_CMD, cmd_val);
856 }
857
858 /**
859 * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
860 * @hw: pointer to HW struct
861 *
862 * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
863 * write immediately. This triggers the hardware to begin executing all of the
864 * source and PHY timer commands synchronously.
865 */
ice_ptp_exec_tmr_cmd(struct ice_hw * hw)866 static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
867 {
868 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
869
870 guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
871 wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
872 ice_flush(hw);
873 }
874
875 /* 56G PHY device functions
876 *
877 * The following functions operate on devices with the ETH 56G PHY.
878 */
879
880 /**
881 * ice_write_phy_eth56g - Write a PHY port register
882 * @hw: pointer to the HW struct
883 * @phy_idx: PHY index
884 * @addr: PHY register address
885 * @val: Value to write
886 *
887 * Return: 0 on success, other error codes when failed to write to PHY
888 */
ice_write_phy_eth56g(struct ice_hw * hw,u8 phy_idx,u32 addr,u32 val)889 static int ice_write_phy_eth56g(struct ice_hw *hw, u8 phy_idx, u32 addr,
890 u32 val)
891 {
892 struct ice_sbq_msg_input phy_msg;
893 int err;
894
895 phy_msg.opcode = ice_sbq_msg_wr;
896
897 phy_msg.msg_addr_low = lower_16_bits(addr);
898 phy_msg.msg_addr_high = upper_16_bits(addr);
899
900 phy_msg.data = val;
901 phy_msg.dest_dev = hw->ptp.phy.eth56g.phy_addr[phy_idx];
902
903 err = ice_sbq_rw_reg(hw, &phy_msg, ICE_AQ_FLAG_RD);
904
905 if (err)
906 ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
907 err);
908
909 return err;
910 }
911
912 /**
913 * ice_read_phy_eth56g - Read a PHY port register
914 * @hw: pointer to the HW struct
915 * @phy_idx: PHY index
916 * @addr: PHY register address
917 * @val: Value to write
918 *
919 * Return: 0 on success, other error codes when failed to read from PHY
920 */
ice_read_phy_eth56g(struct ice_hw * hw,u8 phy_idx,u32 addr,u32 * val)921 static int ice_read_phy_eth56g(struct ice_hw *hw, u8 phy_idx, u32 addr,
922 u32 *val)
923 {
924 struct ice_sbq_msg_input phy_msg;
925 int err;
926
927 phy_msg.opcode = ice_sbq_msg_rd;
928
929 phy_msg.msg_addr_low = lower_16_bits(addr);
930 phy_msg.msg_addr_high = upper_16_bits(addr);
931
932 phy_msg.data = 0;
933 phy_msg.dest_dev = hw->ptp.phy.eth56g.phy_addr[phy_idx];
934
935 err = ice_sbq_rw_reg(hw, &phy_msg, ICE_AQ_FLAG_RD);
936 if (err) {
937 ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
938 err);
939 return err;
940 }
941
942 *val = phy_msg.data;
943
944 return 0;
945 }
946
947 /**
948 * ice_phy_res_address_eth56g - Calculate a PHY port register address
949 * @port: Port number to be written
950 * @res_type: resource type (register/memory)
951 * @offset: Offset from PHY port register base
952 * @addr: The result address
953 *
954 * Return:
955 * * %0 - success
956 * * %EINVAL - invalid port number or resource type
957 */
ice_phy_res_address_eth56g(u8 port,enum eth56g_res_type res_type,u32 offset,u32 * addr)958 static int ice_phy_res_address_eth56g(u8 port, enum eth56g_res_type res_type,
959 u32 offset, u32 *addr)
960 {
961 u8 lane = port % ICE_PORTS_PER_QUAD;
962 u8 phy = ICE_GET_QUAD_NUM(port);
963
964 if (res_type >= NUM_ETH56G_PHY_RES)
965 return -EINVAL;
966
967 *addr = eth56g_phy_res[res_type].base[phy] +
968 lane * eth56g_phy_res[res_type].step + offset;
969 return 0;
970 }
971
972 /**
973 * ice_write_port_eth56g - Write a PHY port register
974 * @hw: pointer to the HW struct
975 * @offset: PHY register offset
976 * @port: Port number
977 * @val: Value to write
978 * @res_type: resource type (register/memory)
979 *
980 * Return:
981 * * %0 - success
982 * * %EINVAL - invalid port number or resource type
983 * * %other - failed to write to PHY
984 */
ice_write_port_eth56g(struct ice_hw * hw,u8 port,u32 offset,u32 val,enum eth56g_res_type res_type)985 static int ice_write_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
986 u32 val, enum eth56g_res_type res_type)
987 {
988 u8 phy_port = port % hw->ptp.ports_per_phy;
989 u8 phy_idx = port / hw->ptp.ports_per_phy;
990 u32 addr;
991 int err;
992
993 if (port >= hw->ptp.num_lports)
994 return -EINVAL;
995
996 err = ice_phy_res_address_eth56g(phy_port, res_type, offset, &addr);
997 if (err)
998 return err;
999
1000 return ice_write_phy_eth56g(hw, phy_idx, addr, val);
1001 }
1002
1003 /**
1004 * ice_read_port_eth56g - Read a PHY port register
1005 * @hw: pointer to the HW struct
1006 * @offset: PHY register offset
1007 * @port: Port number
1008 * @val: Value to write
1009 * @res_type: resource type (register/memory)
1010 *
1011 * Return:
1012 * * %0 - success
1013 * * %EINVAL - invalid port number or resource type
1014 * * %other - failed to read from PHY
1015 */
ice_read_port_eth56g(struct ice_hw * hw,u8 port,u32 offset,u32 * val,enum eth56g_res_type res_type)1016 static int ice_read_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1017 u32 *val, enum eth56g_res_type res_type)
1018 {
1019 u8 phy_port = port % hw->ptp.ports_per_phy;
1020 u8 phy_idx = port / hw->ptp.ports_per_phy;
1021 u32 addr;
1022 int err;
1023
1024 if (port >= hw->ptp.num_lports)
1025 return -EINVAL;
1026
1027 err = ice_phy_res_address_eth56g(phy_port, res_type, offset, &addr);
1028 if (err)
1029 return err;
1030
1031 return ice_read_phy_eth56g(hw, phy_idx, addr, val);
1032 }
1033
1034 /**
1035 * ice_write_ptp_reg_eth56g - Write a PHY port register
1036 * @hw: pointer to the HW struct
1037 * @port: Port number to be written
1038 * @offset: Offset from PHY port register base
1039 * @val: Value to write
1040 *
1041 * Return:
1042 * * %0 - success
1043 * * %EINVAL - invalid port number or resource type
1044 * * %other - failed to write to PHY
1045 */
ice_write_ptp_reg_eth56g(struct ice_hw * hw,u8 port,u16 offset,u32 val)1046 static int ice_write_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1047 u32 val)
1048 {
1049 return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
1050 }
1051
1052 /**
1053 * ice_write_mac_reg_eth56g - Write a MAC PHY port register
1054 * parameter
1055 * @hw: pointer to the HW struct
1056 * @port: Port number to be written
1057 * @offset: Offset from PHY port register base
1058 * @val: Value to write
1059 *
1060 * Return:
1061 * * %0 - success
1062 * * %EINVAL - invalid port number or resource type
1063 * * %other - failed to write to PHY
1064 */
ice_write_mac_reg_eth56g(struct ice_hw * hw,u8 port,u32 offset,u32 val)1065 static int ice_write_mac_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1066 u32 val)
1067 {
1068 return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
1069 }
1070
1071 /**
1072 * ice_write_xpcs_reg_eth56g - Write a PHY port register
1073 * @hw: pointer to the HW struct
1074 * @port: Port number to be written
1075 * @offset: Offset from PHY port register base
1076 * @val: Value to write
1077 *
1078 * Return:
1079 * * %0 - success
1080 * * %EINVAL - invalid port number or resource type
1081 * * %other - failed to write to PHY
1082 */
ice_write_xpcs_reg_eth56g(struct ice_hw * hw,u8 port,u32 offset,u32 val)1083 static int ice_write_xpcs_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1084 u32 val)
1085 {
1086 return ice_write_port_eth56g(hw, port, offset, val,
1087 ETH56G_PHY_REG_XPCS);
1088 }
1089
1090 /**
1091 * ice_read_ptp_reg_eth56g - Read a PHY port register
1092 * @hw: pointer to the HW struct
1093 * @port: Port number to be read
1094 * @offset: Offset from PHY port register base
1095 * @val: Pointer to the value to read (out param)
1096 *
1097 * Return:
1098 * * %0 - success
1099 * * %EINVAL - invalid port number or resource type
1100 * * %other - failed to read from PHY
1101 */
ice_read_ptp_reg_eth56g(struct ice_hw * hw,u8 port,u16 offset,u32 * val)1102 static int ice_read_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1103 u32 *val)
1104 {
1105 return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
1106 }
1107
1108 /**
1109 * ice_read_mac_reg_eth56g - Read a PHY port register
1110 * @hw: pointer to the HW struct
1111 * @port: Port number to be read
1112 * @offset: Offset from PHY port register base
1113 * @val: Pointer to the value to read (out param)
1114 *
1115 * Return:
1116 * * %0 - success
1117 * * %EINVAL - invalid port number or resource type
1118 * * %other - failed to read from PHY
1119 */
ice_read_mac_reg_eth56g(struct ice_hw * hw,u8 port,u16 offset,u32 * val)1120 static int ice_read_mac_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1121 u32 *val)
1122 {
1123 return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
1124 }
1125
1126 /**
1127 * ice_read_gpcs_reg_eth56g - Read a PHY port register
1128 * @hw: pointer to the HW struct
1129 * @port: Port number to be read
1130 * @offset: Offset from PHY port register base
1131 * @val: Pointer to the value to read (out param)
1132 *
1133 * Return:
1134 * * %0 - success
1135 * * %EINVAL - invalid port number or resource type
1136 * * %other - failed to read from PHY
1137 */
ice_read_gpcs_reg_eth56g(struct ice_hw * hw,u8 port,u16 offset,u32 * val)1138 static int ice_read_gpcs_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1139 u32 *val)
1140 {
1141 return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_GPCS);
1142 }
1143
1144 /**
1145 * ice_read_port_mem_eth56g - Read a PHY port memory location
1146 * @hw: pointer to the HW struct
1147 * @port: Port number to be read
1148 * @offset: Offset from PHY port register base
1149 * @val: Pointer to the value to read (out param)
1150 *
1151 * Return:
1152 * * %0 - success
1153 * * %EINVAL - invalid port number or resource type
1154 * * %other - failed to read from PHY
1155 */
ice_read_port_mem_eth56g(struct ice_hw * hw,u8 port,u16 offset,u32 * val)1156 static int ice_read_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1157 u32 *val)
1158 {
1159 return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
1160 }
1161
1162 /**
1163 * ice_write_port_mem_eth56g - Write a PHY port memory location
1164 * @hw: pointer to the HW struct
1165 * @port: Port number to be read
1166 * @offset: Offset from PHY port register base
1167 * @val: Pointer to the value to read (out param)
1168 *
1169 * Return:
1170 * * %0 - success
1171 * * %EINVAL - invalid port number or resource type
1172 * * %other - failed to write to PHY
1173 */
ice_write_port_mem_eth56g(struct ice_hw * hw,u8 port,u16 offset,u32 val)1174 static int ice_write_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1175 u32 val)
1176 {
1177 return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
1178 }
1179
1180 /**
1181 * ice_is_64b_phy_reg_eth56g - Check if this is a 64bit PHY register
1182 * @low_addr: the low address to check
1183 * @high_addr: on return, contains the high address of the 64bit register
1184 *
1185 * Write the appropriate high register offset to use.
1186 *
1187 * Return: true if the provided low address is one of the known 64bit PHY values
1188 * represented as two 32bit registers, false otherwise.
1189 */
ice_is_64b_phy_reg_eth56g(u16 low_addr,u16 * high_addr)1190 static bool ice_is_64b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
1191 {
1192 switch (low_addr) {
1193 case PHY_REG_TX_TIMER_INC_PRE_L:
1194 *high_addr = PHY_REG_TX_TIMER_INC_PRE_U;
1195 return true;
1196 case PHY_REG_RX_TIMER_INC_PRE_L:
1197 *high_addr = PHY_REG_RX_TIMER_INC_PRE_U;
1198 return true;
1199 case PHY_REG_TX_CAPTURE_L:
1200 *high_addr = PHY_REG_TX_CAPTURE_U;
1201 return true;
1202 case PHY_REG_RX_CAPTURE_L:
1203 *high_addr = PHY_REG_RX_CAPTURE_U;
1204 return true;
1205 case PHY_REG_TOTAL_TX_OFFSET_L:
1206 *high_addr = PHY_REG_TOTAL_TX_OFFSET_U;
1207 return true;
1208 case PHY_REG_TOTAL_RX_OFFSET_L:
1209 *high_addr = PHY_REG_TOTAL_RX_OFFSET_U;
1210 return true;
1211 case PHY_REG_TX_MEMORY_STATUS_L:
1212 *high_addr = PHY_REG_TX_MEMORY_STATUS_U;
1213 return true;
1214 default:
1215 return false;
1216 }
1217 }
1218
1219 /**
1220 * ice_is_40b_phy_reg_eth56g - Check if this is a 40bit PHY register
1221 * @low_addr: the low address to check
1222 * @high_addr: on return, contains the high address of the 40bit value
1223 *
1224 * Write the appropriate high register offset to use.
1225 *
1226 * Return: true if the provided low address is one of the known 40bit PHY
1227 * values split into two registers with the lower 8 bits in the low register and
1228 * the upper 32 bits in the high register, false otherwise.
1229 */
ice_is_40b_phy_reg_eth56g(u16 low_addr,u16 * high_addr)1230 static bool ice_is_40b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
1231 {
1232 switch (low_addr) {
1233 case PHY_REG_TIMETUS_L:
1234 *high_addr = PHY_REG_TIMETUS_U;
1235 return true;
1236 case PHY_PCS_REF_TUS_L:
1237 *high_addr = PHY_PCS_REF_TUS_U;
1238 return true;
1239 case PHY_PCS_REF_INC_L:
1240 *high_addr = PHY_PCS_REF_INC_U;
1241 return true;
1242 default:
1243 return false;
1244 }
1245 }
1246
1247 /**
1248 * ice_read_64b_phy_reg_eth56g - Read a 64bit value from PHY registers
1249 * @hw: pointer to the HW struct
1250 * @port: PHY port to read from
1251 * @low_addr: offset of the lower register to read from
1252 * @val: on return, the contents of the 64bit value from the PHY registers
1253 * @res_type: resource type
1254 *
1255 * Check if the caller has specified a known 40 bit register offset and read
1256 * the two registers associated with a 40bit value and return it in the val
1257 * pointer.
1258 *
1259 * Return:
1260 * * %0 - success
1261 * * %EINVAL - not a 64 bit register
1262 * * %other - failed to read from PHY
1263 */
ice_read_64b_phy_reg_eth56g(struct ice_hw * hw,u8 port,u16 low_addr,u64 * val,enum eth56g_res_type res_type)1264 static int ice_read_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
1265 u64 *val, enum eth56g_res_type res_type)
1266 {
1267 u16 high_addr;
1268 u32 lo, hi;
1269 int err;
1270
1271 if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
1272 return -EINVAL;
1273
1274 err = ice_read_port_eth56g(hw, port, low_addr, &lo, res_type);
1275 if (err) {
1276 ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register %#08x\n, err %d",
1277 low_addr, err);
1278 return err;
1279 }
1280
1281 err = ice_read_port_eth56g(hw, port, high_addr, &hi, res_type);
1282 if (err) {
1283 ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register %#08x\n, err %d",
1284 high_addr, err);
1285 return err;
1286 }
1287
1288 *val = ((u64)hi << 32) | lo;
1289
1290 return 0;
1291 }
1292
1293 /**
1294 * ice_read_64b_ptp_reg_eth56g - Read a 64bit value from PHY registers
1295 * @hw: pointer to the HW struct
1296 * @port: PHY port to read from
1297 * @low_addr: offset of the lower register to read from
1298 * @val: on return, the contents of the 64bit value from the PHY registers
1299 *
1300 * Check if the caller has specified a known 40 bit register offset and read
1301 * the two registers associated with a 40bit value and return it in the val
1302 * pointer.
1303 *
1304 * Return:
1305 * * %0 - success
1306 * * %EINVAL - not a 64 bit register
1307 * * %other - failed to read from PHY
1308 */
ice_read_64b_ptp_reg_eth56g(struct ice_hw * hw,u8 port,u16 low_addr,u64 * val)1309 static int ice_read_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
1310 u64 *val)
1311 {
1312 return ice_read_64b_phy_reg_eth56g(hw, port, low_addr, val,
1313 ETH56G_PHY_REG_PTP);
1314 }
1315
1316 /**
1317 * ice_write_40b_phy_reg_eth56g - Write a 40b value to the PHY
1318 * @hw: pointer to the HW struct
1319 * @port: port to write to
1320 * @low_addr: offset of the low register
1321 * @val: 40b value to write
1322 * @res_type: resource type
1323 *
1324 * Check if the caller has specified a known 40 bit register offset and write
1325 * provided 40b value to the two associated registers by splitting it up into
1326 * two chunks, the lower 8 bits and the upper 32 bits.
1327 *
1328 * Return:
1329 * * %0 - success
1330 * * %EINVAL - not a 40 bit register
1331 * * %other - failed to write to PHY
1332 */
ice_write_40b_phy_reg_eth56g(struct ice_hw * hw,u8 port,u16 low_addr,u64 val,enum eth56g_res_type res_type)1333 static int ice_write_40b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
1334 u16 low_addr, u64 val,
1335 enum eth56g_res_type res_type)
1336 {
1337 u16 high_addr;
1338 u32 lo, hi;
1339 int err;
1340
1341 if (!ice_is_40b_phy_reg_eth56g(low_addr, &high_addr))
1342 return -EINVAL;
1343
1344 lo = FIELD_GET(P_REG_40B_LOW_M, val);
1345 hi = (u32)(val >> P_REG_40B_HIGH_S);
1346
1347 err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
1348 if (err) {
1349 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
1350 low_addr, err);
1351 return err;
1352 }
1353
1354 err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
1355 if (err) {
1356 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
1357 high_addr, err);
1358 return err;
1359 }
1360
1361 return 0;
1362 }
1363
1364 /**
1365 * ice_write_40b_ptp_reg_eth56g - Write a 40b value to the PHY
1366 * @hw: pointer to the HW struct
1367 * @port: port to write to
1368 * @low_addr: offset of the low register
1369 * @val: 40b value to write
1370 *
1371 * Check if the caller has specified a known 40 bit register offset and write
1372 * provided 40b value to the two associated registers by splitting it up into
1373 * two chunks, the lower 8 bits and the upper 32 bits.
1374 *
1375 * Return:
1376 * * %0 - success
1377 * * %EINVAL - not a 40 bit register
1378 * * %other - failed to write to PHY
1379 */
ice_write_40b_ptp_reg_eth56g(struct ice_hw * hw,u8 port,u16 low_addr,u64 val)1380 static int ice_write_40b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1381 u16 low_addr, u64 val)
1382 {
1383 return ice_write_40b_phy_reg_eth56g(hw, port, low_addr, val,
1384 ETH56G_PHY_REG_PTP);
1385 }
1386
1387 /**
1388 * ice_write_64b_phy_reg_eth56g - Write a 64bit value to PHY registers
1389 * @hw: pointer to the HW struct
1390 * @port: PHY port to read from
1391 * @low_addr: offset of the lower register to read from
1392 * @val: the contents of the 64bit value to write to PHY
1393 * @res_type: resource type
1394 *
1395 * Check if the caller has specified a known 64 bit register offset and write
1396 * the 64bit value to the two associated 32bit PHY registers.
1397 *
1398 * Return:
1399 * * %0 - success
1400 * * %EINVAL - not a 64 bit register
1401 * * %other - failed to write to PHY
1402 */
ice_write_64b_phy_reg_eth56g(struct ice_hw * hw,u8 port,u16 low_addr,u64 val,enum eth56g_res_type res_type)1403 static int ice_write_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
1404 u16 low_addr, u64 val,
1405 enum eth56g_res_type res_type)
1406 {
1407 u16 high_addr;
1408 u32 lo, hi;
1409 int err;
1410
1411 if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
1412 return -EINVAL;
1413
1414 lo = lower_32_bits(val);
1415 hi = upper_32_bits(val);
1416
1417 err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
1418 if (err) {
1419 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
1420 low_addr, err);
1421 return err;
1422 }
1423
1424 err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
1425 if (err) {
1426 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
1427 high_addr, err);
1428 return err;
1429 }
1430
1431 return 0;
1432 }
1433
1434 /**
1435 * ice_write_64b_ptp_reg_eth56g - Write a 64bit value to PHY registers
1436 * @hw: pointer to the HW struct
1437 * @port: PHY port to read from
1438 * @low_addr: offset of the lower register to read from
1439 * @val: the contents of the 64bit value to write to PHY
1440 *
1441 * Check if the caller has specified a known 64 bit register offset and write
1442 * the 64bit value to the two associated 32bit PHY registers.
1443 *
1444 * Return:
1445 * * %0 - success
1446 * * %EINVAL - not a 64 bit register
1447 * * %other - failed to write to PHY
1448 */
ice_write_64b_ptp_reg_eth56g(struct ice_hw * hw,u8 port,u16 low_addr,u64 val)1449 static int ice_write_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1450 u16 low_addr, u64 val)
1451 {
1452 return ice_write_64b_phy_reg_eth56g(hw, port, low_addr, val,
1453 ETH56G_PHY_REG_PTP);
1454 }
1455
1456 /**
1457 * ice_read_ptp_tstamp_eth56g - Read a PHY timestamp out of the port memory
1458 * @hw: pointer to the HW struct
1459 * @port: the port to read from
1460 * @idx: the timestamp index to read
1461 * @tstamp: on return, the 40bit timestamp value
1462 *
1463 * Read a 40bit timestamp value out of the two associated entries in the
1464 * port memory block of the internal PHYs of the 56G devices.
1465 *
1466 * Return:
1467 * * %0 - success
1468 * * %other - failed to read from PHY
1469 */
ice_read_ptp_tstamp_eth56g(struct ice_hw * hw,u8 port,u8 idx,u64 * tstamp)1470 static int ice_read_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx,
1471 u64 *tstamp)
1472 {
1473 u16 lo_addr, hi_addr;
1474 u32 lo, hi;
1475 int err;
1476
1477 lo_addr = (u16)PHY_TSTAMP_L(idx);
1478 hi_addr = (u16)PHY_TSTAMP_U(idx);
1479
1480 err = ice_read_port_mem_eth56g(hw, port, lo_addr, &lo);
1481 if (err) {
1482 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
1483 err);
1484 return err;
1485 }
1486
1487 err = ice_read_port_mem_eth56g(hw, port, hi_addr, &hi);
1488 if (err) {
1489 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
1490 err);
1491 return err;
1492 }
1493
1494 /* For 56G based internal PHYs, the timestamp is reported with the
1495 * lower 8 bits in the low register, and the upper 32 bits in the high
1496 * register.
1497 */
1498 *tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M);
1499
1500 return 0;
1501 }
1502
1503 /**
1504 * ice_clear_ptp_tstamp_eth56g - Clear a timestamp from the quad block
1505 * @hw: pointer to the HW struct
1506 * @port: the quad to read from
1507 * @idx: the timestamp index to reset
1508 *
1509 * Read and then forcibly clear the timestamp index to ensure the valid bit is
1510 * cleared and the timestamp status bit is reset in the PHY port memory of
1511 * internal PHYs of the 56G devices.
1512 *
1513 * To directly clear the contents of the timestamp block entirely, discarding
1514 * all timestamp data at once, software should instead use
1515 * ice_ptp_reset_ts_memory_quad_eth56g().
1516 *
1517 * This function should only be called on an idx whose bit is set according to
1518 * ice_get_phy_tx_tstamp_ready().
1519 *
1520 * Return:
1521 * * %0 - success
1522 * * %other - failed to write to PHY
1523 */
ice_clear_ptp_tstamp_eth56g(struct ice_hw * hw,u8 port,u8 idx)1524 static int ice_clear_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx)
1525 {
1526 u64 unused_tstamp;
1527 u16 lo_addr;
1528 int err;
1529
1530 /* Read the timestamp register to ensure the timestamp status bit is
1531 * cleared.
1532 */
1533 err = ice_read_ptp_tstamp_eth56g(hw, port, idx, &unused_tstamp);
1534 if (err) {
1535 ice_debug(hw, ICE_DBG_PTP, "Failed to read the PHY timestamp register for port %u, idx %u, err %d\n",
1536 port, idx, err);
1537 }
1538
1539 lo_addr = (u16)PHY_TSTAMP_L(idx);
1540
1541 err = ice_write_port_mem_eth56g(hw, port, lo_addr, 0);
1542 if (err) {
1543 ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for port %u, idx %u, err %d\n",
1544 port, idx, err);
1545 return err;
1546 }
1547
1548 return 0;
1549 }
1550
1551 /**
1552 * ice_ptp_reset_ts_memory_eth56g - Clear all timestamps from the port block
1553 * @hw: pointer to the HW struct
1554 */
ice_ptp_reset_ts_memory_eth56g(struct ice_hw * hw)1555 static void ice_ptp_reset_ts_memory_eth56g(struct ice_hw *hw)
1556 {
1557 unsigned int port;
1558
1559 for (port = 0; port < hw->ptp.num_lports; port++) {
1560 ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
1561 0);
1562 ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_U,
1563 0);
1564 }
1565 }
1566
1567 /**
1568 * ice_ptp_prep_port_time_eth56g - Prepare one PHY port with initial time
1569 * @hw: pointer to the HW struct
1570 * @port: port number
1571 * @time: time to initialize the PHY port clocks to
1572 *
1573 * Write a new initial time value into registers of a specific PHY port.
1574 *
1575 * Return:
1576 * * %0 - success
1577 * * %other - failed to write to PHY
1578 */
ice_ptp_prep_port_time_eth56g(struct ice_hw * hw,u8 port,u64 time)1579 static int ice_ptp_prep_port_time_eth56g(struct ice_hw *hw, u8 port,
1580 u64 time)
1581 {
1582 int err;
1583
1584 /* Tx case */
1585 err = ice_write_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
1586 time);
1587 if (err)
1588 return err;
1589
1590 /* Rx case */
1591 return ice_write_64b_ptp_reg_eth56g(hw, port,
1592 PHY_REG_RX_TIMER_INC_PRE_L, time);
1593 }
1594
1595 /**
1596 * ice_ptp_prep_phy_time_eth56g - Prepare PHY port with initial time
1597 * @hw: pointer to the HW struct
1598 * @time: Time to initialize the PHY port clocks to
1599 *
1600 * Program the PHY port registers with a new initial time value. The port
1601 * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
1602 * command. The time value is the upper 32 bits of the PHY timer, usually in
1603 * units of nominal nanoseconds.
1604 *
1605 * Return:
1606 * * %0 - success
1607 * * %other - failed to write to PHY
1608 */
ice_ptp_prep_phy_time_eth56g(struct ice_hw * hw,u32 time)1609 static int ice_ptp_prep_phy_time_eth56g(struct ice_hw *hw, u32 time)
1610 {
1611 u64 phy_time;
1612 u8 port;
1613
1614 /* The time represents the upper 32 bits of the PHY timer, so we need
1615 * to shift to account for this when programming.
1616 */
1617 phy_time = (u64)time << 32;
1618
1619 for (port = 0; port < hw->ptp.num_lports; port++) {
1620 int err;
1621
1622 err = ice_ptp_prep_port_time_eth56g(hw, port, phy_time);
1623 if (err) {
1624 ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
1625 port, err);
1626 return err;
1627 }
1628 }
1629
1630 return 0;
1631 }
1632
1633 /**
1634 * ice_ptp_prep_port_adj_eth56g - Prepare a single port for time adjust
1635 * @hw: pointer to HW struct
1636 * @port: Port number to be programmed
1637 * @time: time in cycles to adjust the port clocks
1638 *
1639 * Program the port for an atomic adjustment by writing the Tx and Rx timer
1640 * registers. The atomic adjustment won't be completed until the driver issues
1641 * an ICE_PTP_ADJ_TIME command.
1642 *
1643 * Note that time is not in units of nanoseconds. It is in clock time
1644 * including the lower sub-nanosecond portion of the port timer.
1645 *
1646 * Negative adjustments are supported using 2s complement arithmetic.
1647 *
1648 * Return:
1649 * * %0 - success
1650 * * %other - failed to write to PHY
1651 */
ice_ptp_prep_port_adj_eth56g(struct ice_hw * hw,u8 port,s64 time)1652 static int ice_ptp_prep_port_adj_eth56g(struct ice_hw *hw, u8 port, s64 time)
1653 {
1654 u32 l_time, u_time;
1655 int err;
1656
1657 l_time = lower_32_bits(time);
1658 u_time = upper_32_bits(time);
1659
1660 /* Tx case */
1661 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
1662 l_time);
1663 if (err)
1664 goto exit_err;
1665
1666 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_U,
1667 u_time);
1668 if (err)
1669 goto exit_err;
1670
1671 /* Rx case */
1672 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_L,
1673 l_time);
1674 if (err)
1675 goto exit_err;
1676
1677 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_U,
1678 u_time);
1679 if (err)
1680 goto exit_err;
1681
1682 return 0;
1683
1684 exit_err:
1685 ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
1686 port, err);
1687 return err;
1688 }
1689
1690 /**
1691 * ice_ptp_prep_phy_adj_eth56g - Prep PHY ports for a time adjustment
1692 * @hw: pointer to HW struct
1693 * @adj: adjustment in nanoseconds
1694 *
1695 * Prepare the PHY ports for an atomic time adjustment by programming the PHY
1696 * Tx and Rx port registers. The actual adjustment is completed by issuing an
1697 * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
1698 *
1699 * Return:
1700 * * %0 - success
1701 * * %other - failed to write to PHY
1702 */
ice_ptp_prep_phy_adj_eth56g(struct ice_hw * hw,s32 adj)1703 static int ice_ptp_prep_phy_adj_eth56g(struct ice_hw *hw, s32 adj)
1704 {
1705 s64 cycles;
1706 u8 port;
1707
1708 /* The port clock supports adjustment of the sub-nanosecond portion of
1709 * the clock (lowest 32 bits). We shift the provided adjustment in
1710 * nanoseconds by 32 to calculate the appropriate adjustment to program
1711 * into the PHY ports.
1712 */
1713 cycles = (s64)adj << 32;
1714
1715 for (port = 0; port < hw->ptp.num_lports; port++) {
1716 int err;
1717
1718 err = ice_ptp_prep_port_adj_eth56g(hw, port, cycles);
1719 if (err)
1720 return err;
1721 }
1722
1723 return 0;
1724 }
1725
1726 /**
1727 * ice_ptp_prep_phy_incval_eth56g - Prepare PHY ports for time adjustment
1728 * @hw: pointer to HW struct
1729 * @incval: new increment value to prepare
1730 *
1731 * Prepare each of the PHY ports for a new increment value by programming the
1732 * port's TIMETUS registers. The new increment value will be updated after
1733 * issuing an ICE_PTP_INIT_INCVAL command.
1734 *
1735 * Return:
1736 * * %0 - success
1737 * * %other - failed to write to PHY
1738 */
ice_ptp_prep_phy_incval_eth56g(struct ice_hw * hw,u64 incval)1739 static int ice_ptp_prep_phy_incval_eth56g(struct ice_hw *hw, u64 incval)
1740 {
1741 u8 port;
1742
1743 for (port = 0; port < hw->ptp.num_lports; port++) {
1744 int err;
1745
1746 err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L,
1747 incval);
1748 if (err) {
1749 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
1750 port, err);
1751 return err;
1752 }
1753 }
1754
1755 return 0;
1756 }
1757
1758 /**
1759 * ice_ptp_read_port_capture_eth56g - Read a port's local time capture
1760 * @hw: pointer to HW struct
1761 * @port: Port number to read
1762 * @tx_ts: on return, the Tx port time capture
1763 * @rx_ts: on return, the Rx port time capture
1764 *
1765 * Read the port's Tx and Rx local time capture values.
1766 *
1767 * Return:
1768 * * %0 - success
1769 * * %other - failed to read from PHY
1770 */
ice_ptp_read_port_capture_eth56g(struct ice_hw * hw,u8 port,u64 * tx_ts,u64 * rx_ts)1771 static int ice_ptp_read_port_capture_eth56g(struct ice_hw *hw, u8 port,
1772 u64 *tx_ts, u64 *rx_ts)
1773 {
1774 int err;
1775
1776 /* Tx case */
1777 err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_CAPTURE_L,
1778 tx_ts);
1779 if (err) {
1780 ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
1781 err);
1782 return err;
1783 }
1784
1785 ice_debug(hw, ICE_DBG_PTP, "tx_init = %#016llx\n", *tx_ts);
1786
1787 /* Rx case */
1788 err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_RX_CAPTURE_L,
1789 rx_ts);
1790 if (err) {
1791 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
1792 err);
1793 return err;
1794 }
1795
1796 ice_debug(hw, ICE_DBG_PTP, "rx_init = %#016llx\n", *rx_ts);
1797
1798 return 0;
1799 }
1800
1801 /**
1802 * ice_ptp_write_port_cmd_eth56g - Prepare a single PHY port for a timer command
1803 * @hw: pointer to HW struct
1804 * @port: Port to which cmd has to be sent
1805 * @cmd: Command to be sent to the port
1806 *
1807 * Prepare the requested port for an upcoming timer sync command.
1808 *
1809 * Return:
1810 * * %0 - success
1811 * * %other - failed to write to PHY
1812 */
ice_ptp_write_port_cmd_eth56g(struct ice_hw * hw,u8 port,enum ice_ptp_tmr_cmd cmd)1813 static int ice_ptp_write_port_cmd_eth56g(struct ice_hw *hw, u8 port,
1814 enum ice_ptp_tmr_cmd cmd)
1815 {
1816 u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
1817 int err;
1818
1819 /* Tx case */
1820 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TMR_CMD, val);
1821 if (err) {
1822 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
1823 err);
1824 return err;
1825 }
1826
1827 /* Rx case */
1828 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TMR_CMD, val);
1829 if (err) {
1830 ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
1831 err);
1832 return err;
1833 }
1834
1835 return 0;
1836 }
1837
1838 /**
1839 * ice_phy_get_speed_eth56g - Get link speed based on PHY link type
1840 * @li: pointer to link information struct
1841 *
1842 * Return: simplified ETH56G PHY speed
1843 */
1844 static enum ice_eth56g_link_spd
ice_phy_get_speed_eth56g(struct ice_link_status * li)1845 ice_phy_get_speed_eth56g(struct ice_link_status *li)
1846 {
1847 u16 speed = ice_get_link_speed_based_on_phy_type(li->phy_type_low,
1848 li->phy_type_high);
1849
1850 switch (speed) {
1851 case ICE_AQ_LINK_SPEED_1000MB:
1852 return ICE_ETH56G_LNK_SPD_1G;
1853 case ICE_AQ_LINK_SPEED_2500MB:
1854 return ICE_ETH56G_LNK_SPD_2_5G;
1855 case ICE_AQ_LINK_SPEED_10GB:
1856 return ICE_ETH56G_LNK_SPD_10G;
1857 case ICE_AQ_LINK_SPEED_25GB:
1858 return ICE_ETH56G_LNK_SPD_25G;
1859 case ICE_AQ_LINK_SPEED_40GB:
1860 return ICE_ETH56G_LNK_SPD_40G;
1861 case ICE_AQ_LINK_SPEED_50GB:
1862 switch (li->phy_type_low) {
1863 case ICE_PHY_TYPE_LOW_50GBASE_SR:
1864 case ICE_PHY_TYPE_LOW_50GBASE_FR:
1865 case ICE_PHY_TYPE_LOW_50GBASE_LR:
1866 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
1867 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
1868 case ICE_PHY_TYPE_LOW_50G_AUI1:
1869 return ICE_ETH56G_LNK_SPD_50G;
1870 default:
1871 return ICE_ETH56G_LNK_SPD_50G2;
1872 }
1873 case ICE_AQ_LINK_SPEED_100GB:
1874 if (li->phy_type_high ||
1875 li->phy_type_low == ICE_PHY_TYPE_LOW_100GBASE_SR2)
1876 return ICE_ETH56G_LNK_SPD_100G2;
1877 else
1878 return ICE_ETH56G_LNK_SPD_100G;
1879 default:
1880 return ICE_ETH56G_LNK_SPD_1G;
1881 }
1882 }
1883
1884 /**
1885 * ice_phy_cfg_parpcs_eth56g - Configure TUs per PAR/PCS clock cycle
1886 * @hw: pointer to the HW struct
1887 * @port: port to configure
1888 *
1889 * Configure the number of TUs for the PAR and PCS clocks used as part of the
1890 * timestamp calibration process.
1891 *
1892 * Return:
1893 * * %0 - success
1894 * * %other - PHY read/write failed
1895 */
ice_phy_cfg_parpcs_eth56g(struct ice_hw * hw,u8 port)1896 static int ice_phy_cfg_parpcs_eth56g(struct ice_hw *hw, u8 port)
1897 {
1898 u8 port_blk = port & ~(ICE_PORTS_PER_QUAD - 1);
1899 u32 val;
1900 int err;
1901
1902 err = ice_write_xpcs_reg_eth56g(hw, port, PHY_VENDOR_TXLANE_THRESH,
1903 ICE_ETH56G_NOMINAL_THRESH4);
1904 if (err) {
1905 ice_debug(hw, ICE_DBG_PTP, "Failed to read VENDOR_TXLANE_THRESH, status: %d",
1906 err);
1907 return err;
1908 }
1909
1910 switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
1911 case ICE_ETH56G_LNK_SPD_1G:
1912 case ICE_ETH56G_LNK_SPD_2_5G:
1913 err = ice_read_ptp_reg_eth56g(hw, port_blk,
1914 PHY_GPCS_CONFIG_REG0, &val);
1915 if (err) {
1916 ice_debug(hw, ICE_DBG_PTP, "Failed to read PHY_GPCS_CONFIG_REG0, status: %d",
1917 err);
1918 return err;
1919 }
1920
1921 val &= ~PHY_GPCS_CONFIG_REG0_TX_THR_M;
1922 val |= FIELD_PREP(PHY_GPCS_CONFIG_REG0_TX_THR_M,
1923 ICE_ETH56G_NOMINAL_TX_THRESH);
1924
1925 err = ice_write_ptp_reg_eth56g(hw, port_blk,
1926 PHY_GPCS_CONFIG_REG0, val);
1927 if (err) {
1928 ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_GPCS_CONFIG_REG0, status: %d",
1929 err);
1930 return err;
1931 }
1932 break;
1933 default:
1934 break;
1935 }
1936
1937 err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_TUS_L,
1938 ICE_ETH56G_NOMINAL_PCS_REF_TUS);
1939 if (err) {
1940 ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_TUS, status: %d",
1941 err);
1942 return err;
1943 }
1944
1945 err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_INC_L,
1946 ICE_ETH56G_NOMINAL_PCS_REF_INC);
1947 if (err) {
1948 ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_INC, status: %d",
1949 err);
1950 return err;
1951 }
1952
1953 return 0;
1954 }
1955
1956 /**
1957 * ice_phy_cfg_ptp_1step_eth56g - Configure 1-step PTP settings
1958 * @hw: Pointer to the HW struct
1959 * @port: Port to configure
1960 *
1961 * Return:
1962 * * %0 - success
1963 * * %other - PHY read/write failed
1964 */
ice_phy_cfg_ptp_1step_eth56g(struct ice_hw * hw,u8 port)1965 int ice_phy_cfg_ptp_1step_eth56g(struct ice_hw *hw, u8 port)
1966 {
1967 u8 port_blk = port & ~(ICE_PORTS_PER_QUAD - 1);
1968 u8 blk_port = port & (ICE_PORTS_PER_QUAD - 1);
1969 bool enable, sfd_ena;
1970 u32 val, peer_delay;
1971 int err;
1972
1973 enable = hw->ptp.phy.eth56g.onestep_ena;
1974 peer_delay = hw->ptp.phy.eth56g.peer_delay;
1975 sfd_ena = hw->ptp.phy.eth56g.sfd_ena;
1976
1977 /* PHY_PTP_1STEP_CONFIG */
1978 err = ice_read_ptp_reg_eth56g(hw, port_blk, PHY_PTP_1STEP_CONFIG, &val);
1979 if (err)
1980 return err;
1981
1982 if (enable)
1983 val |= blk_port;
1984 else
1985 val &= ~blk_port;
1986
1987 val &= ~(PHY_PTP_1STEP_T1S_UP64_M | PHY_PTP_1STEP_T1S_DELTA_M);
1988
1989 err = ice_write_ptp_reg_eth56g(hw, port_blk, PHY_PTP_1STEP_CONFIG, val);
1990 if (err)
1991 return err;
1992
1993 /* PHY_PTP_1STEP_PEER_DELAY */
1994 val = FIELD_PREP(PHY_PTP_1STEP_PD_DELAY_M, peer_delay);
1995 if (peer_delay)
1996 val |= PHY_PTP_1STEP_PD_ADD_PD_M;
1997 val |= PHY_PTP_1STEP_PD_DLY_V_M;
1998 err = ice_write_ptp_reg_eth56g(hw, port_blk,
1999 PHY_PTP_1STEP_PEER_DELAY(blk_port), val);
2000 if (err)
2001 return err;
2002
2003 val &= ~PHY_PTP_1STEP_PD_DLY_V_M;
2004 err = ice_write_ptp_reg_eth56g(hw, port_blk,
2005 PHY_PTP_1STEP_PEER_DELAY(blk_port), val);
2006 if (err)
2007 return err;
2008
2009 /* PHY_MAC_XIF_MODE */
2010 err = ice_read_mac_reg_eth56g(hw, port, PHY_MAC_XIF_MODE, &val);
2011 if (err)
2012 return err;
2013
2014 val &= ~(PHY_MAC_XIF_1STEP_ENA_M | PHY_MAC_XIF_TS_BIN_MODE_M |
2015 PHY_MAC_XIF_TS_SFD_ENA_M | PHY_MAC_XIF_GMII_TS_SEL_M);
2016
2017 switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
2018 case ICE_ETH56G_LNK_SPD_1G:
2019 case ICE_ETH56G_LNK_SPD_2_5G:
2020 val |= PHY_MAC_XIF_GMII_TS_SEL_M;
2021 break;
2022 default:
2023 break;
2024 }
2025
2026 val |= FIELD_PREP(PHY_MAC_XIF_1STEP_ENA_M, enable) |
2027 FIELD_PREP(PHY_MAC_XIF_TS_BIN_MODE_M, enable) |
2028 FIELD_PREP(PHY_MAC_XIF_TS_SFD_ENA_M, sfd_ena);
2029
2030 return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_XIF_MODE, val);
2031 }
2032
2033 /**
2034 * mul_u32_u32_fx_q9 - Multiply two u32 fixed point Q9 values
2035 * @a: multiplier value
2036 * @b: multiplicand value
2037 *
2038 * Return: result of multiplication
2039 */
mul_u32_u32_fx_q9(u32 a,u32 b)2040 static u32 mul_u32_u32_fx_q9(u32 a, u32 b)
2041 {
2042 return (u32)(((u64)a * b) >> ICE_ETH56G_MAC_CFG_FRAC_W);
2043 }
2044
2045 /**
2046 * add_u32_u32_fx - Add two u32 fixed point values and discard overflow
2047 * @a: first value
2048 * @b: second value
2049 *
2050 * Return: result of addition
2051 */
add_u32_u32_fx(u32 a,u32 b)2052 static u32 add_u32_u32_fx(u32 a, u32 b)
2053 {
2054 return lower_32_bits(((u64)a + b));
2055 }
2056
2057 /**
2058 * ice_ptp_calc_bitslip_eth56g - Calculate bitslip value
2059 * @hw: pointer to the HW struct
2060 * @port: port to configure
2061 * @bs: bitslip multiplier
2062 * @fc: FC-FEC enabled
2063 * @rs: RS-FEC enabled
2064 * @spd: link speed
2065 *
2066 * Return: calculated bitslip value
2067 */
ice_ptp_calc_bitslip_eth56g(struct ice_hw * hw,u8 port,u32 bs,bool fc,bool rs,enum ice_eth56g_link_spd spd)2068 static u32 ice_ptp_calc_bitslip_eth56g(struct ice_hw *hw, u8 port, u32 bs,
2069 bool fc, bool rs,
2070 enum ice_eth56g_link_spd spd)
2071 {
2072 u8 port_offset = port & (ICE_PORTS_PER_QUAD - 1);
2073 u8 port_blk = port & ~(ICE_PORTS_PER_QUAD - 1);
2074 u32 bitslip;
2075 int err;
2076
2077 if (!bs || rs)
2078 return 0;
2079
2080 if (spd == ICE_ETH56G_LNK_SPD_1G || spd == ICE_ETH56G_LNK_SPD_2_5G)
2081 err = ice_read_gpcs_reg_eth56g(hw, port, PHY_GPCS_BITSLIP,
2082 &bitslip);
2083 else
2084 err = ice_read_ptp_reg_eth56g(hw, port_blk,
2085 PHY_REG_SD_BIT_SLIP(port_offset),
2086 &bitslip);
2087 if (err)
2088 return 0;
2089
2090 if (spd == ICE_ETH56G_LNK_SPD_1G && !bitslip) {
2091 /* Bitslip register value of 0 corresponds to 10 so substitute
2092 * it for calculations
2093 */
2094 bitslip = 10;
2095 } else if (spd == ICE_ETH56G_LNK_SPD_10G ||
2096 spd == ICE_ETH56G_LNK_SPD_25G) {
2097 if (fc)
2098 bitslip = bitslip * 2 + 32;
2099 else
2100 bitslip = (u32)((s32)bitslip * -1 + 20);
2101 }
2102
2103 bitslip <<= ICE_ETH56G_MAC_CFG_FRAC_W;
2104 return mul_u32_u32_fx_q9(bitslip, bs);
2105 }
2106
2107 /**
2108 * ice_ptp_calc_deskew_eth56g - Calculate deskew value
2109 * @hw: pointer to the HW struct
2110 * @port: port to configure
2111 * @ds: deskew multiplier
2112 * @rs: RS-FEC enabled
2113 * @spd: link speed
2114 *
2115 * Return: calculated deskew value
2116 */
ice_ptp_calc_deskew_eth56g(struct ice_hw * hw,u8 port,u32 ds,bool rs,enum ice_eth56g_link_spd spd)2117 static u32 ice_ptp_calc_deskew_eth56g(struct ice_hw *hw, u8 port, u32 ds,
2118 bool rs, enum ice_eth56g_link_spd spd)
2119 {
2120 u32 deskew_i, deskew_f;
2121 int err;
2122
2123 if (!ds)
2124 return 0;
2125
2126 read_poll_timeout(ice_read_ptp_reg_eth56g, err,
2127 FIELD_GET(PHY_REG_DESKEW_0_VALID, deskew_i), 500,
2128 50 * USEC_PER_MSEC, false, hw, port, PHY_REG_DESKEW_0,
2129 &deskew_i);
2130 if (err)
2131 return err;
2132
2133 deskew_f = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL_FRAC, deskew_i);
2134 deskew_i = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL, deskew_i);
2135
2136 if (rs && spd == ICE_ETH56G_LNK_SPD_50G2)
2137 ds = 0x633; /* 3.1 */
2138 else if (rs && spd == ICE_ETH56G_LNK_SPD_100G)
2139 ds = 0x31b; /* 1.552 */
2140
2141 deskew_i = FIELD_PREP(ICE_ETH56G_MAC_CFG_RX_OFFSET_INT, deskew_i);
2142 /* Shift 3 fractional bits to the end of the integer part */
2143 deskew_f <<= ICE_ETH56G_MAC_CFG_FRAC_W - PHY_REG_DESKEW_0_RLEVEL_FRAC_W;
2144 return mul_u32_u32_fx_q9(deskew_i | deskew_f, ds);
2145 }
2146
2147 /**
2148 * ice_phy_set_offsets_eth56g - Set Tx/Rx offset values
2149 * @hw: pointer to the HW struct
2150 * @port: port to configure
2151 * @spd: link speed
2152 * @cfg: structure to store output values
2153 * @fc: FC-FEC enabled
2154 * @rs: RS-FEC enabled
2155 *
2156 * Return:
2157 * * %0 - success
2158 * * %other - failed to write to PHY
2159 */
ice_phy_set_offsets_eth56g(struct ice_hw * hw,u8 port,enum ice_eth56g_link_spd spd,const struct ice_eth56g_mac_reg_cfg * cfg,bool fc,bool rs)2160 static int ice_phy_set_offsets_eth56g(struct ice_hw *hw, u8 port,
2161 enum ice_eth56g_link_spd spd,
2162 const struct ice_eth56g_mac_reg_cfg *cfg,
2163 bool fc, bool rs)
2164 {
2165 u32 rx_offset, tx_offset, bs_ds;
2166 bool onestep, sfd;
2167
2168 onestep = hw->ptp.phy.eth56g.onestep_ena;
2169 sfd = hw->ptp.phy.eth56g.sfd_ena;
2170 bs_ds = cfg->rx_offset.bs_ds;
2171
2172 if (fc)
2173 rx_offset = cfg->rx_offset.fc;
2174 else if (rs)
2175 rx_offset = cfg->rx_offset.rs;
2176 else
2177 rx_offset = cfg->rx_offset.no_fec;
2178
2179 rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.serdes);
2180 if (sfd)
2181 rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.sfd);
2182
2183 if (spd < ICE_ETH56G_LNK_SPD_40G)
2184 bs_ds = ice_ptp_calc_bitslip_eth56g(hw, port, bs_ds, fc, rs,
2185 spd);
2186 else
2187 bs_ds = ice_ptp_calc_deskew_eth56g(hw, port, bs_ds, rs, spd);
2188 rx_offset = add_u32_u32_fx(rx_offset, bs_ds);
2189 rx_offset &= ICE_ETH56G_MAC_CFG_RX_OFFSET_INT |
2190 ICE_ETH56G_MAC_CFG_RX_OFFSET_FRAC;
2191
2192 if (fc)
2193 tx_offset = cfg->tx_offset.fc;
2194 else if (rs)
2195 tx_offset = cfg->tx_offset.rs;
2196 else
2197 tx_offset = cfg->tx_offset.no_fec;
2198 tx_offset += cfg->tx_offset.serdes + cfg->tx_offset.sfd * sfd +
2199 cfg->tx_offset.onestep * onestep;
2200
2201 ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_OFFSET, rx_offset);
2202 return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_OFFSET, tx_offset);
2203 }
2204
2205 /**
2206 * ice_phy_cfg_mac_eth56g - Configure MAC for PTP
2207 * @hw: Pointer to the HW struct
2208 * @port: Port to configure
2209 *
2210 * Return:
2211 * * %0 - success
2212 * * %other - failed to write to PHY
2213 */
ice_phy_cfg_mac_eth56g(struct ice_hw * hw,u8 port)2214 static int ice_phy_cfg_mac_eth56g(struct ice_hw *hw, u8 port)
2215 {
2216 const struct ice_eth56g_mac_reg_cfg *cfg;
2217 enum ice_eth56g_link_spd spd;
2218 struct ice_link_status *li;
2219 bool fc = false;
2220 bool rs = false;
2221 bool onestep;
2222 u32 val;
2223 int err;
2224
2225 onestep = hw->ptp.phy.eth56g.onestep_ena;
2226 li = &hw->port_info->phy.link_info;
2227 spd = ice_phy_get_speed_eth56g(li);
2228 if (!!(li->an_info & ICE_AQ_FEC_EN)) {
2229 if (spd == ICE_ETH56G_LNK_SPD_10G) {
2230 fc = true;
2231 } else {
2232 fc = !!(li->fec_info & ICE_AQ_LINK_25G_KR_FEC_EN);
2233 rs = !!(li->fec_info & ~ICE_AQ_LINK_25G_KR_FEC_EN);
2234 }
2235 }
2236 cfg = ð56g_mac_cfg[spd];
2237
2238 err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_MODULO, 0);
2239 if (err)
2240 return err;
2241
2242 err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_MODULO, 0);
2243 if (err)
2244 return err;
2245
2246 val = FIELD_PREP(PHY_MAC_TSU_CFG_TX_MODE_M,
2247 cfg->tx_mode.def + rs * cfg->tx_mode.rs) |
2248 FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_MK_DLY_M, cfg->tx_mk_dly) |
2249 FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_CW_DLY_M,
2250 cfg->tx_cw_dly.def +
2251 onestep * cfg->tx_cw_dly.onestep) |
2252 FIELD_PREP(PHY_MAC_TSU_CFG_RX_MODE_M,
2253 cfg->rx_mode.def + rs * cfg->rx_mode.rs) |
2254 FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_MK_DLY_M,
2255 cfg->rx_mk_dly.def + rs * cfg->rx_mk_dly.rs) |
2256 FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_CW_DLY_M,
2257 cfg->rx_cw_dly.def + rs * cfg->rx_cw_dly.rs) |
2258 FIELD_PREP(PHY_MAC_TSU_CFG_BLKS_PER_CLK_M, cfg->blks_per_clk);
2259 err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TSU_CONFIG, val);
2260 if (err)
2261 return err;
2262
2263 err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_BLOCKTIME,
2264 cfg->blktime);
2265 if (err)
2266 return err;
2267
2268 err = ice_phy_set_offsets_eth56g(hw, port, spd, cfg, fc, rs);
2269 if (err)
2270 return err;
2271
2272 if (spd == ICE_ETH56G_LNK_SPD_25G && !rs)
2273 val = 0;
2274 else
2275 val = cfg->mktime;
2276
2277 return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_MARKERTIME, val);
2278 }
2279
2280 /**
2281 * ice_phy_cfg_intr_eth56g - Configure TX timestamp interrupt
2282 * @hw: pointer to the HW struct
2283 * @port: the timestamp port
2284 * @ena: enable or disable interrupt
2285 * @threshold: interrupt threshold
2286 *
2287 * Configure TX timestamp interrupt for the specified port
2288 *
2289 * Return:
2290 * * %0 - success
2291 * * %other - PHY read/write failed
2292 */
ice_phy_cfg_intr_eth56g(struct ice_hw * hw,u8 port,bool ena,u8 threshold)2293 int ice_phy_cfg_intr_eth56g(struct ice_hw *hw, u8 port, bool ena, u8 threshold)
2294 {
2295 int err;
2296 u32 val;
2297
2298 err = ice_read_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, &val);
2299 if (err)
2300 return err;
2301
2302 if (ena) {
2303 val |= PHY_TS_INT_CONFIG_ENA_M;
2304 val &= ~PHY_TS_INT_CONFIG_THRESHOLD_M;
2305 val |= FIELD_PREP(PHY_TS_INT_CONFIG_THRESHOLD_M, threshold);
2306 } else {
2307 val &= ~PHY_TS_INT_CONFIG_ENA_M;
2308 }
2309
2310 return ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, val);
2311 }
2312
2313 /**
2314 * ice_read_phy_and_phc_time_eth56g - Simultaneously capture PHC and PHY time
2315 * @hw: pointer to the HW struct
2316 * @port: the PHY port to read
2317 * @phy_time: on return, the 64bit PHY timer value
2318 * @phc_time: on return, the lower 64bits of PHC time
2319 *
2320 * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
2321 * and PHC timer values.
2322 *
2323 * Return:
2324 * * %0 - success
2325 * * %other - PHY read/write failed
2326 */
ice_read_phy_and_phc_time_eth56g(struct ice_hw * hw,u8 port,u64 * phy_time,u64 * phc_time)2327 static int ice_read_phy_and_phc_time_eth56g(struct ice_hw *hw, u8 port,
2328 u64 *phy_time, u64 *phc_time)
2329 {
2330 u64 tx_time, rx_time;
2331 u32 zo, lo;
2332 u8 tmr_idx;
2333 int err;
2334
2335 tmr_idx = ice_get_ptp_src_clock_index(hw);
2336
2337 /* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
2338 ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2339
2340 /* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
2341 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
2342 if (err)
2343 return err;
2344
2345 /* Issue the sync to start the ICE_PTP_READ_TIME capture */
2346 ice_ptp_exec_tmr_cmd(hw);
2347
2348 /* Read the captured PHC time from the shadow time registers */
2349 zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
2350 lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
2351 *phc_time = (u64)lo << 32 | zo;
2352
2353 /* Read the captured PHY time from the PHY shadow registers */
2354 err = ice_ptp_read_port_capture_eth56g(hw, port, &tx_time, &rx_time);
2355 if (err)
2356 return err;
2357
2358 /* If the PHY Tx and Rx timers don't match, log a warning message.
2359 * Note that this should not happen in normal circumstances since the
2360 * driver always programs them together.
2361 */
2362 if (tx_time != rx_time)
2363 dev_warn(ice_hw_to_dev(hw), "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
2364 port, tx_time, rx_time);
2365
2366 *phy_time = tx_time;
2367
2368 return 0;
2369 }
2370
2371 /**
2372 * ice_sync_phy_timer_eth56g - Synchronize the PHY timer with PHC timer
2373 * @hw: pointer to the HW struct
2374 * @port: the PHY port to synchronize
2375 *
2376 * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
2377 * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
2378 * simultaneous read of the PHY timer and PHC timer. Then we use the
2379 * difference to calculate an appropriate 2s complement addition to add
2380 * to the PHY timer in order to ensure it reads the same value as the
2381 * primary PHC timer.
2382 *
2383 * Return:
2384 * * %0 - success
2385 * * %-EBUSY- failed to acquire PTP semaphore
2386 * * %other - PHY read/write failed
2387 */
ice_sync_phy_timer_eth56g(struct ice_hw * hw,u8 port)2388 static int ice_sync_phy_timer_eth56g(struct ice_hw *hw, u8 port)
2389 {
2390 u64 phc_time, phy_time, difference;
2391 int err;
2392
2393 if (!ice_ptp_lock(hw)) {
2394 ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
2395 return -EBUSY;
2396 }
2397
2398 err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
2399 if (err)
2400 goto err_unlock;
2401
2402 /* Calculate the amount required to add to the port time in order for
2403 * it to match the PHC time.
2404 *
2405 * Note that the port adjustment is done using 2s complement
2406 * arithmetic. This is convenient since it means that we can simply
2407 * calculate the difference between the PHC time and the port time,
2408 * and it will be interpreted correctly.
2409 */
2410
2411 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2412 difference = phc_time - phy_time;
2413
2414 err = ice_ptp_prep_port_adj_eth56g(hw, port, (s64)difference);
2415 if (err)
2416 goto err_unlock;
2417
2418 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
2419 if (err)
2420 goto err_unlock;
2421
2422 /* Issue the sync to activate the time adjustment */
2423 ice_ptp_exec_tmr_cmd(hw);
2424
2425 /* Re-capture the timer values to flush the command registers and
2426 * verify that the time was properly adjusted.
2427 */
2428 err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
2429 if (err)
2430 goto err_unlock;
2431
2432 dev_info(ice_hw_to_dev(hw),
2433 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
2434 port, phy_time, phc_time);
2435
2436 err_unlock:
2437 ice_ptp_unlock(hw);
2438 return err;
2439 }
2440
2441 /**
2442 * ice_stop_phy_timer_eth56g - Stop the PHY clock timer
2443 * @hw: pointer to the HW struct
2444 * @port: the PHY port to stop
2445 * @soft_reset: if true, hold the SOFT_RESET bit of PHY_REG_PS
2446 *
2447 * Stop the clock of a PHY port. This must be done as part of the flow to
2448 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2449 * initialized or when link speed changes.
2450 *
2451 * Return:
2452 * * %0 - success
2453 * * %other - failed to write to PHY
2454 */
ice_stop_phy_timer_eth56g(struct ice_hw * hw,u8 port,bool soft_reset)2455 int ice_stop_phy_timer_eth56g(struct ice_hw *hw, u8 port, bool soft_reset)
2456 {
2457 int err;
2458
2459 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 0);
2460 if (err)
2461 return err;
2462
2463 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 0);
2464 if (err)
2465 return err;
2466
2467 ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
2468
2469 return 0;
2470 }
2471
2472 /**
2473 * ice_start_phy_timer_eth56g - Start the PHY clock timer
2474 * @hw: pointer to the HW struct
2475 * @port: the PHY port to start
2476 *
2477 * Start the clock of a PHY port. This must be done as part of the flow to
2478 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2479 * initialized or when link speed changes.
2480 *
2481 * Return:
2482 * * %0 - success
2483 * * %other - PHY read/write failed
2484 */
ice_start_phy_timer_eth56g(struct ice_hw * hw,u8 port)2485 int ice_start_phy_timer_eth56g(struct ice_hw *hw, u8 port)
2486 {
2487 u32 lo, hi;
2488 u64 incval;
2489 u8 tmr_idx;
2490 int err;
2491
2492 tmr_idx = ice_get_ptp_src_clock_index(hw);
2493
2494 err = ice_stop_phy_timer_eth56g(hw, port, false);
2495 if (err)
2496 return err;
2497
2498 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2499
2500 err = ice_phy_cfg_parpcs_eth56g(hw, port);
2501 if (err)
2502 return err;
2503
2504 err = ice_phy_cfg_ptp_1step_eth56g(hw, port);
2505 if (err)
2506 return err;
2507
2508 err = ice_phy_cfg_mac_eth56g(hw, port);
2509 if (err)
2510 return err;
2511
2512 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
2513 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
2514 incval = (u64)hi << 32 | lo;
2515
2516 err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L, incval);
2517 if (err)
2518 return err;
2519
2520 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
2521 if (err)
2522 return err;
2523
2524 ice_ptp_exec_tmr_cmd(hw);
2525
2526 err = ice_sync_phy_timer_eth56g(hw, port);
2527 if (err)
2528 return err;
2529
2530 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 1);
2531 if (err)
2532 return err;
2533
2534 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 1);
2535 if (err)
2536 return err;
2537
2538 ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
2539
2540 return 0;
2541 }
2542
2543 /**
2544 * ice_sb_access_ena_eth56g - Enable SB devices (PHY and others) access
2545 * @hw: pointer to HW struct
2546 * @enable: Enable or disable access
2547 *
2548 * Enable sideband devices (PHY and others) access.
2549 */
ice_sb_access_ena_eth56g(struct ice_hw * hw,bool enable)2550 static void ice_sb_access_ena_eth56g(struct ice_hw *hw, bool enable)
2551 {
2552 u32 val = rd32(hw, PF_SB_REM_DEV_CTL);
2553
2554 if (enable)
2555 val |= BIT(eth56g_phy_0) | BIT(cgu) | BIT(eth56g_phy_1);
2556 else
2557 val &= ~(BIT(eth56g_phy_0) | BIT(cgu) | BIT(eth56g_phy_1));
2558
2559 wr32(hw, PF_SB_REM_DEV_CTL, val);
2560 }
2561
2562 /**
2563 * ice_ptp_init_phc_eth56g - Perform E82X specific PHC initialization
2564 * @hw: pointer to HW struct
2565 *
2566 * Perform PHC initialization steps specific to E82X devices.
2567 *
2568 * Return:
2569 * * %0 - success
2570 * * %other - failed to initialize CGU
2571 */
ice_ptp_init_phc_eth56g(struct ice_hw * hw)2572 static int ice_ptp_init_phc_eth56g(struct ice_hw *hw)
2573 {
2574 ice_sb_access_ena_eth56g(hw, true);
2575 /* Initialize the Clock Generation Unit */
2576 return ice_init_cgu_e82x(hw);
2577 }
2578
2579 /**
2580 * ice_ptp_read_tx_hwtstamp_status_eth56g - Get TX timestamp status
2581 * @hw: pointer to the HW struct
2582 * @ts_status: the timestamp mask pointer
2583 *
2584 * Read the PHY Tx timestamp status mask indicating which ports have Tx
2585 * timestamps available.
2586 *
2587 * Return:
2588 * * %0 - success
2589 * * %other - failed to read from PHY
2590 */
ice_ptp_read_tx_hwtstamp_status_eth56g(struct ice_hw * hw,u32 * ts_status)2591 int ice_ptp_read_tx_hwtstamp_status_eth56g(struct ice_hw *hw, u32 *ts_status)
2592 {
2593 const struct ice_eth56g_params *params = &hw->ptp.phy.eth56g;
2594 u8 phy, mask;
2595 u32 status;
2596
2597 mask = (1 << hw->ptp.ports_per_phy) - 1;
2598 *ts_status = 0;
2599
2600 for (phy = 0; phy < params->num_phys; phy++) {
2601 int err;
2602
2603 err = ice_read_phy_eth56g(hw, phy, PHY_PTP_INT_STATUS, &status);
2604 if (err)
2605 return err;
2606
2607 *ts_status |= (status & mask) << (phy * hw->ptp.ports_per_phy);
2608 }
2609
2610 ice_debug(hw, ICE_DBG_PTP, "PHY interrupt err: %x\n", *ts_status);
2611
2612 return 0;
2613 }
2614
2615 /**
2616 * ice_get_phy_tx_tstamp_ready_eth56g - Read the Tx memory status register
2617 * @hw: pointer to the HW struct
2618 * @port: the PHY port to read from
2619 * @tstamp_ready: contents of the Tx memory status register
2620 *
2621 * Read the PHY_REG_TX_MEMORY_STATUS register indicating which timestamps in
2622 * the PHY are ready. A set bit means the corresponding timestamp is valid and
2623 * ready to be captured from the PHY timestamp block.
2624 *
2625 * Return:
2626 * * %0 - success
2627 * * %other - failed to read from PHY
2628 */
ice_get_phy_tx_tstamp_ready_eth56g(struct ice_hw * hw,u8 port,u64 * tstamp_ready)2629 static int ice_get_phy_tx_tstamp_ready_eth56g(struct ice_hw *hw, u8 port,
2630 u64 *tstamp_ready)
2631 {
2632 int err;
2633
2634 err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
2635 tstamp_ready);
2636 if (err) {
2637 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS for port %u, err %d\n",
2638 port, err);
2639 return err;
2640 }
2641
2642 return 0;
2643 }
2644
2645 /**
2646 * ice_is_muxed_topo - detect breakout 2x50G topology for E825C
2647 * @hw: pointer to the HW struct
2648 *
2649 * Return: true if it's 2x50 breakout topology, false otherwise
2650 */
ice_is_muxed_topo(struct ice_hw * hw)2651 static bool ice_is_muxed_topo(struct ice_hw *hw)
2652 {
2653 u8 link_topo;
2654 bool mux;
2655 u32 val;
2656
2657 val = rd32(hw, GLGEN_SWITCH_MODE_CONFIG);
2658 mux = FIELD_GET(GLGEN_SWITCH_MODE_CONFIG_25X4_QUAD_M, val);
2659 val = rd32(hw, GLGEN_MAC_LINK_TOPO);
2660 link_topo = FIELD_GET(GLGEN_MAC_LINK_TOPO_LINK_TOPO_M, val);
2661
2662 return (mux && link_topo == ICE_LINK_TOPO_UP_TO_2_LINKS);
2663 }
2664
2665 /**
2666 * ice_ptp_init_phy_e825c - initialize PHY parameters
2667 * @hw: pointer to the HW struct
2668 */
ice_ptp_init_phy_e825c(struct ice_hw * hw)2669 static void ice_ptp_init_phy_e825c(struct ice_hw *hw)
2670 {
2671 struct ice_ptp_hw *ptp = &hw->ptp;
2672 struct ice_eth56g_params *params;
2673 u8 phy;
2674
2675 ptp->phy_model = ICE_PHY_ETH56G;
2676 params = &ptp->phy.eth56g;
2677 params->onestep_ena = false;
2678 params->peer_delay = 0;
2679 params->sfd_ena = false;
2680 params->phy_addr[0] = eth56g_phy_0;
2681 params->phy_addr[1] = eth56g_phy_1;
2682 params->num_phys = 2;
2683 ptp->ports_per_phy = 4;
2684 ptp->num_lports = params->num_phys * ptp->ports_per_phy;
2685
2686 ice_sb_access_ena_eth56g(hw, true);
2687 for (phy = 0; phy < params->num_phys; phy++) {
2688 u32 phy_rev;
2689 int err;
2690
2691 err = ice_read_phy_eth56g(hw, phy, PHY_REG_REVISION, &phy_rev);
2692 if (err || phy_rev != PHY_REVISION_ETH56G) {
2693 ptp->phy_model = ICE_PHY_UNSUP;
2694 return;
2695 }
2696 }
2697
2698 ptp->is_2x50g_muxed_topo = ice_is_muxed_topo(hw);
2699 }
2700
2701 /* E822 family functions
2702 *
2703 * The following functions operate on the E822 family of devices.
2704 */
2705
2706 /**
2707 * ice_fill_phy_msg_e82x - Fill message data for a PHY register access
2708 * @hw: pointer to the HW struct
2709 * @msg: the PHY message buffer to fill in
2710 * @port: the port to access
2711 * @offset: the register offset
2712 */
ice_fill_phy_msg_e82x(struct ice_hw * hw,struct ice_sbq_msg_input * msg,u8 port,u16 offset)2713 static void ice_fill_phy_msg_e82x(struct ice_hw *hw,
2714 struct ice_sbq_msg_input *msg, u8 port,
2715 u16 offset)
2716 {
2717 int phy_port, phy, quadtype;
2718
2719 phy_port = port % hw->ptp.ports_per_phy;
2720 phy = port / hw->ptp.ports_per_phy;
2721 quadtype = ICE_GET_QUAD_NUM(port) %
2722 ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy);
2723
2724 if (quadtype == 0) {
2725 msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
2726 msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
2727 } else {
2728 msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
2729 msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
2730 }
2731
2732 if (phy == 0)
2733 msg->dest_dev = rmn_0;
2734 else if (phy == 1)
2735 msg->dest_dev = rmn_1;
2736 else
2737 msg->dest_dev = rmn_2;
2738 }
2739
2740 /**
2741 * ice_is_64b_phy_reg_e82x - Check if this is a 64bit PHY register
2742 * @low_addr: the low address to check
2743 * @high_addr: on return, contains the high address of the 64bit register
2744 *
2745 * Checks if the provided low address is one of the known 64bit PHY values
2746 * represented as two 32bit registers. If it is, return the appropriate high
2747 * register offset to use.
2748 */
ice_is_64b_phy_reg_e82x(u16 low_addr,u16 * high_addr)2749 static bool ice_is_64b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
2750 {
2751 switch (low_addr) {
2752 case P_REG_PAR_PCS_TX_OFFSET_L:
2753 *high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
2754 return true;
2755 case P_REG_PAR_PCS_RX_OFFSET_L:
2756 *high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
2757 return true;
2758 case P_REG_PAR_TX_TIME_L:
2759 *high_addr = P_REG_PAR_TX_TIME_U;
2760 return true;
2761 case P_REG_PAR_RX_TIME_L:
2762 *high_addr = P_REG_PAR_RX_TIME_U;
2763 return true;
2764 case P_REG_TOTAL_TX_OFFSET_L:
2765 *high_addr = P_REG_TOTAL_TX_OFFSET_U;
2766 return true;
2767 case P_REG_TOTAL_RX_OFFSET_L:
2768 *high_addr = P_REG_TOTAL_RX_OFFSET_U;
2769 return true;
2770 case P_REG_UIX66_10G_40G_L:
2771 *high_addr = P_REG_UIX66_10G_40G_U;
2772 return true;
2773 case P_REG_UIX66_25G_100G_L:
2774 *high_addr = P_REG_UIX66_25G_100G_U;
2775 return true;
2776 case P_REG_TX_CAPTURE_L:
2777 *high_addr = P_REG_TX_CAPTURE_U;
2778 return true;
2779 case P_REG_RX_CAPTURE_L:
2780 *high_addr = P_REG_RX_CAPTURE_U;
2781 return true;
2782 case P_REG_TX_TIMER_INC_PRE_L:
2783 *high_addr = P_REG_TX_TIMER_INC_PRE_U;
2784 return true;
2785 case P_REG_RX_TIMER_INC_PRE_L:
2786 *high_addr = P_REG_RX_TIMER_INC_PRE_U;
2787 return true;
2788 default:
2789 return false;
2790 }
2791 }
2792
2793 /**
2794 * ice_is_40b_phy_reg_e82x - Check if this is a 40bit PHY register
2795 * @low_addr: the low address to check
2796 * @high_addr: on return, contains the high address of the 40bit value
2797 *
2798 * Checks if the provided low address is one of the known 40bit PHY values
2799 * split into two registers with the lower 8 bits in the low register and the
2800 * upper 32 bits in the high register. If it is, return the appropriate high
2801 * register offset to use.
2802 */
ice_is_40b_phy_reg_e82x(u16 low_addr,u16 * high_addr)2803 static bool ice_is_40b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
2804 {
2805 switch (low_addr) {
2806 case P_REG_TIMETUS_L:
2807 *high_addr = P_REG_TIMETUS_U;
2808 return true;
2809 case P_REG_PAR_RX_TUS_L:
2810 *high_addr = P_REG_PAR_RX_TUS_U;
2811 return true;
2812 case P_REG_PAR_TX_TUS_L:
2813 *high_addr = P_REG_PAR_TX_TUS_U;
2814 return true;
2815 case P_REG_PCS_RX_TUS_L:
2816 *high_addr = P_REG_PCS_RX_TUS_U;
2817 return true;
2818 case P_REG_PCS_TX_TUS_L:
2819 *high_addr = P_REG_PCS_TX_TUS_U;
2820 return true;
2821 case P_REG_DESK_PAR_RX_TUS_L:
2822 *high_addr = P_REG_DESK_PAR_RX_TUS_U;
2823 return true;
2824 case P_REG_DESK_PAR_TX_TUS_L:
2825 *high_addr = P_REG_DESK_PAR_TX_TUS_U;
2826 return true;
2827 case P_REG_DESK_PCS_RX_TUS_L:
2828 *high_addr = P_REG_DESK_PCS_RX_TUS_U;
2829 return true;
2830 case P_REG_DESK_PCS_TX_TUS_L:
2831 *high_addr = P_REG_DESK_PCS_TX_TUS_U;
2832 return true;
2833 default:
2834 return false;
2835 }
2836 }
2837
2838 /**
2839 * ice_read_phy_reg_e82x - Read a PHY register
2840 * @hw: pointer to the HW struct
2841 * @port: PHY port to read from
2842 * @offset: PHY register offset to read
2843 * @val: on return, the contents read from the PHY
2844 *
2845 * Read a PHY register for the given port over the device sideband queue.
2846 */
2847 static int
ice_read_phy_reg_e82x(struct ice_hw * hw,u8 port,u16 offset,u32 * val)2848 ice_read_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
2849 {
2850 struct ice_sbq_msg_input msg = {0};
2851 int err;
2852
2853 ice_fill_phy_msg_e82x(hw, &msg, port, offset);
2854 msg.opcode = ice_sbq_msg_rd;
2855
2856 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
2857 if (err) {
2858 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2859 err);
2860 return err;
2861 }
2862
2863 *val = msg.data;
2864
2865 return 0;
2866 }
2867
2868 /**
2869 * ice_read_64b_phy_reg_e82x - Read a 64bit value from PHY registers
2870 * @hw: pointer to the HW struct
2871 * @port: PHY port to read from
2872 * @low_addr: offset of the lower register to read from
2873 * @val: on return, the contents of the 64bit value from the PHY registers
2874 *
2875 * Reads the two registers associated with a 64bit value and returns it in the
2876 * val pointer. The offset always specifies the lower register offset to use.
2877 * The high offset is looked up. This function only operates on registers
2878 * known to be two parts of a 64bit value.
2879 */
2880 static int
ice_read_64b_phy_reg_e82x(struct ice_hw * hw,u8 port,u16 low_addr,u64 * val)2881 ice_read_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
2882 {
2883 u32 low, high;
2884 u16 high_addr;
2885 int err;
2886
2887 /* Only operate on registers known to be split into two 32bit
2888 * registers.
2889 */
2890 if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
2891 ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
2892 low_addr);
2893 return -EINVAL;
2894 }
2895
2896 err = ice_read_phy_reg_e82x(hw, port, low_addr, &low);
2897 if (err) {
2898 ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
2899 low_addr, err);
2900 return err;
2901 }
2902
2903 err = ice_read_phy_reg_e82x(hw, port, high_addr, &high);
2904 if (err) {
2905 ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
2906 high_addr, err);
2907 return err;
2908 }
2909
2910 *val = (u64)high << 32 | low;
2911
2912 return 0;
2913 }
2914
2915 /**
2916 * ice_write_phy_reg_e82x - Write a PHY register
2917 * @hw: pointer to the HW struct
2918 * @port: PHY port to write to
2919 * @offset: PHY register offset to write
2920 * @val: The value to write to the register
2921 *
2922 * Write a PHY register for the given port over the device sideband queue.
2923 */
2924 static int
ice_write_phy_reg_e82x(struct ice_hw * hw,u8 port,u16 offset,u32 val)2925 ice_write_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 val)
2926 {
2927 struct ice_sbq_msg_input msg = {0};
2928 int err;
2929
2930 ice_fill_phy_msg_e82x(hw, &msg, port, offset);
2931 msg.opcode = ice_sbq_msg_wr;
2932 msg.data = val;
2933
2934 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
2935 if (err) {
2936 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2937 err);
2938 return err;
2939 }
2940
2941 return 0;
2942 }
2943
2944 /**
2945 * ice_write_40b_phy_reg_e82x - Write a 40b value to the PHY
2946 * @hw: pointer to the HW struct
2947 * @port: port to write to
2948 * @low_addr: offset of the low register
2949 * @val: 40b value to write
2950 *
2951 * Write the provided 40b value to the two associated registers by splitting
2952 * it up into two chunks, the lower 8 bits and the upper 32 bits.
2953 */
2954 static int
ice_write_40b_phy_reg_e82x(struct ice_hw * hw,u8 port,u16 low_addr,u64 val)2955 ice_write_40b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
2956 {
2957 u32 low, high;
2958 u16 high_addr;
2959 int err;
2960
2961 /* Only operate on registers known to be split into a lower 8 bit
2962 * register and an upper 32 bit register.
2963 */
2964 if (!ice_is_40b_phy_reg_e82x(low_addr, &high_addr)) {
2965 ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
2966 low_addr);
2967 return -EINVAL;
2968 }
2969 low = FIELD_GET(P_REG_40B_LOW_M, val);
2970 high = (u32)(val >> P_REG_40B_HIGH_S);
2971
2972 err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
2973 if (err) {
2974 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
2975 low_addr, err);
2976 return err;
2977 }
2978
2979 err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
2980 if (err) {
2981 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
2982 high_addr, err);
2983 return err;
2984 }
2985
2986 return 0;
2987 }
2988
2989 /**
2990 * ice_write_64b_phy_reg_e82x - Write a 64bit value to PHY registers
2991 * @hw: pointer to the HW struct
2992 * @port: PHY port to read from
2993 * @low_addr: offset of the lower register to read from
2994 * @val: the contents of the 64bit value to write to PHY
2995 *
2996 * Write the 64bit value to the two associated 32bit PHY registers. The offset
2997 * is always specified as the lower register, and the high address is looked
2998 * up. This function only operates on registers known to be two parts of
2999 * a 64bit value.
3000 */
3001 static int
ice_write_64b_phy_reg_e82x(struct ice_hw * hw,u8 port,u16 low_addr,u64 val)3002 ice_write_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
3003 {
3004 u32 low, high;
3005 u16 high_addr;
3006 int err;
3007
3008 /* Only operate on registers known to be split into two 32bit
3009 * registers.
3010 */
3011 if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
3012 ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
3013 low_addr);
3014 return -EINVAL;
3015 }
3016
3017 low = lower_32_bits(val);
3018 high = upper_32_bits(val);
3019
3020 err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
3021 if (err) {
3022 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
3023 low_addr, err);
3024 return err;
3025 }
3026
3027 err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
3028 if (err) {
3029 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
3030 high_addr, err);
3031 return err;
3032 }
3033
3034 return 0;
3035 }
3036
3037 /**
3038 * ice_fill_quad_msg_e82x - Fill message data for quad register access
3039 * @hw: pointer to the HW struct
3040 * @msg: the PHY message buffer to fill in
3041 * @quad: the quad to access
3042 * @offset: the register offset
3043 *
3044 * Fill a message buffer for accessing a register in a quad shared between
3045 * multiple PHYs.
3046 *
3047 * Return:
3048 * * %0 - OK
3049 * * %-EINVAL - invalid quad number
3050 */
ice_fill_quad_msg_e82x(struct ice_hw * hw,struct ice_sbq_msg_input * msg,u8 quad,u16 offset)3051 static int ice_fill_quad_msg_e82x(struct ice_hw *hw,
3052 struct ice_sbq_msg_input *msg, u8 quad,
3053 u16 offset)
3054 {
3055 u32 addr;
3056
3057 if (quad >= ICE_GET_QUAD_NUM(hw->ptp.num_lports))
3058 return -EINVAL;
3059
3060 msg->dest_dev = rmn_0;
3061
3062 if (!(quad % ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy)))
3063 addr = Q_0_BASE + offset;
3064 else
3065 addr = Q_1_BASE + offset;
3066
3067 msg->msg_addr_low = lower_16_bits(addr);
3068 msg->msg_addr_high = upper_16_bits(addr);
3069
3070 return 0;
3071 }
3072
3073 /**
3074 * ice_read_quad_reg_e82x - Read a PHY quad register
3075 * @hw: pointer to the HW struct
3076 * @quad: quad to read from
3077 * @offset: quad register offset to read
3078 * @val: on return, the contents read from the quad
3079 *
3080 * Read a quad register over the device sideband queue. Quad registers are
3081 * shared between multiple PHYs.
3082 */
3083 int
ice_read_quad_reg_e82x(struct ice_hw * hw,u8 quad,u16 offset,u32 * val)3084 ice_read_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
3085 {
3086 struct ice_sbq_msg_input msg = {0};
3087 int err;
3088
3089 err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
3090 if (err)
3091 return err;
3092
3093 msg.opcode = ice_sbq_msg_rd;
3094
3095 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
3096 if (err) {
3097 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
3098 err);
3099 return err;
3100 }
3101
3102 *val = msg.data;
3103
3104 return 0;
3105 }
3106
3107 /**
3108 * ice_write_quad_reg_e82x - Write a PHY quad register
3109 * @hw: pointer to the HW struct
3110 * @quad: quad to write to
3111 * @offset: quad register offset to write
3112 * @val: The value to write to the register
3113 *
3114 * Write a quad register over the device sideband queue. Quad registers are
3115 * shared between multiple PHYs.
3116 */
3117 int
ice_write_quad_reg_e82x(struct ice_hw * hw,u8 quad,u16 offset,u32 val)3118 ice_write_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
3119 {
3120 struct ice_sbq_msg_input msg = {0};
3121 int err;
3122
3123 err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
3124 if (err)
3125 return err;
3126
3127 msg.opcode = ice_sbq_msg_wr;
3128 msg.data = val;
3129
3130 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
3131 if (err) {
3132 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
3133 err);
3134 return err;
3135 }
3136
3137 return 0;
3138 }
3139
3140 /**
3141 * ice_read_phy_tstamp_e82x - Read a PHY timestamp out of the quad block
3142 * @hw: pointer to the HW struct
3143 * @quad: the quad to read from
3144 * @idx: the timestamp index to read
3145 * @tstamp: on return, the 40bit timestamp value
3146 *
3147 * Read a 40bit timestamp value out of the two associated registers in the
3148 * quad memory block that is shared between the internal PHYs of the E822
3149 * family of devices.
3150 */
3151 static int
ice_read_phy_tstamp_e82x(struct ice_hw * hw,u8 quad,u8 idx,u64 * tstamp)3152 ice_read_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
3153 {
3154 u16 lo_addr, hi_addr;
3155 u32 lo, hi;
3156 int err;
3157
3158 lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
3159 hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
3160
3161 err = ice_read_quad_reg_e82x(hw, quad, lo_addr, &lo);
3162 if (err) {
3163 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
3164 err);
3165 return err;
3166 }
3167
3168 err = ice_read_quad_reg_e82x(hw, quad, hi_addr, &hi);
3169 if (err) {
3170 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
3171 err);
3172 return err;
3173 }
3174
3175 /* For E822 based internal PHYs, the timestamp is reported with the
3176 * lower 8 bits in the low register, and the upper 32 bits in the high
3177 * register.
3178 */
3179 *tstamp = FIELD_PREP(TS_PHY_HIGH_M, hi) | FIELD_PREP(TS_PHY_LOW_M, lo);
3180
3181 return 0;
3182 }
3183
3184 /**
3185 * ice_clear_phy_tstamp_e82x - Clear a timestamp from the quad block
3186 * @hw: pointer to the HW struct
3187 * @quad: the quad to read from
3188 * @idx: the timestamp index to reset
3189 *
3190 * Read the timestamp out of the quad to clear its timestamp status bit from
3191 * the PHY quad block that is shared between the internal PHYs of the E822
3192 * devices.
3193 *
3194 * Note that unlike E810, software cannot directly write to the quad memory
3195 * bank registers. E822 relies on the ice_get_phy_tx_tstamp_ready() function
3196 * to determine which timestamps are valid. Reading a timestamp auto-clears
3197 * the valid bit.
3198 *
3199 * To directly clear the contents of the timestamp block entirely, discarding
3200 * all timestamp data at once, software should instead use
3201 * ice_ptp_reset_ts_memory_quad_e82x().
3202 *
3203 * This function should only be called on an idx whose bit is set according to
3204 * ice_get_phy_tx_tstamp_ready().
3205 */
3206 static int
ice_clear_phy_tstamp_e82x(struct ice_hw * hw,u8 quad,u8 idx)3207 ice_clear_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx)
3208 {
3209 u64 unused_tstamp;
3210 int err;
3211
3212 err = ice_read_phy_tstamp_e82x(hw, quad, idx, &unused_tstamp);
3213 if (err) {
3214 ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for quad %u, idx %u, err %d\n",
3215 quad, idx, err);
3216 return err;
3217 }
3218
3219 return 0;
3220 }
3221
3222 /**
3223 * ice_ptp_reset_ts_memory_quad_e82x - Clear all timestamps from the quad block
3224 * @hw: pointer to the HW struct
3225 * @quad: the quad to read from
3226 *
3227 * Clear all timestamps from the PHY quad block that is shared between the
3228 * internal PHYs on the E822 devices.
3229 */
ice_ptp_reset_ts_memory_quad_e82x(struct ice_hw * hw,u8 quad)3230 void ice_ptp_reset_ts_memory_quad_e82x(struct ice_hw *hw, u8 quad)
3231 {
3232 ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
3233 ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
3234 }
3235
3236 /**
3237 * ice_ptp_reset_ts_memory_e82x - Clear all timestamps from all quad blocks
3238 * @hw: pointer to the HW struct
3239 */
ice_ptp_reset_ts_memory_e82x(struct ice_hw * hw)3240 static void ice_ptp_reset_ts_memory_e82x(struct ice_hw *hw)
3241 {
3242 unsigned int quad;
3243
3244 for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports); quad++)
3245 ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
3246 }
3247
3248 /**
3249 * ice_ptp_set_vernier_wl - Set the window length for vernier calibration
3250 * @hw: pointer to the HW struct
3251 *
3252 * Set the window length used for the vernier port calibration process.
3253 */
ice_ptp_set_vernier_wl(struct ice_hw * hw)3254 static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
3255 {
3256 u8 port;
3257
3258 for (port = 0; port < hw->ptp.num_lports; port++) {
3259 int err;
3260
3261 err = ice_write_phy_reg_e82x(hw, port, P_REG_WL,
3262 PTP_VERNIER_WL);
3263 if (err) {
3264 ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
3265 port, err);
3266 return err;
3267 }
3268 }
3269
3270 return 0;
3271 }
3272
3273 /**
3274 * ice_ptp_init_phc_e82x - Perform E822 specific PHC initialization
3275 * @hw: pointer to HW struct
3276 *
3277 * Perform PHC initialization steps specific to E822 devices.
3278 */
ice_ptp_init_phc_e82x(struct ice_hw * hw)3279 static int ice_ptp_init_phc_e82x(struct ice_hw *hw)
3280 {
3281 int err;
3282 u32 val;
3283
3284 /* Enable reading switch and PHY registers over the sideband queue */
3285 #define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
3286 #define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
3287 val = rd32(hw, PF_SB_REM_DEV_CTL);
3288 val |= (PF_SB_REM_DEV_CTL_SWITCH_READ | PF_SB_REM_DEV_CTL_PHY0);
3289 wr32(hw, PF_SB_REM_DEV_CTL, val);
3290
3291 /* Initialize the Clock Generation Unit */
3292 err = ice_init_cgu_e82x(hw);
3293 if (err)
3294 return err;
3295
3296 /* Set window length for all the ports */
3297 return ice_ptp_set_vernier_wl(hw);
3298 }
3299
3300 /**
3301 * ice_ptp_prep_phy_time_e82x - Prepare PHY port with initial time
3302 * @hw: pointer to the HW struct
3303 * @time: Time to initialize the PHY port clocks to
3304 *
3305 * Program the PHY port registers with a new initial time value. The port
3306 * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
3307 * command. The time value is the upper 32 bits of the PHY timer, usually in
3308 * units of nominal nanoseconds.
3309 */
3310 static int
ice_ptp_prep_phy_time_e82x(struct ice_hw * hw,u32 time)3311 ice_ptp_prep_phy_time_e82x(struct ice_hw *hw, u32 time)
3312 {
3313 u64 phy_time;
3314 u8 port;
3315 int err;
3316
3317 /* The time represents the upper 32 bits of the PHY timer, so we need
3318 * to shift to account for this when programming.
3319 */
3320 phy_time = (u64)time << 32;
3321
3322 for (port = 0; port < hw->ptp.num_lports; port++) {
3323 /* Tx case */
3324 err = ice_write_64b_phy_reg_e82x(hw, port,
3325 P_REG_TX_TIMER_INC_PRE_L,
3326 phy_time);
3327 if (err)
3328 goto exit_err;
3329
3330 /* Rx case */
3331 err = ice_write_64b_phy_reg_e82x(hw, port,
3332 P_REG_RX_TIMER_INC_PRE_L,
3333 phy_time);
3334 if (err)
3335 goto exit_err;
3336 }
3337
3338 return 0;
3339
3340 exit_err:
3341 ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
3342 port, err);
3343
3344 return err;
3345 }
3346
3347 /**
3348 * ice_ptp_prep_port_adj_e82x - Prepare a single port for time adjust
3349 * @hw: pointer to HW struct
3350 * @port: Port number to be programmed
3351 * @time: time in cycles to adjust the port Tx and Rx clocks
3352 *
3353 * Program the port for an atomic adjustment by writing the Tx and Rx timer
3354 * registers. The atomic adjustment won't be completed until the driver issues
3355 * an ICE_PTP_ADJ_TIME command.
3356 *
3357 * Note that time is not in units of nanoseconds. It is in clock time
3358 * including the lower sub-nanosecond portion of the port timer.
3359 *
3360 * Negative adjustments are supported using 2s complement arithmetic.
3361 */
3362 static int
ice_ptp_prep_port_adj_e82x(struct ice_hw * hw,u8 port,s64 time)3363 ice_ptp_prep_port_adj_e82x(struct ice_hw *hw, u8 port, s64 time)
3364 {
3365 u32 l_time, u_time;
3366 int err;
3367
3368 l_time = lower_32_bits(time);
3369 u_time = upper_32_bits(time);
3370
3371 /* Tx case */
3372 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_L,
3373 l_time);
3374 if (err)
3375 goto exit_err;
3376
3377 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_U,
3378 u_time);
3379 if (err)
3380 goto exit_err;
3381
3382 /* Rx case */
3383 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_L,
3384 l_time);
3385 if (err)
3386 goto exit_err;
3387
3388 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_U,
3389 u_time);
3390 if (err)
3391 goto exit_err;
3392
3393 return 0;
3394
3395 exit_err:
3396 ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
3397 port, err);
3398 return err;
3399 }
3400
3401 /**
3402 * ice_ptp_prep_phy_adj_e82x - Prep PHY ports for a time adjustment
3403 * @hw: pointer to HW struct
3404 * @adj: adjustment in nanoseconds
3405 *
3406 * Prepare the PHY ports for an atomic time adjustment by programming the PHY
3407 * Tx and Rx port registers. The actual adjustment is completed by issuing an
3408 * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
3409 */
3410 static int
ice_ptp_prep_phy_adj_e82x(struct ice_hw * hw,s32 adj)3411 ice_ptp_prep_phy_adj_e82x(struct ice_hw *hw, s32 adj)
3412 {
3413 s64 cycles;
3414 u8 port;
3415
3416 /* The port clock supports adjustment of the sub-nanosecond portion of
3417 * the clock. We shift the provided adjustment in nanoseconds to
3418 * calculate the appropriate adjustment to program into the PHY ports.
3419 */
3420 if (adj > 0)
3421 cycles = (s64)adj << 32;
3422 else
3423 cycles = -(((s64)-adj) << 32);
3424
3425 for (port = 0; port < hw->ptp.num_lports; port++) {
3426 int err;
3427
3428 err = ice_ptp_prep_port_adj_e82x(hw, port, cycles);
3429 if (err)
3430 return err;
3431 }
3432
3433 return 0;
3434 }
3435
3436 /**
3437 * ice_ptp_prep_phy_incval_e82x - Prepare PHY ports for time adjustment
3438 * @hw: pointer to HW struct
3439 * @incval: new increment value to prepare
3440 *
3441 * Prepare each of the PHY ports for a new increment value by programming the
3442 * port's TIMETUS registers. The new increment value will be updated after
3443 * issuing an ICE_PTP_INIT_INCVAL command.
3444 */
3445 static int
ice_ptp_prep_phy_incval_e82x(struct ice_hw * hw,u64 incval)3446 ice_ptp_prep_phy_incval_e82x(struct ice_hw *hw, u64 incval)
3447 {
3448 int err;
3449 u8 port;
3450
3451 for (port = 0; port < hw->ptp.num_lports; port++) {
3452 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L,
3453 incval);
3454 if (err)
3455 goto exit_err;
3456 }
3457
3458 return 0;
3459
3460 exit_err:
3461 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
3462 port, err);
3463
3464 return err;
3465 }
3466
3467 /**
3468 * ice_ptp_read_port_capture - Read a port's local time capture
3469 * @hw: pointer to HW struct
3470 * @port: Port number to read
3471 * @tx_ts: on return, the Tx port time capture
3472 * @rx_ts: on return, the Rx port time capture
3473 *
3474 * Read the port's Tx and Rx local time capture values.
3475 *
3476 * Note this has no equivalent for the E810 devices.
3477 */
3478 static int
ice_ptp_read_port_capture(struct ice_hw * hw,u8 port,u64 * tx_ts,u64 * rx_ts)3479 ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
3480 {
3481 int err;
3482
3483 /* Tx case */
3484 err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
3485 if (err) {
3486 ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
3487 err);
3488 return err;
3489 }
3490
3491 ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
3492 (unsigned long long)*tx_ts);
3493
3494 /* Rx case */
3495 err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
3496 if (err) {
3497 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
3498 err);
3499 return err;
3500 }
3501
3502 ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
3503 (unsigned long long)*rx_ts);
3504
3505 return 0;
3506 }
3507
3508 /**
3509 * ice_ptp_write_port_cmd_e82x - Prepare a single PHY port for a timer command
3510 * @hw: pointer to HW struct
3511 * @port: Port to which cmd has to be sent
3512 * @cmd: Command to be sent to the port
3513 *
3514 * Prepare the requested port for an upcoming timer sync command.
3515 *
3516 * Note there is no equivalent of this operation on E810, as that device
3517 * always handles all external PHYs internally.
3518 *
3519 * Return:
3520 * * %0 - success
3521 * * %other - failed to write to PHY
3522 */
ice_ptp_write_port_cmd_e82x(struct ice_hw * hw,u8 port,enum ice_ptp_tmr_cmd cmd)3523 static int ice_ptp_write_port_cmd_e82x(struct ice_hw *hw, u8 port,
3524 enum ice_ptp_tmr_cmd cmd)
3525 {
3526 u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
3527 int err;
3528
3529 /* Tx case */
3530 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TMR_CMD, val);
3531 if (err) {
3532 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
3533 err);
3534 return err;
3535 }
3536
3537 /* Rx case */
3538 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TMR_CMD,
3539 val | TS_CMD_RX_TYPE);
3540 if (err) {
3541 ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
3542 err);
3543 return err;
3544 }
3545
3546 return 0;
3547 }
3548
3549 /* E822 Vernier calibration functions
3550 *
3551 * The following functions are used as part of the vernier calibration of
3552 * a port. This calibration increases the precision of the timestamps on the
3553 * port.
3554 */
3555
3556 /**
3557 * ice_phy_get_speed_and_fec_e82x - Get link speed and FEC based on serdes mode
3558 * @hw: pointer to HW struct
3559 * @port: the port to read from
3560 * @link_out: if non-NULL, holds link speed on success
3561 * @fec_out: if non-NULL, holds FEC algorithm on success
3562 *
3563 * Read the serdes data for the PHY port and extract the link speed and FEC
3564 * algorithm.
3565 */
3566 static int
ice_phy_get_speed_and_fec_e82x(struct ice_hw * hw,u8 port,enum ice_ptp_link_spd * link_out,enum ice_ptp_fec_mode * fec_out)3567 ice_phy_get_speed_and_fec_e82x(struct ice_hw *hw, u8 port,
3568 enum ice_ptp_link_spd *link_out,
3569 enum ice_ptp_fec_mode *fec_out)
3570 {
3571 enum ice_ptp_link_spd link;
3572 enum ice_ptp_fec_mode fec;
3573 u32 serdes;
3574 int err;
3575
3576 err = ice_read_phy_reg_e82x(hw, port, P_REG_LINK_SPEED, &serdes);
3577 if (err) {
3578 ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
3579 return err;
3580 }
3581
3582 /* Determine the FEC algorithm */
3583 fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
3584
3585 serdes &= P_REG_LINK_SPEED_SERDES_M;
3586
3587 /* Determine the link speed */
3588 if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
3589 switch (serdes) {
3590 case ICE_PTP_SERDES_25G:
3591 link = ICE_PTP_LNK_SPD_25G_RS;
3592 break;
3593 case ICE_PTP_SERDES_50G:
3594 link = ICE_PTP_LNK_SPD_50G_RS;
3595 break;
3596 case ICE_PTP_SERDES_100G:
3597 link = ICE_PTP_LNK_SPD_100G_RS;
3598 break;
3599 default:
3600 return -EIO;
3601 }
3602 } else {
3603 switch (serdes) {
3604 case ICE_PTP_SERDES_1G:
3605 link = ICE_PTP_LNK_SPD_1G;
3606 break;
3607 case ICE_PTP_SERDES_10G:
3608 link = ICE_PTP_LNK_SPD_10G;
3609 break;
3610 case ICE_PTP_SERDES_25G:
3611 link = ICE_PTP_LNK_SPD_25G;
3612 break;
3613 case ICE_PTP_SERDES_40G:
3614 link = ICE_PTP_LNK_SPD_40G;
3615 break;
3616 case ICE_PTP_SERDES_50G:
3617 link = ICE_PTP_LNK_SPD_50G;
3618 break;
3619 default:
3620 return -EIO;
3621 }
3622 }
3623
3624 if (link_out)
3625 *link_out = link;
3626 if (fec_out)
3627 *fec_out = fec;
3628
3629 return 0;
3630 }
3631
3632 /**
3633 * ice_phy_cfg_lane_e82x - Configure PHY quad for single/multi-lane timestamp
3634 * @hw: pointer to HW struct
3635 * @port: to configure the quad for
3636 */
ice_phy_cfg_lane_e82x(struct ice_hw * hw,u8 port)3637 static void ice_phy_cfg_lane_e82x(struct ice_hw *hw, u8 port)
3638 {
3639 enum ice_ptp_link_spd link_spd;
3640 int err;
3641 u32 val;
3642 u8 quad;
3643
3644 err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, NULL);
3645 if (err) {
3646 ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
3647 err);
3648 return;
3649 }
3650
3651 quad = ICE_GET_QUAD_NUM(port);
3652
3653 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
3654 if (err) {
3655 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
3656 err);
3657 return;
3658 }
3659
3660 if (link_spd >= ICE_PTP_LNK_SPD_40G)
3661 val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
3662 else
3663 val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
3664
3665 err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
3666 if (err) {
3667 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
3668 err);
3669 return;
3670 }
3671 }
3672
3673 /**
3674 * ice_phy_cfg_uix_e82x - Configure Serdes UI to TU conversion for E822
3675 * @hw: pointer to the HW structure
3676 * @port: the port to configure
3677 *
3678 * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
3679 * hardware clock time units (TUs). That is, determine the number of TUs per
3680 * serdes unit interval, and program the UIX registers with this conversion.
3681 *
3682 * This conversion is used as part of the calibration process when determining
3683 * the additional error of a timestamp vs the real time of transmission or
3684 * receipt of the packet.
3685 *
3686 * Hardware uses the number of TUs per 66 UIs, written to the UIX registers
3687 * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
3688 *
3689 * To calculate the conversion ratio, we use the following facts:
3690 *
3691 * a) the clock frequency in Hz (cycles per second)
3692 * b) the number of TUs per cycle (the increment value of the clock)
3693 * c) 1 second per 1 billion nanoseconds
3694 * d) the duration of 66 UIs in nanoseconds
3695 *
3696 * Given these facts, we can use the following table to work out what ratios
3697 * to multiply in order to get the number of TUs per 66 UIs:
3698 *
3699 * cycles | 1 second | incval (TUs) | nanoseconds
3700 * -------+--------------+--------------+-------------
3701 * second | 1 billion ns | cycle | 66 UIs
3702 *
3703 * To perform the multiplication using integers without too much loss of
3704 * precision, we can take use the following equation:
3705 *
3706 * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
3707 *
3708 * We scale up to using 6600 UI instead of 66 in order to avoid fractional
3709 * nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
3710 *
3711 * The increment value has a maximum expected range of about 34 bits, while
3712 * the frequency value is about 29 bits. Multiplying these values shouldn't
3713 * overflow the 64 bits. However, we must then further multiply them again by
3714 * the Serdes unit interval duration. To avoid overflow here, we split the
3715 * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
3716 * a divide by 390,625,000. This does lose some precision, but avoids
3717 * miscalculation due to arithmetic overflow.
3718 */
ice_phy_cfg_uix_e82x(struct ice_hw * hw,u8 port)3719 static int ice_phy_cfg_uix_e82x(struct ice_hw *hw, u8 port)
3720 {
3721 u64 cur_freq, clk_incval, tu_per_sec, uix;
3722 int err;
3723
3724 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3725 clk_incval = ice_ptp_read_src_incval(hw);
3726
3727 /* Calculate TUs per second divided by 256 */
3728 tu_per_sec = (cur_freq * clk_incval) >> 8;
3729
3730 #define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
3731 #define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
3732
3733 /* Program the 10Gb/40Gb conversion ratio */
3734 uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
3735
3736 err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_10G_40G_L,
3737 uix);
3738 if (err) {
3739 ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
3740 err);
3741 return err;
3742 }
3743
3744 /* Program the 25Gb/100Gb conversion ratio */
3745 uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
3746
3747 err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_25G_100G_L,
3748 uix);
3749 if (err) {
3750 ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
3751 err);
3752 return err;
3753 }
3754
3755 return 0;
3756 }
3757
3758 /**
3759 * ice_phy_cfg_parpcs_e82x - Configure TUs per PAR/PCS clock cycle
3760 * @hw: pointer to the HW struct
3761 * @port: port to configure
3762 *
3763 * Configure the number of TUs for the PAR and PCS clocks used as part of the
3764 * timestamp calibration process. This depends on the link speed, as the PHY
3765 * uses different markers depending on the speed.
3766 *
3767 * 1Gb/10Gb/25Gb:
3768 * - Tx/Rx PAR/PCS markers
3769 *
3770 * 25Gb RS:
3771 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
3772 *
3773 * 40Gb/50Gb:
3774 * - Tx/Rx PAR/PCS markers
3775 * - Rx Deskew PAR/PCS markers
3776 *
3777 * 50G RS and 100GB RS:
3778 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
3779 * - Rx Deskew PAR/PCS markers
3780 * - Tx PAR/PCS markers
3781 *
3782 * To calculate the conversion, we use the PHC clock frequency (cycles per
3783 * second), the increment value (TUs per cycle), and the related PHY clock
3784 * frequency to calculate the TUs per unit of the PHY link clock. The
3785 * following table shows how the units convert:
3786 *
3787 * cycles | TUs | second
3788 * -------+-------+--------
3789 * second | cycle | cycles
3790 *
3791 * For each conversion register, look up the appropriate frequency from the
3792 * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
3793 * this to the appropriate register, preparing hardware to perform timestamp
3794 * calibration to calculate the total Tx or Rx offset to adjust the timestamp
3795 * in order to calibrate for the internal PHY delays.
3796 *
3797 * Note that the increment value ranges up to ~34 bits, and the clock
3798 * frequency is ~29 bits, so multiplying them together should fit within the
3799 * 64 bit arithmetic.
3800 */
ice_phy_cfg_parpcs_e82x(struct ice_hw * hw,u8 port)3801 static int ice_phy_cfg_parpcs_e82x(struct ice_hw *hw, u8 port)
3802 {
3803 u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
3804 enum ice_ptp_link_spd link_spd;
3805 enum ice_ptp_fec_mode fec_mode;
3806 int err;
3807
3808 err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
3809 if (err)
3810 return err;
3811
3812 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3813 clk_incval = ice_ptp_read_src_incval(hw);
3814
3815 /* Calculate TUs per cycle of the PHC clock */
3816 tu_per_sec = cur_freq * clk_incval;
3817
3818 /* For each PHY conversion register, look up the appropriate link
3819 * speed frequency and determine the TUs per that clock's cycle time.
3820 * Split this into a high and low value and then program the
3821 * appropriate register. If that link speed does not use the
3822 * associated register, write zeros to clear it instead.
3823 */
3824
3825 /* P_REG_PAR_TX_TUS */
3826 if (e822_vernier[link_spd].tx_par_clk)
3827 phy_tus = div_u64(tu_per_sec,
3828 e822_vernier[link_spd].tx_par_clk);
3829 else
3830 phy_tus = 0;
3831
3832 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_TX_TUS_L,
3833 phy_tus);
3834 if (err)
3835 return err;
3836
3837 /* P_REG_PAR_RX_TUS */
3838 if (e822_vernier[link_spd].rx_par_clk)
3839 phy_tus = div_u64(tu_per_sec,
3840 e822_vernier[link_spd].rx_par_clk);
3841 else
3842 phy_tus = 0;
3843
3844 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_RX_TUS_L,
3845 phy_tus);
3846 if (err)
3847 return err;
3848
3849 /* P_REG_PCS_TX_TUS */
3850 if (e822_vernier[link_spd].tx_pcs_clk)
3851 phy_tus = div_u64(tu_per_sec,
3852 e822_vernier[link_spd].tx_pcs_clk);
3853 else
3854 phy_tus = 0;
3855
3856 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_TX_TUS_L,
3857 phy_tus);
3858 if (err)
3859 return err;
3860
3861 /* P_REG_PCS_RX_TUS */
3862 if (e822_vernier[link_spd].rx_pcs_clk)
3863 phy_tus = div_u64(tu_per_sec,
3864 e822_vernier[link_spd].rx_pcs_clk);
3865 else
3866 phy_tus = 0;
3867
3868 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_RX_TUS_L,
3869 phy_tus);
3870 if (err)
3871 return err;
3872
3873 /* P_REG_DESK_PAR_TX_TUS */
3874 if (e822_vernier[link_spd].tx_desk_rsgb_par)
3875 phy_tus = div_u64(tu_per_sec,
3876 e822_vernier[link_spd].tx_desk_rsgb_par);
3877 else
3878 phy_tus = 0;
3879
3880 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_TX_TUS_L,
3881 phy_tus);
3882 if (err)
3883 return err;
3884
3885 /* P_REG_DESK_PAR_RX_TUS */
3886 if (e822_vernier[link_spd].rx_desk_rsgb_par)
3887 phy_tus = div_u64(tu_per_sec,
3888 e822_vernier[link_spd].rx_desk_rsgb_par);
3889 else
3890 phy_tus = 0;
3891
3892 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_RX_TUS_L,
3893 phy_tus);
3894 if (err)
3895 return err;
3896
3897 /* P_REG_DESK_PCS_TX_TUS */
3898 if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
3899 phy_tus = div_u64(tu_per_sec,
3900 e822_vernier[link_spd].tx_desk_rsgb_pcs);
3901 else
3902 phy_tus = 0;
3903
3904 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_TX_TUS_L,
3905 phy_tus);
3906 if (err)
3907 return err;
3908
3909 /* P_REG_DESK_PCS_RX_TUS */
3910 if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
3911 phy_tus = div_u64(tu_per_sec,
3912 e822_vernier[link_spd].rx_desk_rsgb_pcs);
3913 else
3914 phy_tus = 0;
3915
3916 return ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_RX_TUS_L,
3917 phy_tus);
3918 }
3919
3920 /**
3921 * ice_calc_fixed_tx_offset_e82x - Calculated Fixed Tx offset for a port
3922 * @hw: pointer to the HW struct
3923 * @link_spd: the Link speed to calculate for
3924 *
3925 * Calculate the fixed offset due to known static latency data.
3926 */
3927 static u64
ice_calc_fixed_tx_offset_e82x(struct ice_hw * hw,enum ice_ptp_link_spd link_spd)3928 ice_calc_fixed_tx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
3929 {
3930 u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
3931
3932 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3933 clk_incval = ice_ptp_read_src_incval(hw);
3934
3935 /* Calculate TUs per second */
3936 tu_per_sec = cur_freq * clk_incval;
3937
3938 /* Calculate number of TUs to add for the fixed Tx latency. Since the
3939 * latency measurement is in 1/100th of a nanosecond, we need to
3940 * multiply by tu_per_sec and then divide by 1e11. This calculation
3941 * overflows 64 bit integer arithmetic, so break it up into two
3942 * divisions by 1e4 first then by 1e7.
3943 */
3944 fixed_offset = div_u64(tu_per_sec, 10000);
3945 fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
3946 fixed_offset = div_u64(fixed_offset, 10000000);
3947
3948 return fixed_offset;
3949 }
3950
3951 /**
3952 * ice_phy_cfg_tx_offset_e82x - Configure total Tx timestamp offset
3953 * @hw: pointer to the HW struct
3954 * @port: the PHY port to configure
3955 *
3956 * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
3957 * adjust Tx timestamps by. This is calculated by combining some known static
3958 * latency along with the Vernier offset computations done by hardware.
3959 *
3960 * This function will not return successfully until the Tx offset calculations
3961 * have been completed, which requires waiting until at least one packet has
3962 * been transmitted by the device. It is safe to call this function
3963 * periodically until calibration succeeds, as it will only program the offset
3964 * once.
3965 *
3966 * To avoid overflow, when calculating the offset based on the known static
3967 * latency values, we use measurements in 1/100th of a nanosecond, and divide
3968 * the TUs per second up front. This avoids overflow while allowing
3969 * calculation of the adjustment using integer arithmetic.
3970 *
3971 * Returns zero on success, -EBUSY if the hardware vernier offset
3972 * calibration has not completed, or another error code on failure.
3973 */
ice_phy_cfg_tx_offset_e82x(struct ice_hw * hw,u8 port)3974 int ice_phy_cfg_tx_offset_e82x(struct ice_hw *hw, u8 port)
3975 {
3976 enum ice_ptp_link_spd link_spd;
3977 enum ice_ptp_fec_mode fec_mode;
3978 u64 total_offset, val;
3979 int err;
3980 u32 reg;
3981
3982 /* Nothing to do if we've already programmed the offset */
3983 err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OR, ®);
3984 if (err) {
3985 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
3986 port, err);
3987 return err;
3988 }
3989
3990 if (reg)
3991 return 0;
3992
3993 err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OV_STATUS, ®);
3994 if (err) {
3995 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
3996 port, err);
3997 return err;
3998 }
3999
4000 if (!(reg & P_REG_TX_OV_STATUS_OV_M))
4001 return -EBUSY;
4002
4003 err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
4004 if (err)
4005 return err;
4006
4007 total_offset = ice_calc_fixed_tx_offset_e82x(hw, link_spd);
4008
4009 /* Read the first Vernier offset from the PHY register and add it to
4010 * the total offset.
4011 */
4012 if (link_spd == ICE_PTP_LNK_SPD_1G ||
4013 link_spd == ICE_PTP_LNK_SPD_10G ||
4014 link_spd == ICE_PTP_LNK_SPD_25G ||
4015 link_spd == ICE_PTP_LNK_SPD_25G_RS ||
4016 link_spd == ICE_PTP_LNK_SPD_40G ||
4017 link_spd == ICE_PTP_LNK_SPD_50G) {
4018 err = ice_read_64b_phy_reg_e82x(hw, port,
4019 P_REG_PAR_PCS_TX_OFFSET_L,
4020 &val);
4021 if (err)
4022 return err;
4023
4024 total_offset += val;
4025 }
4026
4027 /* For Tx, we only need to use the second Vernier offset for
4028 * multi-lane link speeds with RS-FEC. The lanes will always be
4029 * aligned.
4030 */
4031 if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4032 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4033 err = ice_read_64b_phy_reg_e82x(hw, port,
4034 P_REG_PAR_TX_TIME_L,
4035 &val);
4036 if (err)
4037 return err;
4038
4039 total_offset += val;
4040 }
4041
4042 /* Now that the total offset has been calculated, program it to the
4043 * PHY and indicate that the Tx offset is ready. After this,
4044 * timestamps will be enabled.
4045 */
4046 err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_TX_OFFSET_L,
4047 total_offset);
4048 if (err)
4049 return err;
4050
4051 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 1);
4052 if (err)
4053 return err;
4054
4055 dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
4056 port);
4057
4058 return 0;
4059 }
4060
4061 /**
4062 * ice_phy_calc_pmd_adj_e82x - Calculate PMD adjustment for Rx
4063 * @hw: pointer to the HW struct
4064 * @port: the PHY port to adjust for
4065 * @link_spd: the current link speed of the PHY
4066 * @fec_mode: the current FEC mode of the PHY
4067 * @pmd_adj: on return, the amount to adjust the Rx total offset by
4068 *
4069 * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
4070 * This varies by link speed and FEC mode. The value calculated accounts for
4071 * various delays caused when receiving a packet.
4072 */
4073 static int
ice_phy_calc_pmd_adj_e82x(struct ice_hw * hw,u8 port,enum ice_ptp_link_spd link_spd,enum ice_ptp_fec_mode fec_mode,u64 * pmd_adj)4074 ice_phy_calc_pmd_adj_e82x(struct ice_hw *hw, u8 port,
4075 enum ice_ptp_link_spd link_spd,
4076 enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
4077 {
4078 u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
4079 u8 pmd_align;
4080 u32 val;
4081 int err;
4082
4083 err = ice_read_phy_reg_e82x(hw, port, P_REG_PMD_ALIGNMENT, &val);
4084 if (err) {
4085 ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
4086 err);
4087 return err;
4088 }
4089
4090 pmd_align = (u8)val;
4091
4092 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
4093 clk_incval = ice_ptp_read_src_incval(hw);
4094
4095 /* Calculate TUs per second */
4096 tu_per_sec = cur_freq * clk_incval;
4097
4098 /* The PMD alignment adjustment measurement depends on the link speed,
4099 * and whether FEC is enabled. For each link speed, the alignment
4100 * adjustment is calculated by dividing a value by the length of
4101 * a Time Unit in nanoseconds.
4102 *
4103 * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
4104 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
4105 * 10G w/FEC: align * 0.1 * 32/33
4106 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
4107 * 25G w/FEC: align * 0.4 * 32/33
4108 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
4109 * 40G w/FEC: align * 0.1 * 32/33
4110 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
4111 * 50G w/FEC: align * 0.8 * 32/33
4112 *
4113 * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
4114 *
4115 * To allow for calculating this value using integer arithmetic, we
4116 * instead start with the number of TUs per second, (inverse of the
4117 * length of a Time Unit in nanoseconds), multiply by a value based
4118 * on the PMD alignment register, and then divide by the right value
4119 * calculated based on the table above. To avoid integer overflow this
4120 * division is broken up into a step of dividing by 125 first.
4121 */
4122 if (link_spd == ICE_PTP_LNK_SPD_1G) {
4123 if (pmd_align == 4)
4124 mult = 10;
4125 else
4126 mult = (pmd_align + 6) % 10;
4127 } else if (link_spd == ICE_PTP_LNK_SPD_10G ||
4128 link_spd == ICE_PTP_LNK_SPD_25G ||
4129 link_spd == ICE_PTP_LNK_SPD_40G ||
4130 link_spd == ICE_PTP_LNK_SPD_50G) {
4131 /* If Clause 74 FEC, always calculate PMD adjust */
4132 if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
4133 mult = pmd_align;
4134 else
4135 mult = 0;
4136 } else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
4137 link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4138 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4139 if (pmd_align < 17)
4140 mult = pmd_align + 40;
4141 else
4142 mult = pmd_align;
4143 } else {
4144 ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
4145 link_spd);
4146 mult = 0;
4147 }
4148
4149 /* In some cases, there's no need to adjust for the PMD alignment */
4150 if (!mult) {
4151 *pmd_adj = 0;
4152 return 0;
4153 }
4154
4155 /* Calculate the adjustment by multiplying TUs per second by the
4156 * appropriate multiplier and divisor. To avoid overflow, we first
4157 * divide by 125, and then handle remaining divisor based on the link
4158 * speed pmd_adj_divisor value.
4159 */
4160 adj = div_u64(tu_per_sec, 125);
4161 adj *= mult;
4162 adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
4163
4164 /* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
4165 * cycle count is necessary.
4166 */
4167 if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
4168 u64 cycle_adj;
4169 u8 rx_cycle;
4170
4171 err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_40_TO_160_CNT,
4172 &val);
4173 if (err) {
4174 ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
4175 err);
4176 return err;
4177 }
4178
4179 rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
4180 if (rx_cycle) {
4181 mult = (4 - rx_cycle) * 40;
4182
4183 cycle_adj = div_u64(tu_per_sec, 125);
4184 cycle_adj *= mult;
4185 cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
4186
4187 adj += cycle_adj;
4188 }
4189 } else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
4190 u64 cycle_adj;
4191 u8 rx_cycle;
4192
4193 err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_80_TO_160_CNT,
4194 &val);
4195 if (err) {
4196 ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
4197 err);
4198 return err;
4199 }
4200
4201 rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
4202 if (rx_cycle) {
4203 mult = rx_cycle * 40;
4204
4205 cycle_adj = div_u64(tu_per_sec, 125);
4206 cycle_adj *= mult;
4207 cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
4208
4209 adj += cycle_adj;
4210 }
4211 }
4212
4213 /* Return the calculated adjustment */
4214 *pmd_adj = adj;
4215
4216 return 0;
4217 }
4218
4219 /**
4220 * ice_calc_fixed_rx_offset_e82x - Calculated the fixed Rx offset for a port
4221 * @hw: pointer to HW struct
4222 * @link_spd: The Link speed to calculate for
4223 *
4224 * Determine the fixed Rx latency for a given link speed.
4225 */
4226 static u64
ice_calc_fixed_rx_offset_e82x(struct ice_hw * hw,enum ice_ptp_link_spd link_spd)4227 ice_calc_fixed_rx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
4228 {
4229 u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
4230
4231 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
4232 clk_incval = ice_ptp_read_src_incval(hw);
4233
4234 /* Calculate TUs per second */
4235 tu_per_sec = cur_freq * clk_incval;
4236
4237 /* Calculate number of TUs to add for the fixed Rx latency. Since the
4238 * latency measurement is in 1/100th of a nanosecond, we need to
4239 * multiply by tu_per_sec and then divide by 1e11. This calculation
4240 * overflows 64 bit integer arithmetic, so break it up into two
4241 * divisions by 1e4 first then by 1e7.
4242 */
4243 fixed_offset = div_u64(tu_per_sec, 10000);
4244 fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
4245 fixed_offset = div_u64(fixed_offset, 10000000);
4246
4247 return fixed_offset;
4248 }
4249
4250 /**
4251 * ice_phy_cfg_rx_offset_e82x - Configure total Rx timestamp offset
4252 * @hw: pointer to the HW struct
4253 * @port: the PHY port to configure
4254 *
4255 * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
4256 * adjust Rx timestamps by. This combines calculations from the Vernier offset
4257 * measurements taken in hardware with some data about known fixed delay as
4258 * well as adjusting for multi-lane alignment delay.
4259 *
4260 * This function will not return successfully until the Rx offset calculations
4261 * have been completed, which requires waiting until at least one packet has
4262 * been received by the device. It is safe to call this function periodically
4263 * until calibration succeeds, as it will only program the offset once.
4264 *
4265 * This function must be called only after the offset registers are valid,
4266 * i.e. after the Vernier calibration wait has passed, to ensure that the PHY
4267 * has measured the offset.
4268 *
4269 * To avoid overflow, when calculating the offset based on the known static
4270 * latency values, we use measurements in 1/100th of a nanosecond, and divide
4271 * the TUs per second up front. This avoids overflow while allowing
4272 * calculation of the adjustment using integer arithmetic.
4273 *
4274 * Returns zero on success, -EBUSY if the hardware vernier offset
4275 * calibration has not completed, or another error code on failure.
4276 */
ice_phy_cfg_rx_offset_e82x(struct ice_hw * hw,u8 port)4277 int ice_phy_cfg_rx_offset_e82x(struct ice_hw *hw, u8 port)
4278 {
4279 enum ice_ptp_link_spd link_spd;
4280 enum ice_ptp_fec_mode fec_mode;
4281 u64 total_offset, pmd, val;
4282 int err;
4283 u32 reg;
4284
4285 /* Nothing to do if we've already programmed the offset */
4286 err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OR, ®);
4287 if (err) {
4288 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
4289 port, err);
4290 return err;
4291 }
4292
4293 if (reg)
4294 return 0;
4295
4296 err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OV_STATUS, ®);
4297 if (err) {
4298 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
4299 port, err);
4300 return err;
4301 }
4302
4303 if (!(reg & P_REG_RX_OV_STATUS_OV_M))
4304 return -EBUSY;
4305
4306 err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
4307 if (err)
4308 return err;
4309
4310 total_offset = ice_calc_fixed_rx_offset_e82x(hw, link_spd);
4311
4312 /* Read the first Vernier offset from the PHY register and add it to
4313 * the total offset.
4314 */
4315 err = ice_read_64b_phy_reg_e82x(hw, port,
4316 P_REG_PAR_PCS_RX_OFFSET_L,
4317 &val);
4318 if (err)
4319 return err;
4320
4321 total_offset += val;
4322
4323 /* For Rx, all multi-lane link speeds include a second Vernier
4324 * calibration, because the lanes might not be aligned.
4325 */
4326 if (link_spd == ICE_PTP_LNK_SPD_40G ||
4327 link_spd == ICE_PTP_LNK_SPD_50G ||
4328 link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4329 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4330 err = ice_read_64b_phy_reg_e82x(hw, port,
4331 P_REG_PAR_RX_TIME_L,
4332 &val);
4333 if (err)
4334 return err;
4335
4336 total_offset += val;
4337 }
4338
4339 /* In addition, Rx must account for the PMD alignment */
4340 err = ice_phy_calc_pmd_adj_e82x(hw, port, link_spd, fec_mode, &pmd);
4341 if (err)
4342 return err;
4343
4344 /* For RS-FEC, this adjustment adds delay, but for other modes, it
4345 * subtracts delay.
4346 */
4347 if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
4348 total_offset += pmd;
4349 else
4350 total_offset -= pmd;
4351
4352 /* Now that the total offset has been calculated, program it to the
4353 * PHY and indicate that the Rx offset is ready. After this,
4354 * timestamps will be enabled.
4355 */
4356 err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_RX_OFFSET_L,
4357 total_offset);
4358 if (err)
4359 return err;
4360
4361 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 1);
4362 if (err)
4363 return err;
4364
4365 dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
4366 port);
4367
4368 return 0;
4369 }
4370
4371 /**
4372 * ice_ptp_clear_phy_offset_ready_e82x - Clear PHY TX_/RX_OFFSET_READY registers
4373 * @hw: pointer to the HW struct
4374 *
4375 * Clear PHY TX_/RX_OFFSET_READY registers, effectively marking all transmitted
4376 * and received timestamps as invalid.
4377 *
4378 * Return: 0 on success, other error codes when failed to write to PHY
4379 */
ice_ptp_clear_phy_offset_ready_e82x(struct ice_hw * hw)4380 int ice_ptp_clear_phy_offset_ready_e82x(struct ice_hw *hw)
4381 {
4382 u8 port;
4383
4384 for (port = 0; port < hw->ptp.num_lports; port++) {
4385 int err;
4386
4387 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
4388 if (err) {
4389 dev_warn(ice_hw_to_dev(hw),
4390 "Failed to clear PHY TX_OFFSET_READY register\n");
4391 return err;
4392 }
4393
4394 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
4395 if (err) {
4396 dev_warn(ice_hw_to_dev(hw),
4397 "Failed to clear PHY RX_OFFSET_READY register\n");
4398 return err;
4399 }
4400 }
4401
4402 return 0;
4403 }
4404
4405 /**
4406 * ice_read_phy_and_phc_time_e82x - Simultaneously capture PHC and PHY time
4407 * @hw: pointer to the HW struct
4408 * @port: the PHY port to read
4409 * @phy_time: on return, the 64bit PHY timer value
4410 * @phc_time: on return, the lower 64bits of PHC time
4411 *
4412 * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
4413 * and PHC timer values.
4414 */
4415 static int
ice_read_phy_and_phc_time_e82x(struct ice_hw * hw,u8 port,u64 * phy_time,u64 * phc_time)4416 ice_read_phy_and_phc_time_e82x(struct ice_hw *hw, u8 port, u64 *phy_time,
4417 u64 *phc_time)
4418 {
4419 u64 tx_time, rx_time;
4420 u32 zo, lo;
4421 u8 tmr_idx;
4422 int err;
4423
4424 tmr_idx = ice_get_ptp_src_clock_index(hw);
4425
4426 /* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
4427 ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
4428
4429 /* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
4430 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
4431 if (err)
4432 return err;
4433
4434 /* Issue the sync to start the ICE_PTP_READ_TIME capture */
4435 ice_ptp_exec_tmr_cmd(hw);
4436
4437 /* Read the captured PHC time from the shadow time registers */
4438 zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
4439 lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
4440 *phc_time = (u64)lo << 32 | zo;
4441
4442 /* Read the captured PHY time from the PHY shadow registers */
4443 err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
4444 if (err)
4445 return err;
4446
4447 /* If the PHY Tx and Rx timers don't match, log a warning message.
4448 * Note that this should not happen in normal circumstances since the
4449 * driver always programs them together.
4450 */
4451 if (tx_time != rx_time)
4452 dev_warn(ice_hw_to_dev(hw),
4453 "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
4454 port, (unsigned long long)tx_time,
4455 (unsigned long long)rx_time);
4456
4457 *phy_time = tx_time;
4458
4459 return 0;
4460 }
4461
4462 /**
4463 * ice_sync_phy_timer_e82x - Synchronize the PHY timer with PHC timer
4464 * @hw: pointer to the HW struct
4465 * @port: the PHY port to synchronize
4466 *
4467 * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
4468 * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
4469 * simultaneous read of the PHY timer and PHC timer. Then we use the
4470 * difference to calculate an appropriate 2s complement addition to add
4471 * to the PHY timer in order to ensure it reads the same value as the
4472 * primary PHC timer.
4473 */
ice_sync_phy_timer_e82x(struct ice_hw * hw,u8 port)4474 static int ice_sync_phy_timer_e82x(struct ice_hw *hw, u8 port)
4475 {
4476 u64 phc_time, phy_time, difference;
4477 int err;
4478
4479 if (!ice_ptp_lock(hw)) {
4480 ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
4481 return -EBUSY;
4482 }
4483
4484 err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
4485 if (err)
4486 goto err_unlock;
4487
4488 /* Calculate the amount required to add to the port time in order for
4489 * it to match the PHC time.
4490 *
4491 * Note that the port adjustment is done using 2s complement
4492 * arithmetic. This is convenient since it means that we can simply
4493 * calculate the difference between the PHC time and the port time,
4494 * and it will be interpreted correctly.
4495 */
4496 difference = phc_time - phy_time;
4497
4498 err = ice_ptp_prep_port_adj_e82x(hw, port, (s64)difference);
4499 if (err)
4500 goto err_unlock;
4501
4502 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
4503 if (err)
4504 goto err_unlock;
4505
4506 /* Do not perform any action on the main timer */
4507 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
4508
4509 /* Issue the sync to activate the time adjustment */
4510 ice_ptp_exec_tmr_cmd(hw);
4511
4512 /* Re-capture the timer values to flush the command registers and
4513 * verify that the time was properly adjusted.
4514 */
4515 err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
4516 if (err)
4517 goto err_unlock;
4518
4519 dev_info(ice_hw_to_dev(hw),
4520 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
4521 port, (unsigned long long)phy_time,
4522 (unsigned long long)phc_time);
4523
4524 ice_ptp_unlock(hw);
4525
4526 return 0;
4527
4528 err_unlock:
4529 ice_ptp_unlock(hw);
4530 return err;
4531 }
4532
4533 /**
4534 * ice_stop_phy_timer_e82x - Stop the PHY clock timer
4535 * @hw: pointer to the HW struct
4536 * @port: the PHY port to stop
4537 * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
4538 *
4539 * Stop the clock of a PHY port. This must be done as part of the flow to
4540 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
4541 * initialized or when link speed changes.
4542 */
4543 int
ice_stop_phy_timer_e82x(struct ice_hw * hw,u8 port,bool soft_reset)4544 ice_stop_phy_timer_e82x(struct ice_hw *hw, u8 port, bool soft_reset)
4545 {
4546 int err;
4547 u32 val;
4548
4549 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
4550 if (err)
4551 return err;
4552
4553 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
4554 if (err)
4555 return err;
4556
4557 err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
4558 if (err)
4559 return err;
4560
4561 val &= ~P_REG_PS_START_M;
4562 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4563 if (err)
4564 return err;
4565
4566 val &= ~P_REG_PS_ENA_CLK_M;
4567 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4568 if (err)
4569 return err;
4570
4571 if (soft_reset) {
4572 val |= P_REG_PS_SFT_RESET_M;
4573 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4574 if (err)
4575 return err;
4576 }
4577
4578 ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
4579
4580 return 0;
4581 }
4582
4583 /**
4584 * ice_start_phy_timer_e82x - Start the PHY clock timer
4585 * @hw: pointer to the HW struct
4586 * @port: the PHY port to start
4587 *
4588 * Start the clock of a PHY port. This must be done as part of the flow to
4589 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
4590 * initialized or when link speed changes.
4591 *
4592 * Hardware will take Vernier measurements on Tx or Rx of packets.
4593 */
ice_start_phy_timer_e82x(struct ice_hw * hw,u8 port)4594 int ice_start_phy_timer_e82x(struct ice_hw *hw, u8 port)
4595 {
4596 u32 lo, hi, val;
4597 u64 incval;
4598 u8 tmr_idx;
4599 int err;
4600
4601 tmr_idx = ice_get_ptp_src_clock_index(hw);
4602
4603 err = ice_stop_phy_timer_e82x(hw, port, false);
4604 if (err)
4605 return err;
4606
4607 ice_phy_cfg_lane_e82x(hw, port);
4608
4609 err = ice_phy_cfg_uix_e82x(hw, port);
4610 if (err)
4611 return err;
4612
4613 err = ice_phy_cfg_parpcs_e82x(hw, port);
4614 if (err)
4615 return err;
4616
4617 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
4618 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
4619 incval = (u64)hi << 32 | lo;
4620
4621 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L, incval);
4622 if (err)
4623 return err;
4624
4625 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
4626 if (err)
4627 return err;
4628
4629 /* Do not perform any action on the main timer */
4630 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
4631
4632 ice_ptp_exec_tmr_cmd(hw);
4633
4634 err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
4635 if (err)
4636 return err;
4637
4638 val |= P_REG_PS_SFT_RESET_M;
4639 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4640 if (err)
4641 return err;
4642
4643 val |= P_REG_PS_START_M;
4644 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4645 if (err)
4646 return err;
4647
4648 val &= ~P_REG_PS_SFT_RESET_M;
4649 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4650 if (err)
4651 return err;
4652
4653 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
4654 if (err)
4655 return err;
4656
4657 ice_ptp_exec_tmr_cmd(hw);
4658
4659 val |= P_REG_PS_ENA_CLK_M;
4660 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4661 if (err)
4662 return err;
4663
4664 val |= P_REG_PS_LOAD_OFFSET_M;
4665 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4666 if (err)
4667 return err;
4668
4669 ice_ptp_exec_tmr_cmd(hw);
4670
4671 err = ice_sync_phy_timer_e82x(hw, port);
4672 if (err)
4673 return err;
4674
4675 ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
4676
4677 return 0;
4678 }
4679
4680 /**
4681 * ice_get_phy_tx_tstamp_ready_e82x - Read Tx memory status register
4682 * @hw: pointer to the HW struct
4683 * @quad: the timestamp quad to read from
4684 * @tstamp_ready: contents of the Tx memory status register
4685 *
4686 * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
4687 * the PHY are ready. A set bit means the corresponding timestamp is valid and
4688 * ready to be captured from the PHY timestamp block.
4689 */
4690 static int
ice_get_phy_tx_tstamp_ready_e82x(struct ice_hw * hw,u8 quad,u64 * tstamp_ready)4691 ice_get_phy_tx_tstamp_ready_e82x(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
4692 {
4693 u32 hi, lo;
4694 int err;
4695
4696 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi);
4697 if (err) {
4698 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
4699 quad, err);
4700 return err;
4701 }
4702
4703 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo);
4704 if (err) {
4705 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
4706 quad, err);
4707 return err;
4708 }
4709
4710 *tstamp_ready = (u64)hi << 32 | (u64)lo;
4711
4712 return 0;
4713 }
4714
4715 /**
4716 * ice_phy_cfg_intr_e82x - Configure TX timestamp interrupt
4717 * @hw: pointer to the HW struct
4718 * @quad: the timestamp quad
4719 * @ena: enable or disable interrupt
4720 * @threshold: interrupt threshold
4721 *
4722 * Configure TX timestamp interrupt for the specified quad
4723 *
4724 * Return: 0 on success, other error codes when failed to read/write quad
4725 */
4726
ice_phy_cfg_intr_e82x(struct ice_hw * hw,u8 quad,bool ena,u8 threshold)4727 int ice_phy_cfg_intr_e82x(struct ice_hw *hw, u8 quad, bool ena, u8 threshold)
4728 {
4729 int err;
4730 u32 val;
4731
4732 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
4733 if (err)
4734 return err;
4735
4736 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
4737 if (ena) {
4738 val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
4739 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
4740 val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M, threshold);
4741 }
4742
4743 return ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
4744 }
4745
4746 /**
4747 * ice_ptp_init_phy_e82x - initialize PHY parameters
4748 * @ptp: pointer to the PTP HW struct
4749 */
ice_ptp_init_phy_e82x(struct ice_ptp_hw * ptp)4750 static void ice_ptp_init_phy_e82x(struct ice_ptp_hw *ptp)
4751 {
4752 ptp->phy_model = ICE_PHY_E82X;
4753 ptp->num_lports = 8;
4754 ptp->ports_per_phy = 8;
4755 }
4756
4757 /* E810 functions
4758 *
4759 * The following functions operate on the E810 series devices which use
4760 * a separate external PHY.
4761 */
4762
4763 /**
4764 * ice_read_phy_reg_e810 - Read register from external PHY on E810
4765 * @hw: pointer to the HW struct
4766 * @addr: the address to read from
4767 * @val: On return, the value read from the PHY
4768 *
4769 * Read a register from the external PHY on the E810 device.
4770 */
ice_read_phy_reg_e810(struct ice_hw * hw,u32 addr,u32 * val)4771 static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
4772 {
4773 struct ice_sbq_msg_input msg = {0};
4774 int err;
4775
4776 msg.msg_addr_low = lower_16_bits(addr);
4777 msg.msg_addr_high = upper_16_bits(addr);
4778 msg.opcode = ice_sbq_msg_rd;
4779 msg.dest_dev = rmn_0;
4780
4781 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
4782 if (err) {
4783 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
4784 err);
4785 return err;
4786 }
4787
4788 *val = msg.data;
4789
4790 return 0;
4791 }
4792
4793 /**
4794 * ice_write_phy_reg_e810 - Write register on external PHY on E810
4795 * @hw: pointer to the HW struct
4796 * @addr: the address to writem to
4797 * @val: the value to write to the PHY
4798 *
4799 * Write a value to a register of the external PHY on the E810 device.
4800 */
ice_write_phy_reg_e810(struct ice_hw * hw,u32 addr,u32 val)4801 static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
4802 {
4803 struct ice_sbq_msg_input msg = {0};
4804 int err;
4805
4806 msg.msg_addr_low = lower_16_bits(addr);
4807 msg.msg_addr_high = upper_16_bits(addr);
4808 msg.opcode = ice_sbq_msg_wr;
4809 msg.dest_dev = rmn_0;
4810 msg.data = val;
4811
4812 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
4813 if (err) {
4814 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
4815 err);
4816 return err;
4817 }
4818
4819 return 0;
4820 }
4821
4822 /**
4823 * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
4824 * @hw: pointer to the HW struct
4825 * @idx: the timestamp index to read
4826 * @hi: 8 bit timestamp high value
4827 * @lo: 32 bit timestamp low value
4828 *
4829 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
4830 * timestamp block of the external PHY on the E810 device using the low latency
4831 * timestamp read.
4832 */
4833 static int
ice_read_phy_tstamp_ll_e810(struct ice_hw * hw,u8 idx,u8 * hi,u32 * lo)4834 ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
4835 {
4836 u32 val;
4837 u8 i;
4838
4839 /* Write TS index to read to the PF register so the FW can read it */
4840 val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS;
4841 wr32(hw, PF_SB_ATQBAL, val);
4842
4843 /* Read the register repeatedly until the FW provides us the TS */
4844 for (i = TS_LL_READ_RETRIES; i > 0; i--) {
4845 val = rd32(hw, PF_SB_ATQBAL);
4846
4847 /* When the bit is cleared, the TS is ready in the register */
4848 if (!(FIELD_GET(TS_LL_READ_TS, val))) {
4849 /* High 8 bit value of the TS is on the bits 16:23 */
4850 *hi = FIELD_GET(TS_LL_READ_TS_HIGH, val);
4851
4852 /* Read the low 32 bit value and set the TS valid bit */
4853 *lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID;
4854 return 0;
4855 }
4856
4857 udelay(10);
4858 }
4859
4860 /* FW failed to provide the TS in time */
4861 ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
4862 return -EINVAL;
4863 }
4864
4865 /**
4866 * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
4867 * @hw: pointer to the HW struct
4868 * @lport: the lport to read from
4869 * @idx: the timestamp index to read
4870 * @hi: 8 bit timestamp high value
4871 * @lo: 32 bit timestamp low value
4872 *
4873 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
4874 * timestamp block of the external PHY on the E810 device using sideband queue.
4875 */
4876 static int
ice_read_phy_tstamp_sbq_e810(struct ice_hw * hw,u8 lport,u8 idx,u8 * hi,u32 * lo)4877 ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
4878 u32 *lo)
4879 {
4880 u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
4881 u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
4882 u32 lo_val, hi_val;
4883 int err;
4884
4885 err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
4886 if (err) {
4887 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
4888 err);
4889 return err;
4890 }
4891
4892 err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
4893 if (err) {
4894 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
4895 err);
4896 return err;
4897 }
4898
4899 *lo = lo_val;
4900 *hi = (u8)hi_val;
4901
4902 return 0;
4903 }
4904
4905 /**
4906 * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
4907 * @hw: pointer to the HW struct
4908 * @lport: the lport to read from
4909 * @idx: the timestamp index to read
4910 * @tstamp: on return, the 40bit timestamp value
4911 *
4912 * Read a 40bit timestamp value out of the timestamp block of the external PHY
4913 * on the E810 device.
4914 */
4915 static int
ice_read_phy_tstamp_e810(struct ice_hw * hw,u8 lport,u8 idx,u64 * tstamp)4916 ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
4917 {
4918 u32 lo = 0;
4919 u8 hi = 0;
4920 int err;
4921
4922 if (hw->dev_caps.ts_dev_info.ts_ll_read)
4923 err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
4924 else
4925 err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
4926
4927 if (err)
4928 return err;
4929
4930 /* For E810 devices, the timestamp is reported with the lower 32 bits
4931 * in the low register, and the upper 8 bits in the high register.
4932 */
4933 *tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
4934
4935 return 0;
4936 }
4937
4938 /**
4939 * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
4940 * @hw: pointer to the HW struct
4941 * @lport: the lport to read from
4942 * @idx: the timestamp index to reset
4943 *
4944 * Read the timestamp and then forcibly overwrite its value to clear the valid
4945 * bit from the timestamp block of the external PHY on the E810 device.
4946 *
4947 * This function should only be called on an idx whose bit is set according to
4948 * ice_get_phy_tx_tstamp_ready().
4949 */
ice_clear_phy_tstamp_e810(struct ice_hw * hw,u8 lport,u8 idx)4950 static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
4951 {
4952 u32 lo_addr, hi_addr;
4953 u64 unused_tstamp;
4954 int err;
4955
4956 err = ice_read_phy_tstamp_e810(hw, lport, idx, &unused_tstamp);
4957 if (err) {
4958 ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for lport %u, idx %u, err %d\n",
4959 lport, idx, err);
4960 return err;
4961 }
4962
4963 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
4964 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
4965
4966 err = ice_write_phy_reg_e810(hw, lo_addr, 0);
4967 if (err) {
4968 ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for lport %u, idx %u, err %d\n",
4969 lport, idx, err);
4970 return err;
4971 }
4972
4973 err = ice_write_phy_reg_e810(hw, hi_addr, 0);
4974 if (err) {
4975 ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register for lport %u, idx %u, err %d\n",
4976 lport, idx, err);
4977 return err;
4978 }
4979
4980 return 0;
4981 }
4982
4983 /**
4984 * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
4985 * @hw: pointer to HW struct
4986 *
4987 * Perform E810-specific PTP hardware clock initialization steps.
4988 *
4989 * Return: 0 on success, other error codes when failed to initialize TimeSync
4990 */
ice_ptp_init_phc_e810(struct ice_hw * hw)4991 static int ice_ptp_init_phc_e810(struct ice_hw *hw)
4992 {
4993 u8 tmr_idx;
4994 int err;
4995
4996 /* Ensure synchronization delay is zero */
4997 wr32(hw, GLTSYN_SYNC_DLAY, 0);
4998
4999 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5000 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
5001 GLTSYN_ENA_TSYN_ENA_M);
5002 if (err)
5003 ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
5004 err);
5005
5006 return err;
5007 }
5008
5009 /**
5010 * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
5011 * @hw: Board private structure
5012 * @time: Time to initialize the PHY port clock to
5013 *
5014 * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
5015 * initial clock time. The time will not actually be programmed until the
5016 * driver issues an ICE_PTP_INIT_TIME command.
5017 *
5018 * The time value is the upper 32 bits of the PHY timer, usually in units of
5019 * nominal nanoseconds.
5020 */
ice_ptp_prep_phy_time_e810(struct ice_hw * hw,u32 time)5021 static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
5022 {
5023 u8 tmr_idx;
5024 int err;
5025
5026 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5027 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
5028 if (err) {
5029 ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
5030 err);
5031 return err;
5032 }
5033
5034 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
5035 if (err) {
5036 ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
5037 err);
5038 return err;
5039 }
5040
5041 return 0;
5042 }
5043
5044 /**
5045 * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
5046 * @hw: pointer to HW struct
5047 * @adj: adjustment value to program
5048 *
5049 * Prepare the PHY port for an atomic adjustment by programming the PHY
5050 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
5051 * is completed by issuing an ICE_PTP_ADJ_TIME sync command.
5052 *
5053 * The adjustment value only contains the portion used for the upper 32bits of
5054 * the PHY timer, usually in units of nominal nanoseconds. Negative
5055 * adjustments are supported using 2s complement arithmetic.
5056 */
ice_ptp_prep_phy_adj_e810(struct ice_hw * hw,s32 adj)5057 static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
5058 {
5059 u8 tmr_idx;
5060 int err;
5061
5062 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5063
5064 /* Adjustments are represented as signed 2's complement values in
5065 * nanoseconds. Sub-nanosecond adjustment is not supported.
5066 */
5067 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
5068 if (err) {
5069 ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
5070 err);
5071 return err;
5072 }
5073
5074 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
5075 if (err) {
5076 ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
5077 err);
5078 return err;
5079 }
5080
5081 return 0;
5082 }
5083
5084 /**
5085 * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
5086 * @hw: pointer to HW struct
5087 * @incval: The new 40bit increment value to prepare
5088 *
5089 * Prepare the PHY port for a new increment value by programming the PHY
5090 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
5091 * completed by issuing an ICE_PTP_INIT_INCVAL command.
5092 */
ice_ptp_prep_phy_incval_e810(struct ice_hw * hw,u64 incval)5093 static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
5094 {
5095 u32 high, low;
5096 u8 tmr_idx;
5097 int err;
5098
5099 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5100 low = lower_32_bits(incval);
5101 high = upper_32_bits(incval);
5102
5103 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
5104 if (err) {
5105 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
5106 err);
5107 return err;
5108 }
5109
5110 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
5111 if (err) {
5112 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
5113 err);
5114 return err;
5115 }
5116
5117 return 0;
5118 }
5119
5120 /**
5121 * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
5122 * @hw: pointer to HW struct
5123 * @cmd: Command to be sent to the port
5124 *
5125 * Prepare the external PHYs connected to this device for a timer sync
5126 * command.
5127 */
ice_ptp_port_cmd_e810(struct ice_hw * hw,enum ice_ptp_tmr_cmd cmd)5128 static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5129 {
5130 u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
5131
5132 return ice_write_phy_reg_e810(hw, E810_ETH_GLTSYN_CMD, val);
5133 }
5134
5135 /**
5136 * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
5137 * @hw: pointer to the HW struct
5138 * @port: the PHY port to read
5139 * @tstamp_ready: contents of the Tx memory status register
5140 *
5141 * E810 devices do not use a Tx memory status register. Instead simply
5142 * indicate that all timestamps are currently ready.
5143 */
5144 static int
ice_get_phy_tx_tstamp_ready_e810(struct ice_hw * hw,u8 port,u64 * tstamp_ready)5145 ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
5146 {
5147 *tstamp_ready = 0xFFFFFFFFFFFFFFFF;
5148 return 0;
5149 }
5150
5151 /* E810T SMA functions
5152 *
5153 * The following functions operate specifically on E810T hardware and are used
5154 * to access the extended GPIOs available.
5155 */
5156
5157 /**
5158 * ice_get_pca9575_handle
5159 * @hw: pointer to the hw struct
5160 * @pca9575_handle: GPIO controller's handle
5161 *
5162 * Find and return the GPIO controller's handle in the netlist.
5163 * When found - the value will be cached in the hw structure and following calls
5164 * will return cached value
5165 */
5166 static int
ice_get_pca9575_handle(struct ice_hw * hw,u16 * pca9575_handle)5167 ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
5168 {
5169 struct ice_aqc_get_link_topo *cmd;
5170 struct ice_aq_desc desc;
5171 int status;
5172 u8 idx;
5173
5174 /* If handle was read previously return cached value */
5175 if (hw->io_expander_handle) {
5176 *pca9575_handle = hw->io_expander_handle;
5177 return 0;
5178 }
5179
5180 /* If handle was not detected read it from the netlist */
5181 cmd = &desc.params.get_link_topo;
5182 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
5183
5184 /* Set node type to GPIO controller */
5185 cmd->addr.topo_params.node_type_ctx =
5186 (ICE_AQC_LINK_TOPO_NODE_TYPE_M &
5187 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
5188
5189 #define SW_PCA9575_SFP_TOPO_IDX 2
5190 #define SW_PCA9575_QSFP_TOPO_IDX 1
5191
5192 /* Check if the SW IO expander controlling SMA exists in the netlist. */
5193 if (hw->device_id == ICE_DEV_ID_E810C_SFP)
5194 idx = SW_PCA9575_SFP_TOPO_IDX;
5195 else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
5196 idx = SW_PCA9575_QSFP_TOPO_IDX;
5197 else
5198 return -EOPNOTSUPP;
5199
5200 cmd->addr.topo_params.index = idx;
5201
5202 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5203 if (status)
5204 return -EOPNOTSUPP;
5205
5206 /* Verify if we found the right IO expander type */
5207 if (desc.params.get_link_topo.node_part_num !=
5208 ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
5209 return -EOPNOTSUPP;
5210
5211 /* If present save the handle and return it */
5212 hw->io_expander_handle =
5213 le16_to_cpu(desc.params.get_link_topo.addr.handle);
5214 *pca9575_handle = hw->io_expander_handle;
5215
5216 return 0;
5217 }
5218
5219 /**
5220 * ice_read_sma_ctrl_e810t
5221 * @hw: pointer to the hw struct
5222 * @data: pointer to data to be read from the GPIO controller
5223 *
5224 * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
5225 * PCA9575 expander, so only bits 3-7 in data are valid.
5226 */
ice_read_sma_ctrl_e810t(struct ice_hw * hw,u8 * data)5227 int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data)
5228 {
5229 int status;
5230 u16 handle;
5231 u8 i;
5232
5233 status = ice_get_pca9575_handle(hw, &handle);
5234 if (status)
5235 return status;
5236
5237 *data = 0;
5238
5239 for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
5240 bool pin;
5241
5242 status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
5243 &pin, NULL);
5244 if (status)
5245 break;
5246 *data |= (u8)(!pin) << i;
5247 }
5248
5249 return status;
5250 }
5251
5252 /**
5253 * ice_write_sma_ctrl_e810t
5254 * @hw: pointer to the hw struct
5255 * @data: data to be written to the GPIO controller
5256 *
5257 * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
5258 * of the PCA9575 expander, so only bits 3-7 in data are valid.
5259 */
ice_write_sma_ctrl_e810t(struct ice_hw * hw,u8 data)5260 int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data)
5261 {
5262 int status;
5263 u16 handle;
5264 u8 i;
5265
5266 status = ice_get_pca9575_handle(hw, &handle);
5267 if (status)
5268 return status;
5269
5270 for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
5271 bool pin;
5272
5273 pin = !(data & (1 << i));
5274 status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
5275 pin, NULL);
5276 if (status)
5277 break;
5278 }
5279
5280 return status;
5281 }
5282
5283 /**
5284 * ice_read_pca9575_reg_e810t
5285 * @hw: pointer to the hw struct
5286 * @offset: GPIO controller register offset
5287 * @data: pointer to data to be read from the GPIO controller
5288 *
5289 * Read the register from the GPIO controller
5290 */
ice_read_pca9575_reg_e810t(struct ice_hw * hw,u8 offset,u8 * data)5291 int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data)
5292 {
5293 struct ice_aqc_link_topo_addr link_topo;
5294 __le16 addr;
5295 u16 handle;
5296 int err;
5297
5298 memset(&link_topo, 0, sizeof(link_topo));
5299
5300 err = ice_get_pca9575_handle(hw, &handle);
5301 if (err)
5302 return err;
5303
5304 link_topo.handle = cpu_to_le16(handle);
5305 link_topo.topo_params.node_type_ctx =
5306 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
5307 ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
5308
5309 addr = cpu_to_le16((u16)offset);
5310
5311 return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
5312 }
5313
5314 /**
5315 * ice_ptp_init_phy_e810 - initialize PHY parameters
5316 * @ptp: pointer to the PTP HW struct
5317 */
ice_ptp_init_phy_e810(struct ice_ptp_hw * ptp)5318 static void ice_ptp_init_phy_e810(struct ice_ptp_hw *ptp)
5319 {
5320 ptp->phy_model = ICE_PHY_E810;
5321 ptp->num_lports = 8;
5322 ptp->ports_per_phy = 4;
5323 }
5324
5325 /* Device agnostic functions
5326 *
5327 * The following functions implement shared behavior common to both E822 and
5328 * E810 devices, possibly calling a device specific implementation where
5329 * necessary.
5330 */
5331
5332 /**
5333 * ice_ptp_lock - Acquire PTP global semaphore register lock
5334 * @hw: pointer to the HW struct
5335 *
5336 * Acquire the global PTP hardware semaphore lock. Returns true if the lock
5337 * was acquired, false otherwise.
5338 *
5339 * The PFTSYN_SEM register sets the busy bit on read, returning the previous
5340 * value. If software sees the busy bit cleared, this means that this function
5341 * acquired the lock (and the busy bit is now set). If software sees the busy
5342 * bit set, it means that another function acquired the lock.
5343 *
5344 * Software must clear the busy bit with a write to release the lock for other
5345 * functions when done.
5346 */
ice_ptp_lock(struct ice_hw * hw)5347 bool ice_ptp_lock(struct ice_hw *hw)
5348 {
5349 u32 hw_lock;
5350 int i;
5351
5352 #define MAX_TRIES 15
5353
5354 for (i = 0; i < MAX_TRIES; i++) {
5355 hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
5356 hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
5357 if (hw_lock) {
5358 /* Somebody is holding the lock */
5359 usleep_range(5000, 6000);
5360 continue;
5361 }
5362
5363 break;
5364 }
5365
5366 return !hw_lock;
5367 }
5368
5369 /**
5370 * ice_ptp_unlock - Release PTP global semaphore register lock
5371 * @hw: pointer to the HW struct
5372 *
5373 * Release the global PTP hardware semaphore lock. This is done by writing to
5374 * the PFTSYN_SEM register.
5375 */
ice_ptp_unlock(struct ice_hw * hw)5376 void ice_ptp_unlock(struct ice_hw *hw)
5377 {
5378 wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
5379 }
5380
5381 /**
5382 * ice_ptp_init_hw - Initialize hw based on device type
5383 * @hw: pointer to the HW structure
5384 *
5385 * Determine the PHY model for the device, and initialize hw
5386 * for use by other functions.
5387 */
ice_ptp_init_hw(struct ice_hw * hw)5388 void ice_ptp_init_hw(struct ice_hw *hw)
5389 {
5390 struct ice_ptp_hw *ptp = &hw->ptp;
5391
5392 if (ice_is_e822(hw) || ice_is_e823(hw))
5393 ice_ptp_init_phy_e82x(ptp);
5394 else if (ice_is_e810(hw))
5395 ice_ptp_init_phy_e810(ptp);
5396 else if (ice_is_e825c(hw))
5397 ice_ptp_init_phy_e825c(hw);
5398 else
5399 ptp->phy_model = ICE_PHY_UNSUP;
5400 }
5401
5402 /**
5403 * ice_ptp_write_port_cmd - Prepare a single PHY port for a timer command
5404 * @hw: pointer to HW struct
5405 * @port: Port to which cmd has to be sent
5406 * @cmd: Command to be sent to the port
5407 *
5408 * Prepare one port for the upcoming timer sync command. Do not use this for
5409 * programming only a single port, instead use ice_ptp_one_port_cmd() to
5410 * ensure non-modified ports get properly initialized to ICE_PTP_NOP.
5411 *
5412 * Return:
5413 * * %0 - success
5414 * %-EBUSY - PHY type not supported
5415 * * %other - failed to write port command
5416 */
ice_ptp_write_port_cmd(struct ice_hw * hw,u8 port,enum ice_ptp_tmr_cmd cmd)5417 static int ice_ptp_write_port_cmd(struct ice_hw *hw, u8 port,
5418 enum ice_ptp_tmr_cmd cmd)
5419 {
5420 switch (hw->ptp.phy_model) {
5421 case ICE_PHY_ETH56G:
5422 return ice_ptp_write_port_cmd_eth56g(hw, port, cmd);
5423 case ICE_PHY_E82X:
5424 return ice_ptp_write_port_cmd_e82x(hw, port, cmd);
5425 default:
5426 return -EOPNOTSUPP;
5427 }
5428 }
5429
5430 /**
5431 * ice_ptp_one_port_cmd - Program one PHY port for a timer command
5432 * @hw: pointer to HW struct
5433 * @configured_port: the port that should execute the command
5434 * @configured_cmd: the command to be executed on the configured port
5435 *
5436 * Prepare one port for executing a timer command, while preparing all other
5437 * ports to ICE_PTP_NOP. This allows executing a command on a single port
5438 * while ensuring all other ports do not execute stale commands.
5439 *
5440 * Return:
5441 * * %0 - success
5442 * * %other - failed to write port command
5443 */
ice_ptp_one_port_cmd(struct ice_hw * hw,u8 configured_port,enum ice_ptp_tmr_cmd configured_cmd)5444 int ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port,
5445 enum ice_ptp_tmr_cmd configured_cmd)
5446 {
5447 u32 port;
5448
5449 for (port = 0; port < hw->ptp.num_lports; port++) {
5450 int err;
5451
5452 /* Program the configured port with the configured command,
5453 * program all other ports with ICE_PTP_NOP.
5454 */
5455 if (port == configured_port)
5456 err = ice_ptp_write_port_cmd(hw, port, configured_cmd);
5457 else
5458 err = ice_ptp_write_port_cmd(hw, port, ICE_PTP_NOP);
5459
5460 if (err)
5461 return err;
5462 }
5463
5464 return 0;
5465 }
5466
5467 /**
5468 * ice_ptp_port_cmd - Prepare PHY ports for a timer sync command
5469 * @hw: pointer to HW struct
5470 * @cmd: the timer command to setup
5471 *
5472 * Prepare all PHY ports on this device for the requested timer command. For
5473 * some families this can be done in one shot, but for other families each
5474 * port must be configured individually.
5475 *
5476 * Return:
5477 * * %0 - success
5478 * * %other - failed to write port command
5479 */
ice_ptp_port_cmd(struct ice_hw * hw,enum ice_ptp_tmr_cmd cmd)5480 static int ice_ptp_port_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5481 {
5482 u32 port;
5483
5484 /* PHY models which can program all ports simultaneously */
5485 switch (hw->ptp.phy_model) {
5486 case ICE_PHY_E810:
5487 return ice_ptp_port_cmd_e810(hw, cmd);
5488 default:
5489 break;
5490 }
5491
5492 /* PHY models which require programming each port separately */
5493 for (port = 0; port < hw->ptp.num_lports; port++) {
5494 int err;
5495
5496 err = ice_ptp_write_port_cmd(hw, port, cmd);
5497 if (err)
5498 return err;
5499 }
5500
5501 return 0;
5502 }
5503
5504 /**
5505 * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
5506 * @hw: pointer to HW struct
5507 * @cmd: the command to issue
5508 *
5509 * Prepare the source timer and PHY timers and then trigger the requested
5510 * command. This causes the shadow registers previously written in preparation
5511 * for the command to be synchronously applied to both the source and PHY
5512 * timers.
5513 */
ice_ptp_tmr_cmd(struct ice_hw * hw,enum ice_ptp_tmr_cmd cmd)5514 static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5515 {
5516 int err;
5517
5518 /* First, prepare the source timer */
5519 ice_ptp_src_cmd(hw, cmd);
5520
5521 /* Next, prepare the ports */
5522 err = ice_ptp_port_cmd(hw, cmd);
5523 if (err) {
5524 ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
5525 cmd, err);
5526 return err;
5527 }
5528
5529 /* Write the sync command register to drive both source and PHY timer
5530 * commands synchronously
5531 */
5532 ice_ptp_exec_tmr_cmd(hw);
5533
5534 return 0;
5535 }
5536
5537 /**
5538 * ice_ptp_init_time - Initialize device time to provided value
5539 * @hw: pointer to HW struct
5540 * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
5541 *
5542 * Initialize the device to the specified time provided. This requires a three
5543 * step process:
5544 *
5545 * 1) write the new init time to the source timer shadow registers
5546 * 2) write the new init time to the PHY timer shadow registers
5547 * 3) issue an init_time timer command to synchronously switch both the source
5548 * and port timers to the new init time value at the next clock cycle.
5549 */
ice_ptp_init_time(struct ice_hw * hw,u64 time)5550 int ice_ptp_init_time(struct ice_hw *hw, u64 time)
5551 {
5552 u8 tmr_idx;
5553 int err;
5554
5555 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5556
5557 /* Source timers */
5558 wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
5559 wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
5560 wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
5561
5562 /* PHY timers */
5563 /* Fill Rx and Tx ports and send msg to PHY */
5564 switch (hw->ptp.phy_model) {
5565 case ICE_PHY_ETH56G:
5566 err = ice_ptp_prep_phy_time_eth56g(hw,
5567 (u32)(time & 0xFFFFFFFF));
5568 break;
5569 case ICE_PHY_E810:
5570 err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
5571 break;
5572 case ICE_PHY_E82X:
5573 err = ice_ptp_prep_phy_time_e82x(hw, time & 0xFFFFFFFF);
5574 break;
5575 default:
5576 err = -EOPNOTSUPP;
5577 }
5578
5579 if (err)
5580 return err;
5581
5582 return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_TIME);
5583 }
5584
5585 /**
5586 * ice_ptp_write_incval - Program PHC with new increment value
5587 * @hw: pointer to HW struct
5588 * @incval: Source timer increment value per clock cycle
5589 *
5590 * Program the PHC with a new increment value. This requires a three-step
5591 * process:
5592 *
5593 * 1) Write the increment value to the source timer shadow registers
5594 * 2) Write the increment value to the PHY timer shadow registers
5595 * 3) Issue an ICE_PTP_INIT_INCVAL timer command to synchronously switch both
5596 * the source and port timers to the new increment value at the next clock
5597 * cycle.
5598 */
ice_ptp_write_incval(struct ice_hw * hw,u64 incval)5599 int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
5600 {
5601 u8 tmr_idx;
5602 int err;
5603
5604 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5605
5606 /* Shadow Adjust */
5607 wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
5608 wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
5609
5610 switch (hw->ptp.phy_model) {
5611 case ICE_PHY_ETH56G:
5612 err = ice_ptp_prep_phy_incval_eth56g(hw, incval);
5613 break;
5614 case ICE_PHY_E810:
5615 err = ice_ptp_prep_phy_incval_e810(hw, incval);
5616 break;
5617 case ICE_PHY_E82X:
5618 err = ice_ptp_prep_phy_incval_e82x(hw, incval);
5619 break;
5620 default:
5621 err = -EOPNOTSUPP;
5622 }
5623
5624 if (err)
5625 return err;
5626
5627 return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_INCVAL);
5628 }
5629
5630 /**
5631 * ice_ptp_write_incval_locked - Program new incval while holding semaphore
5632 * @hw: pointer to HW struct
5633 * @incval: Source timer increment value per clock cycle
5634 *
5635 * Program a new PHC incval while holding the PTP semaphore.
5636 */
ice_ptp_write_incval_locked(struct ice_hw * hw,u64 incval)5637 int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
5638 {
5639 int err;
5640
5641 if (!ice_ptp_lock(hw))
5642 return -EBUSY;
5643
5644 err = ice_ptp_write_incval(hw, incval);
5645
5646 ice_ptp_unlock(hw);
5647
5648 return err;
5649 }
5650
5651 /**
5652 * ice_ptp_adj_clock - Adjust PHC clock time atomically
5653 * @hw: pointer to HW struct
5654 * @adj: Adjustment in nanoseconds
5655 *
5656 * Perform an atomic adjustment of the PHC time by the specified number of
5657 * nanoseconds. This requires a three-step process:
5658 *
5659 * 1) Write the adjustment to the source timer shadow registers
5660 * 2) Write the adjustment to the PHY timer shadow registers
5661 * 3) Issue an ICE_PTP_ADJ_TIME timer command to synchronously apply the
5662 * adjustment to both the source and port timers at the next clock cycle.
5663 */
ice_ptp_adj_clock(struct ice_hw * hw,s32 adj)5664 int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
5665 {
5666 u8 tmr_idx;
5667 int err;
5668
5669 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5670
5671 /* Write the desired clock adjustment into the GLTSYN_SHADJ register.
5672 * For an ICE_PTP_ADJ_TIME command, this set of registers represents
5673 * the value to add to the clock time. It supports subtraction by
5674 * interpreting the value as a 2's complement integer.
5675 */
5676 wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
5677 wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
5678
5679 switch (hw->ptp.phy_model) {
5680 case ICE_PHY_ETH56G:
5681 err = ice_ptp_prep_phy_adj_eth56g(hw, adj);
5682 break;
5683 case ICE_PHY_E810:
5684 err = ice_ptp_prep_phy_adj_e810(hw, adj);
5685 break;
5686 case ICE_PHY_E82X:
5687 err = ice_ptp_prep_phy_adj_e82x(hw, adj);
5688 break;
5689 default:
5690 err = -EOPNOTSUPP;
5691 }
5692
5693 if (err)
5694 return err;
5695
5696 return ice_ptp_tmr_cmd(hw, ICE_PTP_ADJ_TIME);
5697 }
5698
5699 /**
5700 * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
5701 * @hw: pointer to the HW struct
5702 * @block: the block to read from
5703 * @idx: the timestamp index to read
5704 * @tstamp: on return, the 40bit timestamp value
5705 *
5706 * Read a 40bit timestamp value out of the timestamp block. For E822 devices,
5707 * the block is the quad to read from. For E810 devices, the block is the
5708 * logical port to read from.
5709 */
ice_read_phy_tstamp(struct ice_hw * hw,u8 block,u8 idx,u64 * tstamp)5710 int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
5711 {
5712 switch (hw->ptp.phy_model) {
5713 case ICE_PHY_ETH56G:
5714 return ice_read_ptp_tstamp_eth56g(hw, block, idx, tstamp);
5715 case ICE_PHY_E810:
5716 return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
5717 case ICE_PHY_E82X:
5718 return ice_read_phy_tstamp_e82x(hw, block, idx, tstamp);
5719 default:
5720 return -EOPNOTSUPP;
5721 }
5722 }
5723
5724 /**
5725 * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
5726 * @hw: pointer to the HW struct
5727 * @block: the block to read from
5728 * @idx: the timestamp index to reset
5729 *
5730 * Clear a timestamp from the timestamp block, discarding its value without
5731 * returning it. This resets the memory status bit for the timestamp index
5732 * allowing it to be reused for another timestamp in the future.
5733 *
5734 * For E822 devices, the block number is the PHY quad to clear from. For E810
5735 * devices, the block number is the logical port to clear from.
5736 *
5737 * This function must only be called on a timestamp index whose valid bit is
5738 * set according to ice_get_phy_tx_tstamp_ready().
5739 */
ice_clear_phy_tstamp(struct ice_hw * hw,u8 block,u8 idx)5740 int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
5741 {
5742 switch (hw->ptp.phy_model) {
5743 case ICE_PHY_ETH56G:
5744 return ice_clear_ptp_tstamp_eth56g(hw, block, idx);
5745 case ICE_PHY_E810:
5746 return ice_clear_phy_tstamp_e810(hw, block, idx);
5747 case ICE_PHY_E82X:
5748 return ice_clear_phy_tstamp_e82x(hw, block, idx);
5749 default:
5750 return -EOPNOTSUPP;
5751 }
5752 }
5753
5754 /**
5755 * ice_get_pf_c827_idx - find and return the C827 index for the current pf
5756 * @hw: pointer to the hw struct
5757 * @idx: index of the found C827 PHY
5758 * Return:
5759 * * 0 - success
5760 * * negative - failure
5761 */
ice_get_pf_c827_idx(struct ice_hw * hw,u8 * idx)5762 static int ice_get_pf_c827_idx(struct ice_hw *hw, u8 *idx)
5763 {
5764 struct ice_aqc_get_link_topo cmd;
5765 u8 node_part_number;
5766 u16 node_handle;
5767 int status;
5768 u8 ctx;
5769
5770 if (hw->mac_type != ICE_MAC_E810)
5771 return -ENODEV;
5772
5773 if (hw->device_id != ICE_DEV_ID_E810C_QSFP) {
5774 *idx = C827_0;
5775 return 0;
5776 }
5777
5778 memset(&cmd, 0, sizeof(cmd));
5779
5780 ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_PHY << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
5781 ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
5782 cmd.addr.topo_params.node_type_ctx = ctx;
5783
5784 status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
5785 &node_handle);
5786 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
5787 return -ENOENT;
5788
5789 if (node_handle == E810C_QSFP_C827_0_HANDLE)
5790 *idx = C827_0;
5791 else if (node_handle == E810C_QSFP_C827_1_HANDLE)
5792 *idx = C827_1;
5793 else
5794 return -EIO;
5795
5796 return 0;
5797 }
5798
5799 /**
5800 * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
5801 * @hw: pointer to the HW struct
5802 */
ice_ptp_reset_ts_memory(struct ice_hw * hw)5803 void ice_ptp_reset_ts_memory(struct ice_hw *hw)
5804 {
5805 switch (hw->ptp.phy_model) {
5806 case ICE_PHY_ETH56G:
5807 ice_ptp_reset_ts_memory_eth56g(hw);
5808 break;
5809 case ICE_PHY_E82X:
5810 ice_ptp_reset_ts_memory_e82x(hw);
5811 break;
5812 case ICE_PHY_E810:
5813 default:
5814 return;
5815 }
5816 }
5817
5818 /**
5819 * ice_ptp_init_phc - Initialize PTP hardware clock
5820 * @hw: pointer to the HW struct
5821 *
5822 * Perform the steps required to initialize the PTP hardware clock.
5823 */
ice_ptp_init_phc(struct ice_hw * hw)5824 int ice_ptp_init_phc(struct ice_hw *hw)
5825 {
5826 u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5827
5828 /* Enable source clocks */
5829 wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
5830
5831 /* Clear event err indications for auxiliary pins */
5832 (void)rd32(hw, GLTSYN_STAT(src_idx));
5833
5834 switch (hw->ptp.phy_model) {
5835 case ICE_PHY_ETH56G:
5836 return ice_ptp_init_phc_eth56g(hw);
5837 case ICE_PHY_E810:
5838 return ice_ptp_init_phc_e810(hw);
5839 case ICE_PHY_E82X:
5840 return ice_ptp_init_phc_e82x(hw);
5841 default:
5842 return -EOPNOTSUPP;
5843 }
5844 }
5845
5846 /**
5847 * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
5848 * @hw: pointer to the HW struct
5849 * @block: the timestamp block to check
5850 * @tstamp_ready: storage for the PHY Tx memory status information
5851 *
5852 * Check the PHY for Tx timestamp memory status. This reports a 64 bit value
5853 * which indicates which timestamps in the block may be captured. A set bit
5854 * means the timestamp can be read. An unset bit means the timestamp is not
5855 * ready and software should avoid reading the register.
5856 */
ice_get_phy_tx_tstamp_ready(struct ice_hw * hw,u8 block,u64 * tstamp_ready)5857 int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
5858 {
5859 switch (hw->ptp.phy_model) {
5860 case ICE_PHY_ETH56G:
5861 return ice_get_phy_tx_tstamp_ready_eth56g(hw, block,
5862 tstamp_ready);
5863 case ICE_PHY_E810:
5864 return ice_get_phy_tx_tstamp_ready_e810(hw, block,
5865 tstamp_ready);
5866 case ICE_PHY_E82X:
5867 return ice_get_phy_tx_tstamp_ready_e82x(hw, block,
5868 tstamp_ready);
5869 break;
5870 default:
5871 return -EOPNOTSUPP;
5872 }
5873 }
5874
5875 /**
5876 * ice_cgu_get_pin_desc_e823 - get pin description array
5877 * @hw: pointer to the hw struct
5878 * @input: if request is done against input or output pin
5879 * @size: number of inputs/outputs
5880 *
5881 * Return: pointer to pin description array associated to given hw.
5882 */
5883 static const struct ice_cgu_pin_desc *
ice_cgu_get_pin_desc_e823(struct ice_hw * hw,bool input,int * size)5884 ice_cgu_get_pin_desc_e823(struct ice_hw *hw, bool input, int *size)
5885 {
5886 static const struct ice_cgu_pin_desc *t;
5887
5888 if (hw->cgu_part_number ==
5889 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) {
5890 if (input) {
5891 t = ice_e823_zl_cgu_inputs;
5892 *size = ARRAY_SIZE(ice_e823_zl_cgu_inputs);
5893 } else {
5894 t = ice_e823_zl_cgu_outputs;
5895 *size = ARRAY_SIZE(ice_e823_zl_cgu_outputs);
5896 }
5897 } else if (hw->cgu_part_number ==
5898 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) {
5899 if (input) {
5900 t = ice_e823_si_cgu_inputs;
5901 *size = ARRAY_SIZE(ice_e823_si_cgu_inputs);
5902 } else {
5903 t = ice_e823_si_cgu_outputs;
5904 *size = ARRAY_SIZE(ice_e823_si_cgu_outputs);
5905 }
5906 } else {
5907 t = NULL;
5908 *size = 0;
5909 }
5910
5911 return t;
5912 }
5913
5914 /**
5915 * ice_cgu_get_pin_desc - get pin description array
5916 * @hw: pointer to the hw struct
5917 * @input: if request is done against input or output pins
5918 * @size: size of array returned by function
5919 *
5920 * Return: pointer to pin description array associated to given hw.
5921 */
5922 static const struct ice_cgu_pin_desc *
ice_cgu_get_pin_desc(struct ice_hw * hw,bool input,int * size)5923 ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size)
5924 {
5925 const struct ice_cgu_pin_desc *t = NULL;
5926
5927 switch (hw->device_id) {
5928 case ICE_DEV_ID_E810C_SFP:
5929 if (input) {
5930 t = ice_e810t_sfp_cgu_inputs;
5931 *size = ARRAY_SIZE(ice_e810t_sfp_cgu_inputs);
5932 } else {
5933 t = ice_e810t_sfp_cgu_outputs;
5934 *size = ARRAY_SIZE(ice_e810t_sfp_cgu_outputs);
5935 }
5936 break;
5937 case ICE_DEV_ID_E810C_QSFP:
5938 if (input) {
5939 t = ice_e810t_qsfp_cgu_inputs;
5940 *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_inputs);
5941 } else {
5942 t = ice_e810t_qsfp_cgu_outputs;
5943 *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_outputs);
5944 }
5945 break;
5946 case ICE_DEV_ID_E823L_10G_BASE_T:
5947 case ICE_DEV_ID_E823L_1GBE:
5948 case ICE_DEV_ID_E823L_BACKPLANE:
5949 case ICE_DEV_ID_E823L_QSFP:
5950 case ICE_DEV_ID_E823L_SFP:
5951 case ICE_DEV_ID_E823C_10G_BASE_T:
5952 case ICE_DEV_ID_E823C_BACKPLANE:
5953 case ICE_DEV_ID_E823C_QSFP:
5954 case ICE_DEV_ID_E823C_SFP:
5955 case ICE_DEV_ID_E823C_SGMII:
5956 t = ice_cgu_get_pin_desc_e823(hw, input, size);
5957 break;
5958 default:
5959 break;
5960 }
5961
5962 return t;
5963 }
5964
5965 /**
5966 * ice_cgu_get_num_pins - get pin description array size
5967 * @hw: pointer to the hw struct
5968 * @input: if request is done against input or output pins
5969 *
5970 * Return: size of pin description array for given hw.
5971 */
ice_cgu_get_num_pins(struct ice_hw * hw,bool input)5972 int ice_cgu_get_num_pins(struct ice_hw *hw, bool input)
5973 {
5974 const struct ice_cgu_pin_desc *t;
5975 int size;
5976
5977 t = ice_cgu_get_pin_desc(hw, input, &size);
5978 if (t)
5979 return size;
5980
5981 return 0;
5982 }
5983
5984 /**
5985 * ice_cgu_get_pin_type - get pin's type
5986 * @hw: pointer to the hw struct
5987 * @pin: pin index
5988 * @input: if request is done against input or output pin
5989 *
5990 * Return: type of a pin.
5991 */
ice_cgu_get_pin_type(struct ice_hw * hw,u8 pin,bool input)5992 enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input)
5993 {
5994 const struct ice_cgu_pin_desc *t;
5995 int t_size;
5996
5997 t = ice_cgu_get_pin_desc(hw, input, &t_size);
5998
5999 if (!t)
6000 return 0;
6001
6002 if (pin >= t_size)
6003 return 0;
6004
6005 return t[pin].type;
6006 }
6007
6008 /**
6009 * ice_cgu_get_pin_freq_supp - get pin's supported frequency
6010 * @hw: pointer to the hw struct
6011 * @pin: pin index
6012 * @input: if request is done against input or output pin
6013 * @num: output number of supported frequencies
6014 *
6015 * Get frequency supported number and array of supported frequencies.
6016 *
6017 * Return: array of supported frequencies for given pin.
6018 */
6019 struct dpll_pin_frequency *
ice_cgu_get_pin_freq_supp(struct ice_hw * hw,u8 pin,bool input,u8 * num)6020 ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num)
6021 {
6022 const struct ice_cgu_pin_desc *t;
6023 int t_size;
6024
6025 *num = 0;
6026 t = ice_cgu_get_pin_desc(hw, input, &t_size);
6027 if (!t)
6028 return NULL;
6029 if (pin >= t_size)
6030 return NULL;
6031 *num = t[pin].freq_supp_num;
6032
6033 return t[pin].freq_supp;
6034 }
6035
6036 /**
6037 * ice_cgu_get_pin_name - get pin's name
6038 * @hw: pointer to the hw struct
6039 * @pin: pin index
6040 * @input: if request is done against input or output pin
6041 *
6042 * Return:
6043 * * null terminated char array with name
6044 * * NULL in case of failure
6045 */
ice_cgu_get_pin_name(struct ice_hw * hw,u8 pin,bool input)6046 const char *ice_cgu_get_pin_name(struct ice_hw *hw, u8 pin, bool input)
6047 {
6048 const struct ice_cgu_pin_desc *t;
6049 int t_size;
6050
6051 t = ice_cgu_get_pin_desc(hw, input, &t_size);
6052
6053 if (!t)
6054 return NULL;
6055
6056 if (pin >= t_size)
6057 return NULL;
6058
6059 return t[pin].name;
6060 }
6061
6062 /**
6063 * ice_get_cgu_state - get the state of the DPLL
6064 * @hw: pointer to the hw struct
6065 * @dpll_idx: Index of internal DPLL unit
6066 * @last_dpll_state: last known state of DPLL
6067 * @pin: pointer to a buffer for returning currently active pin
6068 * @ref_state: reference clock state
6069 * @eec_mode: eec mode of the DPLL
6070 * @phase_offset: pointer to a buffer for returning phase offset
6071 * @dpll_state: state of the DPLL (output)
6072 *
6073 * This function will read the state of the DPLL(dpll_idx). Non-null
6074 * 'pin', 'ref_state', 'eec_mode' and 'phase_offset' parameters are used to
6075 * retrieve currently active pin, state, mode and phase_offset respectively.
6076 *
6077 * Return: state of the DPLL
6078 */
ice_get_cgu_state(struct ice_hw * hw,u8 dpll_idx,enum dpll_lock_status last_dpll_state,u8 * pin,u8 * ref_state,u8 * eec_mode,s64 * phase_offset,enum dpll_lock_status * dpll_state)6079 int ice_get_cgu_state(struct ice_hw *hw, u8 dpll_idx,
6080 enum dpll_lock_status last_dpll_state, u8 *pin,
6081 u8 *ref_state, u8 *eec_mode, s64 *phase_offset,
6082 enum dpll_lock_status *dpll_state)
6083 {
6084 u8 hw_ref_state, hw_dpll_state, hw_eec_mode, hw_config;
6085 s64 hw_phase_offset;
6086 int status;
6087
6088 status = ice_aq_get_cgu_dpll_status(hw, dpll_idx, &hw_ref_state,
6089 &hw_dpll_state, &hw_config,
6090 &hw_phase_offset, &hw_eec_mode);
6091 if (status)
6092 return status;
6093
6094 if (pin)
6095 /* current ref pin in dpll_state_refsel_status_X register */
6096 *pin = hw_config & ICE_AQC_GET_CGU_DPLL_CONFIG_CLK_REF_SEL;
6097 if (phase_offset)
6098 *phase_offset = hw_phase_offset;
6099 if (ref_state)
6100 *ref_state = hw_ref_state;
6101 if (eec_mode)
6102 *eec_mode = hw_eec_mode;
6103 if (!dpll_state)
6104 return 0;
6105
6106 /* According to ZL DPLL documentation, once state reach LOCKED_HO_ACQ
6107 * it would never return to FREERUN. This aligns to ITU-T G.781
6108 * Recommendation. We cannot report HOLDOVER as HO memory is cleared
6109 * while switching to another reference.
6110 * Only for situations where previous state was either: "LOCKED without
6111 * HO_ACQ" or "HOLDOVER" we actually back to FREERUN.
6112 */
6113 if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_LOCK) {
6114 if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_HO_READY)
6115 *dpll_state = DPLL_LOCK_STATUS_LOCKED_HO_ACQ;
6116 else
6117 *dpll_state = DPLL_LOCK_STATUS_LOCKED;
6118 } else if (last_dpll_state == DPLL_LOCK_STATUS_LOCKED_HO_ACQ ||
6119 last_dpll_state == DPLL_LOCK_STATUS_HOLDOVER) {
6120 *dpll_state = DPLL_LOCK_STATUS_HOLDOVER;
6121 } else {
6122 *dpll_state = DPLL_LOCK_STATUS_UNLOCKED;
6123 }
6124
6125 return 0;
6126 }
6127
6128 /**
6129 * ice_get_cgu_rclk_pin_info - get info on available recovered clock pins
6130 * @hw: pointer to the hw struct
6131 * @base_idx: returns index of first recovered clock pin on device
6132 * @pin_num: returns number of recovered clock pins available on device
6133 *
6134 * Based on hw provide caller info about recovery clock pins available on the
6135 * board.
6136 *
6137 * Return:
6138 * * 0 - success, information is valid
6139 * * negative - failure, information is not valid
6140 */
ice_get_cgu_rclk_pin_info(struct ice_hw * hw,u8 * base_idx,u8 * pin_num)6141 int ice_get_cgu_rclk_pin_info(struct ice_hw *hw, u8 *base_idx, u8 *pin_num)
6142 {
6143 u8 phy_idx;
6144 int ret;
6145
6146 switch (hw->device_id) {
6147 case ICE_DEV_ID_E810C_SFP:
6148 case ICE_DEV_ID_E810C_QSFP:
6149
6150 ret = ice_get_pf_c827_idx(hw, &phy_idx);
6151 if (ret)
6152 return ret;
6153 *base_idx = E810T_CGU_INPUT_C827(phy_idx, ICE_RCLKA_PIN);
6154 *pin_num = ICE_E810_RCLK_PINS_NUM;
6155 ret = 0;
6156 break;
6157 case ICE_DEV_ID_E823L_10G_BASE_T:
6158 case ICE_DEV_ID_E823L_1GBE:
6159 case ICE_DEV_ID_E823L_BACKPLANE:
6160 case ICE_DEV_ID_E823L_QSFP:
6161 case ICE_DEV_ID_E823L_SFP:
6162 case ICE_DEV_ID_E823C_10G_BASE_T:
6163 case ICE_DEV_ID_E823C_BACKPLANE:
6164 case ICE_DEV_ID_E823C_QSFP:
6165 case ICE_DEV_ID_E823C_SFP:
6166 case ICE_DEV_ID_E823C_SGMII:
6167 *pin_num = ICE_E82X_RCLK_PINS_NUM;
6168 ret = 0;
6169 if (hw->cgu_part_number ==
6170 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032)
6171 *base_idx = ZL_REF1P;
6172 else if (hw->cgu_part_number ==
6173 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384)
6174 *base_idx = SI_REF1P;
6175 else
6176 ret = -ENODEV;
6177
6178 break;
6179 default:
6180 ret = -ENODEV;
6181 break;
6182 }
6183
6184 return ret;
6185 }
6186
6187 /**
6188 * ice_cgu_get_output_pin_state_caps - get output pin state capabilities
6189 * @hw: pointer to the hw struct
6190 * @pin_id: id of a pin
6191 * @caps: capabilities to modify
6192 *
6193 * Return:
6194 * * 0 - success, state capabilities were modified
6195 * * negative - failure, capabilities were not modified
6196 */
ice_cgu_get_output_pin_state_caps(struct ice_hw * hw,u8 pin_id,unsigned long * caps)6197 int ice_cgu_get_output_pin_state_caps(struct ice_hw *hw, u8 pin_id,
6198 unsigned long *caps)
6199 {
6200 bool can_change = true;
6201
6202 switch (hw->device_id) {
6203 case ICE_DEV_ID_E810C_SFP:
6204 if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3)
6205 can_change = false;
6206 break;
6207 case ICE_DEV_ID_E810C_QSFP:
6208 if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3 || pin_id == ZL_OUT4)
6209 can_change = false;
6210 break;
6211 case ICE_DEV_ID_E823L_10G_BASE_T:
6212 case ICE_DEV_ID_E823L_1GBE:
6213 case ICE_DEV_ID_E823L_BACKPLANE:
6214 case ICE_DEV_ID_E823L_QSFP:
6215 case ICE_DEV_ID_E823L_SFP:
6216 case ICE_DEV_ID_E823C_10G_BASE_T:
6217 case ICE_DEV_ID_E823C_BACKPLANE:
6218 case ICE_DEV_ID_E823C_QSFP:
6219 case ICE_DEV_ID_E823C_SFP:
6220 case ICE_DEV_ID_E823C_SGMII:
6221 if (hw->cgu_part_number ==
6222 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032 &&
6223 pin_id == ZL_OUT2)
6224 can_change = false;
6225 else if (hw->cgu_part_number ==
6226 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384 &&
6227 pin_id == SI_OUT1)
6228 can_change = false;
6229 break;
6230 default:
6231 return -EINVAL;
6232 }
6233 if (can_change)
6234 *caps |= DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
6235 else
6236 *caps &= ~DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
6237
6238 return 0;
6239 }
6240